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ABSTRACT 

 
Autocatalytic reactions are a kind of fascinating reactions in nonlinear chemical and 

biochemical systems because of their unique features. The auto-catalyst can multiply 

itself leading to the spontaneous generation of order. Coupled autocatalytic reactions, 

providing a positive/negative feedback to control the multiplication of the auto-catalyst, 

can give rise to extraordinary complex behavior such as sequential oscillations. A new 

bromate-based oscillator was successfully designed that employs metol as its organic 

substrate. Complex reaction behaviors were observed when the system was subjected to 

bromine removal and oxygen exposure. Transitions from simple to sequential oscillations 

took place as a function of the age of the metol stock solution, in which an important 

intermediate is 1,4-hydroquinone and the main final products are 1,4-benzoquinone and 

bromobenzoquinones. Various analytical techniques were applied such as TOF-MS, 

GC/MS, NMR, UV, etc. 

    Since bromobenzoquinones are parts of the major products in metol-bromate-ferroin 

system, a new type of minimal bromate oscillator is found based on the bromination of 

1,4-benzoquinone. The oscillator contains a reagent benzoquinone, which does not react 

with metal catalyst ferroin/ferriin, but modulates the evolution of bromide ions through 

the reaction between 1,4-benzoquinone and bromine. It could exhibit spontaneous 

oscillations in a closed reactor. Due to the role of the organic substrate is only the 

bromine removal, we define this system as a batch minimal bromate oscillator. 

    We further investigated the photochemical behavior of the minimal bromate oscillator, 

in which the reduction of ferriin/Cerium (IV) was dominated by bromide ions rather than 

by organic substrates as known in most of bromate oscillators. The chemical oscillations 



vii 
 

exhibited ultrasensitive response to illumination, and the influence of light evolved from 

constructive to inhibitory.  

    In order to determine the dynamic of organic intermediates, such as 1,4-hydroquinone, 

which is involved in metol-bromate-ferroin and 1,4-cyclohexanedione (CHD)-bromate-

metal catalyst systems, a new type of modified carbon electrode was developed to 

simultaneously determine 1,4-hydroquinone and pyrocatechol with differential pulse 

voltammetry. By applying it into the test of dynamics of 1,4-hydroquinone in the CHD-

bromate uncatalyzed system, we successfully monitored the concentration change of 1,4-

hydroquinone during the oscillations. 
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Chapter 1: Introduction 
 

This introductory chapter is an overview of chemical oscillators, including both 

experimental methods and theoretical analysis employed in related studies. 

1.1 Nonlinear Dynamics in Stirred Systems 

1.1.1 Requirement of Chemical Oscillations 

It is expected that a chemical system that is not at thermodynamic equilibrium will 

monotonically move toward the equilibrium state [1] due to the second law of 

thermodynamics, which states “the entropy of an isolated system not in equilibrium will 

tend to increase over time (∆S > 0), approaching a maximum value at equilibrium”. At 

the point of chemical equilibrium, Gibbs energy G is minimum and the thermodynamic 

requirement of the change in Gibbs free energy ∆G equals 0. If a chemical system is 

close to the equilibrium, the chemical driving force has a linear relationship with 

thermodynamic flow. Thus the behavior of this kind of chemical systems will approach 

their final equilibrium monotonically. Therefore, for a chemical system to display any 

interesting nonlinear behaviour such as oscillations and chaos, the system is required to 

stay far from thermodynamic equilibrium [2-4].  

When chemical oscillations occur, they never pass through the thermodynamic 

equilibrium point. How to keep a system far away from equilibrium? It depends on the 

initial concentrations and the type of reactors [5] as shown in Figure 1.1. Comparing with 

those oscillating intermediates, in a closed reactor (a) much higher initial concentrations 

of the reactants are necessary in order to sustain the reaction conditions far-from-

equilibrium condition. On the other hand, an open reactor can maintain the far-from-
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equilibrium condition indefinitely through continuous inflow of reactants and outflow of 

products (see the circle loop in (b)).  

 

Figure 1.1 Attractors conducted in (a) a closed reactor, and (b) an open reactor. 

(quoted from Y. F. Li, H. Qian and Y. F. Yi, J. Chem. Phys., 2008, 129, 154505.) 

 

Another important requirement for a system to exhibit nonlinear phenomena is the 

presence of nonlinear feedbacks [6].  Such a feedback is defined as either the 

intermediates or products influencing steps earlier in the reaction mechanism either 

positively (accelerating the reactions) or negatively (inhibiting the reactions). The most 

common form in a nonlinear chemical system is autocatalytic reactions, such as the 

quadratic autocatalysis, X + Y � 2Y + Z. 
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1.1.2 Nonlinear Kinetics in a Closed Reactor 

The closed reactor plays an important role in investigating the clock reaction [7-9], and 

represents the simplest configuration in studying macroscopic chemical kinetics. The 

reaction system is maintained homogeneous by vigorous stirring and thermostatic with a 

circulating water jacket. No chemicals enter or leave the reactor once the reaction starts. 

Therefore it is also called a batch reactor. 

Relatively few reaction systems can exhibit spontaneous oscillations in a closed reactor. 

The Bray-Liebhafsky (BL) reaction is the first chemical clock, which is the reaction of 

iodate, iodine and hydrogen peroxide. Bray [8] in 1921 and Bray and Liebhafsky [9] in 

1931 investigated the catalytic role of iodate in the conversion of hydrogen peroxide to 

oxygen and water. At certain reaction conditions, the evolution of iodine was found like a 

clock reaction, in which the color of iodine was fading from dark to colorless. After the 

clock event the system was unable to return to such initial conditions for resetting the 

clock. Although the chemical clock could repeat at various conditions, chemists thought 

that the BL reaction was not entirely homogeneous and such a repeated chemical clock 

was a result of dust or bubbles. Before the development of the Belousov-Zhabotinsky 

(BZ) oscillator, a number of papers had been published on why true homogeneous 

oscillation was impossible [10], that is why the BL reaction was treated as a 

nonhomogeneous reaction [11, 12].  

With no doubt, the BZ reaction [13-30] is the first stone knocked at the door of modern 

nonlinear chemical dynamics. Belousov [10] investigated a batch reaction with potassium 

bromate, citric acid/malonic acid (MA), sulfuric acid and cerium sulfate, and observed 

that the solution periodically changed from yellow (Ce4+) to colorless (Ce3+). 
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Zhabotinsky improved the Belousov recipe by using a new redox indicator, in which 

ferroin is red in the reduced form and blue in the oxidized state, making the transitions 

easily visible [15].  As shown the basic BZ reaction mechanism [31-36] in Figure 1.2, 

Mred represents the reduced state of metal catalysts, and Mox denotes the oxidized state. 

Consumption of bromate by bromide initiates the first autocatalytic cycle to produce 

HBrO2, and such a process results in the oxidation of metal catalyst. On the other hand, 

the consumption of bromide by HBrO2 initiates a second reaction cycle for the reduction 

of the oxidized metal catalyst (dashed line), in which bromide reacts with HBrO2 to 

generate HOBr, bromide reacts with HOBr to generate bromine, and bromine reacts with 

MA to generate brominated MA which is BrMA. The final product of Mox from the first 

autocatalytic cycle reacts with the final product of BrMA from the second reaction cycle, 

and then gives rise to the regeneration of bromide. Just like a clock reset, the 

concentration of bromide eventually falls below some critical level [Br-]cr. When the 

concentration of bromide is above the [Br-]cr, bromide consumption reactions dominate. 

When the concentration of bromide is below the [Br-]cr, the bromide regeneration reaction 

will be the predominant process. 

In 1955 Prigogine [10] pointed out that while a closed system must eventually reach 

equilibrium, transient oscillations might take place as the system approaches to the 

equilibrium from a far-from-equilibrium condition. In other words, chemical oscillations 

in closed systems no longer violate the laws of nature. What actually oscillate in the BZ 

reaction are the concentrations of intermediates such as bromide, bromous acid, etc. 
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Figure 1.2 Diagram of the BZ reaction mechanism. 

 

In 1972 Richard J. Field, Endre Koros and Richard M. Noyes proposed the first 

complete mechanism for the BZ reaction [31], which is now commonly known as the 

FKN mechanism. This full scheme was later simplified to a mathematical model 

“Oregonator” for qualitatively simulating the BZ oscillations:  

                                

The Oregonator consists of five reaction steps, where X = HBrO2, Y = Br-, Z = Ce(IV), 

A = BrO3-, B = CH2(COOH)2, and P = HOBr or BrCH(COOH)2. Three major processes 

are involved: (1) Br- consumption (reactions 1 and 2); (2) HBrO2 autocatalytic production 

(reaction 3); and (3) Br- regeneration (reactions 4 and 5). The study of the FKN 

mechanism and Oregonator model has led to new insights into nonlinear dynamical 
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phenomena seen in nature and provided important guidance to experimental exploration 

of nonlinear kinetics in the laboratory. In the numerical simulations a qualitative change 

in the nature of the solution to a set of differential equations is known as a bifurcation and 

bifurcation analysis has been commonly employed to determine the onset of oscillatory 

behavior [37]. 

Since the discovery of the BZ reaction, chemists have attempted to use different metal 

ions or metal complexes as the catalyst as well as employ different organic substrates 

[38-49] to react with the acidic bromate. Those researches have led to the development of 

a large number of modified BZ oscillators.  In the 1980s, chemists found that some 

intermediates of the BZ reaction could oscillate in the closed reactor only when bromine 

was removed by inflowing a stream of nitrogen gas or air through the solution [50, 51]. 

They defined this configuration as a semi-batch reactor, an alternative to the closed 

reactor. Later Rabai and Epstein [52] established another kind of semi-batch reactor, in 

which the beaker was gradually filled up by a pump or with gravity feed as the reaction 

proceeded. Besides the BZ oscillator, many new oscillators such as the chlorite-iodide-

malonic acid (CIMA) [53], Briggs-Rauscher (BR) [54], copper-phosphoric acid system 

[55], glycolytic reactions [56], etc. have been uncovered in the last three decades. 

1.1.3 Nonlinear Kinetics in an Open Reactor 

The best way to study chemical oscillations is in an open reactor, for it can capture the 

oscillation where its amplitude and period are truly constant. It must have a flow of fresh 

reactants into the system and a flow of products out of it. If a chemical system could 

generate oscillations in a closed reactor, it generally would also oscillate in an open 

reactor. For the open reactor, shown in Figure 1.1b, the system can in principle be 
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maintained at any of the far-from-equilibrium conditions where the oscillation displays 

on the way to the final equilibrium state in the closed reactor. The major experimental 

progress for open reactors was the introduction of the continuously flow stirred tank 

reactor (CSTR) as shown in Figure 1.3, where the pump controls the rate of inflow and 

outflow. The average time that a molecule spends in the reactor is calculated with volume 

(mL)/flow rate (mL s-1). 

 

 

 

 

 

 

 

Figure 1.3 A common CSTR configuration. 

 

The simplest nonlinear behavior displayed by a chemical system conducted in an open 

reactor is bistability. This is the coexistence of two stable steady states over a range of 

operating parameters, e.g., flow rate. In Figure 1.4 two solid lines indicate the stable 

branches, while the dashed line is an unstable branch of steady states. At a very high flow 

rate concentrations of the reactants in a CSTR are similar to their inflow concentrations, 

this stable branch is known as flow branch. One of the bistable steady states locates on 

this flow branch. At a low flow rate, the system in a CSTR is close to the thermodynamic 

equilibrium, such a stable branch is called thermodynamic branch. The other bistable 
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steady state is located on this thermodynamic branch. Typically a bistable system 

undergoes transitions from one stable steady state to another when a suitable perturbation 

is applied or when a control parameter is changed beyond its bistability limit. It is also 

possible for chemical systems to display multistability, in which there are more than two 

stable steady states coexist.  

 

 

Figure 1.4 Bistability phenomena. (quoted from I. R. Epstein and J. A. 

Pojman, Oxford University Press, New York, 1998.) 

 

The development of CSTR technique has greatly facilitated the discovery of new 

chemical oscillators and complex chemical oscillations. For example, Geiselar [57] 

reported that in a CSTR the bromate-bromide-manganese (II) could exhibit sustained 

oscillations or multiple steady states. Orban and co-workers [58] obtained a narrow 

oscillatory region in a flow reactor using cerium/manganous ions as the metal catalyst to 

react with bromate and have referred those systems as the minimal bromate oscillator 

(MBO). Notably, those classical MBO can only oscillate in a CSTR. A large variety of 
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complex oscillations have been achieved when the BZ reaction was studied in a CSTR 

[59-66].  

Probably the first example of complex chemical oscillations is bursting phenomenon, 

which is a form of oscillations usually seen in neurons. Bursting oscillations have a 

quiescent period before or after each set of oscillations, in which concentrations during 

the quiescent period changed very little. Sorensen [63] reported bursting oscillations in 

the BZ reaction in a CSTR, in which the number of oscillations per burst did not change 

until a bifurcation to the steady state occurred. The second form of complex oscillations 

observed in the BZ reaction in a CSTR was quasiperiodic oscillations [64]. Such an 

oscillatory behavior consisted of two distinct frequencies from the analysis of the Fourier 

spectrum. Quasiperiodicity is commonly observed in a coupled oscillator or a single 

oscillator with an external periodical forcing. Zhabotinsky [65] was the first to report 

multipeaked periodic states in the BZ-CSTR system, Maselko and Swinney [66] observed 

and defined such basic patterns as mixed-mode oscillations, denoted with LS, consisting 

of L as large amplitude oscillation and S as small amplitude oscillation.  

Other complex oscillations such as period doubling and chaos had also been observed 

in BZ-CSTR systems. Chaos is one of the unwelcome discoveries in science, where 

duplicated experiments can lead to very different results because of tiny, unavoidable 

differences in the initial conditions. In other words, the chaotic systems can have 

outcomes that are entirely unpredictable. The man who forced the science community to 

confront chaos was Edward Lorenz. In the early 1960s [67], he tried to find mathematical 

equations that could help to predict the weather, like all his contemporaries. He believed 

that in principle, the weather system was no different than our solar system, which could 
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be described as a mechanical system and be predicted by mathematics. However, he was 

wrong, when Lorenz wrote down what looked like perfectly simple mathematic equations 

to describe the movement of air currents, they did not behave accordingly.  Initial 

differences, however small, ultimately grow to different macroscopic behaviors. This 

phenomenon is very famous today, referred as the “butterfly effect” [68]. If the weather is 

indeed governed by true equations with chaotic solutions, regardless of if weather sensors 

had been distributed all over the world to feed weather information in real time into the 

equations’ programming, differences in initial wind velocities resulting from a butterfly 

flapping its wings may result in a hurricane instead of a beautiful day in Category. 

Chaos in a CSTR has been found not only in the BZ reaction, but also in the chlorite-

thiosulfate [69], bromate-chlorite-iodide [70] and chlorite-thiourea [71] reactions. 

Chemical chaos can be generated through three routes, period-doubling, periodic-chaotic 

sequences and intermittency [10]. The unpredictable and unrepeatable chaotic systems 

have allured scientists to develop various algorithms to control them, in which the basic 

idea is to introduce a carefully chosen, time-dependent perturbation into the chaotic 

system to drive the chaos back to normal oscillations. 

1.2 Nonlinear Behavior in Reaction-Diffusion Media: Pattern Formation 

Formation of ordered structures in nature is ubiquitous. From skin patterns on animals 

to the galaxy, the phenomenon of self-organization is encountered in diverse contexts in 

physical, chemical and biochemical systems. Well known cases in chemical processes are 

target patterns, spiral waves and Turing patterns. In biochemical processes spatiotemporal 

self-organized behavior has been studied in the context of pulsations of the heart, calcium 

waves and enzyme autocatalytic networks.  
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Those beautiful structures, whether it is in a chemical or biochemical system, can be 

united through a set of partial differential equations. When the chemical system is 

unstirred, it will be governed by reaction and diffusion, which is referred to as a reaction-

diffusion (RD) system shown in the following: 

 

 

Where the kinetic terms contain nonlinear feedbacks. D denotes the diffusion 

coefficient for each chemical species,  is a gradient operator in two or more 

dimensions (i.e., Laplace operator). In general, pattern formation can be understood as 

the cooperative behavior of a large number of individual local oscillators. They are 

governed by the reaction terms and are coupled through diffusion terms in the equation 

(1.1) and (1.2). Experimentally the RD system has been investigated in one-, two- or 

three-dimensional media, such as capillary tubes, petri dishes or beakers. The 

confinement of RD systems to different dimensions can give rise to various 

spatiotemporal structures like travelling pulses, target patterns, spiral waves and scroll 

waves. 

Travelling waves of excitation are the common phenomena in a variety of systems far 

from thermodynamic equilibrium [72]. Of particular interest are so called excitable 

systems that reveal a great variety of spatiotemporal patterns that have fascinated 

scientists for several decades, such as electrical propagation in the brain, in nerves and in 

cardiac tissue. Constant amplitude and no interference behavior of such excitation waves 

arise from the spatial coupling of local nonlinear processes [73]. Of particular importance 

are wave patterns in excitable systems in which a local perturbation must exceed a certain 
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threshold value in order to trigger the propagating waves. According to the type of 

behavior affecting finite wave packets, the list of diverse types of propagating wave 

structures in reaction-diffusion systems [74] is long and includes propagation failure in 

the oxidation of CO on platinum surfaces [75], wave merging, stacking, breathing and 

backfiring in cyclohexanedione BZ (CHD-BZ) reaction [76], splitting autowaves by 

exposing BZ media to short light pulses [77] and electrical fields [78]. 

1.2.1 Pattern Formation in One-Dimensional Media 

Spatiotemporal patterns developed in a capillary tube are often treated as one 

dimensional activity. Due to the small diameter of the capillary tube, the diffusion terms 

are only effective in the direction parallel to the capillary tube, and the concentration in 

each cross section is assumed to be identical. It is essential that at least a clock reaction is 

happening in order to generate front waves in one dimensional media. The wave “front” 

consists of a single point or a very narrow interval where concentrations jump from one 

nearly constant level to another. The wave profile in space resembles the concentration 

versus time profile for the homogeneous reaction. In some way, the type of 

spatiotemporal patterns is determined by the type of active media. Such as “front” 

propagation in a bistable medium, traveling waves in excitable media, and wave trains in 

oscillatory media [79] (see Figure 1.5).  

Ignoring the diffusion term and then setting equations 1.1 and 1.2 equal to zero, two 

null lines are obtained in Figure 1.5 (a-c). A large perturbation from the left fixed point to 

point B in (a) may leads to a final state at the other fixed point. In such a case, once the 

reaction front reaches the right fixed point in one dimensional capillary tube, it will stay 

at the final state and never go back to the left fixed point. Phenomenonlogically, before 
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the reaction front propagates, it keeps dark. After the front “burns” this place, it turns 

white and never changes back to dark color. There are two separate regions in the space-

temporal plot in (d), and the behavior is called front propagation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Relationship between active media and spatio-temporal patterns.  

(quoted from M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys., 1993, 65, 854.) 

 

In an excited system (see Figure 1.5(b)), there is just one stable fixed point. Small 

perturbations (e.g. to point A) lead to responses confined to the neighborhood of the fixed 
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point, whereas large perturbations (e.g. to point B) lead to large excursions along the 

dashed line before the concentrations ultimately relax back to the fixed point. When large 

local perturbations are applied to the reaction system in the capillary tube, after the front 

passes one region, such region will relax back to the fixed point, which has the same 

color as the region before the front comes. As a result, one white region will travel from 

left of the tube to right. This behavior is called travelling pulses (see Figure 1.5(e)). 

Figure 1.5c shows null clines of an oscillatory case, consisting of large amplitude 

relaxation oscillations together with an unstable fixed point. Here, after one wave passes 

through, the clock reaction will reset and generate another wave because no stable fixed 

points exist in the oscillatory case. Eventually, a wave train as shown in Figure 1.5(e) is 

developed in the capillary tube. 

As demonstrated in Figure 1.5, a chemical wave can be generated by applying a 

sufficiently large local perturbation. Where the initial perturbation comes from is a 

question that still needs to be addressed. One possibility is to manipulate the local 

reaction kinetics by electrical stimulation, light illumination or other chemical means. 

Sometimes, the chemical waves can arise spontaneously without an external perturbation. 

A more interesting question comes, how has this occurred? Two main possibilities were 

found after a great deal of effort into trying to establish the routes by which waves arise 

in the BZ reaction. First, a spontaneous concentration fluctuation at a particular point in 

the medium may cause the initial perturbation. Second, inhomogeneous, mechanism 

involves the presence of a pacemaker or catalytic site, such as a dust particle. Some 

researchers have attempted to study whether heterogeneous pacemakers are necessary for 

the initiation of waves in the BZ reaction. After carefully microfiltrating the solution and 
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using the remaining dust free conditions, it is possible to greatly increase the average 

time required for spontaneous generation of waves in BZ solution. They suggest the dust 

particles do serve as pacemakers [80]. 

1.2.2 Waves in Two-Dimensional Media 

Pattern formation in two dimensional media is arguably the one that occurs frequently 

in biochemical and physical systems, and is the one that has been studied predominately 

in the laboratory and in simulations. A thin layer of two-dimensional reaction medium 

such as the BZ reaction can be spontaneously oscillating or excitable. To achieve the 

pattern formation in excitable media, one needs to initiate local oscillations at a point in 

the medium. After the wave front has been initiated, there will be a new feature arising in 

the two dimensional space, which is absent in one dimensional reaction-diffusion 

configuration. The new feature is that the wave front may be curved due to two-

dimensional diffusion transportation. The radius R that best fits the wave front in the 

neighborhood of point is defined as curvature, K (equal to 1/R). Zykov, Tyson and 

Foerster [81-83] have shown both theoretically and experimentally that the velocity of a 

curved wave front depends on the curvature in Equation 1.3: 

 

Where N is the normal velocity of the wave front, c is the velocity of a plane wave, and 

D is the diffusion coefficient of propagating species u. 

In a homogeneous two-dimensional medium, a wavefront initiated from a point 

produces a circular front, travelling at the same speed in all direction. When such a 

wavefront is generated periodically by a localized pacemaker, the front then moves 

outward repeatedly as expanding concentric circles, which form a target pattern. If a 
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target pattern or wave front is broken by a physical disruption such as hitting the 

boundary of the medium or placing an obstacle in the medium, free ends will be created, 

which lead to the formation of spiral waves. Spiral waves have been observed in a wide 

range of chemical and biochemical systems, such as BZ reaction in a Petri dish [84], 

carbon monoxide oxidation on platinum surface [85], developing frog eggs [86], cardiac 

muscle [87], etc. One particular feature of spiral waves is the center or core from which 

the waves emanate. If one watches a spiral wave carefully for a long time, the core of the 

spiral may be seen moving around certain trajectory. The motion of the spiral core was 

discovered in both numerical studies of the Oregonator model [88] and in a ferroin-

catalyzed BZ medium [89].  

 

Figure 1.6 Spiral core meandering and local dynamics. (quoted from Q. 

Y. Gao, J. Li, K. L. Zhang and I. R. Epstein, Chaos, 2009, 19, 033134) 

 

    One focus of the present study on spiral waves is their dynamical response toward 

periodic forcing. For example, the effect of external forcing on spiral waves in two-
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dimensional light sensitive BZ media has been experimentally examined [90], in which 

transitions from spiral waves to spatiotemporal chaos have been found. Theoretically 

there are many numerical models for the study of spiral instabilities toward periodic 

forcing, such as Oregonator, CGLE, Barkley and Brusselator model, et al. A wide variety 

of spiral instabilities have been observed based on different forcing amplitudes and 

frequencies, such as near-core spiral break up, far-field spiral break up, and complex 

phenomena which include back firing, spiral synchronization, spiral regeneration, and 

amplitude modulation from line defects [91]. In each case, the spiral core meandering 

becomes more and more complex and irregular as the forcing amplitude increases as 

shown in Figure 1.6. With no periodic forcing the meandering pattern of spiral core is a 

regular circle in (a1) which corresponds to local dynamics of simple oscillation in (a2). 

After applying the periodic forcing into the Brusselator model, the meandering patterns 

of spiral core becomes more complex and the local dynamics exhibit quasiperiodic 

oscillations. The investigation of spiral waves and their stabilities in chemical RD media 

with complex dynamics offers promise for understanding similar pattern behavior in 

biological development and natural evolution such as pine cones, cauliflower, nautilus 

shells and galaxies, to name a few. 

1.2.3 Three-Dimensional Waves 

RD systems in three dimensions are particularly attractive by virtue of their versatility 

and their relevance to biochemical pattern formation. Although their experimental 

accessibility is much difficult, researchers are fascinated to study such systems not only 

for the importance of these phenomena in nature, but also the intellectual challenge of 

explaining their origin. As opposed to circular and spiral waves in two dimensional media, 
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spherical waves and scroll waves are seen in three-dimensional systems. The line 

connecting all spiral cores is called the filament, which is supposed to be straight. When 

filament starts to grow in extension, it will lose its original straight shape and lead to 

elaborate patterns and even chaos in three dimensions. The instability of scroll waves has 

been reported in the CHD-BZ system, where scroll rings and pairs underwent different 

types of collisions due to shrinking or expanding of the filaments [92]. Several other 

phenomena such as standing waves and packet waves have also been observed [93] in the 

three-dimensional BZ-AOT system, i.e., the BZ reaction in water-in-oil reverse 

microemulsion that was stabilized by the surfactant sodium bis(2-ethylhexyl) 

sulfosuccinate (AOT).  

1.2.4 Turing Patterns 

Different from the propagating waves discussed above, there is another unique class of 

wave activity, which is independent of time. Such a spatial structure is named Turing 

patterns in memory of its discovery by Alan Turing [94], who is widely considered to be 

the father of computer science and artificial intelligence. Turing’s purpose was to propose 

a mechanism on how the genes could determine the structures of developing organisms. 

As catalysts, genes regulated production of organism components. There was no physical 

law which could account for the complex physiochemical processes. Therefore, chemical 

reactions and diffusion governed such processes. Turing suggested there is a chemical 

state, staying stable against perturbations in the absence of diffusion, but becoming 

unstable against perturbations in the presence of diffusion. Such diffusion-driven 

instability may result in spatial variations and induce chemical patterns.  



Chapter 1: Introduction                                                                                                                          19 
 

Scientists have realized that the emergence of Turing patterns had two requirements 

[10]. Firstly, the system must maintain the state far from thermodynamic equilibrium, 

such as by using continuously fed unstirred reactors (CFUR). Secondly, the diffusion 

coefficients of the activator and inhibitory processes are unequal. In common, Turing 

instability occurs when the inhibitory diffusion rate is significantly faster than that of the 

activator. However, since most of the RD systems were carried out in the aqueous 

solutions, in which the diffusion coefficients of all species are on the same order, the 

experimental observation of Turing pattern in a RD system was not achieved until 1990. 

Patrick De Kepper and his group [95] observed a stationary spotty pattern in the CIMA 

system using starch as an indicator. In the experiment a slab of hydrogel was employed to 

decrease the diffusion rate of activator species (iodide ions).  

Another chemical system that was recently found to support Turing patterns is the BZ-

AOT system, in which the microheterogeneous microemulsion results in different 

chemical species diffusing at very different rates. In such a system, various types of 

Turing patterns were developed based on different control parameters. For example [96], 

stationary Turing patterns have been found in the Ru(bpy)3-catalyzed BZ-AOT system at  

high temperature, while a new type of oscillatory Turing patterns were observed at low 

temperature. Turing patterns generally occur in one of the three forms: hexagonal spots, 

stripes, and honeycombs. Coexistence of the two can also be found at specific parameters. 
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1.3 Recent Developments in the Study of Chemical Oscillators and Their Potential 

Applications 

1.3.1 pH Oscillators 

pH oscillators are defined as systems in which H+ plays the most important kinetic role 

in the oscillatory behavior. In such systems, the variation in pH can be as large as four pH 

units. Loosely speaking, almost all chemical oscillators have periodic changes in H+ 

concentration, even in the BZ reaction that requires strongly acidic media. They don’t 

belong to pH oscillators not simply because the pH range is negligible, but also due to the 

different driving force of the oscillations. In pH oscillators [97-99], the driving force is 

the reaction producing H+ in an autocatalytic fashion, and another major composite 

reaction is consuming H+ in a slow process. 

Along with the 200 variants of chemical oscillators known already, pH oscillators 

represent the group that provides the greatest opportunity for practical applications, such 

as inducing the conformation change in pH-responsive gels [100-102], pH-sensitive 

conformational switching of DNA used to realize autonomous molecular computers [103, 

104]. pH oscillators have been reported to produce a spontaneous drug delivery rhythm 

[105, 106]. In the last case, the periodic changes in pH-responsive hydrogel which 

undergo periodic swelling and deswelling could act as a micro “motor” enabling the 

chemical energy to be transformed into mechanical work. 

Among the 20 pH oscillators [107] reported to date, an oxidant like IO3
-, IO4

-, H2O2, 

BrO2
-, BrO3

- and one or two other initial reactants like S2-, SO3
2-, S2O3

2-, HCO3
-, NH2OH, 

Mn2+, CaCO3, CaSO3, Fe(CN)6
4-, thiourea, phenol are used. Almost all of them could 

function only in a CSTR or in a semi-batch reactor. In a CSTR, all reagents are supplied 
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continuously and thus sustained pH oscillations can be observed. In the case of a 

semibatch reactor, the mixture of oxidants is introduced continuously, and long lasting 

but only transient pH oscillations appear. Recently, pH oscillations were also generated in 

a closed reactor [97] via replacing the inflow of chemicals with a layer of silica gel 

impregnated with the key reactants. Such a technique has been successfully applied to the 

BrO3
- -Mn2+ -SO3

2-, IO3
- -Fe(CN)6

4- -SO3
2-, and BrO3

- -Fe(CN)6
4- -SO3

2- systems, in which 

the key reactant sulfite ion was replenished via the dissolution from the gel layer. 

Another long lasting pH oscillatory system in a closed reactor [99] is CaSO3 -H2O2 -

HCO3
-, utilizing the slow dissolution of solid CaSO3 (i.e., it serves as a continuous supply 

of the key intermediate HSO3
-). An advantage of batch pH oscillators is that it is likely to 

be of considerable applications in biochemical systems involving expensive materials 

such as DNA, enzymes, etc. 

pH oscillations have been simulated with a relatively simple mechanism. For instance, 

the following simple skeleton mechanism which consists of three reaction steps has been 

developed by Rabai [108]: 

 

 

 

Where B denotes the oxidant,  and C stand for the two initial reactants, P and Q are 

products. Reaction (2) represents an autocatalytic step for producing hydrogen ion, 

reactions (1) and (3) consume H+ in a slow process. 
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1.3.2 Oscillations in Protic Ionic Liquids 

Except the BZ-AOT system [93, 96], almost all the chemical oscillators have been 

studied in aqueous solution, which limits the application of oscillations in organic phase. 

This is due to no protons as well as difficulties in dissolving inorganic salts such as 

bromate in organic solvent. Such problems can be solved by applying ionic liquids, 

which are room-temperature molten salts consisting entirely of ions. There are two 

different classes of ionic liquids: aprotic ionic liquids (APILs) and protic ionic liquids 

(PILs). PILs are generally prepared by a neutralization reaction from an organic base like 

an amine and an acid. If both are strong enough, proton transfer from the acid to the base 

occurs. PILs include active protons while APILs do not include active protons. Certain 

kinds of PILs have high proton activity compared to acidic water. Therefore PILs are 

assumed to be a promising class of preservation medium for supporting BZ oscillations. 

Yoshida and his co-workers for the first time applied PILs to study BZ reaction [109]. 

They recently reported the BZ oscillations that used PILs as a proton source instead of a 

conventional acid such as sulfuric acid or nitric acid. In their research the cations were 

selected from quaternized aliphatic ammonium ions with different saturated or 

unsaturated alkyl groups. The anions were common oxo- or amide acids. After 

neutralization, the pH of PILs strongly depended on the structures of anions. [dema-

H+][HSO4
-], [DBN-H+][HSO4

-], and [dmea-H+][CH3SO3
-], were found to release protons 

when mixed with water, which led to the initiation of the BZ reaction. These long lasting 

BZ oscillations in the PILs media with a short oscillatory period can be explained by the 

rapid chemical reactions in bromide regeneration processes, where protons produced in 

such processes can be eliminated quickly by a free neutral proton acceptor such as neutral 
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amine [dema] which exists in the reaction system when [dema-H+][HSO4
-] is mixed with 

water. 

1.3.3 Self-oscillating Gels  

Gels are interesting objects which have both liquid-like and solid-like properties. The 

solid-like property is due to the cross-linking of the polymers in the form of network. It is 

not a new discovery that gels can change their volume more than a thousand fold between 

the swelling state and deswelling state in responding to changes in temperature, pH, or 

the applied electric field, etc. yet they do provide a great opportunity for applications in 

areas such as mass transfer and drug delivery. For the first time, Yoshida and coworkers 

in 1996 developed self-oscillating polymer gels which autonomously swell and deswell 

periodically in a closed homogeneous BZ solution without any external stimuli [110]. 

The mechanical oscillation is achieved by applying BZ reactions within the swollen 

polymer network. The polymer gel consists of N-isopropylacrylamide (NIPAAm) in 

which ruthenium (II) tris- (2,2′-bipyridine) (Ru(bpy)3
2+), a catalyst for the BZ reaction, is 

covalently bonded to the polymer chain. The poly(NIPAAm-co-Ru(bpy)3
2+) copolymer 

gel has a phase transition temperature because of the thermo-sensitive constituent 

NIPAAm. The oxidation of the Ru(bpy)3
2+ moiety results in not only swelling of the gel, 

but also a rise in the transition temperature. These characteristics may be interpreted by 

considering an increase in hydrophilicity of the polymer chains due to the oxidation of 

Ru(II) to Ru(III) in the Ru(bpy)3 moiety. Therefore, it is expected that the gel would 

undergo a cyclic swelling-deswelling alteration when the Ru(bpy)3 moiety is periodically 

oxidized and reduced. When the gel is immersed in the BZ solution that does not contain 

the ruthenium catalyst, the reaction solution penetrates into the polymer network and the 
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BZ reaction occurs in the gel. Consequently, periodical Ru(bpy)3 redox changes induced 

by the BZ reaction produce periodical swelling-deswelling changes of the gel. 

The behavior of a self-oscillating BZ gel can be controlled by several factors. The first 

factor is heat, where since the NIPAAm gel is a thermoresponsive material, it will go to 

the swelling state at a low temperature and chang to the deswelling state when being 

heated. The thermal sensitivity of the gels depends on the chemical structure of the 

polymer as well as the crosslink density of the network. A second factor is light, resulting 

from the well-known photosensitivity of the ruthenium-BZ reaction. Illumination of the 

BZ reaction may accelerate the oscillation frequency, which induces the fast swelling-

deswelling switch of the BZ gels. Yoshida and coworkers have indeed developed the 

photo controlled peristaltic motion of a porous membrane made of BZ gels [111]. A third 

factor is the concentration of BZ reactants such as MA, bromate, acid and metal catalysts. 

Epstein and coworkers designed and synthesized new polymerizable ruthenium 

complexes for self-oscillating BZ gels [112]. They produced six new copolymers that 

acted as matrices of BZ gels. Their research found that the distance modified between the 

ruthenium catalysts and polymer back bone has a significant impact on the oscillatory 

behavior of the BZ gels. Increasing the distance causes a shorter initiation time for 

oscillations. Intermediate distance performs the best while further extension of the 

distance slows the oscillations of the gels. Yashin and Balazs found that the visible 

oscillation within non-oscillating, droplet BZ gels could be resuscitated [113]. That is, 

chemical oscillations in BZ gels can be restored by mechanically compressing the BZ 

gels beyond a critical stress, which is an important implication for restoring 

functionalities in extending the lifetime of devices. 
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Yoshida and coworkers proposed that by utilizing the peristaltic motion of the BZ gels, 

the functionalized surface can exhibit autonomous mass transfer of cargo [114]. Thus, BZ 

gels are ideal media for transforming chemical energy to mechanical work. Overall, self-

oscillating BZ gels [110-118] open up great opportunities for designing nano-/micro- 

scale, bio-functional devices that operate in an autonomous manner such as 

microactuators, mass transfer surfaces, pulsatile drug delivery, etc.  

1.3.4 Controlled-Synthesis of Nano/micro-Materials 

Nano/micro-materials [119-126] are of great importance in many areas such as in 

batteries, catalysis, chemical/biochemical sensing, cosmeics, drug, gene delivery, 

hydrogen production and storage, etc. In many cases, the nano/micro-materials exhibit 

varied functionalities in terms of their size and shape. Thus, a technique allowing 

fabrication of large quantities of uniform particles would be a great asset to many 

advanced applications. Conventional synthetic approaches can be divided into several 

categories: hard templating synthesis, soft templating synthesis and template free 

methods. Researchers working in the field of nonlinear chemical dynamics are quite 

familiar with the control of kinetics, which is certainly an important factor in materials 

fabrication. Two nonlinear research groups are actively involved in utilizing reaction-

diffusion systems to synthesize new types of nano/micro-materials, i.e., silica gardens in 

Oliver Steinbock’s group [127-129] and frontal polymerization in John A. Pojman’s 

group [130-132].  

Silica gardens have been studied since the 1940s [133]. The experiments were 

normally performed by adding solid metal salts such as copper sulfate to an aqueous 

solution of sodium silicate from the top. The growth of plant like micro-scaled hollow 
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tubular structures is controlled by chemical reactions and physical diffusion. The silica 

gardens help one to understand the nature of that growth process. Small size and large 

scale production make these hollow tubes interesting materials for various applications. 

Steinbock and coworkers reported a novel method for constructing silica microstructures 

[127]. They produced agarose beads as a microvessel, then loaded diffusively with 

copper sulfate solution and finally exposed to a large volume of sodium silicate solution. 

Air bubble-guided hollow microtubes formed quickly and linearly, and the tube radius 

was found closely related to the bubble size. In the absence of the attached bubble on the 

surface of the beads, hollow microtubes evolved slowly and less linearly. To maintain 

microtubes growth over longer distances, Steinbock’s group [128] carried out 

experiments by injecting copper sulfate or zinc sulfate solutions directly into silicate 

solution from the bottom, where the gas injection from a needle created a bubble which 

could pin to the top of growing tube. It was found that the wall thickness increases in an 

inward direction which suggests a travelling reaction-diffusion front occurred and 

controlled the wall growth in the radial direction. They also demonstrated the 

construction of multi-layered microtubes.  

Recently, Steinbock et al. [129] demonstrated nonequilibrium synthesis of iron oxide-

silica magnetite tubes, in which the magnetite particles followed first-order nucleation-

growth kinetics. Similar techniques were employed in the growth of iron oxide-silica 

magnetite tubes as the above techniques of copper of zinc-based microtubes synthesis, 

except they applied an air-filled glass rod moving upward with a computer-controlled 

speed to guide the growth of iron oxide-silica magnetite tubes. These iron oxide-silica 

tubes lacked mechanical stability and could be improved by increasing the sodium 
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silicate concentration. It was found that the rod and air bubble moved vertically up 

forming a nearly straight iron oxide-silica microtube which exhibited superparamagnetic 

behavior. 

In Pojman’s group research was focused on studies of frontal polymerization. 

Conventional polymerization occurs in the homogeneous environment while frontal 

polymerization is a process in which the polymerization reaction propagates directionally 

through the reaction vessel, like a front propagation in Figure 1.5d. There are mainly four 

types of frontal polymerization reported [134]: thermal frontal polymerization (TFP), 

which uses external energy sources to initiate the polymerization reaction; photofrontal 

polymerization, which is driven by an external UV irradiation continuously; isothermal 

frontal polymerization, which relies on a polymer seed to initiate a front; cryogenic 

polymerization, a fascinating mode of frontal polymerization due to the requirement of 

low temperature (4-77K), however, it requires gamma radiation for the front initiation. 

Frontal polymerization, first discovered by Chechilo’s group [135], has many potential 

applications, such as curing large composites, and new types of materials cannot be 

achieved by conventional polymerization methods. 

The biggest concern in frontal polymerization is with very high temperature (250 ○C), 

especially in TFP process. At such high temperature, polymerization will produce smoke 

and release volatile compounds resulting from the exceeding polymerization and 

unreacted initiator such as peroxide, thereby limiting their applications. Pojman et al. in 

2011 [131] reported the first electron paramagnetic resonance study of free radicals in 

front polymerizing and bulk polymerized acrylates. They pointed out the absolute radical 

concentrations in both regions, where the radical concentrations are significantly higher 
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near the point of frontal region than in the bulk region. Moreover, the radical 

concentrations are nearly constant for weeks and even months in the absence of oxygen. 

According to this paper, methods to reduce the radical concentrations to the appropriate 

level which can sustain the frontal polymerization and methods to get rid of unreacted 

initiator become significant for reducing the polymerization temperature. In the same 

year, the same group [130] proposed that addition of thiols can lower the front 

polymerization temperature and increase the flexibility of a polymer because thiols can 

undergo copolymerization with acrylates, with a lower enthalpy (60 kJ/mol) than for 

acrylates homopolymerization (80 kJ/mol). Moreover, the heat release of thiols-acrylates 

reaction per mass is less than acrylates homopolymerization, thus lowering the front 

temperature and the amount of smoke produced. Addition of thiols can also eliminate the 

unreacted peroxide due to thiols and peroxide having been shown to react together at 

room temperature.  

In recent years various new methods [123-126] have been developed for the 

controlled-synthesis of nano/micro-materials. One of the desired properties is the facet of 

the as-prepared nanocrystals. The formation of different facets is determined by their 

growth conditions [136, 137].  For example, in the presence of KI, iodide ions 

preferentially adsorb on the {100} palladium facet, which subsequently allow the 

palladium crystal to grow along other facets. The final outcome is the as-prepared 

palladium crystals will be conclosed with the {100} facet. So far, in existing research on 

this topic, a fixed amount of KI was added initially. Using the iodide oscillator to grow 

palladium crystals, for example, would create exciting opportunities to achieve facet 

control and novel microstructures. Notably, bromide ions have similar adsorption 
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properties [138] as iodide and therefore bromate oscillators can be employed to achieve 

the controlled synthesis of nanocrystals.  

1.4 Objectives of this Thesis 

    Despite that a large number of chemical oscillators have been developed in the last 

three decades, bromate-based chemical oscillators [93, 96, 110-118] remain to be the 

most popular model systems for the understanding of complex nonlinear behaviours 

encountered in nature. This is partially because bromate oscillators often exhibit long 

lasting and rich nonlinear phenomena and its core reaction mechanisms are well 

understood.  To further advance our understanding of bromate-based chemical oscillators 

and explore novel nonlinear chemical behaviors, which are no doubt important to the 

study of nonlinear dynamics as a whole, this research choose metol and 1,4-

benzoquinone as the organic substrates to develop new bromate oscillators. Notably, in 

those proposed new systems the consumption of bromine is slower than that in the classic 

BZ reaction. Such a kinetic property causes the buildup of bromine in the reaction 

solution, which subsequently allows us to test different ways to manipulate bromine 

concentration. We would like to note that the recycling of bromine/bromide represents 

important steps in all bromate-based chemical oscillators, therefore being able to 

manipulate bromine concentration does not only permit one to gain new significant 

insights into the underlying reaction mechanisms, but also offers a great opportunity to 

uncover new phenomena.  

    The proposed research activities are carried out in the following order: 

a) Reaction behavior and mechanisms of the ferroin-bromate-metol oscillator 

were studied first in a batch reactor, in which the effect of gas flow on the 
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ferroin-bromate-metol oscillations was characterized. Nonlinear spatiotemporal 

behavior in the ferroin-bromate-metol system was explored in one- and two-

dimensional media. 

b) A new type of minimal bromate oscillator was developed, which utilized 1,4-

benzoquinone to modulate the concentration of bromine/bromide in the 

reaction solution.  The new reaction could exhibit spontaneous oscillations in a 

closed system. Mechanistic studies were carried out to determine the 

intermediate and final products.  

c) Interactions of the new minimal bromate oscillator and external forcing were 

investigated. The external forcing was conveniently implemented with light. 

Effects of varying the intensity and wavelength of the applied light were carried 

out in both ferroin- and cerium- catalyzed minimal bromate oscillators. 

Possible photoreaction mechanisms were proposed and numerical simulations 

were performed accordingly. 

d) A new kind of modified carbon electrode was developed for the in-situ 

determination of 1,4-hydroquinone in the proposed bromate oscillators. A good 

relationship between the concentration of 1,4-hydroquinone and oscillatory 

potential profile has been found.   

e) Preliminary exploration of using bromate oscillators to achieve facet-controlled 

synthesis of palladium nanoparticles was carried out in a batch reactor. 
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2.1 Introduction 

    Since the discovery of the Belousov-Zhabotinsky (BZ) reaction [1-3], a large family of 

bromate-based chemical oscillators has been uncovered in the past three decades, 

including both catalyzed and uncatalyzed systems [4-18]. The majority of those bromate 

oscillators are the replacement of malonic acid of the BZ reaction by different organic 

substrates [7-18]. When malonic acid is replaced, the consumption rate of bromine 

molecules and the production paths of bromide ions, that modulate the autocatalytic 

feedback cycles, are alternated [19]. As a result, those modified BZ systems may exhibit 

very different reaction behaviour. For example, Heilweil et al. observed sequential 

oscillations in a closed BZ system using malonic acid, acetylacetone and ethyl 

acetoacetate as the substrates [20]. Salter and Sheppard reported dual-frequency (i.e., 

birhythmic) oscillations when ethyl acetoacetate was employed as the substrate [21]. 

Dual-frequency oscillations were also reported respectively by Srivastava et al. and by 

Adamčiková and co-workers with acetylphenols and phenol as the substrates [22, 23].  

    In the following, we investigated nonlinear kinetics of the ferroin-bromate-metol 

reaction and, more importantly, explored the influences of manipulating bromine 

concentration on the observed nonlinear behavior. Similar to many of the organic 

substrates used in the modified BZ reactions, metol does not react with bromine fast 

enough to keep bromine concentration as low as seen in the malonic acid-bromate system. 
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Considering that bromine is an important precursor of bromide ions, the loss of bromine 

in those modified BZ systems might have significant impacts on the nonlinear behavior. 

So far, the importance of such a kinetic factor has been largely ignored. A study by 

Noszticzius and co-workers on the oxalic acid-BZ reaction did, however, show that 

spontaneous oscillations could be induced when a stream of inert gas was bubbled 

through the reaction solution [24, 25].  

    For the economic reasons, if the insert gas is replaced by air to bubble the solution, 

oxygen would be introduced in the process. The influence of oxygen on the BZ 

oscillations has been reported earlier, and the influence was attributed to interactions of 

oxygen with malonyl radicals [26-33], implying that the oxygen effect might depend on 

the organic substrates used. In this chapter, the synergistic influences of oxygen and 

bromine removal were also investigated, which was implemented via flowing air instead 

of nitrogen gas into the space above the ferroin-bromate-metol reaction mixture. As 

shown in the following, the coupling of oxygen and bromine removal resulted in complex 

oscillations in this new bromate-based oscillator, even under the conditions where the 

unperturbed system did not produce spontaneous oscillations. Characterization of the 

outflow gas with AgNO3 solution showed the production of yellow AgBr precipitates. 

2.2 Experimental Procedure 

    Reactions were run in a thermal-jacketed 50 mL glass reactor with the temperature 

maintained constant at 25.0 ± 0.1○C by a circulation water bath (ThermoNesLab RTE 7). 

The solution was stirred by a magnetic stirrer (Fisher Isotemp) at around 600 round per 

minute (rpm), except when stirring was characterized as a variable. A Teflon cap was 

placed on top of the cylindrical reactor to hold electrodes and nitrogen/oxygen inflow 
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tube. Volume of the reaction solution was fixed at 30.0 ml unless otherwise stated. 

Oscillatory profiles were monitored with a platinum electrode coupled with a 

Hg│Hg2SO4│K2SO4 reference electrode (Radiometer Analytical, XR200 and M231Pt-9). 

All measurements were recorded with a personal computer connected to a pH/potential 

meter (Radiometer PHM220) through a PowerLab/4SP data logger. The evolution of the 

spatially extended medium was monitored with a CCD camera equipped with a zoom 

lens. The CCD camera was connected to a personal computer running a frame grabber 

program (Matrox Imaging Library). 

Reaction mixtures were prepared from aqueous stock solutions of analytical grade 

sodium bromate (NaBrO3, Aldrich, 99%), 1.0 M, and sulfuric acid (H2SO4, Aldrich, 95-

98%), 6.0 M. Ferroin stock solution (0.01 M) was prepared from a calculated amount of 

FeSO4·7H2O (Aldrich, 99+%) and 1,10-phenanthroline (Aldrich, 99+%). Metol (4-

methylaminophenol hemisulfate salt, Aldrich, 99%) and 1,4-hydroquinone (Aldrich, 

99+%) were directly dissolved in the reaction mixture, except that when the age of metol 

solution was studied as a variable, where 0.05 M stock solution was prepared with doubly 

distilled water and stored in a brown bottle. Mass spectrometric measurements were 

carried out with Electrospray Ionization Time-of-Flight Mass Spectrometer and a 1200 L 

single quadrupole MS (Varian) through a direct insertion probe. All 1H-NMR and 13C-

NMR studies were performed on a Bruker Avance 500MHz spectrometer and with the 

same sample that was used for mass spectrometry studies, but dissolved in deuterated 

chloroform (Cambridge Isotope Laboratories, 99.8%). 
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2. 3 Results and Discussion 

2.3.1 Significance of Bromine Removal  

    Figure 2.1 presents the ferroin-bromate-metol reaction carried out under different 

configurations of the reactor: (a) sealed with parafilm, and (b) flowing nitrogen into the 

space above the reaction solution. Compositions of the reaction solution were [NaBrO3] = 

0.05 M, [metol] = 0.025 M, [ferroin] = 1.0 x 10-4 M and [H2SO4] = 1.7 M.  In (a), volatile 

substances, mainly bromine molecules, were prevented from migrating out of the reactor, 

no spontaneous oscillations took place. Although in experiment (a) there was about 1 cm 

space above the reaction solution, the natural diffusion of volatile species out of the 

solution seemed to be negligible because the same result was achieved when the reaction 

solution was increased to fill up the reactor (i.e., no free space above the solution level). 

In experiment (b) nitrogen gas was flew into the space above the reaction solution at a 

rate of 60 ml/min. When the outflow nitrogen gas passed through a AgNO3 solution, pale 

yellow precipitates formed, suggesting that volatile reagent bromine has been brought out 

of the reactor by the gas stream. Significantly, spontaneous oscillations took place after 

about 20,000 seconds in (b). This result suggests that bromine concentration in the 

unperturbed metol system was too high to support spontaneous chemical oscillations. 

More importantly, the removal of bromine has dramatic influence on the nonlinear 

kinetics of the ferroin-bromate-metol reaction.  

Further experiments showed that even when the reactor was not sealed with parafilm, 

where bromine could migrate diffusively out of the reactor through loose contacts 

between the cap and glass reactor, the flow of nitrogen gas was still required for the 

system to exhibit spontaneous oscillations. This highlights the importance of enhanced 
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bromine removal in the metol system and possibly in other bromate-based chemical 

oscillators in which organic substrates do not consume bromine rapidly. As the bromine 

removal rate was increased by increasing the nitrogen flow rate, in Figure 2.2 the 

induction time was greatly shortened, suggesting that chemical oscillations were favored 

by the enhanced bromine removal process. However, the number of oscillations 

decreased as the flow rate of nitrogen was increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Time series of the ferroin-bromate-metol reaction with different 
configurations of the reactor: (a) sealed with parafilm, and (b) flowing nitrogen gas above 
the solution surface. Initial reaction compositions are [metol] = 0.025 M, [NaBrO3] = 
0.05 M, [H2SO4] = 1.7 M, and [ferroin] = 1.0×10-4 M. 
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Figure 2.2 Influence of nitrogen flow rate on the oscillatory behavior (a) 40, (b) 60, and 
(c) 80 ml/min. Other reaction conditions were [metol] = 0.025M, [NaBrO3] = 0.05M, 
[H2SO4] = 1.7M, [ferroin] = 1.0 x 10-4 M, and the reaction solution volume was 20 ml. 
 
 
 
 
 
2.3.2 Synergetic Influence of Oxygen and Bromine Removal 

In Figure 2.3 nitrogen stream was replaced by (a) 1:1 nitrogen and air mixture, (b) air, 

and (c) pure oxygen, while the flow rate was kept constant at 60 ml/min. Upon replacing 
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nitrogen with the mixture of nitrogen and air, a new group of spontaneous oscillations 

developed at about 60,000 s and there was a long non-oscillatory evolution period 

between the two oscillation windows, a characteristic of sequential oscillations [20]. As 

the oxygen concentration was increased, the total number of peaks within the second 

oscillation window was greatly increased. Another noticeable change in (b) is that within 

the second group of oscillations there are two distinct oscillation frequencies. The abrupt 

transition from one frequency to another is in contrast to the gradual consumption of 

reagents, leading us to speculate that the system might support birhythmic oscillations if 

studied in an open system where reaction conditions can be maintained stable. In (c), 

where pure oxygen was employed, the number of peaks within the first window increased, 

while the quiescent window was further shortened. The phenomenon of oscillations with 

two distinct oscillation frequencies can still be seen in (c). Unlike seen in the classic BZ 

reaction [29], our measurement with oxygen electrode showed that oxygen concentration 

decreased exponentially within the first 2500 seconds and then stayed at the low 

concentration throughout the process and no oscillations was detected. 

The results in Figure 2.3 illustrate that oxygen does not only have the same role as 

nitrogen stream in removing bromine molecules for the occurrence of spontaneous 

oscillations, but also has important effects on inducing the second oscillatory window. 

More specifically, as the concentration of oxygen was increased from (a) to (c), the 

induction time of the first oscillatory window was delayed while the second oscillatory 

window appeared earlier.  
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Figure 2.3 Time series of ferroin-bromate-metol reaction carried out by flowing (a) 1:1 
nitrogen and air mixture, (b) air, and (c) oxygen above the solution surface. Other 
reaction conditions are the same as those used in Figure 2.1b.  
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To shed light on how oxygen gets involved in the above reaction, particularly its 

interactions with the substrate metol, in Figure 2.4 we characterized how the reaction 
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behaviour was affected by the age of metol stock solution: (a) fresh, (b) 1, (c) 4, and (d) 7 

days old. Other reaction conditions were [metol] = 0.025 M, [NaBrO3] = 0.05 M, [H2SO4] 

= 1.7 M, and [ferroin] = 1.0×10-4 M. Here, the reactor was configured in such a way that 

volatile reagents and air were allowed to freely diffuse through a 2 mm hole (in diameter) 

in the Teflon cap. No nitrogen gas was flew into it. As shown in (a), a large number of 

oscillations with two distinct frequencies were observed. The induction time is 

significantly longer than that achieved under the flow of nitrogen or air (see Figure 2.3), 

suggesting that high bromine concentration in the solution is an important factor in the 

observed long induction time. We would like to note that when bromine was added 

initially to the system to brominate metol, there was no significant change in the 

induction time, which was different from what was seen in the BZ system in which the 

presence of bromomalonic acid would reduce or eliminate the induction time. Figure 

2.4(b) shows that the reaction with one day old metol solution exhibited one oscillatory 

window with a gradual decrease of oscillation frequency. Four day old metol solution led 

to oscillations with two distinct frequencies in Figure 2.4(c). Seven day old metol 

solution, on the other hand, produced sequential oscillations in Figure 2.4(d), where a few 

small amplitude oscillations developed during the quiescent period. 

TOF-MS analysis in Figure 2.5a shows that for the moderately old metol solution (<3 

days) the largest peak remains at 345 m/e, which corresponds to the original metol 

sulphate salt (M). The second largest peak sits at 243 m/e, corresponding to 

benzoquinone dimmers [34]. There is another small peak at 364 m/e, which corresponds 

to 1,4-hydroquinone-p-methylaminophenol complex (H2Q-M). After seven days the 

spectrum in Figure 2.5(b) shows that the peak at 243m/e becomes higher than the one at 
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345 m/e, indicating a greater degree of metol decay. More importantly, the peak at 364 

m/e becomes ten times higher than that seen within 3 days old metol solution. The above 

mass spectrometry analysis suggests that the decay of metol in air undergoes from metol 

to hydroquinone and then to benzoquinone species.  

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
Figure 2.4  Time series of ferroin-bromate-metol reaction performed with (a) fresh, (b) 1, 
(c) 4, and (d) 7 days old metol stock solution. Initial reaction compositions were [metol] 
= 0.025 M, [NaBrO3] = 0.05 M, [H2SO4] = 1.7 M, and [ferroin] = 1.0×10-4 M. 
 
 

The difference in the reaction behaviour when fresh or one day old metol solution was 

used is qualitatively the same as that observed when the initial concentration of metol 

was decreased. Such an observation suggests that influences of a moderately old metol 

solution on the reaction phenomenon are mainly due to the decay of metol. However, as 

the decay of metol continued, decay products such as hydroquinone would insert stronger 
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influences, leading to more complicated oscillatory behavior. The influences might take 

place through the reaction of hydroquinone with bromine, bromine dioxide radicals etc.  
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Figure 2.5 TOF-MS analysis of 3 days old metol solution (a) and 7 days old metol 
solution (b). 
 
 

To test the above hypothesis, Figure 2.6 presents time series obtained at different 

combinations of hydroquinone and metol, while the total amount of substrate was kept 

constant: (a) [metol] = 0.02 M and [H2Q] = 0.005 M, (b) [metol] = 0.0125 M and [H2Q] = 

0.0125 M, and (c) [metol] = 0.01 M and [H2Q] = 0.015 M. Other reaction conditions are 

the same as those used in Figure 2.4. In (a), similar to what was achieved in Figure 2.4b, 

only one oscillation window was achieved. One group of oscillations with two distinct 

frequencies was seen in Figure 2.6(b) as a result of increasing H2Q and decreasing metol 

concentration. Sequential oscillations were observed in Figure 2.6(c). The trend of the 

variation is the same as that seen in Figure 2.4. Together with the mass spectroscopic 
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study, the above kinetic experiments lend strong support that the influence of oxygen on 

the ferroin-bromate-metol oscillations may take place through the substrate metol, 

causing the formation of hydroquinone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6 Time series of ferroin-bromate-metol reaction performed with different 
combination of metol and hydroquinone: (a) [metol] = 0.02 M, [H2Q] 0.005 M; (b) 
[metol] = 0.0125 M, [H2Q] = 0.0125 M; and (c) [metol] = 0.01 M, [H2Q] = 0.015 M. 
Other conditions were the same as in Figure 2.4a.  

 

2.3.4 Dependence of the Oscillations on the Initial Compositions 

In the following we systematically characterized the influence of the concentration of 

each reagent on the oscillatory behavior. Figure 2.7 is a phase diagram in the bromate-

0.0

0.2

0.4

0.6

0.8

 

 

po
te

nt
ia

l /
 V

a

0.0

0.2

0.4

0.6

0.8

 

 

po
te

nt
ia

l /
 V

b

0 40000 80000 120000
0.0

0.2

0.4

0.6

0.8

 

 

po
te

nt
ia

l /
 V

time / s

c



Chapter 2: Complex Kinetics and Significant Influences of Bromine Removal in Ferroin-Bromate-
Metol Reaction                                                                                                                                      53 
 
sulfuric acid concentration phase plane, where squares, circles, upper and lower triangles 

denote the conditions where the system exhibits different forms of spontaneous 

oscillations. The unmarked region is the conditions where no spontaneous oscillations 

were observed. The configuration of the reactor was the same as that used in Figures 2.4a 

and concentrations of metol and ferroin were fixed respectively at 0.025 M and 1.0×10-4 

M. Simple oscillations with a large amplitude and low frequency are defined as simple 

type I, whereas simple damping oscillations as shown in Figure 2.8d are defined as 

simple type-II.  

First glance of this phase diagram indicates that oscillatory phenomena exist over 

broad concentrations of bromate and sulfuric acid, where sequential oscillations are the 

dominant behavior. No oscillation was observed for bromate above 0.1 M or below 0.02 

M. Within such a range, decreasing bromate concentration from 0.1 M first resulted in 

oscillations with two distinct frequencies that were similar to the phenomenon seen in 

Figure 2.4a. Further decrease of bromate concentration led to sequential oscillations like 

those presented in Figure 2.4d. Effects of bromate on the reaction behavior are 

qualitatively the same as sulfuric acid. In the absence of bromine removal and oxygen 

effects, however, spontaneous oscillations exist within a smaller parameter window and 

sequential oscillations are replaced by simple transient oscillations. For example, at the 

condition [NaBrO3] = 0.05 M and [H2SO4] = 1.7 M, the system could not oscillate in the 

absence of bromine removal and oxygen effects.   
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Figure 2.7 Phase diagram of the ferroin-bromate-metol reaction in bromate-sulfuric acid 
concentration plane. All other conditions were the same as those used in Figure 2.4a. The 
system exhibited spontaneous oscillations only within the marked region: (●) sequential 
oscillations, (■) damping oscillations (Type II), (▲) oscillations with two distinct 
frequencies, and (▼) low frequency, large amplitude oscillations (Type I). 
 

Representative series about the influence of each reagent on the reaction behavior can 

be seen in Figures 2.8 to 2.10, where Figure 2.8 shows that as the acid concentration was 

decreased just below the top threshold, a few oscillations with large amplitude and low 

frequency took place in (a). When the acid concentration was too high (> 1.9 M) or too 

low (<0.2 M), the system did not exhibit any oscillatory phenomenon. When the acid 

concentration was decreased further, the system exhibited one group of oscillations with 

two distinct frequencies in (b). The oscillations were separated in (c) as the acid 

concentration was lowered still, forming the phenomenon of sequential oscillations.  

Eventually, only one group of damping oscillations were generated by decreasing the 

acid concentration to even lower value 0.3M in (d), with a very long induction time.  
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Figure 2.8 Time series of ferroin-bromate-metol reaction at different acid concentrations 
(a) 1.8 M, (b) 1.7 M, (c) 1.3 M, and (d) 0.3 M. Other reaction conditions are [metol] = 
0.025 M, [NaBrO3] = 0.05 M, and [ferroin] = 1.0×10-4 M. The reactor was unsealed to 
allow volatile species diffuse out and allow the air diffuse into the reactor. 

 

Results in Figure 2.9 show that as ferroin concentration was above a threshold value, a 

large number of oscillations appeared. Notably, in Figure 2.9(c) the frequency of 

oscillation increased initially, despite the continuous consumption of reactants in time. As 

the reaction approached to end, the oscillation frequency decreased as seen normally in a 

closed oscillatory system. The adjustment of ferroin concentration has so far failed to 

transform these oscillations into sequential oscillations.  
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Figure 2.9 Time series of ferroin-bromate-metol reaction at different initial 
concentrations of ferroin: (a) 2.5×10-5 M, (b) 5.0×10-5 M, (c) 2.0×10-4 M, and (d) 4.0×10-4 

M. Other reaction conditions are [metol] = 0.025 M, [NaBrO3] = 0.05 M, and [H2SO4] = 
1.7 M. The reactor was unsealed to allow volatile species diffuse out and air diffuses into 
the reactor. 

 

    Figure 2.10 shows that as the concentration of metol was decreased from (a) 0.025M to 

(b) 0.02M, the induction time became longer. Meanwhile, the oscillation pattern also 

became simpler. Such a trend is qualitatively the same as that seen in Figure 2.4 (a) and 

(b), in which the age of metol solution was characterized as the only parameter.  
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Figure 2.10 Time series of ferroin-bromate-metol reaction at different initial 
concentrations of metol: (a) 0.025 M, (b) 0.02 M. Other reaction conditions are [NaBrO3] 
= 0.05 M, [ferroin] = 1.0 x 10-4 M, and [H2SO4] = 1.7 M. The reactor was unsealed to 
allow volatile species diffuse out and allow air diffuse into the reactor. 

 

2.3.5 Influences of Stirring Rate 

    Figures 2.11 and 2.12 investigated influences of stirring on the reaction behavior. 

Unlike observed in the classic BZ reaction, in which stirring rate does not affect the 

chemical dynamics much, in Figure 2.11 the induction time was greatly shortened when 

the stirring rate was increased. Such an effect is similar to that of increasing nitrogen flow 

(see Figure 2.2). It is understandable since both increasing the mixing rate and the 

nitrogen gas flow will cause the accelerated loss of bromine. 
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Figure 2.11 Influences of stirring rate on the oscillatory behavior: (a) 1200 and (b) 600 
rpm, where nitrogen was flew into the reactor at a rate 60 ml/min. Other reaction 
conditions were [metol] = 0.025M, [NaBrO3] = 0.05M, [H2SO4] = 1.7M, and [ferroin] = 
1.0 x 10-4 M. 

 

Figure 2.12 shows the influence of stirring on the oscillatory behavior when pure 

oxygen instead of nitrogen was flew into the reactor at a rate 60 ml/min. Here, the stirring 

does not only affect the bromine removal, but also influence the oxygen dissolution. The 

combination of the above two factors induced a new oscillatory window in which 

oscillations have two distinct frequencies (see (c)). 
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Figure 2.12 The influence of stirring rate on the oscillatory behavior: (a) 1200, (b) 900, 
and (c) 600 rpm, where oxygen was flew into the reactor at a rate 60 ml/min. Other 
reaction conditions were [metol] = 0.025M, [NaBrO3] = 0.05M, [H2SO4] = 1.7M, and 
[ferroin] = 1.0x10-4M. 
 

2.3.6 Dynamic Perturbation and Characterization 

    Perturbation with bromide ions has been frequently employed to decipher the 

mechanism of bromate-based chemical oscillations [35, 36]. Here we found that these 
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spontaneous oscillations could be temporally quenched by adding 1.0×10-4 M bromide 

ions and the effect of bromide depended on the oscillation phase, similar to the quenching 

phenomena reported in the BZ reaction. Another consequence of Br- perturbation is that it 

prolonged the quiescent window of the sequential oscillations, presumably due to the 

production of brominated substrates. When bromide perturbation was applied specifically 

to the quiescent window of the sequential oscillations, large amplitude transient 

oscillations were induced. For example, adding 1.0x10-4 M bromide induced three 

oscillations with the first peak having a long recovery period (i.e. low frequency). This 

observation indicates that the system is at an excitable, but not far from the oscillatory 

state during the non-oscillatory evolution. Such a steady state is likely a result of 

competition between two sub-oscillators, similar to the earlier report on CHD-BZ system 

[37]. Here, the second sub-oscillator is due to hydroquinone-bromate reaction. 

Figure 2.13 shows the bromide ion perturbation during the oscillation, (a) perturbing 

high frequency oscillations, (b) perturbing low frequency oscillations. In both cases, four 

phases were examined and they behaved the same in (a) and (b). After injecting 0.15 ml 

of 10-4 M Br- solution to the reaction mixture, the system responded to the disturbance 

with a larger amplitude excursion and then gradually relaxed back to the normal 

oscillatory mode, suggesting such a perturbation was small enough to lead the dynamics 

confined to the neighborhood of the limit cycle. Specifically, when the bromide 

perturbation was applied at the phase where the redox potential increased to middle of the 

amplitude (second perturbation in (a) and (b)), potential abruptly decreased to the bottom, 

which required a long time to recover. This rapid response is because bromide quickly 

consumed the autocatalyst HBrO2. 
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Figure 2.13 Effects of bromide ion on bromate-metol catalyzed reaction with [metol] = 
0.025 M, [NaBrO3] = 0.05 M, [ferroin] = 10-4 M and [H2SO4] = 1.7 M, each perturbation 
of bromide ion is 0.15 ml [Br-] = 10-4 M in the mixture. All other conditions were the 
same as those used in Figure 2.4a. 

 

Fig. 2.14 presents 1H-NMR spectra obtained from the reaction solution of (a) in Figure 

2.1a and (b) in Figure 2.1b, respectively. The solution was extracted after 60000s with 

diethylether. A 1H NMR resonance at δ = 6.79 is attributable to 1,4-benzoquinone (BQ), 

this was further supported by the 13C NMR spectral resonances at 136.6 and 187.4 ppm 

(see Figure 2.15). The 1H NMR spectral resonance appearing at δ = 7.31 (d, J = 2.3 Hz); 

6.95 (d, J = 10.1 Hz); 6.84 (dd, J = 10.1, 2.3 Hz) correspond to the product 2-bromo-1,4-



Chapter 2: Complex Kinetics and Significant Influences of Bromine Removal in Ferroin-Bromate-
Metol Reaction                                                                                                                                      62 
 
benzoquinone (BrQ). The two spectra are almost identical, except that the magnitude of 

those major peaks, suggesting that bromine removal and oxygen exposure did not alter 

the compositions of the final products. However, nitrogen flow clearly reduced the 

amount of BrQ produced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 1H NMR (500MHz) spectra of the ferroin-bromate-metol reaction at the 
conditions [metol] = 0.025 M, [NaBrO3] = 0.05 M, [ferroin] = 1.0x10-4 M and [H2SO4] = 
1.7 M, (a) sealed with parafilm, and (b) flowing nitrogen gas above the solution surface. 
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Figure 2.15 13C NMR (500MHz) spectra of the ferroin-bromate-metol reaction at the 
conditions [metol] = 0.025 M, [NaBrO3] = 0.05 M, [ferroin] = 1.0x10-4 M and [H2SO4] = 
1.7 M, (a) sealed with parafilm, and (b) flowing nitrogen gas above the solution surface. 
 
 

2.3.7 Spatiotemporal Behavior 

Preliminary exploration of spatiotemporal behaviour in the ferroin-bromate-metol 

system was carried out in a capillary tube. The space-time plot presented in Fig. 2.16 was 
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generated by taking one horizontal cut through the center of the snapshot of the capillary 

tube and sequentially piling up these one-dimensional images. The horizontal and vertical 

axes are, respectively, the space and time. The time evolves in an upward direction. 

Bright and dark colors correspond respectively to ferriin and ferroin. Under the 

conditions in (a), reduction (dark) fronts were first developed at both free ends. They 

propagated toward, but failed to reach the center of the medium. Later, consecutive 

reduction pulses developed at locations near the boundary, forming directional wave train. 

Near the end of the reaction process, two reduction (dark) fronts were propagating toward 

each other and emerged to form a uniform medium. In order to investigate the effect of 

air flow on the wave behavior, the left end of the capillary tube in (b) was not sealed (i.e., 

exposed to air). Notably, these propagating pulses could only develop at the left half of 

the medium. Phenomenon similar to pulses merging behavior reported in ferroin-

bromate-CHD system was seen in the above process. The above primitive study indicates 

that this ferroin-bromate-metol oscillator has a great potential to exhibit novel nonlinear 

spatiotemporal dynamics and more systematic exploration is deserved. Importantly, 

results in Fig. 2.16b highlight that bromine removal and oxygen have significant impacts 

on the pattern formation too. 
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Figure 2.16 Space-time plot of the ferroin-bromate-metol reaction in a capillary tube. 
The length of the medium is 50 mm. Time period shown here is between 120 min and 
360 min. Reaction compositions are [metol] = 0.025 M, [NaBrO3] = 0.05 M, [ferroin] = 
3×10-3 M and [H2SO4] = 1.7 M. The inner diameter of the tube is 1.8 mm. (a) two sides 
of the capillary tube were open to the air, (b) left side of the capillary tube was open to 
the air, and the right hand side was sealed by water. 
 
     

The spatiotemporal behaviour was also investigated in a thin layer of silica gel, which 

was prepared by mixing 10 mL of 30% (w/w) sodium silicate solution with 1.5 mL of 

0.03 M ferroin solution and 1.9 mL of 6 M H2SO4. The gelation took place after pouring 

the above silicate mixture into a petri dish. The thin layer of silica gel formed has a 

thickness of 1.5 mm. To study the pattern formation, 20 mL of reaction solution 

consisting of [metol] = 0.025 M, [NaBrO3] = 0.05 M and [H2SO4] = 1.7 M was poured on 

top of the silica gel. The solution layer was around 2.5 mm. After the system has evolved 

for 20 hours, reduction (dark) fronts were developed first at the boundary and then 
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propagated toward the center of the petri dish. The free ends of these wave segments led 

to the formation of spiral waves after around 28 hours in (a). As the reaction progressed, 

the spiral rotation slowed down and eventually transformed into target patterns as see in 

(b) after 31 hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17 Typical spiral waves (a) and target patterns (b) formed in the silica gel 
membrane. The bottom silica gel layer with 1.5 mm thickness was immobilized by 0.03M 
ferrion, top solution with 2.5 mm thickness was applied the same configuration as Figure 
2.1 except a metal catalyst ferroin. 
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2.3.8 Simulation of Pattern Formation 

     While the detailed mechanisms of ferroin-bromate-metol reaction remain to be 

understood, preliminary mechanistic study has suggested the presence of hydroquinone 

as an intermediate reagent, benzoquinone as one of the products under the conditions 

investigated here. Since hydroquinone reacts with bromine dioxide radicals to form an 

autocatalytic nonlinear feedback, the ferroin-bromate-metol system may consist of two 

sub-oscillators, similar to the ferroin-bromate-CHD system. Notably, in the ferroin-

bromate-CHD medium pulses undergoing complex sequences of propagation failures, 

backfiring and breathing have been reported. To shed light on the importance of coupled 

autocatalytic cycles in the emergence of complex propagating wave behavior like seen in 

Fig. 2.16, in the following we modified the Orgonator model through incorporating a 

second autocatalytic cycle (R5 to R8).  
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Where X = concentration of HBrO2, Y = concentration of Br
-
, Z = concentration of 

Ce4+, W = concentration of H2Q, A = concentration of BrO3
-
, B = concentration of MA, P 

= final products. The R5 can be understood as a reaction between the ferriin and CHD (or 

metol) to produce hydroquinone, which reacts with bromine dioxide to produce HBrO2. 
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The bromination of hydroquinone may be accompanied by the formation of bromide ions 

and such a process is denoted by R8. By assuming that concentrations of bromate, 

malonic acid, CHD (or metol) are constant, the above modified Oregonator model can be 

described with the following 4 differential equations with the dimensionless variables x, 

y, z, w and τ and by using the dimensionless constants q, r, s, ε1, ε2, ε3, f1, f2. 
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Where parameter values in Figure 2.19 were adopted from the normal experimental 

conditions with A = 0.06M, B = 0.02M, [H+] = 0.8M, k1 = 1.28, k2 = 8×105, k3 = 8, k4 = 

2×103, kc = 1, k6 = 0.017, k7 = 1600, k8 = 0.08, f1 = 0 - 1.0, f2 = 1.0. 

In both 1D and 2D calculations, we used a time step ∆t = 0.0001 (its critic value is 

0.001) and a grid ∆x = ∆y = 0.001. The diffusion coefficient D and control parameter f1 

were adjusted each time. The differential equations (L1) to (L4) were integrated with an 

explicit Euler method, where the Laplace operator was approximated with three or five 
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nearest neighbor sites. Zero-flux boundary conditions were employed. The same results 

were obtained when the space and time steps were reduced. As shown in Figure 2.19, 

propagation failure can be observed in (a) at the conditions where the system exhibited 

spontaneous oscillations. Panels (b) to (c) show other interesting propagating pulse 

behavior, which are similar to anomalous dispersion, merging waves and intermittent 

pulses seen experimentally.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Space-time plots of wave dynamics appearing propagation failure (a), (b) 
merging and anomalous dispersion, and splitting (c), (d) wave turbulence, x axis 
represents space, and y axis means time. All diffusion coefficient was D = 10-3, (a) f1 = 
1.0, (b), (c) and (d) f1 = 0.9. Horizontal axis represents space, and vertical axis means 
time. 
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Figure 2.19 Space-time plots of transient breathing pulses in (a) and two dimensional 
breathing Turing patterns in (b). Parameters applied in (a) were f1 = 0.5, f2 =1.0, Dx = Dw 
= 10-4, Dy = Dz = 10-3, and parameters applied in (a) were f1 = f2 =1.0, Dx = 10-6, Dy = Dz 
= Dw = 10-5. All other parameters were the same as in Figure 2.19. 
 

    By further changing the coupling strength and diffusion coefficients of the four 

variables, the above proposed model could generate more complicated spatiotemporal 

phenomena. Various instabilities such as space-time plots of transient breathing pulses in 

Fig. 2.20(a) and two dimensional breathing Turing patterns in Fig. 2.20(b) have been 

observed. The results confirm the significance of competing nonlinear feedback 

processes. Since systems with coupled autocatalytic processes provide not only the 

potential of achieving complex dynamics, but also additional paths of manipulating the 
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relative diffusivity of the chemical reagents, they offer a promising playground for 

searching for novel nonlinear spatiotemporal behavior. 

2.4 Conclusions 

    This study investigated the behavior of ferroin-bromate-metol reaction in a batch 

reactor and found that bromine removal had a significant impact on the underlying 

nonlinear kinetics. Both simple and complex oscillations were achieved via manifesting 

bromine removal. Similar dramatic impact of bromine removal is expected to exist in 

other modified BZ oscillators, in which organic substrates do not react with bromine 

rapidly and thus allow the build up of bromine in the system. Despite their significant 

influence on the kinetics, GC/MS spectrometry and NMR measurements illustrate that 

bromine removal and oxygen did not change the major products, which are 1,4-

benzoquinone and bromobenzoquinones, similar to the products detected in the ferroin-

bromate-CHD reaction [38, 39]. Using different nitrogen flow rates, experiments 

illustrate that bromine concentration has strong influence on the long induction, where 

bromine removal shortens the induction time. The presence of brominated metol 

substances, on the other hand, does not affect the induction time.  

Spectroscopy measurement suggests that oxygen causes the decay of metol to produce 

hydroquinone species and then benzoquinones. This conclusion is strongly supported by 

the kinetic study, in which the influence of the age of metol solution was qualitatively 

reproduced by adding different amounts of hydroquinone into the system. As known 

from CHD systems [10, 38, 39], hydroquinone reacts with bromine dioxide radicals to 

form an autocatalytic feedback. The presence of coupled autocatalytic cycles may 

consequently result in sequential oscillations, in a way similar to that discussed in the 
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CHD modified malonic acid-BZ reaction [37]. The above argument is consistent with the 

experimental observation that increasing the amount of hydroquinone added causes the 

transition from simple to sequential oscillations, and increasing oxygen concentration (i.e. 

enhancing hydroquinone production) also resulted in sequential oscillations. Since metol 

reacts with ferriin and bromine, despite slowly, the core mechanism of this ferroin-

bromate-metol shall be very similar to the BZ reaction, where metol replaces malonic 

acid. However, it is important to point out that metol and bromate in acid solution alone 

exhibited a clock reaction behavior, where our spectroscopy measurements showed the 

production of benzoquinone. Such a clock reaction process may consist of the formation 

of hydroquinone from metol and bromate and, then the autocatalytic oxidation of 

hydroquinone by bromine dioxide radicals, similar to the CHD and bromate reaction [10]. 

The hydroquinone formation from bromate and metol interaction also accounts for the 

emergence of sequential oscillations in the absence of oxygen.  

In summary, this study presents a new bromate-based oscillator that exhibits complex 

temporal reaction behavior and interesting spatiotemporal dynamics. Results presented 

above also provide concrete evidences that bromine removal can be an effective and 

feasible means of manipulating the behavior of bromate-based chemical oscillations.  
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Chapter 3: Design of a Novel Minimal Bromate Oscillator  
 
 
 
3.1 Introduction 

    A large family of bromate-based chemical oscillators has been developed in the past 

three decades [1-15]. The vast majority of those bromate oscillators are constructured by 

replacing malonic acid of the BZ reaction with other organic substrates [3-15]. When 

malonic acid is replaced, the consumption of bromine molecules as well as the reduction 

of oxidized metal catalysts such as ferriin and Ce4+ is alternated. As a result, those 

modified systems may exhibit reaction behaviours that are very different from those seen 

in the classic BZ reaction [16-19]. Mechanistic study has illustrated that the BZ reaction 

and related bromate oscillators consist of a large number of intermediates and reaction 

steps [20, 21]. Earlier, researchers had attempted to develop a simplied bromate-oscillator, 

known as minimal bromate oscillators, by excluding organic substrates [22-26].  

No spontaneous oscillations have been reported when those minimal bromate 

oscillators were investigated in a closed system [22-26]. Beck and co-workers did 

achieve spontaneous oscillations in the ferroin-bromate reaction carried out in a batch 

system, however the presence of gas stream was determined to be necessary to bring out 

bromine molecules, making their system a semi-open system, strictly speaking [22]. The 

usage of extremely high concentrations also resulted in the formation of red precipitates, 

which appeared to have an important role there. Small amplitude oscillations were 

reported in the bromate, bromide, and cerous or manganeous ions systems operated in a 

CSTR, in which the inflow of reduced metal catalysts sustained the autocatalytic process 

and inflow of bromide ions would quench the autocatalytic cycle [23,24]. According to 
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the work by Beck and co-workers [22,25,26], ferriin could be reduced by bromide ions in 

the ferroin-bromate reaction. Therefore, the autocatalytic cycle can be sustained. A key of 

making the ferroin-bromate minimal oscillator oscillate in a closed system lies in the 

implementation of processes that can modulate bromide ions. In chapter 2, we have 

learned that 1,4-benzoquinone could be brominated, while it did not react with the metal 

catalyst ferriin [27,28]. Such a result inspires us to develop a new type of minimal 

bromate oscillator that can oscillate in a batch system.     

In this chapter we investigated the nonlinear kinetics of ferroin-bromate-benzoquinone 

reaction in a closed system. As shown in the following, transient spontaneous oscillations 

were indeed observed when the concentration of benzoquinone was above a critical level. 

The increase of 1,4-benzoquinone concentration resulted in more oscillation peaks, while 

reducing the induction time. When this new minimal bromate oscillator was coupled to 

the bromine removal by nitrogen stream, the total number of peaks was increased further.  

3.2 Experimental Procedure 

    All reactions were run in a thermal-jacketed 50mL glass reactor with the temperature 

maintained constant at 25.0 ± 0.1○C by a circulation water bath (ThermoNesLab RTE 7). 

The reaction was stirred by a magnetic stirrer (Fisher Isotemp) at around 600 rpm for all 

experiments. A Teflon cap was placed on top of the cylindrical reactor to hold electrodes. 

Volume of the reaction solution was fixed at 30.0 ml. Oscillatory profiles were monitored 

with a platinum electrode coupled with a Hg│Hg2SO4│K2SO4 reference electrode 

(Radiometer Analytical, XR200 and M231Pt-9). All measurements were recorded with a 

personal computer connected to the pH/potential meter (Radiometer PHM220) through a 
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PowerLab/4SP data logger. Because of the photosensitivity of benzoquinone, all 

reactions were run in a dark room. 

    Reaction mixtures were prepared from aqueous stock solutions of analytical-grade 

sodium bromate (NaBrO3, Aldrich, 99%), 1.0 M, and sulfuric acid (H2SO4, Aldrich, 95-

98%), 6.0 M. Ferroin stock solution (0.01 M) was prepared from a calculated amount of 

FeSO4·7H2O (Aldrich, 99+%) and 1,10-phenanthroline (Aldrich, 99+%). 1,4-

Benzoquinone (Sigma-Aldrich, 98%) was directly dissolved in the reaction mixture. 

Mass spectrometric measurements were performed on a Varian CP-3800/Varian 1200L 

system, using a 15 m Varian CP-Sil 5CB column. All 1H-NMR and 13C-NMR studies 

were performed by Bruker Avance 500MHz spectrometer and with the same sample that 

was used for mass spectrometry studies, but dissolved in deuterated chloroform 

(Cambridge Isotope Laboratories, 99.8%). Cyclic voltammetry spectra were measured 

with VoltaLab 100 from Radiometer Analytical, in which a three-electrode cell was used. 

3.3 Results and Discussion 

    Figure 3.1 presents two time series of the ferroin-bromate-benzoquinone reaction at 

different concentrations of benzoquinone: (a) 0.025 M, and (b) 0.035 M. Other reagents 

were [NaBrO3] = 0.05 M, [ferroin] = 1.0 x 10-4 M, and [H2SO4] = 0.05 M.  The reactor 

was tightly sealed with parafilm to prevent the loss of volatile species such as bromine. In 

the absence of benzoquinone this ferroin-bromate system did not exhibit any oscillatory 

behavior in the batch system, where only the autocatalytic oxidation of ferroin was 

observed after a long induction time. As shown in (a), however, the presence of 

benzoquinone led to the development of spontaneous oscillations in this closed system. 

NMR and Mass spectrometry measurements showed the formation of brominated 
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benzoquinone, suggesting that benzoquinone indeed interacted with bromine/HOBr to 

modulate bromide concentration. This chemical approach is similar to the physical means 

required in the Beck report, in which for ferroin to react with bromate alone in an 

oscillatory manner the continuous and partial removal of bromine and high 

concentrations of both reactants were necessary [22]. Under the conditions investigated 

here, no precipitate is formed.  

Figure 3.1b indicates that when benzoquinone concentration was increased further, the 

number of oscillations also increased. Meanwhile, the induction time became slightly 

shorter. This observation implicates that the rate of bromine removal via its reaction with 

benzoquinone does not only have great impact on the number of peaks, but may also be 

responsible for the long induction time here. To examine whether the formation of 

brominated benzoquinone is responsible for the above observed long induction time, we 

have initially added some bromide into the reaction mixture to produce bromine and 

subsequently brominated benzoquinones, but no obviously change in the induction time 

was observed. Limited by the low solubility of benzoquinone, no higher benzoquinone 

concentration was tested in Figure 3.1. To shed light on the possible influence of 1,10-

phenanthroline from ferroin complex, 3 x 10-4 M of 1,10-phenanthroline was added at the 

beginning of the reaction. As seen in time series (c), there is no change in the oscillatory 

behavior, suggesting that the substrate from metal catalyst is not responsible for the 

spontaneous oscillations. 
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Figure 3.1 Time series of ferroin-bromate-benzoquinone reaction at different 
concentrations of benzoquinone (a) 0.025 M, (b) 0.035 M and (c) 0.035 M. In (c) 3.0 x 
10-4 M of 1,10-phenanthroline was added initially. Other reaction conditions were 
[NaBrO3] = 0.05 M, [ferroin] = 1.0 x 10-4 M, and [H2SO4] = 0.05 M.  The reaction was 
carried out in a dark room while the reactor was sealed with parafilm.  

 

To further examine the importance of bromine removal in this new minimal bromate 

oscillator, in Figure 3.2 nonlinear behaviour of the ferroin-bromate-benzoquinone 

reaction was investigated under different configurations of the reactor. In experiment (a), 
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volatile substances such as bromine molecules were prevented from migrating out of the 

reactor by sealing it with parafilm. There was about 1 cm space above the reaction 

solution, but the same result was achieved when the reaction solution volume was 

increased to fill up the reactor (i.e., no free space above the solution level). In experiment 

(b), nitrogen gas was flowed into the space above the reaction solution at a rate of 40 

ml/min to bring out volatile species such as bromine with it. As a result, the number of 

spontaneous oscillations increased from 6 to 12. The induction time is nearly the same in 

both cases. Reactions conditions in Figure 3.2 are [NaBrO3] = 0.05 M, [ferroin] = 1.0 x 

10-4 M, [Q] = 0.035 M, and [H2SO4] = 0.05 M. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2 Time series of ferroin-bromate-benzoquinone reaction carried out at different 
configurations of the reactor: (a) closed, and (b) flowing nitrogen gas into the reactor (40 
mL/min). Compositions of the reaction solution were [NaBrO3] = 0.05 M, [ferroin] = 1.0 
x 10-4 M, [Q] = 0.035 M, and [H2SO4] = 0.05 M.  
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Additional experiments in Figure 3.3 indicate that the above observed influence of 

bromine removal by nitrogen stream depends on the concentration of benzoquinone. For 

example, when the same operation protocol was applied to the reaction containing 0.025 

M benzoquinone, the number of oscillation peak remained at 3, but the induction time 

was decreased from 29,843 to 22,719 s. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Time series of ferroin-bromate-benzoquinone reaction carried out at different 
configurations of the reactor: (a) closed, and (b) flowing nitrogen into the reactor (40 
mL/min). Compositions of the reaction solution were [NaBrO3] = 0.05 M, [ferroin] = 1.0 
x 10-4 M, [Q] = 0.025 M, and [H2SO4] = 0.05 M.  
 

Figure 3.4 shows how the above observed chemical oscillations respond to bromide 

perturbation, in which the high Pt potential corresponds to the low bromide concentration. 

Upon the addition of 1.0x10-4 M bromide, the Pt potential shifted immediately to a low 
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value and stayed there for several hours. The “permanent” quenching suggests that the 

amount of bromide added is excess and the corresponding product bromine cannot be 

consumed fast enough to allow oscillation revival. In Figure 3.4, adding 1.0 x 10-5 M 

bromide at the top of the peak shifted the system to a low potential, but the regular 

oscillation restored after a small amplitude, low frequency oscillation. When the same 

magnitude bromide perturbation was applied at the opposite phase, there was no obvious 

decrease in the Pt potential as bromide concentration was already high at such a phase. 

After the perturbation, the system evolved gradually through a low frequency oscillation, 

followed by regular transient oscillations. This result demonstrates that this ferroin-

bromate-benzoquinone system is still bromide-controlled. The bromide concentration of 

the unstable focus is on the order of 10-5 M. 

 

 

 

 

 

 

 

 

Figure 3.4 Responses of the oscillation to bromide perturbation. Each time 0.015 mL 
concentrated bromide was added, resulting 1.0 x 10-5 M bromide after the dilution. 
Compositions of the reaction solution were [NaBrO3] = 0.05 M, [ferroin] = 1.0 x 10-4 M, 
[Q] = 0.03 M, and [H2SO4] = 0.05 M. To achieve a large number of peaks, nitrogen flow 
was applied here at a rate of 40 mL/min.  
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    The acid concentration used in this research is 0.05 M, which is much lower than the 

acid concentration used in existing studies of bromate-based oscillations. Indeed, we are 

not aware of any report on the bromate-based chemical oscillations under such a low acid 

concentration. To gain insight into the need of low acid concentration here, Figure 3.5a 

characterized the influence of benzoquinone on the redox potential of ferriin/ferroin. The 

cyclic voltammetry spectra in (a) show that the oxidation wave of ferroin shifted to a less 

positive potential upon the presence of benzoquinone, making the autocatalytic oxidation 

of ferroin by bromine dioxide radicals easier. This may be the reason that the 

spontaneous oscillations could still be achieved at such a low acidic condition. During the 

above measurements it was observed that the addition of benzoquinone into ferriin 

solution causes the appearance of greenish color, which implicates that benzoquinone 

might have partially replaced 1,10-phenanthroline. Similar color has also been seen in the 

ferroin-bromate-CHD reaction, in which benzoquinone is a final product [29-31]. The 

possible partial complexation of benzoquinone with ferriin might have also played an 

important role in the ferroin-bromate-CHD system.  

Figure 3.5b presents the 1H NMR spectrum recorded in the CDCl3 solution obtained 

from the reaction presented in Figure 3.2a. The solution was extracted after the 

disappearance of these spontaneous oscillations. The 1H NMR spectral resonance 

appearing at δ = 7.30 (d, J = 3.5 Hz), 6.93 (d, J = 10.5 Hz) and 6.83 (dd, J = 10.5, 3.5 Hz) 

were observed, corresponding to the product 2-bromo-1,4-benzoquinone (BrQ) [32]. The 

production of BrQ was further confirmed with GC/Ms measurement. The 1H NMR 

spectrum obtained from the reaction between 1,4-benzoquinone and bromine is almost 
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identical to the one presented in Figure 3.5b, suggesting the bromination of benzoquinone 

by bromine or HOBr.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 (a) Cyclic voltammetry showing the influence of benzoquinone on the redox 
potential of ferriin/ferroin. The scanning rate is 100 mV/s. The supporting electrolyte is 1 
M KNO3, [ferroin] = 0.0025 M, [Q] = 0.03 M, and [H2SO4] = 0.1 M. (b) 1H NMR 
(500MHz) spectrum from the reaction carried out in Figure 3.2a 2-bromo-1,4-
benzoquinone: δ = 7.30 (d, J = 3.5 Hz), 6.93 (d, J = 10.5 Hz), 6.83 (dd, J = 10.5, 3.5 Hz) 

 

3.4 Conclusions 

In this chapter a new type of minimal bromate oscillator is develoed, which is capable 

of generating spontaneous chemical oscillations in a closed system. In comparison to the 

earlier study of the ferroin-bromate reaction [22], the bromination of benzoquinone by 



Chapter 3: Design of a Novel Minimal Bromate Oscillator                                                                  86 
 

bromine/HOBr is a function of bromide concentration. The rest reaction mechanism of 

this ferroin-bromate-benzoquinone system is expected to remain the same as that 

proposed for the ferroin-bromate reaction [25,26], listed in the following: 

BrO3
- + Br- + 2H+ → HBrO2 + HOBr                                   (1) 

HBrO2 + Br- + H+ → 2HOBr                                                (2) 

HOBr + Br- + H+ ⇌ Br2 + H2O                                            (3) 

BrO3
- + HBrO2 + H+ → 2BrO2

• + H2O                                      (4) 

Fe(phen)3
2+ + BrO2

• + H+ → Fe(phen)3
3+ + HBrO2                           (5) 

2HBrO2 → BrO3
- + HOBr + H+                              (6) 

Fe(phen)3
2+ + HOBr + H+ → Fe(phen)3

3+ + ½ Br2 + H2O                  (7) 

Fe(phen)3
3+ + Br- → Fe(phen)3

2+ + ½ Br2                                            (8) 

 

    Different from the BZ-type oscillators, here the organic substrate benzoquinone does 

not react with the oxidized metal catalyst ferriin. The regeneration of ferroin must 

therefore come from other paths, as it is crucial in sustaining the autocatalytic cycles ((4) 

+ (5)). Beck and co-workers have suggested earlier the reduction of ferriin by bromide 

ions (step (8)). The occurrence of process (8) was confirmed in this study under the 

conditions employed above.  

    The success of achieving spontaneous oscillations in the closed ferroin-bromate-

benzoquinone system highlights that reaction step (8) can become critical in the bromate-

based chemical oscillators. Considering that ferriin, bromate and benzoquinone all exist 

in the ferroin-bromate-CHD reaction [29-31], the reduction of ferriin by bromide may 

provide an explanation for the merging of propagating pulses seen in the ferroin-bromate-

CHD system [33], in which the tailor of the preceding pulse has high concentration of 
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bromide that may interact with the front of the following pulse that has high 

concentration of ferriin.  
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Chapter 4: Subtle Photochemical Behavior in the Ferroin-
Bromate-Benzoquinone Reaction 
 
 
 
 

4.1 Introduction 

 As an effort of constructing chemical oscillators with a minimal number of 

constituents, bromate-bromide-metal catalyst reactions have attracted a great deal of 

attention, [1-4]. Geiselar reported that in a CSTR the bromate-bromide-manganese (II) 

system could exhibit sustained oscillations and steady state multiplicity [1]. Orban and 

co-workers obtained a narrow oscillatory region in a flow reactor using cerium or 

manganous ions to react with bromate and have referred those systems as the minimal 

bromate oscillators (MBO) [2]. Later, Dutt and co-workers investigated the effect of 

stirring and mixing modes in the bromate-bromide-cerium (III) reaction [4]. However, for 

the lack of necessary sources to modulate the regeneration of bromide ions, which took 

place through the bromination of organic substrates in regular bromate oscillators [5-12], 

existing minimal bromate oscillators could only function in a CSTR. In chapter 3 we 

demonstrated the feasibility of introducing an organic substrate into a MBO system to 

manifest bromide production, but do not reduce the oxidized metal catalyst ferriin [13]. 

This is the distinction from other ferroin-bromate-substrate oscillators, in which one of 

the main roles of the substrate is to reduce the oxidized metal catalysts. The newly 

developed MBO oscillator was able to exhibit spontaneous oscillations in a batch reactor 

[13]. 
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 The unique kinetic role of benzoquinone (Q) and its known photochemical property 

motivated us to explore the importance of photo perturbation in this batch MBO system. 

Illuminating benzoquinone solution has been known to potentially induce the 

photoreduction of benzoquinone, leading to the production of hydroquinone [14], a 

substance that reacts with bromine dioxide radicals to form an autocatalytic cycle in 

bromate oscillators [15,16]. As a result, the illuminated batch MBO may become a 

system consisting of two sub-oscillators and potentially exhibit new complex oscillations 

[17]. So far, the bromate-benzoquinone oscillations could only be observed under very 

intense illumination and required very high acid concentrations in comparison to the acid 

used in the ferroin-bromate-benzoquinone system studied in chapter 3 [18,19].  

The study of perturbed nonlinear dynamics has attracted increasing attention in the last 

two decades due to their ubiquitous existence in nature. Photochemical oscillators provide 

a convenient way of investigating the interactions between intrinsic dynamics and 

external forcing of various modes [20-30]. The photosensitivity of bromate-based 

oscillators seems to always involve the production of bromide ions [31-33]. In this batch 

MBO system, notably, bromide ions have two conflict dynamic roles: one is to reduce 

ferriin to support the autocatalytic cycle. The second role is to react with HBrO2, which 

quenches the autocatalytic feedback. As such, light in this batch-MBO system may 

potentially modulate a variable that has dual functions and thus inserts more intriguing 

effects. As shown in the following, spontaneous oscillations in the ferroin-bromate-

benzoquinone reaction did exhibit subtle response to light, in addition to the extremely 

high photosensitivity. 
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4.2 Experimental Procedure 

     All reactions were run in a thermal-jacketed 50mL glass reactor with the temperature 

maintained constant at 25.0 ± 0.1○C by a circulation water bath (ThermoNesLab RTE 7). 

The reaction was stirred by a magnetic stirrer (Fisher Isotemp) at around 600 rpm for all 

experiments. A non-transparent Teflon cap was placed on top of the cylindrical reactor to 

hold electrodes. Volume of the reaction solution was fixed at 30.0 ml. Oscillatory profiles 

were monitored with a platinum or bromide ion selective electrode coupled with a 

Hg│Hg2SO4│K2SO4 reference electrode (Radiometer Analytical, XR200 and M231Pt-9). 

All measurements were recorded with a personal computer connected to a pH/potential 

meter (Radiometer PHM220) through a PowerLab/4SP data logger. Except otherwise 

stated, all reactions were conducted under room lighting and the controlled light 

perturbation was implemented with a 150 W halogen light source (Fisher Scientific, 

Model DLS-100HD). Narrow band filters (Melles Griot) with different wavelength range 

were placed in front of the light source. Light intensity was measured with an optical 

photometer from Newport (model 1815-C).  

     Reaction mixtures were prepared from aqueous stock solutions of analytical-grade 

sodium bromate (NaBrO3, Aldrich, 99%), 1.0 M, and sulfuric acid (H2SO4, Aldrich, 95-

98%), 6.0 M. Ferroin stock solution (0.01 M) was prepared from a calculated amount of 

FeSO4·7H2O (Aldrich, 99+%) and 1,10-phenanthroline (Aldrich, 99+%). Benzoquinone 

(Sigma-Aldrich, 98%) was directly dissolved in the reaction mixture. Mass spectrometric 

measurements were performed on a Varian CP-3800/Varian 1200L system, using a 15 m 

Varian CP-Sil 5CB column. All 1H-NMR and 13C-NMR studies were performed by 

Bruker Avance 500MHz spectrometer and with the same sample that was used for mass 
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spectrometry studies, but dissolved in deuterated chloroform (Cambridge Isotope 

Laboratories, 99.8%). UV/Vis spectroscopy was obtained with a spectrophotometer from 

Ocean Optics (USB 2000). 

4.3 Results and Discussion  

Figure 4.1 presents two time series of the ferroin-bromate-benzoquinone reaction 

performed (a) in a dark room, and (b) under room light. Before passing through two 

glass-wall of the reactor and a layer of circulating water the intensity of the room light 

was measured to be about 20 µW/cm2.  Other reaction conditions were [NaBrO3] = 0.05 

M, [ferroin] = 1.0 x 10-4 M, [Q] = 0.035 M, and [H2SO4] = 0.05 M. The reactor was 

sealed with parafilm to prevent the loss of volatile species such as bromine. As shown in 

(a), in the absence of light spontaneous oscillations appeared after an extremely long 

induction time (2.5x104 s). There were 6 oscillation peaks in total. The spontaneous 

oscillation stopped at a high Pt potential, which corresponded to an oxidation steady state 

with a low bromide concentration and high concentration of ferriin. Under the room light 

illumination, the oscillatory behaviour in Figure 4.1(b) emerged much earlier, in less than 

1.5x104 s from the beginning of the reaction. Notably, the total number of oscillations as 

well as the oscillation frequency was significantly increased. Since the unilluminated 

system eventually evolved to an oxidation state where the autocatalytic feedbacks 

dominate, the observed constructive photo influence was more likely arising from the 

improved production of inhibitor that suppressed the autocatalytic cycle [34,35]. 
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Figure 4.1 Time series of ferroin-bromate-benzoquinone reaction carried out (a) in a dark 
room, and (b) with the room light on (I = 20 µW/cm2). Other reaction conditions were 
[NaBrO3] = 0.05 M, [ferroin] = 1.0 x 10-4 M, [H2SO4] = 0.05 M, and [Q] = 0.035M.   
 

    Figure 4.2a shows a 1H NMR spectrum recorded in a sample that was obtained from 

the reaction carried out at [NaBrO3] = 0.05 M, [ferroin] = 1.0 x 10-4 M, [H2SO4] = 0.05 M 

and [Q] = 0.035M. The applied illumination was 15 µW/cm2 within the wavelength 

between 500±40 nm. The selection of 500±40 nm wavelength range was based on the 

result listed in Figure 4.3a.  The reaction solution was extracted shortly after the 

disappearance of those spontaneous oscillations. The 1H-NMR spectral resonance 

appearing at δ = 6.96 and 7.13 indicates that 2,3-dibromohydroquinone and 2,5-

dibromohydroquinone (Br2HQ) are produced in the illuminated system [36]. The 

production of dibromohydroquinones was further confirmed by mass spectrometry. 

0.0

0.2

0.4

0.6

 

 

po
te

nt
ia

l /
 V

a

0.0 5.0x104 1.0x105
0.0

0.2

0.4

0.6

 

 

po
te

ni
tla

 / 
V

time / s

b



Chapter 4: Subtle Photochemical Behavior in the Ferroin-Bromate-Benzoquinone Reaction            94 
 

Comparing with the results that monobrominated benzoquinones were the major products 

in the unilluminated system, spectrum in Figure 4.2a suggests that the bromination of 

benzoquinone was enhanced by the incident light. Since benzoquinones do not have 

strong absorption within 500±40 nm, but bromine does, the photochemical process is 

likely through the reaction of photo-excited bromine with benzoquinone or with 

monobromobenzoquinone. An important question remained to be resolved is whether the 

above process was accompanied by bromide production. Perturbation experiments with a 

pulse-light were compared with bromide perturbation in Figure 4.3. 

Figure 4.2b shows two time series of ferriin and bromide reaction measured with 

UV/Vis spectrophotometer at 510 nm. The reaction 1 was conducted under the 

illumination of 30 mW/cm2 white light from a halogen light source, whereas reaction 2 

was in the absence of illumination except the light beam from the spectrophotometer. 

Ferriin was obtained by mixing 3.0 x 10-4 M ferroin with 3.0 x 10-4 M Ce4+ in a 0.05 M 

sulfuric acid solution. After 60 minutes, 0.05 M sodium bromide was added into the 

cuvette. The two time series illustrate that the reduction of ferriin by bromide was 

accelerated by light. The increased supply of ferroin, which reacts with bromine dioxide 

radicals, shall have constructive influence on the autocatalytic cycle. However, if the 

nonlinear dynamics is already dominated by autocatalytic feedback, such as the case in 

Figure 4.1a, enhancement of the autocatalytic cycle would insert negative impact on the 

emergence of spontaneous oscillations.  
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Figure 4.2 (a) 1H NMR spectrum of an illuminated MBO reaction; (b) Time series of 
ferriin and bromide reaction collected at 510 nm, where the reaction (1) was illuminated 
with  a 30 mW/cm2 white light and reaction (2) was unilluminated. 
 

 

Figure 4.3a examines the dependence of photosensitivity on the wavelength of incident 

light. The experiments were performed by placing a narrow band filter between the 

reactor and a 150 W halogen light source. Each illumination lasted for 5 s. Other reaction 
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conditions were the same as those used in Figure 4.1b. This result demonstrates that 

illumination with 700±40 nm light did not cause any change, whereas the strongest 

response was seen with the incident light of 500 ± 40 nm. A similar trend was seen when 

the illumination was applied throughout the reaction process, where the oscillatory 

behavior including the induction time remained the same when the system was 

illuminated with 700 ± 40 nm light. On the other hand, spontaneous oscillations were 

quenched when the system was illuminated with light of 500 ± 40 nm or 400  ± 10 nm. 

No influence was observed either, when a narrow band filter of 260 ± 20 nm was used, 

which was likely because the halogen light source did not emit much light within such a 

UV range. The later result suggests that photo-reduction of benzoquinone does not play 

an important role in the ultra high photosensitivity reported here.     

Figure 4.3b presents phase dependence of a bromide perturbation. The reaction was 

followed by bromide ion selective electrode. Other reaction conditions were the same as 

those used in Figure 4.1b. The bromide concentration decreased gradually in time, as its 

concentration reached the bottom of an oscillation peak there was a rapid color change 

from red to blue. After evolving around the low concentration for a while, bromide 

concentration underwent a phase of rapid increase, and during such a process the solution 

color gradually changed from blue to red. A large bromide perturbation at the top of the 

peak required a very long time to recover and the sharp increase did not occur until 

bromide concentration has reached the bottom first, which was around [Br-] = 10-7 M. 

When the perturbation was applied at a descending phase, after a brief increase due to the 

addition of bromide, the bromide concentration continued its decrease. When the same 

magnitude perturbation was applied at the bottom of a peak, the system moved into the 
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ascending phase right away. Perturbations 3 and 4 in this plot illustrate that the amplitude 

of the revival peak depends on the amount of bromide added.  

Figure 4.3c shows how the spontaneous oscillations responded to a pulse light 

perturbation (λ = 500 ± 40 nm, ∆t = 5 s, intensity = 20 mW/cm2). The Pt potential shifted 

immediately to a low value when the perturbation was applied at the top, bottom or a 

declining phase of the Pt potential peak. However, there was barely any change when the 

same light pulse was applied at the middle of an ascending phase, where the Pt potential 

continued its increases and then developed into an oscillation of larger amplitude and 

lower frequency. Detailed examination indicates that there was indeed a tiny drop in the 

Pt potential when the light perturbation was applied. Characterization with bromide 

selective electrode indicates that a low Pt potential corresponds to a high bromide 

concentration. The phenomenon that following a pulse illumination Pt potential always 

shifts toward a lower value suggests the occurrence of light-induced bromide production. 

It might take place through reactions Q +  Br2*  �BrQ + Br- or BrQ  +  Br2*  � Br2HQ 

+ Br-, where Br2* denotes photo-excited bromine molecules, and BrQ represents 

monobrominated benzoquinones.  
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Figure 4.3 Response of ferroin-bromate-benzoquinone reaction to perturbation of (a) 5 s 
light pulse of different wavelengths, (b) bromide ions, and (c) 5 s light pulse of λ = 500 
±40 nm and I = 20 mw/cm2. Other reaction conditions were the same as those used in 
Figure 4.1b. 

 

     Figure 4.4 presents three time series of the ferroin-bromate-benzoquinone reaction 

under the constant illumination of 500 ± 40 nm light: (a) 4 µW/cm2, (b) 15 µW/cm2, and 

(c) 46 µW/cm2. Other reaction conditions were the same as those used in Figure 4.1a. 

This series of experiments illustrate that low intensity light, e.g., 4 µW/cm2, shortened the 

induction time and increased the number of oscillation peak, exhibiting constructive 

influence on the oscillatory behavior. When the light intensity was increased to 46 

µW/cm2, however, spontaneous oscillations were quenched. Note that the attained non-
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oscillatory state has a high Pt potential value, which corresponds to a state of low Br- 

concentration and high ferriin concentration (i.e., an oxidation steady state), implicating 

that the autocatalytic feedback overwhelms the production of inhibitor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Time series of ferroin-bromate-benzoquinone reaction illuminated with light 
of different intensities: (a) 4 µW/cm2, (b) 15 µW/cm2, and (c) 46 µW/cm2. Other reaction 
conditions were the same as those used in Figure 4.1a. 
 

Figure 5 presents time series of the ferroin-bromate-benzoquinone reaction at different 

concentrations of H2SO4: (a1, b1) 0.08 M, (a2, b2) 0.07 M, (a3, b3) 0.05 M, and (a4, b4) 

0.03 M. The (a) series of reactions were carried out under the illumination of 500 ± 40 

nm light with an intensity of 15 µW/cm2, whereas reactions in the (b) series were 

unilluminated. These experiments indicate that for the unilluminated system spontaneous 
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oscillations could only be observed for the H2SO4 concentration within 0.03 and 0.09 M. 

This acid condition is significantly lower than the concentration used commonly in the 

reported bromate-oscillators and in the bromate-hydroquinone photochemical oscillator 

[18,19]. Spontaneous oscillations were quenched in (a1), indicating that light has 

negative impact on the nonlinear behavior. As the acid concentration was decreased, 

which consequently weakened the autocatalytic feedback via BrO3
- + HBrO2 + H+ ⇌ 

2BrO2 + H2O and ferroin + BrO2 + H+ → ferriin + HBrO2, the same light illumination 

only partially quenched the oscillatory behavior (comparing a2 and b2). As the acid 

concentration was decreased gradually, the influence of light became negligible. Later, 

constructive influences took place in (a3) and (a4) as a result of further decreasing H2SO4 

concentration. 
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Figure 4.5 Time series of ferroin-bromate-benzoquinone reaction at different sulfuric 
acid concentrations: (a1, b1) 0.08 M, (a2, b2) 0.07 M, (a3, b3) 0.05 M, and (a4, b4) 0.03 
M. Reactions (a1) to (a4) were illuminated with 500 ±40 nm light of 15 µW/cm2. 
Reactions (b1) to (b4) were carried out in a dark room. Other conditions were [NaBrO3] = 
0.05 M, [ferroin] = 1.0 x 10-4 M, and [Q] = 0.035M. 
 

    Theoretical simulations were carried out with a modified FKN model [10], by adding 

R9, R11, and R12 in Table 4.1. Basic elements of the model are: (R1-R3, R11) the 

consumption of control intermediate Br- and (R4-R8) autocatalysis. Reactions R9 and 

R12 proposed here regulate Br- variation and their rates are influenced by light. R10 is 

the initiation of the total reactions. Table 4.2 listed the rate constants used in this study. 

Most of these were taken from literature [10]. 
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Table 4.1:  Model proposed for the ferroin-bromate-Q oscillator 
 

Reactions 
 

R1                             Br- + HOBr + H+ ⇌ Br2 + H2O 

R2                             Br- + HBrO2 + H+ ⇌ 2HOBr 

R3                             Br- + BrO3
- + 2H+ ⇌ HOBr + HBrO2 

R4                             HBrO2 + H+ ⇌ H2BrO2
+ 

R5                             HBrO2 + H2BrO2
+ → BrO3

- + HOBr + 2H+ 

R6                             HBrO2 + BrO3
- + H+ ⇌ Br2O4 + H2O 

R7                             Br2O4 ⇌ 2BrO2
• 

R8                             [Fe(phen)3]
2+ + BrO2

• + H+ ⇌ [Fe(phen)3]
3+ + HBrO2 

R9                             Q + Br2 → QBr + Br- + H+ 

R10                           2[Fe(phen)3]
2+ + BrO3

- + 3H+ → 2[Fe(phen)3]
3+ + HBrO2 + H2O 

R11                           [Fe(phen)3]
3+ + Br- → [Fe(phen)3]

2+ + 
2

1
Br2 

R12                           QBr + H2O → QOH + H+ + Br- 

 
 
Symbols for the organic species: Q = benzoquinone; QBr = 2-bromo-1,4-benzoquinone; 
QOH = 2-hydroxy-1,4-benzoquinone 
 

Table 4.2: Rate constants used in the modeling of the ferroin-bromate-Q oscillator 
 
                               kforward                                                                        kreverse                                          reference 
 
R1                          8 × 107  M-2 s-1                            90 s-1                                                    this work 
R2                          2.5 × 106  M-2 s-1                         2 × 10-5 M-1 s-1                                   [10] 
R3                          1.2  M-3  s-1                                   3.2 M-2 s-1                                 [10] 
R4                          2 × 106 M-1 s-1                            1 × 108 s-1                                                 [10]     

R5                          1.7 × 105 M-1 s-1                                                                                                             [10] 
R6                          48 M-2 s-1                                   3.2 × 103 s-1                                           [10] 
R7                          7.5 × 104 s-1                                  1.4 × 109 M-1 s-1                    [10]   

R8                          1.0 × 107 M-2 s-1                                                                              [10] 
R10                        0.02 mol-3 dm9 s-1                                                                           [10] 
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    As shown in Figure 4.6(a), the ferroin-bromate-benzoquinone system generates a series 

of spontaneous oscillations with a long induction time. When light was applied to the 

system, which was mimiced via enhancing the bromination of benzoquinone and the 

reduction of ferriin by bromide ions, oscillations in Figure 4.6(b) have a shorter induction 

time and higher oscillation frequency. Such a trend is the same as seen in the experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 (a) Oscillations of the ferroin-bromate-Q reaction in a dark condition. Initial 
conditions used in the simulation are: [NaBrO3] = 0.05 M, [ferroin] = 1.0 × 10-4 M, [Q] = 
0.035 M, [H+] = 0.1 M, [H2O] = 55 M and [Br-] = 1× 10-8 M, k9 = 1.5 M-1s-1, k11 = 50 M-

1s-1, k12 = 25 M-1s-1; (b) time series under the influence of light, implemented by resetting  
k9 = 4 M-1s-1,  k11 = 60 M-1s-1, k12 = 50 M-1s-1. 
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4.4 Conclusions 

     The ferroin-bromate-benzoquinone reaction was found to have great photo sensitivity, 

in which light was capable of enhancing or quenching the chemical oscillations. The 

required light intensity was significantly lower than that reported earlier in a similar 

chemical system, in which the photo-reduction of benzoquinone was responsible for the 

overall oscillatory phenomenon [19]. Characterization with NMR and mass spectrometry 

suggests that light enhanced bromination of benzoquinone, which was accompanied by 

bromide production. Meanwhile, UV/Vis spectroscopy study indicates that light 

accelerates the reduction of ferriin by bromide, which consumes bromide ions and 

supplies ferroin for the autocatalytic process. The preliminary mechanistic study 

highlights that light could simultaneously implement two opposite effects. Which of the 

two paths plays a dominant role depends on the conditions of the reaction system. As 

seen earlier, a transition from constructive to inhibitory took place as merely the acid 

concentration was adjusted. In addition, as illustrated in Figure 4.4, the influence of light 

also underwent a transition from constructive to inhibitory when light intensity was 

increased monotonically. These results clearly demonstrate that illumination is an 

effective means to implement subtle manipulation of the nonlinear dynamics in the 

ferroin-bromate-benzoquinone reaction. This low cost, easy to prepare chemical reaction 

provides a good model system for exploring novel perturbed nonlinear behaviors.  
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5.1 Introduction 

    Reactions between bromate and organic substrates in an acidic solution with or without 

the assistance of metal catalysts have been extensively investigated in the context of 

nonlinear chemical dynamics, in which the overall process can be characterized as the 

oxidation and bromination of the organic substrate [1-8]. The frequently employed 

catalysts include ferroin and ruthenium complexes, cerium and manganese ions [1,9]. The 

oxidation of organic substrate, taking place through its reaction with the oxidized catalyst 

[10-16], is largely responsible for the regeneration of the reduced metal catalysts for the 

autocatalytic processes in bromate-based chemical oscillators including the Belousov-

Zhabotinsky oscillator. The recycling of the metal catalysts ensures that oscillations can 

continue. Recent investigations have shown that many aromatic compounds such as 

hydroquinone and pyrocatechol can be directly oxidized by bromine dioxide radicals to 

complete the autocatalytic nonlinear feedback, forming uncatalyzed bromate oscillators 

or forming BZ oscillators with coupled autocatalytic cycles [17-21]. 

    It is useful to point out that, while the reduction of oxidized catalysts (e.g., ferriin, Ce4+) 

by the organic substrate is a dominant process in the vast majority of bromate-based 

oscillators, the reduction of Ce4+ or ferriin by bromide ions also takes place [22,23]. 

Kinetic importance of the later process has been largely ignored, presumably because Br- 

is better known as an inhibitor in the bromate-based chemical oscillators [1]. In Chapters 
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3 and 4, it was demonstrated that spontaneous oscillations could be observed in a batch 

bromate system in which the reduction of ferriin was by Br- rather than by an organic 

substrate.  Transient oscillations seen in the ferroin-bromate-benzoquione reaction 

exhibited both constructive and inhibitory responses to fluorescent ceiling light [24-26]. 

To understand the photochemistry behind such a great photosensitivity, especially the 

role of ferroin/ferriin couple, this research investigated the cerium-bromate-Q reaction. 

The use of cerium does not only enhance the reduction of the inhibitor Br- (i.e. by the 

oxidized catalyst), but also provides a slower autocatalytic cycle. Such a kinetic 

modification therefore simultaneously modulates two key processes in a chemical 

oscillator and may potentially generate novel nonlinear behavior. 

    As shown in the following, replacing ferroin with cerium leads to a much longer series 

of spontaneous oscillations. In addition, complex behaviors such as sequential 

oscillations are also developed in the cerium-bromate-Q reaction. Same as the ferroin 

system, however, the cerium-bromate-Q reaction also exhibits great sensitivity to the 

rather weak fluorescent ceiling light. Investigations on the stability of 2-bromo-1,4-

benzoquinone (QBr) provide new insights into the photochemical mechanisms and allow 

us to construct a model that qualitatively reproduces the experimental observation.  

5.2 Experimental Procedure 

   All reactions were carried out in a thermal-jacketed 50 ml glass reactor with the 

temperature maintained constant at 25.0 ± 0.1○C by a circulation water bath 

(ThermoNesLab RTE 7). The reaction solution was stirred by a magnetic stirrer (Fisher 

Isotemp) at around 600 rpm. A Teflon cap was placed on top of the cylindrical reactor to 

hold electrodes and nitrogen/air inflow tube. The air/nitrogen was flowed into the empty 
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space above the reaction solution in the related experiments. Volume of the reaction 

solution was fixed at 30.0 ml. Reactions were monitored with a platinum or bromide ion 

selective electrode coupled to a Hg│Hg2SO4│K2SO4 reference electrode (Radiometer 

Analytical, XR200 and M231Pt-9). All measurements were recorded with a personal 

computer connected to a pH/potential meter (Radiometer PHM220) through a 

PowerLab/4SP data logger. Except otherwise stated, all reactions were conducted in a 

dark room. The controlled light perturbation was implemented with a 150 W halogen 

light source (Fisher Scientific, Model DLS-100HD). Narrow band filters (Melles Griot) 

with different wavelength range were employed to test the wavelength dependence of the 

photoreaction behavior. Light intensity was measured with an optical photometer from 

Newport (model 1815-C).  

Stock solutions of analytical grade sodium bromate (NaBrO3, Aldrich, 99%), 1.0 M, 

sulfuric acid (H2SO4, Aldrich, 95-98%), 6.0 M and cerium sulphate 0.005M (Ce(SO4)2, 

Aldrich) were prepared with double distilled water. 1,4-Benzoquinone (Sigma-Aldrich, 

98%) was directly dissolved in the reaction mixture. 2-Bromo-1,4-benzoquinone (QBr) 

was purchased from Tokyo Chemical Industrial Co., Ltd. (Tokyo, Japan). GC/MS 

measurements were performed on a Varian CP-3800/Varian 1200L system, using a 15 m 

Varian CP-Sil 5CB column. All 1H-NMR studies were performed on a Bruker Avance 

500MHz spectrometer, using the same sample that was used for GC/MS studies, but 

dissolved in deuterated chloroform (Cambridge Isotope Laboratories, 99.8%). UV/Vis 

spectroscopy was obtained with a spectrophotometer from Ocean Optics (USB 2000). 

Simulations were done with Berkeley Madonna software (Version 8.3.14), by using the 

Rosenbrock routine for the numerical solution of stiff differential equations [27]. 
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5.3 Results and Discussion 

5.3.1 Reaction Behavior in a Dark Room  

Figure 5.1 presents time series of the Cerium-bromate-Q reaction under different 

concentrations of H2SO4: (a) 0.15 M, (b) 0.20 M and (c) 0.25 M. Other reaction 

compositions are [NaBrO3] = 0.05 M, [Ce(IV)] = 1.0 × 10-4 M and [Q] = 0.035M.      

Transient spontaneous oscillations were observed for the H2SO4 acid concentration 

between 0.1 and 0.25 M. At 0.15 M a long series of oscillations with an amplitude of 

more than 60 mV took place. Increasing the acid concentration shortened the induction 

time slightly, but caused a decrease in the oscillation amplitude.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Time series of the Ce(IV)-bromate-Q reaction carried out at different sulfuric 
acid concentrations: (a) 0.15 M, (b) 0.2 M and (c) 0.25 M. Other reaction conditions were 
[NaBrO3] = 0.05 M, [Ce(IV)] = 1.0 × 10-4 M and [Q] = 0.035M.   
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Overall, the induction time always stayed longer than 5000 s. A more significant 

change in the behavior took place at [H2SO4] = 0.2 M, where two isolated oscillation 

windows, referred as sequential oscillations in literature [28], were observed. The system 

seems to evolve into the quiescent period through a reversed supercritical Hopf-

bifurcation [29].  

Our earlier study has shown that bromine removal could have significant impact on the 

behavior of modified BZ reactions [30]. To examine whether the escape of volatile 

species played a key factor in causing the oscillatory behavior in the above reaction, we 

have run parallel experiments by flowing nitrogen or air above the reaction solution 

surface.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Time series obtained at the condition that air was flowing above the reaction 
solution at a rate of 60 ml/min. Other conditions are the same as the corresponding panel 
in Figure 5.1. 
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Figure 5.2 presents the results achieved under the flow of air at 60 ml/min. Comparing 

the two time series at [H2SO4] = 0.15 M, the oscillation wave form changed, in which the 

system spent a longer time at the oxidized (i.e. high potential) state. It is presumably due 

to the slow bromide production as a result of bromine removal. Otherwise, the behavior 

remains qualitatively similar to that seen in Figure 5.1, including the sequential 

oscillations. The following experiments were conducted under the same configuration as 

that used in Figure 5.1 (i.e. without flowing air or nitrogen). 

Figure 5.3 shows three time series performed at different initial concentrations of 

Ce(IV): (a) 5.0 × 10-5 M, (b) 1.0 × 10-4 M and (c) 2.0 × 10-4 M. Other reaction conditions 

are [H2SO4] = 0.2 M, [NaBrO3] = 0.05 M and [Q] = 0.035 M. At the low cerium 

concentration spontaneous oscillations with an induction time of around 5000 s emerged. 

Interestingly, as cerium concentration was increased, after the reaction has evolved for 

some time at the non-oscillatory state, spontaneous oscillations revived at about 4x104 s, 

forming a second oscillation window. At still higher cerium concentration only one group 

of oscillations with an extremely long induction time (6x104 s) emerged. This long 

induction time matches the induction time of the second oscillation window seen in 

Figure 5.3(b), suggesting that the first oscillation window might have been eliminated by 

increasing cerium concentration. Transient oscillations in Figure 5.3(c) lasted for more 

than 50 hours. Results in Figure 5.3 demonstrate that the catalyst plays a subtle role in the 

development of complex behavior. This may be understood based on the fact that Ce(III) 

is involved in the autocatalytic cycle whereas Ce(IV) reacts with the inhibitor Br-.  
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Figure 5.3 Time series of the Cerium-bromate-Q reaction at different concentrations of 
Ce(IV): (a) 5.0 × 10-5 M, (b) 1.0 × 10-4 M and (c) 2.0 × 10-4 M. Other reaction conditions 
were the same as those used in Figure 5.1b. 
 

5.3.2 The Influence of Ceiling Light  

The fluorescent ceiling light in our lab, which is approximately 2 m above our reactor, 

has an intensity of around 20 µW/cm2. Note that the reactor has a non-transparent teflon 

cap, the light can therefore only irradiate into the reactor through its side, penetrating two 

layers of glasses and a water jacket in between. Figure 5.4 presents time series carried out 

with different initial concentrations of H2SO4: (a) 0.2 M, (b) 0.15 M, (c) 0.1 M and (d) 

0.05 M. The presence of light significantly broadened the concentration range over which 

spontaneous oscillations could be observed. For example, time series in Figure 5.4(d) 
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indicates that low frequency oscillations still exist at [H2SO4] = 0.05 M, as opposed to the 

low limit of 0.1 M in a dark room condition. At the high concentration end, it reaches 0.8 

M. Reaction in Figure 5.4(a) has the same chemical compositions as that in Figure 5.1(b), 

but here only one oscillation window is observed. The induction time here is about 3.5 x 

104 s, which is on the same order as the induction time of the second oscillation window 

in Figure 5.1(b). Therefore, light has likely suppressed the first oscillation window. In 

addition, both the oscillation frequency and amplitude are greatly increased due to the 

influence of ceiling light (e.g. results at [H2SO4] = 0.15 or 0.20 M).  

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.4 Time series of the Ce(IV)-bromate-Q reaction under the irradiation of ceiling 
light (20µW/cm2) with different concentrations of sulfuric acid: (a) 0.2M, (b) 0.15M, (c) 
0.1M, and (d) 0.05M. Other compositions were the same as those used in Figure 5.1. 
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variations in the oscillation frequency and amplitude, comparison of Figure 5.5 and 

Figure 5.3 suggests that the ceiling light quenched the first oscillation window. The 

influence of Cerium concentration on the reaction behavior also changed, where 

decreasing Ce(IV) from 2.0 × 10-4 M resulted in the disappearance of spontaneous 

oscillations rather than the emergence of another oscillation window as seen under dark 

conditions. In Figure 5.5 the induction time became shorter at higher Ce(IV) 

concentration, as opposed to the increase in induction time at dark conditions. 

Spontaneous oscillations lasted for longer than a week at the high Ce(IV) concentration, 

but the oscillation frequency was quite low, for example, 2.7 hours /oscillation in Figure 

5.5d.   

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5  Time series of the Ce(IV)-bromate-Q reaction under the irradiation of ceiling 
light (20µW/cm2) with different Ce(IV) concentrations: (a) 2.5 × 10-5 M, (b) 5.0 × 10-5 M, 
(c) 2.0 × 10-4 M, and (d) 4.0 × 10-3 M. Other reaction conditions were the same as those 
used in Figure 5.3. The inset in (c) shows responses of the system to light pulse 
perturbation of different wavelengths. 
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5.3.3 Wavelength and Intensity Dependence     

Photochemical behavior of the Cerium-bromate-Q reaction was also tested with 

irradiation of specific wavelength. It was implemented by letting white light pass through 

various narrow band filters. The influence of the pulse-illumination of different 

wavelengths on the non-oscillatory elevolution was presented as an inset in Figure 5.5c. 

Same as that observed in the ferroin-bromate-Q system [26],  the reaction behavior is 

most sensitive to the incident light of wavelength λ = 500 ± 40 nm. Therefore, the 

extremely strong photosensitivity observed in the cerium or ferroin-bromate-Q system is 

not due to the catalysts. 

Figure 5.6 presents four time series of the Ce(IV)-bromate-Q reaction illuminated with 

500 ± 40 nm light of different intensities: (a) 2.5 µW/cm2, (b) 5.0 µW/cm2, (c) 50 

µW/cm2 and (d) 500 µW/cm2. Other reaction conditions are the same as those in Figure 

5.1b. In Figure 5.6a, both oscillation windows were still there, however the number of 

oscillation within the first window decreased and oscillations in the second window also 

stopped earlier (it lasted more than 1.0 × 105 s in Figure 5.1b). The second oscillation 

window was quenched when the light intensity was increased to 5.0 µW/cm2. 

Interestingly, furhter increase of the light intensity revived the second oscillation window 

(see Figure 5.6c), while causing the disappearance of the first oscillation window. When 

light intensity was increased to 500 µW/cm2 in Figure 5.6d, spontaneous oscillations 

were still there, but had a much longer induction time. The oscillation frequency became 

greatly higher as the light intensity was increased. The above results demonstrate that 

photochemical reactions have subtle impacts on the oscillatory phenomenon, especially 

the second oscillation window.  
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Figure 5.6  Time series of the Ce(IV)-bromate-Q reaction illuminated with 500±40 nm 
light of different intensities: (a) 2.5 µW/cm2, (b) 5 µW/cm2, (c) 50 µW/cm2, and (d) 500 
µW/cm2. Other reaction conditions were the same as Figure 5.1b. 
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reduced further, meanwhile the reaction behavior also underwent significant changes, 

where only a limit number of oscillations were observed, as opposed to the long series in 

Figure 5.7a.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.7 Times series carried out with different illumination (150 mW/cm2) time (a) 
150s and (b) 600s. Time series were in the initial presence of 2.0 mM QBr (c) and 4.0 
mM QBr (d). Other reaction conditions were the same as those in Figure 5.4a, except [Q] 
= 0.033M in (c) and 0.031M in (d). 
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repeated with the initial addition of 2.0 mM QBr that was purchased from Tokyo 
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Chemical Industrial Co., Ltd. To keep the total amounts of substrate constant, the 

concentration of Q was decreased to 0.033M. The initial presence of QBr reduced the 

induction time from 3.6 x104 s to 2.4 x 104 s. Further increase of QBr to 4.0 mM in (d) 

cut the induction time to 1.75 x 104 s, suggesting that QBr can significantly shorten the 

induction time. On the other hand, QBr has an adverse effect on the life time of those 

oscillations, reducing it from 1 week to 12 hours, similar to the transition from (a) to (b) 

in Figure 5.7.  

      To examine the stability of QBr, Figure 5.8a measures absorption spectra of 3.0 mM 

QBr in a 0.1 M H2SO4 solution under ceiling light. The spectrum was recorded every 10 

minutes. It shows that the absorption peak at 350 nm decreased in time, whereas the peak 

at 280 nm increased. Bromide ion selective electrode was employed to confirm that 

bromide ions were produced during the above decomposition of QBr. 1H-NMR and 

GC/MS characterization suggest that the product at the absorption of 280 nm is 2-

hydroxy-1,4-benzoquinone rather than 1,4-benzoquinone, since there is no chemical shift 

peak at δ = 6.8. Furthermore, the decomposition of QBr could be enhanced by irradiation, 

as seen in Figure 5.8b, where two time series of QBr photodecomposition at 20 mW/cm2 

(solid line) and 20 µW/cm2 light (dash line) were measured with UV/Vis 

spectrophotometer at 350 nm. Results in Figure 5.8 suggest that the great photosensitivity 

may take place through photo enhanced decomposition of QBr, in addition to what was 

suggested earlier that irradiation enhanced QBr production [24,26]. The presence of QOH 

in the final products of the Cerium-bromate-Q reaction was confirmed by 1H-NMR and 

GC/MS spectroscopy.  
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Figure 5.8  (a) Absorption spectra of 0.003M of QBr in 0.1M H2SO4 solution, (b) Time 
series of the same QBr solution collected at 350 nm, where the solution was illuminated 
with  20 mW/cm2 light (solid line) or 20µW/cm2  ceiling light (dash line).  
 

 

5.3.5 Modeling 
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as well as in modified BZ reactions [31,32]. Basic elements of the model are: (R1-R3, 

R10) the consumption of control intermediate Br- and (R4-R8) autocatalysis. Reactions 

R9 and R11 proposed here regulate Br- variation and their rates are influenced by light, as 

suggested by the mechanistic investigation in this study. Kinetics and mechanisms of the 

reduction of Ce4+ by bromide ions have been investigated earlier and the processes 

involve the formation of cerium complexes with bromide ions [22,23]. The process is 

represented by R10 in this research.  

 

 

Table 5.1:  Model proposed for the cerium-bromate-Q oscillator 
 

Reactions 

 

R1                             Br- + HOBr + H+ ⇌ Br2 + H2O 

R2                             Br- + HBrO2 + H+ ⇌ 2HOBr 

R3                             Br- + BrO3
- + 2H+ ⇌ HOBr + HBrO2 

R4                             HBrO2 + H+ ⇌ H2BrO2
+ 

R5                             HBrO2 + H2BrO2
+ → BrO3

- + HOBr + 2H+ 

R6                             HBrO2 + BrO3
- + H+ ⇌ Br2O4 + H2O 

R7                             Br2O4 ⇌ 2BrO2
• 

R8                             Ce3++ BrO2
• + H+ ⇌ Ce4+ + HBrO2 

R9                             Q + Br2 → QBr + Br- + H+ 

R10                           Ce4+ + Br- → Ce3+ + 
2

1
Br2 

R11                           QBr + H2O → QOH + H+ + Br- 

 
 
 
Symbols for the organic species: Q = benzoquinone; QBr = 2-bromo-1,4-benzoquinone; 
QOH = 2-hydroxy-1,4-benzoquinone 
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Table 5.2: Rate constants used in the modeling of the cerium-bromate-Q oscillator 
 

                               kforward                                                                        kreverse                                          reference 

 
R1                          8 × 107  M-2 s-1                            90 s-1                                                    this work 
 
R2                          2.5 × 106  M-2 s-1                         2 × 10-5 M-1 s-1                                   [33] 
 
R3                          1.2  M-3  s-1                                   3.2 M-2 s-1                                [34] 
 
R4                          2 × 106 M-1 s-1                            1 × 108 s-1                                                [35]     

 
R5                          1.7 × 105 M-1 s-1                                                                                                            [35] 
 
R6                          48 M-2 s-1                                   3.2 × 103 s-1                                           [34] 
 
R7                          7.5 × 104 s-1                                  1.4 × 109 M-1 s-1                    [34]   

 
R8                          6.2 × 104 M-2 s-1                         1.2 × 104 M-1 s-1                      [34] 
 
 
 

Most of the rate constants used in the simulation were taken from literature (see Table 

5.2), where they were determined experimentally [33-35]. As shown in Figure 5.9, the 

proposed model is able to reproduce the oscillatory behavior as well as the influence of 

light and QBr perturbation. As the light intensity increased in (b), enhanced reactions in 

R9 and R11 successfully reproduced the constructive influences on oscillation behavior, 

not only shortening the induction time but also increasing the oscillation frequency. 

While adding QBr in (a), the induction time was greatly shortened and the oscillation 

frequency kept the same. 
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Figure 5.9 (a) Oscillations of the Ce(IV)-bromate-Q reaction in a dark condition. Initial 
conditions used in the simulation are: [NaBrO3] = 0.05 M, [Ce(IV)] = 1.0 × 10-4 M, [Q] = 
0.035 M, [H+] = 0.4 M, [H2O] = 55 M, [Br-] = 1× 10-8 M, k9 = 19.9 M-1s-1, k10 = 1 × 104 
M-1s-1, k11 = 50 M-1s-1; (b) time series under the influence of light, which was 
implemented by resetting  k9 = 40 M-1s-1,  k10 = 1 × 104 M-1s-1, k11 = 60 M-1s-1; (c) the 
initial concentration of QBr was set to 1.0x10-6 M, while all other parameters are the 
same as those in (a). 

 

5.4 Conclusions 

    Long series of spontaneous oscillations were observed in the closed cerium-bromate-

benzoquinone reaction. In comparison to the ferroin-bromate-Q system, here chemical 

oscillations exist over a broader range of acid concentration, highlighting the importance 

of the bromide-catalyst reaction. Such a reaction implicates that in a spatially extended 
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reaction-diffusion medium, it is possible to have a constructive interaction between the 

front of a propagating pulse and the tail of a preceding pulse, where there are high 

concentrations of ferriin and Br-, respectively. Therefore, results reported here shall be 

useful in understanding the occurrence of merging wave phenomena reported in the 

ferroin-bromate-cyclohexanedione system [36].  

    A distinct dynamic property of the Cerium-bromate-Q system is that bromide ions 

have two contradictory roles: (1) it is an inhibitor to quench the autocatalytic cycle; and 

(2) it regenerates reduced metal catalyst to maintain the autocatalytic processes. This 

conflicting role creates the potential of achieving more subtle and complicated nonlinear 

behaviors. Time series in Figure 5.3 does indicate the presence of sequential oscillations. 

1H-NMR and GC/MS measurements of the cerium-bromate-Q solution show the presence 

of QBr and hydroxy-benzoquinone. Separated mechanistic analysis illustrates that QBr is 

unstable and decomposes to produce bromide and hydroxy-benzoquinone. Together with 

the earlier study [24,26], research conducted in this chapter suggests that the production 

and decomposition of QBr, rather than the metal catalyst, is the culprit responsible for the 

observed ultrahigh photosensitivity.  
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Chapter 6: Electrochemically Modified Carbon Electrodes for 

Simultaneous Determination of Dihydroxybenzene Isomers 

 

 

6.1 Introduction 

    Carbon nanotube (CNT) modified electrodes in electroanalysis have attracted a great 

deal of attention in the last decade, where low detection limits and high resistance to 

surface fouling have been achieved [1-7]. The fabrication of CNT and carbon nanofibers 

is unfortunately energy consuming and requires sophisticated chemical control.  Recent 

studies by Compton and co-workers suggested that the significant electrocatalytic activity 

of CNT is due to the presence of a great number of edge plane sites in their unique 

microstructure [8,9]. This provides a direction on how to engineer carbon electrodes that 

are electrocatalytic, but does not require the pre-fabrication of CNT or carbon fibers. In 

this study, a two-step electrochemical method is developed to alternate the surface 

microstructure of a solid carbon electrode. When the as-prepared electrode was applied to 

simultaneously determine 1,4-hydroquinone (H2Q) and pyrocatechol (CC) in a mixture, a 

low detection limit was obtained.  

    1,4-Hydroquinone and pyrocatechol have been applied in various areas such as 

cosmetic, pesticides and pharmaceutical industry [10,11], as well as in fundamental 

researches such as the 1,4-cyclohexanedione (CHD)-bromate based oscillators [12] and 

photo-controlled H2Q-bromate oscillators [13]. However, the low degradability and 

toxicity have made H2Q and CC important environment pollutants. The sensitive 

determination is important in preventing their buildup to a potentially harmful 
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concentration. In addition to the techniques involving expensive equipment, including 

liquid chromatography [14], synchronous fluorescence [15], chemiluminescence [16], gas 

chromatography/mass spectrometry [17], and pH based-flow injection analysis [18], low 

cost carbon electrochemical sensors have also been actively pursued [19-24]. The 

materials investigated include CNT, mesoporous carbon modified glassy carbon electrode, 

electrospun carbon nanofibers modified electrode and modified carbon paste, etc. In the 

following commercial solid carbon electrodes were directly modified and the modified 

electrodes exhibited high sensitivity in the detection of H2Q and CC mixture. Moreover, 

the modified electrodes, as a H2Q selective electrode, can be used for monitoring the 

concentration change of H2Q in the strongly interferenced CHD-bromate oscillator that 

cannot be achieved with common electrodes such as gold or platinum. 

6.2 Experimental Procedure 

    Solid carbon electrodes were purchased from Thermo Fisher Scientific Company. 

These carbon electrodes were sharpened into a size of 1 mm in diameter and were 

ultrasonically cleaned in distilled water for 30 min. The above processed carbon 

electrodes were then polished with a polishing strip from Radiometer Analytical and used 

as a working electrode to undergo 10 cycles of cyclic voltammetry (CV) in 2.0 M H2SO4 

solution between 0 and 1.8 V at a rate of 50 mV/s. After rinsing with double distilled 

water, these electrodes were then placed into a 2.0 M NaOH solution for another 50 

cycles of CV between 0 and 1.5 V at a rate of 50 mV/s. After the above treatments, the 

side of these carbon electrodes is sealed with parafilm so that only the bottom will be in 

contact with the analyte solution. All the above process took place under room 

temperature of 22 ± 1 oC.  
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Sodium hydroxide (NaOH, Merck KGaA, Germany, 97%), Sulfuric acid (H2SO4, 

Aldrich, 95-98%), 1,4-hydroquinone (H2Q, Aldrich, >99%) and pyrocatechol (CC, 

Aldrich, >99%) were all used as received. 1,4-cyclohexanedione-bromate reaction 

mixtures were prepared from aqueous stock solutions of analytical-grade sodium bromate 

(NaBrO3, Aldrich, 99%), 1.0 M, and sulfuric acid 6.0 M. 1,4-cyclohexanedione (CHD, 

Aldrich, 98%) was directly dissolved in the reaction mixture. Scanning electron 

microscopy (SEM) images were taken on a Quanta 200 FEG microscope (FEI, Inc.). 

Raman spectra of samples were measured using a Renishaw inVia with a 514.5 nm Ar+ 

ion laser. All electrochemical experiments were performed at room temperature with a 

CHI660D electrochemical workstation (CHInstrument, USA). A three-electrode system 

was employed, using carbon electrodes as the working electrode, a Pt wire as the 

auxiliary electrode, and a saturated calomel electrode (SCE) as the reference electrode. 

The scan rate used in CV analysis was 50.0 mV/s. Parameters for differential pulse 

voltammetry (DPV) were at scan rate of 10 mV/s, 50 mV pulse amplitude and 200 ms 

pulse width. All potential values given below are referred to the potential of SCE. All 

kinetic measurements of H2Q in CHD-bromate reaction were run in a thermal-jacketed 

50mL glass reactor with the temperature maintained constant at 25.0 ± 0.1○C by a 

circulation water bath (ThermoNesLab RTE 7). Volume of the reaction solution was 

fixed as 30.0 ml unless otherwise stated. The solution was stirred by a magnetic stirrer 

(Fisher Isotemp) at around 600 round per minute (rpm). A Teflon cap was placed on top 

of the cylindrical reactor to hold five electrodes. Oscillatory profiles were monitored with 

a platinum electrode coupled with a Hg│Hg2SO4│K2SO4 reference electrode 

(Radiometer Analytical, XR200 and M231Pt-9), and recorded with a personal computer 
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connected to the pH/potential meter (Radiometer PHM220) through a PowerLab/4SP 

data logger. The other three electrodes were the same as the above DPV electrochemical 

measurements. During the oscillation, the concentration of H2Q can be measured on site 

and on phase. 

6.3 Results and Discussion 

Figure 6.1 presents SEM images of carbon electrodes: (6.1a) before, (6.1b) after 

modification in H2SO4 solution, and (C) after further modification in NaOH solution. 

Figure 6.1a shows that the unmodified electrode has a flat surface. Upon the CV 

treatment in a 2.0 M H2SO4 solution, the electrode surface became rough in Figure 6.1b, 

where a large number of flakes were developed. This structure transformation is related 

to the formation of oxygen on surface and becomes less prominent if the applied upper 

potential is low (e.g. lower than 1.3 V). The appearance of carbon flakes does not only 

increase the surface area, but also creates a large number of edge plane sites. Energy 

dispersive X-ray spectroscopy (EDX) indicates that oxygen content on the surface 

decreased to about 0.4% of carbon atoms (atomic ratio), as opposed to 1% on the 

unmodified electrode. In Figure 6.1c the surface becomes more irregular, where at certain 

regions columns resemble a stack of carbon flakes can be seen. Another change, as 

illustrated by EDX in Figure 6.1d, the oxygen content decreased to about 0.1%, 

suggesting the removal of oxides. Raman scattering is widely used to evaluate the density 

of edge plane sites by monitoring the ratio ID/IG. It is generally accepted that a larger ID/IG 

value represents more disorder and defects and better electrochemical activity [25]. The 

band locations for both of the unmodified (6.1e) and modified carbon surface (6.1f) are 

similar, but the ID/IG ratios are different (1.25 and 1.61, respectively). The Raman results 
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imply a higher density of edge plane sites on the modified carbon surface compared to 

the unmodified. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 SEM images of carbon electrodes: (a) unmodified, (b) modified in H2SO4 and 
(c) modified in H2SO4 and NaOH solution. Panel (d) is an EDX spectrum of the electrode 
shown in (c). Raman spectra of carbon electrodes: (e) unmodified and (f) modified 
coresponded to a 50% intensity of 514.5 nm exciting laser. 
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    The above results demonstrate that the structure transformation can be readily achieved 

through CV in acid and then in alkaline solution. We have also examined the protocol of 

performing structure/chemical modification of the carbon electrode in H2SO4 solution 

only. Although electrodes prepared in such a way did show greatly increased current, 

they could not produce isolated anodic peaks in a mixture of H2Q and CC. Note that the 

unmodified electrode could not produce separated anodic peaks either. When electrodes 

were only modified in NaOH solution, EDX spectra indicated that there was no decrease 

in the oxygen content (i.e. no chemical modification). They could produce two well 

separated anodic peaks in a H2Q and CC mixture, but will lose their sensitivity after two 

days.  

Figure 6.2a presents the CVs of 0.001 M H2SO4 solution at carbon electrodes of (1) 

unmodified, (2) modified in H2SO4, and (3) modified in H2SO4 and NaOH solution 

shown in Figure 6.1. Notably, there is a significant increase in the background 

(charging/discharging) current after the electrode was processed in H2SO4 solution. This 

behavior arises from the increase of the total surface area, transforming the electrode into 

a better capacitor [26]. Interestingly, as shown in curve 3, the background current 

decreased after the electrode was further treated in NaOH solution. This decrease may 

result from the combination of two factors: (1) the decrease of total surface area as the 

structure transformation evolved deeper into this solid electrode, and (2) removal of 

oxides from the surface. Figure 6.2b presents the CVs of 0.001 M H2SO4 solution 

containing 20.0 µM of H2Q and CC at (1) unmodified and (2) fully modified electrode. 

The voltammogram 1 is qualitatively the same as that in Figure 6.2a, suggesting that the 

untreated electrode is not sensitive to H2Q and CC. Increasing the concentration of H2Q 
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and CC to above 50 µM will lead to one anodic peak in the CV. However, no separated 

anodic peaks could be obtained, indicating that carbon electrode cannot simultaneously 

determine H2Q and CC. With the modification two well separated anodic peaks are seen 

in the voltammogram 2, where the potential separation between the anodic peaks is 

slightly above 100 mV. The redox peak separation is about 47 mV for both H2Q and CC.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 6.2 (a) CVs at carbon electrodes of unmodified (curve 1), modified in H2SO4 
(curve 2) and modified in H2SO4 and NaOH solution (curve 3) measured in a 0.001 
H2SO4 solution; (b) CVs of a 0.001 H2SO4 solution containing 20.0 µM of H2Q and CC 
at carbon electrode (curve 1) and modified carbon electrode (curve 2).  
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For the simultaneous and quantitative determination of H2Q and CC DPV spectra at 

different concentrations of H2Q were recorded in Figure 6.3a, where CC concentration 

was kept at 50 µM. When the H2Q concentration was increased to 3.0 µM, an anodic 

peak at the potential of 0.3 V became discernible. The inset shows that the peak current 

varies linearly with H2Q concentration between 2 and 50.0 µM with R = 0.996. 

Importantly, the anodic peak current of CC is almost uninfluenced by the increase of H2Q 

concentration, suggesting that oxidations of CC and H2Q at the modified electrode are 

independent of each other. With the DPV technique the detection limit of H2Q is 2.0 µM 

in the presence of 50 µM CC interference. Without CC, the low limit is 0.8 µM. This low 

limit is comparable to that reported recently with CNT and carbon nanofibers [22,23]. 

There is a detectable current change when H2Q is decreased from 2.0 to 0.1 µM, 

implying that the detection limit with an amperometric technique would be much lower. 

Figure 6.3b presents DPV responses at different concentrations of CC while H2Q was 

kept constant at 50.0 µM. Similar to the scenario seen in Figure 6.3A, the anodic peak 

current of H2Q stayed almost constant as CC concentration was increased from 0.1 to 100 

µM, further confirming that this modified electrode can be employed for simultaneous 

determination of dihydroxybenzene isomers. The inset in Figure 6.3b illustrates that the 

peak current increases linearly with CC concentration between 5 and 50 µM with R = 

0.997. The presence of H2Q causes that no discernible peak could develop until CC 

reaches above 5 µM. In the absence of H2Q, the low limit is 2 µM.  From the 

measurements conducted above the detection sensitivity is calculated to be 66.7 nA/ µM 

for H2Q and 83.8 nA/ µM for CC. 
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Figure 6.3 DPVs at a modified carbon electrode in (6.2a) 50 µM CC and different 
concentrations of H2Q: 0.1, 2.0, 3.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 
90.0, and 100.0 µM (from A to N), and (6.2b) 50 µM H2Q and different concentrations of 
CC: 0.1, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0 and 100.0 µM (from A to 
L). The insets show the calibration plots of CC and H2Q versus peak currents.  
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measurements of a bromate-CHD reaction were performed with the modified carbon 
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and [H2SO4] = 0.6 M. Under such conditions, the system exhibits spontaneous 

oscillations with an induction time of 6400 s. Pt redox potential presented in Figure 6.4a 

illustrates that each oscillation cycle lasts between 3 to 5 minutes.  

The in situ DPV tests would allow us to obtain the concentration of H2Q from their 

peak current, assuming that there is no other interferent in the reaction system. Based on 

the parameters used in our study, each DVP spectrum requires about 15 s to complete, 

therefore we would be able to collect more than 10 spectra within each oscillation period. 

As shown in Figure 6.4b, these peak currents do oscillate in time, with a frequency the 

same as that recorded through the redox potential. Further improvement of the 

measurement (i.e., obtaining more points within each oscillation) relies on shortening the 

DPV improvement. DPV spectra presented in Figure 6.4c indicate that during the 

induction time period the concentration of hydroquinone is very low, spontaneous 

oscillations emerge after the hydroquinone concentration reach a threshold value. The 

measurements in Figure 6.4b indicate that hydroquinone accumulates in time. Whether 

such a phenomenon is true needs to be comfirmed later, by testing the contribution of 

other interferents. We would like to note that when gold or Pt electrodes were used to 

perform the above DPV measurements, no peaks could be observed due to their poor 

selectivity.  
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Figure 6.4 Oscillation profiles (a) and corresponding DPV situ tests (b), other reaction 
conditions were [CHD] = 0.1 M, [NaBrO3] = 0.1 M, [H2SO4] = 0.6 M. (c) DPV situ 
measurements during the induction time of CHD-bromate chemical oscillation, (A) right 
after prepared solution, (B) 2000 s, (C) 4000 s, (D) 6000 s. Oscillation was occurred at 
around 6400 s. 
   

  In Figure 6.5, DPV spectra at different concentrations of H2Q were conducted in order 

to establish the standard calibration curve. The two series of experiments illustrate that 

the peak potential shifted positively as the acid concentration of the electrolyte was 

increased. In the same solution, however, the peak potential stays constant when 

hydroquinone concentration was increased.  In Figure 6.5a, the acid concentration is the 

same as that used in Figure 6.4. Comparison of the DVP spectra in Figures 6.4 and 6.5 
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suggests that H2Q concentration in the bromate-CHD oscillator is likely at the order of 

millimolar.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 DPVs of H2Q in different H2SO4 acid solution (a) 0.6 M and (b) 1.0 M. H2Q 
concentrations are 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 mM (from A to F in panel a), and 0, 6.0, 7.0, 
8.0, 9.0, 10.0, 15.0 mM (from A to G in panel b). 
 
 
 
 
6.4 Conclusions 

A two-step protocol is developed in this study to modify the surface microstructure 

and chemical compositions of solid carbon electrodes. The modified structure is stable 
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which the low detection limit of 2.0 µM is as good as that obtained with CNT or carbon 
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fibers [19-24]. After conducting 30 DPV scans, the calculated relative standard deviation 

(RSD) is 0.99% for H2Q and 1.25% for CC, indicating that the modified electrode is 

robust. We would like to note that, although this behavior has not been reported in CNT 

or carbon nanofibers based electrodes [19-24], our experiments show that the extended 

usage of the above modification carbon electrode will lead to the accumulation of 

dihydroxybenzene on the surface, as evidenced by the occurrence of a small anodic peak 

in the DPV of 0.001 M H2SO4 solution. Immersing the electrode in a 2.0 M NaOH 

solution for 30 s will remove the residues. On a potential application, such modified 

carbon electrode can work in a more strongly interferenced environment, such as CHD-

bromate reactions. By using situ DPV tests during the CHD-bromate oscillation, we 

successfully determined the oscillation range of H2Q concentration, which is significant 

to understand intermediate dynamics and oscillation mechanism. 
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Chapter 7: Conclusions and Perspective 

 

7.1 Conclusions 

    By employing an organic substrate which reacts with bromine at a moderate rate, this 

research constructed a chemical oscillator to explore the importance of bromine removal 

in bromate-based chemical oscillations. In Chapter 2, complex oscillatory behavior was 

indeed observed in the ferroin-bromate-metol reaction conducted in a batch reactor, 

where the bromine removal was accomplished via simply flowing air or nitrogen gas 

above the surface of the reaction solution [1]. In addition, the bromine removal also 

greatly shortened the induction time of those spontaneous oscillations. The above results 

highlight the significance of bromine concentration in those bromate-based chemical 

oscillations. During the oscillatory process periodic color changes between red and green 

were observed, which allowed us to subsequently investigate the spatiotemporal behavior 

of the ferroin-bromate-metol oscillator in spatially extended media. Preliminary 

exploration in a capillary tube led to the observation of pulse merging and propagation 

failure phenomena at the conditions where the ends of the capillary tube were exposed to 

air.  

    Another peculiar behavior observed in the ferroin-bromate-metol system is that the 

nonlinear behavior strongly also depends on the age of the metol stock solution. Through 

mass spectroscopy study, our experiments suggest that metol decomposes in air, 

presumably via reacting with oxygen, to produce hydroquinone and then benzoquinone. 

The above hypothesis was supported by the kinetics study in which qualitatively the same 

nonlinear phenomena were achieved by adding certain amounts of 1,4-hydroquinone into 
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a freshly prepared metol solution. The influence of oxygen on the nonlinear behavior was 

further confirmed by using air to replace nitrogen stream to remove bromine, where 

sequential oscillations were observed. Consistent experimental results were obtained 

showing that increasing the amount of 1,4-hydroquinone in the system causes the 

transition from simple to sequential oscillations, and increasing oxygen concentration (i.e. 

enhancing hydroquinone production) also resulted in sequential oscillations. Since 

complex behavior (i.e., sequential oscillations) emerged after the initial addition of 

hydroquinone, their appearance is proposed to arise from the competition of two 

autocatalytic cycles: (1) 1,4-hydroquinone and bromine dioxide radicals reaction, and (2) 

ferroin and bromine dioxide reaction. Mass spectrometry and NMR measurements 

illustrate that the major products in the ferroin-bromate-metol systems are 1,4-

benzoquinone and bromobenzoquinones. The presence of bromobenzoquinones is 

particularly inspiring, which motivates us to use 1,4-benzoquinone or closely related 

reagents to modulate bromine concentration in bromate-based chemical oscillators.  

    Based on the hypothesis reached in Chapter 2, a new type of minimal bromate 

oscillator was successfully constructed in Chapter 3, which is ferroin-bromate-

benzoquinone reaction [2]. Different from other BZ-type of oscillators, this newly 

developed bromate oscillator relies on the reaction between ferriin and bromide ions to 

regenerate ferroin and the organic substrate benzoquinone does not react with ferriin. 

Beck and co-workers have attempted to utilize the reduction of ferriin by bromide ions to 

construct a minimal ferroin-bromate oscillator. However, spontaneous oscillations could 

only be observed in a CSTR [3], where bromide ions were needed in a continuously fed 

fashion. In this new minimal bromate oscillator, the modulation of bromide ions is 



Chapter 7: Conclusions and Perspective                                                                                              144 
 

achieved by the bromination of 1,4-benzoquinone with bromine/HOBr, which makes it 

feasible to achieve transient spontaneous oscillations in a closed system. This research 

also highlights that the reduction of ferriin by bromide ions can become critical in 

bromate-based chemical oscillators. For example, in a spatially extended medium, the 

high concentration of bromide ions in the tail of the preceding pulse may interact with the 

high concentration of ferriin in the front of the following pulse, generating the 

phenomena of merging pulses. Indeed, merging behavior has been reported in the ferroin-

bromate-CHD medium [4], in which benzoquinone has been detected as one of the final 

products [5, 6]. 

The ferroin-bromate-1,4-benzoquinone oscillator developed in chapter 3 exhibited 

great photosensitivity, especially to light within the wavelength range 500 ± 40 nm. 

Experiments conducted in chapter 4 illustrate that, depending on the intensity, light could 

enhance or quench the chemical oscillations [7]. Since the applied light intensity was 

significantly lower than that used in the earlier studies of bromate-benzoquinone 

photochemical oscillator [8], the photo-reduction of 1,4-benzoquinone to 1,4-

hydroquinone is unlikely to be responsible for the dramatic photosensitivity. Mass 

spectrometry and NMR measurements indicate light-enhanced bromination of 

benzoquinone. Meanwhile, UV/Vis spectroscopy suggests that light accelerates the 

reduction of ferriin by bromide ions, which consumes bromide ions and supplies ferroin 

for the autocatalytic cycle and therefore could be responsible for the observed 

constructive influences on the nonlinear behavior. The constructive influences include 

both increasing the oscillation frequency and the number of oscillation peaks. When light 

intensity was increased monotonically, the influence of light underwent a transition from 
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constructive to inhibitory, which may result from the autocatalytic feedback 

overwhelming the production of inhibitor due to more intense illumination. More 

systematic investigations are required to confirm the above proposed mechanisms.   

To gain further insight into the newly developed minimal bromate oscillator, in the 

experiments conducted in chapter 5 cerium was used to replace ferroin as the metal 

catalyst [9]. Cerium has a higher redox potential than ferroin and thus is expected to form 

a slower autocatalytic cycle, but a faster redox reaction with bromide ions. The cerium-

bromate-benzoquinone system exhibited transient complex oscillations (i.e., sequential 

oscillations). In the presence of a rather weak illumination, those transient chemical 

oscillations could last for a week! Similar to the ferroin-bromate-benzoquinone system, 

the cerium system is also most sensitive to the light with the wavelength of 500 ± 40 nm. 

However, the influences of light on the nonlinear behavior become richer, where as the 

light intensity was increased gradually, the effect of light goes through constructive, 

inhibitory and then constructive again. Numerical simulations qualitatively reproduced 

those spontaneous oscillations in the minimal bromate oscillator.  

Besides light-enhanced bromination of benzoquinone and light-accelerated reaction 

between the metal ions and bromide ions, we also investigated the effect of light on the 

stability of 2-bromo-1,4-benzoquinone (QBr), a substance detected as the major 

bromination product of 1,4-benzoquinone. Characterizations with UV/Vis spectroscopy 

and a selective bromide ion electrode confirmed the occurrence of photodecomposition of 

QBr. NMR and GC/MS measurements suggest that the photo-decomposition of QBr is 

accompanied by bromide production, in which QBr photo decomposes to hydroxy-

benzoquinone. Simulations with a core model of FKN mechanism modified to 
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incorporate the production of bromobenzoquinone and the decomposition of QBr have 

successfully reproduced the influence of light on the oscillatory behavior. This low cost 

and long-lasting chemical oscillator provides a good model system for exploring 

perturbed nonlinear dynamics that are frequently encountered in nature.  

    A new kind of modified carbon electrode was developed in chapter 6 for the detection 

of hydroquinone in bromate-CHD and related chemical oscillators. This low cost, easy to 

fabricate electrode is stable and can simultaneously detect 1,4-hydroquinone and 1,2-

hydroquinone [10], providing an alternative to those carbon nanotube-based electrodes 

for the sensitive detection of dihydroxybenzene isomers. In this study an easy two-step 

protocol was developed to electrochemically modify the surface structure in a strong acid 

solution and chemical compositions of the solid carbon electrode in a strong alkaline 

solution. By using differential pulse voltammetry (DPV), the modified electrode can 

simultaneously determine dihydroxybenzene isomers with a low detection limit of 2.0 

µM, which is as good as that obtained with carbon nanotubes or carbon nanofibers [11-

16]. When being used to monitor the concentration of 1,4-hydroquinone in the CHD-

bromate oscillator, the oscillation waveform resembles what was detected with a 

platinum elctrode. It is the first time that a modified carbon electrode can be employed as 

a situ sensor for detecting hydroquinone.  

7.2 Future Work 

Understanding the reaction mechanisms of these newly developed bromate-based 

oscillators will be an important aspect of the future work: 

(1) More detailed elementary reactions need to be identified experimentally and 

theoretically, which include the light enhanced bromination and photo-
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decomposed reactions. How the light wavelength and intensity affect the kinetics 

of those reactions needs to be further quantified. 

(2)  We have attempted to detect radicals during the oscillation with our department 

electron paramagnetic resonance (EPR) machine, but failed to determine the 

semiquinone radicals. The reason may be due to the low magnetic field X band 

or that the life time of the radicals is too short in aqueous solution. If the life time 

of radicals is too short to be measured by EPR, future work may apply radical 

trapping methods, in which the reactive radicals react with radical trapping 

agents, such as DMPO derivatives, to produce a stable radical with a longer life 

time. 

(3) Many controlling factors which have not been systematically explored during the 

present experiments, such as temperature influence, different kinds of metal 

catalysts (manganese, ruthenium, etc) can be carried out in the future. 

(4) The study of pattern formation in the minimal bromate oscillators. The key 

challenges are the color change and life time of those oscillations. The ferroin-

based system has an obvious color change but with a short oscillation window; 

cerium-based system has a very long oscillation window (> 1 week) in batch 

conditions but with no visible color change. Future work may focus on the 

combination of these two metal catalysts in order to get a long-lasting and 

obvious color changing oscillation. 

Another very exciting future project is the application of bromate oscillators in facet-

controlled synthesis of nanoparticles. Recently, scientists are becoming more and more 

aware of the significant role of reaction and diffusion control in nanoparticle synthesis. 
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One representative example is bimetallic nanoparticles synthesized via directly 

manipulating the nucleation reaction at varied temperature and growth rate with different 

injection rates, resulting in new nano-structures [17]. Another way to control the structure 

of nanoparticles such as gold, palladium, platinum and rhodium is to use halide or 

pseudo-halide anions [18-21]. The formation of different facets is determined by the 

concentration of halide ions, which preferentially occupy one facet such as {001} of the 

Pd. Such a static occupation by halide anions can be replaced by several bromate-based 

oscillators in which bromide concentration evolves in an oscillatory fashion, such as the 

CHD-bromate oscillator [22] and 1,4-benzoquinone-bromate photochemical oscillator [8]. 

As a proof of concept that it is possible to apply these oscillators to modulate the shape 

and structure of nanoparticles, preliminary work was carried out in the CHD-bromate 

oscillator.  

Reactions were run in a thermal-jacketed 50 mL glass reactor with the temperature 

maintained constant at 25.0 ± 0.1○C by a circulation water bath (ThermoNesLab RTE 7). 

The solution was stirred by a magnetic stirrer (Fisher Isotemp) at around 600 round per 

minute (rpm). A Teflon cap was placed on top of the cylindrical reactor to hold electrodes. 

Volume of the reaction solution was fixed as 30.0 ml. Oscillatory profiles were 

monitored with a platinum electrode coupled with a Hg│Hg2SO4│K2SO4 reference 

electrode (Radiometer Analytical, XR200 and M231Pt-9). All measurements were 

recorded with a personal computer connected to the pH/potential meter (Radiometer 

PHM220) through a PowerLab/4SP data logger. Reaction mixtures were prepared from 

aqueous stock solutions of analytical-grade sodium bromate (NaBrO3, Aldrich, 99%), 1.0 

M, and sulfuric acid (H2SO4, Aldrich, 95-98%), 6.0 M. 1,4-cyclohexandione (CHD, 
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Aldrich, 98%) and Palladium oxide hydrate (PdO, Aldrich) were directly dissolved in the 

reaction mixture. Scanning electron microscopy (SEM) images were taken on a Quanta 

200 FEG microscope (FEI, Inc.) 

As shown in Figure 7.1, CHD-bromate reaction was carried under different conditions: 

(a) without adding PdO in the reaction mixture, and (b) adding 20 mg PdO in the reaction 

mixture at around 3,800 seconds. Compositions of the reaction solution were [CHD] = 

0.1 M, [NaBrO3] = 0.1 M, [H2SO4] = 0.8 M.  In (a), spontaneous oscillations took place 

after about 6,000 seconds. When 20 mg PdO was added in experiment (b), the oscillation 

behavior was greatly influenced, in which the number of oscillations was largely reduced 

and the oscillatory frequency was decreased. This result signifies PdO does interact with 

CHD-bromate reaction, resulting in a slowdown of the autocatalytic cycle. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 Time series of CHD-bromate system without or with PdO, [CHD] = 0.1 M, 
[NaBrO3] = 0.1 M, [H2SO4] = 0.8 M, (a) without adding PdO, (b) adding 20 mg PdO at 
around 3,800 s. 
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In order to verify the factor of the reaction between CHD-PdO and 1,4-hydroquinone-

PdO, Figure 7.2 shows two kinds of elementary reactions, (a) adding 20 mg PdO in the 

CHD solution at around 3,800 seconds, (b) adding 20 mg PdO in the 1,4-hydroquinone 

solution at around 3,800 seconds. As shown in (a), after adding PdO, the potential almost 

remained constant, but in (b), the potential sharply decreased after adding PdO. The 

results indicate that the reaction between 1,4-hydroquinone and PdO does occur in such 

conditions. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 Time series of CHD and H2Q system with PdO, (a) [CHD] = 0.1 M, [H2SO4] 
= 0.8 M, adding 20 mg PdO at around 3800 s, (b) [H2Q] = 0.1 M, [H2SO4] = 0.8 M, 
adding 20 mg PdO at around 3800 s. 
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    Figure 7.3 presents SEM images of the solid products collected: (a) right after 

oscillation, (b) one day, (c) two days, (d) four days. All other reaction conditions were the 

same as in Figure 7.1b. The precipitates were cleaned by diluted water and dried with 

nitrogen steam. As the reaction time increased, the surface of PdO became brighter and 

the morphology becomes more porous, EDX data shows the ratio of Pd/O increased from 

around 1:1 to almost 1.7:1, which means PdO is reduced by 1,4-hydroquinone in the 

CHD-bromate system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.3 SEM images of CHD-Bromate-PdO system with different aging time. (a) 
right after oscillation, (b) one day, (c) two days, (d) four days. All other reaction 
conditions were the same as in Figure 7.1b. 
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The above results lend positive support on the proposed research of fabricating 

palladium nanoparticles in the CHD-bromate oscillator. However, there still is much 

work to do regarding the improvement of the chemical oscillator. For example, the 

oscillation window is too short to affectively influence the shape of Pd nanoparticles, 

therefore, new types of oscillators need to be designed to meet the requirements, which 

have long-lasting oscillations with bromide ions and 1,4-hydroquinone as a key 

intermediate. 
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Appendix A Code of the Simulation in Chapter 2 
 
 
! solve coupled CHD-BZ reaction model 
! with RK4 & eular method and 5-point & 9-point explicit finite difference method                                           
! modified by JunLi                                                    
! 2009/10/09 
!-------------------------------------------------------------------                                                       
!------------the simulation_parameters------------------------------ 
module simulation_parameters 
  implicit none 
  integer, parameter :: lx=1025,ly=1025  !lx=513,ly=513   
  integer, parameter :: nstep=200000 
  integer(kind=4) :: no_record=2000 
  real(kind=8) :: h=0.00005 
  character(len=8) time 
end module 
!------------------------------------------------------------------- 
!------------the system_parameters---------------------------------- 
module system_parameters 
  implicit none 
  real(kind=8) :: e1=0.05 
  real(kind=8) :: e2=0.001 
     real(kind=8) :: e3=0.8 
     real(kind=8) :: q=0.04 
  real(kind=8) :: r=0.4 
  real(kind=8) :: s=0.4 
     real(kind=8) :: f1=1.0 
     real(kind=8) :: f2=1.0 
  real(kind=8) Du 
  parameter(Du=0.000001) 
  real(kind=8) Dv 
  parameter(Dv=0.00001) 
  real(kind=8) Dw 
  parameter(Dw=0.00001) 
  real(kind=8) Dz 
  parameter(Dz=0.00001) 
end module 
!------------------------------------------------------------------- 
!-----------main program-------------------------------------------- 
program main 
use simulation_parameters 
use system_parameters 
implicit none 
 
integer ix,iy,ncount 
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real(kind=8)::  u(0:lx+1,0:ly+1),unew(lx,ly) 
real(kind=8)::  v(0:lx+1,0:ly+1),vnew(lx,ly) 
real(kind=8)::  w(0:lx+1,0:ly+1),wnew(lx,ly) 
real(kind=8)::  z(0:lx+1,0:ly+1),znew(lx,ly) 
real(kind=8)::  site1(1:nstep) 
real(kind=8)::  site2(1:nstep) 
real(kind=8)::  site3(1:nstep) 
real(kind=8)::  site4(1:nstep) 
real(kind=8)::  dr,sldr 
real(kind=8)::  fu(1:4),fv(1:4),fw(1:4),fz(1:4) 
 
real(kind=8),external :: funcu,funcv,funcw,funcz 
 
dr=0.0002 
sldr=h/(dr*dr) 
 
call clock(time) 
write(*,"('start time=',A10)") time 
 
call initialize(u,v,w,z) 
  do ncount=1,nstep 
    call boundary_nonflux(u,v,w,z) 
 
 do ix=1,lx 
  do iy=1,ly 
 
fu(1)=funcu(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)) 
fv(1)=funcv(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)) 
fw(1)=funcw(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)) 
fz(1)=funcz(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)) 
 
      
fu(2)=funcu(u(ix,iy)+h/2*fu(1),v(ix,iy)+h/2*fv(1),w(ix,iy)+h/2*fw(1),z(ix,iy)+h/2*fz(1)) 
fv(2)=funcv(u(ix,iy)+h/2*fu(1),v(ix,iy)+h/2*fv(1),w(ix,iy)+h/2*fw(1),z(ix,iy)+h/2*fz(1)) 
fw(2)=funcw(u(ix,iy)+h/2*fu(1),v(ix,iy)+h/2*fv(1),w(ix,iy)+h/2*fw(1),z(ix,iy)+h/2*fz(1)) 
fz(2)=funcz(u(ix,iy)+h/2*fu(1),v(ix,iy)+h/2*fv(1),w(ix,iy)+h/2*fw(1),z(ix,iy)+h/2*fz(1)) 
          
fu(3)=funcu(u(ix,iy)+h/2*fu(2),v(ix,iy)+h/2*fv(2),w(ix,iy)+h/2*fw(2),z(ix,iy)+h/2*fz(2)) 
fv(3)=funcv(u(ix,iy)+h/2*fu(2),v(ix,iy)+h/2*fv(2),w(ix,iy)+h/2*fw(2),z(ix,iy)+h/2*fz(2)) 
fw(3)=funcw(u(ix,iy)+h/2*fu(2),v(ix,iy)+h/2*fv(2),w(ix,iy)+h/2*fw(2),z(ix,iy)+h/2*fz(2)) 
fz(3)=funcz(u(ix,iy)+h/2*fu(2),v(ix,iy)+h/2*fv(2),w(ix,iy)+h/2*fw(2),z(ix,iy)+h/2*fz(2)) 
 
fu(4)=funcu(u(ix,iy)+h*fu(3),v(ix,iy)+h*fv(3),w(ix,iy)+h*fw(3),z(ix,iy)+h*fz(3)) 
fv(4)=funcv(u(ix,iy)+h*fu(3),v(ix,iy)+h*fv(3),w(ix,iy)+h*fw(3),z(ix,iy)+h*fz(3))        
fw(4)=funcw(u(ix,iy)+h*fu(3),v(ix,iy)+h*fv(3),w(ix,iy)+h*fw(3),z(ix,iy)+h*fz(3)) 
fz(4)=funcz(u(ix,iy)+h*fu(3),v(ix,iy)+h*fv(3),w(ix,iy)+h*fw(3),z(ix,iy)+h*fz(3)) 
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unew(ix,iy)=u(ix,iy)+h*(fu(1)+2*fu(2)+2*fu(3)+fu(4))/6+Du*sldr*(u(ix+1,iy-1)+u(ix-
1,iy-1)+u(ix+1,iy+1)+u(ix-1,iy+1)+4*u(ix+1,iy)+4*u(ix-1,iy)+4*u(ix,iy+1)+4*u(ix,iy-
1)-20*u(ix,iy)) 
vnew(ix,iy)=v(ix,iy)+h*(fv(1)+2*fv(2)+2*fv(3)+fv(4))/6+Dv*sldr*(v(ix+1,iy-1)+v(ix-
1,iy-1)+v(ix+1,iy+1)+v(ix-1,iy+1)+4*v(ix+1,iy)+4*v(ix-1,iy)+4*v(ix,iy+1)+4*v(ix,iy-
1)-20*v(ix,iy)) 
   
wnew(ix,iy)=w(ix,iy)+h*(fw(1)+2*fw(2)+2*fw(3)+fw(4))/6+Dw*sldr*(w(ix+1,iy-
1)+w(ix-1,iy-1)+w(ix+1,iy+1)+w(ix-1,iy+1)+4*w(ix+1,iy)+4*w(ix-
1,iy)+4*w(ix,iy+1)+4*w(ix,iy-1)-20*w(ix,iy)) 
znew(ix,iy)=z(ix,iy)+h*(fz(1)+2*fz(2)+2*fz(3)+fz(4))/6+Dz*sldr*(z(ix+1,iy-1)+z(ix-
1,iy-1)+z(ix+1,iy+1)+z(ix-1,iy+1)+4*z(ix+1,iy)+4*z(ix-1,iy)+4*z(ix,iy+1)+4*z(ix,iy-1)-
20*z(ix,iy)) 
 
!         
unew(ix,iy)=u(ix,iy)+h*(funcu(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)))+Du*sldr*(u(ix+1,iy)+u
(ix-1,iy)-2*u(ix,iy))+Du*sldr*(u(ix,iy+1)+u(ix,iy-1)-2*u(ix,iy)) 
!   
vnew(ix,iy)=v(ix,iy)+h*(funcv(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)))+Dv*sldr*(v(ix+1,iy)+v
(ix-1,iy)-2*v(ix,iy))+Dv*sldr*(v(ix,iy+1)+v(ix,iy-1)-2*v(ix,iy)) 
!   
wnew(ix,iy)=w(ix,iy)+h*(funcw(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)))+Dw*sldr*(w(ix+1,iy)
+w(ix-1,iy)-2*w(ix,iy))+Dw*sldr*(w(ix,iy+1)+w(ix,iy-1)-2*w(ix,iy)) 
!   
znew(ix,iy)=z(ix,iy)+h*(funcz(u(ix,iy),v(ix,iy),w(ix,iy),z(ix,iy)))+Dz*sldr*(z(ix+1,iy)+z(
ix-1,iy)-2*z(ix,iy))+Dz*sldr*(z(ix,iy+1)+z(ix,iy-1)-2*z(ix,iy)) 
  enddo 
 enddo 
 
   do ix=1,lx 
  do iy=1,ly 
          u(ix,iy)=unew(ix,iy) 
   v(ix,iy)=vnew(ix,iy) 
   w(ix,iy)=wnew(ix,iy) 
   z(ix,iy)=znew(ix,iy) 
     enddo 
   enddo 
            site1(ncount)=u(300,300) 
            site2(ncount)=v(300,300) 
 site3(ncount)=w(300,300) 
 site4(ncount)=z(300,300) 
            !site1(ncount)=u(500,500) 
            !site2(ncount)=v(500,500) 
 !site3(ncount)=w(500,500) 
 !site4(ncount)=z(500,500) 
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     call writfile(u,v,w,z,ncount) 
  enddo 
 
!enddo 
    open(unit=60,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\site1.dat") 
 write(60,"(E20.8E4)") site1 
 close(60) 
 open(unit=60,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\site2.dat") 
 write(60,"(E20.8E4)") site2 
 close(60) 
 open(unit=60,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\site3.dat") 
 write(60,"(E20.8E4)") site3 
 close(60) 
 open(unit=60,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\site4.dat") 
 write(60,"(E20.8E4)") site4 
 close(60) 
!enddo 
 call clock(time) 
 write(*,"('end time=',A10)") time 
 
end program main 
 
subroutine boundary_nonflux(u,v,w,z) 
use simulation_parameters 
implicit none 
integer ix,iy 
real (kind=8) :: u(0:lx+1,0:ly+1),v(0:lx+1,0:ly+1),w(0:lx+1,0:ly+1),z(0:lx+1,0:ly+1) 
 
(1) set boudary conditions: nonflux 
do iy=1,ly 
 u(0,iy)=u(1,iy) 
 u(lx+1,iy)=u(lx,iy) 
enddo 
do ix=0,lx+1 
 u(ix,0)=u(ix,1) 
 u(ix,ly+1)=u(ix,ly) 
enddo 
do iy=1,ly 
 v(0,iy)=v(1,iy) 
 v(lx+1,iy)=v(lx,iy) 
enddo 
do ix=0,lx+1 
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 v(ix,0)=v(ix,1) 
 v(ix,ly+1)=v(ix,ly) 
enddo 
do iy=1,ly 
 w(0,iy)=w(1,iy) 
 w(lx+1,iy)=w(lx,iy) 
end do 
do ix=0,lx+1 
 w(ix,0)=w(ix,1) 
 w(ix,ly+1)=w(ix,ly) 
end do 
do iy=1,ly 
 z(0,iy)=z(1,iy) 
 z(lx+1,iy)=z(lx,iy) 
end do 
do ix=0,lx+1 
 z(ix,0)=z(ix,1) 
 z(ix,ly+1)=z(ix,ly) 
end do 
!setting over 
end 
 
(2) u = HBrO3 
real(kind=8) function funcu(x,y,m,n) 
use system_parameters 
implicit none 
real(kind=8) :: x,y,m,n 
 
funcu=(1/e1)*(q*y-x*y+x-x*x+n*x) 
end function 
 
(3) v = Br- 
real(kind=8) function funcv(x,y,m,n) 
use system_parameters 
implicit none 
real(kind=8) :: x,y,m,n 
 
funcv=(1/e2)*(-q*y-x*y+f1*m+r*f2*n) 
end function 
       
(4) w = Ce（IV） 
real(kind=8) function funcw(x,y,m,n) 
use system_parameters 
implicit none 
real(kind=8) :: x,y,m,n 
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funcw=x-m-s*m 
end function 
 
(5) z = H2Q 
real(kind=8) function funcz(x,y,m,n) 
use system_parameters 
implicit none 
real(kind=8) :: x,y,m,n  !m=w, n=z 
 
funcz=(1/e3)*(2*s*m-x*n-r*n) 
end function 
 
(6) subroutine initialize(u,v,w,z) 
use simulation_parameters 
use system_parameters 
implicit none 
real(kind=8) :: u(0:lx+1,0:ly+1),v(0:lx+1,0:ly+1),w(0:lx+1,0:ly+1),z(0:lx+1,0:ly+1) 
real(kind=8) uss,vss,wss,zss 
integer ix,iy 
 
uss=0.49011 
vss=0.89780 
wss=0.35008 
zss=0.31464 
 
 
 do ix=1,lx 
    do iy=1,ly 
    
          u(ix,iy)=uss*real(ix-513)/real(1025)+uss 
          v(ix,iy)=vss 
   w(ix,iy)=wss*real(iy-513)/real(1025)+wss 
   z(ix,iy)=zss 
 
 end do 
 end do 
 
end subroutine 
 
(7) subroutine writfile(u,v,w,z,ncount) 
    use simulation_parameters 
    implicit none 
  real(kind=8) :: 
u(0:lx+1,0:ly+1),v(0:lx+1,0:ly+1),w(0:lx+1,0:ly+1),z(0:lx+1,0:ly+1) 
 integer :: ix,iy,ncount 
 real(kind=8) :: counter 



Appendix A Code of the Simulation in Chapter 2                                                                               160 
 

 character:: name1,name2,name3,name4,c1,c2,c3 
 integer :: no,n1,n2,n3 
     
 
    counter=mod(ncount,no_record)  !è?1??ü??3y,?òcounter==0 
 if (counter==0) then 
 no=int(ncount/no_record) 
 n1=int(no/100) 
 no=no-100*n1 
 n2=int(no/10) 
 n3=no-n2*10 
 name1="u" 
 name2="v" 
 name3="w" 
 name4="z" 
 n1=n1+48 
 n2=n2+48 
 n3=n3+48  
 c1=char(n1) 
 c2=char(n2) 
 c3=char(n3) 
  
open (unit=90,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\"//name1//c1//c2//c3//".dat") 
 write(90,"(1025E20.8E4)")((u(ix,iy),ix=1,lx),iy=1,ly) 
 close(90) 
    open (unit=90,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\"//name2//c1//c2//c3//".dat") 
 write(90,"(1025E20.8E4)")((v(ix,iy),ix=1,lx),iy=1,ly) 
 close(90) 
 open (unit=90,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\"//name3//c1//c2//c3//".dat") 
 write(90,"(1025E20.8E4)")((w(ix,iy),ix=1,lx),iy=1,ly) 
 close(90) 
    open (unit=90,file="C:\Documents and Settings\User\Desktop\Jun 
Li\breathing\results\"//name4//c1//c2//c3//".dat") 
 write(90,"(1025E20.8E4)")((z(ix,iy),ix=1,lx),iy=1,ly) 
 close(90) 
 
 endif 
 end 
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Appredix B A Code of the Simulation in Table 4.1 
 
 
METHOD STIFF 
 
STARTTIME = 0 
STOPTIME=10 
DT = 0.02 
 
{ 1: Br+HOBr+H <--> Br2+H2O } 
     RXN1 = K1f*Br*HOBr*H - K1r*Br2*H2O 
     K1f = 8e+007 
     K1r = 90 
     INIT Br = 1e-008 
     INIT Br2 = 0 
     INIT H = 0.2 
     INIT H2O = 55 
     INIT HOBr = 0 
     d/dt(Br) = -RXN1-RXN2-RXN3+RXN10-RXN12+RXN13 
     d/dt(Br2) = +RXN1-RXN10+RXN12 
     d/dt(H) = -RXN1-RXN2-2*RXN3-RXN4+2*RXN5-RXN6-RXN8+RXN10-2*RXN11-RXN13 
     d/dt(H2O) = +RXN1+RXN6+RXN9+RXN11 
     d/dt(HOBr) = -RXN1+2*RXN2+RXN3+RXN5-RXN9 
 
{ 2: Br+HBrO2+H <--> 2HOBr } 
     RXN2 = K2f*Br*HBrO2*H - K2r*HOBr^2 
     K2f = 2.5e+006 
     K2r = 2e-005 
     INIT HBrO2 = 0 
     d/dt(HBrO2) = -RXN2+RXN3-RXN4-RXN5-RXN6+RXN8+RXN11 
 
{ 3: Br+BrO3+2H <--> HOBr+HBrO2 } 
     RXN3 = K3f*Br*BrO3*H^2 - K3r*HOBr*HBrO2 
     K3f = 1.2 
     K3r = 3.2 
     INIT BrO3 = 0.05 
     d/dt(BrO3) = -RXN3+RXN5-RXN6-RXN11 
 
{ 4: HBrO2+H <--> H2BrO2 } 
     RXN4 = K4f*HBrO2*H - K4r*H2BrO2 
     K4f = 2e+006 
     K4r = 1e+008 
     INIT H2BrO2 = 0 
     d/dt(H2BrO2) = +RXN4-RXN5 
 
{ 5: HBrO2+H2BrO2 <--> BrO3+HOBr+2H } 
     RXN5 = K5f*HBrO2*H2BrO2 - K5r*BrO3*HOBr*H^2 
     K5f = 170000 
     K5r = 0 
 
{ 6: HBrO2+BrO3+H <--> Br2O4+H2O } 
     RXN6 = K6f*HBrO2*BrO3*H - K6r*Br2O4*H2O 
     K6f = 48 
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     K6r = 3200 
     INIT Br2O4 = 0 
     d/dt(Br2O4) = +RXN6-RXN7 
 
{ 7: Br2O4 <--> 2BrO2 } 
     RXN7 = K7f*Br2O4 - K7r*BrO2^2 
     K7f = 75000 
     K7r = 1.4e+009 
     INIT BrO2 = 0 
     d/dt(BrO2) = +2*RXN7-RXN8 
 
{ 8: Fe2+BrO2+H <--> Fe3+HBrO2 } 
     RXN8 = K8f*Fe2*BrO2*H - K8r*Fe3*HBrO2 
     K8f = 1e+007 
     K8r = 0 
     INIT Fe2 = 0.0001 
     INIT Fe3 = 0 
     d/dt(Fe2) = -RXN8-2*RXN11+RXN12+RXN13 
     d/dt(Fe3) = +RXN8+2*RXN11-RXN12-RXN13 
 
{ 9: Q+HOBr <--> QBr+H2O } 
     RXN9 = K9f*Q*HOBr - K9r*QBr*H2O 
     K9f = 0 
     K9r = 0 
     INIT Q = 0.035 
     INIT QBr = 0 
     d/dt(Q) = -RXN9-RXN10+RXN13 
     d/dt(QBr) = +RXN9+RXN10-RXN13 
 
{ 10: Q+Br2 <--> QBr+Br+H } 
     RXN10 = K10f*Q*Br2 - K10r*QBr*Br*H 
     K10f = 1.5 
     K10r = 0 
 
{ 11: 2Fe2+BrO3+3H <--> 2Fe3+HBrO2+H2O } 
     RXN11 = K11f*Fe2^2*BrO3*H^2 - K11r*Fe3^2*HBrO2*H2O 
     K11f = 0.02 
     K11r = 0 
 
{ 12: Fe3+Br <--> Fe2+1/2Br2 } 
     RXN12 = K12f*Fe3*Br - K12r*Fe2*Br2^0.5 
     K12f = 50 
     K12r = 0 
 
{ 13: QBr + H2O<-->QOH+H+Br } 
     RXN13 = K13f*QBr - K13r*Q*Br 
     K13f = 25 
     K13r = 0 
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Appredix C A Code of the Simulation in Table 5.1 
 
 
METHOD STIFF 
 
STARTTIME = 0 
STOPTIME=10 
DT = 0.02 
 
{ 1: Br+HOBr+H <--> Br2+H2O } 
     RXN1 = K1f*Br*HOBr*H - K1r*Br2*H2O 
     K1f = 8e+007 
     K1r = 90 
     INIT Br = 1e-008 
     INIT Br2 = 0 
     INIT H = 0.2 
     INIT H2O = 55 
     INIT HOBr = 0 
     d/dt(Br) = -RXN1-RXN2-RXN3+RXN10-RXN12+RXN13 
     d/dt(Br2) = +RXN1-RXN10+RXN12 
     d/dt(H) = -RXN1-RXN2-2*RXN3-RXN4+2*RXN5-RXN6-RXN8+RXN10-2*RXN11-RXN13 
     d/dt(H2O) = +RXN1+RXN6+RXN9+RXN11 
     d/dt(HOBr) = -RXN1+2*RXN2+RXN3+RXN5-RXN9 
 
{ 2: Br+HBrO2+H <--> 2HOBr } 
     RXN2 = K2f*Br*HBrO2*H - K2r*HOBr^2 
     K2f = 2.5e+006 
     K2r = 2e-005 
     INIT HBrO2 = 0 
     d/dt(HBrO2) = -RXN2+RXN3-RXN4-RXN5-RXN6+RXN8+RXN11 
 
{ 3: Br+BrO3+2H <--> HOBr+HBrO2 } 
     RXN3 = K3f*Br*BrO3*H^2 - K3r*HOBr*HBrO2 
     K3f = 1.2 
     K3r = 3.2 
     INIT BrO3 = 0.05 
     d/dt(BrO3) = -RXN3+RXN5-RXN6-RXN11 
 
{ 4: HBrO2+H <--> H2BrO2 } 
     RXN4 = K4f*HBrO2*H - K4r*H2BrO2 
     K4f = 2e+006 
     K4r = 1e+008 
     INIT H2BrO2 = 0 
     d/dt(H2BrO2) = +RXN4-RXN5 
 
{ 5: HBrO2+H2BrO2 <--> BrO3+HOBr+2H } 
     RXN5 = K5f*HBrO2*H2BrO2 - K5r*BrO3*HOBr*H^2 
     K5f = 170000 
     K5r = 0 
 
{ 6: HBrO2+BrO3+H <--> Br2O4+H2O } 
     RXN6 = K6f*HBrO2*BrO3*H - K6r*Br2O4*H2O 
     K6f = 48 
     K6r = 3200 
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     INIT Br2O4 = 0 
     d/dt(Br2O4) = +RXN6-RXN7 
 
{ 7: Br2O4 <--> 2BrO2 } 
     RXN7 = K7f*Br2O4 - K7r*BrO2^2 
     K7f = 75000 
     K7r = 1.4e+009 
     INIT BrO2 = 0 
     d/dt(BrO2) = +2*RXN7-RXN8 
 
{ 8: Ce3+BrO2+H <--> Ce4+HBrO2 } 
     RXN8 = K8f*Ce3*BrO2*H - K8r*Ce4*HBrO2 
     K8f = 6.2e+004 
     K8r = 1.2e+004 
     INIT Ce3 = 0.0001 
     INIT Ce4 = 0 
     d/dt(Ce3) = -RXN8-2*RXN11+RXN12+RXN13 
     d/dt(Ce4) = +RXN8+2*RXN11-RXN12-RXN13 
 
{ 9: Q+HOBr <--> QBr+H2O } 
     RXN9 = K9f*Q*HOBr - K9r*QBr*H2O 
     K9f = 0 
     K9r = 0 
     INIT Q = 0.035 
     INIT QBr = 0 
     d/dt(Q) = -RXN9-RXN10+RXN13 
     d/dt(QBr) = +RXN9+RXN10-RXN13 
 
{ 10: Q+Br2 <--> QBr+Br+H } 
     RXN10 = K10f*Q*Br2 - K10r*QBr*Br*H 
     K10f = 40 
     K10r = 0 
 
{ 11: 2Ce3+BrO3+3H <--> 2Ce4+HBrO2+H2O } 
     RXN11 = K11f*Ce3^2*BrO3*H^2 - K11r*Ce4^2*HBrO2*H2O 
     K11f = 0 
     K11r = 0 
 
{ 12: Ce4+Br <--> Ce3+1/2Br2 } 
     RXN12 = K12f*Ce4*Br - K12r*Ce3*Br2^0.5 
     K12f = 10000 
     K12r = 0 
 
{ 13: QBr + H2O<-->QOH+H+Br } 
     RXN13 = K13f*QBr - K13r*Q*Br 
     K13f = 60 
     K13r = 0 
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