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Abstract

As public information is increasingly communicated across public networks such as

the internet, the use of public key cryptography to provide security services such as

authentication, data integrity, and non-repudiation is ever-growing.

Elliptic curve cryptography is being used now more than ever to fulfill the need

for public key cryptography, as it provides security equivalent in strength to the

entrenched RSA cryptography algorithm, but with much smaller key sizes and reduced

computational cost.

All elliptic curve cryptography operations rely on elliptic curve scalar point mul-

tiplication. In turn, scalar point multiplication depends heavily on finite field multi-

plication.

In this dissertation, two major approaches are taken to accelerate the performance

of scalar point multiplication. First, a series of very high performance finite field mul-

tiplier architectures have been implemented using domino logic in a CMOS process.

Simulation results show that the proposed implementations are more efficient than

similar designs in the literature when considering area and delay as performance met-

rics. The proposed implementations are suitable for integration with a CPU in order

to provide a special-purpose finite field multiplication instruction useful for acceler-

ating scalar point multiplication.
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Abstract

The next major part of this thesis focuses on the use of consumer computer graph-

ics cards to directly accelerate scalar point multiplication. A number of finite field

multiplication algorithms suitable for graphics cards are developed, along with algo-

rithms for finite field addition, subtraction, squaring, and inversion. The proposed

graphics-card finite field arithmetic library is used to accelerate elliptic curve scalar

point multiplication. The operation throughput and latency performance of the pro-

posed implementation is characterized by a series of tests, and results are compared

to the state of the art. Finally, it is shown that graphics cards can be used to signif-

icantly increase the operation throughput of scalar point multiplication operations,

which makes their use viable for improving elliptic curve cryptography performance

in a high-demand server environment.
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CHAPTER 1

Introduction

1.1 Motivation

The amount of private information transmitted over public networks such as the

internet is ever-increasing. A truly massive number of people use the internet on a

daily basis for business and pleasure, and activities range from checking e-mail and

social networking websites, to the use of on-line banking and search engines. The

majority of the data traveling over these networks are unencrypted and vulnerable

to potential eavesdroppers, however this is starting to change as end users begin to

realize that security vulnerabilities can and do affect them. For example, in October

2010, a Firefox web browser extension called “Firesheep” was developed[7, 8], which

allowed a (possibly malicious) user on a Wi-Fi network unfettered access to other

network users’ on-line accounts such as Facebook, Twitter, Hotmail, and virtually

any other website that did not use end-to-end encryption.

Within a few months, many major websites began offering the option of end-to-end
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encryption, while many others are in the process of adding this functionality. Notably,

starting in January 2010, Google began encrypting its e-mail traffic by default, while

in February 2012, Twitter has enabled encryption by default for its services as well.

Facebook added support for end-to-end encryption in January 2011, and they claim

to be working on making this the default setting within a year.

1.1.1 Transport layer security & public key cryptography

End-to-end encryption ensures the confidentiality and integrity of transmitted infor-

mation by encrypting it before it is placed on a public network, and decrypting it after

it arrives at its destination; in practice this is typically achieved with the transport

layer security (TLS) protocol. The most time consuming part of a TLS transaction

is the underlying public key cryptography operations allowing a server to prove its

identity to and exchange a session key with the client.

As end-users are beginning to place greater value on their data security and pri-

vacy, the demand for end-to-end encryption and its relatively expensive cryptogra-

phy operations also increases, placing a greater burden on on-line service providers’

servers, driving up costs.

1.1.2 RSA key sizes

Further increasing the computational burden of internet security, the minimum rec-

ommended key size for the popular RSA public key cryptography algorithm has re-

cently doubled from 1024 to 2048 bits; the importance for this key strength upgrade

is underlined by the fact that in 2009 a group of researchers have successfully factored

(broken) a 768-bit RSA modulus in about two thousand CPU-years, or just short of

three years of calendar time with the computing resources available to them [9].
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1.1.3 Moore’s law & serial processing performance

Meanwhile, Moore’s law (which states that the number of transistors in an integrated

circuit doubles every 18 to 24 months) continues to hold, however the microelectronics

industry has effectively hit a wall in terms of CPU power consumption: after a process

shrink, hardware designers can use more transistors in an integrated circuit (IC),

however these transistors will not necessarily operate any faster than before due to

heat dissipation problems.

The challenges of increased demand, larger key size requirements for RSA, and

the inability to simply operate existing architectures at higher clock speeds has lead

to some interesting developments.

1.2 Solutions

1.2.1 Elliptic curve cryptography

A public key crytosystem employing elliptic curves was independently proposed by

Neal Koblitz [10] and Victor Miller [11] in 1987 and 1985, respectively. Elliptic

curve cryptography (ECC) can implement the same functionality as RSA while using

significantly smaller key sizes [12, 13, 14, 15, 16], which results in fewer clock cycles

and reduced hardware costs.

In 2012, the recommended RSA key size is 2048 bits, while it is only 224 bits for

ECC. Recommended key sizes for the year 2050 are 7680 for RSA and 384 for ECC.

Furthermore, the United States’ National Security Agency (NSA) estimates that the

computational cost of RSA compared to ECC at the current recommended security

level is 6 to 1, while this gap only increases as security requirements and key lengths

inevitably grow.

ECC was being adopted rather slowly aside from certain key devices, notably the
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Year
Recommended Key Size [14]

RSA Cost : EC Cost [17]
RSA Elliptic Curve

2020 2048 224 6:1
2030 2048 224 6:1
2040 3072 256 10:1
2050 7680 384 32:1

Table 1.1: Comparison of recommended public key sizes and estimated
computational cost for elliptic curve and RSA cryptography

RIM Blackberry smartphones. This is likely due to the fact that RSA was already

well-established, and also because ECC is often perceived as being patent encumbered.

Due to the combination of larger RSA key sizes, and a host of other factors well

beyond the scope of this dissertation, ECC will most likely replace RSA public key

cryptography for most applications in the coming years [18].

1.2.2 Parallel processing

As for difficulties concerning stagnant CPU clock rates, there are two major ap-

proaches the microelectronics industry is taking to put the additional transistors

afforded by process miniaturization to work. First, it has always been possible to

develop special purpose circuits to accelerate commonly used CPU tasks. As of 2008,

for example, Intel and AMD have been including special hardware to accelerate AES

block encryption, which is accessed using special instructions [19].

The second major approach for employing more transistors without significantly

increasing power consumption is parallel and massively parallel processing. It is not

uncommon for a desktop CPU to possess four or even eight physical cores, while

graphics processors may possess hundreds.
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1.3 Research goals, and the organization of this

dissertation

The overarching goal of this work is to improve the operation throughput of elliptic

curve scalar point multiplication, which is the key operation used in all elliptic curve

cryptography algorithms. An overview of the mathematical foundation upon which

elliptic curve cryptography and elliptic curve scalar point multiplication is based is

presented in Chapter 2, along with a brief review of important cryptography protocols

and standards.

First efforts towards the acceleration of elliptic curve scalar point multiplication

began with the VLSI implementation of a recently proposed finite field reordered nor-

mal basis multiplier architecture [4], which, in turn, would lead to greatly improved

scalar point multiplication performance once integrated into a CPU or SOC. Chapter

3 presents the CMOS 0.18µm implementation of this multiplier, which uses a com-

bination of custom domino logic and standard VLSI library cells to achieve excellent

performance compared to the state of the art. In Chapter 4 the proposed finite field

multiplier was further improved upon by making some architectural changes, and

by implementing the entire design in domino logic, further reducing its critical path

delay as well as its area utilization.

The planned research goals at this stage were as follows:

1. Integrate the proposed multiplier into a CPU core, fabricate it, and measure its

results before any further improvements are carried out. This step is critical in

order to determine if there are any unforeseen issues relating to the design that

require correction, such as antenna effects, hot spots, or EM noise issues.

2. Further generalize the design so that it may carry out finite field multiplication

over a wider array of field sizes; essentially allow the proposed multiplier to be

used for Gaussian Normal Bases.
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At this point, however, some developments transpired which altered the course of this

work:

1. Practical limitations: CPUs IP cores were not (and are not) available to the

University of Windsor; this eliminates the chance to actually integrate the pro-

posed custom multiplier into a CPU design for use in accelerating cryptography

operations. Further, it is impractical to design a custom CPU capable of run-

ning even a very minimalist operating system. The ultimate goal of integrating

a custom multiplier design into a common CPU is thus out of reach.

2. Limited library components: fabricating and testing the multiplier on its own at

the high operating speeds for which it was designed requires components such

as the phase locked loops (PLLs) or delay locked loops (DLLs), which are not

available in any available library. Creating these components is possible, but

time consuming and not considered a research problem.

3. A new and interesting avenue of research for improving scalar point multipli-

cation was made available: graphic processing unit (GPU) acceleration. Until

recently, GPUs were used almost exclusively to render graphics for computer

games. Now, however, it is possible to use them to accelerate general pur-

pose computations. This aligned well with the major goal of this dissertation,

which is to determine a practical way to accelerate the performance of elliptic

curve scalar point multiplication, and as such, the remainder of this dissertation

focuses on this new and interesting area of research.

Chapter 5 presents a review GPU computing, and following this Chapter 6 pro-

poses a type-II optimal normal basis multiplication algorithm for the GPU. Compared

to other GPU-based binary extension field multiplication algorithms, the proposed

work performs significantly better in terms of operation throughput in multiplications
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per second, however it is not able to surpass a CPU implementation which makes use

of some recently released special-purpose instructions.

Noting that the GPU possesses extremely efficient integer multiplication, attention

was refocused on developing prime field multiplication algorithms. Chapter 7 presents

a NIST-fields multiplication algorithm for GPU that, to the best of the author’s

knowledge, is the fastest CPU or GPU based multiplication algorithm reported in

the literature.

In Chapter 8, a number of analyses were performed on the multiplication stage

used by the NIST multiplication algorithm, and it was determined that a very high

throughput Montgomery multiplication algorithm could be developed which main-

tains high operation throughput while allowing reduction over any finite field. This

chapter proposes a complete finite field arithmetic library based on the Montgomery

multiplication algorithm, which includes a finite field inversion algorithm based on

Fermat’s little theorem that is suitable for GPU implementations. The resulting li-

brary’s operation throughput performance is analyzed and compared to the state of

the art.

Chapter 9 presents the proposed GPU-based elliptic curve scalar point multipli-

cation algorithm, along with a series of performance analyses which characterize the

proposed in terms of operation throughput, latency, and batch size requirements.

The proposed scalar point multiplication is compared to the state of the art, and it

is shown that it boasts between 5x and 31x greater operation throughput than the

next best CPU implementation, and 6x to 7.7x greater operation throughput than

the state-of-the-art FPGA implementation.

Finally, the contributions of the work presented in this dissertation are highlighted

in Chapter 10, along with some potential future work.
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Mathematical Preliminaries

2.1 Introduction

The main goal of the work presented in this dissertation is to improve the operation

throughput of the elliptic curve scalar point multiplication operation that is used in

internet security protocols such as TLS and SSL which employ elliptic curve cryp-

tography algorithms. As shown in Figure 2.1, scalar point multiplication depends

on point addition and point doubling operations, which in turn require fundamental

finite field arithmetic operations such as multiplication, addition, subtraction, squar-

ing, and inversion.

This chapter presents a brief, bottom-up summary of elliptic curve cryptography,

beginning with its underlying finite field arithmetic (the bottom of the hierarchy in

Figure 2.1), followed by elliptic curve group law, scalar multiplication, and high-level

elliptic curve cryptography algorithms, which is second from the top in Figure 2.1.

Sections 2.2 and 2.3 review the mathematical concept of groups and fields, fol-
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TLS / SSL

ECC Algorithms

Scalar Point Multiplication

Point Addition, Point Doubling

Finite Field Arithmetic Operations

Figure 2.1: Hierarchy of operations for implementing internet security protocols
with elliptic curve cryptography

lowed by finite fields and extension fields in sections 2.4 and 2.4.2. In section 2.4.4

several important bases for binary extension fields are presented and compared. Sec-

tion 2.4.6 summarizes the different fields and bases used in the work presented in

this dissertation. Following this, elliptic curves and the elliptic curve group law is

introduced in section 2.5. Section 2.6 presents scalar point multiplication, and 2.8

reviews the high level protocols that ultimately carry out security services. Section

2.9 presents some concluding remarks.

2.2 Groups

A group is defined as a set G together with an operator ‘•’ that combines two elements

in G to form a third element also in G, and satisfies the following four properties

[20]:

Property 2.1 (Closure)

a, b ∈ G implies that a • b ∈ G

Property 2.2 (Associativity)

a, b, c, ∈ G implies that a • (b • c) = (a • b) • c

Property 2.3 (Identity element)

There exists an element 0 ∈ G such that a • 0 = 0 • a = a for all a ∈ G
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Property 2.4 (Inverse element)

For every a ∈ G there exists an element a−1 ∈ G such that a • a−1 = a−1 • a = 0

Abelian groups

An abelian group is a group that also satisfies the commutativity property:

Property 2.5 (Commutativity)

A group G is said to be abelian (commutative) if for every a, b, ∈ G, a • b = b • a

The most common example of a group is perhaps the integers (ℵ) together with the

addition (+) operation.

2.3 Fields

A field is a set F together with two operators, often denoted as • and ∗ which combine

two elements in F to form a third element in F that satisfies the following seven

properties in addition to the five abelian group properties [21]:

Property 2.6 (Closure under multiplication)

a, b ∈ F implies that a ∗ b ∈ G

Property 2.7 (Associativity of multiplication)

a, b, c, ∈ F implies that a ∗ (b ∗ c) = (a ∗ b) ∗ c

Property 2.8 (Distributivity)

a ∗ (b • c) = a ∗ b • a ∗ ca for a, b, c ∈ F

(a ∗ b) • c = a ∗ b • a ∗ ca for a, b, c ∈ F

Property 2.9 (Commutativity of multiplication)

a ∗ b = b ∗ a for a, b, ∈ F

Property 2.10 (Multiplicative identity)

There exists an element 1 ∈ F such that a • 1 = 1 • a = a for all a ∈ F

10
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Property 2.11 (No zero divisors)

If a, b ∈ F and a ∗ b = 0, then either a = 0 or b = 0

Property 2.12 (Multiplicative inverse element)

If a ∈ F and a 6= 0, then there is an element a−1 in G such that a∗a−1 = a−1 ∗a = 1

An example of a field is the set of real numbers <, together with the standard addition

(+) and multiplication (×) operations.

2.4 Finite fields

A finite field possesses all the properties of a field, with the additional constraint that

its set contains a finite number of elements [22].

2.4.1 Prime fields

The set of integers [0, p − 1] for p prime, together with field operations defined as

addition and multiplication modulo p, form a finite field which is denoted as either

Fp or equivalently as GF(p), in honour of Evariste Galois [23]. The field prime ‘p’ is

called the characteristic of the field, and the number of elements in the field (more

properly stated as the field order) is also p. The fields GF(p) for different primes p

may also be referred to as the prime fields.

2.4.2 Extension fields

It is possible to create an m-dimensional vector space from the elements in Fp, which is

equivalently denoted as either Fpm or GF(pm). This vector space is called an extension

field, and it has a field order of pm, and characteristic p. It can be shown that all finite

fields are isomorphic (structurally equivalent) to Fpm , and there are many different,

mathematically equivalent ways to define a basis, that is, a set of linearly independent
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vectors that span the space, allowing for different implementation advantages and

disadvantages [20].

2.4.3 Polynomial basis arithmetic

The most common basis for extension fields is polynomial (or standard) basis. In

this case, the elements are polynomials of degree at most m − 1 with coefficients in

Fp, and operations are polynomial addition and multiplication modulo a primitive

degree-m polynomial [20]. If α is a root of the degree-m primitive polynomial which

defines the field, a polynomial can be defined as [20]:

{1, α, α2, . . . , αm−1} (2.1)

and an element A in GF(pm) can be represented as

A = {a0 + a1α + a2α
2 + . . .+ am−1α

m−1} ai ∈ Fp, 0 ≤ i < m (2.2)

or equivalently using sigma notation as

A =
m−1∑
i=0

aiα
i, ai ∈ Fp (2.3)

A particularly important family of extension fields are the characteristic-2 or bi-

nary extension fields, denoted as F2m , or GF(2m). Binary extension fields are of great

interest as they are especially well suited for implementation using the binary logic

employed by virtually all computer hardware. In this case, the coefficients of A in

Equation 2.3 are either 0 or 1, and adding elements A and B in a field over GF(2)

is simply an m-bit wide exclusive-or (XOR) operation. Note that this is a carry-less

operation, allowing for easy parallel implementation. As previously stated, multipli-

cation over polynomial basis is defined as common polynomial multiplication, modulo
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the primitive polynomial that defines the field. While there may exist more than one

primitive polynomial over a field GF(pm) for a specific ‘p’ and ‘m’, these different

polynomials construct fields that are structurally equivalent or isomorphic with re-

spect to each other. It is possible, however, that certain primitive polynomials lead

to more efficient implementations, such as the use of all-one polynomials (AOPs), or

equally spaced polynomials (ESPs) [24, 25].

Polynomial basis is especially popular for software implementations; compared to

alternative bases (such as those presented in the next section), they require far fewer

multi-machine-word shift operations, and fewer instructions overall. Emphasizing

the popularity of polynomial basis for software implementations, Intel has recently

included a special, dedicated instruction “PCLMULQDQ”, which is included in the

majority of their desktop and server CPUs released since 2010, can be used perform

polynomial basis multiplication very efficiently [26].

Although there are a number of different polynomial basis arithmetic algorithms

exist for both hardware and software platforms, they are beyond the scope of this

work, which concentrates on prime fields, as well as other bases in GF(2m), such

as normal basis, Gaussian normal basis, and reordered normal basis, which possess

numerous advantages in hardware and parallel implementations.

2.4.4 Normal basis, optimal normal basis, & Gaussian nor-

mal basis

A basis of F2m over F2 of the form N = {β20 , β21 , β22 , . . . , β2m−1} for an appropriate

choice of β ∈ F2m is called a normal basis (NB) [22]. A normal basis can be

found for every finite field F2m [22]. Field elements can be represented as an m-

dimensional ordered set (a0, a1, . . . , am−1), with coefficients ai in F2, and basis

N = {β, βq, βq2, . . . , βqm−1} spanning F2m ; this is shown compactly using sigma

notation as shown in Equation 2.4. In software implementations, NB elements are
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represented with an array of dm
w
e w-bit binary words, whose bits are interpreted as

the coefficients ai in Equation 2.4.

A =
m−1∑
i=0

aiβ
2i (2.4)

Normal basis addition over binary extension fields is carried out using the same m-

wide XOR operation used by polynomial basis. A squaring operation is especially

inexpensive in NB, as it consists of a single circular shift operation, which can be

implemented in hardware at virtually no cost. Multiplication is more complicated,

and requires a combination of circular shift, and logicical XOR and AND operations.

Normal basis multiplication

Given two elements A and B in normal basis defined as in Equation 2.4, a third

element C can be computed as shown in Equation 2.6:

C = A×B =
m−1∑
i=0

aiβ
2i ×

m−1∑
j=0

bjβ
2j (2.5)

=
m−1∑
i=0

m−1∑
j=0

aibjβ
2iβ2j (2.6)

=
m−1∑
k=0

ckβ
2k (2.7)

Note that the product of the double sum
∑m−1

i=0

∑m−1
j=0 β

2iβ2j in Equation 2.6 must

map to the single sum
∑m−1

i=0 β2k in Equation 2.7. It is possible to create a multipli-

cation table λijk for each combination of i, j in Equation 2.6 to determine the sum∑m−1
i=0 β2k ; one method of generating λijk is presented in [27]. Shown in the five right-

most columns of Table 2.1 is the multiplication table λijk for the finite field GF(25)

generated by the primitive polynomial f(x) = x5 +x4 +x2 +x+1 and β = α11, where
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α is a root of the primitive polynomial.

Table 2.1: Normal basis multiplication table for F25 with primitive polynomial
x5 + x4 + x2 + x+ 1, and β = α11 where α is a root of the primitive polynomial

i j
β2i β2j β2k = β2i × β2j

β24 β23 β22 β21 β20 β24 β23 β22 β21 β20 β24 β23 β22 β21 β20

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
0 2 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1
0 3 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1
0 4 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0
1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 2 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0
1 3 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1
1 4 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1
2 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1
2 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0
2 2 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
2 3 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1
2 4 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0
3 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1
3 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1
3 2 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1
3 3 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
3 4 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1
4 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1
4 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1
4 2 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0
4 3 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1
4 4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

In [28] it was shown that it is possible to use the λ table’s column k = 0, while

shifting input operands A and B in order to compute the product C = A× B. The

individual bits of C may be computed as shown in Equation 2.8:

ck =
m−1∑
i=0

m−1∑
j=0

ai+kbj+kλij0 (2.8)

Optimal normal basis multiplication

The λij0 table for the complete multiplication table 2.1, is shown in Table 2.2. Note

that the number of non-zero terms in this case is 15; this quantity is called the
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Table 2.2: Multiplication table λij0 for the example in Table 2.1

HHH
HHHi

j
0 1 2 3 4

0 0 0 1 1 1
1 0 0 0 1 1
2 1 0 0 1 0
3 1 1 1 0 1
4 1 1 0 1 1

table’s complexity, and is denoted CN ; when Equation 2.8 is expanded, it will require

CN terms. Different normal bases may have different complexities, and it would be

advantageous to use the normal basis with the minimum possible complexity in order

to reduce the number of terms in the expanded form of Equation 2.8.

Mullin et al. did exactly this, and determined that the minimum complexity of

a normal basis over a field F2m is CN = 2m − 1 [28]. Additionally, they determined

when such a basis exists, and how to construct such a basis, which is referred to as

an optimal normal basis (ONB) [28]. The authors also note that there are two types

of ONB; in practice only type-II ONB is used, as type-I ONB only exist for certain

even extension degrees (m), as there is some concern that there may be undiscovered

methods that exploits for fields with even extension degrees.

To highlight the importance of ONB, Table 2.3 presents the complete multipli-

cation table for the type-II ONB for the same field shown in the previous example,

f(x) = x5 + x4 + x2 + x + 1, however this time choosing β = α instead of β = α11.

This changes the complexity CN from 15 to CN = 2m − 1 = 9, greatly reducing

the number of terms in the expanded form of Equation 2.8; the difference between a

randomly chosen NB and an ONB grows significantly for the larger field sizes that

are of interest for elliptic curve cryptography.
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Table 2.3: Type-II optimal normal basis multiplication table for F25 with
primitive polynomial α5 + α4 + α2 + α + 1, and β = α

i j
β2i β2j β2k = β2i × β2j

β24 β23 β22 β21 β20 β24 β23 β22 β21 β20 β24 β23 β22 β21 β20

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1
0 2 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0
0 3 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0
0 4 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 2 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0
1 3 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
1 4 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0
2 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
2 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0
2 2 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
2 3 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1
2 4 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1
3 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0
3 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1
3 2 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
3 3 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0
3 4 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0
4 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0
4 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0
4 2 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1
4 3 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0
4 4 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Gaussian normal basis

Unfortunately, an optimal normal basis does not exist for all field sizes, which limits

its use compared to polynomial basis, where a primitive pentanomial or trinomial

can always be found. To ameliorate this, Ash et al. developed the concept of type-

T Gaussian normal bases (GNB), and demonstrated that type-I and II GNB are

equivalent to type-II and II ONB [29]. Higher types GNB are more computationally

expensive (or require greater hardware resources) compared to lower types, however

they guarantee the lowest complexity possible for a given field F2m . A type-T GNB

exists for all fields F2m except those with m divisible by 8 [30].
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2.4.5 Reordered normal basis multiplication

Reordered normal basis (RNB) was proposed by Wu et al. [4], using some ideas from

Gao et al.[31]. RNB is a permutation of type II ONB; the complexity of RNB is

equivalent to that of ONB, however RNB allows for very regular multiplier architec-

tures which are especially amenable to hardware implementations, as signal routing

is greatly simplified. Specifically, RNB multiplication is carried out using Equation

2.14, whose derivation shown below is reproduced here from [4] for completeness.

Theorem 2.1

Let β be a primitive (2m+ 1)st root of unity in F2m and γ = β+β−1 generates a type

II optimal normal basis. Then {γi, i = 1, 2, . . . ,m} with γi = βi+β−i = βi+β2m+1−i,

i = 1, 2, . . . ,m is also a basis in F2m

For β ∈ F2m and γi as defined in theorem 2.1, define

s(i)
4
=

 i mod 2m+ 1, if 0 6 i mod 2m+ 1 6 m,

2m+ 1− i mod 2m+ 1, otherwise
(2.9)

Now, s(0) = 0, s(i) = s(2m + 1 − i), and γi = γs(i) for any integer i. As γiγj =

γi+j + γi−j, thus γi · γj = γs(i+j) + γs(i−j). Let B = (b1, . . . , bm) ∈ F2m with respect

to the basis [γ1, γ2, . . . , γm] and b0 = 0 then

γi ·B =
m∑
j=1

bjγi · γj =
m∑
j=1

bj(γs(i+j) + γs(i−j)) (2.10)

=
m∑
j=1

(bs(j+i) + bs(j−i))γj (2.11)

The final step in the equation above comes from proper substitutions of the subscript

variables. The above constant multiplication γi · B was proposed by Gao et al. in

[31]. In order to obtain a general multiplier, let A = (a1, . . . , am) be an element in
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F2m with respect to the basis [γ1, γ2, . . . , γm], then multiplication of A and B can

proceed as follows:

A ·B =
m∑
i=1

ai(γi ·B) =
m∑
i=1

ai

m∑
j=1

(bs(j+i) + bs(j−i))γj (2.12)

=
m∑
j=1

( m∑
i=1

ai(bs(j+i) + bs(j−1))
)
γj (2.13)

If the product is written as C =
∑m

j=1 cjγj, then

cj =
m∑
i=1

ai(bs(j+i) + bs(j−i)), j = 1, 2, . . . , m (2.14)

The λ table required for NB and ONB multiplication is irregular, and varies

with different fields F2m and choices for element β, which can complicate hardware

designs by adding to routing overhead. This also causes software algorithms to require

irregular memory access patterns. RNB multiplication using Equation 2.14 does not

require such a table, and some very regular hardware architectures have been proposed

to take advantage of this property [4]. RNB squaring requires a simple permutation of

the bits making up the operands, which is implemented inexpensively in hardware by

“shuffling” wires. Software implementations of RNB squaring could be significantly

more expensive without dedicated hardware such as a multi-precision barrel shifter.

2.4.6 Summary of finite fields

Figure 2.2 presents a simple taxonomy of the finite fields presented in this section.

To summarize, all finite fields are of the form Fqm for prime q. If q = 1, the finite

field may be referred to as a prime field; its elements are the integers, and the field

operations are integer multiplication and addition modulo the field prime p. If q > 1,

the field is called extension field. Extension fields exist for any q, however fields with
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q = 2 are of particular interest due to their compatibility with boolean logic; these

are called binary fields.

Finite Fields

Prime Fields Extension Fields

Binary Extension Fields

Normal Basis Polynomial Basis

Gaussian Normal Basis

Optimal Normal Basis Reordered Normal Basis

Figure 2.2: Taxonomy of finite fields and bases

Binary fields may be expressed using a number of different bases which are equiv-

alent or isomorphic. The different bases discussed in this dissertation are shown in

the shaded part of Figure 2.2, and the bi-directional arrows denote that the bases

are isomorphic with respect to each other. Polynomial basis is often used for soft-

ware implementations of binary fields as it requires fewer shifting operations and

pre-computations compared to normal basis. Normal basis, which is isomorphic to

polynomial basis, is considered inefficient, however a Gaussian normal basis can be

found for most applications which significantly reduces the complexity of the multi-

plication operation. Type-I and type-II Gaussian normal bases are equivalent to an

optimal normal basis, which has the least complex multiplication operation of any

normal basis. Optimal normal basis only exist for a fraction of possible field sizes,

however. Finally, reordered normal basis is a permutation of type-II optimal normal

basis that allows for very regular hardware architectures.
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2.5 Elliptic curves and elliptic curve group law

Elliptic curves, named as such due to their relationship with elliptic integrals, are

defined as the locus of rational points P = (x, y), with x, y elements of some field of

characteristic 6= 2, 3 which satisfies y2 = x3+ax+b, ∆ = −16(4a3+27b2) 6≡ 0, together

with the point at infinity “O” [32]. In the case where the field is of characteristic

2 (i.e. the binary extension fields) an elliptic curve is the locus of points satisfying

y2 = x3 + ax2 + bx + c together with the point at infinity O, for a, b, and c ∈ F2m

[33].

The elliptic curve y2 = x3 +x+3 over < (an infinite field) is shown in Figure 2.3a.

Elliptic curves may be defined over any field, including finite fields; the same curve

(y2 = x3 + x+ 3) over the finite field F11 is shown in Figure 2.3b.
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Figure 2.3: The elliptic curve y2 = x3 + x+ 3 over (a) the infinite field < and (b)
over the finite field F11

Elliptic curve group law

It is possible to define a group law using elliptic curves. For rational points P (x, y)

and point at infinity O on the elliptic curve E over a field Fp, the point O at infinity

is the identity element, meaning P + O = P . Negatives are formed by changing the

sign of the y-element: if P = (x, y) ∈ E then −P = (x,−y) and also P − P = O.
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For two points P and Q on the elliptic curve, P 6= Q, addition P + Q is performed

by tracing a line between P and Q, finding the point where the line intersects the

elliptic curve, and then reflecting that point about the x-axis, as shown in Figure

2.4a. This may also be written as shown in Equation 2.15, where P = (x1, y1), Q =

(x2, y2), Q, P ∈ E, P 6= Q and P +Q = (x3, y3).

x3 =
( y2 − y1
x2 − x1

)2
− x1 − x2 and y3 =

( y2 − y1
x2 − x1

)
(x1 − x3)− y1 (2.15)

In the event P = Q, a point doubling equation is used to compute 2P : a line tangent

to P is drawn, and the point where the line intersects the elliptic curve is found, and

reflected about the x-axis as shown in Figure 2.4b. This may also be written as shown

in Equation 2.16, where P = (x1, y1), P ∈ E, and 2P = (x3, y3).

x3 =
(3x21 + a

2y1

)2
− 2x1 and y3 =

(3x21 + a

2y1

)
(x1 − x3)− y1 (2.16)
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Figure 2.4: (a) Elliptic curve point addition and (b) doubling over the infinite field <

Note that while the above formulas are for prime fields, similar formulas also exist

for elliptic curves over extension fields Fqm .
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were used for this function, and appear as empty boxes in Figure 4.6.

One special module was created to serially load the coe�cients of element `B' into

the XA-modules via an external input. Once complete, the load signal changes and

the D 
ip-
ops of all of the XA-modules behave as one large shift register, as shown in

Figure 4.1. The proposed 233-bit multiplier layout dimensions are 277µm � 224µm

for a total area utilization of 62048µm2.

Figure 4.6: 233-bit Multiplier Layout

4.4 Simulation results

A series of waveforms displaying the correct operation of one of the multiplier's XA-

modules at its maximum operating frequency of 1.79 GHz is shown in Figure 4.7.

From top to bottom, the waveforms are: the system clock, input A, input B1, input

B2, the result of the XOR-AND function, and the T 
ip-
op output. It can be easily

veri�ed that the circuit is functioning correctly. On the falling edge of every clock
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cycle, the XOR-AND function is computed, determining a · (b1 ⊕ b2). If this signal

evaluates to logic 1, the T flip-flop is toggled. The simulation was performed in

Cadence’s Analog Environment using Spectre. Finally, it is important to note that

the presented results include the parasitic capacitances extracted from the physical

layout, and that all input signals were passed through appropriate buffers to ensure

a realistic (limited) drive strength.

Figure 4.7: Simulation Voltage Waveforms
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4.5 Comparison of similar implementations

Table 4.1 compares the proposed design to several published results. All entries in

the table are for 233 finite field multipliers, with the exception of Ansari et al. [56]

which uses a field size of 163. All designs are implemented in a CMOS 0.18 µm

process. Note that the designs presented in the first two rows employ a polynomial

basis, whereas the rest use ONB type II.

Table 4.1: Comparison of finite field multiplier implementations

Architecture Base
Field Max Clock Multiplication Power Area Area × Delay
Size Freq. (MHz) Delay (ns) (mW/MHz) (µm2) (×106)

Ansari [56] Poly 163 125 40 - 1,272,102 50.884
Tang [55] Poly 233 130 223 0.1843 189,297 42.213
Static[1] ONB II 233 796 293 0.1848 216,737 63.504
Domino[1] ONB II 233 1587 147 0.0851 109,644 16.118
Proposed ONB II 233 1,790 130 0.0837 62,048 8.066

Some additional remarks are as follows: All designs presented in this table have

been implemented using the same 0.18µm CMOS technology. Ansari’s [56] design

has the least delay overall, however it should be pointed out that it accomplishes this

via a large amount of parallelization, which requires a vast silicon area. Tang’s [55]

architecture is a word-level multiplier, with a bus width of 8 bits, which is why it

completes a multiplication operation in 223 ns despite having a comparatively low

clock speed. Finally, the last three rows of the table present the results of the various

serial-in parallel-out finite field multipliers, including the proposed design. The third

row presents the static CMOS design, which was the result of synthesized HDL code,

a logic compiler, and place-and-route tool. The fourth row presents a domino logic

design which used the xax-modules shown in Figure 4.1.

As shown in this table, the proposed design is 12% faster and 43% smaller than the

next fastest design (Domino[1]), which was presented in Chapter 3. A performance

measure of area × delay is proposed in order to easily compare the architectures’

overall performance, and is shown in the rightmost column of Table 4.1. It can be

seen that the proposed design compares favorably to other multipliers, as the its area
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× delay is 50% smaller compared to other designs listed in the table.

4.6 Summary

In this chapter, a new VLSI implementation of a 233-bit serial-in parallel-out finite

field multiplier is presented. The field size of 233 bits is in the practical range for em-

bedded security applications, and is recommended by NIST. The proposed design was

shown to be 43% smaller, and operate 12% faster compared to the implementation

presented in Chapter 3. This design is easily scaled to any practical size multiplier, by

simply adding additional building blocks, and additionally, the design could be inte-

grated into a CPU to implement binary field multiplication in hardware, enabling very

high-throughput scalar point multiplication. The results of this work were published

in [2].
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A Review of GPU Programming

5.1 Introduction

Section 5.2 of this chapter presents a brief history of GPU computing, followed by

a detailed examination of the architectural differences between CPUs and GPUs in

terms of cache, instruction set, execution units, and register file in section 5.3. The

methods used by the GPU to parallelize processing are presented, along with some of

its pitfalls in section 5.4. Finally, some concluding remarks are given in section 5.5.

5.2 A brief history of GPU computing

Using GPUs for general purpose computing is a new paradigm that has been receiving

attention from academia since 2003, and official support from GPU manufacturers in

2007. The core concept is simple enough: employ a graphics processing unit (GPU)

that is normally used to render graphics for 3-D computer games to carry out general
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purpose computations in place of a CPU. A GPU is a single-program, multiple-data

(SPMD) machine with user controlled cache, a large number of ALUs, a generously-

sized register file, and its own dedicated off-chip RAM. Using a GPU in the place

of a CPU is highly advantageous for applications which can be parallelized to take

advantage of the GPU’s resources.

In 2003, a group of researchers at Stanford University pioneered GPU computing

when they developed a compiler project called “BrookGPU” that allowed programs

to be developed for execution on GPUs [58]. In its nascent state, GPU computing

required that the input data are formatted as computer graphics texture information;

computations were performed by having the GPU operate on these data using exist-

ing graphics rendering routines that are part of driver packages such as Microsoft’s

DirectX or OpenGL. Luckily, a large number of the various algebraic transforms nor-

mally used to render a 3-dimensional scene employ matrix multiplication, which is an

operation that is also frequently needed for applications in scientific computing. GPU

manufacturers NVIDIA and AMD (formerly ATI) took notice of this phenomenon,

and in 2007 both companies began offering products that allowed direct use of the

GPU hardware for scientific computing, without having to encode and process the

data as textures.

Since this time, the GPU computing market has exploded. Thousands of papers

have been published detailing how GPUs can be used to improve program runtimes by

orders of magnitude for a vast array of applications. Rather than focusing exclusively

on improving the performance of 3-D computer games, AMD and NVidia are now

improving the scientific computing ability of their products as well.
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5.3 Differences between GPUs and CPUs

The GPU architecture used for the work presented in this dissertation is called the

“NVIDIA Fermi”, and the specific video card used is the Zotac GTX-480. AMD also

manufactures GPUs which may be used for general purpose computing, however their

toolsets, documentation, and community support are not as mature as NVIDIA’s at

this time. While the work presented here is optimized for the NVIDIA architecture,

it is fully expected that many of this work’s contributions should work with similar

effect on AMD hardware.

There are a number of significant differences between GPUs and CPUs in terms of

instruction set, architecture, and how transistors are allocated. This section highlights

the major differences between the recently released Intel core-i7 3770 desktop CPU,

and the NVIDIA GTX-480 GPU used for the work presented in this dissertation.

5.3.1 Physical specifications

Table 5.1 presents a number of physical specifications for both devices. The GPU die

size is significantly greater than the CPUs, and it possesses over twice as many tran-

sistors. Power consumption is much higher, which is due to the increased transistor

count and also because the Intel CPU uses a more recent 22 nm fabrication process.

The CPU’s clock frequency is over twice that of the GPU’s; the GPU compensates

for its slower clock with massive parallelization. The 3770 has 4 physical cores, while

the GTX-480 has 15 streaming multiprocessors (SMs).

5.3.2 GPU and CPU instruction sets

The Intel core-i7 3770’s cores employ a massive instruction set which includes over a

thousand instructions belonging to several groups [59]:

� SSE - streaming SIMD extensions
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Table 5.1: Comparison of price and physical specifications for the Intel 3770 and
NVIDIA GTX 480

Specification Intel core i7-3770 NVIDIA GTX 480
Price (USD) $310 $250

Fabrication Process 22 nm 40 nm
Processors per device 4 cores 15 SMs

Transistors Count 1400 M 3200 M
Die Size 160 mm2 529 mm2

Thermal Design Power 77 W 250 W
CPU Speed 3.6 GHz 1.4 GHz

� MMX - another SIMD instruction set

� AES - special-purpose cryptography instructions

� AVX - vector instructions

� The base x86 instruction set, which has been growing steadily since its creation

in the late 1970s’ for the Intel 8086 microprocessor

The GTX-480 uses a total of 96 instructions; compared to the CPU, this signifi-

cantly reduces the area utilization of the instruction decoder, and allows the GPU to

spend its transistors on other components [6].

5.3.3 Serial processing features

Desktop and server CPUs, the programs targeting these architectures, and the entire

compiler tool chain, are heavily optimized for serial execution. Accordingly, CPU

architectures incorporate features to further improve serial program performance such

as branch prediction & speculative execution, which allows queued instructions to

proceed even if the result of a branch condition is not yet known. This is done

by making an educated guess based on how the program branched in previous loop

iterations, and it should be noted that if the branch predictor guesses wrong, the

pipeline must be flushed, and instructions repeated with the (now known) correct
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program branch. Depending on the benchmark, these features may improve serial

program performance by 5-15% while consuming approximately 5% of the CPU core’s

area. GPUs do not possess any of these optimizations.

5.3.4 Cache

Desktop CPUs like the 3770 possess generous on-chip cache in an effort to improve

instruction throughput by reducing the number of RAM memory accesses, which

often form the system bottleneck. Table 5.2 highlights the various cache levels used

in GPUs and CPUs. The CPU has two levels specific to individual cores, and a third,

very large cache, which is shared among all cores. The GTX-480 only has two levels

of cache; the first is per-SM, and the second is similar to the CPU’s L3 cache in that

it is shared across all processing units, however it is much smaller: 768kB instead of

8192kB. Overall, the GPU has roughly one fifth the cache of the CPU.

Table 5.2: Cache size comparison for the Intel 3770 and NVIDIA GTX 480

Cache Type Intel core i7-3770 NVIDIA GTX 480
L1 64kB / core 80kB / SM
L2 256kB / core 768kB / GPU
L3 8192kB / CPU -

Total per device 9472kB 1968kB

5.3.5 Register file

One of the areas where the GPU hardware designers spend the transistors saved from

frugal cache sizes and a spartan instruction set is the register file. Table 5.3 gives

a breakdown of the number of registers per processor, as well as a total per device.

Note that the GPU has a single type of register which may be used for floating point

and integer arithmetic, whereas the CPU uses different sets of registers for different

tasks. The total size of the GPU register file dwarfs the CPUs, with a total count of

491,520 registers compared to 216.
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Table 5.3: Register comparison for the Intel 3770 and NVIDIA GTX 480

Register type Intel core i7-3770 NVIDIA GTX 480
General Purpose 16 64-bit / core 32768 32-bit / SM
Floating Point 8 80-bit / core -

Memory Segment 6 16-bit / core -
MMX 8 64-bit / core -
XMM 16 128-bit / core -

Total per device 216 491,520

Table 5.4: Comparison of execution units for Intel 3770 and NVIDIA GTX 480

Intel core i7-3770 NVIDIA GTX 480

Per core or SM
1 MMX/SSE/FP ALU 32 Integer / FP ALUs
1 MMX/SSE/FP Addition ALU 4 Special function units
1 MMX/SSE/FP Mult. ALU

Total per device 12 Heterogeneous ALUs 480 ALUs, 60 SFUs

5.3.6 Execution units

The other major area where GPUs use more transistors than CPUs is in execution

units. As shown in Table 5.4, each of the Intel 3770’s cores have three different

execution units that can execute different groups of instructions, with a total of 12 per

CPU. The GTX-480 GPU has two types of execution units: a general purpose ALU

which can perform integer and floating point arithmetic as well as logic operations,

and a special function unit (SFU) that can carry out square root and trigonometric

functions. Each SM has 32 general purpose ALUs and 4 SFUs for a total of 480 ALUs

and 60 SFUs per device.

5.4 GPU computing concept

In order to use a GPU to execute a program, data is copied over the PCI-Express

bus from the CPU (or host) RAM to the GPU RAM; GPU manufacturers supply

appropriate APIs to handle this task with a simple function call. The CPU then

instructs the GPU to initiate its program, which operates on the data stored in the
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GPU RAM. Once the GPU program is complete, data is copied from the GPU RAM

back to the host RAM using an API call.

CPU Host RAM

GPU RAMGPU

~10 GB/s

~170 GB/s

~4 GB/s

GDDR 5

DDR2/3

PCI-E

Figure 5.1: Data transfer between host machine and GPU

In order to efficiently employ this large number of execution units, a single pro-

gram, multiple data (SPMD) paradigm is adopted. SPMD machines are very simi-

lar to single instruction, multiple data (SIMD) processors, the difference being that

SPMD allows for divergent program branching, where SIMD does not.

5.4.1 Kernels, the compute grid, thread blocks, and threads

A program running on the GPU is referred to as a kernel. When the kernel is launched

(executed on the GPU), it sets up a grid, which is an array of thread blocks, or simply

blocks. Each block, in turn, contains an array of threads which are responsible for

carrying out the actual work specified by the kernel. This is shown in Figure 5.2. A

grid may possess up to a 2-dimensional array of blocks, and each block may have up

to a 3-dimensional array of threads. Figure 5.2 has a 2 × 3 array of blocks, and each

block has a 2 × 2 array of threads.

At this time, there are two language choices available for programming GPU ker-

nels. The “Open Compute Language”, or “OpenCL” was originally developed by

Apple, and it now stands as an open, royalty-free standard governed by the Khronos

Group. Programs written in OpenCL may be compiled for NVIDIA and AMD GPUs.

The competing language is NVIDIA’s proprietary “C for CUDA”. Although C for
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Figure 5.2: Hierarchy of the GPU compute grid, thread blocks, and threads [6]

CUDA is only available for NVIDIA GPUs, it has a more robust toolchain of com-

pilers, assemblers, disassemblers and debuggers compared to OpenCL. Additionally,

certain low-level features may only be used by programs written in C for CUDA.

Due to the more mature toolset and access to low-level features, the GPU programs

presented in this work have been written in C for CUDA.

Parallelization is achieved by having each thread execute the same program on

multiple data elements. A practical example of this is unrolling a for loop whose

arguments do not exhibit data-dependence: each iteration of the for loop may be

computed in parallel by different ALUs. As shown in listing 5.1 is a pair of standard

for loops which serially compute the result c = a · b where a, b, and c are 6 × 4

two-dimensional arrays of floating point elements:

Listing 5.1: Example C-code for multiplying together elements of two arrays

1 //Function to compute c = a * b for 6 by 4 2-dimensional

arrays

2 int mult(float *a, float *b, float *c)

3 {
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4 for(int i=0; i<6; i++)

5 for(int j=0; j<4; j++)

6 c[i][j] = a[i][j] * b[i][j];

7

8 return 0;

9 }

When using a GPU this may be written in C for CUDA using 6×4 = 24 individual

threads by launching a thread array with an x-dimension of 6, and a y-dimension of

4. The GPU kernel performing the multiplication is shown in listing 5.2. First, lin-

ear index must be computed using the built in variables threadIdx.x and threadIdx.y,

which are the thread’s unique X and Y coordinates, respectively. This allows each

thread with coordinates (threadIdx.x, threadIdx.y) to access unique array elements in

a, b, and c. The final line in the code listing computes the result of array c in parallel.

Listing 5.2: Example C for CUDA kernel code

1 //GPU kernel to compute c = a * b in parallel

2 //Uses a 6 by 4 array of threads

3 __global__ void mult(float *a, float *b, float *c)

4 {

5 int thread_index = threadIdx.x + 2* threadIdx.y;

6 int linear address = thread_index;

7

8 c[linear_address] = a[linear_address] * b[linear_address

];

9 }

While the previous example uses a single block of threads with dimensions 6× 4,

it is possible to use multiple blocks with fewer threads per block to achieve the same

result. Once multiple blocks are used, the same number of threads as before are

employed, although their indexing must be modified slightly. Shown in listing 5.3 is

an example that is functionally equivalent to the previous one: this time a 3×2 array

of blocks is used, and each block employs a 2× 2 array of threads, which is the same

arrangement shown in Figure 5.2.

Listing 5.3: Example C for CUDA kernel code using multiple blocks

1 //GPU kernel to compute c = a * b in parallel

2 //Uses a 3 by 2 grid of blocks

3 //Each block has a 2 by 2 array of threads
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4 __global__ void mult(float *a, float *b, float *c)

5 {

6 int thread_index = threadIdx.x + 2* threadIdx.y;

7 int block_index = 4* blockIdx.x + 8* threadIdx.y;

8 int linear_address = thread_index + block_index;

9

10 c[linear_address] = a[linear_address] * b[linear_address

];

11 }

This code listing first computes the thread index as before, while it also calculates

block index. These are added together in order to determine the unique linear memory

address so that each thread operates on unique elements in the a, b, and c arrays.

GPU computing may use up to 3-dimensional thread arrays, and up-to two-

dimensional arrays of blocks may be used.

5.4.2 GPU memory spaces

As shown in Figure 5.3, the Fermi architecture possesses a number of different memory

spaces. Individual threads have a private register space, as well as a user-controlled

cache that is shared between other threads belonging to the same block. Threads in

the same block may cooperate with each other by writing to (and reading from) the

shared cache.

Threads also have access to a RAM memory, which can also facilitate communica-

tion between different threads. Depending on the specific GPU card, global memory

can be anywhere from a few hundred megabytes to several gigabytes; the GTX-480

card used for this work has 1576 megabytes of high-bandwidth GDDR5 RAM. Un-

like the cache, any and all threads may share information with each other through

the GPU RAM, however barrier synchronization operations are required to ensure

memory coherency; without synchronization, it may be possible to read an outdated

value from RAM, as the order of execution for threads belonging to different blocks

is undefined.
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Figure 5.3: The Fermi architecture memory hierarchy [6]

In terms of latency, registers are of course the fastest and require a single clock

cycle to access. Exact cache latencies are not officially disclosed by NVIDIA, however

it is estimated that the cost is between 10 and 100 clock cycles. Finally, it should

be noted that RAM accesses are the most expensive. Despite the high-bandwidth

GDDR5 RAM used on the GTX-480 card (which boasts a maximum throughput of

170 GB/s), it is almost always the bottleneck of a GPU program, and care must

be taken to minimize the host/device memory traffic. GPU RAM access latency is

quite high, and while exact figures have not been released, NVIDIA states that they

typically require 400-1200 clock cycles.

A complete block diagram of the SM is shown in Figure 5.4, including register

file, cache, and the load/store units that fetch and store operands. Also shown are

the hardware thread schedulers, which are explained in section 5.4.3.

5.4.3 Warps, concurrency, and resource allocation

The ALUs are deeply pipelined, requiring between 18 and 26 stages; this requires

a large amount of instructions in flight to saturate the SM’s compute resources. In
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practice, this is achieved by queueing a very large number of threads on the device in

batches of 32 threads called a warp: Up to 1536 threads may be actively processed by

each SM, that is, up to 1536 threads may have registers and cache allocated. More

than 1536 may be queued, however processing on the additional threads is stalled

until there are available openings on the GPU.

A large number of active threads per SM allows the high-latency RAM accesses

to be effectively hidden. As long as the thread scheduler can find a warp of threads

whose input operands are available, they are set in flight, which allows more time for

other warps to fetch their operands from RAM or cache.

5.4.4 Program branching

As previously stated, the difference between SIMD and SPMD machines is that SPMD

architectures allow for branching. As described in section 5.4.3, threads are issued

in batches of 32 called warps. Should an if -statement be encountered in a program,

and a single thread in a warp branches differently than the rest, the remaining 31

thread lanes are masked, forcing them to wait for the divergent thread to complete its

work before their execution can resume as a group. If, on the other hand, all threads

take the same execution path, there is no penalty. In practice, careless use of nested

if -statements quickly serializes a GPU program, severely affecting performance.
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5.5 Summary

This chapter presented a review of GPU computing. The architectural differences

between GPUs and CPUs were discussed. The organizational structure of GPU com-

puting in terms of threads, blocks and grids was presented, and some simple example

programs demonstrating how GPUs parallelize program execution, and process it in

groups of threads called warps, were examined. Finally, the GTX-480 Fermi archi-

tecture used for the work presented in this dissertation was presented in depth.
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Type II Optimal Normal Basis Multiplication for GPU

6.1 Introduction

In this chapter, an ONB multiplication algorithm that takes advantage of the GPU’s

massive parallelism is proposed. In normal basis, each of the dm/32e 32-bit words

which form the result of an m-bit wide multiplication C = A · B may be computed

independently without any carry operations. This property allows for easy bit-slicing,

where each 32-bit result word can be computed in parallel by multiple ALUs: a good

fit for GPUs.

NB, ONB, and GNB multiplication is much more commonly implemented in hard-

ware than in software due to its heavy reliance on multi-word circular shift and logic

operations. Such operations are, of course, inexpensive to carry out in hardware us-

ing circular shift registers and simple logic gates. When executed by a CPU, logic

operations may require as many clock cycles as floating point or integer multipli-

cation. Multi-machine-word circular shifts are especially expensive due to the large
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number of memory accesses required, and in practice, comb-type polynomial basis

multipliers have greater operation throughput compared to the best software ONB

implementations [60].

In place of pre-computing and storing shifted values of the multiplication’s input

operands as in most ONB software implementations, the operands are stored in the

user-controlled cache, and shifted operands are reconstructed every time they are

needed. Although this may seem more costly than pre-computation, due to the

cache’s low latency compared to the GPU RAM, and the ability to exactly control

cache memory accesses, this is not the case.

Compared to other GPU-based binary field multiplication algorithms, the pro-

posed is significantly faster, however it falls behind CPU implementations using poly-

nomial basis, indicating that further research in this area is needed.

The rest of this chapter is organized as follows. Section 6.2 presents related work,

and section 6.3 details the proposed algorithm. Specific implementation details are

explained in 6.4, results are compared in section 6.5, and some concluding remarks

are given in 6.7.

6.2 Related work

There are a number of software algorithms for implementing ONB and GNB multipli-

cation in the literature. Rosing [27] proposed an ONB multiplication algorithm that

pre-computes and stores all m circular shifts of the A and B operands, and computes

the partial sum in Equation 6.1 using word operations.

ck =
m−1∑
i=0

m−1∑
j=0

ai+kbj+kλij0 (6.1)

Ning and Yin [61] improve the pre-computation strategy used by Rosing [27],

reducing memory use (and number of instructions required for pre-computation) from
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complexity O(n2) to O(n). Once the precomputations are complete, Ning and Yin

use the same algorithm as Rosing to accumulate the partial sum and produce the

result of the multiplication.

Reyhani-Masoleh and Hasan [62] proposed a series of algorithms which could be

used for GNB, as well as ONB. Their work also proposes a pre-computation strategy

that uses less memory compared to [61], however [60] reports that Ning and Yin’s

approach is faster in practice. Dahab et al. also propose some fast GNB multiplication

algorithms [60]; theirs use a a pre-computation strategy similar to Ning and Yin

[61], while their algorithm focuses on reducing the number of expensive circular shift

instructions. Their work also shows that Ning & Yin’s algorithm [61] is the fastest

for Type-II ONB multiplication [60].

6.3 Proposed algorithm

The proposed type-II ONB multiplication algorithm for GPU is based on Rosing’s

work [27], which noted that for i = 0, expanding
∑m−1

j=0 in section 6.2 has a single

non-zero entry in λij0, and for all other i 6= 1, expanding
∑m−1

j=0 has exactly two non-

zero values in λij0; this property is guaranteed for all type-II optimal normal bases.

Rosing also proposed the use of two lookup tables, t1 and t2 to hold the non-zero

values of λij0 for each i. The λij0 table, and the associated lookup tables t1 and t2,

for the ONB multiplication example presented in Chapter 2 on page 17 are shown in

tables 6.1a and 6.1b.

The use of lookup tables allows Equation 6.2 to be re-written as Equation 6.3.

Note that the i = 0 term has been expanded from the sum over i: the term i = 0

differs from the other others in that it corresponds to the only entry in λij0 that does

not have two non-zero terms.
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HHH
HHHi

j
0 1 2 3 4

0 0 1 0 0 0
1 1 0 0 1 0
2 0 0 0 1 1
3 0 1 1 0 0
4 0 0 1 0 1

(a) λij0 table

i t1 t2
0 1 -
1 0 3
2 3 4
3 1 2
4 2 4

(b) t1 and t2

Table 6.1: λij0, t1, and t2 tables for the optimal normal basis multiplication Table
2.3

ck =
m−1∑
i=0

(
m−1∑
j=0

ai+kbj+kλij0

)
(6.2)

= (akbt1[0]+k) +
m−1∑
i=1

[ak+i · (bt1[i]+k + bt2[i]+k)] (6.3)

Rosing’s approach processes the bits of ck simultaneously using word operations.

For a machine word size of 32 bits, the result C = A ·B is computed using W = dm
32
e

iterations, each of which computes a batch of 32 bits of the result. Pseudocode for

Rosing’s algorithm is shown in algorithm 6.1. Note that ONB elements are repre-

sented as arrays of unsigned integers which are denoted using upper-case characters

A, B, and C. Each array is W words long, and the 32-bit words that form the arrays

are denoted as a[i], for 0 ≤ i < W .

6.3.1 Compute grid

In this work, the proposed GPU algorithm fully parallelizes the partial-accumulation

of C using a bit-slicing approach across W threads. This takes advantage of the fact

that the inner loop which calculates the partial products c[j] on line 6 of algorithm

6.1 does not exhibit any data dependency on the other c[j].

The proposed approach processes each multiplication operation using W threads
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Algorithm 6.1: ONB Multiplication algorithm [27]

Input: Finite field elements A and B, lookup tables t1 and t2
Output: Result C = A ·B
// W = dm

32
e, the number of 32 bit words representing A, B, and C

// as denotes an s-bit left circular shift of a
1 for j ← 0 to T − 1 do
2 temp← bt1[0]+j·32
3 c[j]← aj·32 AND temp

4 end
5 for i← 1to m− 1 do
6 for j ← 0 to W − 1 do
7 temp ← bt1[i]+j·32
8 temp ← temp XOR bt2[i]+j·32
9 temp ← temp AND ai+j·32

10 c[j]← c[j] XOR temp

11 end

12 end
13 return C

at a time instead of one, however, this is not nearly enough work to saturate the GPU’s

resources and obtain computational efficiency as well as high operation throughput.

To remedy this, every block of threads also computes N multiplications in parallel.

The thread block arrangement used for the proposed GPU algorithm is shown

in Figure 6.1. Along the thread block’s X-dimension are the W threads computing

the result, while along the Y-dimension are the N multiplication results the block is

computing in parallel. As stated earlier, the X-dimension is simply W = dm
32
e, and

the Y-dimension (N) is chosen to maximize the compute efficiency of the GPU. A

one-dimensional array of blocks is used.

In order to choose the best N , the number of threads per SM ThreadsSM must be

maximized subject to the hardware constraints constraints that maximum number of

blocks per sm Nblocks is 8, and ThreadsSM ≤ 1536, as shown in Equation 6.4.

ThreadsSM =
(
dm

32
e ×N

)
×Nblocks, 1 ≤ Nblocks ≤ 8, ThreadsSM ≤ 1536 (6.4)
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T (1,3) T (1,2) T (1,1) T (1,0)

T (2,3) T (2,2) T (2,1) T (2,0)

T (3,3) T (3,2) T (3,1) T (3,0)

T (4,3) T (4,2) T (4,1) T (4,0)

T (0,3) T (0,2) T (0,1) T (0,0)

N
Mult. /
block

One Block
W words per multiplication

Figure 6.1: Thread-block arrangement for proposed ONB multiplication algorithm:
in this example, each multiplication produces a W = 4-word wide result, and N = 5

multiplications in total are being carried out by this block

6.3.2 Memory layout

When storing operands to RAM, it is important to consider how memory access pat-

terns can affect performance. The GPU RAM can only obtain peak transfer band-

width if adjacent or coalesced memory accesses are performed. The GTX-480’s RAM,

for example, requires contiguous 128-byte (32-word) memory accesses to achieve peak

performance.

As such, the proposed algorithm stores operands in GPU RAM using a structure

of arrays approach as shown in Figure 6.2: all A-operands are stored contiguously,

as are the B and C operands. This ensures coalesced memory accesses allowing the

highest possible memory bandwidth.

6.3.3 Multi-word parallel circular shifting

The proposed algorithm requires a large number of multi-machine-word circular left-

shift operations. As noted earlier, in algorithm 6.1, as denotes left shifting the m-bit

wide a-operand by s bits.

While all software implementations of ONB in the literature use some type of

precomputation strategy to reduce the number of multi-word circular shifts required,

the proposed GPU algorithm simply stores double-wide “wrapped” operands to the

cache, and reconstructs the shifted values as required. Due to the availability of
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Figure 6.2: Memory for the proposed algorithm is arranged in a structure of arrays
format to ensure memory accesses are coalesced

a user-controlled low-latency cache and an abundance of ALUs, it is less expensive

in terms of clock cycles to recompute the shifted operands with each iteration of i

compared to fetching precomputed values from the GPU RAM.

Constructing the double-wide arrays

The double-wide wrapped operand arrays are constructed from the original operands

as shown in Equation 6.5, where l = dm
32
e × 32 − m, the number of unused bits in

the operand arrays; additionally, “<< s” and “>> s” denote left and right shift

operations by s places. An example of a double-wide, wrapped operand is shown in

Figure 6.3.

aw[i] =



a[i] if 0 ≤ i < W − 1

a[W − 1] OR
[
a[0] << (w − l)

]
if i = W − 1[

aw[i−W ] >> l
]

OR[
aw[i+ 1−W ] << (w − l)

]
if W − 1 < i < 2W − 1

(6.5)
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a2 a1 a0a5 a4 a3a0 a7 a6a3 a2 a1a6 a5 a4a1 a0 a7

Original operand

A [0]wA [1]wA [2]wA [3]wA [4]wA [5]w

Figure 6.3: Example of double-wide “wrapped” operand, with W = 3,
word size = 3, l = 1

Constructing shifted operands

With the double-wide arrays loaded into the user-controlled cache, multi-word circular

left shifts are computed in parallel for all W threads along the X-direction of the

thread array. The code listing which performs this task is shown in 6.1. In order to

parallelize the circular shift, each thread must fetch array elements from the double-

wide array. Given an amount to shift the operands by “s”, which is provided by

the lookup tables t1 and t2 previously described, bit and word-level offsets are first

calculated as shown in lines 8 and 9. Each of the W threads adds this offset to its

respective “threadIdx.x” index, modulo W . Finally, this value is used to load the

proper double-wide array element from Aw, and it is shifted to the right using the

“shift” offset previously calculated, and stored to “RS temp”. A similar series of

steps are carried out in order to determine “LS temp”, which is added to “RS temp”

to form a word of the shifted operand.

Note that “shift”, “word”, “word+1”, and “32-shift” are all known quantities

at compile time, and by using a technique such as loop unrolling, it is possible to

pre-compute them all, which leads to a much more efficient parallel circular shift

operation.

For clarity, the code listing omits the block and multiplication number offsets

which allow parallelization along the Y-direction of the thread array, and across mul-

tiple blocks, respectively. These additional offsets are simply added to the array

address in lines 10 and 11.

Listing 6.1: Multiprecision circular shift operations using W threads

1 //Inputs: double -wide wrapped operand array ’Aw’
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2 // number of bits to shift by ’s’

3 // thread’s x-coordinate , threadIdx.x

4 //Output: ’ashifted’, the shifted version of the ’Aw’ that

corresponds to threadIdx.x

5

6 int RS_temp , LS_temp , a_shifted;

7

8 int shift = s % 32;

9 int word = (s - shift) / 32;

10 RS_temp = Aw[(word + threadIdx.x) % W] >> shift;

11 LS_temp = Aw[ (word+1 + threadIdx.x) % W] << (32 - shift);

12 a_shifted = RS_temp + LS_temp;

6.4 Implementation details

The proposed algorithm was implemented in C for CUDA, using some special pro-

gramming techniques to ensure maximum performance. Loop unrolling was used to

take advantage of the fact that a number of the values in the circular shift algorithm

can be precomputed at compile time. While this has the effect of expanding the pro-

gram size, it should be recalled that instruction fetches are cached, and instruction

fetch cost is amortized across thousands of threads.

Loop unrolling proved difficult using the NVIDIA “nvcc” compiler, however: it

simply did not honour requests to unroll more than 10 loop iterations. In order to

work past this, a C program was developed to manually unroll the loop and print out

the resulting C for CUDA code, which was then inserted into the main program.

While this allowed the loop to be fully unrolled, the nvcc compiler performed

extremely poorly in assigning variables to registers. Further investigation of the re-

sulting assembly code revealed that the nvcc compiler had failed mapping its interme-

diate single-static-assignment form to individual registers. Luckily, further research

revealed that the use of the “volatile” keyword could assist the compiler is mapping
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from single-static assignment to individual registers. This allowed loop unrolling to

succeed, which resulted in over twice the operation throughput; the performance of

the loop-unrolled program is presented in section 6.5.

6.5 Testing and validation

The proposed work was tested on field sizes m = 173, 233, 281, 410, and 575. These

field sizes were chosen to allow the proposed algorithm to be compared to polynomial

basis multipliers using the popular NIST fields. Aside from the field F2233, the NIST

fields do not use type-II ONB basis, which is why the next closest field sizes where a

type-II ONB exists were used [35].

Performance testing consisted of randomly generating several million sets of input

operands and processing them with the GPU. Timing was measured using CUDA

timing API calls, and very little variation in runtime (less than 1%) was observed

between program runs using different sets of random data. The results were validated

by checking them against results generated by a publicly available ONB multiplication

program from Rosing [27] which used the same input operands.

6.6 Results and comparison

Presented in the second column of Table 6.2 are the results from Cohen and Parhi

[63], which is the only other binary field multiplication algorithm for the GPU in the

literature. In their approach they used polynomial basis, and the GPU processes a

single multiplication at a time in parallel across W threads. Note that their algo-

rithm under-utilizes the GPU’s resources for smaller field sizes; there is virtually no

difference in operation throughput between a 233 and 409 bit multiplication. The

GPU used for their work is an NVIDIA GTX 285, which is one generation behind

the GTX-480 used in the proposed implementation.
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Table 6.2: Finite field multiplication average operation throughput in 103

multiplications per second

Field Size Cohen[63] and Parhi Taverne et al. [26] Proposed

163/173 20 27,027
233 19 27,717 19,608

281/283 19 10,989
409/410 18 10,426 5,236
571/575 16 2,667

In the third column from the left is a CPU implementation carried out by Taverne

et al. [26]. They developed a heavily optimized assembly implementation of binary

field multiplication using Intel PCLMULQDQ instruction for carry-less multiplication

for the 3.325 GHz 22 nm, Intel Westmere core-i5 660 CPU. Taverne et al. also use

polynomial basis for their approach.

To the best of the author’s knowledge, Taverne et al. currently hold the record for

highest binary field multiplication operation throughput for any single device.

Finally, the proposed algorithm’s operation throughput is shown in the rightmost

column. To the best of the author’s knowledge, the proposed algorithm is currently

the fastest GPU-based binary field multiplication algorithm, and by a significant

margin. Compared to a highly optimized CPU implementation using assembly in-

structions, it is, however, between 1.4 and 2.0 times slower.

6.7 Summary

Overall, the operation throughput performance for the presented GPU implementa-

tion of a type-II optimal normal basis multiplier compares favorably with the state

of the art of other GPU binary multiplication implementations. The optimal normal

basis’ carry-less multiplication properties do lend themselves well to a bit-sliced GPU

implementation, however this approach is not able to compete with highly optimized

CPU programs that employ Intel’s carry-less multiplication instruction.
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Further research in this area may prove fruitful; the more recent NVidia Ke-

pler GPU architecture nearly doubles the peak theoretical logic and shift instruction

throughput compared to previous generations, and this may prove a serious con-

tender to the state of the art CPU implementation. This work could be extended to

use GNB, so that any of the NIST fields can be used, further extending its utility.

Bypassing the nvcc compiler and re-writing the unrolled main loop in assembly may

also allow better use of GPU resources.
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High-Throughput NIST Prime Field Multiplication for GPU

7.1 Introduction

The previous chapter implemented a type-II ONB multiplication algorithm for the

GPU. Although this algorithm could take advantage of the GPU’s parallel compu-

tation capabilities, it was unable to surpass the state of the art desktop CPU im-

plementation. Moving forward, a closer examination of the GPU’s strengths steered

research towards elliptic curve cryptography over prime fields, which relies heavily on

integer multiplication.

As shown in Table 7.1, the GPU’s floating point multiplication operation through-

put is equivalent to most logical operation throughput, and it is actually double the

throughput of a shift operation. Integer multiplication is also quite efficient, with a

throughput of 16 operations per clock cycle, per SM.

Due to the GPU’s high integer arithmetic performance, it is an excellent candidate

for prime field multiplication, which is simply multiplication modulo a prime number.
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Table 7.1: Instruction throughput in operations per clock cycle per SM for the
Fermi GTX-480

Type Operation
Operations per
clock per SM

Integer
Addition 32

Multiplication 16

Floating Point
Addition 32

Multiplication 32

Logic

AND 32
OR 32

XOR 32
Shift 16

This chapter presents a high performance prime field multiplication algorithm in the

GPU’s low-level virtual machine language, PTX. The proposed algorithm carries out

finite field multiplication over the NIST prime fields of size 192, 224, 256 and 384

bits, which are employed in a number of standards [35], as described in Chapter 2.

This chapter begins in section 7.2 with a review of the state of the art of GPU-

based prime field multiplication. A detailed presentation of the proposed high oper-

ation throughput NIST field multiplication algorithm is provided in section 7.3, and

implementation details are provided in section 7.4. Results and comparison to the

state of the art are given in section 7.5, while concluding remarks are provided in

section 7.7.

7.2 History of prime field multiplication for the

GPU, and the state of the art

Research in the area of GPU implementation of prime field arithmetic is a new and

very active area. The first works attempting GPU-based prime field multiplication

were published in 2007; Fleissner [64] developed a parallel Montgomery multiplication

for the GPU and Moss et al. [65] used the residue number system (RNS [66]) to
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parallelize multiplication across multiple threads. Note that at this time, GPUs did

not support general purpose computing, and a tool chain for GPU programming was

not available, requiring the data to be manipulated as texture data –an inefficient

process.

In 2008, Szerwinski and Güneysu were first to use a proper toolchain to develop

prime field multiplication [67]. Their implementation used the residue number system

(RNS) to parallelize a multi-precision multiplication across multiple threads. In 2009,

Giorgi et al. [68] experimented with the use of different memory spaces on the GPU in

order to carry out prime field multiplication with the finely-integrated operand scan-

ning (FIOS) method of the Montgomery multiplication algorithm; they determined

that, as expected, multiplication is faster when all the operands can reside in registers.

Also in 2009, Harrison and Waldron [69] use Montgomery multiplication with a serial

approach: every thread computes a single multiplication, which increases the amount

of time required per thread, although bulk operation throughput is greatly enhanced

as all inter-thread communication is eliminated along with expensive synchronization

operations.

Another pair of publications were released in 2011. Antao et al. [70] improve on

the RNS approach, and apply their work to elliptic curve and RSA cryptography. In

[71], Neves and Arauji perform a comparison of different Montgomery multiplication

implementations on the GPU, and determine that the FIOS arrangement works best.

Finally, in 2012, Henry and Goldberg develop a coarsely-integrated operand scan-

ning (CIOS) implementation of the Montgomery multiplication algorithm which takes

advantage of in-line PTX code for multi-precision addition and subtraction [72].
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7.3 Proposed algorithm

The goal of the proposed algorithm is to compute NIST prime field multiplication on

the GPU with the highest possible operation throughput. This work is guided by the

following principles:

1. Global (RAM) memory accesses are the most expensive operations; these must

be limited

2. Idled threads must be kept to a minimum: program branching as a result of

conditional statements, reduction networks, and thread synchronization events

should be reduced or eliminated

3. The GPU is not efficient unless it carries out a large volume of computations

4. The very high ratio of ALUs and registers to cache memory is atypical when

compared to CPUs; algorithms which focus on reducing the number of multipli-

cation instructions while increasing memory accesses, idled threads, or addition

operations are now much more expensive

The proposed algorithm has two main stages: (schoolbook) multiplication, fol-

lowed by reduction. Due to this work’s interest in the NIST prime fields, reduction

is easily computed by exploiting the special form of the NIST prime numbers, as will

be shown in a subsequent section.

7.3.1 Proposed thread layout

In the proposed algorithm, every individual thread processes a single modular mul-

tiplication operation start-to-finish, which was first proposed by [69]. While this

increases the amount of time taken per thread, the elimination of any inter-thread

communication allows each thread to process a result without interruption; as such,

each block instantiates a one-dimensional array of threads. While this thread layout
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will allow the maximum number of threads per SM to be used (1536), care must

be taken to minimize the number of registers and amount of cache used per thread:

if there are not enough hardware resources to simultaneously process 1536 threads,

the compiler will force smaller, less optimal, thread blocks to be used. In order to

maximize the number of simultaneous threads, the multiplication stage must make

careful use of registers and cache.

7.3.2 Multiplication stage

A block diagram of the multiplication stage of the proposed algorithm is shown in

Figure 7.1, and its associating pseudo-code is shown in algorithm 7.1. Before the

algorithm begins execution, the multiplicand’s words are loaded into cache memory

(Acache). Once this is complete, the algorithm begins its main loop shown on line 2,

which loads the words of the multiplier (B) from GPU RAM into register %b tmp.

The GTX-480 does not possess an instruction that produces the 64-bit result of a 32-

bit × 32-bit multiplication, however it does have instructions to separately generate

the high-order and low-order 32-bits of the result.

These instructions are used across two passes, which are shown in the for loops

on lines 3 and 12, which compute the high and low order result of the 32-bit × 32-

bit multiplication, respectively; these two for loops correspond to the “lo” and “hi”

blocks in Figure 7.1.

RAM accesses are minimized by storing the A-operand in cache, and register use

is minimized by carefully recycling registers after each iteration of the outer loop

on line 2. This is done by storing the lower words of the result to RAM when

they are no longer needed (line 8, and recycling its register for the current highest

word. The register recycling process carried out on lines 6 and 15 of algorithm 7.1,

where the register that the result is saved to is chosen as %ti mod W and %ti+1 mod W ,

respectively. In effect, this “slides” a window of registers from the right to the left
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Algorithm 7.1: Proposed algorithm for the multiplication stage

input : W-word wide operand arrays A and B
output: Upper result of multiplication in registers %t0 to %tW−1; lower half of

result in C[0] to C[W − 1]

// Note: %x denotes a register

// Assume A operands have already been loaded to cache (Acache)

1 for i← 0 to W − 1 do
2 %btmp ← B[i]RAM

3 for j ← 0 to W − 1 do
4 %atmp ← A[j]cache
5 %r ← mul.lo(%atmp,%btmp)
6 %ti mod W ← add with carry(%r,%tx)
7 if j == 0 then
8 C[i]RAM ← %ti mod W

9 end

10 end
11 if j 6= W − 1 then
12 for j ← 0 to W − 1 do
13 %atmp ← A[j]cache
14 %r ← mul.hi(%atmp,%btmp)
15 %ti+1 mod W ← add with carry(%r,%tx)

16 end

17 end

18 end

as the multiplication algorithm proceeds through its iterations, as shown in the block

diagram.

When the multiplication algorithm is complete, the result’s upper W words will

be stored in the %t registers, and the lower-order words will be saved to RAM in

the C array. The multiplication stage has been very carefully designed to use the

least amount of cache and registers possible. The total number of registers needed is

W+3, and the number of cache storage locations is only W words. By efficiently using

such a small number of registers, a very large number of multiplications are carried

out simultaneously across many threads and many blocks, saturating the GPU’s ALU

resources. Specifically, with many threads working on the GPU simultaneously, cache

and RAM accesses are more effectively hidden with the help of the GPU’s deep
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Figure 7.1: The proposed multiplication algorithm. Each thread serially processes
this algorithm; generating the upper and lower bits of the partial products,

accumulating them, and storing the results to memory as required. As results are
stored to memory, the lower-bit accumulator registers are used for higher-bit partial

product storage, as denoted by the sliding window.

pipelines.

7.3.3 Memory layout and access patterns

Each thread loads its operands serially, and saves interim results to accumulator

registers and cache memory as it runs. RAM and cache access patterns were carefully

designed to ensure contiguous accesses; as shown in Figure 7.2, operands are stored

such that consecutive threads accessing the same limb of a W-word operand access

consecutive locations. This is as opposed to having limbs from a single thread occupy

consecutive memory locations, which will give rise to memory bank conflicts and
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serialized memory accesses [6].

Threads

Blocks

W - Words

Block 1,

Thread 0,

Word 0

Operand for thread 1, Block 1

Figure 7.2: Memory configuration: consecutive threads loading the same limb of the
multi-word operands access consecutive memory locations.

7.3.4 Reduction stage

Once the 2W-wide result of the multiplication is available in the accumulator registers

and GPU RAM, the reduction operation begins. The typical method for NIST prime

reduction outlined in [34] is used. This approach takes advantage of the fact that

NIST primes are expressed as the sum of a small number of powers of two to quickly

reduce the double-wide result without the need for any multiplication operations. For

example, the reduction algorithm for the NIST prime p192 = 2192 − 264 − 1 is shown

in algorithm 7.2; note that this is a reproduction from [34].

Algorithm 7.2: NIST reduction for p192 [35]

input : An integer c = (c5, c4, c3, c2, c1, c0) in base 264 with 0 ≤ c < p2192
output: c mod p192

1 Define 192-bit integers:
2 s1 = (c2, c1, c0), s2 = (0, c3, c3), s3 = (c4, c4, 0), s4 = (c5, c5, c5)
3 Return (s1 + s2 + s3 + s4 mod p192)

All of the NIST reduction algorithms only use addition, subtraction, and shifting,

and can be computed in relatively few steps. The reduction algorithm for each of
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the NIST primes is different, however, which requires them to be written individually

and by-hand.

7.4 Implementation details

It was imperative that the proposed NIST prime field multiplication algorithm be

implemented using NVIDIA’s PTX low-level virtual machine language for several

reasons. First, the C for CUDA API does not provide access to a number of the

GPU’s intrinsic instructions required for the proposed algorithm, such as add-with-

carry, and multiply.hi / multiply.lo. Although it would be possible to simply in-line

these instructions as needed, this approach does not give a strong measure of control

over the device’s register use. Furthermore, as learned in Chapter 6, the nvcc compiler

does not intelligently map registers from its single-static-assignment intermediate code

to machine code when unrolling a large amount of code, which is the case here.

The result of these constraints required that the proposed algorithm be written

completely in the PTX language. In order to assist in this process, a tool in the

C language was developed to automatically generate the the required code for the

multiplication part of the proposed algorithm, while the reduction operation was

written by hand for the different field sizes.

7.5 Verification and testing

The proposed algorithm was confirmed to be functioning correctly by using the popu-

lar ‘GMP’ (The GNU Multiple Precision Arithmetic Library) [73] software package to

generate sets of approximately 10 million random input operands, which were copied

to and processed by the GPU. Once complete, the data was copied back from the GPU

to the host, and results were compared against a set of ‘golden’ results generated by

passing the same operands through the GMP modular multiplication function. Every
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multiplication result was fully verified against the results from the GMP package.

NVIDIA’s ‘Compute Visual Profiler’ tool was used to determine the kernel’s run-

time; this value was then divided by the total number of multiplications carried out

during that interval to arrive at an average time per multiplication.

7.6 Results and Comparison

Shown in Table 7.2 are the different instruction types, and the number of times each

thread executed them to perform a single multiplication operation. These data were

obtained by using the NVIDIA CUDA object dump tool to extract the machine

instructions executed by the GPU. As shown in the table, the number of integer ad-

dition and multiplication instructions increases significantly as the field size increases,

while the number of global memory accesses are kept to a minimum. Cache memory

accesses increase as well; this is certainly desirable compared to a greater number of

RAM transactions.

Table 7.2: Operation counts for the proposed algorithm

Field Add. and
Mult.

Cache Mem. RAM Mem.
Size Sub. Loads Stores Loads Stores

192 88 61 76 22 18 12
224 135 85 99 22 21 14
256 225 113 172 68 24 16
384 425 265 358 106 36 24

Finite field multiplication operation throughput results for several algorithms in

the literature are shown in Table 7.3. Values shown are measured operation through-

put in millions of multiplications per second. In the second column from the left are

results from the Intel “Integrated Performance Primitives” functions, running on a

3.0 GHz Intel q9650 CPU; these values are used as a performance baseline. Note that

the simple test program which performed these measurements was created for this

work.
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In the third column from the left the FIOS Montgomery multiplication algorithm

from Giorgi et al. , which attempts to fit all operands in registers. Facilitating this

approach is the fact that the older 9800 GX2 GPU used for their work allowed a

large number of registers per thread: a maximum of 128 vs. 63 for the GTX-480

used for the proposed algorithm. It is important to remark that the Montgomery

multiplication algorithm employed by these authors will allow any prime field to be

used, whereas the proposed is limited to fields over the NIST polynomials, where

reduction is especially easy to compute.

Code for Henry and Goldberg’s work was made publicly available, and it was

possible to run their work on the GTX-480 GPU used for the proposed algorithm,

in order to obtain a direct and fair comparison. Results of their work are shown in

the second column from the right in Table 7.3. Their work is quite recent, and was

independently carried out at the same time as the work is this dissertation.

Interestingly, both the proposed algorithm and Henry & Goldberg’s utilize custom

PTX code for the multiplication function in order to bypass the nvcc compiler’s

limitations. Differing from the work of Giorgi et al., Henry and Goldberg chose to

implement a CIOS Montgomery multiplication algorithm, which, again, enables this

design to be used for any prime field multiplication. One limitation of this work is

that is shared with the proposed is that the field prime must be fixed for all threads.

Compared to the next best GPU-based finite field multiplication algorithm, the

proposed work boasts 1.4 to 1.6 times greater operation throughput, while it is 58.6

to 93.0 times faster than the CPU implementation running Intel’s algorithm. To the

best of the author’s knowledge, the proposed algorithm has the highest NIST field

operation throughput in the literature.
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Table 7.3: Comparison of operation throughput for different algorithms and field
sizes in 106mults./s

Field Size Intel
Giorgi[68] Henry[72] Proposed

Improvement vs.
Size IPP [74] Henry

192 19 30 1000 1471 1.47×
224 13 18 781 1235 1.58×
256 14 12 625 847 1.36×
384 8 4 301 478 1.59×

7.7 Summary

A new algorithm for computing modular multiplication over the NIST prime fields on

a GPU was presented. The algorithm was implemented entirely in PTX assembly, and

validated against the results generated by a popular multi-precision software package.

Compared to the next-fastest GPU-based algorithm, the approached proposed here

boasts between 1.36 and 1.59 times higher operation throughput, depending on the

field size. Compared to the Intel IPP running on a CPU, the proposed algorithm has

58.6 to 93.0 times higher operation throughput. To the best of the author’s knowledge,

the proposed algorithm boasts the highest NIST prime field multiplication operation

throughput in the literature.
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A Complete Prime Field Arithmetic Library for the GPU

8.1 Introduction

In this chapter, a complete finite field arithmetic library for the GPU is developed.

The proposed library includes addition, subtraction, multiplication, multiplication by

a constant, squaring, and inversion.

The NIST-prime field multiplication algorithm presented in Chapter 7 is replaced

with a Montgomery multiplication algorithm that allows any prime field to be used

(rather than the special NIST primes), while improving performance. The proposed

Montgomery multiplication algorithm outperforms the state-of-the-art CPU and GPU

implementations in the literature, and its performance is comparable to the fastest

reported FPGA design. If operation throughput per dollar is considered as a metric,

the proposed design has the highest performance compared to any other device.

The resulting finite field arithmetic library is suitable for carrying out elliptic

curve scalar point multiplication.
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The rest of this chapter is organized as follows: Section 8.2 discusses improve-

ments to the multiplication stage, and section 8.3 discusses reduction techniques. In

section 8.4, a GPU-based Montgomery multiplication algorithm is proposed and an-

alyzed. Following that, section 8.5 presents the addition, subtraction, and squaring

algorithms used in the proposed finite field library, and section 8.6 proposes a GPU-

based inversion algorithm. Finally, section 8.7 presents the operation throughput

performance results of the proposed library and compares to the state of the art,

while section 8.8 summarizes the chapter.

8.2 Improving multiplication

The major goal of this section is to improve the prime field multiplication operation

throughput. Using the NIST-field multiplication algorithm presented in Chapter 7

as a starting point, it is possible to analyze the number of arithmetic instructions

as well as RAM and cache transactions per multiplication in order to determine the

performance bottleneck; these are shown in Table 8.1.

Table 8.1: Compute time, ALU Instruction count, RAM, and cache transactions per
multiplication, the NIST prime field multiplication algorithm

Field Average RAM Cache ALU
Size (ns/mult.) bytes/mult. bytes/mult. Instr./mult.

192 0.68 120 392 210
224 0.81 140 484 305
256 1.18 160 960 451
384 2.09 240 1856 955

In order to determine the bottleneck, the obtained instruction throughput for

memory accesses and computations must be compared to the maximum theoretical

values. The maximum RAM bandwidth for the GTX-480 has been published by

NVIDIA, and it is 177.4 × 109 bytes/s. Note that 177.4 × 109 differs from 177.4

GB, which is 177.4 × 230 bytes. Considering a single addition instruction as a unit
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of computation, the GTX-480 can perform 1400 × 106 cycles
s
× 32operations

SM
× 15 SMs

GPU
=

672×109 operations per second. Finally, the L1 cache bandwidth can be calculated as

4bytes
bank
× 7 · 108 cycles

s
× 32banks

SM
× 15 SM

GPU
= 1.344× 1012 bytes per second [6]. With these

quantities known, the fraction of theoretical RAM, Cache, and computation through-

put used by the NIST prime field multiplication algorithm have been determined, as

shown in Table 8.2.

Table 8.2: RAM, cache, and operation throughput for NIST field multiplication

Operation Throughput Percent of Maximum (%)
Field RAM Cache Compute

RAM Cache ALU
Size 109 bytes/s 109 bytes/s 109 Instr./s

192 177 576 309 99.4 42.9 45.6
224 173 598 377 97.4 44.6 56.0
256 136 814 382 76.4 60.5 56.9
384 115 888 457 64.7 66.0 68.0

As indicated in the third column from the right in Table 8.2, the performance of

smaller field sizes is completely bound by RAM bandwidth, and it is impossible to

further improve performance without reducing the number of RAM transactions per

operation.

For larger field sizes, the limiting factor is the burst memory-access pattern em-

ployed by the algorithm: although the average RAM bandwidth is not completely

saturated, the majority of the memory accesses occur all at once, causing stalls. Thus,

for all field sizes, improving multiplication will require reducing the number of RAM

accesses, improving the temporal access pattern, or both. The most straight-forward

solution is to use fewer active threads per SM, which would allow more registers and

cache per thread, reducing RAM accesses. Taken too far, however, there will not be

enough threads to fill the SM pipeline, causing stalls. It is now clear that there is

an ideal number of threads per SM vs. resources per thread, finding it will yield the

most efficient multiplication algorithm
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8.2.1 Threads per SM vs. resources per thread

The multiplication stage of the NIST algorithm was designed to maximize the number

of threads per SM, and had to be re-written to allow the threads per SM, registers

per thread, and cache per thread to be adjustable, compile-time parameters. Fol-

lowing this, an experiment was conducted where the number of threads per SM was

varied from 32 to 1536 in increments of 32 (one warp), and the multiplication algo-

rithm recompiled each time to make optimal use of the available register and cache

resources per thread. For comparison, a second multiplication algorithm was created

without using any cache at all, in order to study the effect of the user-controlled

cache. This experiment repeated for operand sizes of 112, 128, 160, 192, 224, 256,

320, 384, 512, and 521 bits, to correspond with the field sizes of interest in elliptic

curve cryptography.

Shown in Figure 8.1 is an example that the effect of varying threads per SM

vs. resources per thread has on the 384-bit multiplication algorithm’s operation

throughput. Before the analysis proceeds, an important remark is that in the topmost

plot, it appears that the memory use is exceeding 100% for the interval between 1312

and 1536. After some experimentation, it was determined that this was caused by the

RAM’s L2 cache, which could in certain cases boost the effective RAM throughput

by up to 10%.

Proceeding from left-to-right, it is shown that when a very small number of threads

per SM is used (32-64), the SM pipeline is not full and stalls occur, which limits

operation throughput.

As the number of threads is increased gradually, operation throughput, RAM

transactions, and ALU operations all increase dramatically, achieving peak perfor-

mance between as few as 96 to 384 threads per SM. Note that at 384 threads per SM,

there is virtually no difference in performance between the multiplication algorithm

which uses cache and the one that does not. This is because there are still enough

99



CHAPTER 8. A Complete Prime Field Arithmetic Library for the GPU

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2
%

 m
a
x

R
A

M
 /
 c

a
c
h
e

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

%
 m

a
x

A
L
U

200 400 600 800 1000 1200 1400
0

1

2

3

4

5
x 10

8

Threads per SM

M
u
lt
. 
p
e
r

s
e
c
o
n
d

Without Cache

With Cache

A

Cache Use

Figure 8.1: Memory transaction, ALU utilization, and multiplication operation
throughput vs. threads per SM for 384-bit multiplication

registers available to house the operand and accumulator words, and cache is not

actually being used. This remains the case until 1152 threads (marked point A on

the Figure), where the multiplication algorithm without cache must resort to storing

its operands in RAM, and the algorithm with cache uses that instead, as shown in the

top-most plot of Figure 8.1. Multiplication operation throughput for the cache-less

algorithm drops dramatically, while the cache-algorithm remains steady.

As demonstrated, integrated cache into the multiplication algorithm allows a

greater number of threads per SM to be used, however peak performance may actually
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occur with far fewer threads per SM.

Finally, it should be noted that the point A where cache begins to be used in

Figure 8.1 is different as the multiplication algorithm’s operand size changes. In the

case of larger field sizes, A may occur earlier on, with fewer threads. For smaller

operands, cache may not ever need to be used, because the operands easily fit in

registers. In either case, this raises the question: what role does cache play in terms

of peak operation throughput across all thread configurations, and is it worth the

additional programming difficulty?

8.2.2 Cache vs. cache-less multiplication algorithms

In order to determine the utility of integrating cache with the multiplication algo-

rithm, the peak multiplication operation throughput for different operand sizes was

measured and tabulated for cache and cache-less multiplication. Shown in Table 8.3

are the complete results of the experiment: the multiplication algorithms’ maximum

operation throughput for each operand size were measured. The rightmost column

of Table 8.3 shows the percentage improvement of using the cached vs. cache-less

algorithms; in all cases the improvement is marginal. Given the added difficulty of

integrating cache management into the multiplication algorithm, a 2% to 5% increase

is not a significant enough of a performance gain to warrant this approach.

8.2.3 Asymptotically fast multiplication

The multiplication algorithm employed thus far has been the standard schoolbook

method, where the number of multiplication instructions scaling with complexity

O(m2). Other multiplication methods exist with sub-O(m2) complexity, such as

Karatsuba-Ofman multiplication [75] with complexity O(mlog2 3), and Schönhage-

Strassen multiplication [76] with complexity O(m log(m) log(log(m))). These algo-

rithms are referred to as asymptotically fast multiplication, because they possess
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Table 8.3: Multiplication cost in ns, with and without cache management

Operand
Multiplication

Multiplication
Improvement (%)

Size w/ cache

112 0.52 0.50 3.8
128 0.54 0.52 3.7
160 0.66 0.63 4.5
192 0.77 0.75 2.6
224 0.90 0.87 3.3
256 1.03 1.01 1.9
320 1.44 1.40 2.8
384 2.10 2.05 2.4
512 4.19 4.11 1.9
521 4.88 4.65 4.7

significant overhead cost, and only become useful for very large operand sizes.

Karatsuba multiplication has the least overhead, and its suitability for GPU im-

plementation is examined first; it is carried out as follows:

For m = 2l, A = a12
l + a0, and B = b12

l + b0 the product A ·B can be written as:

A ·B = (a12
l + a0)(b12

l + b0) (8.1)

= a12
lb12

l + a0b12
l + a1b02

l + a0b0 (8.2)

= a1b12
2l + (a0b1 + a1b0)2

l + a0b0 (8.3)

= a1b12
2l + [(a0 + a1)(b0 + b1)− a1b1 − a0b0]2l + a0b0 (8.4)

Using this divide and conquer strategy replaces an m-wide multiplication with three

m
2

-bit multiplications (a1b1, (a0 + a1)(b0 + b1), and a0b0), two m
2

-bit additions, and a

total of three m-bit wide addition and two m-bit wide subtractions. This algorithm

can be applied recursively to each of a0, a1, b0, b1, (a0 +a1), and (b0 + b1), however this

will require additional storage for intermediate results.

It is of interest to determine if the advantages afforded by Karatsuba multiplication

outweigh its overhead on the GTX-480 GPU for operand sizes that are of interest in

elliptic curve cryptography. Beginning with one of the largest field size of interest, 512
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bits, the Karatsuba multiplication cost can be estimated by examining the 256-bit

addition, subtraction, and multiplication costs, as shown in Table 8.4.

Table 8.4: Multi-word addition, subtraction, and multiplication costs in ns

Field Size Addition Subtraction Multiplication

112 0.45 0.44 0.52
128 0.44 0.44 0.54
160 0.52 0.52 0.66
192 0.60 0.60 0.77
224 0.69 0.68 0.90
256 0.77 0.77 1.03
320 0.93 0.92 1.44
384 1.09 1.06 2.10
512 1.41 1.41 4.19
521 1.50 1.51 4.88

The minimum cost of a Karatsuba step (which assumes no additional overhead

stemming from memory storage and address pointer calculation) is three 256-bit

multiplications, two 256-bit additions, three 512-bit additions, and three 512-bit sub-

tractions: 3 · 1.03 + 2 · 0.77 + 3 · 1.41 + 2 · 1.41 = 12.45ns which is significantly greater

than a single 512-bit multiplication, which costs 4.88ns.

Given this result, it can be concluded that Karatsuba multiplication, and asymp-

totically fast algorithms with even greater overhead, are not well suited for the

operand sizes needed while using this GPU architecture.

8.3 Improving reduction

As shown in Chapter 7, the NIST fields allow very efficient reduction, requiring only

multi-precision addition and subtraction operations. This imposes some significant

limitations: it is unlikely that a randomly chosen prime number will allow for such

an efficient reduction, and indeed certain standards such as the Brainpool curves

do not possess this property [40]. Additionally, hand-coding is required for each of

the NIST fields, which may increase the cost of maintaining and testing code. This
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section presents work which enables arbitrary field primes to be used for the proposed

GPU-based prime field multiplication algorithm.

8.3.1 Montgomery reduction

Montgomery reduction [77] is the finite field reduction algorithm published in 1985 by

Montgomery which is employed almost ubiquitously in both hardware and software

implementations; the significance of Montgomery reduction in public key cryptog-

raphy is likened to the importance of the fast Fourier transform in digital signal

processing.

Review of Montgomery reduction

In essence, Montgomery reduction is an efficient way of computing TR−1 mod p. The

key step is shown on line 6 of algorithm 8.1 [78], where division by bW is carried out.

With b set to the machine word size, 232 in this case, division is performed as a 32-bit

right-shift operation, which is much less expensive than a trial division.

Algorithm 8.1: The Montgomery reduction algorithm [77]

input : integers p = (pW−1, . . . p1, p0)b, with gcd(p, b) = 1, R = bW ,
p′ = −p−1 mod b, and T = (t2W−1, . . . , t1, t0)b < pR

output: TR−1 mod p

1 A← T , with A = (a2W−1, . . . , a1, a0)
2 for i← 0 to W − 1 do
3 ui ← aip

′ mod b
4 A← A+ uipb

i

5 end
6 A← A/bW

7 if A ≥ p then A← A− p
8 return A

It is possible to compute c = ab mod p for using Montgomery reduction as follows:

First, convert operands a and b to Montgomery form, ā = aR mod p and b̄ =

bR mod p, and T can be computed as T = ā× b̄ = abR2. This can be followed with a
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Montgomery reduction step, producing: TR−1 mod p = abR2R−1 mod p = āb̄R mod p

With an efficient way to determine TR−1 mod p, it is possible to TR−1 mod p, which

is equivalent to c̄ = āb̄ = cR mod p. Finally, c̄ must be converted back to non-

Montgomery form by finding c = c̄R−1 mod p.

Conversion to Montgomery form can be performed by using Montgomery reduc-

tion with T = aR2, and conversion to original form can be performed using Mont-

gomery reduction with T = ā.

8.3.2 Other reduction techniques

Barrett reduction [79], and modified Barrett reduction [80] are other techniques used

for modular reduction. Although their use was considered, Barrett reduction requires

more multiplication steps than Montgomery [81], and the modified Barrett incorpo-

rates Karatsuba multiplication into the algorithm, which has already been shown to

be more expensive than schoolbook multiplication in section 8.2.3.

8.4 Montgomery multiplication

The Montgomery reduction algorithm can be integrated directly with multiplication,

to allow for āb̄R−1 mod p to be directly computed for two operands ā and b̄.

A variety of implementations exist [82], which employ different strategies for per-

forming the multiplication; for example, it is possible to separately compute the mul-

tiplication, and then perform the reduction (serparted operand scanning, or SOS), or

alternatively reduction can follow after every iteration of the multiplication’s inner

loop, a technique known as coarsely integrated operand scanning (CIOS).

For the proposed GPU-based multiplication algorithm, it would be advantageous

to use the fewest registers possible, rather than require more RAM accesses which

were shown to form the bottleneck of the NIST finite field multiplication algorithm
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presented in Chapter 7. Of the techniques surveyed by Koç et al., the CIOS method

requires the least amount of temporary storage with only W + 2 memory locations.

8.4.1 Proposed implementation for the Montgomery multi-

plication algorithm

The proposed Montgomery multiplication algorithm inherits the memory and com-

pute grid layouts from the NIST-fields algorithm proposed in Chapter 7. Also similar

to the NIST algorithm, the algorithm Montgomery multiplication algorithm is im-

plemented in NVIDIA’s PTX low-level virtual machine language. Rather than code

by hand, the PTX code is generated using parameterized C code, which allows the

‘active threads vs. resource per thread’ space to be easily explored as described in

section 8.2.1.

The proposed GPU-implementation of the Montgomery multiplication algorithm

closely follows the CIOS algorithm presented by Koç et al. [82], whose pseudocode is

reproduced below:

Listing 8.1: CIOS implementation of the Montgomery multiplication algorithm

1

2 for i=0 to W-1

3 {

4 C = 0

5

6 //Multiplication loop

7 for j=0 to W-1

8 {

9 (C,S) = t[j] + a[j]*b[i] + C

10 t[j] = S

11 }

12 (C,S) = t[W] + C

13 t[W] = S

14 t[W+1] = C

15

16 C = 0

17 m = t[0]*p’[0] mod W 

18 (C,S) = t[0] + m*p[0]
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19

20 // Reduction loop

21 for j=1 to W-1

22 {

23 (C,S) = t[j] + m*p[j] + C

24 t[j-1] = S

25 }

26 (C,S) = t[W] + C

27 t[W-1] = S

28 t[W] = t[W+1] + C

29 }

A number of implementation-specific optimizations have been carried out to im-

prove the proposed algorithm’s performance. First, all loops have been completely

unrolled. While this increases the code size somewhat, it eliminates a large amount of

computation. For example, rather than store the field prime in RAM it embedded in

the program in the form of immediate operands, eliminating the retrieval of p′[0], p[0],

and p[j] on lines 17, 18, and 23 in code listing 8.1. Another major optimization is that

where possible, separate multiplication and addition operations have been replaced

with a combined multiply-accumulate instructions.

Results and comparison to NIST multiplication

Shown in Table 8.5 is a comparison of the NIST multiplication algorithm from Chapter

7, and the Montgomery multiplication algorithm proposed here.

For the Montgomery multiplication algorithm, a number of runs were performed,

varying the number of threads per SM from 32 to 1536 in increments of 32, as shown

in section 8.2.1 The cuobjdump binary dump tool was used to obtain an instruction

count, and determine the memory and ALU utilization, and the NVIDIA CUDA

API’s function calls were used to obtain timing information for each run. Note that

as with the NIST multiplication data, only the multiplication operation is timed, and

does not include host-to-GPU RAM transfers. This is acceptable because the intended

application, elliptic curve scalar point multiplication, this initial host-to-GPU transfer
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cost will be amortized over a very large number of finite field multiplications. Each

run consisted of multiplying together several million results, and validating them

against the GMP modular multiplication functions [73]. Each of the data in Table

8.5 are from the run with the highest measured operation throughput.

Table 8.5: Comparison of proposed GPU-based NIST and Montgomery
multiplication algorithms

Field % Max. Memory Use % Max. ALU 106 mult. / s
Size NIST Cache NIST RAM Mont. RAM NIST Mont. NIST Mont.

192 42.9 99.4 77.0 45.6 80.5 1471 1563

224 56.0 97.4 69.4 56.0 87.6 1235 1282

256 56.9 76.4 62.8 56.9 87.8 847 1031

384 68.0 64.7 44.9 68.0 96.0 478 510

Compared side-by-side in Table 8.5 are the memory and ALU use, as well as the

multipliers’ bulk operation throughput rates in 106 multiplications per second.

The situation is an improvement rather than a trade-off: the unused ALU capacity

from the NIST algorithm has been applied to the Montgomery algorithm’s more

complicated reduction stage, which allows finite field multiplication with any prime,

rather than those in the special NIST forms. This conclusion is further supported

by the operation throughput of both multiplication algorithms, which actually favors

the proposed Montgomery algorithm.

Moving forward, the remaining finite field operations used in this dissertation are

based on the GPU-based CIOS Montgomery multiplication algorithm proposed here.

8.5 Finite field addition, subtraction, and squaring

With a strong finite field multiplication algorithm selected, the remaining finite field

operations must be developed in order to perform elliptic curve scalar point multipli-

cation.
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8.5.1 Addition and subtraction

Finite field addition and subtraction are implemented using simple addition and carry

chains. As with the proposed multiplication algorithm, each thread performs a single

operation. Straightforward add/sub-with-carry instructions are used, the field prime

is subtracted (or added) to the result as needed. While this introduces thread diver-

gence, it is negligible. Results of the addition and subtraction algorithms are shown

later in section 8.7.

8.5.2 Squaring

The proposed finite field squaring algorithm for the GPU is based on the Montgomery

multiplication algorithm described in section 8.4. It has been modified such that

operands a and b are the same, reducing the number of memory accesses that are

required from a minimum of 3W words to 2W . Results of the proposed squaring

algorithm are shown in section 8.7.

8.6 Modular inversion

Finite field inversion over prime fields is an operation so computationally expensive

that it is usually avoided if possible. For example, a common heuristic for estimating

the cost of finite field inversion is to multiply the cost of finite field multiplication by

80 or even 100.

This section will show that the extended Euclidean algorithm that is commonly

used to carry out inversion for prime fields is particularly ill-suited for GPU implemen-

tation. In its place, a normally more costly approach based on Fermat’s little theorem

is employed. Although the proposed inversion algorithm is still quite costly compared

to multiplication, it is competitive with state-of-the-art CPU implementations.
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8.6.1 The binary inversion algorithm

The binary inversion algorithm (8.2), is based on the extended Euclidean algorithm,

which is for finding the greatest common divisor of two integers. Note that this

algorithm employs an abundance of branch operations: the algorithm’s main while

loop on line 3 depends on the values u and v to control its continued execution.

Meanwhile, there are two nested while loops contained inside the main on lines 4

and 9, and each of these contain if statements, inducing further branching.

While none of these branch constructs present an issue for serial processors, this

is a major stumbling block for the GPU implementation: since threads are processed

in batches (warps) of 32, if a single thread diverges the remaining ones are stalled. As

shown in algorithm 8.2, the branching and while loops all depend on the operands,

and if 32 are processed at a time, there will almost certainly be a large number of

divergent threads, which is further compounded by the multiple levels of branching

present in this algorithm.

A GPU implementation was attempted, and results were extremely poor; the cost

of a single inversion operation was over 10,000 times greater than a multiplication.

With such a high expense, it would be far more economical to perform inversion

on a CPU than the GPU. Luckily, another inversion technique exists that, while still

expensive, is far more amenable to GPU implementations.

8.6.2 Proposed GPU finite field inversion algorithm

A theorem known as “Fermat’s little theorem” is shown in Equation 8.5, for p prime,

and a ∈ [1, p− 1]:

ap ≡ a mod p (8.5)
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Algorithm 8.2: The binary inversion algorithm for fields Fp [34]

input : Prime p and a ∈ [1, p− 1]
output: a−1 mod p

1 u← a, v ← p
2 x1 ← 1, x2 ← 0
3 while u 6= 1 and v 6= 1 do
4 while u is even do
5 u← u/2
6 if x1 is even then x1 ← x1/2
7 else x1 ← (x1 + p)/2

8 end
9 while v is even do

10 v ← v/2
11 if x2 is even then x2 ← x2/2
12 else x2 ← (x2 + p)/2

13 end
14 if u ≥ v then u← u− v, x1 ← x1 − x2
15 else v ← v − u, x2 ← x2 − x1
16 end
17 if u = 1 then return x1 mod p
18 else return x2 mod p

Thus,

ap−1 ≡ 1 mod p (8.6)

and

ap−2 ≡ a−1 mod p. (8.7)

Using Equation 8.7, it is possible to compute ap−2 by using a chain of multiplication

and squaring operations as shown in algorithm 8.3.

For GPU implementations, the most important aspect of inverting a field element

with the Fermat method is that all threads perform the same execution path. The

only conditional statement in algorithm 8.3 is on line 3, and it depends on the field

prime, which is common across all threads.
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Algorithm 8.3: Proposed inversion algorithm based on Fermat’s little theorem

input : m-bit wide field prime p, operand a ∈ [0, p− 1]
output: a−1 mod p

1 q ← p− 2; x← a
2 for i← 0 to m− 1 do
3 if qi = 1 then
4 x← x× a
5 end
6 x← x2

7 end
8 return x

Inversion cost

The proposed approach uses a näıve algorithm with a total cost of H(p− 2)M +mS,

where H(p − 2) is the Hamming weight of the prime p − 2, m is the number of bits

in p, and M & S are the costs of multiplication and squaring, respectively. With

inversion cost now dependent on the specific field prime, it is important to remark

that field primes with a large Hamming weight may have at most twice the cost of a

field prime with a small Hamming weight. For example with the proposed algorithm,

the most expensive field primes are Mersenne primes, which are primes of the form

2m − 1 for some m, such as the case for the NIST prime p521 = 2521 − 1.

It may be possible to improve the inversion algorithm by finding an efficient addi-

tion chain that minimizes the number of multiplications required in algorithm 8.3 by

using some intermediate storage, however such improvements are beyond the scope

of this dissertation, and are left as future work.

Implementation details

Some implementation-level optimizations are possible for this approach. For the pro-

posed inversion algorithm, multiplication and squaring were integrated into a single,

large, function. While increasing the number of registers needed to run the algo-

rithm, a large amount of function-call overhead was eliminated. Eliminating function
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calls to squaring and multiplication subroutines also reduced the number of memory

transactions that would have been required; in the CUDA PTX language the register

space is in the function scope, and passing variables to functions can only be done

through the RAM memory.

The proposed inversion algorithm does not unroll the main for loop, as this would

grow the resulting binary to several megabytes in size, while placing a great burden

on the nvcc compiler which was designed for much lighter-weight programs.

Finally, the value q = p − 2 is embedded into the program at compile time by

using a lookup table. This is done for two reasons: first, this reduces the number of

registers needed, as q is now stored in program instructions. Second, the lookup table

is small, and the program instructions are cached, ensuring fast accesses compared to

storing the table in RAM.

Results for the proposed inversion algorithm are shown in Table 8.6 in the next

section.

8.7 Results and comparison

Shown in Table 8.6 are the results of the proposed finite field arithmetic library for

GPU. They are shown in ns / operation. Results were collected using the same

procedures outlined in 8.2.1 and 8.4.1.

The least expensive operations for small field sizes are squaring and multiplication

by a constant. At first this may seem counter-intuitive: addition and subtraction

are almost always considered less costly than squaring. The reason squaring and

multiplication by a constant are less expensive is due to the fact that these are unary

operands, and and require only 2
3

of the memory transactions compared to addition

and subtraction. This effect dominates the operation costs for small field sizes. As

the operand size increases, addition and subtraction are approximately half the cost
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Table 8.6: Finite field arithmetic library operation costs in ns

Field
Add. Sub. Mult. Sqr.

Mult. by Inv. Inv.
Size Constant (Max) (Min)

112 0.41 0.41 0.42 0.35 0.34 24.55 47.11
128 0.41 0.41 0.42 0.34 0.34 28.20 54.20
160 0.49 0.48 0.52 0.47 0.45 53.56 103.76
192 0.57 0.56 0.64 0.61 0.59 89.88 175.04
224 0.63 0.64 0.78 0.78 0.75 143.51 278.82
256 0.71 0.71 0.97 0.96 0.92 211.00 408.96
320 0.86 0.85 1.42 1.41 1.36 403.41 794.24
384 1.02 1.02 1.96 1.95 1.89 697.91 1360.01
512 1.32 1.35 3.40 3.35 3.24 1624.99 3202.51
521 1.41 1.42 3.77 3.75 3.64 3634.61 7070.88

of multiplication and squaring.

Shown in the two rightmost columns are the costs for inversion with very high

and very low Hamming weight primes; as expected, heavy-weight primes have roughly

twice the cost of the low-weight ones. In either case, the cost of inversion is very high:

72 to roughly 2000 times the cost of multiplication depending on the field size and

the prime’s Hamming weight.

Unfortunately, aside from multiplication, there are a lack of published results

in the literature for other finite field operations. As such, the comparison of the

proposed work to the state-of-the-art will be limited to the GPU-based Montgomery

multiplication algorithm; the results of are shown in tables 8.7 and 8.8.

Table 8.7 compares the proposed multiplication algorithm to various CPU and

GPU implementations. In the second column from the left are the results from Giorgi

et al., which were thoroughly discussed in Chapter 7, section 7.6. In the third column

from the left is a software implementation running an a 2.5 GHz Intel Xeon E5420

CPU from Chow et al. The fourth column from the left presents results from Neves

and Araujo, which was also discussed in Chapter 7. In their work, they implemented

the FIOS, CIOS, and FIPS versions of the Montgomery multiplication algorithm on

the NVIDIA GTX-260 GPU, and found that the FIOS version worked best in their
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case, which is the result presented here.

Also previously described are the results from Henry and Goldberg, which are the

next best implementation for CPU and GPU. Their work was performed indepen-

dently, and at the same time as the proposed, and they have developed a very similar

system which also uses PTX code, Montgomery CIOS multiplication, and loop un-

rolling. The proposed algorithm is able to outperform their work by 1.24 to 1.72x

depending on the field size; this is due to the additional optimizations described in

sections 8.2.1 and 8.4.1, such as performing an exhaustive search to determine the

optimal number of threads per SM vs. registers per thread, and embedding the field

prime into the GPU kernel.

Table 8.7: Comparison of proposed GPU-based finite field multiplication algorithm
to the state of the art GPU and CPU implementations, results in 106

multiplications per second

Field Giorgi Chow Neves Henry
Proposed

Improvement
Size [68] [83] [71] [72] vs. Henry

112 1,923 2,381 1.24 ×
128 34 1,923 2,381 1.24 ×
160 45 1,351 1,923 1.42 ×
192 30 1,000 1,563 1.56 ×
224 18 781 1,282 1.64 ×
256 12 18 625 1,031 1.65 ×
320 420 704 1.68 ×
384 4 301 510 1.69 ×
512 12 21 175 294 1.68 ×
521 155 265 1.72 ×

Table 8.8: Multiplication operation throughput and multiplication operation
throughput per dollar comparison of proposed GPU-based finite field multiplication

algorithm to the state of the art FPGA implementation

Field 103 Mults. per second 103 Mults. per second per dollar
Size Chow [83] Proposed Improvement Chow [83] Proposed Improvement

128 6,400,000 2,380,952 0.37 × 655 9,524 14.55 ×
256 1,900,000 1,030,928 0.54 × 194 4,124 21.21 ×
512 400,000 294,118 0.74 × 41 1,176 28.75 ×
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In Table 8.8, the proposed work is compared to the state-of-the-art FPGA im-

plementation. In this work, Chow et al. have designed a Karatsuba multiplier for a

Xilinx Virtex 6 XC6VSX475T-2 FPGA running at 400 MHz. Worth noting here, is

that the FPGA device used for this work is significantly more expensive compared

to the GTX-480 GPU used in the proposed: $9,000 vs. $250. As such, the table

compares operation throughput, as well as operation throughput per dollar. In the

first case, the proposed design has 0.37x to 0.74x the operation throughput of the

FPGA design, while if operation throughput per dollar is considered, the proposed

design performs 14.55x to 28.75x better.

8.8 Summary

This chapter presented the results of an in-depth search of various methods and

techniques to further improve GPU-based finite field multiplication for elliptic curve

cryptography. Various asymptotically fast multiplication techniques, reduction algo-

rithms, explicit cache management techniques, and the optimization of GPU resource

utilization were explored. Through mathematical analyses and experimentation, it

was shown that:

� Schoolbook multiplication is best suited for the NVIDIA Fermi architecture and

field sizes of practical interest for elliptic curve cryptography

� While NIST reduction is fast, Montgomery multiplication can match and sur-

pass its performance on a GPU for field sizes of interest for elliptic curve cryp-

tography

� Explicit cache management only offers very modest performance gains at the

field sizes of interest for elliptic curve cryptography

� Optimizing the number of active threads per SM, and the number of registers
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per thread is crucial, offering perhaps the largest performance gains for minimal

implementation difficulty

� Finite field inversion is a very expensive operation for the GPU; further research

in this area may be beneficial

A complete finite field arithmetic library for the GPU was developed, and the

resulting work is, to the best of the author’s knowledge, faster than any other CPU

or GPU implementation in the literature: the proposed algorithm’s multiplication

operation throughput is 1.24x to 1.72x greater than the next fastest GPU implemen-

tation. Compared to the fastest FPGA implementation, the work is 0.37 to 0.74x the

speed, however if the device cost is considered, the proposed GPU solution performs

much better.

The proposed finite field arithmetic library is fully capable of implementing el-

liptic curve scalar point multiplication, enabling GPUs to accelerate elliptic curve

cryptography operations.
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Elliptic Curve Scalar Point Multiplication for the GPU

9.1 Introduction

The finite field library developed in the previous chapter is now used to create a scalar

point multiplication algorithm for the GPU.

In section 9.2 Elliptic curve point operations are carefully chosen, section 9.3 re-

views scalar point multiplication, and in section 9.4 an algorithm suitable for the

GPU’s SPMD architecture is proposed. The algorithm is tested, and a number of

performance metrics are determined, including peak operation throughput (section

9.5, minimum batch size to obtain the peak operation throughput (section 9.6), and

additional latency compared to a CPU implementation (section 9.7). In section 9.8,

the operation throughput of a CPU implementation using Intel’s IPP functions is

measured and compared to the proposed, along with the best CPU, GPU and FPGA

designs reported to date in the open literature, and section 9.9 summarizes the chap-

ter.
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9.2 Elliptic curve point addition and doubling

The point doubling and addition formulae presented in Chapter 2 require one inversion

per point addition / double. Recall from Chapter 8, section 8.7 that finite field

inversion for the GPU is prohibitively expensive, and that every effort must be taken

to avoid it.

This can be accomplished with the use of projective coordinate systems which do

not require inversion for elliptic curve point addition and subtraction. It is possible to

transform from the affine coordinate system which was used in Chapter 2 to a projec-

tive coordinate system through a change in variables [34]; for example, affine points

can be converted to use Jacobian coordinates by converting (x, y) to (X/Z2, Y/Z3, Z).

A large number of point addition and doubling formulae using different coordinate

systems have been proposed, each requiring different amounts of underlying finite field

operations. Shown in tables 9.1 and 9.2 are the point doubling and addition costs

for each of these different coordinate systems. By using the table of the finite field

arithmetic operation costs from section 8.7 in Chapter 8, elliptic curve point doubling

and addition costs can be estimated, as shown in tables 9.3 and 9.4.

Table 9.1: Elliptic curve point doubling operation costs for different coordinate
systems & formulae

ID Name Coordinates Mult. Const. Mult. Sqr. Add./Sub. Inv.

dbl-A Affine A← 2A 1 1 1 4 1
dbl-B Bernstein 2001[84] J ← 2J 3 4 5 8 0
dbl-C Hankerson [34] J ← 2J 4 3 4 5 0
dbl-D Hasegawa [85] J ← 2J 4 11 4 7 0
dbl-E Bernstein 2007 [86] J ← 2J 1 5 8 10 0
dbl-F Cohen [87] J ← 2J 3 6 6 4 0
dbl-G Hasegawa [85] J ← 2J 3 5 6 6 0
dbl-H Chudnovsky [88] J ← 2J 4 5 6 5 0
dbl-I Chudnovsky [88] J ← 2J 3 6 7 4 0
dbl-J Cohen [87] J ← 2J 3 6 7 4 0
dbl-K Bernstein 2007 [86] P ← 2P 7 5 3 5 0
dbl-L Cohen [87] P ← 2P 6 7 5 4 0
dbl-M Cohen [87] P ← 2P 7 7 6 4 0

As shown in the highlighted column in tables 9.3 and 9.4 are the lowest-cost

119



CHAPTER 9. Elliptic Curve Scalar Point Multiplication for the GPU

Table 9.2: Elliptic curve point addition operation costs for different coordinate
systems & formulae

ID Name Coordinates Mult. Const. Mult. Sqr. Add./Sub. Inv.

add-A Affine A← A+A 1 0 1 6 1
add-B Bernstein 2007 [86] J ← J +A 7 4 4 9 0
add-C Hankerson [34] J ← J +A 8 1 3 6 0
add-D Cohen [87] P ← P +A 9 1 2 6 0
add-E Cohen [87] P ← P + P 12 1 2 6 0
add-F Bernstein 2007 [86] P ← P + P 11 6 6 10 0
add-G Chudnovsky [88] P ← P + P 11 2 5 7 0
add-H Cohen [87] P ← P + P 19 1 6 6 0
add-I Bernstein 2007 [86] J ← J + J 11 4 5 9 0
add-J Cohen [87] J ← J + J 12 1 4 6 0
add-K Bernstein 2001 [84] J ← J + J 12 1 4 6 0

Table 9.3: Elliptic curve point doubling costs in ns for different coordinate systems
& formulae

Field dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl- dbl-
Size A B C D E F G H I J K L M

112 50.9 7.6 6.1 9.8 9.0 7.0 7.5 6.75 7.5 7.4 7.8 8.3 9.1
128 58.0 7.6 6.1 9.7 8.9 7.0 7.5 6.71 7.5 7.3 7.7 8.2 9.0
160 108.8 9.6 7.7 12.5 11.4 9.0 9.6 8.59 9.6 9.5 9.8 10.6 11.6
192 181.5 11.9 9.6 15.6 14.1 11.4 11.9 10.75 12.0 12.0 12.2 13.3 14.6
224 287.8 14.3 11.6 19.1 17.0 14.0 14.5 13.11 14.7 14.8 14.8 16.4 17.9
256 421.2 17.0 14.0 23.1 20.2 17.0 17.5 15.82 17.8 18.0 17.9 20.0 21.9
320 808.2 23.6 19.7 32.7 28.0 24.3 24.6 22.36 25.2 25.7 25.4 28.6 31.4
384 1387.8 31.3 26.4 44.0 37.0 33.0 33.1 30.12 34.0 34.9 34.2 38.9 42.8
512 3241.5 50.4 43.2 72.7 59.3 55.0 54.3 49.64 56.4 58.3 56.9 65.3 72.0
521 7186.8 55.8 47.9 80.8 65.7 61.3 60.4 62.72 62.7 64.9 63.1 72.7 80.1

Table 9.4: Elliptic curve point addition costs in ns for different coordinate systems
& formulae

Field add- add- add- add- add- add- add- add- add- add- add-
Size A B C D E F G H I J K

112 51.3 9.4 7.2 7.3 8.5 12.9 9.9 12.8 11.4 9.2 9.2
128 58.5 9.4 7.2 7.3 8.5 12.8 9.9 12.8 11.4 9.2 9.2
160 109.4 11.7 8.9 9.0 10.6 16.1 12.3 16.0 14.3 11.5 11.5
192 182.1 14.4 10.9 11.0 12.9 19.9 15.2 19.7 17.6 14.1 14.1
224 288.2 17.3 13.1 13.1 15.4 24.1 18.3 23.9 21.1 16.9 16.9
256 421.6 20.7 15.7 15.8 18.7 29.1 22.2 29.2 25.5 20.5 20.5
320 808.5 28.8 22.0 22.1 26.3 40.8 31.3 41.7 35.8 29.1 29.1
384 1387.9 38.3 29.4 29.5 35.4 54.8 42.1 56.7 48.0 39.2 39.2
512 3240.8 62.0 48.2 48.4 58.6 90.1 69.5 95.3 78.9 65.0 65.0
521 7185.9 68.6 53.3 53.4 64.7 99.9 77.0 105.7 87.4 72.0 72.0

coordinate system and formulae for elliptic curve point operations across all field

sizes, and both are from Hankerson et al. [34].

Doubling uses the Jacobian coordinates described earlier, and point addition uses a
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mixed Jacobian-affine coordinate system, where one of the operands is kept in affine

form. The proposed GPU implementation uses these point addition and doubling

formulae presented on page 91 and 92 of [34], and are reproduced here in algorithms

9.2 and 9.1.

Algorithm 9.1: Selected point doubling formula [34]

input : P = (X1, Y1, Z1) in Jacobian coordinates
output: 2P = (X3, Y3, Z3) in Jacobian coordinates

1 if P =∞ then return ∞
2 T1 ← Z2

1

3 T2 ← X1 − T1
4 T1 ← X1 + T1
5 T2 ← T2 · T1
6 T2 ← 3T2
7 Y3 ← 2Y1
8 Z3 ← Y3 · Z1

9 Y3 ← Y 2
3

10 T3 ← Y3 ·X1

11 Y3 ← Y 2
3

12 Y3 ← Y3/2
13 X3 ← T 2

2

14 T1 ← 2T3
15 X3 ← X3 − T1
16 T1 ← T3 −X3

17 T1 ← T1 · T2
18 Y3 ← T1 − Y3
19 return (X3, Y3, Z3)
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Algorithm 9.2: Selected point addition formula [34]

input : P = (X1, Y1, Z1) in Jacobian coordinates
Q = (x2, y2) in affine coordinates

output: P +Q = (X3, Y3, Z3) in Jacobian coordinates

1 if Q =∞ then return (X1, Y1, Z1)
2 if P =∞ then return (x2, y2, 1)
3 T1 ← Z2

1

4 T2 ← T1 · Z1

5 T1 ← T1 · x2
6 T2 ← T2 · y2
7 T1 ← T1 −X1

8 T2 ← T2 − Y1
9 if T1 = 0 then

10 if T2 = 0 then use Algorithm 9.1
11 else return ∞
12 else
13 return ∞
14 end
15 Z3 ← Z1 · T1
16 T3 ← T 2

1

17 T4 ← T3 · T1
18 T3 ← T3 ·X1

19 T1 ← 2T3
20 X3 ← T 2

2

21 X3 ← X3 − T1
22 X3 ← X3 − T4
23 T3 ← T3 −X3

24 T3 ← T3 · T2
25 T4 ← T4 · Y1
26 Y3 ← T3 − T4
27 return (X3, Y3, Z3)
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9.3 Scalar point multiplication

Recall from Chapter 2 that scalar point multiplication, for a scalar k, and points Q

& P on an elliptic curve E with group order n is defined as:

Q = kP, for Q,P ∈ E and k ∈ [0, n− 1] (9.1)

= P + P + . . . + P (k times) (9.2)

The most straightforward way to compute Q is a simple double-and-add algorithm

[89], as shown in Figure 9.3. All scalar point multiplication algorithms require elliptic

point formulae for addition and doubling, or addition and halving. The latter oper-

ation, elliptic curve point halving, is used for scalar point multiplication over binary

fields, and is outside the scope of this work.

Algorithm 9.3: Right-to-left double and add scalar point multiplication [34]

input : k = (kW−1, . . . , k1, k0), P ∈ E
output: kP

1 Q←∞
2 for i← 0 to W − 1 do
3 if ki = 1 then
4 Q← Q+ P
5 end
6 P ← 2P

7 end
8 return Q

Assuming the average Hamming weight of the m-bit wide scalar k is m
2

, the average

cost of the double-and-add algorithm is m
2
A + mD, where A is the cost of a point

addition operation, and D is the cost of point doubling.

The majority of techniques in the literature which aim to reduce the cost of

scalar point multiplication focus on reducing the average number of point addition

operations required. The most common (and successful) approach is to re-code the
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scalar k to a non-adjacent form (NAF), which is very similar to Booth encoding in

practice: the scalar k is converted from a binary form to a signed-digit representation

which reduces the average number of non-zero digits in k [34].

Unfortunately, none of these techniques may be successfully applied to the pro-

posed GPU implementation: the underlying finite field arithmetic library presented

in Chapter 8 uses one thread per operation, and threads are processed in warps of

32. If the scalar k values are assigned to NAF representation, it is unlikely that all

32 threads belonging to the same warp have the same NAF of k. The result is that

the cost of scalar point multiplication on the GPU is changed from processing one

scalar multiplication per thread, it is not possible to m
2
A + mD to m(A + D). This

is one of the fundamental problems of SPMD/SIMD architectures, which in this case

is overcome by the very fast underlying finite field arithmetic operations.

9.4 Proposed GPU-based scalar point multiplica-

tion algorithm implementation

The proposed scalar point multiplication algorithm is a straightforward implementa-

tion of algorithm 9.3, which in turn uses algorithms 9.1 and 9.2 for point doubling

and addition. As with the finite field library, the scalar point algorithm has been im-

plemented using NVIDIA’s PTX code. Point doubling and addition are implemented

using a series of function calls to the finite field library functions presented in Chapter

8, which use the same memory and thread configurations as before. The proposed

implementation uses 4 W -wide temporary storage locations for T1, T2, T3, and T4, 5

locations to store operands for X1, Y1, and Z1, x2 and y2, and finally one additional

location to store the scalar multiple k.
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9.5 Scalar point multiplication operation through-

put and comparison to CPU implementation

The proposed scalar point multiplication algorithm was tested using the same proce-

dures outlined in section 8.7 in Chapter 8, and operation throughput was measured.

All timing results include transfer time from the host machine to the GPU and vice-

versa.

Tests were run on three families of curves; the SEC curves [37], which are a su-

perset of the NIST curves, the Brainpool curves [40], which have randomly chosen

parameters a and b, and the twisted Brainpool curves, which use a = −3, and ran-

domly chosen b. Curves with a 6= 3 have a slightly more expensive point-doubling

formula, which the proposed elliptic curve scalar point multiplication algorithm uses

in such cases.

For comparison, the Intel IPP [74] library functions were also implemented and

measured. Although there are other results reported in the literature, it was not

possible to find any for the Brainpool curves, or the smaller (and now deprecated)

field sizes in the SEC curves. Comparisons to results in the literature are made where

possible in section 9.8 The Intel results are from a Dell XPS 8500, which uses all 8

logical cores of a 3.6 GHz Intel core-i7 3770 that was described in Chapter 5. The

Intel functions are heavily optimized for the SEC curves, while they possess no special

optimizations for either set of Brainpool curves.

As shown in tables 9.5, 9.6, and 9.7, the operation throughput of the proposed

GPU-based scalar point multiplication algorithm is between 5.4x and 31.1x greater

than the Intel CPU and IPP function implementation. The field with smallest im-

provement is the SEC/NIST 521 bit field. This result is not unexpected: the pro-

posed implementation enjoys the highest performance gains compared to the CPU

implementation over smaller field sizes, and the 521-bit NIST field uses a Mersenne
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prime, which allows for particularly efficient reduction. Finally, results for both sets of

Brainpool curves are roughly equivalent with respect to one another, with the twisted

Brainpool curves possessing slightly higher operation throughput, as expected.

Table 9.5: Maximum operation throughput for scalar point multiplication over the
SEC curves

Field Max CPU Max GPU
Improvement

Size Throughput (kP/s) Throughput (kP/s)
112 43,85 1,382,576 31.1
128 77,101 1,208,078 15.7
160 25,157 669,742 26.6
192 42,230 424,424 10.1
224 30,321 277,068 9.1
256 22,619 191,779 8.5
384 9,506 56,927 6.0
521 3,822 20,743 5.4

Table 9.6: Maximum operation throughput for scalar point multiplication over the
Brainpool curves

Field Max CPU Max GPU
Improvement

Size Throughput (kP/s) Throughput (kP/s)
160 24,284 647,370 26.7
192 21,035 398,674 19.0
224 14,130 255,257 18.1
256 12,425 173,269 13.9
320 7,581 89,475 11.8
384 5,325 52,413 9.8
512 2,904 22,009 7.6
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Table 9.7: Maximum operation throughput for scalar point multiplication over the
twisted Brainpool curves

Field Max CPU Max GPU
Improvement

Size Throughput (kP/s) Throughput (kP/s)
160 25,820 678,381 26.3
192 22,272 422,114 19.0
224 15,223 273,800 18.0
256 13,323 186,346 14.0
320 8,139 96,261 11.8
384 5,763 56,452 9.8
512 3,178 23,850 7.5

9.6 Operation batch size vs. operation throughput

In this section, the operation throughput vs. batch size is examined for each curve

family. The goal is to determine the number of scalar point multiplications that must

be performed by the GPU in order to obtain the operation throughput results shown

in the previous section.

Tests were carried out using the same approach as before, however this time the

total number of threads to be processed by the entire GPU was varied from 1 to

32768. Results are shown in figures 9.1, 9.2 (which is the same as the previous

Figure, except it does not show curves 112 and 128), 9.3, and 9.4. Note that all

figures use a logarithmic Y-axis. In the case of all curves tested here, full operation

throughput was obtained with a batch size of approximately 12,000 to 15,000 scalar

multiplications.
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Figure 9.1: Operation throughput vs. batch size for SEC curves; from top to
bottom: 112, 128, 160, 192, 224, 256, 384, 521
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Figure 9.2: Operation throughput vs. batch size for SEC curves excluding 112 and
128; from top to bottom: 160, 192, 224, 256, 384, 521
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Figure 9.3: Operation throughput vs. batch size for Brainpool curves; from top to
bottom: 160, 192, 224, 256, 320, 384, 512
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Figure 9.4: Operation throughput vs. batch size for twisted Brainpool curves; from
top to bottom: 160, 192, 224, 256, 320, 384, 512
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9.7 Scalar point multiplication latency

The proposed scalar point multiplication algorithm was also compared in terms of

additional latency cost vs. the Intel IPP CPU implementation. A significant amount

of latency is unavoidable, due to the fact that the operands must travel from the

CPU, to the CPU RAM, across the PCI-Express bus to the GPU RAM, through the

GPU and back to the CPU RAM. The goal here is to determine additional latency

in milliseconds that is caused by using the GPU to perform the operation. Shown

in Figure 9.5, it can be seen that for smaller field sizes, the additional latency is

negligible, while it becomes quite significant for field sizes greater than 320 bits,

peaking at just over 600 milliseconds for the 512-bit Brainpool curve.
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Figure 9.5: Scalar point multiplication GPU vs. CPU ∆-latency

9.8 Comparison to results in the literature

Shown in Table 9.8 is a comparison of the proposed scalar point multiplication al-

gorithm to the results found in the open literature. Beginning from the left, Giorgi

et al. use a GPU implementation based on their finite field multiplication algorithm

which was discussed in chapters 7 and 8.
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The next column presents work by Antao et al. who developed an RNS-based

finite field multiplication algorithm with lazy reduction. Their work is implemented

on an NVIDIA GTX 285 GPU, which is one generation behind the GTX-480 used

for the proposed.

In the third column from the right is the work of Szerwinsky and Güneysu, which

is one of the first GPU implementations of scalar point multiplication.

In the second column from the right is an FPGA-based design from Güneysu

and Paar, which uses a $2000 Virtex 4 FPGA to perform scalar point multiplication.

Their results are the next fastest ones in the literature; the proposed algorithm is

6.0x faster than their 224-bit design, and 7.8x faster than the 256-bit one. Notably,

the results published by Güneysu and Paar are the only ones in the literature that

outperform the Intel IPP library on the core-i7 CPU.

Table 9.8: Scalar point multiplication operation throughput of the proposed
GPU-based algorithm to the literature

Field Size Giorgi [68] Antao [70] Szerwinsky [67] Güneysu [90] Proposed

160 5,586 669,742

192 3,289 424,424

224 1,972 9,827 1,412 37,736 227,068

256 1,620 24,691 191,779

384 216 56,927

9.9 Summary

In this chapter, a GPU-based scalar point multiplication algorithm was proposed and

profiled. The algorithm uses Jacobian coordinates for elliptic curve point doubling,

and Jacobian-affine coordinates for point addition. The scalar point multiplication

algorithm itself uses a simple double-and-add approach that is suitable for the GPU’s

SPMD architecture.

Scalar point multiplication was tested on three families of curves over Fp: the SEC
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curves, Brainpool curves, and the twisted Brainpool curves. Operation throughput

was measured and compared to a highly optimized CPU implementation running on

a recently released core-i7 CPU; the proposed work boasted operation throughput

that was 5x to 31x faster than the 8-logical-core CPU, with best performance gains

at smaller field sizes.

A batch-size analysis was performed, and it was determined that groups of ap-

proximately 12,000 to 16,000 threads must be executed on the GPU at a time in order

to realize its full operation throughput potential.

Additional latency caused by the use of the GPU was determined; for small field

sizes it is negligible, however for field sizes above 320 bits it may grow considerably,

which may be an issue for time-sensitive applications, and should be subject to further

research.

Finally, the proposed work was compared to the best designs in the literature; the

proposed design is 6x to 7.7x faster than the next fastest reported design.
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Conclusions

10.1 Summary of contributions

In this dissertation, two implementations of a serial-in, parallel-out finite 233-bit field

multiplier using reordered normal basis were presented. Both multipliers used serially

connected copies of a block. Although the proposed implementation used a field size

of 233 bits, in a multiplier over any field where there exists a Type-II ONB could be

created using the same building block and design approach.

The first architecture used a combination of custom domino logic and standard

CMOS library cells. The speed improvement was measured to be 99% in comparison

to static CMOS implementation, while area reduction was 49%. The final design was

successfully simulated up to a clock rate of 1.587 GHz.

The improved design employed a full-custom solution which allowed finite field

multiplication to be carried out 12% faster than the semi-custom domino logic design,

while reducing area utilization by 43%.
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The proposed architectures are suitable for integration with a CPU in order to

provide a special finite field multiplication instruction to accelerate elliptic curve

scalar point multiplication.

A GPU-based type-II ONB multiplication algorithm was proposed, which, to the

author’s knowledge, is the fastest GPU-based finite field multiplier for binary exten-

sion fields. The proposed algorithm uses multiple GPU threads to carry out each

multiplication operation, and several multiplications are carried out simultaneously

in order to saturate the GPU’s resources. While the algorithm’s operation throughput

does not surpass the state-of-the-art CPU implementation at this time, it may prove

useful as GPU architectures evolve to possess better logic-operation performance.

A new algorithm for computing modular multiplication over the NIST prime fields

on a GPU was presented. The algorithm was implemented entirely in PTX assembly,

and validated against the results generated by a popular multi-precision software

package. Compared to the next-fastest GPU-based algorithm, the proposed is 1.36

to 1.59 times higher operation throughput, depending on the field size. Compared

to the Intel IPP finite field multiplication functions running on a CPU, the proposed

algorithm has 58.6 to 93.0 times higher operation throughput. To the best of the

author’s knowledge, the proposed algorithm boasts the highest NIST prime field

multiplication operation throughput in the literature.

A Montgomery multiplication algorithm for the GPU was developed, which allows

finite field multiplication with the use of any field prime. The proposed algorithm

was carefully optimized to have the best threads per SM vs. resources per thread

combination, and it was shown that this optimization has a more profound effect than

integrating cache into the multiplication stage. Asymptotically fast multiplication

methods were explored, and it was determined that for the field sizes that are of

interest in elliptic curve cryptography, schoolbook multiplication performs best. The

proposed algorithm’s operation throughput is 1.24x to 1.72x greater than the next
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fastest GPU design design in the literature, and considering operation throughput

per dollar as a metric, the proposed design is 14.55x to 28.75x better than the state-

of-the-art FPGA implementation.

A finite field inversion algorithm for the GPU based on Fermat’s little theorem

was developed. Compared to the more commonly used binary inversion algorithm,

which performs very poorly on the GPU due to heavy, operand-dependent program

branching, the proposed Fermat inversion algorithm provided acceptable results. To

the best of the author’s knowledge, the proposed inversion algorithm is the first

attempt to carry out this operation on a GPU.

A complete finite field arithmetic library was implemented entirely in PTX as-

sembly, and then used to perform scalar point multiplication.

A complete finite field arithmetic library for the GPU was developed, and the re-

sulting work is, to the best of the author’s knowledge, faster than any other CPU or

GPU implementation in the literature: the proposed algorithm’s operation through-

put is 6x to 7.7x greater than the next fastest FPGA design, and 5x to 31x greater

than a powerful desktop CPU.

The performance of the GPU-based scalar point multiplication algorithm was

further analyzed in terms of batch size required to obtain peak operation throughput,

and the latency cost added by the GPU.

Overall, GPUs were shown to be suitable devices for accelerating elliptic curve

scalar point multiplication, and could be used in a high-demand server environment

to perform such operations.

10.2 Future work

In terms of future work, there are a number of areas worthy of further exploration.
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ASIC architectures

While the multiplier architectures presented in this work are the fastest in the litera-

ture, much more sophisticated fabrication technologies have since been made available

to the University of Windsor. It would be interesting to determine the performance

of the implemented architectures in a 28nm or 22nm process.

If the opportunity were to become available, another avenue worth exploring is

the integration of the proposed architecture with a CPU core; it may be possible to

obtain an IP core from a company such as ARM in order to experiment with special

instructions for accelerating cryptography.

Finite field inversion for the GPU

The most expensive operation, by far, is finite field inversion for the GPU. A number

of techniques could be used to improve this operation, such as finding an efficient

addition chain to compute ap−2, rather than using the näıve approach proposed here.

Scalar point multiplication for binary fields

GPU-based scalar point multiplication over binary extension fields is a topic worth

revisiting. NVIDIA’s newly-released Kepler GPUs boast much higher logic and shift

operation throughput, which will significantly improve the performance of multipli-

cation over binary extension fields. Gaussian normal basis, reordered normal basis,

and polynomial basis multiplication for the GPU should be explored more fully. Even

if binary field multiplication performance is lacking compared to the state of the art

CPU implementations, it may be possible to achieve much higher overall scalar point

multiplication performance. This could be done by storing all operands in GPU reg-

isters and cache, which is much more feasible when multiple threads can pool their

resources together on the same multiplication, as opposed to prime field multiplication

which works best with one thread per operation.
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Integrating the GPU accelerator with security APIs

The work presented in this dissertation established that GPUs may be used to ac-

celerate elliptic curve scalar point multiplication over prime fields. Another major

area of future work would be the integration of the proposed GPU system with a

commonly used security API such as OpenSSL.

A number of challenges are likely to be encountered; multiplication operations

must be queued and processed in batches, real-time or event-driven communication

with the GPU will be required, and a method of testing a heavy-load system will

require significant consideration.
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Galois. Gauthier-Villars Paris, 1962.

[24] C. Koc and B. Sunar, “Low-complexity bit-parallel canonical and normal basis
multipliers for a class of finite fields,” Computers, IEEE Transactions on, vol. 47,
no. 3, pp. 353 –356, mar 1998.

[25] T. Itoh and S. Tsujii, “Structure of parallel multipliers for a class of fields
GF (2m),” Information and computation, vol. 83, no. 1, pp. 21–40, 1989.

139



REFERENCES

[26] J. Taverne, A. Faz-Hernández, D. Aranha, F. Rodŕıguez-Henŕıquez, D. Hanker-
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