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The nature of the metasomatism is correlated with subduction and arc forming 

processes. Common forms of metasomatism associated with these environments are 

typically slab dehydration and melt percolation. The Tasse xenoliths do not contain any 

hydrous mineral phases, as seen in forearc peridotites (see Ishii et al., 1992; Pearce et al., 

1992; Parkinson and Pearce, 1998; Pearce et al., 2000; Hyndman and Peacock, 2003; 

Ishizuka et al., 2014), commonly associated with serpentinization. One such study, noted 

earlier by Brearley and Scarfe (1984), did find minor amounts of amphibole in one spinel 

lherzolite from British Columbia, but it is not commonly present throughout suites of 

xenoliths studied within British Columbia. It does not appear that hydrous metasomatism 

is prevalent within the subcontinental lithosphere throughout a large extent beneath 

southeastern British Columbia. 

Numerous studies have attributed mantle metasomatism to silicate and carbonatite 

melt percolation and interaction with peridotites (see Yaxley et al., 1998; Coltorti et al. 

1999; Litasov et al., 2000; Downes, 2001; Dixon et al., 2008; Maruyama et al., 2009; 

Martin et al., 2014). Coltorti et al. (1999) suggested that carbonatite melt metasomatism 

results in strong LREE enrichments (La/Ybcn>3−4) and various Ti and Zr negative 

anomalies compared to alkaline-silicate metasomatism. The LREE enrichment, and 

positive Zr and negative Ti anomalies in the Tasse xenoliths (Figs. 12 and 13) likely 

reflect carbonatite- or alkaline-melt metasomatism. Although, no petrographic evidence 

of secondary carbonate phases has been recognized in the Tasse xenoliths, clinopyroxene 

resorption texture (Fig. 8e-f) might reflect the effect of carbonate metasomatism. 

However, geochemical evidence: (1) La/Ybcn<4; (2) Ti/Eu > 3000; (3) positive Zr 

anomalies are consistent with alkalic-silicate metasomatism rather than carbonate-melt 
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metasomatism (Fig. 21) (Coltorti et al. 1999). Clinopyroxene and spinel in the Tasse 

mantle xenoliths might have formed at the expense of Al-rich orthopyroxene during 

alkalic-silicate melt peridotite interaction (cf., Kepezhinskas et al., 1995; Coltorti et al. 

1999). The alkali-silicate melt metasomatism may in part be related to the percolation of 

host alkaline basaltic melts. Although the alkaline basaltic rocks only erupted to the 

surface recently in the Cenozoic (Littlejohn and Greenwood, 1974; Brearley and Scarfe, 

1984; Brearley et al., 1984; Sun and Kerrich, 1995; Peslier et al., 2002; Greenfield et al., 

2013; Kuehn et al., 2015), the melts may have percolated through the mantle for extended 

periods of time prior to the eruption of the alkaline basalts. 

Re-Os studies of mantle xenoliths in British Columbia by Peslier et al. (2000a, b) 

have demonstrated that the lithospheric mantle beneath the Omineca and Intermontane 

belts is likely Precambrian in age. Specifically, the Os isotopic signature of the lherzolites 

indicates partial melting of the mantle during intervals in the late Mesoproterozoic, 

broadly at the time of Grenville orogenesis in eastern and southern North America. This 

interpretation implies continuation of North American subcontinental lithospheric mantle 

below a large swath of the accreted terranes (Peslier et al., 2000a, b) and is consistent 

with seismic interpretations that show westward continuation of North American crust 

under the Omineca and Intermontane belts (Cook et al., 2004). The Re-Os results are also 

consistent with an emerging realization of modest Grenville-age activity that extends in a 

belt from the northern Canadian Cordillera to the northwestern conterminous United 

States (Milidragovic et al. 2011). The interpretation of metasomatic activity in the mantle 

of the Canadian Cordillera is supported by the studies of Brearley and Scarfe (1984), 

Brearley et al. (1984) and Sun and Kerrich (1995). Our findings also suggest that the 
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mantle has undergone various events of partial melting and metasomatism (Figs. 19−21). 

We are unable to determine if the melting and metasomatism in the Tasse suite occurred 

during the Precambrian or Phanerozoic, using our current set of data. 

Studies of the Lherz massif have shown evidence regarding refertilization of 

refractory peridotites (harzburgites) producing secondary lherzolites (Le Roux et al., 

2007). The formation of the secondary lherzolites was shown by detailed structural 

mapping and geochemical analysis. Reaction textures at harzburgite-lherzolite contacts 

suggest refertilization of harzburgite by upwelling asthenospheric partial melts. Our study 

indicates that melt metasomatism played an important role in the origin of LREE- and 

LILE-enriched patterns by refertilizing numerous sections of previously depleted 

lithospheric mantle. This enrichment process is not specific to lherzolites, as harzburgites 

from British Columbia have also shown metasomatic enrichment (Peslier et al., 2002). 

Additional petrographic and geochemical studies of mantle xenoliths in southeast British 

Columbia are needed to better understand the possible refertilization of the mantle and 

secondary lherzolite formation, as seen in the Lherz massif. 
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CHAPTER 9 

Conclusions 

On the basis of new field observations, SEM analyses, and whole-rock major and 

trace element and Sr−Nd−Pb isotope data, the following petrologic and geodynamic 

conclusions are drawn for the Tasse alkaline basalts and mantle xenoliths. 

 

1. Distinct geochemical characteristics of the spinel peridotites analyzed for this study, 

as well as studies conducted by other researchers (e.g., Peslier et al., 2002; Francis et 

al., 2010; Kuehn et al., 2015) in southern British Columbia provide evidence for upper 

mantle heterogeneity. The presence of lherzolites, harzburgites and dunites throughout 

the Omineca and Intermontane belts demonstrate varying degrees of partial melting 

and metasomatism generating upper mantle heterogeneity. Tasse spinel lherzolites 

represent residues of 10–15% partial melt depletion and 20–25% partial melt 

depletion for the dunite sample. 

2. The Tasse xenoliths exhibit three distinctive REE patterns reflecting various degrees 

of metasomatic enrichment in a pre-Miocene sub-arc mantle wedge: (1) Group 1 is 

characterized by concave-upward LREE patterns; (2) Group 2 displays flat to 

moderately LREE enriched patterns; and (3) Group 3 is strongly LREE enriched. Two 

outlier samples exhibit unique patterns indicating further variable degrees of 

metasomatism. Metasomatism in the source of the xenoliths appears to have stemmed 

from percolating alkaline-silicate melts. All xenolith samples share positive Th, Rb K, 

Pb and Zr (Hf) anomalies and negative Nb (Ta) and Ti anomalies on MORB-

normalized trace element diagrams, which is consistent with the formation of the 
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subcontinental lithospheric mantle beneath southern British Columbia above 

subducted oceanic slabs. 

3. The Tasse alkaline basalts are uniform in composition and originated from a well-

homogenized asthenospheric mantle source. The alkaline nature (K2O+Na2O=5.1−6.6 

wt.%), Nb/Y (2.6−3.0) and Zr/Y (13−14) are consistent with an incompatible-element 

enriched source originating from the garnet stability field. 

4. The alkaline basalts have large positive εNd (+3.8 to +5.5) values and 338-426 Ma 

depleted mantle model ages, suggesting a minimal magma-crust interaction and 

mantle melting events between the Silurian to Carboniferous. They display narrow 

ranges of Sr (
87

Sr/
86

Sr=0.703346−0.703591) and Pb (
206

Pb/
204

Pb=19.40−19.58; 

207
Pb/

204
Pb=15.57−15.60; 

208
Pb/

204
Pb=38.99−39.14) isotopic ratios, consistent with a 

homogeneous mantle source. The Tasse basalts are isotopically distinct from 

continental flood basalts and subduction-related basalts, plotting mainly in the ocean 

island basalt (OIB) field on Sr−Nd−Pb isotope ratio diagrams. 

5. The Neogene intraplate volcanic field was generated by a combination of diffuse 

mantle upflow through the Northern Cordilleran Slab Window, localized lithospheric 

extension, slab-induced “back arc” mantle circulation, possible plume activity and 

localized delamination of cratonic lithospheric mantle. 
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Figure 14. (a) Chondrite-normalized patterns and (b) N-MORB-normalized patterns of 

the Tasse alkaline basalts. Chondrite and N-MORB normalization values are McDonough 

and Sun (1995) and Sun and McDonough (1989), respectively. 
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Figure 15. Sr−Nd−Pb isotopic plots of the Tasse alkaline basalts and volcanic rocks from 

a range of locations and tectonic settings. The shaded regions indicate isotopic source 

characteristics of mid-ocean ridge basalts (MORB), ocean island basalts (OIB), focal 

zone (FOZO), high-μ (HIMU) and continental crust from Stracke et al. (2005). Data was 

collected from Fretzdorff et al., 2002 (Scotia Ridge); Holm et al., 2014 (Andean Southern 

Volcanic Zone); Kheirkhah et al., 2015 (Turkish–Iranian Plateau); Kuritani et al., 2008 

(Kurile Arc); Pearce et al., 1992 (Izo-Bonin Forearc); Peng et al., 2014 (Deccan Trap); 

Singer et al., 2007 (Aleutian Arc); Søager et al., 2015 (Payenia Volcanic Province); 

Zhang et al., 2001 (North Queensland). Outlier samples were removed from the shaded 

regions and Deccan Traps. 
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Figure 16. Chondrite-normalized comparison plots of the (a) Tasse xenolith groups and 

(b) Izu-Bonin-Mariana forearc harzburgites, Central Oman ophiolite lherzolites, North 

Lanzo lherzolites and xenoliths from other localities in British Columbia. Forearc data 

from Parkinson and Pearce (1998). Ophiolite lherzolite data from Khedr et al. (2014). 

North Lanzo data from Guarnieri et al. (2012). Southern British Columbia data from 

Peslier et al. (2002). Values are normalized to McDonough and Sun, 1995. 
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Figure 17. Chondrite-normalized comparison plots of (a) Tasse basalts (b) Cape Vogel 

boninites, Bohai Basin basalts (LSG, USG, GG) and Southern British Columbia basalts 

(c) COPB, HGB and Cameroon Line basalts. Boninite data from König et al. (2010). 

Bohai Basin basalt data Li et al. (2014). Southern British Columbia data from Sluggett 

(2008). COPB and HGB data from Polat et al. (1997). Cameroon Line data from 

Nkouandou & Temdjim (2011). Values are normalized to McDonough and Sun, 1995. 
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Figure 18. N-MORB-normalized comparison plots of (a) Tasse basalts (b) Cape Vogel 

boninites, Bohai Basin basalts (LSG, USG, GG) and Southern British Columbia basalts 

(c) COPB, HGB and Cameroon Line basalts. Boninite data from König et al. (2010). 

Bohai Basin basalt data Li et al. (2014). Southern British Columbia data from Sluggett 

(2008). COPB and HGB data from Polat et al. (1997). Cameroon Line data from 

Nkouandou & Temdjim (2011). Values are normalized to Sun and McDonough and Sun, 

1989. 
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Figure 19. Primitive mantle evolution plot (Mg/Si vs. Al/Si). Linear relationship indicates 

that the mantle xenoliths originated from a primitive upper mantle source (PM). Major 

element oxide weight percent values are converted to ppm (modified from Canil and Lee, 

2009). 
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