
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2012

A Petri-Net Based Approach of Software Visualization for A Petri-Net Based Approach of Software Visualization for

Software Customization Software Customization

Vida Sadri
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sadri, Vida, "A Petri-Net Based Approach of Software Visualization for Software Customization" (2012).
Electronic Theses and Dissertations. 5409.
https://scholar.uwindsor.ca/etd/5409

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5409?utm_source=scholar.uwindsor.ca%2Fetd%2F5409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Petri-Net Based Approach of Software Visualization for Software
Customization

by

Vida Sadri

A Thesis
Submitted to the Faculty of Graduate Studies

through the School of Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, ON, Canada

2012

© 2012 Vida Sadri

A Petri-Net Based Approach of Software Visualization for Software Customization

by

Vida Sadri

APPROVED BY:

__
External Reader

Dr. Gokul Bhandari
Odette School of Business

__
Internal Reader
Dr. Luis Rueda

School of Computer Science

__
Advisors

Dr. Jessica Chen
Dr. Xiaobou Yuan

School of Computer Science

__
Chair of Defense

Dr. Boubakeur Boufama
School of Computer Science

iii

DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Different from the traditional approach of software development from scratch,

Software Product Line (SPL) allows software customization. When further supported by

Service-Oriented Architecture (SOA), SPL offers unprecedented advantages for reusing

software artifacts in mass customization of software applications, leading to radically

reduced time, cost, and effort of software development. Accordingly, an interactive

dialogue-based system for ontology-based requirement elicitation has been developed

previously, in our research group, by Zhang [19].

This thesis works on enhancement of the prior work by introducing software

visualization to the process of interactive requirement elicitation. A research was

conducted for choosing the most suitable visualization method for the existing text-based

software. For this purpose, a layered structure for SOA visualization with support of Petri

Nets is chosen. Accordingly, this method was implemented and a usability study was

done to validate improvements in comprehension of the end-user in visualized version

comparing to the previous version of requirement elicitation system.

v

DEDICATION

To my beloved parents for their unconditional love and support.

vi

ACKNOWLEDGEMENTS

My ultimate gratitude goes to my supervisors, Dr. Xiaobu Yuan and Dr. Jessica

Chen, for their continuous advise and support throughout my thesis. Their insightful

feedback and instructions made it possible for me to accomplish this work.

I would like to acknowledge Dr. Luis Rueda and Dr. Gokoul Bhandari whose

suggestions and recommendations greatly improved the quality of this work.

My special thanks goes to my parents and my family for their patience and love

they provided to me during all times.

I express my deep appreciation to my friend Navid, for his encouragement,

motivation and moral support he provided during all stages of my higher education. He

made this work so meaningful to me.

Many thanks to my good friends Ahmad Tavakoli and Ali Karaki for their

valuable and helpful ideas on this work.

I would like to thank students of Computer Science and Business departments

who participated in the study of my thesis. I am deeply grateful for the time and effort

they spent on the test.

vii

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY .. iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER

I. INTRODUCTION ... 1
1.1. Introduction ...1
1.2. Problem Statement ..2
1.3. Contribution ...3
1.4. Structure of the Thesis ...4

II. SOFTWARE CUSTOMIZATION .. 5
2.1. Software Product Line ...5
2.2. Service Oriented Architecture ...6
2.3. Integration ...7
2.4. Requirement Elicitation ...9

III. SOFTWARE VISUALIZATION .. 15
3.1. Software Visualization ..15
3.2. Software visualization techniques analysis17
3.3. Petri-Nets ...20

IV. PROPOSED PETRI-NET BASED SOA VISUALIZATION
METHOD ... 23

4.1. Introduction ...23
4.2. The structure of the proposed method ...24
4.3. Modified Algorithm ..26

V. IMPLEMENTATION AND USABILITY STUDY 32
5.1. Implementation ..32

viii

5.2. Usability Study ..33
5.3.Proposed Usability testing Method .. 37

VI. RESULTS ... 39
6.1. Briefing ..39
6.2. Requested Tasks ..40
6.3. Scores ..42
6.4. Time ...43
6.5. Questionnarie ...44
6.5.1. Learnability ..44
6.5.1.1 Easiness ..44
6.5.1.2 Undrestandability ...45
6.5.2. Efficiency ...47
6.5.3. Error-rate ..48
6.5.4. User Satisfaction ...51
6.6. Necessity ...52
6.7. Problems ..53
6.8. Overall Opinion ...56

VII. CONCLUSION AND FUTURE WORK .. 60
7.1. Conclusion ...60
7.2. Future Work ..61

APPENDICES ... 62
Appendix A ...62

Appendix A1 ..63
Appendix A2 ..64

Appendix B ...65
Appendix B1 ..65
Appendix B2 ..66

REFERENCES ...67

VITA AUCTORIS ...73

ix

LIST OF TABLES

1. Comparison of different workflow visualization techniques19

2. Distribution of participants in the test according to their academic level39

3. Statistical parameters for the sample populations ..42

4. Easiness and understanding points for different groups ..47

5. Average results for Text-based and visualized interfaces57

6. Average results for all measured parameters for Comp. and Business students ...58

x

LIST OF FIGURES

1. Requirement model instantiated with book locating service14

2. An example of a Petri net ...21

3. Different routings in Petri nets ...22

4. Architecture of the modified system ..24

5. The text-based user interface ...26

6. The enhanced text-based system with the graphical interface27

7. The modified pseudo code of the system ...30

8. Comparison of average Easiness point to average Score45

9. Comparison of Easiness point to the estimated Understandability point46

10. Comparison of Efficiency between different groups ...48

11. Comparison of users’ actual error-rate with claimed relation of users’ error-

making and interface ..50

12. User overall satisfaction of the system for different groups51

13. Necessity (percentage) of visualization according to users (graphical group)53

14. Percentage of users that acknowledged problems (a, b and c) for text-based

system ..54

15. Percentage of users that acknowledged problems (a, b and c) for graphical

system ...55

16. Overall participants’ ideas about the whole idea of SDP and SPL57

1

CHAPTER I

INTRODUCTION

1.1. Introduction

In software development process there is a need to cut down the cost, effort and

market of software products. The size and complexity of software systems are increasing

day by day and it is essential that the developed software be flexible enough to adapt to

market changes and new technologies [1]. Therefore, improving reusability and hence

quality will increase the productivity of software teams and reduce the time and cost to

market new software products. Product assembly from components, reducing labour

intensive tasks with automation setting up the software product lines and supply chains

and standardizing the interfaces, architectures and processes can bring the software

industry to a much higher productivity [2]. This can be done by Software Product Line,

which produces a set of distinct but similar products, and Service Oriented Architecture,

which solve the integration and interoperability problems, together. They both promise

the development of flexible, cost-effective and reusable software systems [3].

On the other hand, to make the process of software development less complex and

more understandable for software developers it is essential to use some tools for

supporting the tasks which are included in software development process specially for the

most curtail phase which is the requirement elicitation phase. One possible aspect for

such a support is Software Visualization (SV). Recently so many software visualization

techniques and tools are available but it is critical to choose the most suitable one for a

suitable activity in software development process to do the most effective visualization

for a specific software system [4].

2

1.2. Problem Statement

It is discussed in many papers [1, 2, 5, 6, 7], that when SOA concept is used in

Software Product Line, it will make a mass customization of software application by

reusing software artefacts which can be very beneficial, specially time-wise and effort-

wise. Based on this fact, beforehand, an interactive text-based dialogue interface has been

developed in our research group [19], which interacts with the user who wants to do

software development, in natural language and does the requirement elicitation process

automatically based on the ontology behind it. The ontology represents the knowledge of

the product features as well as their business logic. It represents the commonalities and

variabilities among a group of related artefacts and in this way it directs the dialogue

system to perform requirement elicitation [19].

The problem here is, the mentioned idea seems beneficial in theory but it is not

proved that its usage in industry can be advantageous or not. It is needed to be evaluated

in practice on different real users, to be formally certified as an applicable, usable

technique.

On the other hand, the text-based dialogue system can be enhanced. The software

developer needs to have an overall overview of the system that the text-based system

lacks in having this feature. Also, the user needs to know what steps are already done and

what steps are left. Reading all long comments on the dialogue system and understating

all of them and keeping them all in mind in order to do software development can be a

tough and time consuming job. This process will need several activities such as reading,

reasoning and constructing mental models. Consequently, there is a need for a more

optimal solution.

As described earlier, software visualization can be noticeably beneficial when it is

3

used in different phases of the process of software development. Based on [31] graphical

representation of information comparing to other presentation methods consumes user’s

information-processing capabilities much more efficiently. If the graphic presentation is

used properly, it reduces the need for mental information recording and reorganization

and also it decreases the memory load. On the other hand, the interaction between human

and the machine would be much faster and simpler and on the whole appealing for the

users [31]. Therefore, different software visualization techniques should be studied and

the best one for this type of system should be chosen. The chosen, proposed method can

be implemented as an additional user-interface.

At the end, another evaluation should be conducted in order to justify the usability

of the visualized part of the project to prove if it really enhances the comprehension of

the system for the users and even advances in usability factors which are, learnability,

efficiency, error rate and user satisfaction should be investigated.

1.3. Contribution

This thesis, presents a visualized user-interface for the implemented dialogue-

based, interactive requirement elicitation system, with the purpose of enhancing the

understanding of the user of the dialogue system and reducing time, cost and effort spent

on working with the previous system and in overall increasing the usability of the system.

Because both dynamic flow and concurrency of the distributed services was aimed to be

illustrated in the graphical visualization, a two layered interface which shows both

services in one layer and the workflow of the system in another system have been chosen.

For visualizing the workflow layer, Petri-net, which is a very well known formalism for

modeling the behavior of concurrent systems [25], has been decided to be used as the

4

most suitable technique for designing the visualization of this type of system.

Both, previous text-based system and the proposed, implemented system with the

graphical user interface should be evaluated for justification of, first of all, if the

ontology-based requirement elicitation approach is acceptable by real users and second, if

the graphical user interface improves the usability of the previous text-based system.

Therefore, a usability study will be conducted at the end on real users to see if all the

expected benefits will be met or not.

1.4. Structure Of the Thesis

The structure of the remainder of this thesis is as follows. Chapter II is about

Software Customization, which SPL and SOA concepts will be discussed in detain in this

chapter. In Chapter III, Software Visualization will be discussed. Chapter IV will report

the proposed Petri Net visualization method followed by implantation and usability

testing and the results of the thesis in chapter V. The final chapter of this thesis puts this

project into perspective, by discussing the major results and their impact, and by

providing an outlook into future work.

5

CHAPTER II

SOFTWARE CUSTOMIZATION

2.1. Software Product Line

Traditionally, the software used to be applied on products was very small and

simple. In order to modify and produce a new product, it used to be much easier and

cheaper to copy, transport or replace the software than the hardware. The main focus of

generating a product was on the hardware and software did not used to play a key role in

product generation [8].

However, now, software plays a very critical role in any system. The reason for

that is the flexibility of software in modifying the system and also software’s strength in

adding a new functionality to the system, which perhaps it would be difficult to be

performed without it and only by means of modifying the hardware. Therefore, in order

to make the system production’s process much more efficient, the concept of Software

Product Line Engineering will be addressed [8].

Software Product line is a paradigm to develop software applications and software

products, by building reusable parts and reusing them. For this purpose mass

customization is being used which means large production of goods with taking into

account the customer’s individual requirements. For this purpose, we should focus on

commonalities and differences in the applications (in terms of requirements, architecture,

components and test artifacts) of the product line to be modeled in a common way [8]. By

using SPL, some advantages can be gained such as reduction of development cost and

time, enhancement of quality, coping with evolution and complexity and etc [8].

Software Product Line Engineering Paradigm consists of two processes: Domain

6

Engineering and Application Engineering.

Domain Engineering establishes a platform and defines commonalities and

variabilities of the product line. Our main focus in this thesis is on domain engineering

process [8].

Application Engineering derives the application from the platform, which is built

by domain engineering [8].

Although lots of research has been conducted on benefits of using Software

Product Lines for software development and how to scope and define and develop

product lines but only few approaches and tools are available for product derivation and

the way utilize the product line [9].

 Another concept that currently gets a lot of attention in researches and in many

papers is brought with the concept of SPL is Service Oriented Architecture. In some

research papers [1, 2, 5, 6, 7] it is discussed about combining SPL and SOA together to

improve the practical value of SPL, to make the software development process more

efficient and to improve the quality of the developed software. It is believed that this

combination can decrease development costs and effort, improve time to market,

application customized to specific customers or market segment needs and competitive

advantages [1]. The reasons for these claims will be discussed later.

2.2. Service Oriented Architecture

“Service Oriented Architecture is an information technology architectural

approach that supports the creation of business processes from functional units defined as

services” [10].

Services are modules of business or application functionality. SOA consists of

7

services, which are shared and reusable on an IT network and they communicate with

each other. This communication can either be held by data passing between services or

by coordination of two or more services for doing a common activity [11].

The basic SOA is based on interaction between three software agents, which are

called service provider, service consumer and service registry. The three operations,

which are being conducted in this architecture, are find, bind and publish. Service

provider develops and publishes services’ descriptions and their access information in

service registry. Service requester tries to find the most suitable service in the service

registry and by means of available access information in service registry, will bind the

required service to the service provider to invoke required services [12]. SOA is both a

business strategy and a software architectural principle [39].

Service Oriented Architecture is a rapid, low cost and easy composition of

distributed applications, which is the best paradigm to minimize business environment

complexity and maximize the productivity [6].

The advantages of service orientation are loose coupling, abstraction and

reusability of business functionalities [13].

2.3. Integration

However, SOA lacks in supporting high customization and systematic planned

reuse. It means that it is possible to use certain services for software development but if

any changes happen to the order or participants of service composition services, which

are not designed to be highly customizable and reusable, would not support variability.

Thus SPL engineering, which basically has the principle of variability, customization and

systematic planned reuse, can be used to aid SOA for better functionality and achieve

8

these benefits [1]. Furthermore, the integration of SPL and SOA concepts give the ability

of reusing existing services instead of continuously developing them from scratch [44].

As a conclusion for this part the concepts of SPL and SOA are in no way mutually

exclusive and where they differ they act as each other’s complement [2].

9

2.4. Requirement Elicitation

Traditionally the process of software development used to have little or no

dependency on business processes. Programmers used to sit and write a code, which is

supposed to be useful. But this method will not be useful for the larger and more complex

systems. Therefore the system life cycle has been broken into smaller parts, which are

called phases. Requirement engineering is the earliest phase in this process, which is

typically proceeded by business planning [14].

“Requirements Engineering (RE) is the systematic process of developing

requirements through an iterative cooperative process of analyzing a problem,

documenting the resulting observations in a variety of representation formats, and

checking the accuracy of the understanding gained.” [15].

One of the essential tasks of RE during software engineering is Requirement

Elicitation. Researches show that a major cause of problems in software projects is

inadequate requirement engineering [8]. Consequently, the basic prerequisite of software

product line, which is a software developments paradigm, is requirement elicitation

process, which shows the commonalities and differences of the requirements [8].

There are different techniques that can be used for requirement elicitation. These

techniques are either conversational which is mainly conducted by interviews with two or

more people, observational which can be done by observing people when they are

carrying out their routine job, analytic which means exploring existing documentation or

knowledge gained from either conversation or observation and synthetic which is

combining conversation, observation and analytic methods into a single method. In

practice these techniques are not adequately applicable [16].

10

In [17] it is mentioned that useful, useable and desirable software products are

created using interaction design. Software developers do not benefit from interaction

design though. The tools that software developers use for developing are insufficient and

not appealing for them. Although the importance of using Human-Computer Interaction

(HCI) concept in Software Development Process (SDP) is not very clear for many

software developers, HCI experts have been tried to show that the integration between

these two, can cause better user satisfaction derived from a user-centered SDP [18].

However, conducting an interactive software engineering paradigm is still an issue.

One possible idea is to take advantage of both SOA and SPL concepts. SOA can

be used in order to makes it easier for the software engineers by introducing services as

loosely coupled software functionalities eliminating the lower-level complexity. On the

other hand SPL is useful for managing the variable software engineering. In interactive

software engineering, machines can be used to guide the users to select reusable software

assets and implementing the candidate application by composing the ordered services

[19].

The previous thesis from the same research group, which has been conducted by

Zhang [19], is titled as “An Interactive Approach of Ontology-Based Requirement

Elicitation”. In that project a requirement elicitation approach has been proposed for

SOA-based SPL engineering as a programming model for realizing the interactive

requirement engineering [19].

The proposed interactive model is a dialogue-based system, which interacts with

users in a natural language. The way dialogue system works is, it extracts and analyses

the expressions produce by human-beings users in order to accomplish a task and

11

generates an expression in a natural langue for the user accordingly. Therefore, dialogue

system can be a convenient way for human-machine interaction.

In the previous proposed dialogue system, slot-filling tasks is considered for the

requirement elicitation process, in which the user knows about the goals and has the

information about doing the task. These tasks will be done based on knowledge base of

the dialogue system. It is claimed in the previous proposed dialogue system that

ontology-based requirement engineering is the most popular technique among all the

other knowledge-driven requirement engineering techniques. Ontology represents the

common knowledge within a domain. It means that it provides shared vocabulary to

construct the concepts, objects and their properties and relations of a domain or a task,

which can cause common understanding of the structure of information between people

or software agents [40]. By using ontology, the common concepts of a domain can be

defined by experts and the knowledge can be used by people with any background and

without professional training [19].

To develop ontology, the concepts in the domain should be defined, and a

hierarchical order should be arranged between them. The slots and the allowed clauses

for those slots also should be defined. At the end the instances and the values for slots of

instances should be filled [41].

The model developed in the previous project, integrates the requirement

engineering knowledge with service-oriented knowledge. Since SOA encapsulates

application functionalities into loosely coupled services, software applications can be

implemented by discovering, composing and invoking services in SOA. The ontology of

services makes automatic service discovery and composition possible [42]. In ontology

12

there exists a class called ServiceProfile, which contains the characteristics of services

and is used to match with the client’s requests. It happens in this way that for the reason

of discovering services, the ServiceProfile of the requestor automatically will be matched

with the provider’s ServiceProfile through semantic capability matching [43] and if the

matching succeeds the desired services are found.

In the domain of requirement elicitation the requirements can be classified into

three categories of function, quality and softgoal. Each of these categories have different

roles in the system and also for all of them another factor called rank is defined which is

needed to direct the requirement elicitation process and is expressed in the ontology

model. Functions are the functionalities in the system that the user can order. Quality is a

non-functional constraint that imposed on a function. Softgoals are non-functional

constraints impose on the whole system environment. In between each of these three

types of requirements, some relationships exist such as generalize, decompose, rely,

contradict, associate, hasRank and invalid. These relationships will be discussed briefly

as follows [19]:

• Generalize relationship is defined to show that an instance of function, quality and

Softgoal is also an instance of requirement.

• When requirement ! decomposes to y, y is a less complex requirement of the

same type as x.

• Requirement x relies on requirement y it means that realization x relies on

implementation of y.

• When requirement x and requirement y contradict it means they are not supposed

to be realized with each other in the product software at the same time.

13

• Function x associates with quality y.

• HasRank relationship shows that requirement x has a unique rank r.

• Invalid relation ship shows that there is an invalid relationship between

requirements x and y.

For instantiating the ontology model, first all the these relationships should be

established between the available requirements and the following procedure will show

the instantiation of the ontology [19]:

1. The main functions which are the roots of the decomposition tree will be

identified

2. If any children of the root contribute to the composition with their parent, they

should be decomposed by the Decompose relationship and if the children of

children are also decomposable the same story should be repeated on them till

there is no composition between parents and children.

3. All the quality constraints should be found and the associate relationship

between children and the corresponding function should be established

4. Sofgoals should be identified and decomposed.

5. Rely and contradict relationships should be established

6. A rank should be assigned to each of the requirements based on their

importance.

Based on what has been discussed a graph as Figure 2.1 will be produced.

14

Figure 2.1. Requirement model instantiated with book locating service [19]

The way the interactive requirement elicitation works is a follows:

The requirements will be offered to the user one by one based on the rank is assigned to

them and the user should choose from them. If the requirement is essential it will be

picked automatically and regardless user’s opinion. The functions will be evaluated first

and after that all the qualities and evaluation of softgoals will be followed. All the

requirements will be met by the dialogue system. If the user decides to drop a

requirement the requirement which has the rely relation ship with that requirement will

be dropped as well. If a requirement decided to be picked by the user and another

requirement has the contradict relationship with that requirement will be dropped and the

requirement with the rely relationship will be picked as well [19].

15

CHAPTER III

SOFTWARE VISUALIZATION

3.1. Software Visualization

Software visualization means providing the image of existing software using

visual objects. Software visualization might visualize different aspects of the software,

such as software structure, components and even the runtime behavior of the software. It

is proven that appropriate visualization can significantly reduce the effort spent on

different phases of software development. By means of visualization, developers and

stakeholders can obtain an overall point of view of the software structure, software logic

or explain and communicate with the development process [4]. Generally, software

visualization is mainly used for program behavior exhibition, logical debugging and

performance debugging but it fundamentally is concerned with software comprehension

[20]. By providing a good graphical representation in order to visualize the software, a

better user understanding of the system can be more promising than textual representation

of the software [21].

By graphical presentation of information the capabilities of user’s information

processing would be utilized much more effectively than other presentation methods. If a

suitable graphical representation tool is chosen properly, there would be less need for

perceptual and mental information recording and it would reduces the memory loads. By

providing graphical interfaces, there would be a faster information transfer between

computer and people. Because it has been proven that symbols can be recognized and

classified faster and more precise than text by users. Also, because of its simplicity,

graphics will remain in casual users’ minds much easier. It also gives a better feeling of

16

control to users when they can see objects on the screen. In overall graphical

visualization can provide so many other benefits faster learning, faster use and problem

solving, more charming and etc. [31].

There are so many software visualization tools and techniques available [4].

Visualization techniques consist of collection of elements such as points, lines, shapes,

texts and textures which each of these elements illustrates an entity or an attribute from a

dataset, which is going to be visualized. In some cases more than one visualization

technique can be applied for a system [22].

Software visualization techniques can be categorized from motion perspective

into two groups of static and dynamic visualization. An example of static visualization is

view of the source code with colors [20]. Dynamic visualization is based on information

from the analysis of execution of a program [22] and the data generated at the runtime

such as data flow or control flow [20].

With regard to dimension, visualization can have either two or three dimensions.

Two-dimensional SV tools mainly involve graph or treelike representations, which may

contain many nodes and arcs [23]. For some systems with too much information to be

visualized, using two-dimensional technique may cause confusion. Therefore, in some

papers the need of extra spatial dimension is suggested, which may make it more possible

for the designer to describe more aspects of the system [23].

To choose the best visualization technique for the existing software, first of all,

the reason and goal of the visualization should be clear. Then the group of users and their

level of knowledge and experience with computer systems should be defined. Also, all

the existing objects and elements in the system and all the relationships between them

17

should be detected and it should be decided that what aspects of the system are going to

be presented. The usages and limitations of the existing system, which is going to be

visualized, should also be investigated [20]. On the other hand the current software

visualization techniques need to be evaluated. At the end the technique that mostly meet

the requirements of the system will be chosen and would be implemented.

3.2. Software Visualization Techniques Analysis

The main reason for this visualization is to make the text-based system

comprehensible for users. In this case, users would spend less time to have a more clear

and precise point of view of the system. It will happen in this way that instead of reading

the comments and memorizing the structure of the system, users will see the flow of the

system dynamically while working with the text-based system and have an overview of

the system in a big scale in front of them. The dialogue-based software is used in

requirement elicitation phase of software development process. Therefore the main group

of people who are going to take advantage of this visualization should be software

developers. However, it is a good idea to make it also easy for people with business

background to use this software in order to develop their required systems by themselves.

In this thesis, the main focus is to limit the visualization to the people with computer

background specially software developers. It is a difficult job to keep both groups with

diverse expectations from the system satisfied. The system has been tried to be designed

in a way that, working with it, be as easy as possible even for people with no specific

experience in working with computers. Usability testing will validate how useable the

system is. It will be discussed later.

18

Furthermore, since the system is SOA-based in many papers [1, 27, 28, 10, 29] it

is discussed that the appropriate approach for SOA visualization is a layered approach

because the concept of SOA has a layered structure. It is one of the SOA’s advantages

that multiple perspectives within an organization can be taken into account [30] since

basically SOA consists of both technical and functional aspects. Functional perspective is

mostly related to business people while technical perspective deals mostly with IT

people. In order to make it understandable for both groups of users, an SOA based system

should be visualized in a way to demonstrate both aspects. In the first layer, the flow of

the activities, which are being processed in the system, can be shown. The next layer can

visualize the services and the relationships between them. Even more layers such as

application layer which shows the implementation of the functionalities provided by

services in the service layer in more details, can be used depending on the level of

abstraction and the type of users [27].

Consequently, the required visualization method should be dynamic in order to

show the flow of the system. Also, because in some parts of the system some services

have the same rank to be evaluated the chosen visualization technique should be able to

show the concurrency and parallelism. Because SOA is used in this system, then it should

provide a layered design for visualization. For choosing the number of dimensions for the

system, both two and three-dimensional can be chosen depending on the level of details

needed to be illustrated. The main objects, which should be visualized, are few tasks such

as Evaluation, Pre-Evaluation, Picking (Yes) and Abandoning (No), that are repeatedly

being performed in the system. There is a flow in the system, which shows the order of

firing of the tasks in the system. This flow should be clearly presented to the users. Also

19

existing services, which are the very requirements that are going to be elicited, should be

depicted.

Many graphical visualization techniques exist that can depict the concept and the

workflow of the interactive requirement elicitation system. As it is mentioned, the

workflow process determines that which tasks need to be executed in which order and by

whom [26]. A list of some of the most popular and suitable techniques, which can be

used to visualize the workflow of software systems along with their advantages and

limitations, is shown in Table 3.1.

 Description Advantages Drawbacks

Flow Chart

Views the paths of a
code fragment [22]

Is a generic concept/
Applicable in every

programing
language [22]

Its representation lies in the
code abstraction [22]/ Does

not need explicit events.
Transition occurs

automatically upon
completion of activities [45].

State diagram

Illustrates process
states and

transitions among
the states [22].

Event-based / Gives
an abstract

description of the
behaviour of the

system [45].

Does not allow arcs to flow
from any number of states to

any number of states [49].

Activity diagram
Shows the overall

flow of control and
objects [46].

Supports iteration
and concurrency

[47].

They can get very big and
incomprehensible [48].

Petri nets

A graphical tool for
description and

analysis of
concurrent

processes [53].

Represents process
features such as

parallelism,
synchronisation and
conflicts [50]/ Very

powerful and
flexible for both

logical and
quantitative

modeling[51]/
Allow arcs to flow

from any number of
states [49]

The model is very flexible
but its flexibility results in
loss of focus for users who
are less interested in formal

analysis [52].

Table 3.1. Comparison of different workflow visualization techniques

20

After reviewing all the mentioned visualization techniques in table 3.1, it can be

concluded that the most suitable technique, which is both appropriate for visualizing the

workflow of the system as well as illustrating concurrency of the tasks, is petri net. In the

rest of this chapter more details about petri-nets will be addressed and different aspects of

applying it as a graphical visualization technique for the text-based system will be

discussed.

3.3. Petri Nets

“Petri nets are used to construct a formal model for a Graphical User Interface

(GUI). Petri net is a type of visual communication tool same as flow chart or other

software development diagrams but the main advantage of petri net is, it can be used to

analyze and simulate the concurrent and dynamic activities of systems” [24].

Petri nets are a very well known formalism technique for demonstrating the

workflow behavior of the system. Petri-net for the first time was presented by C.A.Petri

in 1962 and since then lots of researches focused on petri nets. The ability to clearly

represent the concurrency related concerns like parallelism, synchronization and etc. in a

graphical way is one of the best advantages of petri nets. [25].

Petri-net is a special type of directed graph with the initial marking !! and two

types of nodes called places and transition, which are illustrated by circles and rectangles

respectively. An arc will connect each place to a transition and each transition to a place.

A marking is assigned to each place demonstrates the number of tokens existing in that

place. If marking of a place is zero, it means that place is empty.

There are some rules, which are known as firing rues and are applicable to a petri-

net and change the marking of the petri-net. These rules are as follows:

21

1. A	
 transition	
 t	
 is	
 called	
 enabled	
 when	
 there	
 is	
 at	
 least	
 one	
 token	
 in	
 each	
 input	

place	
 p	
 of	
 t.	

2. An	
 enabled	
 transition	
 t	
 will	
 be	
 fired	
 when	
 its	
 associated	
 event	
 occurs.	
 	

3. The	
 firing	
 of	
 enabled	
 transition	
 t	
 removes	
 one	
 token	
 from	
 each	
 input	
 place	
 p	

of	
 t	
 and	
 adds	
 one	
 token	
 to	
 each	
 output	
 place	
 p	
 of	
 t	
 [24].	

A petri net is a 3-tuple <P, T, W> where:

• ! = {!1,!2,!3,… ,!"}	
 is	
 a	
 finite	
 set	
 of	
 places	

• ! = {!1, !2, !3,… , !"}	
 is	
 a	
 finite	
 set	
 of	
 transitions	

• ! ⊆ (! × !) ∪ (! × !)	
 	
 is	
 a	
 set	
 of	
 arcs	
 from	
 a	
 place	
 to	
 a	
 transition	
 or	
 from	
 a	

transition	
 to	
 a	
 place	
 (flow	
 relationship)	
 [24].	

Figure 3.1 depicts a sample of Petri net.

Figure 3.1. An example of a Petri net [26]

Several reasons exist for using Petri nets for workflow modeling. Some of these

reasons are as follows:

• Formal semantics: Because the semantic of the Petri net has been defined

formally, a workflow process specified in terms of a petri net has a clear and

precise definition.

22

• Graphical nature: Because Petri net is a graphical language, it is very easy to

understand and very suitable to use as a visualization tool for communicating with

the end-users.

• Expressiveness: Petri net has got all the primitive requirements to model a

workflow process.

• Vendor independent: Petri net is a tool-independent framework for modeling and

analysing processes [26].

Some of the workflow routing constructs, which are needed to be represented in

this system, are sequential routing, parallel routing and conditional routing. In sequential

routing, tasks are executed sequentially if the execution of one task should happen after

execution of the previous task. In parallel routing two tasks should be executed at the

same time or in any order. In conditional routing, one task will be executed between two

or more alternatives. It depends on the decision made by the system [26]. All these

routings are shown in Figure 3.2.

Figure 3.2. Different routings in Petri nets [26]

23

CHAPTER IV

PROPOSED PETRI-NET BASED SOA VISUALIZATION METHOD

4.1. Introduction

Previously, in the prior work was conducted by Zhang [19] a dialogue-based

system was developed. It automates the requirement engineering process. It manages the

knowledge related to SPL requirement engineering by defining an ontology for the

system and also it generates service-oriented outputs for the automation of system

implementation. In this system some questions such as whether the user needs a specific

requirement is generated and the user will respond to these questions. At the end, based

on the services the user has ordered, the system generates a service discovery and

composition.

An improvement that can be applied on this dialogue-based system is graphical

visualization of the behavior of the system. A petri-net based SOA visualization is

presented in this thesis, which visualizes the dialogue-based interactive requirement

elicitation system. It is used for eliciting user’s requirements based on human-machine

interaction. As it is mentioned in the previous chapter, for SOA visualization, layered

approach can be the most promising for better understanding, because, it can illustrate the

structure and the concept of the SOA-based system much more precise.

For this reason, this proposed visualization method shows the

requirements/services on the background as the on the service layer and on the top of

them there is a petri-net, which shows the flow of the dialogue system which is on the

business layer. Because the visualization is decided to be two-dimensional the business

layer and the service layer overlaps. It is also possible to show the dependencies between

66

Appendix B2
Task sheet for the system with text-based Interface

67

REFERENCES

[1] F. M. Medeiros, E. S. de Almeida, and S. R. de Lemos Meira, “Towards an
approach for service-oriented product line architectures”, In Proc. of the 3rd
international workshop on Service-Oriented Architectures and Software Product
Lines, 2009.

[2] Altintas, N. Ilker and Cetin, Semih and Dogru, Ali H., “Industrializing software
development: the "factory automation" way”, Springer-Verlag, pp 54-68, 2007.

[3] Kang, Dongsu and Baik, Doo-Kweon, “Bridging Software Product Lines and

Service-Oriented Architectures for Service Identification Using BPM and FM”,
IEEE Computer Society, pp. 755-759, 2010.

[4] S. Bassil and R. K. Keller., “Software visualization tools: Survey and analysis”, In

Proceedings IWPC 2001, pp. 7 – 17, 2001.

[5] J. Lee, D. Muthig, and M. Naab, “An approach for developing service oriented
product lines,” inSPLC ’08: 12th International Software Product Line Conference,
pp. 275–284, IEEE Computer Society, 2008

[6] D. Kang, C. yang Song, and D.-K. Baik, “A method of service identification for
product line,” in ICCIT ’08: 3rd International Conference on Convergence and
Hybrid Information Technology, vol. 2, pp. 1040– 1045, 2008.

[7] S. Trujillo, C. Kastner, and S. Apel, “Product Lines that Supply Other Product
Lines: A Service-Oriented Approach,” in SPLC Workshop: Service-Oriented
Architectures and Product Lines - What is the Connection?, Sep. 2007.

[8] K. Pohl, G. Böckle, and F. van der Linden, “Software Product Line
Engineering:Foundations, Principles, and Techniques”. Berlin: Springer, 2005.

[9] R. Rabiser, P. Grunbacher, and D. Dhungana. “Requirements for product

derivation support: Results from a systematic literature review and an expert
survey”, Information and Software Technology, 52(3), 2010.

[10] Zhang, L.-J. and Zhou, N. and Chee, Y.-M. and Jalaldeen, A. and Ponnalagu, K.
and Sindhgatta, R. R. and Arsanjani, A. and Bernardini, F. , “SOMA-ME: A

68

platform for the model-driven design of SOA solutions”, IBM Systems Journal,
Vol. 47, pp 397 – 413, 2008.

[11] Eric A. Marks, Michael Bell, “Service Oriented Architecture (SOA): A Planning

and Implementation Guide for Business and Technology”, Willey, 2006.

[12] Rolland, C., Kirsch-Pinheiro, M., Souveyet, C., “An Intentional Approach to
Service Engineering”, IEEE Transactions on Service Computing, Vol. 3 , pp.
292—305, 2010.

[13] Erl, T., “Service-oriented Architecture: Concepts, Technology, and Design”,
Prentice Hall PTR, Upper Saddle River, New Jersey, Munich, 2005.

[14] Goguen, J. & Linde, C., Techniques for Requirements Elicitation, 1st IEEE

International Symposium on Requirements Engineering, San Diego, pp. 152-
164, 1993.

[15] Paech B and Kohler K, “Usability Engineering integrated with Requirements

Engineering”, in Bridging the Gaps between Software Engineering and Human-
Computer Interaction, IEEE CS Press, 2003.

[16] Diaper, D., “Integrating HCI and Software Engineering Requirements Analysis”,

SIGCHI Bulletin 29, 1, 41-50, 1997

[17] C. Y. Knaus, ''Feature - Interaction design for software engineering: Boost into
programming future,'' Interactions, 15(4), 71-74, 2008.

[18] Sousa, K., Furtado, E., “RUPi—A unified process that integrates human-computer

interaction and software engineering”, In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 41– 48, 2003.

[19] Xieshen Zhang, “An Interactive Approach of Ontology-based Requirement

Elicitation for Software Customization”, M.S. thesis, CS. Dept., UWindsor,
Windsor, ON, 2011.

[20] Petre, M., and de Quincey, E., “A gentle overview of software visualization”,

The Computer Society of India Communications (CSIC) ,PPIG newsletter, 2006.

69

[21] TEYSEYRE, A. AND CAMPO, R. M., “An overview of 3d software

visualization”, IEEE TVCG, Vol.15, pp. 87–105, 2009.

[22] Juergen Rilling and S.P. Mudur, “3D visualization techniques to support slicing-
based program comprehension”, Computers & Graphics, Vol. 29, pp 311-
329, 2005.

[23] Gracanin, D., Matkovic, K., and Eltoweissy, M., “Software visualization’,
Innovations in Systems and Software Engineering”, A NASA Journal, Volume 1,
pp 221-230, 2005.

[24] LI, X., AND MUGRIDGE, R. 1994, “Petri net based graphical user interface
specification tool”, In Software Education Conference, 1994.

[25] Palanque Ph., Bastide R., “Petri net based Design of User-driven Interfaces

Using Interactive Cooperative Object Formalism”, In proceedings of 1st
Eurographics Workshop on Design, Specification and Verification of
Interactive Systems - F. Paterno (Ed.) - Carrara, Italy - 8-10 June.1994.

[26] W.M.P. van der Aalst, “The application of petri nets to workflow management,”
The Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21–66, 1998.

[27] Eicker, S. and Spies, T. and Kahl, C. “Software Visualization in the Context of

Service-Oriented Architectures”. Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007, Vol. 0, pp. 108 -111, June 2007.

[28] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, F. Fotouhi, “Service-oriented

Architecture for VIEW: A Visual Scientific Workflow Management System”,
Proc. of the International Conference on Services Computing (SCC), pp. 335–
342, 2008.

[29] Mansukhani, M., “Service oriented architecture—White Paper”. Hewlett-Packard
Corp., 2005.

[30] Eicker, S., Jung, R., Schwittek, W., Spies, T., “SOA Generic Views - In the Eye

70

of the Beholder”, IEEE Computer Society, pp. 479–486, 2008.

[31] GALITZ, W. O., “The Essential Guide to User Interface Design”, Wiley, 1997.

[32] Molich, R., and Nielsen, J., “Improving a human–computer dialogue”, Comm.
ACM, pp. 338-348, 1990

[33] E. Folmer, J. v. Gurp, and J. Bosch., “Scenario-Based Assessment of

SoftwarenArchitecture Usability”, In the Proceedings of Workshop on Bridging
the Gapsn Between Software Engineering and Human-Computer Interaction,
ICSE, 2003.

[34] P. Runeson and M. Host., “Guidelines for conducting and reporting case study
research in software engineering”, Empirical Software Engineering, 14(2), pp
131–164, 2009.

[35] X. Ferre, N. Juristo, H. Windl, L. Constantine, “Usability Basics for Software
Developers”, IEEE software, pp. 22–30, 2001.

[36] J. C. Campos and M. D. Harrison, “From HCI to Software Engineering and

back”. ICSE ',pp 49-56, 2003.

[37] Gould, J. D., C. Lewis, “Designing for usability: Key principles and what
designers think”, Comm. ACM, Vol.28(3), pp 300–311, 1985.

[38] Nielsen, J. , “The usability engineering life cycle”, IEEE Computer, Vol. 25(3),

pp12–22, 1992.

[39] DERLER, P. AND WEINREICH, R., “Models and Tools for SOA Governance.”,
International Conference on Trends in Enterprise Ed. Springer, 2006.

[40] F. Arvidsson and A. Flycht-Eriksson, ''Ontologies I,'' 2008. [Online]. Available:

http://www.ida.liu.se/~janma/SemWeb/Slides/ontologies1.pdf.

[41] N. F. Noy and D. L. McGuinness, ''Ontology Development 101: A Guide to
Creating Your First Ontology,'' Stanford Knowledge Systems Laboratory, Tech.
Rep. KSL-01-05, 2001.

71

[42] D. Martin, et al., ''OWL-S: Semantic Markup for Web Services,'' 2004. [Online].

Available: http://www.w3.org/Submission/OWL-S.

[43] D. Martin, et al., ''Bringing Semantics to Web Services: The OWL-S Approach,''
in Proceedings of the 1st International Workshop on Semantic Web Services and
Web Process Composition, 2004, pp. 26-42.

[44] Ribeiro, Heberth Braga G. and de Almeida, Eduardo Santana and de Lemos
Meira, Silvio R., “An approach for implementing core assets in service-oriented
product lines”, Proceedings of the 15th International Software Product Line
Conference, Vol. 2, pp. 17:1 -17:4, 2011.

[45] M. Samek. , “Practical UML Statecharts in C/C++Event-Driven Programming for
Embedded Systems”, Newnes, 2008.

[46] R. Lenz, K.A. Kuhn, “Towards a continuous evolution and adaptation of
information systems in healthcare”, Int. J. Med. Inform, Vol. 73, pp. 75–89, 2004.

[47] R. Bastos, D. Dubugras and A. Ruiz, B., “Extending UML Activity Diagram for
Workflow Modeling in Production Systems”, in 35th Annual Hawaii
International Conference on System Sciences, IEEE, 2002.

[48] J. Helldahl, U. Ashraf, “Use Case Explorer-A Use Case Tool”, M.S. thesis, CS
and Engineering Dept, Chalmers Univ. , Göteborg, Sweden, 2009.

[49] Amelia Ritahani Ismail, “FINAL QD On the Use of Modelling and Simulation for

Granuloma Formation”, M.S. thesis, CS Dept, York Univ., 2008.

[50] E. Villani, J.C. Pascal, P.E. Miyagi, R. Valette, “A Petri-net based object-oriented
approach for the modelling of hybrid productive systems”, Pergamon/Elsevier
Science, Vol. 68, pp. 1394-1418, 2005.

72

[51] Wakefield, R. R., “Application of Extended Stochastic Petri Nets to Simulation
and Modeling of Construction Systems”, Civil Engineering and Environmental
Systems, pp. 1-22 1998.

[52] L.Hardman, G. van Rossum, and D. Bulterman., “Structured multimedia
authoring”, In ACM, Multimedia’93. ACM Press, 1993.

[53] Sun, P., Wang, J., Li, X., Jiang, C., “Performance analysis of workflow model

with resource constraints”, In: Proceedings of the First International Multi
Symposiums on Computer and Computational Sciences, vol. 1, pp. 397–401,
2006.

[54] Marcus, A., Comorski, D., and Sergeyev, A., "Supporting the Evolution of a
Software Visualization Tool through Usability Studies", in Proceedings
International Workshop on Program Comprehension, St. Louis, MO, pp. 307-
316, 2005.

[55] Abdinnour-Helm, S.F., Chaparro, B.S. & Farmer, S.M., “Using the end-user

computing satisfaction (EUCS) instrument to measure satisfaction with a web
site”, Decision Sciences, Vol. 36, 341–364, 2005

73

VITA AUCTORIS

NAME Vida Sadri

PLACE OF BIRTH Tehran, Iran

YEAR OF BIRTH 1985

EDUCATION Bachelor of Computer Engineering,
Azad University, South Tehran Branch,
2004 - 20

