2016

IMPROVING SPECIES REINTRODUCTION THROUGH CONSERVATION GENOMICS

Xiaoping He

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
He, Xiaoping, "IMPROVING SPECIES REINTRODUCTION THROUGH CONSERVATION GENOMICS" (2016). Electronic Theses and Dissertations. 5827. https://scholar.uwindsor.ca/etd/5827

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
IMPROVING SPECIES REINTRODUCTION THROUGH CONSERVATION GENOMICS

By

Xiaoping He

A Dissertation
Submitted to the Faculty of Graduate Studies through the Great Lakes Institute for Environmental Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor

Windsor, Ontario, Canada

2016

© 2016 Xiaoping He
IMPROVING SPECIES REINTRODUCTION THROUGH CONSERVATION GENOMICS

by

Xiaoping He

APPROVED BY:

L. Bernatchez
Laval University

T. Pitcher
Department of Biological Sciences

K. Drouillard
Great Lakes Institute for Environmental Research

G.D. Haffner
Great Lakes Institute for Environmental Research

D. Heath, Advisor
Great Lakes Institute for Environmental Research

September 6, 2016
DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint research. All chapters were conducted under the supervision of Professor Daniel Heath. In Chapter 2, Mattias L. Johansson provided help with the manuscript revision. In Chapter 3, Chris C. Wilson was responsible for microsatellite genotyping; Kyle W. Wellband provided help with data analyses; Chris C. Wilson, Aimee Lee S. Houde and Bryan D. Neff provided facilities and took charge of fish rearing. In Chapter 4, Aimee Lee S. Houde provided help with data analyses; Trevor E. Pitcher was responsible for fish rearing. In Chapter 5, Aimee Lee S. Houde and Bryan D. Neff took charge of artificial stream tank setup and fish rearing. In Chapter 6, Subba Rao Chaganti provided advice for data analyses. In all cases, the key ideas, primary contributions, data analyses and interpretation, were performed by the author, Xiaoping He.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my thesis, and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work.

II. Declaration of Previous Publication
This thesis includes four original papers that have been previously published/submitted for publication in peer reviewed journals, as follows:

<table>
<thead>
<tr>
<th>Thesis Chapter</th>
<th>Publication title /full citation</th>
<th>Publication status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4</td>
<td>He X, Houde ALS, Pitcher TE, Heath DD. Genetic architecture of gene transcription in two Atlantic salmon (Salmo salar) populations.</td>
<td>Submitted</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>He X, Chaganti SR, Heath DD. Population-specific responses to interspecific competition in the gut microbiota of two Atlantic salmon (Salmo salar) populations.</td>
<td>Submitted</td>
</tr>
</tbody>
</table>

I certify that I have obtained a written permission from the copyright owner(s) to include the above published material(s) in my thesis. I certify that the above material describes work completed during my registration as graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis.
I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.
ABSTRACT

Reintroduction is the release of a species collected from captive or wild sources into its historical habitat where it has been locally extirpated with the aim to re-establish a self-sustaining population. Increasing pressures on global biodiversity caused by human activities has led to an upsurge in reintroductions in the last decades, but the reintroduction success rate is generally low. Populations can differ in reintroduction performance because of their genetic background which may limit their scope for adapting to novel environments as well as narrow their tolerance ranges for environmental stressors likely to be encountered in the initial acclimation phase of reintroduction. Thus, selecting an appropriate population is very important for conservation related applications including reintroduction. Atlantic salmon (*Salmo salar*) was extirpated in Lake Ontario by 1900s, and decades of reintroduction attempts have been largely unsuccessful. This dissertation focuses on two important reasons for the unsuccessful reintroduction of Atlantic salmon in Lake Ontario: inappropriate source population selection and stress caused by established non-native salmonids.

I explored population differences between two Atlantic salmon populations (LaHave and Sebago) and their responses to interspecific competition by characterization of gene expression and gut microbiota. The regulation of gene expression plays an important role in acclimation and adaptation. The gut microbial community mediates a variety of biological processes and can directly impact host fitness. In this dissertation, I addressed basic genetic (genetic components of gene expression variance), evolutionary (selection versus genetic drift on gene expression variance), and ecological (in response
to interspecific competition) theories of gene expression. I also addressed population differences in competitive ability and possible molecular mechanisms that mediated negative effects on Atlantic salmon caused by non-native competitors. I found that populations showed substantial differences in gene expression and genetic components of gene expression variance at rest state, and populations showed different response patterns to interspecific competition in gene expression and gut microbiota. The Sebago population is more suitable for reintroduction in Lake Ontario than the LaHave population. The results highlighted the fact that populations can possess different responses to biotic stressors despite not encountering the stressor during their past evolutionary history.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Dr. Daniel Heath for the incredible opportunity to come to Canada to pursue my PhD. I thank him for his brilliant guidance during the last five years. I would like to thank my committee members, Drs. Trevor Pitcher, Ken Drouillard and Doug Haffner for their advice and comments.

I would like to thank collaborators Drs. Chris Wilson and Bryan Neff for their support in this project. I would like to thank Bill Sloan, Scott Ferguson, Stephan Howailth, Andy Hunter, Andrew Smith and Craig Black for their invaluable assistance with fish tank construction, fish breeding, fish feeding and sample collection at the Ontario Ministry of Natural Resources and Forestry (OMNRF) Codrington Research Facility. I would like to thank Anne Kidd for microsatellite genotyping. Special thanks are owed to Dr. Aimee Lee Houde who played an indispensable role in coordinating with OMNRF staff and co-workers for this project.

I would like to thank all fellow labmates, friends, staff and faculty at GLIER for their assistance and support over the past five years, especially those who edited my writing and helped improve my English. Finally, I would like to thank my parents and my sister for their support throughout my life.
TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT .. vi

ACKNOWLEDGEMENTS .. viii

LIST OF TABLES .. xiii

LIST OF FIGURES .. xv

CHAPTER 1 GENERAL INTRODUCTION ... 1
 REINTRODUCTION ... 1
 GENE EXPRESSION ... 3
 ROLE OF GENE EXPRESSION IN ACCLIMATION AND ADAPTATION 4
 METHODS TO QUANTIFY GENE EXPRESSION ... 5
 ATLANTIC SALMON IN LAKE ONTARIO ... 6
 THESIS OBJECTIVE AND STRUCTURE ... 8
 REFERENCES .. 12

CHAPTER 2 ROLE OF GENOMICS AND TRANSCRIPTOMICS IN SELECTION OF
 REINTRODUCTION SOURCE POPULATIONS ... 17
 INTRODUCTION ... 17
 SOURCE POPULATION SELECTION .. 19
 Differences in response and tolerance of environmental stresses 19
 Reintroduction performance variation ... 20
 FUNCTIONAL GENETIC VARIATION AND SINGLE NUCLEOTIDE
 POLYMORPHISMS ... 22
 Genetic similarity and genetic diversity ... 22
 Single nucleotide polymorphism .. 24
 Application of genome-wide SNPs to reintroduction 25
 GENE EXPRESSION AND APPLICATION OF TRANSCRIPTOMICS 26
 Gene expression and its importance ... 26
CHAPTER 3 TRANSCRIPTIONAL PROFILING OF TWO ATLANTIC SALMON POPULATIONS: IMPLICATIONS FOR REINTRODUCTION INTO LAKE ONTARIO .. 39

INTRODUCTION ... 39

MATERIALS AND METHODS .. 43

Atlantic salmon populations ... 43
Oligonucleotide microarray construction 44
RNA extraction, microarray hybridization and data preparation 45
Statistical analysis .. 46
Functional analysis ... 48
Microsatellite genotyping and F_{ST} estimation 48
P_{ST} estimation ... 49

RESULTS .. 50

Tank effect on gene transcription ... 50
Differentially expressed genes between populations 50
F_{ST} and P_{ST} ... 51

DISCUSSION .. 51

REFERENCES .. 57

CHAPTER 4 GENETIC ARCHITECTURE OF GENE TRANSCRIPTION IN TWO ATLANTIC SALMON POPULATIONS ... 70

INTRODUCTION ... 70

MATERIALS AND METHODS .. 73

Breeding design .. 73
RNA extraction and cDNA preparation 74
Gene selection .. 74
Quantitative real-time PCR ... 75
Statistical analysis .. 77
RESULTS .. 78
 Population effects on gene transcription ... 78
 Significant effects on gene transcription within each population 79
 Additive genetic, non-additive genetic, and maternal effects 79
DISCUSSION .. 81
CONCLUSIONS ... 85
REFERENCES ... 86

CHAPTER 5 TRANSCRIPTOME RESPONSE OF ATLANTIC SALMON TO
COMPETITION WITH ECOLOGICALLY SIMILAR NON-NATIVE SPECIES99
INTRODUCTION ... 99
MATERIALS AND METHODS ... 103
 Design and sampling .. 103
 RNA isolation .. 103
 Data analysis .. 104
 Quantitative real-time PCR ... 105
RESULTS .. 106
 Sequencing summary and reads mapping .. 106
 Principle component analysis and distance heatmap ... 107
 Gene expression differences ... 108
 Comparison between gene expression level revealed by qRT-PCR and RNA-seq 109
DISCUSSION ... 109
LIMITATIONS OF THIS STUDY .. 112
CONCLUSIONS .. 113
REFERENCES .. 114

CHAPTER 6 POPULATION-SPECIFIC RESPONSES TO INTERSPECIFIC
COMPETITION IN THE GUT MICROBIOTA OF TWO ATLANTIC SALMON
POPULATIONS .. 132
INTRODUCTION ... 132
MATERIALS AND METHODS ... 136
 Interspecific competition and sample collection .. 136
 DNA extraction, PCR, and library preparation ... 138
 Bioinformatic and statistical analysis .. 139
RESULTS ... 141
 Summary of sequencing and core OTUs ... 141
 Bacterial community composition ... 142
 Effects of population and treatment on bacterial diversity 143
 Population and treatment effects at the OTU level ... 143
 Differences in beneficial bacteria and opportunistic pathogens 144
DISCUSSION ... 145
CONCLUSIONS .. 150
REFERENCES .. 151

CHAPTER 7 GENERAL CONCLUSION ... 168
INTRODUCTION .. 168
CONTRIBUTIONS ... 170
 Population differences in gene expression .. 170
 Population-specific responses to interspecific competition 171
 Source population selection for reintroduction in Lake Ontario 173
FUTURE DIRECTIONS ... 173
REFERENCES .. 176

APPENDIX A: REPRINT PERMISSIONS ... 179

VITA AUCTORIS .. 181
LIST OF TABLES

CHAPTER 3

Table 3.1 List of genes showing significantly different transcription between the two replicate tanks for the Sebago population of Atlantic salmon (*Salmo salar*). 62

Table 3.2 List of genes showing significantly different transcription between the two replicate tanks for the LaHave population of Atlantic salmon (*Salmo salar*). 63

Table 3.3 List of genes showing significantly different transcription between the Sebago and LaHave populations of Atlantic salmon (*Salmo salar*). ... 64

CHAPTER 4

Table 4.1 Quantitative real-time PCR primers and TaqMan probes for muscle function related genes (abbreviation in parentheses) used for Atlantic salmon (*Salmo salar*) genetic architecture analysis in two populations. ... 91

Table 4.2 Summary of the genetic variance components of gene transcription for 22 genes associated with muscle function (arranged by putative function) in juvenile Atlantic salmon (*Salmo salar*) from two populations (LaHave and Sebago). 93

Table 4.3 Summary of genetic architecture for gene transcription of four functional categories across 22 muscle-function related genes for juvenile Atlantic salmon (*Salmo salar*) from two populations (LaHave and Sebago). ... 95

Supplementary Table S4.1 Model selection and population effects for the 22 analyzed genes in the two populations of Atlantic salmon (*Salmo salar*). ... 98

CHAPTER 5

Supplementary Table S5.1 Primers used for qRT-PCR. ... 122

Supplementary Table S5.2 Mapping summary of the 10 samples to Atlantic salmon (*Salmo salar*) draft genome. ... 123

Supplementary Table S5.3 The expression of 10 genes which showed response to competition with all the three non-native salmonids for the LaHave Atlantic salmon (*Salmo salar*) population... 124

Supplementary Table S5.4 The expression of nine genes which showed response to competition with all the three non-native salmonids for the Sebago Atlantic salmon (*Salmo salar*) population... 125
Supplementary Table S5.5 The expression of 23 genes which showed response to competition with Chinook salmon (Oncorhynchus tshawytscha) for both Atlantic salmon (Salmo salar) populations. ... 126

Supplementary Table S5.6 The expression of 13 genes which showed response to competition with brown trout (Salmo trutta) for both Atlantic salmon (Salmo salar) populations. ... 127

Supplementary Table S5.7 The expression of 19 genes which showed response to competition with rainbow trout (Oncorhynchus mykiss) for both Atlantic salmon (Salmo salar) populations. ... 128

CHAPTER 6

Table 6.1 Primer sequences used for Atlantic salmon (Salmo salar) gut microbiota characterization. ... 156
LIST OF FIGURES

CHAPTER 2

Figure 2.1 Application of conservation genomics and transcriptomics to source population selection for species reintroduction. Selected functional single nucleotide polymorphisms (SNPs) and genome-wide coding region SNPs (cSNP) can be used to measure functional genetic variation available for natural selection. Transcriptional profiling of candidate genes or whole transcriptome analysis can be used to quantify the population’s scope for acclimation in response to environmental stress. 37

Figure 2.2 Numbers of papers published that used DNA-based markers for conservation applications from 2005 to 2014 (all papers, all publications in which authors used microsatellite or SNP markers with a conservation application [{conservation} and {microsatellite or SNP}]; whole genome, only publications in which authors used a genome-wide marker approach [{conservation} and {whole genome}] followed by inspection for relevant studies). ... 38

CHAPTER 3

Figure 3.1 Gene transcription heatmap showing hierarchical clustering of the 21 differentially expressed genes between Sebago and LaHave Atlantic salmon (Salmo salar) populations. The rows represent different genes and the columns represent different tanks. The transcription level for each gene is the average log2 transformed intensity value of fish from the same tank. ... 65

Figure 3.2 Histograms of global P_{ST} for transcription of genes between two populations of juvenile Atlantic salmon (Salmo salar) arranged in increasing order. Panel a: P_{ST} values for all 271 analyzed genes. Panel b: P_{ST} values for genes which showed significantly different transcription levels between the two populations. The two horizontal dashed lines represent the upper and lower limits of the 99% confidence interval of F_{ST} based on microsatellite genotypes at eight loci. The solid line represents the mean F_{ST}. ... 66

Supplementary Figure S3.1 Histograms of P values for the analysis of difference in gene transcription between two tanks of the Sebago Atlantic salmon (Salmo salar) population. Panel a: P value for each gene arranged in increasing order. Panel b: percentage of P value for each gene with the same order as (a) that is less than 0.05 during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05). .. 67

Supplementary Figure S3.2 Histograms of P values for the analysis of difference in gene transcription between two tanks of the LaHave Atlantic salmon (Salmo salar) population. Panel a: P value for each gene arranged in increasing order. Panel b: percentage of P value for each gene with the same order as (a) that is less than 0.05
during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05).

Supplementary Figure S3.3 Histograms of P values for the analysis of difference in gene transcription between Sebago and LaHave Atlantic salmon (*Salmo salar*) populations. Panel a: P value for each gene arranged in increasing order. Panel b: percentage of P value for each gene with the same order as (a) that is less than 0.05 during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05).

CHAPTER 4

Figure 4.1 Differences in gene transcription between two Atlantic salmon (*Salmo salar*) populations (LaHave and Sebago) measured using qRT-PCR. Gene names are described in Table 4.1. *P < 0.05; **P < 0.01.

Figure 4.2 Scatterplots showing the distribution of muscle function gene transcription variance components for two Atlantic salmon (*Salmo salar*) populations (LaHave and Sebago). Comparisons of variance components between populations: (a) additive genetic effects, (b) non-additive genetic effects, and (c) maternal effects. Each symbol represents one gene. Symbols are coded for the four different functional gene groups: circles (○) represent energy generation genes; squares (□) represent genes involved in energy regulation; triangles (△) represent growth genes; diamonds (◇) represent muscle contraction genes. The dashed line represents the expected 1:1 relationship (i.e., y = x) between the variance components of the two study populations. Points above the 1:1 line indicate higher values in the Sebago population and points below the dashed line indicate higher values in the LaHave population.

CHAPTER 5

Figure 5.1 Principal component analysis based on expression levels for 2 000 selected genes which exhibited the highest expression variation among samples for (a) all the 10 samples, (b) the LaHave population samples (n = 5) and (c) the Sebago population samples (n= 5). Treatment symbols: LaAS indicates LaHave Atlantic salmon reared alone; LaBT, LaCH, and LaRT indicate LaHave Atlantic salmon reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively; SeAS indicates Sebago Atlantic salmon reared alone; SeBT, SeCH, and SeRT indicate Sebago Atlantic salmon reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively.

Figure 5.2 Heatmap of sample-to-sample distances based on expression levels of all the genes. Treatment symbols: AS indicates Atlantic salmon reared alone; BT, CH, and RT indicate the Atlantic salmon population reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively.

Figure 5.3 Number of responding genes of Atlantic salmon (*Salmo salar*) to the presence of brown trout (BT), Chinook salmon (CH), and rainbow trout (RT).
Supplementary Figure S5.1 Venn diagram showing the overlap of differentially expressed genes in response to the presence of brown trout (BT), Chinook salmon (CH) and rainbow trout (RT) within the LaHave (a) and Sebago (b) Atlantic salmon populations............................ 129

Supplementary Figure S5.2 Functional categorization of significantly different expressed genes in response to interspecific competition for the LaHave and Sebago Atlantic salmon (Salmo Salar) populations. For each population, responding genes were combined. GO terms containing less than five genes in both populations were not included... 130

Supplementary Figure S5.3 Comparison of gene expression levels revealed by RNA-Seq and qRT-PCR for 14 genes. Expression of the 14 genes for RNA-Seq were log2 transferred RPKM values from four samples: LaAS1 (LaHave Atlantic salmon reared alone sample 1), LaBT (LaHave Atlantic salmon reared with brown trout), SeAS1 (Sebago Atlantic salmon reared alone sample 1), and SeBT (Sebago Atlantic salmon reared with brown trout). qRT-PCR was used to quantify expression of the 14 genes for 12 individuals from the four treatments and then -ΔC_T (calculated by ΔC_Treference - ΔC_Targeted) values were averaged for each treatment. Spearman rank correlation analysis was conducted using the averaged -ΔC_T for each treatment and log2RPKM. 131

CHAPTER 6

Figure 6.1 Relative abundance of bacterial classes for juvenile Atlantic salmon (Salmo salar) in response to interspecific competition. Displayed are classes with at least 0.1% relative abundance in one treatment. The “others” category includes unclassified sequences at the class level and the sum of all classes that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids. ... 157

Figure 6.2 The 27 Operational Taxonomic Units (OTUs) that were significantly different in abundance between the two Atlantic salmon (Salmo salar) populations across all treatments. Taxonomic assignment beside each OTU identification number is the lowest taxonomic level obtained. .. 158

Figure 6.3 The 13 OTUs showing difference among competition treatments in the Atlantic salmon (Salmo salar) LaHave population: OTU32, 116, 650 and 1271 (genus Chryseobacterium), OTU39 (genus Flavobacterium), OTU1517 (species succinicans), OTU1820, 2515 and 3189 (genus Lactobacillus), OTU2688 (order Lactobacillales), OTU3001 (family Enterobacteriaceae), OTU3181 (genus Wautersiella), OTU3900 (genus Streptococcus). Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native
salmonids. Different letters above the bars indicate significant differences assessed using Tukey’s post hoc multiple comparisons \((P < 0.05) \).

Figure 6.4 The six lactic acid genera showing differences among treatments in the Atlantic salmon (*Salmo salar*) LaHave population. Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids. Different letters above the bars indicate significant differences assessed using Tukey’s post hoc multiple comparisons \((P < 0.05) \).

Supplementary Figure S6.1 Distribution of the number of high quality sequences generated by next generation sequencing of the amplified 16S rRNA gene for gut microbiota characterization of Atlantic salmon (*Salmo salar*). The solid line represents the average number of sequence reads per sample. Each bar represents one sample.

Supplementary Figure S6.2 Distribution of the number of high quality sequences generated by next generation sequencing of the amplified 16S rRNA gene. Displayed are means ± 1SD for treatments. The solid line represents the average number of sequence reads per sample. The dashed lines represent the average numbers of sequence reads in each of the two Atlantic salmon populations. Treatment symbols: AS indicates Atlantic salmon (*Salmo salar*) reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.

Supplementary Figure S6.3 The proportion of 16S rRNA sequences accounted by the core OTUs shared by 70% of the gut microbiota samples in Atlantic salmon (*Salmo salar*) for each interspecific competition treatment. Displayed are means ± 1SD for treatments. The dashed lines represent the average proportion of reads for each of the two populations. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.

Supplementary Figure S6.4 Relative abundance of bacterial phyla for the combined water samples (N=4) and the combined samples for all Atlantic salmon (*Salmo salar*) from the LaHave (N=82) and Sebago (N=96) populations. The bars show only phyla with at least 0.1% relative abundance in one of the two Atlantic salmon populations or combined water samples. The “others” category includes unclassified sequences at the phylum level and the sum of all phyla that occurred at less than 0.1% relative abundance.

Supplementary Figure S6.5 Relative abundance of bacterial phyla for juvenile Atlantic salmon (*Salmo salar*) in response to interspecific competition. Displayed are phyla with at least 0.1% relative abundance in one treatment. The “others” category includes
unclassified sequences at the phylum level and the sum of all phyla that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.

Supplementary Figure S6.6 Relative abundance of bacterial genera for juvenile Atlantic salmon (*Salmo salar*) in response to interspecific competition. Displayed are genera with at least 0.1% relative abundance in one treatment. The “others” category includes unclassified sequences at the genus level and the sum of all genera that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.

Supplementary Figure S6.7 The relative abundance of potential pathogens in the gut microbiota of two Atlantic salmon (*Salmo salar*) populations. There were no significant differences among treatments within each population. The *Aeromonas* genus was undetectable in the data. Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
CHAPTER 1
GENERAL INTRODUCTION

REINTRODUCTION

Reintroduction is the release of a species collected from captive or wild sources into its historical habitat where it has been locally extirpated with the aim to re-establish a self-sustaining population (IUCN/SSC 2013). Increasing pressures on global biodiversity caused by human activities has led to an upsurge in reintroductions in the last decades (Seddon et al. 2007; Butchart et al. 2010). For example, 218 animal species were reintroduced by 1998 and the number of reintroduced animal species increased to 489 by 2005 (Seddon et al. 2007). However, the success rates of reintroductions are generally low (Armstrong & Seddon 2008). Although Fischer & Lindenmayer (2000) observed that 26% of reintroductions of animal species are successful and Godefroid et al. (2011) found the reintroduction success rates for plant species were less than 20%, the actual number is probably much lower as successful reintroduction results are more likely to be published than failed reintroductions (Fischer & Lindenmayer 2000; Miller et al. 2014). For example, Miller et al. (2014) found the translocation success rate for herpetofauna in New Zealand in publications was 41.7%, while the actual success rate for all herpetofauna translocations in New Zealand was 8.1%.

Even after correcting the original causes of the extirpation, many factors can influence the outcome of a reintroduction. First, the quality of the receiving habitat, especially the abundance of predators, can directly affect the survival of released individuals (Wanless et al. 2002; Moorhouse et al. 2009). Second, the developmental
stage at release must be carefully selected because it not only affects the survival of reintroduced individuals, but can also affect the expense of the reintroduction project, as rearing to different developmental stages involves different labor and equipment costs for captive populations (Coghlan & Ringler 2004). Third, source population selection is a key factor to determine reintroduction success or failure (Schneider 2011; Forsman 2014). Population differences in stress response and tolerance of environmental fluctuations have been observed across species (Whitehead et al. 2010; Schoville et al. 2012; Wellband & Heath 2013), thus populations can exhibit variable survival and establishment performance after release. Populations also harbor different functional genetic diversity which is important for populations to evolve and persist in new environments (Lande & Shannon 1996; Montalvo et al. 1997). Finally, public attitudes and support contribute to the outcomes of reintroductions (Reading & Kellert 1993; Clark et al. 2002).

Successful reintroductions require both establishment and persistence of released individuals in the target habitat. Establishment refers to survival and reproduction of released individuals (Seddon et al. 2012), and persistence refers to the increase in numbers and density of reintroduced species in the recipient regions (Armstrong & Seddon 2008). The stages for successful reintroduction are similar to species invasion except that reintroduction requires that established population to persist in the target habit while invasive species spread their living range (Armstrong & Seddon 2008; Blackburn et al. 2011). In both species reintroduction and invasion, establishment is a key stage in the success of the target species. Whether reintroduced and invasive individuals can survive in the receiving habitat depends on their acclimation capacity to stress imposed
by the local environment. In the long term, whether reintroduced species can persist or invasive species can spread may depend on their adaptive potential.

GENE EXPRESSION

Gene transcription is the process whereby genetic information from a gene is used to synthesize RNA and is the first step in expressing functional products of protein-coding genes. Although gene expression includes gene transcription and translation, and regulatory processes post-transcription can affect expression level of proteins, quantification of gene transcription has been widely used to estimate expression levels of corresponding genes due to their theoretically and empirically high correlation. A variety of studies conducted in bacteria, yeast, and mammalian cells found that the correlation coefficients between mRNA abundance and protein levels ranged from 0.36 to 0.76 (Maier et al. 2009). Although the correlation between mRNA and protein levels varied from study to study, gene transcription is generally agreed to be a good proxy to estimate levels of gene expression (Li et al. 2014).

Gene expression plays an important role in phenotypic variation. It has been hypothesized that phenotypic differences among individuals, populations and even species are likely to be driven more by differential regulation of gene expression than changes in protein sequences (King & Wilson 1975). The expression of a gene can be measured using molecular biology techniques so that gene expression levels can be treated as an external phenotype and traditional quantitative genetic methods can be applied to map genomic regions that underlie expression levels of genes. Association and linkage studies have identified numerous expression quantitative trait loci (eQTL) in
model species. Based on the physical distance between eQTL and the expression levels of the genes the eQTL influence, eQTL can be divided into cis-acting eQTL and trans-acting eQTL. A cis-acting locus indicates that the DNA variation in the gene directly influences its transcription level, and a trans-acting locus is distant from the genes it influences, indicating that the genes in question are regulated by DNA variation at other genes or chromosome regions (Petretto et al. 2006). Studies also revealed that environmental factors and the interaction between genetics and environment contribute to gene expression variation as for other more traditional quantitative traits (Smith & Kruglyak 2008; López-Maury et al. 2008; Hodgins-Davis & Townsend 2009; Grishkevich & Yanai 2013).

ROLE OF GENE EXPRESSION IN ACCLIMATION AND ADAPTATION

As there is a close relationship between gene expression and fitness, and gene expression is determined by both genetic and environmental factors, the importance of gene expression in acclimation and adaptation is obvious. Gene expression responds to environmental changes and this response can be adaptive. For example, at the cellular level, the stabilization of hypoxia inducible factor 1 alpha subunit (HIF1α) and its binding to HIF1β in response to hypoxic conditions can regulate the expression of a variety of genes to maintain oxygen homeostasis (Wenger 2002). The production of different phenotypes by a single genotype in response to different environments (phenotypic plasticity) is thought to be processed by regulation of gene expression which can be achieved by up-/down-regulation of expression levels and/or selectively expressing alternatively spliced mRNAs (Schlichting & Smith 2002; Schulte 2004). Gene
expression variation is heritable and is closely related to phenotype; therefore, selection can act at the gene expression level. Evolution of phenotypes among populations and species likely depends more on variation in the regulation of gene expression than changes in protein sequences (King & Wilson 1975; Fraser 2013). The application of transcriptomic tools in various taxa further demonstrate that population differences in gene expression reflect different adaptations to temperature (Garvin et al. 2015), habitat (Huang et al. 2016), toxin tolerance (Whitehead et al. 2010), among others.

METHODS TO QUANTIFY GENE EXPRESSION

There are a variety of methods used to quantify gene expression. Generally, mRNA is first isolated from targeted tissues or cells and then is reverse-transcribed to complementary DNA (cDNA), primarily because cDNA is much more stable for downstream analyses than mRNA. The abundance of cDNA for different genes is quantified as it reflects the transcription of corresponding genes in the samples from which mRNA is isolated. Quantitative real-time PCR (qRT-PCR) is the gold standard method to measure gene expression. qRT-PCR measures gene expression by monitoring the increase of amplified DNA during PCR as a reflection of the initial abundance of cDNA of the targeted genes. The monitoring of amplified DNA is assisted by fluorescent dye which is quantified at every PCR cycle. This method is limited in the number of gene expression assays possible simultaneously compared to other techniques. DNA microarray technology is a hybridization-based method whereby quantification of gene expression is also assisted by fluorescent dyes. A DNA microarray is a microscope glass slide on which gene-specific probes have been immobilized (Kammenga et al. 2007). To measure gene expression using a DNA microarray, mRNA is reverse-transcribed to
fluorescent-dye labeled cDNA which is then hybridized to the immobilized DNA probes on the slide. The signal of fluorescent dye for each hybridized probe is measured to estimate the quantity of mRNA (expression) of the corresponding genes (Duggan et al. 1999). Technical errors of DNA microarray analysis can be high due to issues caused by background noise and cross-hybridization (Zhang et al. 2005; Bengtsson & Bengtsson 2006). RNA-Seq is a sequencing-based method which applies high-throughput next generation sequencing technologies to sequence mRNA, and expression levels of genes are quantified based on sequence read counts via bioinformatic analysis. RNA-Seq can be used to profile transcriptomes for species without any prior gene sequence characterization. However, RNA-Seq is comparatively expensive, meaning that for most labs it is not affordable to quantify hundreds of individuals using this technique.

ATLANTIC SALMON IN LAKE ONTARIO

Atlantic salmon (Salmo salar) was a native species abundant in most tributaries of Lake Ontario (Dunfield 1985). Declines of Atlantic salmon in Lake Ontario were observed in the 1840s (Parsons 1973), and this species was extirpated in the lake by the end of nineteenth century (Crawford 2001). The extirpation of Atlantic salmon in Lake Ontario was mainly caused by the construction of mill dams, which not only blocked Atlantic salmon migration to good-quality habitat for spawning, but also made them more easily caught by fishermen (Wright 1892; Parsons 1973). Other human-mediated activities, including deforestation, overharvesting and pollution, also contributed to the extirpation of Atlantic salmon in Lake Ontario (Wright 1892; Parsons 1973).

Attempts to reverse the decline of Atlantic salmon in Lake Ontario through intentional release date back to 1867 (Kerr 2006). Recent intensive reintroduction
attempts of Atlantic salmon into Lake Ontario by the governments of the Province of Ontario and New York State commenced in the 1980s (Crawford 2001), but those reintroductions have been unsuccessful (Stewart & Schaner 2002; COSEWIC 2006). While the environment in Lake Ontario has been greatly improved, the conditions in Lake Ontario may have changed substantially compared to historic conditions, including the establishment of exotic species, pollution by chlorinated organic compounds, and temperature increases (Beeton 2002). However, conditions in Lake Ontario tributaries currently are thought to be suitable for juvenile Atlantic salmon (Stanfield & Jones 2003).

There are a few possible reasons for the unsuccessful reintroduction of Atlantic salmon into Lake Ontario. First, the repeated unsuccessful reintroduction attempts using the LaHave source population implies that this population may not be a suitable source for Lake Ontario (Van Zwol et al. 2012). The LaHave population, originating from the LaHave River in Nova Scotia, is an anadromous population, while most historic Atlantic salmon in Lake Ontario are thought to be landlocked (Parsons 1973). Second, the establishment of non-native salmonids is thought to be a significant barrier to successful reintroduction of Atlantic salmon because intense competition can occur among the species due to niche overlap (Scott et al. 2003, 2005; Van Zwol et al. 2012; Houde et al. 2015a; b, 2016). Juvenile rainbow trout, brown trout and Atlantic salmon prefer riffle microhabitats (Hartman 1965; Morantz et al. 1987), and rainbow trout and brown trout are more aggressive than Atlantic salmon (Van Zwol et al. 2012). The presence of rainbow trout and brown trout caused detrimental effects on fitness-related traits of Atlantic salmon in both artificial stream tanks and natural streams (Houde et al. 2015a; b, 2016). Adult Chinook salmon have been reported to affect nest establishment and
decrease survival of mature Atlantic salmon during spawning in natural streams (Scott et al. 2003). Third, the establishment of introduced salmonid prey species (e.g. alewife and rainbow smelt) whose bodies contain high amounts of thiaminase, is another possible factor contributing to the failed reintroduction of Atlantic salmon (Ketola et al. 2000; Dimond & Smitka 2005). Consumption of these prey species can lead to thiamine deficiency in adult fish and thus cause high mortality (known as Early Mortality Syndrome) in their offspring by generation-transmitted thiamine deficiency (Fisher et al. 1996; Ketola et al. 2000; Coghlan & Ringler 2004).

THESIS OBJECTIVE AND STRUCTURE

My thesis focuses on the establishment stage of reintroduction because population establishment is the prerequisite for population persistence and it is logically more important than persistence for species with high early mortality, such as fish. This thesis uses molecular biology techniques to explore Atlantic salmon population differences in gene expression and gut microbiota and their response to ecological challenges. The primary goal is to discern the implications for source population selection for Atlantic salmon reintroduction in Lake Ontario and other conservation and commercial applications. Pre-adaptation and adaptive responses of gene expression play an important role in an organisms’ survival and establishment in new environments after release (Schlichting & Smith 2002; Schulte 2004). The microbial community in the gut involves in a variety biological processes of the host and the host physiology can in turn affect composition and diversity of gut microbiota (Sommer & Bäckhed 2013). Changes in gut microbiota in response to ecological challenges is an important factor to examine.
Population differences in gene expression and gut microbiota and their response to ecological challenges can provide information for source population selection for reintroduction and other conservation and commercial applications. Here, I investigated those areas in the chapters described below.

In Chapter 2, I reviewed population differences in responses to and tolerances of environmental stresses and changes due to their different evolutionary processes and genetic backgrounds. Population differences in adaptive potential and stress response is the fundamental basis for population differences in reintroduction performance difference. In this chapter, I propose the application of genome-wide functional genetic variation analyses to estimate adaptive potential and apply gene expression analyses to estimate acclimation and tolerance of stress for source population selection. Appropriate application of genomic and transcriptomic tools would promote more effective source population selection to increase reintroduction success.

In Chapter 3, I determined whether the difference in gene expression between the LaHave and Sebago Atlantic salmon populations is due to selection or genetic drift. To compare population differences in gene expression, I developed a custom oligo DNA microarray consisting of probes for 375 targeted genes which were selected either because of functional importance or responses to environmental stress and changes in previous studies. To determine evolutionary forces on gene expression variation, I calculated F_{ST} (a measurement of population divergence) between the two populations based on genotypes of neutral genetic markers and P_{ST} (a measurement of phenotypic differentiation) for each of the differentially expressed genes between the two
populations. I found 21 genes were differentially expressed between the two populations and the differences were likely driven by selection.

In Chapter 4, I conducted quantitative genetic analyses on genetic components of gene expression variance in two Atlantic salmon populations. I used a high-throughput qRT-PCR system to quantify expression of 22 genes in 426 Atlantic salmon from two populations (LaHave and Sebago) produced using 5×5 full factorial breeding designs. I analyzed population differences in gene expression and partitioned additive, non-additive and maternal effects of gene expression variance in these populations. I found that dams contributed more to gene expression variance than sires, but maternal effects were generally low. The average additive genetic effect of gene expression was smaller than previously reported for fitness-related traits in salmonids (Carlson & Seamons 2008). The results supported previous findings that gene expression is determined by genetic and environmental factors (Buckland 2004; Petretto et al. 2006). The results also indicated that gene expression evolves more slowly than fitness-related traits due to their small additive genetic effects.

In Chapter 5, I explored population differences in response to interspecific competition at gene expression level. I collected the spleens of Atlantic salmon from interspecific competition experiments between two Atlantic salmon populations (LaHave and Sebago) and three ecologically similar salmonids (Chinook salmon, rainbow trout and brown trout). I applied RNA-Seq to compare population differences in transcriptomic response to interspecific competition. I found population effects on gene expression were higher than interspecific competition effects. I also found population-specific responses to the same competitors. The results implied that rainbow trout may be the most stressful
competing species for the LaHave population and brown trout may be the most stressful competing species for the Sebago population, highlighting that transcriptomic tools can provide more detailed information than fitness-related traits in estimating stress response. The results indicated that RNA-Seq is a very effective tool to evaluate population differences in response to stress.

In Chapter 6, I measured population differences in response to interspecific competition in gut microbiota. I collected intestinal contents of Atlantic salmon from interspecific competition experiments between two Atlantic salmon populations (LaHave and Sebago) and four ecologically similar salmonids (Chinook salmon, coho salmon, rainbow trout and brown trout). I applied next generation sequencing to characterize gut microbiota for 178 Atlantic salmon and analyzed the effects of population and treatment on gut microbiota. I found that there were significant differences in the bacterial diversity and relative abundance of OTUs in the gut microbiota of the two populations. I found that the Sebago population had advantageous gut microbiota over the LaHave population and that treatment (competition) effects on gut bacteria were significant in the LaHave population but not in the Sebago population. The results also demonstrated that gut microbiota variation has the potential to be a good biomarker in selecting source populations for reintroduction and other conservation and commercial purposes.
REFERENCES

CHAPTER 2
ROLE OF GENOMICS AND TRANSCRIPTOMICS IN SELECTION OF
REINTRODUCTION SOURCE POPULATIONS

INTRODUCTION

Reintroduction is the intentional release of a species into its historical range where it has become extirpated and is distinct from reinforcement, where organisms are translocated to existing populations of the same species (IUCN/SSC 2013). Because of sharp declines in global biodiversity caused by human activities (Butchart et al. 2010), reintroduction has become an important conservation tool and is likely to increase in its application as extirpation rates increase (IUCN/SSC 2013). By 1998, 218 animal species had been reintroduced, and that number doubled by 2005 (Fischer & Lindenmayer 2000; Seddon et al. 2007). Although the number of reintroduction projects is increasing worldwide, project success rates are generally low (Armstrong & Seddon 2008). Forty-nine percent of animal reintroductions with known outcomes can be considered successful (Fischer & Lindenmayer 2000), and the success rate for freshwater fish is as much as 58% (Cochran-Biederman et al. 2015). The real success rate may be much lower due to publication biases that drive higher publication rates for successful reintroduction reports relative to failed reintroductions and the high percentage of reintroductions with uncertain outcomes (Fischer & Lindenmayer 2000; Miller et al. 2014).

Given good quality receiving habitat, the selection of an appropriate source population is an essential and critical factor affecting reintroduction success (Schneider 2011; IUCN/SSC 2013; Forsman 2014). Populations can differ in reintroduction potential due to their genetic architecture (genome content and epistatic interactions), which may limit their scope for adapting to novel environments and narrow their tolerance range for environmental stressors encountered in the initial acclimation phase of reintroduction. In general, genetic architecture is not only closely related to fitness in a locally adapted population but also a key factor in determining whether organisms can survive and thrive in novel or changing environments (Lande & Shannon 1996; Ouborg et al. 2010). The importance of the genetic architecture of source populations is reflected in the IUCN Guidelines for Reintroductions (IUCN/SSC 2013) which state that if a translocation consists of many individuals with high genetic diversity, then source genetic architecture may not limit reintroduction success.

Conservation genomics is a new field that applies genomic technologies to address conservation questions (Ouborg et al. 2010; Hoffmann et al. 2015). Some applications of conservation genomics simply increase the power of traditional population-genetics approaches by using more DNA markers to cover more of the genome (Kohn et al. 2006). However, conservation genomics and transcriptomics can also address more challenging long-standing issues in conservation, including quantifying fitness-related genetic variation, measuring how environmental stress affects gene activity, and determining the molecular mechanisms of tolerance to environmental fluctuation and pollutants (Ouborg et al. 2010; Whitehead et al. 2010; Harrisson et al. 2014). First, I argue that the selection of source population is critical for successful
species reintroduction and must go beyond simple inbreeding avoidance (i.e., maximize neutral genetic diversity). I then explain how genomic tools can be used to facilitate selection of the optimal source populations based on two criteria: maximizing functional genetic variation to foster adaptive potential and maximizing potential adaptive plasticity to foster acclimation, or breadth of tolerance. I argue that the appropriate application of conservation genomics and transcriptomics has the potential to dramatically improve the success rate of reintroduction, a critical tool for maintaining biodiversity in the face of rapid environmental change.

SOURCE POPULATION SELECTION

Differences in response and tolerance of environmental stresses

Because of divergent evolutionary processes, populations of the same species that differ in morphology, behavior, life history, and physiology occur in almost all kingdoms. Population differences exist in static traits and occur in response to environmental change or stressors. Populations of *Populus davidiana* subjected to different levels of drought stress differ in their strategies to survive drought (Zhang et al. 2004). Côte et al. (2012) compared embryo incubation time, body size, and survival of four Atlantic salmon (*Salmo salar*) populations under normoxic and hypoxic conditions and observed significant population by environment interactions and parental effects for all traits. Southern populations of killifish (*Fundulus heteroclitus*) exhibit higher plasma cortisol response to acute and chronic handling stress than northern populations (DeKoning et al. 2004). These examples highlight the broad range of responses to environmental stresses among presumably locally adapted populations and, hence, differences in the adaptive potential of these populations to new environments after reintroduction.
Populations also differ in their tolerance of environmental stress and resistance to pathogens. Even after growing in a common garden for 30 years, populations of white ash (*Fraxinus americana*) differ in their cold tolerance, growth, and survival (Marchin et al. 2008). Fangue et al. (2006) compared thermal tolerance in six populations of the common killifish (*Fundulus heteroclitus*) and found that the three southern populations have a higher critical thermal maximum than the three northern populations and that the latter had a lower critical thermal minimum. In Sweden, southern populations of the common lizard (*Lacerta vivipara*) are more resistant to viral eye disease (higher survival after infection) than northern populations (Uller et al. 2003). In general, differences in environmental stress tolerance and pathogen resistance are reported across taxa, indicating a high likelihood that potential source populations differ in response traits that can affect their expected survival and performance after reintroduction.

Reintroduction performance variation

Successful reintroductions require that the released organisms be able to establish and persist in the target habitat. *Establishment* refers to survival and successful reproduction (Seddon et al. 2012), and *persistence* refers to increased numbers and density of reintroduced species in the target habitat (Armstrong & Seddon 2008). When individuals are reintroduced, they face novel selective pressures imposed by the new environment. Thus, the survival of reintroduced individuals depends on how closely their phenotype matches locally favored phenotypes (Ghalambor et al. 2007) or, more generally, how well their phenotypes match the current conditions in the target habitat. Ideally, researchers should evaluate potential source populations for matching habitat
characteristics and the associated genetic architecture and phenotypic variation to choose the best possible source for reintroduction (Sork et al. 2013). However, such an exhaustive evaluation of candidate source populations is often not feasible.

Generally, there are two main mechanisms by which organisms can cope with environmental stress: phenotypic plasticity and genetic adaptation (Hansen et al. 2012; Harrisson et al. 2014). Phenotypic plasticity is the ability of individual genotypes to exhibit alternative phenotypes in response to different environments (Pigliucci et al. 2006). Genetic adaptation occurs when the genetic background of individuals within a population changes over time to maximize fitness in the new environment (Hendry et al. 2011; Hansen et al. 2012). In the short term, reintroduced individuals may survive through environmental acclimation via phenotypic plasticity (Schlichting & Smith 2002; Ghalambor et al. 2007). In the long term, genetic adaptation may be the key mechanism for introduced populations to survive and thrive (Hansen et al. 2012).

Because populations show substantial phenotypic differences at rest and in response to stress, it is not surprising that they may exhibit variation in reintroduction performance. White Storks (Ciconia ciconia) originating from their native northeastern European range have higher reproductive success and more offspring per pair than White Storks originating from North Africa (Olsson 2007). Schneider (2011) tested several Atlantic salmon populations for reintroduction into the Rhine River, and concluded that only the Swedish Ätran population was suitable for reintroduction because its spawning time matches the spawning time of the original population of the Rhine River. The variation in performance among potential source populations is likely explained by differences in their genetic architecture shaped by historic evolutionary pressures.
Whether reintroduced organisms can survive and thrive in new environments depends on their acclimation and adaptation potential, both determined by the evolutionary history of the source population. It is thus important to characterize potential source populations based on their current functional genetic variation (adaptive potential) and their scope for response to ecologically relevant stresses (acclimation). However, characterizing functional trait differences can be technically and logistically difficult, and neutral genetic variation, even with large numbers of loci, may not accurately reflect genome-wide functional genetic variation. I devised a new paradigm for reintroduction source population selection: conservation genomics and transcriptomics (Figure 2.1).

FUNCTIONAL GENETIC VARIATION AND SINGLE NUCLEOTIDE POLYMORPHISMS

Genetic similarity and genetic diversity

The genetic variation of source populations can significantly impact the outcome of reintroduction efforts. Two main aspects of genetic variation must be taken into account when selecting a source population: genetic similarity and genetic diversity. Ideally, a donor population that is genetically similar to the historical (extirpated) population in the targeted habitat should be selected for reintroduction. After environmental remediation or natural habitat recovery, the species could reestablish after reintroduction due to preexisting adaptations to the target habitat. For example, aurora trout (*Salvelinus fontinalis timagamiensis*) were extirpated from Whitepine and Whirligig Lakes in the 1960s due to acidification (Snucins *et al.* 1995). In 1990, when the lakes recovered, captive aurora trout originating from wild individuals collected from the same lakes before extirpation were reintroduced and natural reproduction was observed in
Whirligig Lake in 1992 (Snucins et al. 1995). However, in most cases individuals from the original population are not available, and there are usually no DNA samples from the original population that can be used to compare genetic similarity between the original and potential source populations (Schwartz 2005). Furthermore, although a historic habitat may appear to be restored, it is likely that current conditions are not the same; thus, even the original genetic stock may fail to reestablish. In most situations, one must select from extant populations of unknown genetic relatedness to the original population.

Using genetic diversity as a criterion for selecting source populations for reintroduction (Earnhardt 1999; IUCN/SSC 2013) ensures sufficient genetic variation for natural selection to act upon in the novel environment, maximizing adaptive potential (Lande & Shannon 1996). Avoiding low genetic diversity resulting from past genetic bottlenecks and inbreeding is also important for reintroduction success (Frankham 1995). This is the theoretical basis for using measures of genetic variation as surrogates for fitness in conservation (e.g., Reed & Frankham 2001). Although high genetic diversity is important for population fitness, not all genetic variation is related to fitness.

Applications of neutral genetic markers in conservation have increased dramatically (Ouborg et al. 2010), but the vast majority of those applications rely on small numbers of loci that may not reflect genome-wide diversity (Figure 2.2). Furthermore, although one may assume that neutral marker diversity is correlated with functional genetic variation, this may not be correct (Hedrick 2001; Reed & Frankham 2001). Ideally, genome-wide coverage based on functional marker loci should be used to achieve more complex conservation goals than inbreeding assessment and genetic isolation quantification.
Single nucleotide polymorphism

Single nucleotide polymorphisms (SNPs) are DNA sequence differences at a single nucleotide where the less frequent allele of the polymorphism is 1% or higher (Vignal et al. 2002). Generally, SNPs are biallelic and distributed throughout the genome with high density (e.g., 1 SNP every 116 base pairs in the genome of channel catfish *Ictalurus punctatus* [Sun et al. 2014]). SNPs can be located in the coding region of genes, in introns, and between the genes (Jukema & Agema 2001). Coding region SNPs (cSNPs) can be further divided into synonymous and nonsynonymous SNPs. Nonsynonymous SNPs are associated with changes in amino acid sequence and are thus most likely to represent functional genetic variation, although synonymous SNPs may be in linkage disequilibrium with unrecognized functional variation.

Variation in phenotype among and within populations is partially explained by variation in DNA sequence (Botstein & Risch 2003), and understanding of how variation at specific gene loci affects phenotype is growing rapidly. Thus, identifying genetic markers (e.g., SNPs) for variation in specific traits that are critical for reintroduction success will facilitate effective selection of source populations and individuals for reintroduction. For example, Johnston et al. (2014) used 4,353 SNPs to conduct a genome-wide association study between SNPs and the age at which Atlantic salmon return from the sea to spawn and identified 10 SNPs associated with maturation age. Such studies show the power of genomic approaches to identify functional DNA markers that can be used to evaluate source populations for reintroduction. However, despite the promise of conservation genomics for improving the selection of source populations for successful reintroductions and a rapidly decreasing cost to characterize genome-wide
SNPs, few such studies have been reported and no studies report reintroduction success. Thus, despite the rapid growth of conservation genetics and the broad acceptance of the concepts of conservation genomics, to date genomics and transcriptomics have rarely been used to assist in species reintroduction efforts (Figure 2.2).

Application of genome-wide SNPs to reintroduction

Morin et al. (2004) proposes SNPs replace microsatellite markers for applications in conservation genetics. Genotyping of genome-wide SNPs has been reported for many species, including farm animals (Muir et al. 2008; Petersen et al. 2013), fish (Willing et al. 2010; Jones et al. 2012), and plants (Grattapaglia et al. 2011; Plomion et al. 2014). Considering the importance of functional genetic variation and logistical convenience of genotyping genome-wide SNPs, I propose the use of SNP-based genome scans to estimate genetic diversity for selection of reintroduction source populations (Figure 2.1).

I further suggest that two types of SNP genome scans are useful for reintroduction efforts: nonsynonymous SNPs and SNPs associated with fitness-related traits. Nonsynonymous SNPs change protein sequences and thus may reflect variation in protein function. The SNPs already known to be associated with fitness-related traits may have either direct effects on phenotype or be in linkage disequilibrium with genetic variation underlying phenotypic variation. In either case, the estimation of genetic diversity at such SNP markers can effectively provide estimates of functional genetic variation (Figure 2.1). My proposed approach to known functional SNP scanning is appropriate for species with abundant genomic information and well-characterized gene function. However, many species of conservation concern have little genomic information and the genetic bases for fitness-related traits are barely studied. Therefore, I
propose genotyping anonymous genome-wide cSNPs to estimate genetic diversity for species with poor genomic characterization. Although not all cSNPs are functionally important, they are much more likely to be associated with functional genetic variation than known neutral DNA markers. Once appropriate functional SNPs are identified, candidate populations with the highest observed heterozygosity should be selected as source populations. This focus on maximizing heterozygosity in cSNPs will not only maximize functional genetic variation for functional traits and hence the likelihood of reintroduction success through adaptation but also provide useful information regardless of source population size because it provides objective functional criteria for choosing the source population with maximal adaptive potential for reintroduction.

GENE EXPRESSION AND APPLICATION OF TRANSCRIPTOMICS

Gene expression and its importance

Gene expression variation is the primary mechanism that leads to phenotypic variation within and among populations (Rifkin et al. 2003; Storey et al. 2007) because gene expression is influenced by both genetic and environmental factors (Petretto et al. 2006; López-Maury et al. 2008) specifically through regulation of expression, selective expression, or silencing of genes (Schlichting & Smith 2002). Therefore, variation in gene expression is a physiological process and an important adaptive mechanism allowing organisms to respond to novel habitats or environmental change or stress (Schulte 2004).
Population difference in stress response via gene transcription

With the rapid development of transcriptomic tools, it has become simpler to simultaneously quantify transcription at thousands of gene loci, even in species with few genomic resources available. Differentially expressed genes (at rest or in response to a challenge) represent potentially adaptive genetic variation among populations (Whitehead & Crawford 2006; Larsen et al. 2007; Giger et al. 2008; He et al. 2015). Thus, transcriptional profiling can lead to quantitative estimates of relative environmental stress response among populations. Transcriptional patterns in six wild rainbow trout populations differ in response to temperature and immune challenges, despite that the populations are separated by <250 km (Wellband & Heath 2013). Whitehead et al. (2010) compared transcriptome differences in response to polychlorinated biphenyl exposure between naturally tolerant and sensitive killifish populations and found that low expression of genes involved in the aryl hydrocarbon receptor signaling pathway may be a mechanism of pollution tolerance in killifish. Although examples such as these underscore a large body of literature that demonstrates that populations generally respond to environmental stressors differently at the gene transcription level, the application of that knowledge to the selection of source populations for reintroductions is practically nonexistent. The only published example of transcriptomics applied for reintroduction purposes focuses on the reintroduction of extirpated Atlantic salmon into Lake Ontario, Canada. Using a custom microarray, He et al. (2015) found significant gene transcription differences at 21 genes between two possible source populations, demonstrated that differences are likely the result of selection, and recommended one source population for reintroduction based on those differences. Differences in gene expression patterns
underlie the mechanisms of differential tolerance to environmental stress, and transcriptional profiling is thus an ideal, but underutilized, tool for selecting source populations for reintroduction.

Application of transcriptional profiling to reintroduction

Because variation in gene expression is directly linked to phenotypic variation, gene expression is potentially a powerful tool for the prediction of phenotypes (Oellrich et al. 2014). For example, Tung et al. (2012) compared gene expression among 10 rhesus macaque (Macaca mulatta) groups with different social status and found that the identified differentially expressed genes could be used to predict social rank class with 80% accuracy. Miller et al. (2011) applied a nonlethal biopsy method to collect tissues and used genome-wide gene transcription in wild migrating Sockeye salmon (Oncorhynchus nerka) to identify a genomic signature that could be used to predict migration and spawning success. Although this kind of application of transcriptomics is still in its infancy and few examples exist in the literature, those that do exist demonstrate the possibilities.

Because of the plastic nature of gene expression and its important role in the adaptive response to environmental stressors (acclimation), I propose the application of transcriptional profiling to quantify acclimation potential among potential source populations (Figure 2.1). Because many species of conservation concern occur only in small, highly fragmented populations, this focus on flexibility avoids the problem that small populations may be dominated by genetic drift and thus may no longer be locally adapted (Willi et al. 2006; Leimu & Fischer 2008). For species with well-characterized stress-response genes, transcriptional profiling could target a selected panel of candidate
genes associated with coping with ecologically relevant stressors and environmental fluctuation. For species whose stress-response genes are poorly characterized, whole transcriptome analysis should be used to quantify acclimation potential. In such cases, ecologically relevant and physical environmental challenges would have to be applied to individuals from the candidate populations and their gene transcription profile assessed before and after the challenge. Based on their transcriptional response, one can evaluate and predict population performance upon reintroduction in two ways. First, for cases where one knows a gene’s function in mitigating environmental stress, one selects populations exhibiting adaptive responses. Second, for cases where one does not know whether upregulation or downregulation of a gene is beneficial, one selects populations with high plasticity.

LIMITATIONS OF CONSERVATION GENOMICS AND TRANSCRIPTOMICS

Species reintroduction will become more common as habitats are altered and lost due to human activities and climate change. However, reintroduction efforts are costly, potentially environmentally risky, and subject to complex regulatory requirements (IUCN/SSC 2013). Thus, reintroductions are only feasible when reintroduction is central to species conservation and the species is of high priority. I contend that conservation genomics and transcriptomics are realistic possibilities for improving the likelihood of reintroduction success in key high-risk situations. Although the costs of genome-wide cSNP application and transcriptome profiling have come down substantially, it is still a major hurdle for often financially limited conservation efforts. I do not propose that genomics or transcriptomics should be the first line of response in a reintroduction effort; rather, they are promising tools for which the cost is dropping rapidly. More importantly,
the effectiveness of the conservation genomics and transcriptomics applications I propose have not yet been tested in any reintroduction that I am aware of; thus, no empirical data exist that shows it materially improves reintroduction success. Ideally, translocation experiments in controlled systems should be used to test whether functional genetic variation is a good predictor for long-term introduction success or whether transcriptional profiling can predict short-term acclimation and survival.

Because it is likely not feasible to apply conservation genomic and transcriptomic methods to reintroduction efforts for endangered species, I propose an empirical test of the application of genomic and transcriptomic techniques in an artificial reintroduction experiment. Using short-lived, genomically well-characterized species as models, groups could be introduced into controlled environments that range in environmental conditions such that they represent benign to potentially lethal levels of environmental stress. The putative source populations would be characterized as having either high or low levels of functional genetic variation and adaptive or nonadaptive transcriptional response to the environmental stressors in the artificial target habitats. Groups from the contrasting source populations would be introduced into the range of target habitats, and population performance would be monitored as reproduction in the short term and as population size and habitat-use expansion in the medium term. I predict that high functional genetic variation and high plasticity in transcriptional scope will drive increased short- and medium-term performance. Although the primary purpose of this essay is to make the argument that conservation genomics and transcriptomics has great promise and should be explored as a valuable tool in addressing the growing biodiversity conservation crisis, I cannot yet provide concrete evidence for its value in conservation efforts. However, the
growing understanding of how the genome and transcriptome is shaped by interactions with the environment provides compelling evidence for conservation genomics and transcriptomics as emerging and valuable tools for effectively managing the world’s biodiversity.

CONCLUSIONS

Functional SNP genotyping and transcriptional profiling are potentially powerful tools for reintroduction in particular and conservation in general. Conservation genomics and transcriptomics can not only answer long-standing questions in conservation biology but also provide important applications in reintroduction biology, specifically in selecting appropriate source populations. Characterizing genome-wide functional SNPs can provide quantitative estimates of fitness-related genetic variation and transcriptional profiling can provide data on how individuals respond to environmental stresses. Such data would have immediate practical applications in reintroduction biology as metrics for source population selection. Because successful reintroduction requires both short-term acclimation and long-term adaptation to the targeted habitat, I strongly urge conservation professionals to consider using functional SNP scans to measure genetic diversity and transcriptional profiling to measure the response of candidate and anonymous genes as part of the selection process for source populations for reintroduction. When based on genomic and transcriptomic measurements of adaptation and acclimation, the selection of source population will be more effective and will increase the success rate of reintroductions globally.
REFERENCES

Sork VL, Aitken SN, Dyer RJ et al. (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes, 9, 901–911.

Figure 2.1 Application of conservation genomics and transcriptomics to source population selection for species reintroduction. Selected functional single nucleotide polymorphisms (SNPs) and genome-wide coding region SNPs (cSNP) can be used to measure functional genetic variation available for natural selection. Transcriptional profiling of candidate genes or whole transcriptome analysis can be used to quantify the population’s scope for acclimation in response to environmental stress.
Figure 2.2 Numbers of papers published that used DNA-based markers for conservation applications from 2005 to 2014 (all papers, all publications in which authors used microsatellite or SNP markers with a conservation application [{conservation} and {microsatellite or SNP}]; whole genome, only publications in which authors used a genome-wide marker approach [{conservation} and {whole genome}] followed by inspection for relevant studies).
CHAPTER 3

TRANSCRIPTIONAL PROFILING OF TWO ATLANTIC SALMON POPULATIONS: IMPLICATIONS FOR REINTRODUCTION INTO LAKE ONTARIO

INTRODUCTION

The conservation genetics paradigm is that small and isolated populations are subject to loss of genetic diversity and increased levels of homozygosity that in turn lead to increased likelihood of extirpation (Frankham et al. 2002; Ouborg et al. 2010). Loss of genetic diversity is thought to reduce individual fitness and affect the ability of a population to adaptively respond to a changing environment (Frankham 2003; Spielman et al. 2004). Therefore, conserving genetic diversity is often an important component of conservation plans and efforts. However, it is not clear if these efforts actually conserve functional genetic variation.

There are three forms of genetic variation in populations: neutral, deleterious, and adaptive (Hedrick 2001). Adaptive genetic variation is variation in coding or regulatory genes that have the potential to increase fitness (Hedrick 2001; Garcia de Leaniz et al. 2007). Thus, using functional genetic variation to address issues in conservation should be advantageous in comparison with neutral genetic variation. One form of functional genetic variation is gene expression variation, that is, the process whereby genomic variation is converted into phenotypic variation. One mechanism by which phenotypic

variation can arise from a single genotype is regulation in gene expression: this can be either sensitive up- or down-regulation or, more simply, on-off control (Schlichting & Smith 2002). Many studies have suggested that variation in gene expression among populations can be adaptive (Oleksiak et al. 2002; Whitehead & Crawford 2006; Larsen et al. 2007; Luca et al. 2009; Wellband & Heath 2013) and thus could be used to address conservation issues. Compared to neutral genetic variation, measures of variation in gene expression could provide more relevant information as it reflects the activity of functional genes. For example, Giger et al. (2006) profiled gene transcription using DNA microarrays and genotyped microsatellite loci in juveniles from six brown trout (Salmo trutta) populations and found that gene expression variation among populations was more affected by population life history (migratory or residential) than by their genetic distance based on neutral DNA markers.

Population differences in gene expression have been demonstrated in several species over the past decade. Some studies suggest that among-population gene expression variation is much higher than within-population variation (Townsend et al. 2003; Hutter et al. 2008), whereas others have found the opposite pattern (Oleksiak et al. 2002; Storey et al. 2007). However, those studies all indicated that variation in gene expression is an important source of variance for adaptation, and thus ultimately, evolution.

More recently, gene expression comparisons among populations have been applied to conservation. For example, gene transcription comparisons have revealed that introgression can result in changes in gene transcription profiles in both Atlantics salmon (S. salar) and brook charr (Salvelinus fontinalis), which may result in loss of local
adaptation (Roberge et al. 2008; Lamaze et al. 2013). Also, analyses of population differences in gene expression versus neutral DNA in 12 Atlantic salmon populations showed that gene transcription can be used to identify conservation units and has many advantages over the more traditional, neutral markers (Hansen 2010; Vandersteen Tymchuk et al. 2010). Pedersen et al. (2005) compared the expression of heat shock protein 70 (Hsp70) between inbred and outbred lines of Drosophila melanogaster to illustrate mechanisms of inbreeding depression and found that there was a significant negative correlation between transcription level of Hsp70 and resistance to heat stress. Miller et al. (2011) collected gill tissue using nonlethal biopsy method from wild-caught Sockeye salmon (Oncorhynchus nerka) and identified a set of genes whose transcription can be used to predict migration and spawning success both in fresh water and in the ocean.

Atlantic salmon are broadly distributed in North America and Europe but they have declined or been extirpated in many rivers over the last 200 years (Parrish et al. 1998). Atlantic salmon was once an abundant fish in Lake Ontario (Ontario, Canada), but had disappeared by 1900, mainly because of habitat degradation (Crawford 2001). Because of its economic, ecological, and cultural value, there have been increasing efforts to reintroduce Atlantic salmon into Lake Ontario over the past three decades (Dimond & Smitka 2005); however, those reintroduction attempts have been unsuccessful. Potential explanations for the reintroduction failure of Atlantic salmon into Lake Ontario include environmental changes of Lake Ontario during the past years, such as establishment of non-native prey fish and non-native competitors (Coghlan & Ringler 2004; Scott et al. 2005; Houde et al. 2015), and perhaps inappropriate Atlantic salmon
population used for the reintroduction (Van Zwol et al. 2012). Although the Lake Ontario habitat has improved, selecting appropriate source populations is a crucial step for Atlantic salmon reintroduction, as populations can differ in their adaptive potential and environmental tolerances. To address possible limitations in candidate populations for reintroduction into Lake Ontario, I explored the genetic background (neutral and transcriptional) of two Atlantic salmon populations: LaHave and Sebago. LaHave is an anadromous population which originates from the LaHave River, Nova Scotia. The LaHave population has been used for reintroduction into Lake Ontario for many years and it was successfully reintroduced into Trout Lake, Ontario (Dimond & Smitka 2005). Sebago is a landlocked population from Sebago Lake, Maine. This population has a relatively large body size compared to other populations and it performed well in the Lake Champlain reintroduction where salmonid competitors (rainbow trout and brown trout) existed (Dimond & Smitka 2005; Van Zwol et al. 2012). In this study, I constructed a custom oligonucleotide microarray to compare gene transcription at selected known-function genes in gill tissue between the two source populations. I then calculated F_{ST} based on microsatellite genotypes and P_{ST} based on gene transcription levels, and used the F_{ST}-P_{ST} comparison to identify selection versus genetic drift effects on the genes differentially expressed between the two populations. The results demonstrate how populations differ in gene expression and the evolutionary forces underlying those differences.
MATERIALS AND METHODS

Atlantic salmon populations

Two Atlantic salmon populations were provided by the Ontario Ministry of Natural Resources (OMNR): LaHave and Sebago. The LaHave population was from broodstock that has been in captivity for three generations. The Sebago population was derived from hatchery-bred fish that were released and recaptured as returning mature fish in Sebago Lake. Eggs and milt were collected from the recaptured adults and brought to Ontario in 2006 and the Sebago population was reared in captivity to be used as broodstock. Eggs from both populations were fertilized on November 4, 2010 at OMNR Harwood Fish Culture Station, Harwood, Ontario, and then reared at the OMNR Codrington Research Facility, Codrington, Ontario. Detailed information about the families and rearing environment is provided in Houde et al. (2013). Briefly, for each population, a full factorial cross was conducted using five males and five females to yield 25 full-sib families. Fertilized eggs were incubated in vertical stack incubators followed by rearing in tanks. The fish were transferred to artificial stream tanks in September 2011 as juvenile fry. Each artificial stream tank consisted of a riffle and a pool. More details about the juvenile salmon and artificial stream tank construction are described in Houde et al. (2015). In each tank, there were a total of 32 Atlantic salmon from eight families of one population with equal numbers (four fish) per family. Each stream tank was replicated once such that fish from each population were reared in two stream tanks (for a total of four stream tanks). In July 2012, after 10 months in the artificial stream tanks, eight fish from each tank were euthanized by overdose of tricaine methanesulfonate solution and gill tissue was collected and preserved in RNAlater. I chose gill tissue
because of its vital function in respiration, osmoregulation, nitrogen balance and disease resistance, and its fast response to environmental stressors (e.g. toxins and pathogens) relative to other organs (Campos-Perez et al. 2000; Evans et al. 2005). At the time of sampling, body mass ranged from 12.76-45.71 g with an average body mass (±SE) of 24.24±1.68 g. There were no significant differences in mean body mass between populations or among tanks.

Oligonucleotide microarray construction

To compare transcriptional differences between the two populations, I developed a custom oligonucleotide microarray. Custom microarrays have a few advantages compared to commercial microarrays: relatively low price, higher replication and more focused set of genes. My custom microarray consisted of probes for 380 different genes: 375 genes from Atlantic salmon and five control genes from Arabidopsis thaliana. Of the 375 genes, 277 genes were selected because of their functional importance and their mRNA sequences were obtained from the consortium for Genomics Research on All Salmon Project website (http://web.uvic.ca/grasp/microarray). The sequences of the other 98 genes were downloaded from Nucleotide database of NCBI (http://www.ncbi.nlm.nih.gov) and most of those genes had been reported to show transcriptional response to environmental factors. The five plant genes (isoflavonoid reductase, psbP, psbW, salt-stress induced tonoplast intrinsic protein, ribulose 1.5-biphosphate carboxylase small subunit) were used as negative control and their sequences were downloaded from NCBI. The probes were designed by using OligoArray 2.0 (Rouillard et al. 2003). The length of probes ranged from 45 to 55 nucleotides and T_m ranged from 82 to 88°C. A list and detailed information for the selected genes and probe
sequences are presented in Supplementary Table S3.1 (https://static-content.springer.com/esm/art%3A10.1007%2Fs10592-014-0657-1/MediaObjects/10592_2014_657_MOESM2_ESM.xlsx). The oligonucleotide probes were printed on poly-L-Lysine coated slides (Thermo Scientific, USA) using a SpotArray 24 Microarray Printing System (PerkinElmer, Canada). On each slide, the probes were printed in three blocks (top, middle, and bottom) and each probe was printed three times adjacent within each block. Thus each probe was printed nine times on every slide. After printing, the probes were cross-linked to the slides by ultraviolet irradiation. The microarrays used in this experiment were printed in two batches and the potential batch effect caused by different printing was taken into account in the data analysis.

RNA extraction, microarray hybridization and data preparation

Gill tissue was placed in 2 mL tubes containing 1 mL TRIzol (Invitrogen, USA) and approximately 400 µL of 1.0 mm diameter glass beads (BioSpec Products, USA). The tissue samples were homogenized at speed 6 for 40 seconds in a Thermo Savant FastPrep homogenizer (Lab Recyclers Inc., USA). Total RNA isolation followed the manufacturer’s instructions (http://tools.lifetechnologies.com/content/sfs/manuals/trizol_reagent.pdf). The concentration and purity of RNA was measured by spectrophotometry on a NanoVue spectrophotometer (GE Healthcare Bio-Science Corp, USA), and the quality of RNA was assessed by running 1 µg of total RNA on a 1% agarose gel. Single colour microarray measurement was performed for this experiment using Array 50™ Cy3 Kit (Genisphere Inc., Hatfield, USA). Detailed protocols for reverse transcription, cDNA concentration, hybridization and washing are given in the Array 50™ Cy3 Kit’s instruction
Briefly, 15-20 µg total RNA was reverse transcribed using SuperScript® II Reverse Transcriptase (Invitrogen) and RT primer (5’- TTCTCGTGTTCCGTTTGTACTCTAAGGTGGA–T(17)- 3’). The cDNA was concentrated and hybridized to microarrays for 12 h at 43°C. The slides were subsequently washed using 2X SSC with 0.2% SDS, 2X SSC and 0.2X SSC, separately. The slides were centrifuged immediately for two minutes at 1000 RPM to dry. The slides were then hybridized with Cy3-labeled fluorescent DNA dendrimer for 2.5 h at 43°C. The slides were washed and dried again as described above, then the slides were immediately scanned using a ScanArray Express microarray scanner (PerkinElmer, Canada) with the laser at 90% power and photo-multiplier tube (PMT) gain at 75%.

The scanned images were analyzed using ScanArray Express Microarray Analysis System software version 4.0 (PerkinElmer, Canada). Each spot was quantified using the adaptive circle method and the three blocks on each slide were quantified separately. After quantification, the data were background corrected and normalized using the limma package of R (Smyth 2005). First, the spots which failed to meet the quality criteria were filtered out. Then, “normexp” algorithm with an offset of 50 was used for background correction. After that, “quantile” normalization method was used to conduct between-array normalization. Finally, genes that had expression data in less than 70% of the spots across all samples were removed. The intensity of fluorescence for the remaining genes was log2 transformed for statistical analyses.

Statistical analysis

To detect artificial stream tank effects on gene expression, I analyzed the data population by population as tanks were nested in each population in this experiment. The
analysis was conducted using the lme4 package of R (Bates & Maechler 2009) with the following model:

\[Y_{ijklm} = \mu + T_i + B_{aj} + I_k + B_{l(k)} + e_{ijklm} \]

where \(Y_{ijklm} \) is the log₂ transformed normalized intensity value for each spot; \(\mu \) is the average value; \(T_i \) is the \(i \)th effect of tank; \(B_{aj} \) is the \(j \)th effect of printing batch; \(B_{l(k)} \) is the \(l \)th block effect (position on the array) which is nested within the \(k \)th individual (fish) and \(e_{ijklm} \) is the random residual. Significance of expression differences between replicate tanks (within population) was determined using a likelihood ratio test between two models: one with and one without the tank effect included. Due to the complicated nature of the mixed-effects model and the dependency structure of the genes, resampling based False Discovery Rate (FDR) corrections are not supported. In lieu of these, I calculated the probability of detecting a \(P \)-value as extreme as the one I observed by randomly permuting the data 10 000 times and refitting the model for each gene to determine its significance under a completely null hypothesis. I report the probability of detecting the gene as significant as the number of times the permuted \(P \)-values were more extreme (less) than the observed \(P \)-value for that gene divided by the total number of permutations.

To test for gene transcription differences between the two Atlantic salmon populations (Sebago and LaHave), I used the following model:

\[Y_{ijklmn} = \mu + P_i + T_j + B_{ak} + I_l + B_{lm(l)} + e_{ijklmn} \]

where \(Y_{ijklmn} \) is the log₂ transformed normalized intensity value for each spot; \(\mu \) is the average value; \(P_i \) is the \(i \)th effect of population; \(T_j \) is the \(j \)th effect of tank; \(B_{ak} \) is the \(k \)th effect of array printing batch; \(B_{lm(l)} \) is the \(m \)th effect of block (position on the array) which
is nested within \(l^{th} \) individual (fish) and \(e_{ijklmn} \) is the random residual. The significance of the population effect was determined using a likelihood ratio test between two models: one with and one without the population effect included. I followed the same methodology detailed above to calculate the probability of false discovery for the population effect analyses.

Functional analysis

The functions of those differentially expressed genes were analyzed in NCBI (http://www.ncbi.nlm.nih.gov) and the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al. 2009). The transcriptional level for the differentially expressed genes was averaged within each tank and then the data was used to construct a heat map using TM4 software (Saeed et al. 2003).

Microsatellite genotyping and \(F_{ST} \) estimation

To calculate neutral \(F_{ST} \) between the two stains, I used microsatellite genotype data for a total of 520 fish, of which 219 were collected from the Sebago population in Sebago Lake, and 301 were collected from LaHave population in Harwood Hatchery. Each fish was genotyped at eight microsatellite loci: \(Ssa197, Ssa202, SSsp1605, SSsp2201, SSsp2213, SSsp2215, SSsp2216 \) and \(SSspG7 \) (O’Reilly et al. 1996; Paterson et al. 2004). Detailed information about PCR protocols are described in Bobrowski (2010). Briefly, the eight microsatellites were amplified in 5 PCR reactions using fluorescent-labeled primers. The PCR products were run on an AB3730 DNA Analyzer (Applied Biosystems, USA) and the genotypes were analyzed using GeneMapper version 3.1
(Applied Biosystems, USA). F_{ST} and its 99% confidence interval was estimated using Fstat version 2.9.3.2 (Goudet 1995). The sample size for the F_{ST} estimate (520 fish) is much larger than that of the P_{ST} estimate (31 fish). To account for potential bias caused by sample size, I randomly selected microsatellite genotypes for 16 fish from each population (n=32 fish total) to calculate F_{ST} and replicated this analysis 1 000 times using the *pegas* package of R (Paradis 2010).

P_{ST} estimation

P_{ST}, the phenotypic analogue of Q_{ST}, is a measurement of phenotypic differentiation among populations. To calculate P_{ST} for each gene, I used the following model to obtain variance estimates between and within populations using restricted maximum likelihoods (REML) as priors:

$$Y_{ijklm} = \mu + P_i + T_j + B_k + B_l + e_{ijklm} \quad (3)$$

where Y_{ijklm} is the log2 transformed normalized intensity value for each spot; μ is the average value; P_i is the i^{th} effect of population; T_j is the j^{th} effect of tank; B_k is the k^{th} effect of batch; B_l is the l^{th} effect of block and e_{ijklm} is the random residual. I then used the variance estimates to calculate highest probability density (HPD) values with Markov Chain Monte Carlo (MCMC) simulations (10 000 replications) in the *language* R package (Baayen 2008). The median HPD values were used to calculate P_{ST} as:

$$P_{ST} = \frac{\sigma^2_{GB}}{\sigma^2_{GB} + 2\sigma^2_{GW}} \quad (4)$$

where σ^2_{GB} is median HPD value for the between-population variance and σ^2_{GW} is median HPD value for within-population variance.
RESULTS

Tank effect on gene transcription

In total, 271 genes were analyzed as these genes had expression data in more than 70% of the spots. Nineteen genes showed significant differences between the two replicate artificial stream tanks for the Sebago population (Table 3.1; Supplemental Figure S3.1). Fifteen genes showed significant differences between the two replicate stream tanks for the LaHave population (Table 3.2; Supplemental Figure S3.2). Among the identified genes, proprotein convertase subtilisin/kexin type 5 (pcsk5) and tissue metalloproteinase inhibitor 3 precursor (timp3) showed stream tank effects in both populations.

Differentially expressed genes between populations

Twenty-one genes showed significantly different transcription between LaHave and Sebago populations, which accounts for 7.75% of the genes examined (Table 3.3; Supplemental Figure S3.3). Of the genes that were differentially transcribed between populations, 13 showed higher transcription levels in Sebago than that in LaHave whereas the other eight genes showed higher transcription levels in LaHave. Of these differentially expressed genes, glutamine synthetase (glns) and myosin light chain 6B (myl6b) were also affected by tank effect. Hierarchical clustering based on the 21 differentially expressed genes showed that the two replicate tanks within each population clustered together (Figure 3.1). The differentially expressed genes have diverse functions: nine genes (cyp3a27, cyp2f5, fah, glns, hmob, hyal2, pded, pgm2 and srk2tk) encode enzymes; five genes (clqc, il1r2, saa5, tcrb and tnr5) are involved in the immune...
response; five genes (myl1, myl3, myl6b, fah and pgm2) are involved in ion binding; two
genes (cytl1 and tbl1xr1b) regulate transcription activity and one gene (grn) regulates cell
growth.

\[F_{ST} \text{ and } P_{ST} \]

The \(F_{ST} \) value based on the microsatellite genotypes of all 520 fish was 0.038,
with a 99% confidence interval of 0.020-0.057. The mean \(F_{ST} \) value (±SD) based on the
randomly sub-sampled microsatellite genotypes of 32 fish was 0.037 ± 0.008. Although
the \(F_{ST} \) estimates based on the randomly sub-sampled fish ranged from 0.013 to 0.082,
97.5% (975 out of 1000 times) of the estimates were within the 99% confidence interval
of the mean \(F_{ST} \) value based on all 520 fish. This result indicates that \(F_{ST}-P_{ST} \) comparison
is not likely biased due to estimates based on different sample size.

I tested for the effects of selection versus genetic drift as contributors to the
difference in gene transcription levels by comparing \(P_{ST} \) for each gene with the \(F_{ST} \)
confidence interval. The \(P_{ST} \) for the 271 analyzed genes ranged from 0.034 to 0.32
(Figure 3.2a). The \(P_{ST} \) for the 21 differentially expressed genes between populations
ranged from 0.20 to 0.32 (Figure 3.2b), all of which were substantially outside the 99%
confidence interval for the \(F_{ST} \) value reported above. I therefore conclude that the
population difference in transcription for these 21 genes is primarily driven by selection.

DISCUSSION

Gene transcription data has only recently been used in the study of population
genetics. Comparing gene transcription profiles across populations does have important
applications in conservation and management (Vandersteen Tymchuk _et al._ 2010). In this experiment, I compared transcription between two Atlantic salmon populations (LaHave and Sebago), and found that about 8% of analyzed genes were differentially expressed between the two populations, despite being held in identical artificial environments. This percentage is higher than that reported in two similar studies (1.4% and 1.7%: Roberge _et al._ 2006; and 2.3%: Debes _et al._ 2012) on microarray gene transcription comparisons between farmed and wild Atlantic salmon. There are three possibilities for my higher frequency of transcriptional differences. First, my custom microarray was enriched for genes that are known to be sensitive to environmental differences. Second, the two populations I compared have different evolutionary histories and marked life history differences. Third, I used an oligonucleotide microarray which may be more sensitive than the cDNA microarrays used in other studies (Yauk _et al._ 2004).

Like other quantitative traits, gene expression is determined by a combination of genetic and environmental effects, thus it is not surprising that I detected both tank and population effects. Two genes, _psck5_ and _timp3_, were significantly affected by tank effects in both populations, while the majority of genes differentially expressed between tanks showed difference in only one population. Thus minor environmental differences among tanks affected the two populations differently, likely a reflection of genotype by environmental interactions (G×E) on gene transcription. This is despite my attempts to control many environmental factors, for example: the fish were crossed on the same day and reared under the same food and water source and flow regimes, plus I sampled them at the same developmental stage and used identical protocols to measure gene transcription. Nevertheless, stream tank effects contributed to differences in gene
expression, and the number of genes and magnitude of differences between tanks was similar to the population effect. As my design had the stream tanks nested within populations, I am unable to specifically partition GxE effects, however, previous studies have shown that GxE contributes to transcriptional variation (Smith & Kruglyak 2008; Grishkevich & Yanai 2013). Although I cannot definitively conclude that the stream tank effects reflected GxE, the transcription differences indicate high environmental sensitivity in these fish, perhaps reflecting why reintroduction may succeed in one habitat but fail in another using the same donor stock.

Neutral microsatellite DNA markers have been widely used in conservation genetics over the past two decades under the assumption that the extent of neutral genetic variation is positively correlated with the genome-wide functional genetic variation - this assumption has been called into question in a number of studies (Reed & Frankham 2001; Hedrick 2001). In this study, I found that there was little neutral genetic differentiation ($F_{ST} = 0.038$) between the two populations based on microsatellite genotypes, but genes involved in known and vital functions showed significant differences between the two populations. For example, two genes (cyp3a27 and cyp2f5) encoding cytochrome P450 (CYP) enzymes had higher transcription in the anadromous population (LaHave); those enzymes play an important role in metabolism of steroids and fatty acids and detoxification of pollutants and drugs (Uno et al. 2012). Similarly, glns which encodes glutamine synthetase (catalyzes ammonia and glutamate to synthesize glutamine) also showed higher transcription levels in the LaHave population. The conversion of ammonia to glutamine is a mechanism to remove ammonia and thus avoid its toxicity (Essex-Fraser et al. 2005). The higher transcription of the CYP and glns genes may be adaptive
for the anadromous population as part of their preparation for the novel marine environment. Similar migratory preparation was also reported in Giger et al. (2008) where 17 genes related to migratory adaptation differentially expressed between migratory and non-migratory brown trout populations. In contrast, I found 5 immune-related genes (tnr5, tcrb, illr2, clqc and saa5) had higher transcription levels in the Sebago relative to the LaHave population. The tnr5 gene encodes a member of the tumor necrosis factor receptor superfamily and the interaction between the receptor and its ligand plays a crucial role in expression regulation of many immune molecules, such as cytokines and chemokines (Chatzigeorgiou et al. 2009). The tcrb gene encodes the β chain of the T cell receptor in αβ T cells which recognizes foreign antigens that are bound by major histocompatibility complex molecules (Goldrath & Bevan 1999). The illr2 gene encodes interleukin 1 receptor 2 which binds and inhibits interleukin 1 activity (Colotta et al. 1993). The clqc gene encodes the C-chain of complement subcomponent C1q. C1q is the recognition subunit of the C1 complex and is able to recognize and bind a variety of targets to activate the complement pathway to defense pathogens (Gaboriaud et al. 2004). The saa5 gene encodes an acute phase protein which is involved in the inflammatory response and lipid transportation (Banka et al. 1995; Goltry et al. 1998), and this gene is known to be up-regulated after bacterial and viral infection (Miwata et al. 1993; Lin et al. 2007). The different transcription of those immune genes is related to coping with pathogens in their environments, which is vital for salmonid survival in the wild (Miller et al. 2011). Previous reintroduction of Atlantic salmon into Lake Ontario focused on LaHave population which has already been identified as a possibly inappropriate population (Van Zwol et al. 2012), and as my data show, the LaHave
population, while showing higher expression of CYP genes, appears to have lower expression at selected immune genes. Thus my transcriptional profiling of functionally important genes shows that not only is gene expression variation more divergent between the populations than expected based on drift (neutral DNA), but that the Sebago Atlantic salmon population may be a better choice for reintroduction into Lake Ontario.

Identifying genes with transcription profiles that indicate selection-based differences among populations is important in conservation and management as such differences likely underlie adaptations to different environmental conditions. In my study, the P_{ST} values calculated were comparable to P_{ST} and Q_{ST} values for transcription in rainbow trout (Aykanat et al. 2011; Wellband & Heath 2013), but much higher than the Q_{ST} values estimated in two Atlantic salmon subpopulations (Roberge et al. 2007), which implies that differences in gene transcription among populations depend on the extent of divergence. My results showed that much of the difference in gene transcription between the two populations of Atlantic salmon was consistent with divergence by selection. Moreover, the genes identified as driven by directional selection are excellent candidate markers for predicting fitness in specific environments.

Although the application of gene transcription in conservation biology is still in its infancy, transcriptional profiling of potential source populations can enhance reintroduction efforts in two ways: first, gene expression comparisons can identify functional differences that are related to important physiological processes and responses to environmental stressors, and subsequently, variation in individual gene transcription can be used to predict specific trait response upon reintroduction (Miller et al. 2011). The custom DNA microarray I developed provides a relatively inexpensive method to profile
transcription for many individuals that will make it possible to choose appropriate source population for reintroduction. Such an approach will increase the likelihood of reintroduction success and ultimately, conservation. Furthermore, as more such studies are completed, and our understanding of the role of specific gene expression responses in adaptive environmental stress responses improves, the application of transcriptional profiling will expand.
REFERENCES

O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (*Salmo salar*) by PCR multiplexing of dinucleotide and

Table 3.1 List of genes showing significantly different transcription between the two replicate tanks for the Sebago population of Atlantic salmon (*Salmo salar*).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene product</th>
<th>Intensity ratio (Tank1/Tank2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cish</td>
<td>cytokine-inducible SH2-containing protein</td>
<td>0.51</td>
</tr>
<tr>
<td>cfb</td>
<td>complement factor B precursor</td>
<td>0.60</td>
</tr>
<tr>
<td>pcsk5</td>
<td>proprotein convertase subtilisin/kexin type 5 precursor</td>
<td>0.67</td>
</tr>
<tr>
<td>pitpna</td>
<td>phosphatidylinositol transfer protein alpha isoform</td>
<td>0.74</td>
</tr>
<tr>
<td>glns</td>
<td>glutamine synthetase</td>
<td>0.76</td>
</tr>
<tr>
<td>timp3</td>
<td>metalloproteinase inhibitor 3 precursor</td>
<td>0.76</td>
</tr>
<tr>
<td>atl2</td>
<td>atlastin-2</td>
<td>0.77</td>
</tr>
<tr>
<td>psmd5</td>
<td>26S proteasome non-ATPase regulatory subunit 5</td>
<td>0.77</td>
</tr>
<tr>
<td>gem</td>
<td>GTP-binding protein</td>
<td>1.25</td>
</tr>
<tr>
<td>xaf1</td>
<td>XIAP-associated factor 1</td>
<td>1.27</td>
</tr>
<tr>
<td>psmc2</td>
<td>26S protease regulatory subunit 7</td>
<td>1.30</td>
</tr>
<tr>
<td>mstn</td>
<td>myostatin 1b</td>
<td>1.33</td>
</tr>
<tr>
<td>crtam</td>
<td>cytotoxic and regulatory T-cell molecule precursor</td>
<td>1.35</td>
</tr>
<tr>
<td>hspa14</td>
<td>heat shock 70 kDa protein 14</td>
<td>1.37</td>
</tr>
<tr>
<td>sod3</td>
<td>extracellular superoxide dismutase [Cu-Zn] precursor</td>
<td>1.46</td>
</tr>
<tr>
<td>hsf2</td>
<td>heat shock factor protein 2</td>
<td>1.51</td>
</tr>
<tr>
<td>sar1a</td>
<td>GTP-binding protein SAR1a</td>
<td>1.53</td>
</tr>
<tr>
<td>cdk5</td>
<td>cell division protein kinase 5</td>
<td>1.60</td>
</tr>
<tr>
<td>pcna</td>
<td>proliferating cell nuclear antigen putative mRNA</td>
<td>1.61</td>
</tr>
</tbody>
</table>
Table 3.2 List of genes showing significantly different transcription between the two replicate tanks for the LaHave population of Atlantic salmon (*Salmo salar*).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene product</th>
<th>Intensity ratio (Tank3/Tank4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sar1b</td>
<td>GTP-binding protein SAR1b</td>
<td>0.71</td>
</tr>
<tr>
<td>pcsk5</td>
<td>proprotein convertase subtilisin/kexin type 5 precursor</td>
<td>0.79</td>
</tr>
<tr>
<td>myl6b</td>
<td>myosin light chain 6B</td>
<td>0.88</td>
</tr>
<tr>
<td>irak3</td>
<td>interleukin-1 receptor-associated kinase 3</td>
<td>1.15</td>
</tr>
<tr>
<td>psmd9</td>
<td>26S proteasome non-ATPase regulatory subunit 9</td>
<td>1.20</td>
</tr>
<tr>
<td>isca2</td>
<td>iron-sulfur cluster assembly 2 homolog, mitochondrial</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>precursor</td>
<td></td>
</tr>
<tr>
<td>atp1a1</td>
<td>sodium/potassium-transporting ATPase subunit alpha-1</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>precursor</td>
<td></td>
</tr>
<tr>
<td>tmp49</td>
<td>transmembrane protein 49</td>
<td>1.27</td>
</tr>
<tr>
<td>ptgd2</td>
<td>glutathione-requiring prostaglandin D synthase</td>
<td>1.27</td>
</tr>
<tr>
<td>cdk9</td>
<td>cell division protein kinase 9</td>
<td>1.30</td>
</tr>
<tr>
<td>timp3</td>
<td>metalloproteinase inhibitor 3 precursor</td>
<td>1.31</td>
</tr>
<tr>
<td>il4</td>
<td>interleukin 4/13A (il4/13a)</td>
<td>1.42</td>
</tr>
<tr>
<td>ctsh</td>
<td>cathepsin H precursor</td>
<td>1.42</td>
</tr>
<tr>
<td>pgd</td>
<td>6-phosphogluconate dehydrogenase, decarboxylating</td>
<td>1.54</td>
</tr>
<tr>
<td>c7</td>
<td>complement C7 precursor</td>
<td>1.54</td>
</tr>
</tbody>
</table>
Table 3.3 List of genes showing significantly different transcription between the Sebago and LaHave populations of Atlantic salmon (*Salmo salar*).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene product</th>
<th>Intensity ratio (Sebago/LaHave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>timp2</td>
<td>TIMP Metalloproteinase inhibitor 2 precursor</td>
<td>0.72</td>
</tr>
<tr>
<td>myl3</td>
<td>myosin light chain 3</td>
<td>0.76</td>
</tr>
<tr>
<td>glns</td>
<td>glutamine synthetase</td>
<td>0.76</td>
</tr>
<tr>
<td>tbl1xr1b</td>
<td>F-box-like/WD repeat-containing protein TBL1XR1-B</td>
<td>0.77</td>
</tr>
<tr>
<td>cyp3a27</td>
<td>cytochrome P450 3A27</td>
<td>0.79</td>
</tr>
<tr>
<td>cytl1</td>
<td>cytokine-like protein 1 precursor</td>
<td>0.79</td>
</tr>
<tr>
<td>cyp2f5</td>
<td>cytochrome P450 2F5</td>
<td>0.79</td>
</tr>
<tr>
<td>hyal2</td>
<td>hyaluronidase-2</td>
<td>0.81</td>
</tr>
<tr>
<td>pded</td>
<td>phosphodiesterase delta-like protein</td>
<td>1.18</td>
</tr>
<tr>
<td>pgm2</td>
<td>phosphoglucomutase-2</td>
<td>1.20</td>
</tr>
<tr>
<td>grn</td>
<td>granulins precursor</td>
<td>1.21</td>
</tr>
<tr>
<td>myl6b</td>
<td>myosin light chain 6B</td>
<td>1.22</td>
</tr>
<tr>
<td>fah</td>
<td>fumarylacetoacetate hydrolase</td>
<td>1.23</td>
</tr>
<tr>
<td>tnr5</td>
<td>tumor necrosis factor receptor superfamily member 5</td>
<td>1.25</td>
</tr>
<tr>
<td>hmxo</td>
<td>heme oxygenase</td>
<td>1.26</td>
</tr>
<tr>
<td>tcrb</td>
<td>T-cell receptor beta chain</td>
<td>1.28</td>
</tr>
<tr>
<td>myl1</td>
<td>myosin light chain 1, skeletal muscle isoform</td>
<td>1.33</td>
</tr>
<tr>
<td>il1r2</td>
<td>interleukin-1 receptor type II precursor</td>
<td>1.44</td>
</tr>
<tr>
<td>c1qc</td>
<td>complement C1q subcomponent subunit C precursor</td>
<td>1.47</td>
</tr>
<tr>
<td>srk2tk</td>
<td>SRK2 tyrosine kinase</td>
<td>1.70</td>
</tr>
<tr>
<td>saa5</td>
<td>serum amyloid A-5 protein</td>
<td>1.83</td>
</tr>
</tbody>
</table>
Figure 3.1 Gene transcription heatmap showing hierarchical clustering of the 21 differentially expressed genes between Sebago and LaHave Atlantic salmon (*Salmo salar*) populations. The rows represent different genes and the columns represent different tanks. The transcription level for each gene is the average log₂ transformed intensity value of fish from the same tank.
Figure 3.2 Histograms of global P_{ST} for transcription of genes between two populations of juvenile Atlantic salmon (*Salmo salar*) arranged in increasing order. Panel a: P_{ST} values for all 271 analyzed genes. Panel b: P_{ST} values for genes which showed significantly different transcription levels between the two populations. The two horizontal dashed lines represent the upper and lower limits of the 99% confidence interval of F_{ST} based on microsatellite genotypes at eight loci. The solid line represents the mean F_{ST}.
Supplementary Figure S3.1 Histograms of P values for the analysis of difference in gene transcription between two tanks of the Sebago Atlantic salmon ($Salmo salar$) population. Panel a: P value for each gene arranged in increasing order. Panel b: percentage of P value for each gene with the same order as (a) that is less than 0.05 during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05).
Supplementary Figure S3.2 Histograms of \(P \) values for the analysis of difference in gene transcription between two tanks of the LaHave Atlantic salmon (\textit{Salmo salar}) population. Panel a: \(P \) value for each gene arranged in increasing order. Panel b: percentage of \(P \) value for each gene with the same order as (a) that is less than 0.05 during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05).
Supplementary Figure S3.3 Histograms of P values for the analysis of difference in gene transcription between Sebago and LaHave Atlantic salmon ($Salmo salar$) populations. Panel a: P value for each gene arranged in increasing order. Panel b: percentage of P value for each gene with the same order as (a) that is less than 0.05 during the 10 000 permutation. The solid line in (a) represents the statistical significance (0.05).
CHAPTER 4
GENETIC ARCHITECTURE OF GENE TRANSCRIPTION IN TWO ATLANTIC SALMON POPULATIONS

INTRODUCTION
Acclimation via phenotypic plasticity and adaptation via selection are the two main mechanisms organisms use to cope with environmental stress, and they thus play a vital role in organism survival and population persistence in changing or novel environments (Hansen et al. 2012). Gene expression regulation has long been recognized as playing an important role in acclimation and adaptation (Hochachka & Somero 1984; Crawford & Powers 1992). The ability of individual genotypes to express different phenotypes in response to environmental fluctuations and stress challenges is mediated by regulation in gene expression, specifically through quantitative changes in gene expression levels and selective expression of different isoforms (Schlichting & Smith 2002; Schulte 2004). While gene expression is influenced by internal and external environmental factors (López-Maury et al. 2008; Hodgins-Davis & Townsend 2009), genetic analysis has shown that gene expression variation is heritable and gene expression levels are also determined by genetic factors (Cheung and Spielman, 2002; Buckland, 2004; Petretto et al., 2006). Moreover, it was shown over four decades ago that evolutionary differences among species may depend more on changes in gene expression regulation than changes in gene sequences (King & Wilson 1975). Recently,

3 This is the outcome of joint research.
novel genomic tools have shown that local adaptation among populations within a species are ten-times more likely to be driven by genetic variation regulating gene expression than that by genetic variation changing amino acid sequences (Fraser 2013). Therefore, gene expression is not only a process whereby organisms acclimate to new or changing environments, but also provides a source of variation that selection can act on.

Populations of the same species can have different responses and tolerances to environmental stressors due to their separate evolutionary histories, resulting in divergent performance that is relevant for both culture and conservation in the field (Forsman 2014; He et al. 2016). Population-level differences in tolerance of environmental toxins and temperature stress has been reported to be associated with differences in regulation and pre-adaptation of gene expression, reflecting local habitats conditions (Whitehead et al. 2010; Schoville et al. 2012; Gleason & Burton 2015). Although there are many studies that report population differences in gene expression, comparisons of genetic components of gene expression variance among populations have received much less attention.

Additive genetic, non-additive genetic, and maternal effects are important for evolutionary processes due to their contributions to phenotypic variation. Additive genetic effects are critical for evolutionary responses and are directly related to evolutionary rate in response to selection according to the breeder's equation (Falconer and Mackay 1996). Non-additive genetic effects (e.g., dominance and epistasis) can significantly contribute to phenotypic variation (Evans & Neff 2009; Gallardo et al. 2010); and non-additive effects increase in extreme environments and in response to stress (Jinks et al. 1973; Aykanat et al. 2012b). Maternal effects are significant contributors to variation in fitness-related traits at early life stages (Heath et al. 1999;
Aykanat *et al.* 2012a; Houde *et al.* 2013). Populations of the same species subject to different evolutionary histories and selection pressures can have different genetic architectures for fitness-related traits. Although gene expression is closely linked to phenotype and can be highly heritable, it is not clear how populations differ in additive genetic components of gene expression variation. Similarly, although maternal effects and non-additive genetic effects play important roles in individual and population performance, the contribution of those effects to gene expression variation among populations is unknown.

The aim of this study is to investigate the genetic architecture of gene transcription and to test whether and how the genetic architecture for key muscle function-related genes varies between populations with different life histories. To this end, I implemented a 5×5 full factorial breeding design for each of two Atlantic salmon (*Salmo salar*) populations: LaHave (anadromous) and Sebago (landlocked). Atlantic salmon have important roles in aquaculture, and the commercial and recreational fisheries; however, they are of conservation concern across most of their native range (Parrish *et al.* 1998). I used a high throughput qRT-PCR system to quantify gene transcription of 22 genes in muscle for over 400 juvenile Atlantic salmon. I analyzed population and parental effects on gene transcription and partitioned variance into additive genetic, non-additive genetic, and maternal effects within each population.
MATERIALS AND METHODS

Breeding design

I used parental fish from two Atlantic salmon populations (LaHave and Sebago) which were provided by the Ontario Ministry of Natural Resources and Forestry (OMNRF). The LaHave population originates from the LaHave River, Nova Scotia; fertilized eggs from wild LaHave Atlantic salmon population were received by OMNRF in 1995 (Houde et al. 2015). The Sebago population originates from Sebago Lake, Maine; fertilized eggs from a hatchery supplemented wild Sebago Atlantic salmon population were received by OMNRF in 2006 (Houde et al. 2015). Thus the LaHave was fourth generation hatchery and Sebago was second generation hatchery within the OMNRF facility at the time of this study. The F_{ST} between these two populations is 0.038 (He et al. 2015), and a population genetic study showed only small genetic diversity (heterozygosity) differences between anadromous and landlocked Atlantic salmon populations in North America (King et al. 2001). In early November 2011, I used 5 males and 5 females from each population where each male was crossed to each female in a full-factorial design to produce 25 families. The fertilized eggs were incubated in vertical stack incubators in replicate cells. After hatching, each family was reared in two replicate rearing tanks. In May 2012 (187 days post fertilization), three to five fry per tank were humanely euthanized by overdose of MS222 and the whole fish was preserved in RNAlater. All 50 families had representative fish from both replicate tanks except one family in the LaHave population which had fish sampled from only one tank.
RNA extraction and cDNA preparation

Although this study was designed to target muscle tissue, the fish were too small (average body mass: 0.34 ± 0.11g) to collect pure muscle tissue from preserved samples. Thus to collect tissue samples for RNA isolation, I first cut the fish through the lateral line and then used the tissue between the dorsal and adipose fins for RNA extraction. Therefore, the tissue I used for RNA extraction in this study was primarily muscle, however the sample also contained skin and some bone tissue. The tissue sample was mechanically homogenized in the presence of Isol-RNA Lysis Reagent (5 PRIME, Gaithersburg, MD, USA) following the manufacturer’s protocol. The concentration and purity of extracted RNA were checked using a NanoVue spectrophotometer (GE Healthcare Bio-Science Corp, USA). The quality of a subset of RNA samples was also checked using the Agilent RNA 6000 Nano Kit in an Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada). About 2 μg RNA was treated with DNase I (Sigma-Aldrich, Oakville, ON, Canada) to remove contaminated DNA and then used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Burlington, ON, Canada). In total, I reverse transcribed 480 RNA samples. The quality of 192 cDNA samples was checked by PCR amplification of the ef1ab gene, and all showed the expected band on agarose gel.

Gene selection

Fish muscle plays an important role in swimming performance and energy regulation, which is vital for fish to migrate, forage and avoid predation in the wild. Muscle accounts for 50 - 60% of the total body mass in salmonids (Jobling 1993), and
thus regulation of muscle development and growth is also very important for aquaculture.

The 22 genes (Table 4.1) I chose for this study are involved in a variety of key processes in fish muscle. Seven genes encode enzymes directly involved in energy generation by participating in fatty acid oxidation (acadl, acadm and cpt2), citric acid cycle (cs), carbohydrate oxidation (dlat), anaerobic glycolysis (ldha), and glycogenolysis (pygma).

Five genes are involved in energy regulation through signal transduction (camk2g and prkag2), fatty acid transport (fabp3) and transcription regulation (ppara and tfam). Six genes encode muscle structural proteins that are involved in muscle contraction (dysi1, fmyhc, mlc2, smyhc1, tnni2 and tnnt1). The dysi1 gene was selected in the muscle contraction gene group because it is involved in muscle membrane repair (Han & Campbell 2007). Four selected genes (frap1, myf5, myod1 and murf1) are growth-related genes. The myf5 and myod1 genes are members of the myogenic regulatory factors and regulate muscle cell differentiation and growth (Francetic & Li 2011). The murf1 gene belongs to the ubiquitin-protein ligases which are required for the ubiquitin proteasome system to degrade muscle proteins (Lecker 2003). I also included the frap1 gene which has multiple cellular signal transduction roles in mediation of stress response and is known to regulate cell growth and proliferation (Desai et al. 2002; Murakami et al. 2004).

Quantitative real-time PCR

The sequences of TaqMan primers and probes for three genes were obtained from journal publications: eflab (Løvoll et al. 2011), fabp3 (Torstensen et al. 2009) and fmyhc (Hevrøy et al. 2006). The sequences of the other genes were downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/) and the primers and TaqMan MGB probes (Table 4.1) for those genes were designed using Primer Express 3.0. The primers are predicted to have 100% efficiency using the pcrEfficiency software (Mallona et al. 2011). The primers and probes were synthesized and spotted into through-holes of OpenArray chips by Applied Biosystems (Applied Biosystems, Burlington, ON, Canada).

OpenArray qRT-PCR was performed using a QuantStudio 12K Flex Real-Time PCR System following the manufacture’s instruction. I prepared a 5 µL mixture for each cDNA sample which contained 2.5 µL TaqMan® OpenArray® Real-Time PCR Master Mix (Applied Biosystems, Burlington, ON, Canada) and 1.2 µL cDNA. I used the 56×48 format OpenArray chip which has 48 subarrays in each chip and each subarray contains 64 through-holes. Each chip can be used to measure gene expression for 48 individual cDNA samples for all the targeted genes in duplicate. The 5 µL mixtures were prepared in 384-well plates and were then loaded into OpenArray chips using the OpenArray AccuFill System and each qRT-PCR reaction was performed in a 33 nL volume.

The relative threshold cycle (C_{RT}) value for each reaction was obtained using ExpressionSuite Software v1.0.4. Expression data (C_{RT} value) which had a standard deviation between the two technical replicates larger than 0.5 were removed. For the remainder, I used the mean of the C_{RT} values of the technical replicates for each individual. The expression level for each gene was normalized to eflab expression and the ΔC_{RT} values (C_{RTtargeted gene} - C_{RTeflab}) were used for all downstream analyses. I used eflab as the endogenous reference gene because it has been shown to be an excellent endogenous control compared to other common reference genes in Atlantic salmon muscle tissue (Olsvik et al. 2005).
Statistical analysis

To test for population effects on gene transcription between the two Atlantic salmon populations, I initially used the following model for each gene:

$$Y_{ijklmn} = \mu + P_i + T_j + S_k + D_l + I_m + e_{ijklmn}$$ \(1\)

where \(Y_{ijklmn}\) is the normalized transcription level (relative to the \(ef1ab\) gene; \(C_{RT[targeted\,\,gene]} - C_{RT[ef1ab]}\), \(P_i\) is the \(i\)th effect of population; \(T_j\) is the \(j\)th effect of tank; \(S_k\) is the \(k\)th effect of sire; \(D_l\) is the \(l\)th effect of dam; \(I_m\) is the \(m\)th effect of interaction between sire and dam; \(e_{ijklmn}\) is the random residual. Population effect was considered as a fixed effect. Tank, sire, dam, and the interaction between sire and dam were random effects. I performed backward elimination to remove non-significant random effects from model (1) using the \textit{step} function in the \textit{lmerTest} R package (Kuznetsova, 2016). The final models (Supplementary Table S4.1) were used to determine whether there were significant population effects on gene transcription using the \textit{anova} function in \textit{lmerTest} (Kuznetsova \textit{et al.} 2016).

To quantify the genetic architecture for all the genes within the two populations separately, I partitioned the total variance into sire, dam, and dam-by-sire interaction components using the following model:

$$Y_{ijklm} = \mu + T_i + S_j + D_k + I_l + e_{ijklm}$$ \(2\)

where tank (T), sire (S), dam (D), and the interaction between sire and dam (I) were treated as random effects. The significance for tank, sire, dam and the interaction were determined using the likelihood ratio test between the full model (model 2) and a reduced one without the tested effect using the \textit{observLmer2} function in the \textit{fullfact} R
package (Houde & Pitcher 2016). Gene transcription variance was partitioned into sire (V_S), dam (V_D), interaction between sire and dam (V_I), and residual variance components in fullfact. The additive (V_A), non-additive (V_NA) and maternal variance (V_M) were calculated as follows: V_A = 4V_S; V_NA = 4V_I; V_M = V_D - V_S (Lynch & Walsh 1998). To compare genetic architecture of gene transcription between the two populations across 22 genes, I conducted Wilcoxon signed-rank test for additive genetic, non-additive genetic, and maternal effects.

RESULTS

Population effects on gene transcription

I measured transcription at 22 genes using qRT-PCR in 426 Atlantic salmon fry. Nine genes showed significantly different transcription between the two populations (Figure 4.1; Supplementary Table S4.1). The *cpt2*, *myf5*, *myod1* and *tfam* genes showed significantly higher expression in the LaHave population while the *acadl*, *cs*, *ldha*, *mlc2* and *pygma* genes showed significantly higher expression in the Sebago population, with the expression difference ranging from 8% to 99% (Figure 4.1; Supplementary Table S4.1). While the difference in gene expression between the two populations for most analyzed genes is less than 30% expression difference, the expression of *ldha* and *pygma* in the Sebago population was close to double that of the LaHave population. Of the nine differentially expressed genes, five are involved in muscle energy generation; two genes are involved in muscle growth; one gene is involved in muscle energy regulation and one gene is involved in muscle contraction (Figure 4.1).
Significant effects on gene transcription within each population

I tested for tank, sire, dam, and the interaction between sire and dam effects on gene transcription at all 22 genes within each population. Ten genes showed significant tank effects in the LaHave population and 11 genes showed significant tank effects in the Sebago population (Table 4.2). Seven genes showed significant tank effects in both populations. Among those seven genes, three genes are related to growth, two genes are related to muscle contraction and two genes encode enzymes involved in energy generation (Table 4.2). Within the LaHave population, five genes showed significant dam effects and two genes showed significant sire effects (Table 4.2). Within the Sebago population, four genes showed significant dam effects and one gene showed significant sire effects (Table 4.2). The `camk2g` gene showed a significant sire effect in both populations with similar levels of explained variance, while all the other significant sire or dam effects on gene expression were population-specific with different levels of explained variance between the two populations (Table 4.2). No genes showed significant sire-by-dam interaction effects in either population (Table 4.2). On average across all 22 genes, tank, sire, dam, and sire-by-dam interaction effects explained 13.0%, 4.2%, 7.3%, and 2.6% of the phenotypic variance in gene expression in the LaHave population, respectively, and 14.2%, 1.5%, 4.5%, and 4.2% of phenotypic variance in the Sebago population, respectively (Table 4.3).

Additive genetic, non-additive genetic, and maternal effects

The two study populations exhibited both similarities and substantial differences in genetic variance components despite having been reared in a common environment.
Maternal and genetic effects collectively explained 30.3% of the total phenotypic variance in the LaHave population and 25.8% of the total variance in the Sebago population. Specifically, in the LaHave population, additive genetic effects explained 16.7% of the total variance and non-additive genetic effects explained 10.5% of the total variance (Table 4.3). In the Sebago population, additive genetic effects explained 6.2% of the total phenotypic variance and non-additive genetic effects explained 16.6% of the total variance (Table 4.3). Maternal effects explained 3.1% of gene expression variance in the LaHave population; and 3.0% of gene expression variance in the Sebago population (Table 4.3).

I found 14 genes showed higher additive genetic effects in the LaHave population while four genes showed higher additive genetic effects in the Sebago population (Table 4.2; Figure 4.2). Seven genes showed higher non-additive genetic effects in the LaHave population and 10 genes showed higher non-additive genetic effects in the Sebago population (Table 4.2; Figure 4.2). Four genes showed no additive genetic effects and five genes showed no non-additive genetic effects in both populations. Half of the analyzed genes showed higher maternal effects in one population than the other population (Table 4.2; Figure 4.2). Across all 22 genes, the two populations were significantly different in additive genetic effects revealed by Wilcoxon signed-rank test (P = 0.01), while there were no significant differences between the populations in non-additive genetic (P = 0.37), and maternal effects (P = 0.73).
DISCUSSION

Population and individual differences in gene transcription have been reported in many studies (Oleksiak et al. 2002; Storey et al. 2007; Hutter et al. 2008). Although population-level variation was not the primary aim of this study, I found five of the seven metabolic enzyme genes involved in energy generation showed significant transcriptional differences between the two populations, after accounting for tank and family effects. Differences in the kinetic properties and concentrations of metabolic enzymes among populations and species are thought to be local adaptations to temperature, as they play an important role in homeostasis maintenance (Hochachka & Somero 1984; Crawford & Powers 1989; Crockett & Sidell 1990; Holland et al. 1997). Higher temperature tolerance is especially important for salmonids during migration to spawning sites (Eliason et al. 2011). However, my two study populations originate from habitats with similar average summer temperatures (Gradil 2015) and were reared under the same environmental conditions in the hatchery. The population-level differences in expression of those enzyme genes may be related to different thermal optimum as measured by Arrhenius breakpoint temperature (Gradil 2015) and this difference may underlie population differences in thermal tolerance.

Populations subject to different selection pressures can exhibit different distributions of genetic variance components, as, for example, strong selection reduces additive genetic variance (Carlson & Seamons 2008). In this study, I found the average additive genetic variance of transcription across the 22 genes associated with muscle function was higher in the LaHave population than in the Sebago population (Table 4.3). I expected the muscle function-related genes may have been under stronger selection in
the LaHave population than the Sebago population because the LaHave population originated from an anadromous (migratory) population while the Sebago population originated from a hatchery supplemented landlocked population with a shorter migration. Thus I predicted that the wild LaHave population would exhibit lower additive genetic variance for the transcription of those genes related to swimming performance and efficiency. However, the LaHave population fish have been in captivity for three generations while the Sebago population fish have been in the OMNRF hatchery for only one generation prior to this study. The longer captive rearing of the LaHave fish under relaxed selection pressures may have enabled the LaHave Atlantic salmon to recover additive genetic variance for the transcription of those genes.

The genetic architecture of phenotypic traits is important for organisms as it is the basis for their response to changing environments and underlies the nature and scope for evolutionary responses in new environments upon translocation. In this study, I partitioned the additive genetic, non-additive genetic, and maternal variance components of gene transcription using a full factorial breeding design. The average additive genetic variance component (16.7% in LaHave and 6.2% in Sebago) were comparable to studies in humans which reported a mean heritability (h^2) of genome-wide gene transcription varied from 0.017 to 0.234 depending on the tissue (Price et al. 2011; Wright et al. 2014; Wheeler et al. 2016). My estimates were also comparable to a study of heritability of gene transcription in Atlantic salmon using a cDNA microarray consisting of 6484 probes which found that heritability for most genes were low (Roberge et al. 2007). My estimates were lower than a study focused on transcription of four cytokine genes in Chinook salmon (Oncorhynchus tshawytscha) (mean h^2 = 0.256) (Aykanat et al. 2012b)
and another study on transcription of three heat shock protein genes in sea turtles
(Caretta caretta) (mean $h^2=0.58$) (Tedeschi *et al.* 2016). The differences in additive
genetic effects between my study and previous studies in other species may be due to
different strengths of selection acting on the selected genes, the animals experiencing
different evolutionary history or different experimental designs and analytical methods.

The observed differences in the magnitude of additive genetic effects for gene
transcription across the functional groups is perhaps not surprising, as different traits can
exhibit dramatic variation in heritability. For example, a review of h^2 in salmonids found
that 24 fitness-related traits exhibited a wide range of median heritabilities, varying from
0.02 to 0.51 (Carlson & Seamons 2008). In my study, I found genes involved in energy
regulation generally had higher additive genetic components than genes involved in
energy generation and muscle growth. This likely reflects different function genes having
experienced different selection pressures; however, regardless of the mechanism, my
results indicate that the functional groups will have different responses to selection in the
short term. The majority of the genes included in my study exhibited lower heritabilities
than the median heritability of fitness-related traits in salmonids (Carlson & Seamons
2008). This is surprising because fitness related traits are expected to show reduced
additive genetic variance than gene expression as they are under strong selection
(Mousseau & Roff 1987). It is possible that gene transcription may not follow classical
quantitative genetic patterns. Nevertheless, the low additive genetic variance estimates
suggest that the genes examined in the present study may be constrained in their
evolutionary potential. However, a few genes in my study (e.g. *camk2g* and *tnnt1*) did
exhibit high additive genetic variance, and may thus evolve more rapidly.
Although the additive genetic variance of gene transcription has been investigated in a variety of studies (e.g. Price et al. 2011; Aykanat et al. 2012b; Wright et al. 2014; Tedeschi et al. 2016; Wheeler et al. 2016), non-additive and maternal variance components for gene expression are seldom reported. In particular, dams usually have greater contributions to the phenotypes of their offspring at early life stages than sires because they not only contribute 50% of the nuclear genome, but they also influence offspring phenotype through cytoplasmic inheritance as well as classical maternal effects (Bernardo 1996; Wolf & Wade 2009). In my analyses, a greater number of genes showed significant dam effects than sire effects, and the dam variance component was higher than that of the sire. Aykanat et al. (2012b) also found that the dam variance component of gene transcription for four cytokine genes was higher than that of the sire in Chinook salmon. Videvall et al. (2016) found that the pattern of gene expression in hybrids between two Arabidopsis lyrata populations was more similar to the maternal population than to the paternal population. Generally, maternal effects are higher earlier in life and decrease with development (Heath et al. 1999), thus I expected to find higher maternal effects on transcription for the genes I surveyed at young juvenile life stage. However, in my study maternal effects were generally low and the average maternal effect was smaller than the average additive and non-additive genetic effects in both populations (Table 4.3), indicating maternal effects on gene transcription decreased more rapidly than fitness-related traits.
CONCLUSIONS

I used Atlantic salmon from two populations with very different life histories in a full factorial breeding design to quantify gene transcription at 22 muscle function loci. I found that maternal and genetic effects combined explained 30.3% and 25.8% of the transcriptional variation across all assayed genes in the LaHave and Sebago populations, respectively. The two populations exhibited profound differences in genetic architecture of gene transcription at individual loci and among functional gene groups. Contrary to expectation for young life stages, the results also highlighted that maternal effects are lower than genetic effects for gene expression, at least for the genes examined. In addition, evolution by selection acting directly on gene expression is likely to be less effective because of its lower value of additive genetic effects than more traditional phenotypic traits.
REFERENCES

Kuznetsova A, Brockhoff PB, Christensen RHB (2016) *lmerTest: tests in linear mixed effects models*.

Table 4.1 Quantitative real-time PCR primers and TaqMan probes for muscle function related genes (abbreviation in parentheses) used for Atlantic salmon (*Salmo salar*) genetic architecture analysis in two populations.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>NCBI number</th>
<th>TaqMan MGB probe</th>
<th>Primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>acyl-Coenzyme A dehydrogenase, long-chain (acadl)</td>
<td>BT044691</td>
<td>ACAGGACACGGCTGAG</td>
<td>Fw: GCTGGAGAAGATGGCGCTGAT</td>
</tr>
<tr>
<td>acyl-Coenzyme A dehydrogenase, medium chain (acadm)</td>
<td>NM_001139636</td>
<td>ACATTCCAGAGGACTGTGG</td>
<td>Rv: GACGCAAGCTCCATCAAGAAAGCA</td>
</tr>
<tr>
<td>calcium/calmodulin-dependent protein kinase type II gamma chain (camk2g)</td>
<td>EG869390</td>
<td>CAGTGGTGCGCAGAT</td>
<td>Fw: GCTCGGGAAAGGGAGCTTTC</td>
</tr>
<tr>
<td>carnitine palmitoyltransferase 2 (cpt2)</td>
<td>BG934647</td>
<td>TGGGCTACAGGTGTCC</td>
<td>Rv: TCCTGAACGTTGACTTTTTTCAC</td>
</tr>
<tr>
<td>citrate synthase (cs)</td>
<td>DY741160</td>
<td>CTGGCTAACACAGGAGGT</td>
<td>Fw: GAGGGCTGAACAGGAGGAGAG</td>
</tr>
<tr>
<td>dihydrolipoamide S-acetyltransferase (dllat)</td>
<td>DY740452</td>
<td>TTTGACGGTGCCAGCAGT</td>
<td>Rv: CGAATATGCCACCAGGAGGAGAG</td>
</tr>
<tr>
<td>dysferlin-interacting protein 1 (dysl)</td>
<td>NM_001146538</td>
<td>CTGACATGCGCAGATTAC</td>
<td>Fw: GGTCGCGAGCATGGCTGAG</td>
</tr>
<tr>
<td>elongation factor 1A (ef1ab)</td>
<td>BG933853</td>
<td>AAATCGGCGGTATTGG</td>
<td>Rv: CACGGCCACAGATTAC</td>
</tr>
<tr>
<td>muscle fatty acid binding protein mRNA (fabp3)</td>
<td>AY509548</td>
<td>TCAAgTCCCTAAATAACG</td>
<td>Fw: GCCAGGTCCCTGTGAGAACGCAGAGAG</td>
</tr>
<tr>
<td>FKBP12-rapamycin complex-associated protein (frap1)</td>
<td>EG909867</td>
<td>CTAGCAAAATACACGAGGCC</td>
<td>Rv: CACGGCCACAGATTAC</td>
</tr>
<tr>
<td>fast myosin heavy chain (fmyhc)</td>
<td>BE518566</td>
<td>CCACCTGAAACAAAAGGTGAATAA</td>
<td>Fw: CACGGCCACAGATTAC</td>
</tr>
<tr>
<td>lactate dehydrogenase A4 (ldha)</td>
<td>NM_001139642</td>
<td>TGGTCTGACCGACGTCA</td>
<td>Rv: CACGGCCACAGATTAC</td>
</tr>
<tr>
<td>myosin regulatory light chain 2 (mlc2)</td>
<td>NM_001123716</td>
<td>CCGTCTCTTCCACCAT</td>
<td>Fw: GCGGGCCATCAACCTT</td>
</tr>
<tr>
<td>muscle RING finger 1 (murf1)</td>
<td>NM_001279122</td>
<td>CCGTCCCTGCAAC</td>
<td>Rv: CACCGTACGCTGAGCAAGGAG</td>
</tr>
<tr>
<td>myogenic regulatory factor 5 (myf5)</td>
<td>DQ452070</td>
<td>CGCAACGGCATCCA</td>
<td>Fw: GCTGGAGTAAGGTAGTCAT</td>
</tr>
<tr>
<td>myoblast determination protein 1 (myod1)</td>
<td>NM_001123601</td>
<td>TGCAAGAGCAAAACC</td>
<td>Rv: CACCGTACGCTGAGCAAGGAG</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Accession</td>
<td>Fw Primer</td>
<td>Rv Primer</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>PPARα</td>
<td>NM_001123560</td>
<td>ACGTCACAGAGCTA</td>
<td>GCCAGTGCACCTCCGTAGA</td>
</tr>
<tr>
<td>5'-AMP-activated protein kinase subunit gamma-2 (PRKAG2)</td>
<td>EG800235</td>
<td>CTCAGCCTTAATTATG</td>
<td>CACTAGGACCAGCCGATGGA</td>
</tr>
<tr>
<td>PPARα</td>
<td>NM_001139650</td>
<td>AAGCTGTGCGTCCAC</td>
<td>CCCGATGAGCAACTCAAA</td>
</tr>
<tr>
<td>Slow myosin heavy chain 1 (SmyH1)</td>
<td>DQ369355</td>
<td>CTGCTGTGCTGTATTAA</td>
<td>AACTGGTGGAAGGGAACCTATAG</td>
</tr>
<tr>
<td>Prkag2</td>
<td>EG800235</td>
<td>CTCAGCCTTAATTATG</td>
<td>CACTAGGACCAGCCGATGGA</td>
</tr>
<tr>
<td>PPARα</td>
<td>NM_001139650</td>
<td>AAGCTGTGCGTCCAC</td>
<td>CCCGATGAGCAACTCAAA</td>
</tr>
<tr>
<td>Mitochondrial transcription factor A (TFAM)</td>
<td>BT048987</td>
<td>CCCGTCGTCCCTTTA</td>
<td>GCTGCGTAACGCTCTTTG</td>
</tr>
<tr>
<td>Tnni2</td>
<td>BT048139</td>
<td>ACTGGCGTAAGAACAT</td>
<td>GGAATTGCGTGACGTTGGT</td>
</tr>
<tr>
<td>Tnn1</td>
<td>BT057444</td>
<td>AGTCAGCGATCATCA</td>
<td>ATGATGTCACGTACTCAAGAACATC</td>
</tr>
</tbody>
</table>

* The sequences of primers and probes for three genes were obtained from journal publications: ef1ab (Løvoll et al., 2011), fabp3 (Torstensen et al., 2009) and fmyhc (Hevrøy et al., 2006). The other primers and probes were designed for this study.
Atlantic salmon (*Salmo salar*)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Population</th>
<th>VT (%)</th>
<th>V1 (%)</th>
<th>VS (%)</th>
<th>VD (%)</th>
<th>VA (%)</th>
<th>VNA (%)</th>
<th>VM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>camk2g</td>
<td>LaHave</td>
<td>7.9</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>15.1</td>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
<td>0.0</td>
<td>0.0</td>
<td>10.6</td>
</tr>
<tr>
<td>smyhc1</td>
<td>LaHave</td>
<td>3.1</td>
<td>3.2</td>
<td>7.7</td>
<td>33.7</td>
<td>30.7</td>
<td>12.9</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>4.6</td>
<td>5.5</td>
<td>0.0</td>
<td>3.7</td>
<td>0.0</td>
<td>22.1</td>
<td>3.7</td>
</tr>
<tr>
<td>prkag2</td>
<td>LaHave</td>
<td>16.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>24.7</td>
<td>8.5</td>
<td>0.0</td>
<td>3.7</td>
<td>0.0</td>
<td>34.2</td>
<td>3.7</td>
</tr>
<tr>
<td>myod1</td>
<td>LaHave</td>
<td>10.7</td>
<td>0.6</td>
<td>0.0</td>
<td>8.0</td>
<td>0.0</td>
<td>2.5</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>10.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>dysi1</td>
<td>LaHave</td>
<td>25.3</td>
<td>4.4</td>
<td>3.0</td>
<td>1.6</td>
<td>11.8</td>
<td>17.6</td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>43.8</td>
<td>9.9</td>
<td>0.0</td>
<td>1.7</td>
<td>0.0</td>
<td>39.4</td>
<td>1.7</td>
</tr>
<tr>
<td>murf1</td>
<td>LaHave</td>
<td>11.5</td>
<td>0.5</td>
<td>0.8</td>
<td>17.3</td>
<td>3.2</td>
<td>1.8</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>16.0</td>
<td>4.2</td>
<td>0.5</td>
<td>3.9</td>
<td>2.1</td>
<td>16.6</td>
<td>3.4</td>
</tr>
<tr>
<td>pygma</td>
<td>LaHave</td>
<td>10.0</td>
<td>3.4</td>
<td>3.1</td>
<td>19.7</td>
<td>12.3</td>
<td>13.5</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>15.1</td>
<td>4.5</td>
<td>0.0</td>
<td>8.2</td>
<td>0.0</td>
<td>18.1</td>
<td>8.2</td>
</tr>
<tr>
<td>tnnt1</td>
<td>LaHave</td>
<td>10.9</td>
<td>0.0</td>
<td>5.7</td>
<td>9.1</td>
<td>22.9</td>
<td>0.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>10.9</td>
<td>0.0</td>
<td>5.7</td>
<td>9.1</td>
<td>22.9</td>
<td>0.0</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Note: Significant tank, sire and dam effects ($P < 0.05$) are marked with boldface type. The sire-dam interaction effects were not significant. V_T, V_I, V_S, and V_D represent the percentage of gene expression variance explained by tank, sire-dam interaction, sire, and dam effects, respectively. V_A, V_{NA}, and V_M represent additive genetic, non-additive genetic, and maternal effects, respectively.
Table 4.3 Summary of genetic architecture for gene transcription of four functional categories across 22 muscle-function related genes for juvenile Atlantic salmon (*Salmo salar*) from two populations (LaHave and Sebago).

<table>
<thead>
<tr>
<th>Gene category</th>
<th>Population</th>
<th>V_T (%)</th>
<th>V_I (%)</th>
<th>V_S (%)</th>
<th>V_D (%)</th>
<th>V_A (%)</th>
<th>V_{NA} (%)</th>
<th>V_M (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy generation</td>
<td>LaHave</td>
<td>12.1</td>
<td>1.7</td>
<td>2.1</td>
<td>12.3</td>
<td>8.3</td>
<td>6.9</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>18.6</td>
<td>4.7</td>
<td>0.1</td>
<td>4.5</td>
<td>0.3</td>
<td>18.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Energy regulation</td>
<td>LaHave</td>
<td>11.0</td>
<td>2.7</td>
<td>4.2</td>
<td>5.1</td>
<td>17.0</td>
<td>11.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>8.0</td>
<td>7.6</td>
<td>4.0</td>
<td>2.4</td>
<td>16.0</td>
<td>30.5</td>
<td>-1.6</td>
</tr>
<tr>
<td>Growth</td>
<td>LaHave</td>
<td>18.3</td>
<td>2.3</td>
<td>2.1</td>
<td>7.7</td>
<td>8.5</td>
<td>9.2</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>17.8</td>
<td>2.1</td>
<td>0.3</td>
<td>2.1</td>
<td>1.4</td>
<td>8.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Muscle contraction</td>
<td>LaHave</td>
<td>12.2</td>
<td>3.8</td>
<td>7.9</td>
<td>3.0</td>
<td>31.8</td>
<td>15.3</td>
<td>-5.0</td>
</tr>
<tr>
<td></td>
<td>Sebago</td>
<td>11.9</td>
<td>2.0</td>
<td>2.0</td>
<td>7.8</td>
<td>7.9</td>
<td>8.1</td>
<td>5.8</td>
</tr>
<tr>
<td>All genes</td>
<td>Sebago</td>
<td>13.0</td>
<td>2.6</td>
<td>4.2</td>
<td>7.3</td>
<td>16.7</td>
<td>10.5</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Note: V_T, V_I, V_S, and V_D represent the percentage of gene expression variance explained by tank, sire-dam interaction, sire, and dam effects, respectively. V_A, V_{NA}, and V_M represent additive genetic, non-additive genetic, and maternal effects, respectively.
Figure 4.1 Differences in gene transcription between two Atlantic salmon (*Salmo salar*) populations (LaHave and Sebago) measured using qRT-PCR. Gene names are described in Table 4.1. * $P < 0.05$; ** $P < 0.01$.
Figure 4.2 Scatterplots showing the distribution of muscle function gene transcription variance components for two Atlantic salmon (*Salmo salar*) populations (LaHave and Sebago). Comparisons of variance components between populations: (a) additive genetic effects, (b) non-additive genetic effects, and (c) maternal effects. Each symbol represents one gene. Symbols are coded for the four different functional gene groups: circles (○) represent energy generation genes; squares (□) represent genes involved in energy regulation; triangles (△) represent growth genes; diamonds (◇) represent muscle contraction genes. The dashed line represents the expected 1:1 relationship (i.e., y = x) between the variance components of the two study populations. Points above the 1:1 line indicate higher values in the Sebago population and points below the dashed line indicate higher values in the LaHave population.
Supplementary Table S4.1 Model selection and population effects for the 22 analyzed genes in the two populations of Atlantic salmon (*Salmo salar*).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Final model</th>
<th>Population effect P value</th>
<th>Expression ratio (Sebago/LaHave)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acadl</td>
<td>Population + Tank + Dam</td>
<td>0.014</td>
<td>1.30</td>
</tr>
<tr>
<td>acadm</td>
<td>Population + Dam + Dam:Sire</td>
<td>0.081</td>
<td>0.76</td>
</tr>
<tr>
<td>cpt2</td>
<td>Population + Tank</td>
<td>0.002</td>
<td>0.83</td>
</tr>
<tr>
<td>cs</td>
<td>Population + Tank</td>
<td>0.015</td>
<td>1.08</td>
</tr>
<tr>
<td>dlat</td>
<td>Population + Tank</td>
<td>0.200</td>
<td>0.93</td>
</tr>
<tr>
<td>ldha</td>
<td>Population + Tank + Dam</td>
<td><0.001</td>
<td>1.99</td>
</tr>
<tr>
<td>pygma</td>
<td>Population + Tank + Dam</td>
<td>0.001</td>
<td>1.91</td>
</tr>
<tr>
<td>Energy regulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>camk2g</td>
<td>Population + Dam + Sire</td>
<td>0.082</td>
<td>1.59</td>
</tr>
<tr>
<td>fabp3</td>
<td>Population + Tank + Dam</td>
<td>0.949</td>
<td>1.00</td>
</tr>
<tr>
<td>ppara</td>
<td>Population + Tank</td>
<td>0.894</td>
<td>1.01</td>
</tr>
<tr>
<td>prkag2</td>
<td>Population + Tank + Dam:Sire</td>
<td>0.536</td>
<td>1.04</td>
</tr>
<tr>
<td>tfam</td>
<td>Population + Tank + Dam:Sire</td>
<td><0.001</td>
<td>0.86</td>
</tr>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frap1</td>
<td>Population + Tank</td>
<td>0.072</td>
<td>0.93</td>
</tr>
<tr>
<td>murf1</td>
<td>Population + Tank + Dam</td>
<td>0.435</td>
<td>1.08</td>
</tr>
<tr>
<td>myf5</td>
<td>Population + Tank</td>
<td>0.022</td>
<td>0.88</td>
</tr>
<tr>
<td>myod1</td>
<td>Population + Tank + Dam</td>
<td>0.012</td>
<td>0.84</td>
</tr>
<tr>
<td>Muscle contraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dysl1</td>
<td>Population + Tank + Dam + Sire</td>
<td>0.383</td>
<td>0.83</td>
</tr>
<tr>
<td>fmyhc</td>
<td>Population + Tank+ Dam:Sire</td>
<td>0.324</td>
<td>0.96</td>
</tr>
<tr>
<td>mlc2</td>
<td>Population + Dam:Sire</td>
<td>0.030</td>
<td>1.09</td>
</tr>
<tr>
<td>smyhc1</td>
<td>Population + Tank</td>
<td>0.772</td>
<td>0.99</td>
</tr>
<tr>
<td>tnni2</td>
<td>Population + Tank + Dam + Sire</td>
<td>0.467</td>
<td>1.07</td>
</tr>
<tr>
<td>tnt1</td>
<td>Population + Tank + Dam+ Sire</td>
<td>0.497</td>
<td>1.09</td>
</tr>
</tbody>
</table>
CHAPTER 5
TRANSCRIPTOME RESPONSE OF ATLANTIC SALMON TO COMPETITION WITH ECOLOGICALLY SIMILAR NON-NATIVE SPECIES

INTRODUCTION

The wide establishment of non-native species is one of the major global environmental challenges caused by human activities. It is estimated that there are close to a half million exotic species introduced in different ecosystems (Pimentel et al. 2001). Introduced species can provide conservation values to local ecosystems. For example, non-native plants can provide habitat for native species (Severns & Warren 2008; Sogge et al. 2008); non-native animals (e.g. crayfish and round goby) can be food sources for threatened native species and increase the number of threatened species (King et al. 2006; Tablado et al. 2010). However, introduced species more often threaten local biodiversity through pathogen introduction, predation and competition (Manchester & Bullock 2000; McDowall 2003; Vitule et al. 2009; Peeler et al. 2010). Among the negative effects that non-native species bring, competition with non-native species for limited resources in the ecosystem may attract the least attention because it is not a common cause of extirpation of native species (Davis 2003) and its negative impact on native species is not consistent (Turek et al. 2013).

Indeed, the presence of introduced species can affect growth, reproduction and survival of ecologically similar native species, presumably due to interspecific

4 This is the outcome of joint research.
competition (Scott et al. 2003; Houde et al. 2015a, 2016). Interspecific competition affects low status species disproportionately (Gilmour et al. 2005), and competition stress, like any form of stress will have negative effects on the stressed species, including decreased growth, loss of immune function and reduced survival (Barton 2002; Gilmour et al. 2005). Because introduced non-native species act as biotic stressors, they may not only drive declines in native species, but may also be a significant barrier to the reintroduction of locally extirpated native species.

The presence of established non-native salmonids in Lake Ontario, Canada, has been proposed as one of the reasons for the unsuccessful reintroduction of Atlantic salmon (Salmo salar) into Lake Ontario (Jones & Stanfield 1993; Scott et al. 2005). Atlantic salmon was a native species in Lake Ontario until extirpated in the late 1800’s, and decades of reintroduction efforts have been largely unsuccessful (Dimond & Smitka 2005). A number of non-native salmonid species (Chinook salmon Oncorhynchus tshawytscha, coho salmon O. kisutch, rainbow trout O. mykiss and brown trout S. trutta) have been introduced into Lake Ontario to address the recreational need for large salmonid sport fish (Stewart & Schaner 2002). Some of the established non-native species, such as rainbow trout and brown trout, are more aggressive than Atlantic salmon (Van Zwol et al. 2012) and thus represent potentially highly stressful competitors. While it is generally difficult to demonstrate effects of interspecific competition in the wild (Hastings 1987), experiments in artificial streams are a good alternative because the competitively limited resources can be largely controlled, and the effects caused by interspecific competition can be quantified. Studies in artificial stream tanks revealed that competition with juvenile rainbow and brown trout has negative effects on the growth
and survival of juvenile Atlantic salmon (Houde et al. 2015a; b). It was also reported that the presence of rainbow trout in natural streams reduces the growth of Atlantic salmon (Houde et al. 2016). Furthermore, although juvenile Chinook salmon were found to have no negative effects on juvenile Atlantic salmon growth or survival (Houde et al. 2015a), adult Chinook salmon can affect the survival of adult Atlantic salmon during reproduction (Scott et al. 2003). Those studies demonstrated that interspecific competition between Atlantic salmon and non-native salmonids can affect the establishment of Atlantic salmon after release in Lake Ontario, but the mechanisms that mediate the negative effects on Atlantic salmon at the molecular level are largely unknown.

Gene expression is the process whereby genetic information stored in genome is used to synthesize functional products and hence determine phenotype. Gene expression is determined by both genetic and environmental factors (Buckland 2004; Petretto et al. 2006; López-Maury et al. 2008; Hodgins-Davis & Townsend 2009). Changes in gene expression are the mechanisms behind acclimation and adaption to environmental stress (Schulte 2004). Gene expression changes in response to abiotic stress have been widely studied in fish species, and those studies deepened our understanding of population differences in response to, and tolerance of, thermal stress (e.g. Narum & Campbell 2015), pollution exposure (e.g. Whitehead et al. 2010), and salinity (e.g. Brennan et al. 2015). While most studies on biotic stress in fish focus on immune challenge (e.g. Wellband & Heath 2013) and individuals with different social rank (e.g. Trainor & Hofmann 2007; Schunter et al. 2014), studies of the transcriptional response to interspecific competition due to niche overlap have not been reported.
In this study, I conducted controlled interspecific competition experiments between Atlantic salmon and three ecologically similar non-native salmonids (Chinook salmon, rainbow trout, and brown trout) which are established in Lake Ontario. I examined transcriptional response to competition in two Atlantic salmon populations (LaHave and Sebago) with very different life histories (anadromous and landlocked) which likely have different competitive ability. Houde et al. (2015a; b) conducted interspecific competition trials between these same Atlantic salmon populations and four non-native salmonids in artificial stream tanks to investigate effects of interspecific competition on growth and survival of Atlantic salmon. The results showed that the Sebago population exhibited overall faster growth and higher survival than the LaHave population when reared with rainbow trout and brown trout in two replicate studies (Houde et al. 2015a; b). I included four treatments for each Atlantic salmon population: Atlantic salmon reared alone and Atlantic salmon reared with each of the three non-native salmonids. After 10 months of rearing in artificial stream tanks, I used RNA-Seq to compare the transcriptome of the two Atlantic salmon populations in response to interspecific competition. I found population-specific response to competition with non-native species, highlighting issues with the selection of the source for reintroduction efforts. My results also implied the difficulty in predicting the effect of introduced species on native species, as local evolutionary history can result in very different response patterns.
MATERIALS AND METHODS

Design and sampling

Two Atlantic salmon populations were used in this study: LaHave and Sebago. For each Atlantic salmon population, I created four treatments: Atlantic salmon reared alone and Atlantic salmon reared with one of three salmonids (Chinook salmon, rainbow trout, and brown trout). All fish used in this study were provided by the Ontario Ministry of Natural Resources (OMNR), Canada. Atlantic salmon eggs from both populations were fertilized in November 2011 and transferred to artificial stream tanks in September 2012. Detailed information of the design of the artificial stream tanks are provided in Houde et al. (2015a). Initially, there were 32 Atlantic salmon in each of the tanks where Atlantic salmon were reared alone, and there were 16 Atlantic salmon and 16 fish of the competing species in each of the tanks where Atlantic salmon were reared with the non-native species. After 10 months in the artificial stream tanks, Atlantic salmon were humanely euthanized using an overdose of buffered MS-222. I collected spleens from the juvenile Atlantic salmon and stored them in RNAlater. I chose to sample spleen tissue for this study because the spleen is sensitive to whole-organism stress and is associated with circulating blood cells and immune response (Peters & Schwarzer 1985; Hernandez et al. 2013).

RNA isolation

RNA was extracted from spleen tissue using Trizol (Invitrogen, California, United States) following the manufacture’s protocol. The quality and concentration of RNA was checked using Agilent RNA 6000 Nano Kit in an Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada). I selected RNA samples with RNA integrity
number (RIN) greater than 7.0 from four fish taken from the same competition treatment and combined them using equal amounts of total RNA. The mixed RNA samples were treated for possible genomic DNA contamination using TURBO™ DNase (Invitrogen, California, United States). After DNase treatment, the quality and concentration of the RNA samples were checked again using the Agilent 2100 Bioanalyzer (Agilent Technologies, Mississauga, ON, Canada) and sent to BGI Americas Corporation for RNA sequencing. For Atlantic salmon reared alone, I sent two separate pooled RNA samples for each population. For Atlantic salmon reared with each of the other three species, I sent one pooled RNA sample for each population. In total, 10 pooled RNA samples were sent and RNA sequencing was performed on the Illumina HiSeq™ 2000 platform.

Data analysis

To obtain sequence read counts for each gene, I followed the protocol described in Anders et al. (2013). Briefly, clean reads were mapped to the Atlantic salmon genome (NCBI accession no.: AGKD00000000.3) using Bowtie 1.1.1 (Langmead et al. 2009) and Tophat 2.0.13 (Trapnell et al. 2012). Then, I used samtools 1.2 (Li et al. 2009) to sort and create the SAM files. After that, I used HTSeq-0.6.1 (Anders et al. 2015) to count reads for each gene. The principle component analyses and the construction of the distance heatmap were performed using DESeq2 (Love et al. 2014). I used Cufflinks to obtain the mRNA sequences of each gene (Trapnell et al. 2012). The longest isoform of each gene was extracted and used for blastx search in the non-redundant protein database using
blast 2.2.30 (Camacho et al. 2009). The results obtained from local blastx were loaded into Blast2GO (Conesa et al. 2005) for GO term mapping and annotation.

To test for transcriptomic differences between the two Atlantic salmon populations in response to competition with the three different non-native salmonid species within each Atlantic salmon population, I used GFOLD V1.1.3 because GFOLD can analyze RNA-Seq data with biological replicates or one treatment without replicates with a reliable statistical approach (Feng et al. 2012). To prepare gene expression data for GFOLD, I followed GFOLD’s manual to obtain reads per kilobase of transcript per million mapped reads (RPKM) value for each gene in each sample. To identify differentially expressed genes by GFOLD, c value was set to 0.01 as default and genes with GFOLD value larger than 1 or less than -1 were accepted as significantly differently expressed. To evaluate population differences, I analyzed differentially expressed genes between the LaHave the Sebago Atlantic salmon reared alone samples. To quantify transcriptomic response to interspecific competition, I compared the Atlantic salmon reared with one non-native species to the two control samples (Atlantic salmon alone) within each population. The functional categorization of significantly differentially expressed genes in response to interspecific competition was plotted using BGI WEGO (Ye et al. 2006).

Quantitative real-time PCR

To validate RNA-Seq results, I designed primers for 14 genes (Supplementary Table S5.1) which showed significant differences in at least one of the six comparisons among four samples: LaAS1 (LaHave Atlantic salmon reared alone sample 1), LaBT
(LaHave Atlantic salmon reared with brown trout), SeAS1 (Sebago Atlantic salmon reared alone sample 1) and SeBT (Sebago Atlantic salmon reared with brown trout) as identified by GFOLD. I used ribosomal protein S20 (rps20) as the endogenous control as it has been shown to be invariant in Atlantic salmon spleen (Olsvik et al. 2005). I measured gene expression in three individuals from each of four treatments: LaHave reared alone, LaHave reared with brown trout, Sebago reared alone, and Sebago reared with brown trout. For each fish, I had three technical replicates. TURBO™ DNase treated RNA was used for cDNA synthesis using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Burlington, ON, Canada). The cDNA samples were diluted 1:10 for qRT-PCR analysis. The qRT-PCR reactions were conducted in 10 µL reactions which consisted of 5 µL SYBR Select Master Mix (Applied Biosystems, Burlington, ON, Canada), 0.5 µL 10 mM primers and 1 µL diluted cDNA. The qRT-PCR was performed in a QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems, Burlington, ON, Canada). The relative expression of each targeted gene was normalized to the expression of rps20.

RESULTS

Sequencing summary and reads mapping

The RNA-Seq data have been submitted to the NCBI SRA database (SRA accession: SRP080309). In total, I obtained approximately 160 million 90 bp paired-end high quality (Q>20) clean reads from the 10 pooled RNA samples. The number of sequence per sample ranged from 14.9 million to 16.9 million. Overall, 78.8% of the
reads mapped to the Atlantic salmon draft genome and the mapping rate for each sample varied from 72.9% to 81.3% (Supplementary Table S5.2).

Principle component analysis and distance heatmap

Principle component analysis based on gene transcription of the 2 000 genes which had the highest variation among samples showed that PC1 and PC2 explained 42% and 25% of the variance respectively (Figure 5.1a). The two populations were separated by PC1, while PC2 primarily reflected variation among competition treatments (Figure 5.1a). However, clear population-specific responses to competition were evident. For example, competition with rainbow trout resulted in the largest transcriptional response in the LaHave population while competition with brown trout resulted in the largest transcriptional response in the Sebago population (Figure 5.1a).

Within each population, Atlantic salmon responded transcriptionally different to competition with the three introduced salmonid species (Figures. 5.1b and 5.1c). The LaHave Atlantic salmon reared with Chinook salmon showed a different transcriptome response compared to the LaHave Atlantic salmon reared with rainbow trout along both PC1 and PC2 (Figure 5.1b). The Sebago Atlantic salmon reared with Chinook salmon showed a similar transcriptome response to the Sebago Atlantic salmon reared with rainbow trout, and the Sebago Atlantic salmon under these two treatments showed different transcriptome response compared to the Sebago reared with brown trout (Figure 5.1c).

In the distance heatmap, the five samples within each population clustered together, reflecting the large population effect on the transcriptome (Figure 5.2). Within
the LaHave population, the Atlantic salmon reared alone and Chinook salmon competition samples clustered together, while the LaHave Atlantic salmon reared with rainbow trout and brown trout clustered together (Figure 5.2). Within the Sebago population, the two Atlantic salmon reared alone samples clustered together while the Atlantic salmon reared with Chinook salmon and with rainbow trout clustered together (Figure 5.2). The Atlantic salmon reared with brown trout showed a highly divergent transcriptional profile within the Sebago population (Figure 5.2). The distance heatmap and PCA analyses indicated that the effects of population on gene expression were higher than that of interspecies competition.

Gene expression differences

GFOLD showed that 266 genes were transcribed at significantly different levels between the two Atlantic salmon populations when reared alone. Within the LaHave population, there were 209, 350, and 701 genes that exhibited a significant response to competition with Chinook salmon, brown trout, and rainbow trout, respectively (Figure 5.3). Within the Sebago population, there were 131, 384, and 191 genes that responded to competition with Chinook salmon, brown trout, and rainbow trout, respectively (Figure 5.3). Within LaHave, there were 10 genes that exhibited a significant response among all three interspecific competition treatments (Supplementary Figure S5.1a; Supplementary Table S5.3). Within Sebago, there were 9 genes that responded among all three interspecific competition treatments (Supplementary Figure S5.1b; Supplementary Table S5.4).
There were only 23, 13, and 19 genes shared between the two populations in response to competition with Chinook salmon, brown trout, and rainbow trout, respectively. Among the 23 genes showing a common response to competition with Chinook salmon in both populations, 20 showed the same trend of regulation of gene expression (Supplementary Table S5.5). Among the 13 genes showing a common response to competition with brown trout in both populations, 3 showed the same trend of regulation (Supplementary Table S5.6). Among the 19 genes showing a common response to competition with rainbow trout in both populations, 6 showed the same trend of regulation (Supplementary Table S5.7). While most responding genes were population-specific, the GO term analysis using the combined responding genes within each population showed that the responding genes were involved in similar functional groups in both populations (Supplementary Figure S5.2).

Comparison between gene expression level revealed by qRT-PCR and RNA-seq

I quantified 14 genes in 12 fish from four treatments (LaHave reared alone, LaHave reared with brown trout, Sebago reared alone, and Sebago reared with brown trout). The spearman correlation coefficient between relative expression quantified by qRT-PCR and RNA-Seq was 0.81 (Supplementary Figure S5.3).

DISCUSSION

The establishment of non-native species can negatively affect the fitness of less aggressive native species (Fausch 2007; Turek *et al.* 2013). While gene expression response to many environmental stresses have been investigated (Whitehead *et al.* 2010;
Wellband & Heath 2013; Narum & Campbell 2015; Brennan et al. 2015), to my knowledge, transcriptional responses to competition with ecologically similar species has not been reported in fish. In this study, I used RNA-Seq to compare transcriptome responses of two Atlantic salmon populations to competition with ecological similar species with known dominance ranks. Overall, the effects of population on gene expression were higher than that of interspecific competition and there were both similarities and differences between Atlantic salmon populations in response to competition with ecologically similar species at the gene expression level.

Previous studies found that competition with rainbow trout or brown trout can have negative effects on growth and survival of Atlantic salmon, while competition with Chinook salmon has no negative effects (Van Zwol et al. 2012; Houde et al. 2015a). In this study, I found that Atlantic salmon had fewer responding genes to competition with Chinook salmon than to competition with rainbow trout or brown trout. This was expected because rainbow trout and brown trout are more aggressive than Atlantic salmon while Atlantic salmon is just as aggressive as Chinook salmon (Van Zwol et al. 2012; Houde et al. 2015a). I also found that the number of responding genes for Atlantic salmon in the presence of brown trout was similar (350 in LaHave and 384 in Sebago, respectively) between the two populations, which may indicate that brown trout stressed both Atlantic salmon populations similarly. However, the two Atlantic salmon populations showed substantial differences in the number of genes responding to competition with rainbow trout. That is, the number of genes responding to the presence of rainbow trout in the LaHave population was 3.6 times the number in the Sebago population. This suggests that the Sebago population may be more tolerant to the
presence of rainbow trout than the LaHave population, and thus the Sebago population may be more suitable for reintroduction in Lake Ontario as rainbow trout are common in the tributaries of the lake (Stanfield et al. 2006).

Among competition treatments within each population, LaHave Atlantic salmon reared with rainbow trout had the highest number of genes showing a significant response, while Sebago Atlantic salmon reared with brown trout had the most responding genes. Unlike previous results for the effects of interspecific competition on fitness-related traits which concluded that brown trout is the most serious competitor to Atlantic salmon and that rainbow trout can also have negative effects (Van Zwol et al. 2012; Houde et al. 2015a), my results implied that the most stressful competitor to the LaHave Atlantic salmon is rainbow trout while the most stressful competitor to the Sebago Atlantic salmon is brown trout. This implies that transcriptomic tools may be more sensitive to interspecies competition effects than commonly used fitness-related traits.

Although the functional categories of the genes showing a significant response to interspecific competition were broad and similar between the two populations, most of the genes responding to specific competitors were population-specific. Interestingly, most of the responding genes shared by the two Atlantic salmon populations in competition with Chinook salmon displayed the same gene expression regulation pattern, while most of the shared responding genes in competition with rainbow trout or brown trout showed contrasting gene expression regulation patterns. In particular, two somatostatin genes showed down-regulation in response to the presence of rainbow trout in both populations, and three somatostatin genes showed down-regulation in response to the presence of all three non-native salmonids in the Sebago population. Somatostatin is a hormone that
participates in multiple biological processes by inhibiting the release of pituitary hormones and gastrointestinal tract peptides (Burgus et al. 1973; Gahete et al. 2010). Somatostatin has been reported to regulate social behavior in cichlid fish (Astatotilapia burtoni) (Trainor & Hofmann 2006), with dominant males having larger somatostatin-containing neurons and higher expression of the somatostatin and somatostatin receptor 3 genes in the hypothalamus relative to subdominant males (Hofmann & Fernald 2000; Trainor & Hofmann 2007). Additionally, Schunter et al. (2014) found the somatostatin receptor 1 gene showed higher expression in the brain of territorial males than females in Tripterygion delaisi during the reproductive period. Although the functions of somatostatin genes in the spleen are not clear, the down-regulation of expression of these genes in competition with rainbow trout in both populations and in competition with the three species in the Sebago population may be adaptive because of the reported negative feedback regulation roles of somatostatin (Gahete et al. 2010).

LIMITATIONS OF THIS STUDY

Although individuals may vary in stress response and tolerance, I pooled samples of four fish to minimize individual variation, and my aim was to examine the general influence of interspecific competition on the transcriptome of Atlantic salmon from two populations. Indeed, a statistical analysis of individuals within all treatments would have been more powerful, and may have detected a greater number of differentially expressed genes than my study. However, the general impacts of interspecific competition on the transcriptome in my study highlight a useful application of transcriptomic tools for source population selection for reintroduction and more broadly, conservation science.
CONCLUSIONS

This study is the first report of transcriptomic responses to interspecific competition with ecologically similar species in fish. I found both similarities and differences in transcriptome responses to interspecific competition for the two Atlantic salmon populations. Overall, the Sebago population had fewer responding genes than the LaHave population, implying that the Sebago population was less affected by interspecific competition than the LaHave population, especially in competition with rainbow trout. This study can be added to the growing number of studies (Van Zwol et al. 2012; Houde et al. 2015a; b, 2016) indicating that the Sebago population likely has higher competitive ability than the LaHave population. Population differences in competitive ability can be reflected at the gene expression level and transcriptomic tools can be used to evaluate stress response and tolerance differences among populations for source population selection for conservation related applications. In particular, my transcriptome characterization highlights that organisms can possess different transcriptional responses to biotic stressors.
REFERENCES

Figure 5.1 Principal component analysis based on expression levels for 2000 selected genes which exhibited the highest expression variation among samples for (a) all the 10 samples, (b) the LaHave population samples (n = 5) and (c) the Sebago population samples (n= 5). Treatment symbols: LaAS indicates LaHave Atlantic salmon reared alone; LaBT, LaCH, and LaRT indicate LaHave Atlantic salmon reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively; SeAS indicates Sebago Atlantic salmon reared alone; SeBT, SeCH, and SeRT indicate Sebago Atlantic salmon reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively.
Figure 5.2 Heatmap of sample-to-sample distances based on expression levels of all the genes. Treatment symbols: AS indicates Atlantic salmon reared alone; BT, CH, and RT indicate the Atlantic salmon population reared with one of the three species: brown trout, Chinook salmon, and rainbow trout, respectively.
Figure 5.3 Number of responding genes of Atlantic salmon (*Salmo salar*) to the presence of brown trout (BT), Chinook salmon (CH), and rainbow trout (RT).
Supplementary Table S5.1 Primers used for qRT-PCR.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kDa lysophospholipase</td>
<td>GAACATACGAGGCTACGAC</td>
<td>TCCATCAAACAGAGGCTAA</td>
</tr>
<tr>
<td>Alpha amylase</td>
<td>CTGCTCCCAAAGGATACGC</td>
<td>CTCCACGGCTGGTCAA</td>
</tr>
<tr>
<td>Aquaporin-1</td>
<td>ATCCCTGGTCAGATGCT</td>
<td>AACCCTTGCCAACACCTATT</td>
</tr>
<tr>
<td>Carboxylyc ester hydrolase</td>
<td>ACTGCTCTACCTGAACATA</td>
<td>AGGTCACCAGCAGTTACA</td>
</tr>
<tr>
<td>Carboxypeptidase A1</td>
<td>ATCCCTGGTCATCCTGC</td>
<td>CTTGGTGTCACGGTAA</td>
</tr>
<tr>
<td>Carboxypeptidase A2</td>
<td>TCAGGCTCAATGTTGAGTC</td>
<td>AGCGTACAGGCTGGAGTAG</td>
</tr>
<tr>
<td>Elastase-like serine protease</td>
<td>CCTATTGAGCCTCTGACCACC</td>
<td>TGTCTCCACTACCGTCCTC</td>
</tr>
<tr>
<td>Formin-binding protein 1</td>
<td>CGACGAATAAGTAACGAGG</td>
<td>GATGTAGTCTATCACAGTGCC</td>
</tr>
<tr>
<td>Hemoglobin subunit beta-1</td>
<td>CACTCCCGCAAGCAATCAT</td>
<td>TTGTGGCCTGGGCTCTCG</td>
</tr>
<tr>
<td>Olfactomedin-4</td>
<td>CTTTGCTGCTGATGAGAC</td>
<td>GGTCAATGAACGGGTG</td>
</tr>
<tr>
<td>Somatostatin-1A</td>
<td>TGCTCCACGGCTCACTCA</td>
<td>AGATCCACATCTCTGCTC</td>
</tr>
<tr>
<td>Splicing factor 3B subunit 4-like</td>
<td>GGCTATGGCTTTTGAGTTG</td>
<td>CTTGGTGACACGGATGG</td>
</tr>
<tr>
<td>Trypsin 1</td>
<td>GCTGCTCAGTCTACAAG</td>
<td>AACTGCTCGCTAACCCTCA</td>
</tr>
<tr>
<td>Trypsin 2</td>
<td>TGTGGAGTGCTGTCTGG</td>
<td>TTGAGGGTGCGGCTTT</td>
</tr>
<tr>
<td>Ribosomal protein S20</td>
<td>CCCCTGTGAGGCTGAG</td>
<td>TCCACGGATAAGGCTG</td>
</tr>
</tbody>
</table>
Supplementary Table S5.2 Mapping summary of the 10 samples to Atlantic salmon (*Salmo salar*) draft genome.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Left/Input</th>
<th>Left/Mapped</th>
<th>Right/Input</th>
<th>Right/Mapped</th>
<th>Overall read mapping rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaAS1</td>
<td>15590578</td>
<td>83.60%</td>
<td>15590578</td>
<td>78.90%</td>
<td>81.30%</td>
</tr>
<tr>
<td>LaAS2</td>
<td>15580431</td>
<td>83.30%</td>
<td>15580431</td>
<td>78.90%</td>
<td>81.10%</td>
</tr>
<tr>
<td>LaCH</td>
<td>16726316</td>
<td>83.20%</td>
<td>16726316</td>
<td>79.00%</td>
<td>81.10%</td>
</tr>
<tr>
<td>LaBT</td>
<td>15832117</td>
<td>80.20%</td>
<td>15832117</td>
<td>72.40%</td>
<td>76.30%</td>
</tr>
<tr>
<td>LaRT</td>
<td>15406518</td>
<td>77.60%</td>
<td>15406518</td>
<td>68.20%</td>
<td>72.90%</td>
</tr>
<tr>
<td>SeAS1</td>
<td>16253754</td>
<td>82.00%</td>
<td>16253754</td>
<td>77.00%</td>
<td>79.50%</td>
</tr>
<tr>
<td>SeAS2</td>
<td>16941555</td>
<td>82.70%</td>
<td>16941555</td>
<td>78.10%</td>
<td>80.40%</td>
</tr>
<tr>
<td>SeCH</td>
<td>14921851</td>
<td>81.40%</td>
<td>14921851</td>
<td>76.60%</td>
<td>79.00%</td>
</tr>
<tr>
<td>SeBT</td>
<td>16245883</td>
<td>80.00%</td>
<td>16245883</td>
<td>75.30%</td>
<td>77.70%</td>
</tr>
<tr>
<td>SeRT</td>
<td>16431778</td>
<td>81.60%</td>
<td>16431778</td>
<td>75.50%</td>
<td>78.50%</td>
</tr>
</tbody>
</table>
Supplementary Table S5.3 The expression of 10 genes which showed response to competition with all the three non-native salmonids for the LaHave Atlantic salmon (*Salmo salar*) population.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>RPKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLOC_006573</td>
<td>mesoderm induction early response 2 isoform X2</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.75</td>
</tr>
<tr>
<td>XLOC_007997</td>
<td>NA</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.36</td>
</tr>
<tr>
<td>XLOC_026040</td>
<td>PREDICTED: hypothetical protein LOC100636600</td>
<td>4.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>XLOC_035303</td>
<td>unnamed protein product</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.76</td>
</tr>
<tr>
<td>XLOC_038248</td>
<td>reverse transcriptase</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.79</td>
</tr>
<tr>
<td>XLOC_043264</td>
<td>fish virus induced TRIM</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.12</td>
</tr>
<tr>
<td>XLOC_044401</td>
<td>NA</td>
<td>3.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>XLOC_045484</td>
<td>NA</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.74</td>
</tr>
<tr>
<td>XLOC_051766</td>
<td>unnamed protein product</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.91</td>
</tr>
<tr>
<td>XLOC_059159</td>
<td>NA</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.16</td>
</tr>
</tbody>
</table>

Note: LaAS represents LaHave Atlantic salmon reared alone; LaBT, LaCH, and LaRT represent LaHave Atlantic salmon reared with brown trout, Chinook salmon, and rainbow trout, respectively.
Supplementary Table S5.4 The expression of nine genes which showed response to competition with all the three non-native salmonids for the Sebago Atlantic salmon (*Salmo salar*) population.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>RPKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLOC_005337</td>
<td>Somatostatin-1A precursor</td>
<td>16.53</td>
</tr>
<tr>
<td>XLOC_005338</td>
<td>Somatostatin-2 precursor</td>
<td>10.51</td>
</tr>
<tr>
<td>XLOC_005514</td>
<td>Somatostatin-1A precursor</td>
<td>14.27</td>
</tr>
<tr>
<td>XLOC_010401</td>
<td>Dok-7-like isoform X1</td>
<td>1.09</td>
</tr>
<tr>
<td>XLOC_013971</td>
<td>phenylethanolamine N-methyltransferase-like</td>
<td>6.35</td>
</tr>
<tr>
<td>XLOC_025514</td>
<td>NA</td>
<td>11.93</td>
</tr>
<tr>
<td>XLOC_026425</td>
<td>glucagon-1 precursor</td>
<td>8.76</td>
</tr>
<tr>
<td>XLOC_031041</td>
<td>Insulin precursor</td>
<td>45.10</td>
</tr>
<tr>
<td>XLOC_035700</td>
<td>NA</td>
<td>24.35</td>
</tr>
</tbody>
</table>

Note: SeAS represents Sebago Atlantic salmon reared alone; SeBT, SeCH, and SeRT represent Sebago Atlantic salmon reared with brown trout, Chinook salmon, and rainbow trout, respectively.
Supplementary Table S5.5 The expression of 23 genes which showed response to competition with Chinook salmon (*Oncorhynchus tshawytscha*) for both Atlantic salmon (*Salmo salar*) populations.

<table>
<thead>
<tr>
<th>gene ID</th>
<th>Description</th>
<th>RPKM LaAS</th>
<th>LaCH</th>
<th>SeAS</th>
<th>SeCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLOC_000035</td>
<td>hypothetical protein EAI_17313</td>
<td>1.56</td>
<td>0</td>
<td>2.17</td>
<td>0.24</td>
</tr>
<tr>
<td>XLOC_003299</td>
<td>apolipo A-II precursor</td>
<td>4.63</td>
<td>0.08</td>
<td>10.02</td>
<td>0.77</td>
</tr>
<tr>
<td>XLOC_012227</td>
<td>proglucagon II</td>
<td>0.48</td>
<td>3.82</td>
<td>2.18</td>
<td>0</td>
</tr>
<tr>
<td>XLOC_014649</td>
<td>Apolipo A-I precursor</td>
<td>1.23</td>
<td>0.03</td>
<td>1.97</td>
<td>0.16</td>
</tr>
<tr>
<td>XLOC_015883</td>
<td>AMBP precursor</td>
<td>1.52</td>
<td>0.16</td>
<td>3.38</td>
<td>0.29</td>
</tr>
<tr>
<td>XLOC_017724</td>
<td>apolipo A-I precursor</td>
<td>13.38</td>
<td>0.07</td>
<td>17.36</td>
<td>1.66</td>
</tr>
<tr>
<td>XLOC_020727</td>
<td>alpha-2-HS-glyco -like</td>
<td>2.31</td>
<td>0</td>
<td>4.05</td>
<td>0.62</td>
</tr>
<tr>
<td>XLOC_025691</td>
<td>beta-2-glyco 1-like</td>
<td>1.27</td>
<td>0</td>
<td>2.35</td>
<td>0.09</td>
</tr>
<tr>
<td>XLOC_026300</td>
<td>complement C5</td>
<td>1.63</td>
<td>0</td>
<td>2.38</td>
<td>0.15</td>
</tr>
<tr>
<td>XLOC_028644</td>
<td>Serpina1 , partial</td>
<td>6.22</td>
<td>0</td>
<td>8.91</td>
<td>1.05</td>
</tr>
<tr>
<td>XLOC_028948</td>
<td>apolipo B-100-like</td>
<td>0.99</td>
<td>0</td>
<td>2.61</td>
<td>0.22</td>
</tr>
<tr>
<td>XLOC_029296</td>
<td>fibrinogen gamma chain precursor</td>
<td>2.79</td>
<td>0.03</td>
<td>4.95</td>
<td>0.58</td>
</tr>
<tr>
<td>XLOC_029773</td>
<td>collagen alpha-1 chain-like isoform X3</td>
<td>0.60</td>
<td>3.89</td>
<td>6.56</td>
<td>0.60</td>
</tr>
<tr>
<td>XLOC_029784</td>
<td>Serotransferrin-1 precursor</td>
<td>3.54</td>
<td>0.46</td>
<td>7.73</td>
<td>1.49</td>
</tr>
<tr>
<td>XLOC_035374</td>
<td>Type-4 ice-structuring precursor</td>
<td>0.83</td>
<td>0</td>
<td>1.38</td>
<td>0.11</td>
</tr>
<tr>
<td>XLOC_038073</td>
<td>NA</td>
<td>1.11</td>
<td>4.55</td>
<td>2.86</td>
<td>9.81</td>
</tr>
<tr>
<td>XLOC_038626</td>
<td>apolipo A-II precursor</td>
<td>5.17</td>
<td>0</td>
<td>10.72</td>
<td>1.21</td>
</tr>
<tr>
<td>XLOC_039508</td>
<td>warm temperature acclimation-related 65 kDa</td>
<td>5.21</td>
<td>0.16</td>
<td>15.25</td>
<td>1.61</td>
</tr>
<tr>
<td>XLOC_040523</td>
<td>trout C-polysaccharide binding 1, isoform 1</td>
<td>4.11</td>
<td>0</td>
<td>9.37</td>
<td>0.58</td>
</tr>
<tr>
<td>XLOC_040524</td>
<td>trout C-polysaccharide binding 1, isoform 1</td>
<td>0.93</td>
<td>0</td>
<td>2.89</td>
<td>0.04</td>
</tr>
<tr>
<td>XLOC_043208</td>
<td>fibrinogen beta chain-like</td>
<td>3.78</td>
<td>0</td>
<td>5.63</td>
<td>0.72</td>
</tr>
<tr>
<td>XLOC_049651</td>
<td>serum albumin 2 precursor</td>
<td>7.45</td>
<td>0.29</td>
<td>14.16</td>
<td>2.39</td>
</tr>
<tr>
<td>XLOC_058750</td>
<td>NA</td>
<td>1.19</td>
<td>8.56</td>
<td>9.80</td>
<td>1.74</td>
</tr>
</tbody>
</table>

Note: LaAS represents LaHave Atlantic salmon reared alone; LaCH represents LaHave Atlantic salmon reared with Chinook salmon; SeAS represents Sebago Atlantic salmon reared alone; and SeCH represents Sebago Atlantic salmon reared with Chinook salmon.
Supplementary Table S5.6 The expression of 13 genes which showed response to competition with brown trout (*Salmo trutta*) for both Atlantic salmon (*Salmo salar*) populations.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>RPKM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LaAS</td>
</tr>
<tr>
<td>XLOC_004403</td>
<td>NA</td>
<td>1.26</td>
</tr>
<tr>
<td>XLOC_019565</td>
<td>NA</td>
<td>5.46</td>
</tr>
<tr>
<td>XLOC_023427</td>
<td>talin-1, partial</td>
<td>4.02</td>
</tr>
<tr>
<td>XLOC_034531</td>
<td>dnaJ homolog subfamily B member 5-like</td>
<td>1.31</td>
</tr>
<tr>
<td>XLOC_038248</td>
<td>reverse transcriptase</td>
<td>0.75</td>
</tr>
<tr>
<td>XLOC_039146</td>
<td>unnamed protein product</td>
<td>4.48</td>
</tr>
<tr>
<td>XLOC_042761</td>
<td>paternally-expressed gene 3 -like</td>
<td>0.48</td>
</tr>
<tr>
<td>XLOC_045381</td>
<td>hypothetical protein CAPTEDRAFT_85835, partial</td>
<td>2.30</td>
</tr>
<tr>
<td>XLOC_047231</td>
<td>hypothetical protein V500_07678</td>
<td>0.87</td>
</tr>
<tr>
<td>XLOC_050042</td>
<td>E3 ubiquitin- ligase HERC2 isoform X4</td>
<td>64.47</td>
</tr>
<tr>
<td>XLOC_054691</td>
<td>endonuclease domain-containing 1 -like</td>
<td>2.23</td>
</tr>
<tr>
<td>XLOC_059047</td>
<td>NA</td>
<td>0.30</td>
</tr>
<tr>
<td>XLOC_059836</td>
<td>NA</td>
<td>7.66</td>
</tr>
</tbody>
</table>

Note: LaAS represents LaHave Atlantic salmon reared alone; LaBT represents LaHave Atlantic salmon reared with brown trout; SeAS represents Sebago Atlantic salmon reared alone; and SeBT represents Sebago Atlantic salmon reared with brown trout.
Supplementary Table S5.7 The expression of 19 genes which showed response to competition with rainbow trout (*Oncorhynchus mykiss*) for both Atlantic salmon (*Salmo salar*) populations.

<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
<th>LaAS</th>
<th>LaRT</th>
<th>SeAS</th>
<th>SeRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLOC_002409</td>
<td>NA</td>
<td>14.78</td>
<td>1.17</td>
<td>0.41</td>
<td>6.85</td>
</tr>
<tr>
<td>XLOC_002993</td>
<td>NA</td>
<td>1.03</td>
<td>5.74</td>
<td>1.89</td>
<td>0.11</td>
</tr>
<tr>
<td>XLOC_004403</td>
<td>NA</td>
<td>1.26</td>
<td>9.28</td>
<td>2.40</td>
<td>0.20</td>
</tr>
<tr>
<td>XLOC_005337</td>
<td>Somatostatin-1A precursor</td>
<td>10.55</td>
<td>1.44</td>
<td>16.53</td>
<td>2.06</td>
</tr>
<tr>
<td>XLOC_005514</td>
<td>Somatostatin-1A precursor</td>
<td>6.87</td>
<td>0.52</td>
<td>14.27</td>
<td>1.58</td>
</tr>
<tr>
<td>XLOC_010417</td>
<td>transposase</td>
<td>0.04</td>
<td>1.07</td>
<td>1.73</td>
<td>0.26</td>
</tr>
<tr>
<td>XLOC_012848</td>
<td>RNA-directed DNA polymerase from mobile element jockey-like, partial</td>
<td>6.63</td>
<td>1.12</td>
<td>4.00</td>
<td>0</td>
</tr>
<tr>
<td>XLOC_024287</td>
<td>NA</td>
<td>0.03</td>
<td>1.28</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>XLOC_026425</td>
<td>glucagon-1 precursor</td>
<td>4.73</td>
<td>0.52</td>
<td>8.76</td>
<td>0.47</td>
</tr>
<tr>
<td>XLOC_032189</td>
<td>unnamed protein product</td>
<td>0.54</td>
<td>2.33</td>
<td>1.25</td>
<td>0.22</td>
</tr>
<tr>
<td>XLOC_034294</td>
<td>tyrosine aminotransferase</td>
<td>0.20</td>
<td>1.55</td>
<td>1.22</td>
<td>0</td>
</tr>
<tr>
<td>XLOC_038248</td>
<td>reverse transcriptase</td>
<td>0.75</td>
<td>4.79</td>
<td>2.19</td>
<td>9.24</td>
</tr>
<tr>
<td>XLOC_040524</td>
<td>trout C-polysaccharide binding 1, isoform 1</td>
<td>0.93</td>
<td>4.25</td>
<td>2.89</td>
<td>0.44</td>
</tr>
<tr>
<td>XLOC_042575</td>
<td>NA</td>
<td>1.13</td>
<td>8.75</td>
<td>3.89</td>
<td>0.45</td>
</tr>
<tr>
<td>XLOC_042576</td>
<td>NA</td>
<td>1.25</td>
<td>15.87</td>
<td>10.15</td>
<td>1.97</td>
</tr>
<tr>
<td>XLOC_048497</td>
<td>hypothetical protein VOLCADRAFT_70901</td>
<td>2.51</td>
<td>0.14</td>
<td>2.27</td>
<td>0.13</td>
</tr>
<tr>
<td>XLOC_051384</td>
<td>fatty acid synthase-like</td>
<td>3.06</td>
<td>0.40</td>
<td>0.44</td>
<td>2.55</td>
</tr>
<tr>
<td>XLOC_058750</td>
<td>NA</td>
<td>1.19</td>
<td>8.81</td>
<td>9.80</td>
<td>0.15</td>
</tr>
<tr>
<td>XLOC_060500</td>
<td>hypothetical protein</td>
<td>2.47</td>
<td>31.17</td>
<td>10.15</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Note: LaAS represents LaHave Atlantic salmon reared alone; LaRT represents LaHave Atlantic salmon reared with rainbow trout; SeAS represents Sebago Atlantic salmon reared alone; and SeRT represents Sebago Atlantic salmon reared with rainbow trout.
Supplementary Figure S5.1 Venn diagram showing the overlap of differentially expressed genes in response to the presence of brown trout (BT), Chinook salmon (CH) and rainbow trout (RT) within the LaHave (a) and Sebago (b) Atlantic salmon populations.
Supplementary Figure S5.2 Functional categorization of significantly different expressed genes in response to interspecific competition for the LaHave and Sebago Atlantic salmon (*Salmo Salar*) populations. For each population, responding genes were combined. GO terms containing less than five genes in both populations were not included.
Supplementary Figure S5.3 Comparison of gene expression levels revealed by RNA-Seq and qRT-PCR for 14 genes. Expression of the 14 genes for RNA-Seq were log$_2$ transferred RPKM values from four samples: LaAS1 (LaHave Atlantic salmon reared alone sample 1), LaBT (LaHave Atlantic salmon reared with brown trout), SeAS1 (Sebago Atlantic salmon reared alone sample 1), and SeBT (Sebago Atlantic salmon reared with brown trout). qRT-PCR was used to quantify expression of the 14 genes for 12 individuals from the four treatments and then -ΔC_T (calculated by $ΔC_{T\text{Reference}} - ΔC_{T\text{Targeted}}$) values were averaged for each treatment. Spearman rank correlation analysis was conducted using the averaged -ΔC_T for each treatment and log$_2$RPKM.
CHAPTER 6
POPULATION-SPECIFIC RESPONSES TO INTERSPECIFIC COMPETITION IN
THE GUT MICROBIOTA OF TWO ATLANTIC SALMON POPULATIONS

INTRODUCTION

The intestine of normal animals harbors a great number and variety of bacteria which play an important role in animal health. Intestinal microbiota mediate a variety of biological processes and have been characterized as a “forgotten organ” (O’Hara & Shanahan 2006; Sommer & Bäckhed 2013). Symbiotic intestinal bacteria have long been recognized to aid in nutrient metabolism and absorption, and can provide vitamins to their host (Cummings & Macfarlane 1997; LeBlanc et al. 2013). Studies using germ-free animals demonstrated that intestinal bacteria are required for the differentiation of immune cells and normal development of the immune system and intestinal epithelium (Mazmanian et al. 2005; Olszak et al. 2012). Furthermore, gut microbiota play an important role in preventing colonization of opportunistic pathogens (Kamada et al. 2013). In addition, it has been reported that gut microbiota can regulate bone mass in mice and even host behavior in Drosophila melanogaster (Sharon et al. 2010; Sjögren et al. 2012). Clearly, changes in the composition and diversity of gut microbiota can affect the health of the host and the intestinal environment provided by the host can in turn affect the composition and dynamics of the gut microbial community as well.

5 This is the outcome of joint research.
Although the community structure of the gut microbiota is the result of evolutionary interactions between the bacteria and their host (Ley et al. 2006), many external factors also can affect the composition and diversity of the gut microbiota. First, the physical environment experienced by the host (such as temperature and season) can have a great influence on the gut microbial community (Hagi et al. 2004; Neuman et al. 2016). Secondly, host physiological state can affect gut microbiota. For example, Bailey et al. (2010, 2011) found that stress exposure in mice significantly alters the relative abundances of certain types of gut bacteria and results in a greater incidence of colonization by pathogens. Furthermore, diet can impact the gut microbiota. Sullam et al. (2012) conducted a meta-analysis of 25 gut microbiota analyses in fish and found that the gut of herbivorous fish harbor more Clostridiales, Bacteroidales, and Verrucomicrobiales compared to omnivorous and carnivorous fish, while omnivorous fish harbor more Rhizobiales, Fusobacteriales, and Planctomycetales than carnivorous and herbivorous fish. Lastly, population source (captive or wild) and geographic variation also can affect composition and diversity of gut microbiota (Linnenbrink et al. 2013; Kreisinger et al. 2014; Stevenson et al. 2014; Zarkasi et al. 2014). The effects of those factors on gut microbiota imply that ecological challenges and environmental stresses organisms encounter can indirectly or directly affect their gut microbiota.

Differences in response to, and tolerance of, environmental stress among populations of the same species have been reported in a variety of fish species (DeKoning et al. 2004; Fangue et al. 2006; Whitehead et al. 2010; Côte et al. 2012). Although population differences in stress response have been well characterized for physiological and life history traits, population-level differences in how fish gut microbiota respond to
ecological stress have not been explored. As the gut microbiota is clearly a critical component of fish health, the response of the microbiota to host stress levels is an obvious factor to examine when selecting source populations for aquaculture, restocking, and reintroduction. Given the close relationship between host physiology, health, and gut microbiota, demonstrating stress response differences in gut microbiota composition among populations in common garden experiments will provide insight into predicting population performance differences under the stressful conditions associated with a novel environment.

Atlantic salmon (*Salmo salar*) was once a native species in Lake Ontario, but was extirpated late in the 19th century mainly as a result of habitat fragmentation and degradation (Crawford 2001). Due to its important economic, cultural and ecological roles, there have been increasing efforts to reintroduce Atlantic salmon into Lake Ontario for over 30 years; however, those reintroductions have been unsuccessful. After Atlantic salmon was extirpated, Chinook salmon *Oncorhynchus tshawytscha*, coho salmon *O. kisutch*, rainbow trout *O. mykiss*, and brown trout *S. trutta* were successfully introduced into Lake Ontario and its tributaries to provide recreational fishing opportunities (Stewart & Schaner 2002). The establishment of those four non-native salmonids has been proposed as a significant barrier to the successful reintroduction of Atlantic salmon into Lake Ontario because of intense interspecific competition at both the juvenile and adult stages due to niche overlap, impeding the successful reintroduction of Atlantic salmon (Scott *et al.* 2003, 2005; Van Zwol *et al.* 2012; Houde *et al.* 2015a, b, 2016). Although stressful interspecific competitive interactions have been shown to affect growth and survival (Houde *et al.* 2015a, b), the mechanisms behind those effects are not clear, as
stress can affect many aspects of organisms at different levels. One known outcome of stress is a detrimental change in the intestinal microbial community that impacts the host through multiple pathways of bidirectional interaction between gut microbiota and their host (Carabotti et al. 2015). However, the effect of interspecific competition on the gut microbiota has not been explored in any species.

To explore the role of interspecific competition on the gut microbiota and to test for evidence for competition stress tolerance differences between source populations for Atlantic salmon reintroduction, I conducted interspecific competition experiments for two Atlantic salmon populations exposed to the four established non-native salmonids of Lake Ontario. I used next generation sequencing of the 16S rRNA gene to characterize the composition and diversity of intestinal microbiota of juvenile Atlantic salmon. I aimed to test three hypotheses in this study. First, I hypothesize that there would be microbial community differences between the two source populations in diversity and composition, and these differences would reflect co-evolutionary differences in host and microbiota dynamics of the two populations. Second, I hypothesize that there would be greater microbial community response to interspecific competition in the LaHave population relative to the Sebago population, reflecting the reported pattern of lower interspecific competition tolerance in the LaHave population relative to the Sebago population (Houde et al. 2015a, b, 2016). Last, as chronic stress is known to reduce immunity and disease resistance in fish (Barton 2002), I hypothesize that interspecific competition will result in decreased relative abundance of beneficial bacteria and increased relative abundance of opportunistic pathogens within the gut in both populations, but to a lesser extent in the Sebago population. My results have important implications for the understanding of the
nature of the co-evolution of the host and their microbiota. Furthermore, my work shows that the interrelationship between the host and their gut microbiota is a critical factor to consider when selecting source populations for the conservation and management of species at risk and commercially exploited species.

MATERIALS AND METHODS

Interspecific competition and sample collection

Currently, two Atlantic salmon populations are being used for reintroduction into Lake Ontario: LaHave and Sebago. The LaHave is an anadromous population which originates from LaHave River, Nova Scotia, whereas the Sebago is a landlocked population from Sebago Lake, Maine. For competing species, I used four non-native salmonids (Chinook salmon, coho salmon, rainbow trout, and brown trout) which have been introduced and are established in Lake Ontario tributaries. Juveniles (fertilized in November 2011) of all the five species were provided by the Ontario Ministry of Natural Resources and Forestry (OMNRF), Canada. Details about the fish breeding are provided in Houde et al. (2015b).

In September 2012, the Atlantic salmon and competing species were transferred to artificial stream tanks, commencing the interspecific competition experiment. Each artificial stream tank included a riffle and a pool microhabitats (160 cm long for the riffle and 80 cm long for the pool). Details about the artificial stream tank design are provided in Houde et al. (2015b). There were six treatments for each Atlantic salmon population: Atlantic salmon reared alone (32 Atlantic salmon), Atlantic salmon reared in a 1:1 ratio with one of the four non-native species (16 Atlantic salmon and 16 one of the non-native
species), and Atlantic salmon reared with all the four species combined (16 Atlantic salmon, four Chinook salmon, four coho salmon, four rainbow trout, and four brown trout). Each trial was replicated. To minimize any differences in performance caused by genetic effects, Atlantic salmon from each of the two populations were comprised of equal numbers of fish from eight full-sib families in each tank. The fish were fed commercial pellet feed at 1% of their body mass per day from January to April and 3% of their body mass per day in other months. Previous studies demonstrated that juvenile Atlantic salmon, rainbow trout and brown trout prefer riffle microhabitats whereas Chinook salmon and coho salmon prefer pool microhabitats (Hartman 1965; Morantz et al. 1987; Holecek et al. 2009). Therefore, I expected that the five treatments should result in a range of competitive effects on the Atlantic salmon gut microbiota when they competed for feed and microhabitat.

At the end of July 2013, after 10 months in the artificial stream tanks, six to nine Atlantic salmon from each tank were randomly collected and humanely euthanized by an overdose of buffered MS-222. I collected intestinal content of Atlantic salmon from both replicated tanks for each treatment, except for the LaHave population reared with brown trout because there were only surviving Atlantic salmon in one replicate tank. Prior to dissection, the fish were externally disinfected using 75% ethanol and subsequently opened using a sterile scalpel. Intestinal contents were collected and stored at -20 °C immediately, and were transferred to the lab later on ice. In addition, I collected 500 mL water samples from four tanks for microbial analysis. The water was filtered using Supor®200 Membrane Filter with 0.2 µm pore size (Pall Corporation, Mississauga, ON, Canada) and the filter was stored frozen for later DNA extraction.
DNA extraction, PCR, and library preparation

Bacterial genomic DNA was extracted using the E.Z.N.A.®Stool DNA Kit (Omega Bio-tek, Norcross, GA, USA) following the supplier’s instructions. In total, I extracted bacterial DNA from the intestinal content of 178 fish and the four water samples. The V5 and V6 regions of the bacterial 16S rRNA gene were PCR amplified using previously reported primers (Sogin *et al.* 2006; Roesch *et al.* 2007). I used two rounds of PCR to first amplify the target region and then to ligate adaptor and barcode sequences for next generation sequencing. To reduce the incidence of PCR artifacts in the first round, I used the minimum number of PCR cycles such that enough target DNA was amplified to show faint bands on agarose gel (Lenz & Becker 2008). The 1st PCR was conducted in 25 µL reactions consisting of 2.5 µL 10× Buffer (including Mg²⁺), 0.5 µL 10 mM dNTP, 0.4 µL 10 µM forward primer (V5F, Table 6.1), 0.4 µL 10 µM reverse primer (V6R, Table 6.1), 0.25 µL BSA, 1 Unit Taq and 1 µL DNA. The thermal cycle protocol for the first PCR was: 95 °C for 150 s followed by 26 cycles of 95 °C for 30 s, 53 °C for 30 s, and 72 °C for 1 min, followed by a final elongation at 72 °C for 10 min. The PCR product was checked on agarose gel and then purified using Agencourt AMPure XP beads (Beckman Coulter Genomics GmbH, Mississauga, ON, Canada). The second PCR (to ligate the adaptor and barcode sequences) was conducted in 25 µL reactions consisting of 2.5 µL 10× Buffer (including Mg²⁺), 0.5 µL 10 mM dNTP, 0.4 µL 10 µM forward primer (UniA, Table 6.1), 0.4 µL 10 µM reverse primer (UniB, Table 6.1), 0.25 µL BSA, and 15 µL of the purified first PCR product. The protocol of the second PCR was 95 °C for 150 s, then 7 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72
°C for 1 min, followed by a final elongation at 72 °C for 5 min. The forward and reverse primers used in the first PCR had a 12bp tail at the 5’ end which complemented the 3’ end of the corresponding primer used in the second PCR (Table 6.1). The forward primer in the second PCR included individually unique 10 - 12 bp barcode sequences that allowed me to sort final sequence reads to the original sample after multiplexed sequencing (Table 6.1). The second PCR products from all the samples were mixed together and purified using QIAquick Gel Extraction Kit (QIAGEN, Toronto, ON, Canada). The purified PCR product mix was then run on an Agilent 2100 Bioanalyzer with a High Sensitive DNA chip (Agilent Technologies, Mississauga, ON, Canada) to measure the DNA concentration. The library was then diluted to 26 pmol/L. The sequencing reaction was run on an Ion PGM™ System using the Ion PGM™ Sequencing 400 Kit and an Ion 318™ Chip (Thermo Fisher Scientific, Burlington, ON, Canada).

Bioinformatic and statistical analysis

Bioinformatic analyses were conducted using Quantitative Insights Into Microbial Ecology (QIIME) 1.8 (Caporaso et al. 2010). After de-multiplexing and quality filtering of the raw sequence reads, reference-based and de novo chimeras were removed from the cleaned sequences and Operational Taxonomic Unit (OTU) clustering was performed with a 0.97 threshold using urearch (Edgar 2010). The representative sequence for each OTU was selected using the most abundant method for assigning taxonomy using RDP Classifier program with a minimum 80% confidence level (Wang et al. 2007). As my focus is on the functional significance of changes in the gut bacterial community, the unclassified sequences at the domain level and sequences belonging to the Archaea
domain and Cyanobacteria phylum were removed from the OTU table (Wong et al. 2013).

Four alpha diversity metrics (chao1, shannon index, observed species number, and phylogenetic distance) for each sample were estimated using QIIME. I applied a linear mixed effects model to test the effects of population and competition treatment on alpha diversity indices which were calculated based on 2 015 sequences per sample. In the linear mixed effects model, the effects of population, treatment, and the interaction between population and treatment were fixed effects and the replicate tank effect was a random effect.

To test population and treatment effects on community divergence (beta diversity), the OTUs for each sample were rarefied to 2 000 sequence/sample and the weighted UniFrac distance matrix was computed (Lozupone & Knight 2005). Then, adonis analyses were performed to test for the effects of population, treatment, and the interaction between population and treatment on this distance matrix using the vegan R package (Oksanen et al. 2015). To analyze population-specific treatment effects on gut microbiota, I computed weighted UniFrac distance within each population separately and then conducted adonis analysis in the two populations.

To study the effects of population and interspecific competition on gut microbiota at the individual OTU level, I analyzed relative abundance for the 180 most abundant OTUs that appeared in at least 70% of the gut samples. To test for differences of relative OTU abundance between the two populations, I applied the Welch’s t-test and \(P \) values were corrected for multiple simultaneous comparisons using Benjamini-Hochberg FDR in Statistical Analysis of Metagenomic Profiles (STAMP) v2.0.8 (Parks et al. 2014). To
test for interspecific competition effects on relative OTU abundance among the competition treatments within each population, I conducted a one-way ANOVA followed by a Tukey-Kramer post-hoc test for the two populations separately using STAMP v2.0.8 (Parks et al. 2014).

To test for treatment effects on the relative abundance of beneficial bacteria in the gut, I applied a one-way ANOVA within each population to analyze the relative abundance of the *Bacillus* genus and seven lactic acid bacteria genera (*Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus* and *Streptococcus*), because many species from those genera have been proposed as probiotics and have documented positive effects in aquaculture applications (Merrifield et al. 2010; Merrifield & Carnevali 2014). To test for the effect of the interspecific competition on the relative abundance of potential pathogens for each population, I used a one-way ANOVA for relative abundance in four genera (*Aeromonas, Flavobacterium, Mycobacterium* and *Vibrio*), because some species from those genera are known fish pathogens (Bøgwald & Dalmo 2014; Miller et al. 2014).

RESULTS

Summary of sequencing and core OTUs

The raw sequences generated in this study have been submitted to NCBI Sequence Read Archive (SRA) database (Accession number: SRP071211). After de-multiplexing and filtering out poor quality sequences, I obtained 4 111 310 high quality sequences. The number of sequence per sample ranged from 2 220 to 54 951 with an average of 22 590 (Supplementary Figure S6.1). The average numbers of sequence reads
per sample in each of the two Atlantic salmon populations were very similar (Supplementary Figure S6.2). In total, 3,978 bacterial OTUs were identified. While the definition of core OTU varies among studies, I define core OTU as the OTUs which are present in 70% of gut samples. Among all the fish gut samples, I found 180 core OTUs and those OTUs accounted for 74.7% to 90.1% of sequences in each treatment (Supplementary Figure S6.3).

Bacterial community composition

I identified 26 bacterial phyla across the two Atlantic salmon populations, and 14 phyla in the four water samples. Among the ten most abundant phyla (*Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Planctomycetes, Chlamydiae, Verrucomicrobia, Chloroflexi, TM7* and *Fusobacteria*), *Proteobacteria* and *Bacteroidetes* showed higher relative abundance in the water than in the gut microbial communities, while the other eight phyla were at higher relative abundance in gut microbiota (Supplementary Figure S6.4).

Within the gut microbiota of the two Atlantic salmon populations, *Proteobacteria* (64.3%-83.6%) was the most common phylum followed by *Firmicutes* (12.9%-23.2%; Supplementary Figure S6.5). At the lower taxonomic levels, there was substantially more variation among the treatments within populations. At the class level, *Gammaproteobacteria* was the most common, while the second most abundant bacterial class varied from treatment to treatment: *Betaproteobacteria* was the second most abundant bacterial class for most treatments; *Bacilli* and *Clostridia* were the second most abundant bacterial classes for two and three treatment groups respectively (Figure 6.1).
At the genus level, about half the reads could not be assigned to a single genus; however, the dominant genus was *Pseudomonas* in all the treatment groups (Supplementary Figure S6.5). *Acinetobacter, Deelfgea, Rhodobacter, Flavobacterium* and *Lactobacillus* also showed high abundance (Supplementary Figure S6.6).

Effects of population and treatment on bacterial diversity

All four alpha diversity estimates exhibited significant differences between the two populations, while the effects of treatment, and the interaction between population and treatment were not significant. The Sebago population had significantly higher alpha diversity than the LaHave population for all four metrics. The *adonis* analysis of beta diversity based on all the fish gut microbiota samples showed that population and treatment had significant effects on the weighted UniFrac distance ($R^2 = 0.083, P = 0.001; R^2 = 0.054, P = 0.009$, respectively). The effect of interaction between population and treatment on weighted UniFrac distance was not significant. When the weighted UniFrac distance matrices were computed for each population separately, treatment only showed as a significant effect in the LaHave population ($R^2 = 0.122, P = 0.011$).

Population and treatment effects at the OTU level

Welch’s t-test on the 180 OTUs showed that 27 OTUs had significantly different relative abundances between the two populations across treatments after FDR correction (Figure 6.2). Of the 27 OTUs, 10 OTUs showed higher relative abundance in the LaHave population, and all of those belong to two families: *Aeromonadaceae* and *Shewanellaceae* (Figure 6.2). Seventeen OTUs showed higher relative abundance in the
Sebago population relative to the LaHave population, and 10 of those belong to the *Rhodobacteraceae* family (Figure 6.2).

For the effect of interspecific competition on the composition and diversity of gut bacterial communities within each population, there were 13 OTUs that showed significant differences among treatments within the LaHave population (Figure 6.3). For all 13 OTUs, the gut microbiota from Atlantic salmon reared alone and Atlantic salmon reared with Chinook salmon showed similar relative abundances while the other four treatments showed lower abundances (Figure 6.3). Among the 13 OTUs, seven OTUs belong to the *Flavobacteriales* order, five OTUs belong to the *Lactobacillales* order and one OTU belongs to the *Enterobacteriales* order. There were no OTUs which showed significant differences in relative abundance among treatments in the Sebago population.

Differences in beneficial bacteria and opportunistic pathogens

Six lactic acid bacteria genera showed significant differences among treatments within the LaHave population (Figure 6.4). The lactic acid bacteria genera showed similar relative abundance in the gut of Atlantic salmon reared alone and Atlantic salmon reared with Chinook salmon, and showed reduced relative abundance in the other four treatments (Figure 6.4). Within the Sebago population, the lactic acid bacteria genera showed no significant difference among treatments. The *Bacillus* genus showed no significant difference among treatments in either population.

For the potential pathogens, no *Aeromonas* genus was detected in the gut contents and there was no significant difference in the relative abundance of the combined OTUs in the *Flavobacterium, Mycobacterium* and *Vibrio* genera among treatments within each
population (Supplementary Figure S6.6). While I did observe a significant effect of interspecific competition on a single OTU within the Flavobacterium genus (OTU 39; Figure 6.3b) in the LaHave population, the response pattern across this genus was not significant (Supplementary Figure S6.7).

DISCUSSION

The composition and diversity of gut microbiota is known to be determined by a combination of genetic and environmental factors (McKnite et al. 2012; Sullam et al. 2012; Parks et al. 2013; Stevenson et al. 2014; Yun et al. 2014). Although reared under the same conditions, I found significant differences between the two study populations using different measures of microbial community composition. Those differences are likely due to different evolutionary histories which shaped the co-evolution of the host and their gut microbiota. Of the 10 OTUs that showed higher relative abundance in the LaHave population, seven belong to the Aeromonadacea family. The Aeromonas genus of the Aeromonadacea family contains two important fish pathogens: Aeromonas hydrophila and Aeromonas salmonicida which infect various fish species (Ringø et al. 2010). Seven of the 17 OTUs that showed higher abundance in the Sebago population belong to the genus Rhodobacter and two members of the Rhodobacter genus are used as probiotics in aquaculture in China (Qi et al. 2009). Thus the observed population differences are consistent with the Sebago population harboring higher abundances of beneficial bacteria and lower abundances of opportunistic pathogens relative to the LaHave population. This effect is despite the two groups having been reared in a common environment since fertilization. Although the effects of gut microbiota on the
host are complex, this pattern of gut microbiotic differences indicates that the Sebago population has advantageous gut microbiota relative to the LaHave population across the competition treatments and may thus reflect a higher interspecific competition tolerance in the Sebago population (Houde et al. 2015b, 2016).

I found that the Sebago population had significantly higher alpha diversity than the LaHave population. It has been reported that stress can reduce the alpha diversity of gut microbiota and change the relative composition of bacteria in mice (Bailey et al. 2010, 2011). Although I did not detect significant interspecific competition treatment effects on alpha diversity in Atlantic salmon, the population-level differences in diversity may reflect stress effects across all competition treatments combined with rearing stress. This is supported by previous studies that demonstrated that the Sebago population has higher competitive ability and are less affected by interspecific competition than the LaHave population (Houde et al. 2015b, 2016). As these fish were reared in a common environment and provided the same feed, these population-level difference support previous reported genetics effect on gut microbiota (Goodrich et al. 2014). The fundamental differences in gut microbiota between the two populations implied that the two populations may retain their ancestral co-evolved microbial community despite years of rearing in a common artificial environment or have experienced different co-evolutionary pressures in the hatchery environment.

Houde et al. (2015a, b, 2016) reported strong interspecific competition effects on the growth and survival of Atlantic salmon, which was likely a reflection of tertiary responses to stress caused by the interspecific competition (Barton 2002). In my study, I found significant interspecific competition effects on the abundance of specific OTUs
and on the weighted UniFrac distance, but only in one of the study populations. Among the 13 OTUs that showed significant competition treatment effects within the LaHave population, all showed no competition effect with Chinook salmon. This outcome was expected because previous studies showed that Chinook salmon had no negative effects on Atlantic salmon when they were reared together (Houde et al. 2015a, b). However, those same studies reported that interspecific competition with coho salmon had no negative effects on growth and survival (Houde et al. 2015a, b), but I found that competition with coho salmon resulted in patterns of altered OTU abundance similar to those in the Atlantics salmon reared with brown trout and rainbow trout. This indicates that the gut microbiota is more sensitive than growth and survival traits to stress related to interspecific competition. Curiously, I did not find any OTUs with significantly higher abundance in response to competition with the more aggressively competitive species. This may be due to high OTU abundance variation among individuals that responded to interspecific competition with elevated OTU abundance; that is, I had low power to detect those changes as statistically significant. Differences in the 13 OTUs among treatments indicate gut microbiota showed response to interspecific competition and the response in gut microbiota is population specific. The high sensitivity of gut microbiota to stress demonstrates the potential of gut microbiota as a biomarker to evaluate stress response and tolerance differences among individuals and populations.

Gut microbiota plays an important role in the health of their host and the gut contains both beneficial bacteria and opportunistic pathogens (Kamada et al. 2013). While chronic stress is known to have detrimental effect on organism’s health and disease resistance (Barton 2002; Sommer & Bäckhed 2013), the mechanism is not well
understood. One possible mechanism explaining how that interspecific competition can negatively affect the growth and survival of Atlantic salmon is through changes in the beneficial bacteria and potential pathogen in the gut. In this study, I found that interspecific competition has profound impacts on the abundance of 13 OTUs in one of the two Atlantic salmon populations; however, the functional significance of those changes are not obvious. My analysis of known or suspected beneficial and pathogenic bacteria was designed to address the functional component of gut microbiotic response in Atlantic salmon. I found that interspecific competition with the more aggressive competitors decreased the relative abundance of beneficial lactic acid bacteria in the LaHave, but not in the Sebago population. Lactic acid bacteria are generally considered beneficial because they not only enhance immune response and positively affect immune systems of the host (Perdigón et al. 2001), but they also function in preventing the colonization of pathogens, possibly by producing bacteriocin or competing with pathogens for nutrients (Ringø 2008). Many species of lactic acid bacteria have been used widely as probiotics to increase growth and disease resistance in fishes, including salmonids (Merrifield et al. 2010; Merrifield & Carnevali 2014). The reduction in lactic acid bacteria in Atlantic salmon reared with coho salmon, rainbow trout, and brown trout indicate that interspecific competition can cause a loss of beneficial gut microbiota. The likely mechanism for this loss of probiotic bacteria in the LaHave Atlantic salmon is competition-related stress as previous studies showed that stress decreases the abundance of Lactobacillus in human and monkey gut microbiota (Bailey et al. 2004; Knowles et al. 2008).
Given the profound impact of interspecific competition on the gut microbiota in the LaHave Atlantic salmon, it was surprising that I did not detect any significant increase in the selected pathogenic genera (*Flavobacterium*, *Mycobacterium* and *Vibrio*). Bailey *et al.* (2010) reported elevated abundance of *Citrobacter rodentium* in the gut of mice subjected to prolonged restraint stress after they were challenged by this pathogen via oral gavage. In my study, the lack of obvious pathogenic microbial response to the treatments may be due to the fish being reared in a hatchery such that the opportunity for pathogenic colonization was at such low levels they did not occur at levels sufficient to detect. While it is possible that the competition stress in my experiment affects gut microbiota composition, but not the host’s susceptibility to bacterial disease; it is not clear how such an anomalous response could be mediated.

The differences between the two study populations (LaHave and Sebago) in the general composition of their gut microbiota and in their specific response to interspecific competition can only be explained by different host-microbiota co-evolutionary histories, despite a few generations of hatchery rearing (three generations for the LaHave population and one generation for the Sebago population). Although horizontal transfer of bacteria between Atlantic salmon and non-native salmonids is possible, no study has shown such an effect and it is likely a small effect if it is present. My results have important applications in source population selection for reintroduction. The higher gut microbiota alpha diversity, higher abundance of beneficial bacteria, and lower microbial community change in response to interspecific competition indicate that the Sebago population is more suitable than the LaHave population for reintroduction into Lake Ontario. The juvenile Sebago Atlantic salmon are more tolerant to stress caused by
competition with the non-native salmonids known to be present in the tributaries of Lake Ontario. More generally, my results also indicate that gut microbiota is a good candidate as a biomarker for stress tolerance and thus for the selection of source populations for reintroduction, conservation, aquaculture, and other applications.

CONCLUSIONS

This is the first study to report the effects of interspecific competition on gut microbial communities. I detected significant differences in gut microbiota and alpha diversity between the two Atlantic salmon populations as well as profound differences in their response to interspecific competition. My study shows that population differences and population-specific responses in gut microbiota can be part of the mechanism involved in differential performance under competition with ecologically similar species. The characterization of changes in gut microbiota is now possible for ecological and evolutionary studies of competition and co-evolution and my work highlights the dynamic role of the host’s gut microbiota in both evolutionary and ecological processes.
REFERENCES

Crawford SS (2001) Salmonine introductions to the Laurentian Great Lakes: an historical review and evaluation of ecological effects. *Canadian Special Publication of Fisheries and Aquatic Sciences* 132.

Wong S, Waldrop T, Summerfelt S et al. (2013) Aquacultured rainbow trout (*Oncorhynchus mykiss*) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. *Applied and Environmental Microbiology*, 79, 4974–4984.

Table 6.1 Primer sequences used for Atlantic salmon (Salmo salar) gut microbiota characterization.

* The underlined 12 bp sequences in V5F and V6R are tails that bind UniA and UniB in the second PCR respectively.
† The XXXXXXXXXX represents different barcode sequences.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>V5F*</td>
<td>acctgcctgccgATTAGATACCCNGGTAG</td>
</tr>
<tr>
<td>V6R*</td>
<td>acgccaccgagCGACAGCCATGCANACCT</td>
</tr>
<tr>
<td>UniA†</td>
<td>CCATCTCATCCCTGCTGTTCTCCGACTCAGXXXXXXXXXGATacctgcctgccg</td>
</tr>
<tr>
<td>UniB</td>
<td>CCTCTCTATGCGCGTGGACGCTGGTGaegccacgc</td>
</tr>
</tbody>
</table>

Figure 6.1 Relative abundance of bacterial classes for juvenile Atlantic salmon (*Salmo salar*) in response to interspecific competition. Displayed are classes with at least 0.1% relative abundance in one treatment. The “others” category includes unclassified sequences at the class level and the sum of all classes that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
Figure 6.2 The 27 Operational Taxonomic Units (OTUs) that were significantly different in abundance between the two Atlantic salmon (Salmo salar) populations across all treatments. Taxonomic assignment beside each OTU identification number is the lowest taxonomic level obtained.
Figure 6.3 The 13 OTUs showing difference among competition treatments in the Atlantic salmon (*Salmo salar*) LaHave population: OTU32, 116, 650 and 1271 (genus *Chryseobacterium*), OTU39 (genus *Flavobacterium*), OTU1517 (species *succinicans*), OTU1820, 2515 and 3189 (genus *Lactobacillus*), OTU2688 (order *Lactobacillales*), OTU3001 (family *Enterobacteriaceae*), OTU3181 (genus *Wautersiella*), OTU3900 (genus *Streptococcus*). Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids. Different letters above the bars indicate significant differences assessed using Tukey’s post hoc multiple comparisons ($P < 0.05$).
Figure 6.4 The six lactic acid genera showing differences among treatments in the Atlantic salmon (*Salmo salar*) LaHave population. Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids. Different letters above the bars indicate significant differences assessed using Tukey’s post hoc multiple comparisons (*P* < 0.05).
Supplementary Figure S6.1 Distribution of the number of high quality sequences generated by next generation sequencing of the amplified 16S rRNA gene for gut microbiota characterization of Atlantic salmon (Salmo salar). The solid line represents the average number of sequence reads per sample. Each bar represents one sample.
Supplementary Figure S6.2 Distribution of the number of high quality sequences generated by next generation sequencing of the amplified 16S rRNA gene. Displayed are means ± 1SD for treatments. The solid line represents the average number of sequence reads per sample. The dashed lines represent the average numbers of sequence reads in each of the two Atlantic salmon populations. Treatment symbols: AS indicates Atlantic salmon (Salmo salar) reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
Supplementary Figure S6.3 The proportion of 16S rRNA sequences accounted by the core OTUs shared by 70% of the gut microbiota samples in Atlantic salmon (*Salmo salar*) for each interspecific competition treatment. Displayed are means ± 1SD for treatments. The dashed lines represent the average proportion of reads for each of the two populations. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
Supplementary Figure S6.4 Relative abundance of bacterial phyla for the combined water samples (N=4) and the combined samples for all Atlantic salmon (*Salmo salar*) from the LaHave (N=82) and Sebago (N=96) populations. The bars show only phyla with at least 0.1% relative abundance in one of the two Atlantic salmon populations or combined water samples. The “others” category includes unclassified sequences at the phylum level and the sum of all phyla that occurred at less than 0.1% relative abundance.
Supplementary Figure S6.5 Relative abundance of bacterial phyla for juvenile Atlantic salmon (*Salmo salar*) in response to interspecific competition. Displayed are phyla with at least 0.1% relative abundance in one treatment. The “others” category includes unclassified sequences at the phylum level and the sum of all phyla that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
Supplementary Figure S6.6 Relative abundance of bacterial genera for juvenile Atlantic salmon (*Salmo salar*) in response to interspecific competition. Displayed are genera with at least 0.1% relative abundance in one treatment. The “others” category includes unclassified sequences at the genus level and the sum of all genera that occurred at less than 0.1% relative abundance. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
Supplementary Figure S6.7 The relative abundance of potential pathogens in the gut microbiota of two Atlantic salmon (*Salmo salar*) populations. There were no significant differences among treatments within each population. The *Aeromonas* genus was undetectable in the data. Displayed are means ± 1SE for treatments. Treatment symbols: AS indicates Atlantic salmon reared alone; CH, CO, BT, and RT indicate Atlantic salmon reared with one of the four species: Chinook salmon, coho salmon, brown trout, and rainbow trout, respectively; M indicates Atlantic salmon reared with all four non-native salmonids.
CHAPTER 7

GENERAL CONCLUSION

INTRODUCTION

Successful reintroduction requires first establishment and then long-term persistence (Armstrong & Seddon 2008). Indeed, population differences in establishment performance in novel environments and the corresponding importance of source population selection have long been recognized (Leberg 1993). Thus factors that regulate establishment success in new environments are of importance for more effective management of population reintroductions as well as other conservation-related efforts such as conservation introduction and assisted colonization (Forsman 2014).

Genetic diversity is important to consider when selecting source populations for conservation or commercial purposes (Earnhardt 1999). High genetic variation within a population implies that the population may harbor diverse phenotypes which may be preadapted to new environments or which can be acted on by natural selection (Earnhardt 1999; González-Suárez et al. 2015). Genetic diversity is also important for population persistence and long-term success as it helps populations cope with environmental fluctuations (Lande & Shannon 1996). Genetic diversity is commonly measured by neutral genetic markers, but this may not reflect functional genetic variation which is directly relevant to phenotypic variation (Reed & Frankham 2001; Hedrick 2001).

Ecologically significant phenotypes are another important factor to consider in reintroduction as individuals will survive if their phenotypes are close to that supported by the local environment. The phenotypic match may be due to either phenotypic
plasticity or preadapted traits. A recent meta-analysis found that high variation in phenotype can increase establishment success in plants and invertebrates (Forsman 2014). While phenotypic variation may be enhanced by mixing populations, standing intra-population diversity is preferable to avoid outbreeding depression (McClelland & Naish 2006). Although high intra-population variation in phenotype is important, not all phenotypes have fitness consequences: in another meta-analysis, González-Suárez et al. (2015) analyzed ten traits and found that only adult body size variation was correlated with establishment success in invasive mammal species. That variation in trait impact on establishment success is especially true in reintroduction efforts when characteristics of the source population must match the environmental conditions of the release site (Houde et al. 2015a). For example, Schneider (2011) found that spawning time of Atlantic salmon is a key factor affecting successful reintroduction in the Rhine River. However, key phenotypes which are important for establishment are generally difficult and expensive to identify and characterize for animals, especially fish (Houde et al. 2015a).

Gene expression plays an important role in determining phenotypes and in coping with environmental stresses. Gene expression techniques have potential to be used to predict phenotypes (e.g., Miller et al. 2011; Tung et al. 2012). For instance, Connon et al. (2012) found expression of natural resistance-associated macrophage protein, myxovirus resistance, chemokine, and Cytochrome P450 family 1 subfamily A polypeptide 1 is correlated with different physical conditions in wild rainbow trout (Oncorhynchus mykiss). Transcriptomic tools can also be applied to address population differences that may be indicative of preadaptation to environmental factors (Gleason & Burton 2015), and population-specific responses to environmental challenges which may underlie
differences in their tolerance of environmental stress (Whitehead et al. 2010). The
differentially expressed genes among different phenotypes can in turn be used to predict
relevant phenotypes (Miller et al. 2011; Tung et al. 2012). However, the fact that gene
expression is easily influenced by environmental factors may impede the applications of
gene expression for prediction.

In this thesis, I explored population differences at the gene expression level
(Chapters 3, 4, and 5) and in gut microbiota (Chapter 6). I also explored mechanisms
underlying negative effects on Atlantic salmon caused by interspecific competition
(Chapters 5 and 6). I found populations exhibited differences in gene expression that are
likely due to selection (Chapter 3) and detected significant heritable genetic variation in
gene expression variance (Chapter 4). Population-specific responses to interspecific
competition occurred at the gene expression level (Chapter 5) and in the composition and
diversity of the gut microbiota (Chapter 6). Below I list the major contributions my
doctoral research has made to our understanding of population divergence and the impact
of gene expression and gut microbiota diversity for conservation efforts.

CONTRIBUTIONS

Population differences in gene expression

I explored population differences in gene expression in Chapters 3, 4, and 5 to
compare transcriptional differences at rest and in response to interspecific competition
and to address basic genetic, evolutionary, and ecological theory as in relates to gene
expression. In all three chapters, I found gene expression differences between the LaHave
and Sebago populations after controlling for rearing environment and age, indicating that
genetic variation at the population level contributes to gene expression profile variation. In Chapter 3, I found population differences in gene expression are likely to be driven by directional selection acting in the local environment and that persisted despite generations in a controlled environment (hatchery). In Chapter 4, I found populations differ in genetic architecture such that genetic variance components of gene transcription showed marked differences between the study populations, indicating expression of the functional genes may show different response to selection after release in the reintroduced sites. In Chapter 5, I compared transcriptomic differences for the two populations at rest and in response to interspecific competition and found that RNA-Seq is an exceptionally sensitive tool to measure stress response and evaluate stress status. Together, these results suggest that gene expression variability is a key factor affecting population differences in fitness and that is has the potential to be used for predicting fitness in new environments.

Population-specific responses to interspecific competition

I explored the molecular mechanisms underlying the negative effects of interspecific competition on Atlantic salmon in Chapters 5 and 6, and found that fish from the two populations showed surprisingly different responses to interspecific competition. In Chapter 5, I found the magnitude of the transcriptional responses were smaller for both populations of Atlantic salmon in competition with Chinook salmon than in competition with rainbow trout and brown trout. I also found that the LaHave population showed substantial transcriptional responses to competition with rainbow trout and brown trout, whereas only competition with brown trout caused substantial transcriptional responses for the Sebago population. In Chapter 6, I found that
interspecific competition reduced the relative abundance of 13 OTUs and lactic acid bacteria (beneficial bacteria) in the gut microbiotic community of the LaHave population but not the Sebago population. My work is the first to show consistent microbial and transcriptional population differences in response to interspecific competition, and it highlights that those effects can have important implications in conservation and reintroduction biology.

There were similarities and differences for my results from Chapters 5 and 6 in comparison to previously published results on the effects of interspecific competition on fitness-related traits for the Sebago and LaHave populations. In both chapters, I found little response to rearing with Chinook salmon; this was expected, as previous studies had found that Chinook salmon had no negative effects on the fitness-related traits of Atlantic salmon because of similar levels of aggression between species (Houde et al. 2015b; c). However, in Chapter 5, my transcriptional results indicated that rainbow trout may be the most stressful competitor for the LaHave Atlantic salmon and brown trout may be the most stressful competitor for the Sebago Atlantic salmon; this is different from previously published work based on fitness-related traits which concluded that the three species are ranked brown trout, rainbow trout, and Atlantic salmon in order of dominance (Van Zwol et al. 2012). In Chapter 6, I found that Atlantic salmon in competition with coho salmon showed a pattern of gut microbiotic composition similar to that of Atlantic salmon reared with more aggressive species (i.e. brown trout and rainbow trout). This was surprising because Atlantic salmon is thought to be just as aggressive as coho salmon (Houde et al. 2015b; c). Although my results generally agreed with previous results based on fitness-related traits, the important discrepancies and the higher divergence in
response between the two populations in my research indicate that molecular biological
techniques are more sensitive than fitness-related traits to environmental stress.

Source population selection for reintroduction in Lake Ontario

Based on the results from Chapters 5 and 6, I concluded that the Sebago population is more appropriate for reintroduction into Lake Ontario than the LaHave population. In Chapters 5 and 6, I found that interspecific competition led to more and larger changes at both the gene expression level and in the gut microbiota composition in the LaHave population than in the Sebago population, indicating that the Sebago population has higher competitive ability or higher tolerance to interspecific competition. As interspecific competition with non-native salmonid is thought to be an impediment to the successful reintroduction of Atlantic salmon in Lake Ontario (Scott et al. 2003, 2005; Van Zwol et al. 2012; Houde et al. 2015b; c, 2016), the Sebago population should be a more suitable population for reintroduction in Lake Ontario.

FUTURE DIRECTIONS

My doctoral work provides fundamental contributions to reintroduction biology and more broadly conservation biology. My work impacts both applied and basic science and also contributed substantially to the technical tools available for ecologists, conservation biologists, and evolutionary biologists. Furthermore, my work has also highlighted a number of exciting and important future directions.

First, interspecific competition with non-native salmonids is thought to be a major barrier to the successful reintroduction of Atlantic salmon into Lake Ontario (Scott et al.
2003; Van Zwol et al. 2012; Houde et al. 2015b; c, 2016), and interspecific competition in artificial stream tanks is generally more intensive than in natural streams (Korsu et al. 2010). I studied population differences in response to interspecific competition (Chapters 5 and 6) using juvenile Atlantic salmon in artificial stream tanks. In the future, it is critical to expand on my work by releasing Atlantic salmon into Lake Ontario tributaries where non-native salmonids are both present and absent, and re-capture the fish to quantify their response at the gene expression level and in their gut microbiota. It would also be valuable to compare more populations in their response to interspecific completion at a greater range of development stages.

Second, gut microbiota play an important role in the health of their host through complex interactions between the microbiota and the host (Carabotti et al. 2015). In fact, the gut microbiota has been proposed as a potential biomarker for type 2 diabetes and cardio-metabolic diseases in human clinical studies (Vinjé et al. 2014; Yassour et al. 2016). In the future, gut microbiotic composition should be investigated in response to a variety of environmental stressors. If populations with higher gut bacteria diversity are consistently more tolerant to stressors, characterizing gut microbiota could aid in source population selection. However, how gut microbiota respond to different kinds of stressors and the function of gut microbiota composition and diversity should be further investigated before its application in conservation management.

Third, in addition to biotic stressors, abiotic stressors, such as temperature and pollutant exposure, have contributed to the decline and extirpation of fish species worldwide (Snucins et al. 1995; Parrish et al. 1998; Xenopoulos et al. 2005; Wenger et al. 2011), thus variation in tolerance to abiotic stressors can affect the establishment of
organisms in new environments. This is especially true for fish populations used for reintroduction, as captive fish populations are reared in conditions with consistent temperature and water quality.

Lastly, my studies focuses on population establishment of reintroduction. In the future, it is important to measure genetic diversity of Atlantic salmon source populations using functional loci as I proposed in Chapter 2 to rank adaptive potential of source populations. The combination of monitoring performance of Atlantic salmon populations after release into Lake Ontario tributaries and the application of genomic tools to estimate population differences in persistence will not only provide more information for source population selection for reintroduction, but also lead to better understanding of fitness-related genetic variation in salmonids.
REFERENCES

Yassour M, Lim MY, Yun HS et al. (2016) Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 8, 17.
APPENDIX A: REPRINT PERMISSIONS

Reprint permission for Chapter 2
Reprint permission for Chapter 3
VITA AUCTORIS

NAME: Xiaoping He
PLACE OF BIRTH: Honghu, Hubei, China
YEAR OF BIRTH: 1984
EDUCATION:
Huazhong Agricultural University, B.Sc., Wuhan, Hubei, China, 2005
Huazhong Agricultural University, M.Sc., Wuhan, Hubei, China, 2008