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Abstract

is thesis approaches the problem of modeling a multi-camera system’s performance from system
and task parameters by describing the relationship in terms of coverage. is interface allows a sub-
stantial separation of the two concerns: the ability of the system to obtain data from the space of
possible stimuli, according to task requirements, and the description of the set of stimuli required for
the task. e conjecture is that for any particular system, it is in principle possible to develop such a
model with ideal prediction of performance. Accordingly, a generalized structure and tool set is built
around the core mathematical definitions of task-oriented coverage, without tying it to any particular
model.

A family of problems related to coverage in the context of multi-camera systems is identified and
described. A comprehensive survey of the state of the art in approaching such problems concludes
that by coupling the representation of coverage to narrow problem cases and applications, and by
aempting to simplify the models to fit optimization techniques, both the generality and the fidelity
of the models are reduced. It is noted that models exhibiting practical levels of fidelity are well beyond
the point where only metaheuristic optimization techniques are applicable.

Armed with these observations and a promising set of ideas from surveyed sources, a new high-
fidelity model for multi-camera vision based on the general coverage framework is presented. is
model is intended to be more general in scope than previous work, and despite the complexity intro-
duced by the multiple criteria required for fidelity, it conforms to the framework and is thus tractable
for certain optimization approaches. Furthermore, it is readily extended to different types of vision
systems.

is thesis substantiates all of these claims. e model’s fidelity and generality is validated and
compared to some of the more advanced models from the literature. ree of the aforementioned
coverage problems are then approached in application cases using the model. In one case, a bistatic
variant of the sensing modality is used, requiring a modification of the model; the compatibility of
this modification, both conceptually and mathematically, illustrates the generality of the framework.
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“at would be the highest thing for me”—so saith your lying spirit
unto itself—“to gaze upon life without desire, and not like the dog,
with hanging-out tongue: to be happy in gazing: with dead will,
free from the grip and greed of selfishness—cold and ashy—grey all
over, but with intoxicated moon-eyes! at would be the dearest
thing to me”—thus doth the seduced one seduce himself,—“to love
the earth as the moon loveth it, and with the eye only to feel its
beauty. And this do I call immaculate perception of all things: to
want nothing else from them, but to be allowed to lie before them
as a mirror with a hundred facets.”

Friedrich Wilhelm Nietzsche (1844–1900), us Spoke Zarathustra
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CHAPTER 1
Introduction

If you have built castles in the air, your work need not
be lost; that is where they should be. Now put the foun-
dations under them.

Henry David oreau (1817–1862), Walden

1.1 Origins: Multi-Camera Systems

Computer vision is the science and technology of artificial systems that see. Cameras, like all sensors,
engage in the acquisition of data; it is the endeavour of computer vision to convert this data into useful
information. According to Marr [1], a vision system, as an information processing system, must be
understood on three levels: the computational level, which identifies the task to which the system is
set, and its purpose; the algorithmic/representational level, which describes how the system represents
and acts on information to achieve the task; and the physical level, which describes the “hardware”
implementing the system.

Nearly half a century ago, the field of computer vision emerged as distinct from earlier work in
digital image processing in that it sought to recover information about the three-dimensional world
from the raw data of images. Motivations for this research included new possibilities for automated
control and metrology (cf. photogrammetry), and the obvious richness of visual information toward
a human-like artificial understanding of the world.

A multi-camera system is one in which the images from multiple cameras are analyzed jointly.
Such systems share theoretical properties with single-camera systems using data from multiple dis-
tinct viewpoints, which have featured in computer vision work since early on. e first true multi-
camera systems arose from the use of parallax as a cue for three-dimensional shape, for which the
natural approach was stereo vision, inspired by biology and having precedent in photographic stere-
oscopy. Extension of this approach, alongwith other applications combining data frommultiple views,
pushed the number of cameras to three, four, and more, but the practical limitations of central pro-
cessing and the high cost of camera hardware kept systems relatively small.
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In recent years, the cost of digital camera devices has dropped precipitously. Meanwhile, advances
in embedded computing have spurred a trend toward increased in-network processing in sensor net-
works [2]. e convergence of these developments, together with progress in computer vision, have
led to the emergence of distributed networks of smart cameras [3, 4] as an important new field with
numerous applications. Systems tasked with establishing situation awareness [5] based on multiple
sources of visual information, previously the domain of human operators, are becoming increasingly
automated under this paradigm.

While the communication and processing paradigms of camera networks introduce a variety of
problems not previously seen in either computer vision or sensor networks, research in this field has
also exposed a class of problems arising more broadly from the multi-camera paradigm, for which
there has not previously existed a need for general (multi-camera) solutions. At the most fundamen-
tal level, characterization of the performance of multi-camera systems with respect to a task is an
open problem [6]; lacking a unified theoretical framework, the aforementioned problems have been
addressed rather haphazardly and in isolation from one another. It is the ambition of this thesis to
propose such a framework, solve the issue of performance evaluation, and provide a common basis
for approaching a large class of multi-camera coverage problems.

1.2 Motivations: Problems of Coverage

In order to successfully accomplish a task using a particular set of representations of visual infor-
mation and algorithms which manipulate these representations, it is tautological that the available
visual data, along with any ancillary knowledge (geometric information about the imaging system,
shape models, etc.), must meet some set of requirements. Identifying these requirements and estab-
lishing their interaction with the system has clear value to design, enabling quantitative evaluation
and optimization.

e fundamental approach of this thesis is to describe this relationship between task and system
in terms of coverage. In this model, the physical level consists of a set of stimulus, which are intrinsic
to the world and ostensibly encode the information needed by the task, and the sensor system, which
transforms some of the stimuli into data. e question then becomes whether the data acquired is
sufficient, given the representations, algorithms, and applicable constraints from ancillary knowledge,
to achieve the task.

A model predicting, to some degree of fidelity, a sensor system’s performance with respect to a
task, given a priori information about both, is valuable in and of itself. For example, it may be used to
evaluate a design in simulation, closing the loop without the need for costly physical implementation.
However, it also provides a quantitative characterization of the objective in a family of important
problems of sensor systems, which are connected in that they all involve optimization over some
aspect of coverage.

In the sense that the a priori model of coverage predicts the a posteriori information available
to the task, the actual acquisition of the laer can provide new information for the former, closing
a feedback loop. e literature on the various coverage problems to date exhibits something of a
dichotomy between offline, open-loop, model-based approaches and online, closed-loop, information-
based approaches. Explicitly unifying these sources of knowledge under a common model framework
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clarifies the high-level identity of these problems. It is important to note, however, that as a posteriori
information is inherently incomplete and noisy, and especially since its behaviour in that respect is
itself a function of coverage, the extent to which it can be integrated into a given a priori model varies.

In actuality, Marr’s tri-level hypothesis generalizes to any information processing system. Sim-
ilarly, the basic theoretical framework of coverage, as presented in Chapter 2, applies to any sensor
system, irrespective of the sensing modality. However, as the main scope of this thesis is limited to
multi-camera systems, a set of distinct and relatively concrete coverage problems which have been
identified in that context are described here.

1.2.1 View Planning

e view planning problem—also variously known as sensor planning, camera planning, and optimal
camera placement in the literature—is concerned with finding an adequate or optimal view of a scene
for a given task. A view, in this context, is a set of one or more camera viewpoints. Generally, the
space of views is continuous, although in practice a discrete approximation may be used to fit certain
optimization methods. Specific problem formulations vary depending on what is constrained; typi-
cally, the objective is either to find the camera parameters (including pose) which maximize coverage
given a fixed set of cameras or maximum cost, or else to minimize the cost of the systemwhile meeting
some minimum coverage requirement.

e single-camera case is, by definition, an offline, open-loop subproblem, as the camera must be
placed at a single viewpoint based on the available a priori knowledge. Consequently, this problem
engendered the early model-based work, such as that of Cowan and Kovesi [7] and Tarabanis et al. [8].
e general approach is to derive, from an analysis of image formation and quantitative task require-
ments on predetermined scene features, an indicator function over the space of viewpoints encoding
adequacy.

Cases requiring multiple viewpoints to obtain the necessary information for the task give rise to
the multi-camera case. However, early work on such problems tended, partly for reasons discussed
in Section 1.1, to be limited to single cameras, the objective thus becoming to find an adequate or
optimal sequence of viewpoints for the camera. Since the information obtained from each viewpoint is
thus available in planning subsequent viewpoints, this is naturally an online, closed-loop subproblem,
commonly known as the next best view problem. e approaches of Connolly [9], Hutchinson and
Kak [10], andMaver and Bajcsy [11] exemplify the information-based approach to this problem, which
ultimately influenced work on autonomous exploration based on the same principles, such as that of
Whaite and Ferrie [12].

With the advent of multi-camera systems, the offline view planning problem has aracted renewed
aention. e existing single-camera methods model coverage over the viewpoint space, making
them unwieldy for large multi-camera systems, since the dimensionality is a multiple of the number
of cameras, and inapplicable to problem cases where the number of cameras is variable. Meanwhile,
the models developed for next best view problems tend to be strongly—and in most cases, exclu-
sively—oriented toward encapsulating online information as feedback. e most aractive approach
initially available to camera network researchers was drawn from sensor networks, adapted by Erdem
and Sclaroff [13], Hörster and Lienhart [14, 15], and others into relatively realistic two-dimensional
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representations of multi-camera coverage, and eventually by Zhao et al. [16, 17, 18] and others into
three dimensions.

With coverage modeled over the stimulus space rather than the viewpoint space, there is no longer
an immediate analytic solution to the problem of planning the viewpoints. Instead, view planning is
formulated as an optimization problem, whose difficulty depends on the tractability of the mathemat-
ical model. As multi-camera vision is a complex phenomenon, there is a tradeoff between the fidelity
and tractability of the model: simple models may allow the use of powerful, efficient optimization
methods, but may not yield very good solutions, while complex models can accurately identify good
solutions, but may be quite difficult to optimize. Approaches to multi-camera view planning span the
gamut, from convex programming on extremely simple models to metaheuristics on highly complex
models.

1.2.2 View Reconfiguration

e view reconfiguration problem is a limited, online derivative of the view planning problem intro-
duced in the previous section. Again, the objective is to find an adequate or optimal view for a given
task. e two major differences are temporal considerations, including processing time and delays in
realizing views, and generally tighter restrictions on the parameters which can be controlled. ere
is some overlap with next best view problems. In the literature, the most common target systems are
networks of pan-tilt-zoom cameras, eye-in-hand robotic manipulators, and mobile robots with vision.
In most specific problem formulations, the coverage objective is relatively localized (typically one or
more targets, such as people) and dynamic.

e very fact that the cameras are capable of online reconfiguration is a hint that this is a closed-
loop problem. Such applications as surveillance are the typical arena in which the problem arises: as
new information about the dynamic scene is obtained—frequently from the cameras themselves—the
optimal configuration changes accordingly.

Piciarelli et al. [19, 20] illustrate the architecture of a pan-tilt-zoom camera network which updates
its model of task relevance based on activity information from the cameras. is kind of representation
supports the notion that the underlying phenomenon of interest is coverage: as with the next best view
problem, it is simply a maer of how closely the information can be mapped to a purely a priori model
of the system.

1.2.3 View Selection

e view selection problem is a distinct coverage problem in the online domain. Here, there is no
control over the cameras themselves; rather, the number of cameras from which information may
be transmied, processed, or viewed simultaneously is constrained. e instantaneous subproblem
involves the selection of an adequate or optimal view of a scene for a given task from a discrete set
of possible views; the overall problem is to find an adequate or optimal view sequence. As with view
reconfiguration, there is some overlap with next best view problems, and the coverage objective is
typically one or more localized, dynamic targets.

One hallmark of this problem is that the view sequence has some property of optimality distinct
from the optimality of the individual views. is echoes certain next best view formulations, such
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as that addressed by Chen and Li [21], who minimize the length of the robot path required to reach
a discrete set of views. e usual motivation for seeking a view sequence in multi-camera systems
is for tracking the best view of dynamic agents in the scene over time. While the desirable property
of a view at any particular instant is, of course, its quality of coverage, the desirable property of the
overall sequence is its smoothness, which is in general a competing objective. is is quantified to
some extent in the work of Jiang et al. [22] and Daniyal et al. [23].

Since the agent dynamics constitute online information, and since the most common means of
obtaining this information is from the cameras themselves, most approaches to view selection are
heavily information-based. Some information models depart radically from the intuitive concept of
coverage, particularly those based on abstract image entropy, but coverage remains the underlying
phenomenon. Others aempt to glean more familiar structure, such as object poses and occlusions,
from the scene, which map more readily to an a priori model of the system. A few approaches to view
selection are explicitly based on such models, assuming (and, in some cases, supplying) a means for
the system to obtain information in an appropriate form.

1.2.4 Resource Distribution

Issues of load and storage distribution arise in smart camera networks, and turn out to be strongly
related to coverage. e problem is one of allocating consumption of some resource—usually process-
ing or storage, but also possibly communication, energy, etc.—efficiently among the nodes in a camera
network, given some information about the task.

e volume of activity, of the sort that consumes resources, at any given node in a camera network
tends to be directly proportional to the intersection of coverage and task relevance. As these concepts
are made more concrete in the chapters to follow, this will become almost self-evident: in some of the
aforementioned cases, such as Piciarelli et al. [19, 20], this is true by definition. Where a set of nodes
are suitable candidates for carrying out some activity which need only be performed by some subset
thereof, an opportunity for optimal assignment of the activity, guided by coverage information, exists.

As with the previous two problems, the task relevance information is likely to be unknown or
uncertain a priori, and this is thus oen a closed-loop problem.

1.3 Approach: Modeling Task-Oriented Coverage

At the core of all of the problems presented in the previous section, and arguably quite central to
the design and operation of multi-camera systems overall, is one fundamental question: how can
the expected performance of a multi-camera system be quantified in terms of the parameters of the
system, the environment it inhabits, and the task to which it is set?

Despite its apparent simplicity, this thesis—particularly in the survey of the state of the art in
Chapter 3, and in the comparison experiments presented in Section 5.3—makes the case that no single
answer to this question has yet exhibited sufficient generality to encompass the scope of problems,
nor sufficient accuracy with respect to actual performance to solve them well. e major cause of this
deficiency is that while many researchers have approached cases of the various coverage problems in
isolation, none have aempted to generalize to the common core of the problem.
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system

task

coverage

environment

Figure 1.1: Task-Oriented Coverage – e task-oriented coverage paradigm models the relationship
between the sensor system, the external environment, and the task in terms of coverage.

e framework presented by this thesis owes its success to the methodology behind its develop-
ment. From the outset, the common issue, viz. coverage, relating several problems was identified.
Without initially concentrating on any particular problem, two weaknesses of existing approaches,
underlying their lack of both generality and fidelity, became clear. First, the representation of cov-
erage tend to be strongly coupled to the prevalent applications giving rise to the specific problem;
without a clear separation between the system and task, models are incompatible across problems,
and even ill-fit to many applications within the same problem class. Second, the models tend to be
streamlined to fit certain optimization techniques; the assumptions implied lead to further restriction
of application scope and loss of fidelity.

ose efforts which do apply to a reasonable subset of problems, while retaining anything ap-
proaching a practical level of fidelity, are already beyond the point where effectively only “black-
box” metaheuristic optimization techniques are applicable. At that point, additional complexity in the
model only impacts the performance of optimization insofar as the time taken to evaluate the objec-
tive function increases. erefore, this thesis assumes optimization techniques allowing an objective
function of arbitrary complexity, with the exception of a bounding requirement. Under this relaxed
requirement of tractability, the development of a general, high-fidelity model of coverage is possible.

e concept of a coverage model for sensor systems is presented in a highly general form—simply
a bounded function over an arbitrary stimulus space—and thus any optimization approach developed
for such a model generalizes trivially to any other model of the same basic form. is yields a powerful
framework for approaching coverage problems, as the nature and complexity of the model may vary
according to the particular application and the necessary level of fidelity. In particular, a flexible model
specification for the modality of vision is presented and validated.

An important and novel feature of this framework is the explicit separation of the system and task
specifications. e identification of the stimulus space for a particular sensing modality provides the
interface between the two: it is possible to quantify which hypothetical stimuli in the space are covered
by the system sufficiently to meet task requirements, then to specify a concrete set of relevant stimuli
for the task itself, and finally identify the proportion of the laer covered by the former. is allows
the same coverage model to apply to a diversity of applications and problems.

1.4 Thesis Outline

Part I of the thesis opens, in Chapter 2, with a formal description of the concept of coverage and of the
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coverage model. Although actually developed by generalizing from material presented subsequently
in the thesis, imparting an understanding of the core framework first allows the remainder of the thesis
to be framed in its terms, which is valuable in exposing the strengths and shortcomings of existing
work, and in developing the more concrete model for multi-camera networks.

Chapter 3 reviews the state of the art in approaches to the coverage problems described in Sec-
tion 1.2, with a strong focus on the forms and features of the various coverage models. Along with
geometric models, work on two types of topological model is surveyed.

Drawing from this prior work, a general, high-fidelity model of visual coverage is presented in
Chapter 4. is model incorporates most of the identified criteria for monocular vision, and issues
relating to multi-camera coverage specific to vision are discussed. While the model as presented does,
of course, have some restrictions in its scope of applicability—for example, it does not character-
ize random occlusion or illumination, and does not address stereo vision—it covers the majority of
multi-camera applications, and provides a good foundation for extension to cases outside its scope (as
demonstrated in Section 7.3).

Chapter 5 provides empirical evidence of the soundness and generality of this model formulation.
e individual criteria for monocular vision are validated in terms of performance prediction for a
task with general properties. en, the overall performance prediction of the model is compared to
two of the more promising models from the literature, with favorable results.

Part II of the thesis demonstrates three applications to coverage problems using metaheuristic
optimization techniques. In Chapter 6, a relatively simple greedy algorithm with hysteresis addresses
the problem of real-time view selection. In Chapter 7, an instance of the view planning problem—in
this case, for active triangulation inspection systems, requiring a modification of the base coverage
model of Chapter 4—is approachedwith a particle swarmoptimization technique. Finally, in Chapter 8,
a heuristic drawn from the field of scheduling is adapted to hypergraphs, and leveraged, by way of a
topological coverage model, against the general camera network load distribution problem.

Concluding remarks are presented in Chapter 9. ese include a review of the contributions pre-
sented in this thesis, descriptions of a number of potential future research directions, and some final
reflections on the work.

e appendices in Part III cover several ancillary but related topics. Appendix A reviews several
mathematical concepts and conventions used throughout the thesis. Appendix B reviews the geometry
of computer vision, including image formation and calibration. Appendix C presents an accessible
and detailed description of Adolphus, the simulation environment implementing the core work of this
thesis. Appendix D lists specifications for the equipment used in the various experiments.
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CHAPTER 2
Sensor System Coverage

Our intelligence cannotwall itself up alive, like a pupa in
a chrysalis. It must at any cost keep on speaking terms
with the universe that engendered it.

William James (1842–1910), A Pluralistic Universe

2.1 Overview

In this chapter, the fundamental framework within which this thesis treats the coverage of a sensor
system is described. e general form does not prescribe any particular representation for stimuli, nor
any means of valuation of coverage; it is ignorant of sensing modality and model thereof. In essence,
it should be seen as an abstract base class for representing the coverage of multi-sensor systems. e
primary aim is to introduce the vocabulary of concepts and its interrelationships, so that they may be
used with some formality in subsequent chapters.

Although this framework has been derived, in part, by generalizing from the large volume of sensor
system coverage models in the literature, specific reference to these models is deferred to Chapter 3.
is order of presentation not only allows for a clean, direct exposition of the framework, but also
provides a common language with which to describe the surveyed works.

2.2 The Coverage Model

A sensor system is an entity which detects stimuli for the purpose of executing a task. In general,
this system may physically comprise a single sensor, multiple sensors, or part of one or more sensors’
ranges, with one or more sensing modalities. Here, the term sensor refers to an atomic unit, one or
more of which comprise the sensor system.

Stimuli are uniquely defined in a stimulus space 𝒮; in some cases, stimuli are simply 2D or 3D
points, so that the stimulus space is equivalent to ℝଶ or ℝଷ, respectively. However, with more com-
plex sensing modalities or higher-level sensor models, characteristics of the stimulus other than its
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geometric positionmay affect coverage as well. It may also be necessary to consider complex phenom-
ena not localized at a single point in space. While the nature of 𝒮may therefore become quite abstract,
it may be helpful to imagine simple spatial stimuli for the purpose of intuitively understanding the
concept of the coverage function.

A stimulus 𝐩 ∈ 𝒮 is considered covered by a sensor system if it yields a response sufficient to
achieve the given task. An ideal coverage function, therefore, is a bivalent mapping 𝐶 ∶ 𝒮 → {0, 1},
where 𝐶(𝐩) = 1 indicates that a point in 𝒮 is covered. Equivalently, one may speak of the set 𝐶 ⊂ 𝒮 of
covered stimuli. A more general definition 𝐶 ∶ 𝒮 → ℝା encompasses models which handle uncertainty
and/or grade coverage quality. In any particular case, this may be bounded as 𝐶 ∶ 𝒮 → [0, 1] without
loss of generality.

1 Definition (Coverage Function)
Given a stimulus space 𝒮, a coverage function is a mapping 𝐶 ∶ 𝒮 → [0, 1], for whi 𝐶(𝐩), for any 𝐩 ∈ 𝒮,
is the grade of coverage at 𝐩, according to some definition of coverage.

Extension of the subset notion is possible if one considers 𝐶 a fuzzy subset [24] of 𝒮; that is, 𝐶 is
the (fuzzy) set of stimuli which are covered. For convenience, the same symbol will be used to denote
the coverage function and the fuzzy subset of which it constitutes the membership function. is also
allows the use of the standard fuzzy union and intersection operators, which are defined, respectively,
as

𝐶 ∪ 𝐶(𝐩) = max(𝐶(𝐩), 𝐶(𝐩)) (2.1)

and

𝐶 ∩ 𝐶(𝐩) = min(𝐶(𝐩), 𝐶(𝐩)). (2.2)

Another useful set construct is the coverage hull, the set of all points in 𝒮 for which 𝐶 is nonzero
(in the fuzzy set characterization, the support of 𝐶).

2 Definition (Coverage Hull)
e set ⟨𝐶⟩ = {𝐩 ∈ 𝒮|𝐶(𝐩) > 0} is the coverage hull of a coverage function 𝐶.

Definition 2, along with (2.1) and (2.2), implies that ⟨𝐶 ∪ 𝐶⟩ = ⟨𝐶⟩ ∪ ⟨𝐶⟩ and ⟨𝐶 ∩ 𝐶⟩ = ⟨𝐶⟩ ∩ ⟨𝐶⟩.
A coverage model describes the valuation of 𝐶 over 𝒮 in the context of information about the

complete closed system in question. A fundamental conjecture of this thesis is that for any specific
sensor system, environment, and task, it is in principle possible to formulate a coverage model for
𝐶 which reflects perfectly the desired information for the given application.¹ As with any model of
a physical phenomenon, one may trade fidelity for simplicity and generality, which have their own
benefits. Accordingly, the objective is to formulate a model whose nature makes it tractable for some
optimization approach for a given application class, of sufficient generality to encompass the desired
application scope, yet exhibiting sufficient fidelity to effectively solve problem instances.

¹Here, application refers to the application of the coverage model to a coverage problem (such as those described in
Section 1.2), as opposed to the task. From a pragmatic standpoint, the ultimate arbiter of the validity of a coverage model
is, of course, its utility in solving the problem in question.
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2.2.1 Generalized Model Structure

Although model formulations, even within the same sensing modality, vary widely in practice, it is
possible to derive a generalized fundamental structure beyond Definition 1. It is beyond the scope
of this work to demonstrate, by way of a comprehensive literature survey, that all existing coverage
models for all sensing modalities are subsumed by this structure; the survey presented in Chapter 3
does, however, make this case specifically for vision.

e phenomenon of sensor coverage is, in general, dependent upon the intrinsic and spatial char-
acteristics of the sensors themselves, the structure and properties of the environment they inhabit,
and the task requirements. us, formally, 𝐶(𝐩) is a shorthand for 𝐶(𝐩, 𝑆, 𝐸, 𝑇), where 𝑆, 𝐸, and 𝑇
are contextual parameter vectors describing the sensor system, environment, and task, respectively,
which collectively define the coverage grade of 𝐩 ∈ 𝒮 according to a specific model. For a given ge-
ometric global coordinate frame and sensing modality (with a corresponding definition of 𝒮), 𝑆, 𝐸,
and 𝑇 are, in principle, independent of one another. Proper decoupling of this information in a model
formulation yields important benefits.

Sensor Model

e sensor model encapsulates the characteristics of the sensing modality and the capabilities of the
individual sensors. In many cases, the sensor model is homogeneous within a sensor system (with
parameters varying between sensors), but as individual sensor-level coverage functions may be com-
bined arbitrarily, this is not necessarily so, especially for systems with heterogeneous modalities.

Simplified models are defined for many sensing modalities, such that each individual sensor can
be described in terms of a set of generic parameters; these are termed intrinsic parameters, and are
normally either specified by the manufacturer or recovered experimentally. As the qualifier intrinsic
suggests, this information is strictly endemic to the sensor.

e position and orientation of a sensor inℝ (its pose) are described by another set of parameters,
termed extrinsic parameters. In general, the formulation of a coverage function for an individual
sensor is simplified by operating on stimuli within the sensor’s local coordinate frame; the pose defines
a mapping for stimuli localized in the global frame to the sensor frame. In the simplest case, this is a
rigid transformation in 𝑆𝐸(𝑛) applied to any dimensions of ℝ which are also dimensions of 𝒮 (it is
oen sensible, though by no means necessary, for ℝ to be a subspace of 𝒮). In cases where one or
more non-Euclidean dimensions of 𝒮 are also dependent upon the reference frame, it is necessary to
define a generalization of 𝑆𝐸(𝑛) including these dimensions.

Typically, a sensor will define a coverage function over 𝒮 within its own local coordinate frame,
based on a set of coverage criteria which define their own simpler functions over 𝒮. e framework
makes no prescription as to the nature of these component functions or how they are combined to
obtain the sensor coverage function, but in many cases each criterion 𝑟 can be expressed in the form
𝐶 ∶ 𝒮 → [0, 1]—in essence, a partial coverage function—and the sensor coverage function might be
constructed from these functions by taking their product or minimum value,

𝐶(𝐩) = ෑ

𝐶(𝐩) (2.3)
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𝐶(𝐩) = min


𝐶(𝐩) (2.4)

respectively, depending on the effects of the criteria on task performance.² e objective is to define
a function for the sensor which correlates strongly to the actual performance, so that the relative and
absolute values of coverage are meaningful; as will be seen, it is possible to do so for complex sensing
modalities with such a relatively simple scheme.

Environment Model

A description of the structure and contents of the environment is also typically necessary for an ac-
curate expression of coverage. e use of this information in formulating 𝐶 is dependent on its effect
on the particular sensing modality being modeled, so the inclusion and representation of information
will normally be tailored accordingly. Examples of physical phenomena which might be modeled in
the environment model include:

• static objects (e.g. walls),

• deterministic dynamic objects (e.g. robots with closed control loops),

• probabilistic dynamic objects (e.g. people, vehicles),

• sources of non-task stimuli which affect sensing (e.g. ambient noise), and

• properties of the stimulus medium (e.g. temperature, density, reflectivity).

Geometric information in the environment model is described in the global coordinate frame, so
as with stimuli, this information is mapped to the local frame of the individual sensor to simplify the
formulation of the coverage function.

Task Model

Finally, a model of the task to be performed is required. is consists of twomajor components: a rele-
vance function over the stimulus space, and a set of task requirements. e implicit task specifications
found in many sources can be explicitly described in these general terms.

e relevance function indicates the relevance of the coverage of points in the stimulus space to
the task. is information may be related to the environment insofar as the stimuli are associated with
physical entities, but is nonetheless independent in principle. As a bivalent mapping 𝑅 ∶ 𝒮 → {0, 1},
this specifies a subset of 𝒮 which may be continuous or discrete; in the very simplest case, this may
consist of a single point, implied by the context. It may also be useful to prioritize the set according to
each point’s relevance to the task; in this case, 𝑅 maps 𝒮 to ℝା which, as with the coverage function,
may be bounded to [0, 1] without loss of generality.

²Note that if all ೝ are bivalent, that is, if ೝ ∶ 𝒮 → {, ଵ}, then (2.3) and (2.4) are equivalent.
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3 Definition (Relevance Function)
Given a stimulus space 𝒮, a relevance function is a mapping 𝑅 ∶ 𝒮 → [0, 1], for whi 𝑅(𝐩), for any 𝐩 ∈ 𝒮,
is the relevance of the coverage of 𝐩 to the task with whi it is associated.

It is convenient (and trivial) to extend to relevance functions the fuzzy set conceptualization, the union
and intersection operations of (2.1) and (2.2), and the notion of the coverage hull from Definition 2.
For the last, a more context-appropriate term for ⟨𝑅⟩ is the task point set.

While there is no formal difference between them, two distinct conceptual interpretations of the
relevance function exist, depending on the nature of the application:

• Concrete relevance function: e objective is to cover a particular stimulus or set thereof, usually
associated with one or more actual target objects; relatively localized in the stimulus space.

• Abstract relevance function: e objective is to cover a field of potential stimuli over a range;
relatively dispersed in the stimulus space.

e task requirements are a set of prescriptions on the data to be obtained by the sensor system
from the stimuli in 𝑅. ese need not be requirements in the strict sense; they are arbitrary, sensor-
independent desirable properties of the data, which the coverage function will treat according to the
sensing model, generally affecting the valuation of coverage in terms of whether (and to what extent)
the data, as modeled, exhibit these properties.

2.2.2 Multi-Sensor Coverage

It is oen helpful to construct a coverage function by mathematically relating a set of “lower-level”
coverage functions. e obvious case is the coverage function for a sensor system being composed of
coverage functions for the individual sensors, though there could conceivably be an arbitrary number
of levels in such a hierarchy. e definition of sensor system and sensor are general enough to state
that 𝐶(𝐩) for a sensor system is some arbitrary function of 𝐶(𝐩) for each sensor 𝑖 mapping to [0, 1],
and that a sensor system at the 𝑛th level of the hierarchy is a sensor at the (𝑛 + 1)th level. e
coverage model defines 𝐶 for the topmost level entirely, recursively including all lower levels. e
levels referred to as sensor system and sensor will normally be clear from the context.

Although the sensor system’s coverage function is arbitrary in terms of the sensor’s functions, a
useful definition of the coverage of the sensor system is oen simply the combined coverage of the
individual sensors, as given by

𝐶ଵே(𝐩) = max
∈ே

𝐶(𝑃ିଵ (𝐩)). (2.5)

where 𝑁 is the set of sensors in the sensor system, and 𝑃 is the transformation from the local sensor
coordinate system in which 𝐶 is expressed to the global coordinate frame (normally equivalent to the
pose of sensor 𝑖). If the 𝐶 functions are bivalent, 𝐶ଵே indicates which stimuli in 𝒮 are covered by at
least one sensor; in other words, 𝐶ଵே defines the union of 𝐶 for all 𝑖 ∈ 𝑁. As is clear from (2.5), this
notion extends to the standard fuzzy union [24] for real-valued 𝐶 .
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e above form defines 1-coverage, and is a special case of the more general 𝑘-coverage, for 𝑘 ≥ 1,
which indicates whether a stimulus in 𝒮 is covered by at least 𝑘 sensors. With real-valued 𝐶 , there is
no single valid expression of the coverage of a point by a group of 𝑘 sensors, but the standard form
follows from the standard fuzzy intersection [24] as

𝐶ெ(𝐩) = min
∈ெ

𝐶(𝑃ିଵ (𝐩)) (2.6)

where |𝑀| = 𝑘. e 𝑘-coverage function for the sensor system, then, is the union of (2.6) for all
𝑘-combinations in 𝑁, expressed as

𝐶ே(𝐩) = max
ெ∈൫ಿೖ൯

𝐶ெ(𝐩) (2.7)

for which 𝐶ଵே clearly reduces to the form stated in (2.5).

2.2.3 Task-Oriented Coverage Evaluation

A coverage function for the sensor system as a whole quantifies the coverage of a single point in 𝒮,
according to the task requirements. As discussed in Section 2.2.1, the task also specifies a relevance
function, which induces a task point set ⟨𝑅⟩ that, in general, contains multiple points. e final com-
ponent of the coverage model is the specification of a bounded scalar coverage metric for the entire
task.

Given a sensor system coverage function 𝐶 for a task with relevance function 𝑅 inducing a finite,
discrete task point set ⟨𝑅⟩, the coverage performance of the sensor system with respect to the task is

𝐹(𝐶, 𝑅) =
∑𝐩∈⟨ோ⟩ 𝐶(𝐩)𝑅(𝐩)
∑𝐩∈⟨ோ⟩ 𝑅(𝐩)

. (2.8)

It is not generally feasible to compute 𝐹(𝐶, 𝑅) as an integral for continuous ⟨𝑅⟩, due to the arbitrary
complexity of 𝐶 and 𝑅. In this case, (2.8) may be evaluated to any precision by sampling 𝒮 as a grid of
discrete points, and thereby obtaining a discrete ⟨𝑅⟩.

2.3 Coverage Topology

With the division of a sensor system into sensors, various topological relationships among the sensors
related to their coverage can be represented. In this abstracted form, combinatorial analysis can be
applied for certain purposes. ese topological models are essentially derivative of the information
encapsulated by the coverage model and task, but may involve additional related considerations.

Two such models particularly useful in approaching sensor system coverage problems represent,
respectively, the coverage overlap and the transition of dynamic targets. is section describes a
generic form for each type of model, and relates them to the coverage model framework of Section 2.2.
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2.3.1 The Coverage Overlap Hypergraph

An overlap model describes the topology of a sensor system in terms of mutual coverage of some
subset of 𝒮 by the sensors, with respect to a relevance function (whether implicit or explicit). It is
oen desirable to capture not only the fact, but also the degree, of overlap.

e general form is a weighted undirected hypergraph³ℋ = (𝑁, 𝐸, 𝑤), where the vertex set𝑁 is the
set of sensors in the sensor system, 𝐸 ⊆ 𝒫(𝑁) (where 𝒫 denotes the power set) is a set of hyperedges,
and 𝑤 ∶ 𝐸 → ℝା is a weight function over 𝐸. e existence of a hyperedge 𝑒 ∈ 𝐸 indicates that
the sensors in 𝑒 share mutual coverage of the stimulus space, with a 𝑘-hyperedge corresponding to
𝑘-coverage. e hyperedge weight 𝑤(𝑒) quantifies the degree of shared coverage among the sensors
in 𝑒.

e definition of mutual coverage and the characterization of edges can vary widely depending
on the available and desired information in a particular application. However, it is possible to define
an explicit general form derived from the coverage function, which all related models approximate in
whole or in part; this form is an ideal model of coverage overlap with respect to a task to the extent
that the coverage function and relevance function ideally quantify coverage.

e coverage hypergraph of a sensor system comprising a set of sensors 𝑁 is the hypergraph
ℋ = (𝑁, 𝐸 , 𝑤). Its hyperedge set is defined as

𝐸 = {𝑀 ∈ 𝒫(𝑁)|⟨𝐶ெ ∩ 𝑅⟩ ≠ ∅} (2.9)

where 𝐶ெ is computed by (2.6) for a given task, 𝑅 is the relevance function of the task, and 𝒫 denotes
the power set. Intuitively, 𝑀 ∈ 𝐸 indicates that sensors 𝑀 have mutual coverage of some part of 𝒮
with respect to 𝑅.

1 eorem (𝐸 is an Abstract Simplicial Complex)
e hyperedge set 𝐸 of a coverage hypergraph is an abstract simplicial complex; that is, for every 𝑀 ∈ 𝐸 ,
and every 𝐿 ⊆ 𝑀, 𝐿 ∈ 𝐸 .

P If 𝑛 ∈ 𝑀, then by (2.6), 𝐶ெ = 𝐶ெ\ ∩ 𝑛. From (2.2), for all 𝐩 ∈ 𝕊, 𝐶ெ(𝐩) ≤ 𝐶ெ\(𝐩). en, from
Definition 2, clearly ⟨𝐶ெ⟩ ⊆ ⟨𝐶ெ\⟩, and ⟨𝐶ெ ∩ 𝑅⟩ ⊆ ⟨𝐶ெ\ ∩ 𝑅⟩. us, for every 𝑀 ∈ 𝐸 , and every
𝑀\𝑛 ⊂ 𝑀, 𝑀\𝑛 ∈ 𝐸 . ■

In practice, pairwise overlap is by far the most commonly sought topological information. e 2-
uniform subgraph ofℋ—by analogywith the 𝑘-coverage notation in (2.7), denotedℋଶ

—is a (weighted)
graph encapsulating pairwise overlap. Since, by eorem 1, 𝐸 is an abstract simplicial complex, ℋଶ


is isomorphic to the primal graph of 𝐻 .

2.3.2 The Transition Graph

A transition model describes the topology of a sensor system in terms of the probability and/or timing
of dynamic agents transitioning from one region of coverage to another. While an overlap model

³Hypergraphs and their properties are reviewed in Section A.2.
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captures a physical topology, a transition model captures a more abstract functional topology of agent
activity.

In the most general form, such a model is a weighted directed graph 𝒢 = (𝑁, 𝐴, 𝑤), where 𝑁 is the
set of sensors in the sensor system (noting that it may be advantageous, in this case, for “sensors” to
represent subdvisions of the actual physical sensors), 𝐴 is a set of arcs, and 𝑤 ∶ 𝐴 → ℝା is a weight
function over 𝐴. 𝑁may also include a special source/sink node to collectively represent the uncovered
portions of the stimulus space. e existence of an arc 𝑎 ∈ 𝐴 indicates that agents may transition from
the tail region to the head region. In a weighted model, 𝑤(𝑎) is a quantitative metric encapsulating
the probability and/or duration of the transition.
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CHAPTER 3
State of the Art

What there was alwaysmore of had been congealed into
permanence long ago, as if the automatic factory that
cranked out these objects had jammed in the on position.

Philip K. Dick (1928–1982), A Scanner Darkly

3.1 Overview

A comprehensive literature survey of geometric and topological coverage models for multi-camera
systems is presented. e models are analyzed and compared in the context of their intended ap-
plications. e general model form presented in Chapter 2, as well as the visual coverage model of
Chapter 4, derive, in part, from the various properties and features of these models.

It is assumed that the reader is familiar with the fundamentals of computer vision, including per-
spective projection, basic optics, and camera calibration. Appendix B reviews these topics, and estab-
lishes the associated terminology, notation, and conventions employed in this and following chapters.

3.2 Geometric Models of Visual Coverage

e first type of coverage model surveyed is that which aempts to provide a coverage function valu-
ation over physical visual stimuli—hence the “geometric” appellation—which corresponds to the form
presented in Section 2.2.

3.2.1 Anatomy of a Visual Coverage Model

Visual stimuli considered in the work reviewed herein can be reduced to point features [7, 8], which
have a single point of origin in Euclidean space and possibly other characteristics. Vision is an in-
herently three-dimensional sensing modality, though it is frequently modeled in two dimensions for
simplicity. us, in all cases, the stimulus space is (or is a superset o) ℝଶ or ℝଷ, lending a relatively
concrete sense to discussion of the coverage of points.
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3.2. Geometric Models of Visual Coverage

A clear distinction between the environment and task models, as described in Section 2.2.1, is
not always made in the cited sources, as there is oen strong interaction between the two sets of
information. For example, the relevance function is implied by a bounded environment structure in
several of the sources reviewed here. Nevertheless, they will be treated indepedently for the sake of
consistency.

Sensor Model: Coverage Criteria for Vision

Based on well-studied geometric imaging models (as described in Appendix B), a number of criteria
for monocular visual coverage have been identified in the literature, and some or all are incorporated
into various coverage models.

e first three criteria [25] depend only upon the viewpoint and a point feature in ℝଷ (two-
dimensional coverage models can be thought of as projecting these criteria onto the plane).

• Field of view: e bounds on the infinite subspace of ℝଷ which can theoretically be imaged by
the camera: a quadrilateral pyramid determined by the horizontal and vertical apex angles (in
turn, by the optics and physical image sensor size) and the pose of the camera.

• Resolution: An upper and/or (less commonly) lower bound on the length projecting onto a single
pixel in the image; translates directly into upper and lower limits on depth along the optical axis.

• Focus: A constraint on the acceptable sharpness of the image; given a maximum blur circle
diameter, imposes upper and lower limits on depth along the optical axis about the subject
distance (the depth of field).

Combining these criteria—i.e., truncating the field of view by the depth constraints of resolution and/or
focus—produces a frustum, termed the viewing frustum aer the analogous concept in computer
graphics.

α
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Figure 3.1: Basic Visual Criteria –e three basic visual criteria (field of view, resolution, and focus) are
entirely defined by the location of the stimulus in space, and collectively define the viewing frustum.

Considering the view angle to the feature, the direction of the surface normal point feature with
respect to the camera, adds a fourth possible coverage criterion.
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3.2. Geometric Models of Visual Coverage

• View angle: A constraint on the maximum angle of the surface normal with respect to either the
optical axis or the ray joining the optical center with the point.

A point feature may also be occluded, and thus not covered, if the ray from the feature to the
optical center of the camera is interrupted by an opaque physical object. Occlusion is modeled in two
distinct ways, depending on the type of information about the scene available.

• Deterministic occlusion: A bivalent criterion depending on whether the ray is interrupted by
static objects or objects with known dynamics (e.g. walls).

• Random occlusion: A criterion depending on the probability that the ray to the point is inter-
rupted by stochastic objects (e.g. humans).

In theory, deterministic occlusion could be treated as a special case of random occlusion with oc-
cupancy probabilities in {0, 1}, but in practice the information is modeled sufficiently differently to
warrant the distinction; in fact, all surveyed models with a random occlusion criterion also consider
deterministic occlusion separately. Self-occlusion is typically handled by a combination of the above
and an upper bound of 𝜋/2 on the maximum view angle.

Environment Model

A nearly universal feature of environment models for visual coverage is some respresentation of static
occluding structures, especially walls. Originating with the classic art gallery problem [26], the two-
dimensional representation is oen in the form of one or more polygons; this generalizes to polyhe-
drons in three-dimensions. Naturally, these are used in computing the deterministic occlusion crite-
rion.

In some cases, a probabilistic model of occupancy and/or agent dynamics is also provided, allowing
for the computation of the random occlusion criterion. is model may be informed in part by the
static scene model, if one is available, in e.g. the imposition of constraints on agent motion.

Task Model

e relevance function 𝑅 takes the general form of Definition 3. As 𝒮 ⊇ ℝ, task points in ⟨𝑅⟩ are
located at physical points in the environment. Most commonly, 𝑅 represents a relatively large volume
of the environment to be observed, or some localized feature or object to be inspected or tracked.
Frequently, 𝑅 is not specified explicitly: rather, it is implied by the structure of the static environment
model and/or the probability distributions of agent dynamics.

A recurring motif in the literature is that the quantification of visual coverage depends as much on
the task as it does on the imaging system. Generally, given a computer vision algorithm used in a task,
it is possible, at least in principle, to quantify so or hard requirements on the criteria described in
the sensor model. ese typically include minimum and maximum resolution, maximum acceptable
blur circle diameter (or equivalent focus criterion), and maximum acceptable view angle, depending
on whether these criteria are observed by the model.
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3.2.2 Geometric Coverage Models by Application

View Planning

e single-camera view planning problem received a significant amount of aention in the late 1980s
and 1990s, prior to the advent of multi-camera networks. With the problem so posed, the objective is
to find a viewpoint which adequately covers the target feature or features—which, in general, may be
defined by a relevance function—according to a set of task requirements. e output of such methods
is in the form of a (possibly empty) set of suitable viewpoints. It is generally straightforward to invert
the criteria to obtain the coverage function over 𝒮 for any particular viewpoint. Tarabanis et al. [27]
present an excellent survey of the earlier work on this topic. Typically, the target systems employ
a single camera observing a relatively well-controlled scene, and both require and can afford high-
fidelity coverage models. e work of Cowan and Kovesi [7] and Tarabanis et al. [8] are quintessential
examples from this period.

is exact approach does not scale well to systems with more than a few cameras at most, and the
multi-camera context introduces additional design variables, including, of course, the number of cam-
eras (possibly with a competing cost objective). Nonlinear optimization techniques andmetaheuristics
are the tools of choice, encouraging the use of much simpler coverage models. Typically, the objective
is to search for either the solution with maximum coverage given a fixed cost or number of cameras,
or the solution with minimum cost or number of cameras yielding some minimum coverage.

A basic formulation is equivalent to the classic art gallery problem [26]; González-Banos and
Latombe [28] frame it so, with their model assuming omnidirectional visibility and infinite range.
Significantly higher fidelity can be achieved simply by limiting visibility and range, but this funda-
mentally changes the problem. Drawing on the sensor network literature, Ma and Liu [29, 30] propose
a so-called boolean sector coverage model (derived from the common 2D disc model [31]), enabling
them to treat view planning as a set cover problem [32, 33]. Qian and Qi [34], Wang et al. [35], and
Jiang et al. [36] further develop this direction. Erdem and Sclaroff [37, 13] approach the problem with
a more realistic two-dimensional model; subsequent results using different coverage model and opti-
mization techniques but an overall similarmethod have been reported byHörster and Lienhart [14, 15],
Angella et al. [38], and Zhao et al. [16, 17, 18]. Malik and Bajcsy [39] address view planning for stereo
camera nodes similarly. Yao et al. [40] adapt this type of approach to surveillance networks with
tracking and handoff tasks, adding a “safety margin” to their coverage model to enforce the necessary
coverage overlap. e work of Mial and Davis [41, 42, 43] extends the set of constraints to include
random occlusion, important in a significant subset of applications involving relatively high densities
of dynamic agents.

View Reconfiguration

Coverage models and optimization techniques used in approaching view reconfiguration problems
reflect the need for real-time online performance. Bodor et al. [44, 45] and Fiore et al. [46] seek to
optimize the configuration of cameras mounted on mobile robots for global scene coverage. Piciarelli
et al. [19, 20] address reconfiguration of pan-tilt-zoom (PTZ) cameras, common in surveillance appli-
cations. Ram et al. [47] and Erdem and Sclaroff [13] both also touch on PTZ reconfiguration; the laer
do so by introducing a time constraint to the view planning. Chen et al. [48] focus on the view angle
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criterion in optimizing the configuration of rotating (panning) cameras.

View Selection

With a smaller solution space and usually more loosely defined task requirements, coverage model
used in view selection focus on high-fidelity, usually graded quantization of coverage. Reed and
Allen [49] and Chen and Li [21] approach the related next best view problem using coverage model
similar to those used in view planning. Park et al. [50] use a relatively simplistic three-dimensional
coverage model for view selection, acknowledging that a more sophisticated model could be substi-
tuted. e approach of Shen et al. [51] is notable for assigning a scalar coverage metric to the stimulus
space and for allowing task-specific weighting of the individual criteria; they also touch on a ver-
sion of the view planning problem. Soro and Heinzelman [52] approach a slightly different problem:
given a desired viewpoint directly—as opposed to a coverage objective in the form of a relevance
function—their algorithm aempts to find the closest actual available viewpoint, subject to energy
costs.

Load and Storage Distribution

For completeness, it is worthmentioning the geometric component of the topological coverage overlap
model of Kulkarni et al. [53], which differs from other models surveyed here in that it is not analyt-
ically derived from a camera model. Instead, it is purely empirical: through a Monte Carlo process
whereby a structured target is placed at an arbitrary number of random points in the scene, each cam-
era with a view to the target at a given position estimates its pose, and each Voronoi cell [54] around
a target position forms a part of the geometric coverage of each camera that observed that position.
In combination with the topological model, it is applied to load scheduling problems.

3.2.3 Analysis and Comparison of Models

Table 3.1 compares the nature and properties of a number of camera network coverage models from
the literature, grouped by application. Since most of these models have been developed with spe-
cific applications in mind (indicated in the first column), it should be interpreted as a comment on
the generality, and not necessarily the validity or quality, of the models. e second column indi-
cates the dimensionality of the model; a dimensionality of 2.5 indicates that the final representation is
two-dimensional, but is derived from three-dimensional characteristics of the sensor system and envi-
ronment. e third column indicates whether the coverage function is graded, i.e. whether it assigns
to a point a scalar measure of coverage in some form (weighted, probabilistic, fuzzy, etc.); non-graded
functions are bivalent. e following four columns indicate which of the imaging coverage criteria—
field of view, resolution, focus, and view angle—are observed. e final two columns indicate which
type of occlusion models—deterministic and/or random—are used. It should be noted that, in some
cases, the authors do not provide quantitative descriptions of some criteria or means of obtaining the
information required to derive them.
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Table 3.1: Comparison of Selected Visual Coverage Models

Properties Imaging Criteria Occlusion
Model App. Dim. Grd. FOV Res. Foc. Ang. Det. Rnd.

Cowan and Kovesi [7] VP a a a ! ! ! ! !

Tarabanis et al. [8] VP a a a ! ! ! ! !

González-Banos and Latombe [28] VP a a !

Wang et al. [35] VP a a ! !

Jiang et al. [36] VP a a ! !

Erdem and Sclaroff [13] VP a a ! ! !

Hörster and Lienhart [15] VP a a ! ! !

Angella et al. [38] VP a a a ! ! ! ! !

Zhao et al. [17] VP a a a ! ! ! ! !

Malik and Bajcsy [39] VP a a a ! ! !

Mial and Davis [43] VP a a s ! ! ! ! ! !

Bodor et al. [45] VR a a s ! ! ! !

Piciarelli et al. [20] VR a a s ! !

Park et al. [50] VS a a a ! ! !

Shen et al. [51] VS a a s ! ! ! !

Dimensionality of the Stimulus Space

Although vision is an inherently three-dimensional phenomenon, many coverage models in the lit-
erature are two-dimensional. In such cases, to simplify the problem at hand, it is assumed (either
implicitly or explicitly) that

• all cameras are positioned in a common plane,

• all targets are constrained to a common plane, and

• the scene consists of occluding vertical “high walls.”

Inmodels derived from the art gallery problem formulation, e.g. González-Banos and Latombe [28],
the choice reflects the fact that three-dimensional generalization of the problem is NP-hard [55]. e
vast majority of work on sensor network coverage problems [56] has employed two-dimensional disc
models [31] (although the three-dimensional case has been studied [57]), assuming a roughly pla-
nar environment. Some camera network models, including those of Ma and Liu [29, 30, 33], Wang
et al. [35], and Jiang et al. [36], follow directly from this tradition, simply restricting the disc to a
sector [31] for directionality. Erdem and Sclaroff [13] and Hörster and Lienhart [15] do not appear
to share this lineage, and explicitly cite the complexity of their respective optimization methods as
motivating their restriction to two dimensions. e model of Yao et al. [40] appears to be heavily
influenced by that of Erdem and Sclaroff. In all of the preceding cases, the domain of camera coverage
is explicitly planar.

In contrast, some two-dimensional models are not developed from the ground up as such. Bodor et
al. [44, 45] and Mial and Davis [43] begin with three-dimensional analytic treatments of their respec-
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D.2 Camera Lenses

e choice of lens greatly affects the characteristics of an imaging system. e models used most
prominently in the experimental work in this thesis are shown here with specifications.

D.2.1 Computar M3Z1228C-MP

e Computar M3Z1228C-MP is a high-quality varifocal lens with low distortion. It is used in ap-
plications with a relatively close working range where the focus and aperture seings remain fixed.
In typical applications, the maximum aperture ratio is used, limiting the depth of field but allowing
accurate modeling of focus.

Figure D.4: Computar M3Z1228C-MP

Table D.4: Computar M3Z1228C-MP Specifications

Focal Length 12mm - 36mm
Max. Aperture Ratio 1 ∶ 2.8
Max. Sensor Size 8.8mm × 6.6mm
Mount Type C-mount

D.2.2 Computar H10Z1218-MP

e Computar H10Z1218-MP is a high-quality varifocal lens with low distortion and motorized focus,
zoom, and iris controlled by an ImageLabs V1LC controller. It is used in applications with a relatively
close working range where the focus and aperture seings are variable.

Figure D.5: Computar H10Z1218-MP
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Table D.5: Computar H10Z1218-MP Specifications

Focal Length 12mm - 120mm
Max. Aperture Ratio 1 ∶ 1.8
Max. Sensor Size 6.4mm × 4.8mm
Mount Type C-mount

D.2.3 NET SV-0813V

e NET SV-0813V lens is a compact varifocal lens with low distortion. It is used in applications with
medium to far working range where the focus and aperture seings remain fixed.

Table D.6: NET SV-0813V Specifications

Focal Length 7mm - 8mm
Max. Aperture Ratio 1 ∶ 1.3
Max. Sensor Size 2/3ᇳ
Mount Type C-mount

D.3 Miscellaneous

D.3.1 Mitsubishi RV-1A

eMitsubishi RV-1A is a six-axis robotic arm typical of manipulators found widely in industry. Com-
mon motion planning, programming, communication, and safety features are present. e unit itself
is supported by a Mitsubishi CR1 controller and teach pendant. Several of the experiments presented
in this thesis involve communication with the robot via RS-232 serial link fromAdolphus and/or HAL-
CON [115].

Figure D.6: Mitsubishi RV-1A

D.3.2 ASUS Eee Box EB1007-B0410

e ASUS Eee Box is a compact form factor general-purpose PC based on the Intel Atom CPU. is
device was selected for smart camera network research owing to architecture support for Linux,
Python [166], HALCON [115], and the NET iCube drivers, and as they are more powerful than typical
general-purpose embedded computers, can be applied to the full range of common smart camera tasks.
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D.3. Miscellaneous

e Advanced Control Systems Laboratory possesses ten of these devices, named Overlord, Zergling,
Hydralisk, Lurker, Mutalisk, Devourer, Guardian, Defiler, een, and Ultralisk.

Figure D.7: ASUS Eee Box

Table D.7: ASUS Eee Box EB1007-B0410 Specifications

Processor Intel Atom D410 1.66GHz
Processor Cache 512KB L2 Cache
Main Memory 1GB DDR2
Hard Drive 250GB 5400RPM SATA
Graphics Intel GMA 3150
Power Supply 40W Power Adapter
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Glossary of Terms

Glossary of Terms

aperture
In an optical system, the opening through which light passes. 44, 85, 113, 116, 126

apex angle
One of the angles (horizontal or vertical) subtended by the field of view. 19, 25, 114, 115

baseline
In a stereo camera pair, the horizontal distance between the optical centers of the two cameras.
51

blur circle
An optical spot caused by a cone of light rays from the lens not coming into perfect focus when
imaging a point source. 19, 20, 26, 46, 47, 49, 81, 82, 116

complex feature
An atomic feature composed of multiple (or a continuous range o) point features. 51

connected component
In graph theory, a subgraph of an undirected graph in which any two vertices are connected to
each other by paths, and which is connected to no additional vertices. 31, 37

coverage function
A function dependent on the sensor system, environment, and task mapping the stimulus space
to a bounded numeric range (see Definition 1). 10–16, 18, 20, 24, 26–28, 47, 50–53, 57–59, 64,
66–68, 80, 82, 84, 89, 99, 105, 107

coverage hull
e subset of points in the stimulus space with nonzero coverage, according to a coverage func-
tion. 11, 14, 36

coverage model
A set of parameters modeling the sensor system, environment, and task, along with a specifica-
tion of their relations, defining a coverage function in terms of the parameters. 7, 8, 11, 14, 15,
18–22, 24, 26–29, 32, 42, 45, 46, 51–54, 57–59, 64–66, 75, 77–80, 90, 105–107, 120, 122, 123
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Glossary of Terms

depth of field
A range along the focal axis of a camera in which objects appear acceptably in focus (i.e. points
map to acceptably small blur circles), according to some criterion. 19, 25, 26, 44, 126

deterministic occlusion
A model of occlusion caused by static objects or, more generally, objects with known dynamics.
20, 27, 45, 50, 53, 57, 58, 83, 122

directional point
A point in directional space. 43, 50, 51, 70

directional space
A space consisting of three-dimensional Euclidean space plus two additional degrees of freedom
for direction (see Definition 4), serving as the visual stimulus space under the assumption of
rotational invariance about the optical axis. 42, 43, 51

extrinsic parameter
A parameter of a sensor model describing a value of its pose in Euclidean space. 12, 44, 99, 116

field of view
e quadrilateral pyramid enclosing the subspace of ℝଷ within which points project onto the
image sensor. 19, 22–25, 27, 33, 46–49, 51, 55, 57, 58, 77, 114, 117, 122

focal length
In the pinhole camera model, the distance from the focal point to the image plane along the
optical axis. Refers to the effective focal length of a complex optical system. 44, 113, 116

focal plane
In the pinhole camera model, the plane in which the theoretical thin lens and aperture point lie;
the principal plane. Coincides with the 𝑥-𝑧 plane of the camera coordinate system. 113

focus
As applied to a digital camera and its optical system, the property of sharpness in the imaging
of an object, quantified by the blur circle diameter; dependent on the depth of the object and
optical properties. 19, 20, 22, 26, 29, 47, 50, 55, 61, 81, 122, 126

height resolution
e smallest change in height (in the direction of projection of the laser) detectable by a range
camera. Usually measured in terms of units of length per pixel, and may require multiplication
by a subpixel-accuracy factor; dependent on the depth of the object being imaged, the view
angle with respect to the laser projection, and optical and sensor properties. 79–83

hyperedge
An edge connecting any number of vertices in a hypergraph. 16, 33, 99, 101, 111, 112
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Glossary of Terms

hypergraph
A generalization of the graph, in which an edge (hyperedge) can connect any number of vertices.
16, 32, 33, 36, 97–99, 103, 111, 112

image plane
In the pinhole camera model, the plane on which the three-dimensional scene is projected
through the camera aperture (optical center). Parallel to the 𝑥-𝑦 plane (focal plane) in the camera
coordinate system. 43, 46, 58, 113, 114, 119

intrinsic parameter
A parameter of a sensor model describing some property internal to the sensor. 12, 44, 86, 116

jitter
In view selection, a phenomenonwhereby calibration and estimation errors cause high-frequency
transitioning between two views, resulting in an undesirable view sequence. 70, 72, 75

laser plane
In active 3D vision based on triangulation from structured light in the form of a projected line
(oen by a laser diode with line projection optics), the plane in which the line is projected. 80,
81, 84–86, 89, 91, 119

occlusion
e effect of an opaque object obstructing the line of sight to a point beyond the object from the
viewpoint. 45, 53, 77, 80, 90, 91

optical axis
e imaginary line which defines the path along which light propagates through the lens system
of a camera; the principal axis or principal ray. Coincides with the axis of rotational symmetry.
Considered the positive 𝑧-axis of the camera coordinate system. 19, 25, 26, 42, 47, 55, 80, 82, 85,
86, 113–115

optical center
e focal point of the optical model of the camera. In the pinhole camera model, coincides with
the aperture point. Considered the origin of the camera coordinate system. 19, 20, 25–27, 47,
50, 58, 86, 113, 114

pan-tilt-zoom camera
A camera capable of modifying the direction of its optical axis and its focal length (zoom) by
way of motorized mount and lens. 5

pinhole camera model
Mathematical description of the projection of a 3D point onto a 2D image plane in an ideal
pinhole camera (point aperture, no lens effects). 24, 25, 45, 113, 116

point feature
A visual stimulus originating at a point in ℝ. 18–20, 26, 31, 42, 46, 48, 50–52
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pose
A rigid Euclidean transformation in 𝑆𝐸(𝑛). 4, 6, 12, 14, 19, 22, 24, 33, 43–45, 47, 50, 52, 54, 55,
59, 66, 70–72, 74, 75, 80, 82, 85, 88, 89, 106, 109, 111, 113, 116–118, 121, 122

positioning error
e uncertainty in the actual pose of an object (e.g. a camera) in realization of a prescribed pose.
24

power set
e set of all subsets of a set, including the empty set and the set itself. symbol 16

principal point
In the pinhole camera model, the point at which the optical axis intersects the image plane; the
image center. symbol 44, 113, 114, 116

random occlusion
Aprobabilistic model of occlusion caused by stochastic objects with uncertain occupancy and/or
dynamics, such as humans. 8, 20, 21, 27, 28, 41, 45, 105–107

relevance function
A function mapping the task point set to a bounded numeric range based on relevance to the
task (see Definition 3). 13–16, 18, 20, 22, 24, 27–29, 47, 51, 52, 54, 59, 66–68, 70, 81, 98, 99,
105–107, 122

resolution
e smallest change detectable by a sensor in the quantity that it measures. For digital cameras,
usually measured in terms of units of length per pixel; dependent on the depth of the object
being imaged and optical and sensor properties. 19, 20, 22, 24–26, 29, 44, 46, 47, 49, 55, 57, 58,
61, 80–82, 122

scanning density
e density of points in a point cloud generated by a 3D scan. In active triangulation, dependent
on the transport pitch and the horizontal imaging resolution. 79, 81, 82, 91

self-occlusion
e phenomenon whereby some part of a (complex) object interrupts the ray from a feature on
some other part of its surface to a camera. 20, 26, 47, 58

stimulus
An atomic unit of information perceived by a sensor system. 3, 5, 7, 10–14, 16, 18, 19, 47, 51, 80,
98

stimulus space
e space in which vectors represent stimuli detectable by a sensor system. 7, 10, 11, 13, 14, 16,
18, 22, 42, 51, 52, 65, 83, 107
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subject distance
In an optical system, the distance at which objects are projected onto the image plane in focus.
19, 26, 44, 116

task
A process to be carried out by a sensor system online, one or more of which comprise the end
objective of the system. 2–8, 10, 11, 13, 15, 16, 18, 20–22, 26–30, 33–36, 42, 44, 46–48, 51–54, 57,
59, 61, 64, 67, 70, 75, 78–82, 84, 85, 89–92, 94, 97–99, 101, 102, 105, 118, 120–122

task point set
e subset of points in the stimulus space with nonzero relevance, according to a relevance
function specified by a task. 14, 15

view
e set of configuration parameter values of a multi-camera system; the instance of a vision
sensor system model (equivalent to a viewpoint for single-camera systems). 4, 5, 30, 32, 33, 38,
39, 46, 52, 64–70

view angle
e angle between the surface normal of a stimulus point located on a surface and the ray from
the camera’s principal point through the stimulus point. 19–23, 26–28, 46, 47, 50, 52, 56, 58, 61,
80–83, 99, 122

view sequence
A discrete ordered set of views, each associated with an interval of time. 5, 64–68

viewing frustum
e pyramidal frustum of visual coverage obtained by truncating the field of view with depth
limits imposed by resolution and/or focus constraints. 19, 24–26

viewpoint
e combined set of intrinsic and extrinsic parameter values of a camera; the instance of a vision
sensor model. 2, 4, 5, 19, 20, 22–24, 28, 78

vision graph
A graph encapsulating the pairwise coverage overlap topology of a set of cameras. 30–33, 35,
37, 59, 69, 74, 118
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