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ABSTRACT

Prostate cancer is the most common cancer in men. One in eight Canadian men will

be diagnosed with prostate cancer in their lifetime. The accurate detection of the disease’s

subtypes is critical for providing adequate therapy; hence, it is critical for increasing both

survival rates and quality of life. Next generation sequencing can be beneficial when study-

ing cancer. This technology generates a large amount of data that can be used to extract

information about biomarkers.

This thesis proposes a model that discovers protein isoforms for different stages of

prostate cancer progression. A tool has been developed that utilizes RNA-Seq data to infer

open reading frames (ORFs) corresponding to transcripts. These ORFs are used as features

for classificatio. A quantification measurement, Adaptive Fragments Per Kilobase of tran-

script per Million mapped reads (AFPKM), is proposed to compute the expression level

for ORFs. The new measurement considers the actual length of the ORF and the length of

the transcript. Using these ORFs and the new expression measure, several classifiers were

built using different machine learning techniques. That enabled the identification of some

protein isoforms related to prostate cancer progression. The biomarkers have had a great

impact on the discrimination of prostate cancer stages and are worth further investigation.
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CHAPTER 1

Introduction

Deoxyribonucleic acid (DNA) is a two strand genetic material that contains all the in-

formation that is in living organisms. The information is stored as genetic codes using

adenine (A), guanine (G), cytosine (C), and thymine (T). Ribonucleic acid (RNA) consists

of the same nucleotides except using uracil (U) instead of thymine (T). The central dogma

of molecular biology indicates that the coded genetic information stored in the DNA is

transcribed into messenger RNA (mRNA) and then translated to form proteins. Protein

molecules are responsible for most of the functions necessary in organisms’ lives. Protein

synthesis consists of several steps during which transcripts are transformed into amino acid

chains. Almost all mRNA molecules undergo alternative splicing during or after transcrip-

tion. Alternative splicing is an important event in Eukaryotic in which the segments that

code for proteins (exons) are kept, and those that do not code for proteins (introns) are

removed. Different transcripts are the result of the different inclusion of exons. Regard-

ing post-transcriptional events, alternative splicing is the most important process due to its

impact on 95% of mammalian genes [53]. Formation of polypeptide chain occurs through

the translation of the actual open reading frame (ORF). ORF is a continuous sequence of

codons, and it begins with a start codon and ends with one of the stop codons. Finding

ORFs that correspond to a given mRNA transcript is a significant step in reconstructing

protein isoforms, which is vital for a better understanding of RNA alternative splicing and

its effects on diseases like cancer.
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1.1 Transcription

The central dogma of molecular biology refers to transforming the genetic information

coded in DNA into proteins through two steps: transcription and translation. In transcrip-

tion, the first step of gene’s expression, a specific segment of a DNA strand is copied into

mRNA by the enzyme called RNA polymerase. Each mRNA strand holds the code for

the synthesis of a particular protein (or a small number of proteins). Transcription uses

complementary language, which means utilizing one strand of DNA as a template to pro-

duce a copy of the second strand, called a coding strand. A major characteristic of RNA

is that it includes the nucleotide uracil (U) instead of the nucleotide thymine (T) in a DNA

complement.

Transcription is divided into initiation, elongation, and termination. In the initiation

step, RNA polymerase, along with some general transcription factors, binds to promoter

DNA. The attached complex unwinds the two strands of the DNA helix to form a transcrip-

tion bubble. RNA polymerase and the general transcription factors select a transcription

start site in the transcription bubble. In the second step, elongation, RNA polymerase reads

the nucleotides in the DNA from the 3’ end to the 5’ end (3’→ 5’). During RNA poly-

merase traveling, the complementary RNA is created in the opposite direction (5’→ 3’) by

matching the sequence of the coding strand with the exception of substituting Uracil (U)

for Thymine (T). In the third step, transcription termination, the newly synthesized RNA

strand is cleaved, and RNA polymerase is released.

Transcription generates primary RNA (pre-mRNA) which undergoes some processes

to create mRNA. Post-transcriptional modification, co-transcriptional modification, is the

process of converting pre-mRNA into mRNA. The process is vital in Eukaryotes and con-

sists of three essential steps. The first step is processing the 5’ end; it takes place before

the completion of transcription as the pre-mRNA is being created. Capping involves the

addition of 7-methylguanosine to the 5’ end. The cap protects the 5’ end of the mRNA

transcript from degradation while transporting from the nucleus to the cytoplasm for trans-
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lation. The second step is processing the 3’ end through polyadenylation, which means

the addition of a 3’ poly-A tail. The poly-A tail is a stretch of several adenosine bases at

the end of the mRNA strand. The third step is alternative splicing, which is explained in

section 1.2.

1.2 Alternative Splicing

Eukaryotic genes consist of exons (ex-on indicates that they are expressed) and introns

(int-ron indicates that they are intervening sequences). Most of the human genes have

seven to eight exons and they spliced in three alternative forms. The average length of an

exon is 150 nucleotides long, and the average length of an intron is 3,000 nucleotides [54].

Splicing is the process by which introns in a pre-mRNA are removed, and the remaining

sequence (exons) concatenate together to form an mRNA sequence. Figure 1.2.1 depicts the

alternative splicing process. The figure demonstrates a pre-mRNA that undergo alternative

splicing to produce two different mRNAs, and hence two distinct proteins.

All introns in a pre-mRNA are precisely removed before the translation of the mRNA

sequence. If the splicing site errs by even a single nucleotide, the reading frame of the

joined exons will shift, and the resulting protein will be dysfunctional. Abnormal splicing

variants are thought to contribute to the development of cancer [16].

The splicing of pre-mRNAs in Eukaryotes occurs through spliceosomes, and it takes

place inside the nucleus either shortly after or during transcription. Spliceosomes are as-

sembled of five small nuclear ribonucleoproteins (snRNAs) and more than 100 other pro-

teins. The main role of spliceosomes in the splicing process is to catalyze RNA cleaving

and joining. In order to remove an intron in a given pre-mRNA, spliceosomes recognize

the 5’ and the 3’ splice site, and the branch site, which is in the middle of the intron. They

then join the splice sites and exclude the sequence, intron, between them.

There are different types of alternative splicing events; one of them is exon skipping,

3



in which an exon (a cassette exon) is spliced out of the transcript along with flanking

introns. Another example is intron retention in which an intron remains in the mature

mRNA transcript.

Changes in the RNA expression machinery might lead to the mis-splicing of transcripts.

Even a single nucleotide alteration in a splice site can result in differences in the mRNA

produced from a mutant gene’s transcripts. A well-known example of a splicing-related

disease is cancer [53]. Irregularly spliced mRNAs are detected in a large proportion of

cancerous cells [44].

Alternative splicing increases the informational diversity and functional capacity of

a gene and provides an opportunity for gene regulation. In other words, it enables one

gene to produce a large variety of polypeptides (i.e., proteins) [3]. A single variation in

splicing may cause a given exon to be excluded from or included in a transcript, enabling

the production of a new protein isoform [54].

Figure 1.2.1: Schematic representation of alternative splicing.

1.3 Translation

Transcription happens exclusively in the nucleus, and the resulting mRNA exits the

nucleus to the cytoplasm through the nuclear pore complex. In the cytoplasm, the mRNA

4



attaches to the ribosome (rRNA) and the translation process starts. Translation is a synthesis

of proteins, in which the nucleotide sequence of an mRNA is translated into an amino acid

sequence to yield a protein.

The protein synthesis requires a specialized machinery of high complexity, and it con-

sumes a large part of the energy produced in the cell. The translation process involves

a large number of chemical reactions and the participation of additional nucleic acid and

protein components. One of these elements, the ribosome, implements the basic machinery

for the translation process. The major role of the ribosome is coupling amino acids and an

mRNA strand based on the sequence specified by the mRNA. The amino acids are brought

to the ribosome by tRNA (transfer RNA) molecules.

The nucleotide sequence of the mRNA is composed of four different nucleotides (A,

U, G, and C) whereas a protein is composed of 20 different amino acids. To allow the four

nucleotides to specify 20 different amino acids, the nucleotide sequence is interpreted in

codons, namely groups of three nucleotides. These codons have corresponding anticodons

in the tRNA. Each anticodon is linked to one particular amino acid. Thus, each codon spec-

ifies one amino acid. The set of rules by which information is translated from mRNAs into

amino acids is demonstrated in the codon table, which is presented in Figure 1.3.1. In ad-

dition to the main components of the translational system mentioned above, the translation

process also involves many protein factors that facilitate the binding of mRNA and tRNA

to ribosome.

1.3.1 Translation Mechanism

There are three major classes of cellular RNAs involved in the translation process:

messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs). RNA

translation can be divided into three distinct steps: initiation, elongation, and termination

[54].

To initiate translation, a tRNA charged with methionine (tRNA+methionine) attaches

5



Figure 1.3.1: Standard codon table for translating mRNA to polypeptide chain [35].

to a ribosome. The combination of the charged tRNA and the ribosome (a small subunit)

scans the mRNA from the 5’ end until it finds a start codon. When it finds the start sequence

AUG, a large subunit joins the small one to form a complete ribosome, and the protein

synthesis is initiated.

In the elongation phase, a new tRNA+amino acid enters the ribosome at the next codon

downstream of the start codon (AUG). If this tRNA’s anticodon matches the mRNA codon,

they both attach to each other, and the ribosome links the two amino acids together. If the

tRNA with the wrong anticodon enters the ribosome, it cannot base pair with the mRNA; it

is rejected. Next, the ribosome moves one triplet forward, and a new (tRNA+amino acid)

enters the ribosome; the procedure is then repeated.

Finally, translation termination occurs when the ribosome reaches one of three stop

codons (UAA, UAG, UGA); there are no corresponding tRNAs to stop codons. Instead, ter-

mination proteins bind to the ribosome and stimulate the release of the polypeptide chain

(the protein); the ribosome then dissociates from the mRNA. When the ribosome is re-

leased from the mRNA, its large and small subunit dissociate. The small subunit can then
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be loaded with a new tRNA+methionine and start translation once again. Some cells need

vast quantities of a particular protein; to meet this requirement they make many mRNA

copies of the corresponding gene and have many ribosomes working on each mRNA. Af-

ter translation, the produced protein will usually undergo further modifications before it

becomes fully active.

1.3.2 Open Reading Frame

An open reading frame (ORF) is the part of a reading frame that begins with a start codon

(AUG) and ends with a stop codon (either UAA, UAG, or UGA). ORFs have the potential to

be translated; hence, they have the potential to code for a protein or polypeptide chain. The

AUG codon indicates where translation starts and the methionine included in the created

polypeptide chain. However, stop codons do not appear inside the polypeptide chain. There

are no corresponding amino acids for stop codons, and when the translation process reaches

a stop codon, the polypeptide chain is released. Each ORF specifies a single protein that

starts and end at internal sites within the mRNA. The two ends of an ORF are different

from the ends of its mRNA [54].

Since the DNA code is translated into sets of three nucleotides (codons), a DNA strand

has three different reading frames. Each mRNA reading frame is a shift by one nucleotide.

The double helix of a DNA molecule has two strands; as a result, there are six possible

translations for the three frames in each strand. Figure 1.3.2 illustrates the six reading

frames of DNA. The upper DNA strand is called the first, positive, or (5’→ 3’) strand,

while the lower DNA strand is called the second, negative, or (3’→ 5’) strand. The first

reading frame in the positive strand is aligned with the first nucleotide. The second and

third reading frames start from the second and third nucleotides, respectively. Obtaining

the three reading frames for the negative strand follows the same principle as the positive

strand. For both strands, the direction for obtaining the reading frames is always (5’→ 3’).

Among all ORFs detected in the six reading frames, only one ORF is used when trans-
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Figure 1.3.2: Six reading frames in DNA [55]

lating a gene in Eukaryotes; it is the longest ORF [54].

1.3.3 Protein Isoforms

A protein isoform is any one of two or more similar proteins that have similar, not identical,

amino acid sequences and are encoded by mRNA transcripts from the same gene that has

been alternatively spliced. In addition, the term isoform is used to discibe highly similar

proteins that come from different genes. The creation of protein isoforms is an evolution-

ary event that allows for different diverse proteins to be created from a small amount of

genetic material. Alternative splicing is the main reason behind the formation of protein

isoforms. In alternative splicing, the exons of a gene may be included or excluded in pro-

cessed mRNA. Proteins translated from alternatively spliced mRNA contain differences in

their amino acid sequences; as a result they often differ in their biological functions [58],

[48]. Many studies investigated the relation between alternatively spliced mRNA tran-

scripts and unusual characteristics; however, it is much more complicated to explore the

existence of alternative variants and protein isoforms at the protein level [44]. Isoform can

also be defined as follows:

• Any of the proteins with the same function and a similar amino acid sequence, en-

coded by different genes or by RNA transcript [3].

• The protein products of different versions of messenger RNA created from the same
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gene by employing different promoters, which cause transcription to skip certain

exons. Since the promoters are tissue-specific, different tissues express different

protein products of the same gene [22].

The term isoform causes endless confusion; however, in this thesis the term isoform

refers to the various forms of a protein at the amino-acid level, regardless of their genetic

origin [13].

1.4 Prostate Cancer

Prostate Cancer is the most commonly diagnosed cancer among Canadian men [36].

Cancerous prostate cells have uncontrolled growth and division, and can invade other parts

of the body. Early prostate cancer does not usually cause any symptoms at all. The typical

method of screening prostate cancer is the prostate-specific antigen (PSA) test. A PSA is

a protein produced by the cells of the prostate gland. The PSA test measures the level of

PSAs in a man’s blood, and the test is reported as nanograms PSAs per milliliter (ng/mL)

of blood. If the PSA level is above the normal range (4.0 ng/mL), it is interpreted as a sign

of prostate cancer. After that, further tests such as digital rectal exam (DRE), a pathological

validation, and a biopsy will be done. Specialists try to accumulate as much information

as possible so that they can determine the exact stage of cancer and subsequently provide

the best treatment options. Staging is a way of classifying cancer based on the degree of

spreading of cancer in the body. According to the Canadian Cancer Society [6], prostate

cancer has four main stages.

• Stage 1, the tumor starts developing in the prostate tissue, but tumour involves half a

lobe or less.

• Stage 2, the tumor grows and may occupys more than half a lobe but is limited to the

prostate.

9



• Stage 3, the tumor has spread beyond the prostatic capsule or into the bladder neck

or seminal vesicles.

• Stage 4, tumor has invaded other tissues and organs such as the rectum, pelvic wall,

lymph nodes, bladder.

1.5 RNA-Seq Technology

The transcriptome is the set of all RNA molecules, including mRNAs, non-coding RNAs,

and small RNAs present in a cell at a particular time. Understanding the transcriptome and

quantifying transcripts is vital for interpreting gene activity and expression in a specific cell

or tissue type, and hence understanding diseases and their developments [52]. RNA-Seq

refers to techniques used to determine the primary sequence and relative abundance of the

transcriptome within a biological sample. Several studies have uncovered critical informa-

tion using nucleotide resolution. For example, previous research estimated that roughly

60% of human genes are alternatively spliced [12], while next-generation sequencing data

estimates that approximately 95% of all human genes are alternatively spliced [32].

In recent years, RNA-Seq has become the preferred technique for transcriptome stud-

ies, including alternatively spliced transcripts and their corresponding protein isoforms

[15], [28], [45]. RNA-Seq has the power to provide precise information about alternative

transcripts or proteins and the mechanisms that contribute to their formations. RNA-Seq

technology has improved researchers’ understanding of gene regulations: transcription,

post-transcription, and translation; however, its analyses remain challenging.

Studying cancer at the nucleotide level can provide relevant information about the tu-

mor initiation mechanisms and progression; it consequently, benefits diagnosis, prognosis,

and treatment. Although several studies have concentrated on finding genes as biomark-

ers, they have not completely utilized the high-resolution feature that RNA-Seq technology

provides.
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1.6 Biomarkers

According to the Dictionary of Cancer Terms (NCI), a biomarker is biological molecule

found in blood, other bodily fluids, or tissues that is a sign of a normal or abnormal process

or a condition or disease [30]. There is a large variety of biomarkers, which can include

genes, nucleic acids, and proteins, among other categories. Biomarkers can be identified in

blood circulation or excretions such as the urine, and can thus be assessed non-surgically.

They can also be identified in tissues, which require imaging to be evaluated.

Genetic biomarkers can be inherited or somatic. Inherited biomarkers are detected as a

DNA sequence, and they are isolated from the blood. Somatic biomarkers are recognized as

mutations in DNA obtained from tumor tissue. Biomarkers can be used in various evalua-

tions, including investigating the risk of a particular disease, screening for primary cancers,

discriminating between benign and malignant tumors, distinguish one stage of cancer from

another, monitoring the status of a cancer, and assessing a cancer’s response to therapy.

The classic approach for detecting cancer biomarkers is finding biomarkers based on

tumor biology and surrounding environment. With the improved knowledge about cancer

and the emergence of new technologies, biomarker discovery is often performed using

techniques such as RNA-Seq that identify single or multiple biomarkers in a significantly

short amount of time.

The search for cancer biomarkers has been for years a hot topic of research. Although

many efforts are being devoted to the search for new cancer biomarkers, the discovery of

these molecules has been carried out at a slow pace [51].

Several studies have discovered biomarkers as genes for prostate cancer. For example,

Xu et al. [45] investigated five cancer samples using RNA-Seq technology. That study

founf 116 somatic mutations in 92 genes that are related to prostate cancer. Additionally,

Long et al. conducted another study on global transcriptome analysis [27]. They identified

16 genes associated with cancer in which five genes are related to prostate cancer.
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1.7 Problem and Motivation

As mentioned above, prostate cancer rates are highest among Canadian men [37]. An

appropriate diagnosis of the particular stage of prostate cancer in a patient is critical to

ensure the patient is provided the best suitable treatment and his survival rates is increased.

The typical approach for detecting or staging prostate cancer is studying PSA protein

levels. However, some studies show that testing PSA levels in the blood is not the ideal

marker for discovering or staging prostate cancer [31], since a proportion of men with

prostate cancer have PSA values lower than 4.0 ng/mL. Further, a test with PSA level

above 4.0 ng/mL does not always prove the existence of prostate cancer because it can

be related to other prostatic diseases [24]. Moreover, PSA levels decrease dramatically in

advanced stages of prostate cancer. Therefore, one of the most promising tools to improve

the use of PSA as a tumor marker is measuring the proportion of PSA’s different isoforms

[31].

However, in recent years researchers have worked on detecting genetic biomarkers for

different types of cancer, including prostate cancer. The focus has mainly been on the ge-

netic level to discover differentially expressed genes. However, studying the transcriptome

activity and investigating protein isoforms as biomarkers are more promising than finding

biomarkers at the gene level, due to the precise information that protein isoforms provide

about tumor condition and progression.

This thesis focuses on identifying a small subset of protein isoforms that can reliably

discriminate between stages of prostate cancer with a very high accuracy.

1.8 Contributions

This thesis integrates RNA-Seq data with machine learning techniques to predict

prostate cancer progression. First, a tool is developed to find the ORF in all six frames

corresponding to a given mRNA sequence and identifying the actual ORF from RNA-Seq
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data. The proposed model can find both known and novel protein isoforms corresponding

to a given mRNA using RNA-Seq data.

Second, a machine-learning approach is developed that uses protein isoforms as fea-

tures and differentiates between prostate cancer stages. The model delivers a handful of

relevant biomarkers that can be utilized at the protein level and can open new avenues

toward better understanding the progression of prostate cancer. Using identified protein

isoforms, prostate cancer stages were discriminated between with a very high accuracy.

This thesis consists of six chapters, starting with an introduction, which provides an

overview of the main topics. Machine learning techniques are presented in Chapter 2. The

literature review is included in Chapter 3. The thesis’s methods and results are discussed in

Chapters 4 and 5, respectively. Finally, Chapter 6 presents the thesis conclusions and the

future work derived from this thesis.
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CHAPTER 2

Machine Learning

Machine learning is a branch of the computer science field that combines pattern recog-

nition, artificial intelligence, and computational statistics. Machine learning involves the

implementation of computer algorithms that learn from data and make predictions instead

of depending on a static program.

Machine learning algorithms are categorized as supervised learning, unsupervised learn-

ing, and semi-supervised learning. Supervised learning algorithms construct a model from

sample inputs, or a training set, to make predictions for new samples, or a test set. A su-

pervised learning problem could be, for instance, cancer diagnosis in which the aim is to

categorize a patient (or sample) as malignant or benign. Unsupervised learning consists of a

set of inputs without any corresponding class value, in such a way that the algorithms forms

clusters or natural groupings of the samples based on observed patterns. Semi-supervised

learning labels some of the data, and a model makes use of both labeled and unlabeled data.

Feature selection and classification are two applications of machine learning, and they are

discussed next.

2.1 Feature Selection

Feature selection is the process of selecting a subset of relevant attributes to be used in

the classification model construction. Feature selection techniques are used to identify and

remove irrelevant and redundant attributes that do not improve the accuracy of a classifier
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or may, in fact, decrease the accuracy of the model. The primary goals of feature selection

are to speed up the classification process and to increase the classification efficiency as

much as possible.

The most common aspect of classifying biological data is the high-dimensional nature

of the task; an enormous number of features are used with a small group of samples. With

a wide range of features, the computational complexity of classification algorithms grows

exponentially with each increase in dimension. For this purpose, a subset of features is

chosen carefully by feature selection algorithms to build the classification model.

There are two categories of feature selection approaches: filter methods and wrapper

methods. Filter methods score and rank the features based on their quality; they are fast

because they evaluate each feature independently. Chi-squared [25] is an example of a

filter-based feature selection technique. The method evaluates the relevance of a feature by

calculating the chi-squared value; the higher the value of chi-squared, the more relevant the

feature is.

Wrapper methods are another way to select a subset of features. They automatically

determine the number of selected features. They find the best subset of attributes using

a predictive classifier to score feature subsets. Unlike filter approaches, wrapper methods

consider all relationships among features. They are computationally expensive because

they perform an exhaustive search to discover the best subset of features. An example of a

wrapper-based methods is the minimum redundancy maximum relevance (mRMR) method

[33]. The mRMR method selects features that yield the highest relevance with the target

class and are maximally dissimilar to each other. A classification algorithm is needed since

mRMR is a wrapper method.

The mRMR feature selection approach was used in this thesis to select the most infor-

mative features associated with prostate cancer progression.
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2.2 Classification

Classification is one of the primarily supervised learning applications in machine

learning. The objective of classification is to assign new instances to one of the known

categories, or classes, depending on training dataset that consists of samples with known

labels. Classification schemes aim to correctly classify samples such as biological data

with the best possible performance.

In this thesis, the input vectors, or features, are the ORFs that are generated by the

proposed method. Each patient sample has a corresponding class label that indicates the

stage of prostate cancer to which the sample belongs. Various algorithms designed for

classification problems such as Naive Bayes, support vector machine (SVM), random tree,

and random forest were used. The next section discusses some of these classifiers.

2.2.1 Support Vector Machine

The support vector machine (SVM) is a widely used classifier due to its generalization

power and its suitability for small training datasets along that have a large number of fea-

tures [11]. SVM is a supervised learning model that represents samples as points in space

and finds the separating hyperplane with the largest margin. The larger the margin, the

better the classifier is. The classifier’s numeric input vectors form an n-dimensional space,

and the hyperplane is a line that splits the input variable space.

There are two categories of SVM models related to data distribution: linear SVM and

non-linear SVM [8]. Figure 2.2.1 shows an example of linearly separable data. The figure

shows two separating hyperplanes, H1 and H2, that can be applied to given training sam-

ples. Although both hyperplanes separate the two classes linearly, the optimal hyperplane

is H1 because it separates the classes with the maximum distance. Support vectors are the

most difficult samples to be classified; they are used to determine the hyperplane’s position.

A linear kernel function is recommended when a linear separation of the data is straight-
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forward; in other cases, the kernel trick is used. The kernel trick concentrates on mapping

the input samples onto a higher dimensional feature space. The SVM then tries to choose a

hyperplane that separates the classes as clearly as possible with the maximum width of the

margin; that case is known as the soft margin.

Different kernel functions need to be tested to obtain the best model in each case, as

they each use different algorithms and parameters. Both linear SVM and non-linear SVM

were examined. Different kernel functions such as polynomial and radial basis function

(RBF) were tested.

Figure 2.2.1: Separating hyperplane and margin for linearly separable classification prob-
lem, H1 is optimal hyperplane with maximum distance between classes.

2.2.2 Decision Tree

A decision tree is an effective classification method based on Quinlan’s algorithm [39].

It consists of a root node, internal nodes, and leaves. Each node indicates a test on a feature,

and each branch substitutes the result of the test. The final decision, or class label, is found

in the leaves for samples that verify all test paths from the root to the leaves.

Each decision tree is constructed throughout multiple steps using a set of learning sam-

ples. In each step, samples are divided into smaller groups based on particular criteria.

Some examples for the criteria used in tree design are minimum error rate, minimum or

17



maximum path length, minimum number of nodes, and maximum information gain [41].

The node that provides the best value for the criteria among all nodes is the root node. New

samples are classified starting from the root, and they follow the branch direction based on

the test at each internal node until a leaf, or class label, is reached.

An example of a decision tree for playing tennis is shown in Figure 2.2.2. The figure

shows a decision tree that provides a decision on playing tennis based on three attributes:

outlook, humidity and wind speed. Outlook attribute has the highest value, and so it is used

as a decision attribute, or the root node. As shown in the figure, if the outlook is rainy

and very windy, the decision to play tennis is a No, while if the outlook is sunny and the

humidity is normal, the decision to play tennis is a Yes.

Figure 2.2.2: Decision tree for playing tennis based on outlook, humidity, and wind.

2.2.3 Random Forest

Random forest is a classification method based on constructing a forest of random

trees; each tree produces a vote in classifying. [20]. A random subset of the training data is

used to build each decision tree. After training the forest, new samples can be passed to the

forest to predict their classes. The larger the forest, the higher accuracy is gained without
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suffering from overfitting. There are two factors that affect random forest’s performance:

the correlation between trees and the accuracy of each tree. Increasing the number of

features used in each tree increases the tree’s performance as well as the correlation; hence,

increasing the number of features used in each tree increases the forest’s performance. The

classification of new samples in the random forest is based on voting. Each tree in the

forest votes to one of the classes; the class with the highest number of votes is assigned to

the new observation. Figure 2.2.3 shows an example of a random forest containing N trees.

For a new sample, X, each tree votes for one of the classes. The final class is determined

by the majority voting.

Figure 2.2.3: Random forest.

2.2.4 Naive Bayes

Naive Bayes is a classification algorithm that is based on Bayes’ theorem [40]. Clas-

sification using Naive Bayes depends on prior probability and likelihood. A classification

is produced by combining both sources of information: the prior probability and the like-
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lihood of forming a posterior probability using Bayes’ rule. This classifier assumes that

the presence of a feature in a class is independent from the presence of any other feature.

Making predictions involves calculating the probability that a given data instance belongs

to each class, and then selecting the class with the largest probability as the prediction.

2.3 Performance Evaluation

Performance measures are a way to evaluate a solution to a problem. They are the

measurements for predictions made by a trained model on a test dataset. Some concepts

related to performance evaluation are introduced below.

2.3.1 Confusion Matrix

Suppose that there are two classes: positive and negative. The confusion matrix of these

two classes is shown in Figure 2.3.1.

Figure 2.3.1: Confusion matrix corresponding to original samples and classified samples
for two classes.

• TP is the number of true positives or the number of samples that belong to the positive

class and have been classified as positive.

• TN is the number of true negatives or the number of samples that belong to the

negative class and have been classified as negative.
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• FP is the number of false positives or the number of samples that belong to the

negative class, but have been incorrectly classified as positive.

• FN is the number of false negatives or the number of samples that belong to the

positive class, but have been incorrectly classified as negative.

Different performance measures can be calculated using the confusion matrix as fol-

lows:

Accuracy =
TP + TN

TP + FP + TN + FN
(2.3.1)

Recall(Sensitivity) =
TP

TP + FN
(2.3.2)

Precision =
TP

TP + FP
(2.3.3)

F −measure =
2×Recall × Precision

Recall + Precision
(2.3.4)

Area under the ROC curve (AUC) is also used as a performance measurement. Figure

2.3.2 shows an example of an ROC curve. The closer the ROC curve is to the top left

corner, the better the performance of the classifier is. If the classifier is performing very

well, the true positive rate will increase and the AUC will be close to 1. If the classifier

randomly assigns samples to classes, the true positive rate will increase linearly with the
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false positive rate and the AUC will be around 0.5.

Figure 2.3.2: Example of ROC curve.

2.3.2 Cross Validation

Another approach for evaluating and testing a classification algorithm is cross validation,

in which an entire dataset is used to train and test that algorithm. It involves separating a

dataset into m equally sized groups of samples (m-folds). The model is trained on all folds

except one, and the created model is then tested on the left out fold. This process is re-

peated, and each fold will be given the opportunity to be left out and act as the test dataset.

Finally, the performance measures are averaged across all folds to estimate the model per-

formance on the problem. In this thesis, 10-fold cross validation is used to validate the

results.
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CHAPTER 3

Literature Review

This chapter reviews previous approaches related to the thesis’s. First, some existing

online tools used in translating mRNA code and detecting ORF are explained. Some studies

that identify proteins as biomarkers for prostate cancer diagnosis are then discussed.

3.1 Tools for mRNA Translation and ORF Finding

Regions of DNA that encode proteins are first transcribed into mRNA and are then

translated into protein. By examining a DNA sequence, one can determine the sequence of

amino acids that will appear in its final protein. In translation, codons of three nucleotides

define the amino acid that will be added next in the growing protein chain. Proteins are

formed from ORF, and by analyzing the ORF, we can predict the polypeptide chain that

might be produced during translation.

Typically only one ORF is used when translating a gene in Eukaryotes, and it is the

longest ORF. Once the ORF is found, the DNA sequence can be translated into its corre-

sponding amino acid sequence. However, discovering the actual ORF is not a straightfor-

ward task, especially when dealing with a very large number of long mRNA sequences.

Here, online translation tools and how they address ORFs are discussed. These tools

were tested using the transcript >hg19 chr7 89841000 89866992 +. The full se-

quence for the transcript can be found in Appendix A.

ORF Finder [38] is a translation tool available on the National Center for Biotechnology
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Information (NCBI) website. The tool identifies all possible ORFs from a sequence that

a user inserts in the giving text box. Figure 3.1.1 shows the input screen of ORF Finder,

while Figure 3.1.2 shows the query result. The user submits the translation request by

inserting the nucleotide sequence into the text area. The tool then returns the range of each

ORF along with its protein translation. As shown in Figure 3.1.2 , all sequences that are

located between a start codon and a stop codon are listed in descending order, based on

their length, along with their position. By choosing the required ORF, the corresponding

amino acid sequence appears in the left box. It is up to the user to choose which ORF is the

actual ORF, and then download it as a FASTA file. The user can select any detected ORFs

among the six reading frames for further information using BLAST.

Figure 3.1.1: Input screen of ORF Finder.

There is a shortage in the Web version of the ORF finder; the input sequence length

is limited to 50 kb long. Although there is a standalone version for this tool that does not

have such a limitation, it has to be requested from the authors. Another shortage related to

the tool input is that it accepts only one sequence to be translated and tested for potential

ORFs at a time.

The second translation tool is ExPASY (the Expert Protein Analysis System) by the
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Figure 3.1.2: Output screen of ORF Finder.

Swiss Institute of Bioinformatics [47]. It searches for ORFs in a sequence that a user enters

in the search box. Figure 3.1.3 shows the input screen of the tool where the sequence is

inserted in FASTA format.

The translation of all six reading frames appears with all potential ORFs. Figure 3.1.4

shows the translation of the sequence; the highlighted regions are potential ORFs. The user

has to select a reading frame and then select an ORF from that frame. Then, a new page

appears with an option to download the output translation as a FASTA file or to verify the

predicted polypeptide chain using BLAST. Similar to ORF finder, ExPASY does not have

the opttion of uploading an input file with multiple sequences, and does not identify the

actual ORF.

The third translation software is GetORF [14]. The tool allows one to enter a sequence

of data manually or to upload a FASTA file consisting of multiple sequences. It provides

the option to detect ORFs only in the positive strand or in both strands. GetORF outputs the

results in FASTA format, including the ORF identifier, the translated amino acid sequence,

and the ORF start and end sites. The main downside to this tool is that it identifies all
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Figure 3.1.3: input screen of ExPASY.

Figure 3.1.4: Output screen of ExPASY.

possible ORFs for a given sequence without discovering the actual ORF. Figures 3.1.5 and

3.1.6 show the input screen and the output result screen of this tool.

In conclusion, some existing platforms for finding ORFs and for translating RNA se-

quences were investigated. The advantages and disadvantages of each tool were described.

Some of the tools only translate one transcript at a time, while others have input length

limitations. No tool has the ability to discover the potential ORF; they detect all ORFs

instead. It could be very difficult for users to determine the potential ORF manually. For
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Figure 3.1.5: Input screen of GetORF.

Figure 3.1.6: Output screen of GetORF.

example, transcript NM 000059 that encodes gene BRCA2 contains thousands of ORFs in

its six reading frames.

In the thesis’s tool that was implemented to find the ORF, most of the concepts that

these previous tools follow were adopted, such as outputting the results in FASTA format.

However, all the disadvantages of each tool have been overcome.
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3.2 Using Proteins as Biomarkers

In mass spectrometry, surface-enhanced laser desorption/ionization (SELDI) provides a

sensitive system that analyzes protein masses within a sample [51]. SELDI is a strong tool

for analyzing proteins in a variety of biological materials such as tissue samples, blood,

urine, and other clinical samples. The technique is usually used as a diagnostic tool and

has been applied to diagnose cancer. Technological advances in mass spectrometry pose

challenges in computational methods to process the mass spectral data into predictive mod-

els that have clinical and biological significances. The biomarker discovery is achieved by

adopting machine learning techniques that allow a comparison of protein levels in serum

samples from healthy and diseased patients. Feature selection and classification techniques

are powerful tools for building predictive models from protein mass spectrometric profiles

and for identifying biomarker candidates. The best way to ultimately confirm the compu-

tational predictions results is through biological validation and identification of the under-

lying proteins [51]. Here, some approaches that discriminate between prostate cancer sam-

ples and normal samples using proteins and mass spectrometry technology are reviewed.

Qu et al. claimed that the Prostate-specific antigen (PSA) test is not an accurate biomarker

for early diagnoses of prostate cancer [38]. They developed a proteomic approach to

discriminating prostate cancer samples (PCA) from benign prostatic hyperplasia samples

(BPH) and normal age-matched samples. Their model detects and analyzes multiple pro-

teins to differentiate prostate cancer patients from non-cancer patients. The serum samples

used in the experiment were 197 prostate cancer samples (PCA), 92 benign prostatic hy-

perplasia samples (BPH), and 96 healthy samples. The samples were randomly separated

into a training set (325) and a test set (60), and were then analyzed using surface-enhanced

laser desorption or ionization (SELDI) mass spectrometry. Peak detection and alignment

were performed with the Ciphergen ProteinChip Software. 124 peaks, or features, were

detected and used as the training set to construct the classifiers for separating PCA group
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from the non-cancer groups. The classification model was then applied to the test set (30

PCA samples, 15 BPH samples, 15 healthy samples).

Two classifiers were implemented: the AdaBoost classifier and the Boosted Decision

Stump Feature Selection classifier (BDSFS). The BDSFS classifier is a decision tree classi-

fier with one split. This classifier is constructed on weighted examples and the classification

decision is made by voting in each round. 10-fold cross-validation was applied to estimate

the accuracy of the two classifiers. The first classifier, AdaBoost, gained perfect results

in discriminating prostate cancer samples from normal samples (it had 100% sensitivity

and specificity). The second classifier was combined with feature selection and resulted

in 21 features out of 500. It achieved a sensitivity and specificity of 97%. The authors

claimed that the combination of the SELDI protein profiling system and machine learning

algorithms could be used for the early detection or diagnosis of prostate cancer.

Wagner et al. discussed various classification approaches using protein profiles from

mass spectrometry experiments to discover protein biomarkers [51]. The authors aimed

to define peaks with a high likelihood of being biologically related to given disease state,

and identified some specific biomarkers of the disease. The prostate cancer samples were

obtained from the Eastern Virginia Medical School using SELDI-TOF mass spectrometry

from over 300 patients. The samples were grouped into four categories: benign prostatic

hyperplasia (BPH); early ,or localized, cancer; late , or metastasized, cancer; and controls.

The feature space was reduced by selecting the smallest set of peaks that yielded reasonable

classification results. The input vectors, or peaks, were decreased by using a filter-based

feature selection. The features were reduced from 779 to 220, and then a principal compo-

nent analysis was applied to further reduce the dimension of the data.

For classification, several algorithms were applied, such as quadratic discriminant func-

tions, nonparametric kernels, nearest neighbour methods, and linear support vector ma-

chines. The best results were obtained by applying a two-stage linear SVM classifier along
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with 13 peaks and cross validation. The average classification accuracy for the four-group

classification problem was 87%.

In a recent study, Taskin et al. demonstrated a model that classifies prostate cancer

samples using mass spectrometry data [49]. Samples from 322 men were used in the ex-

periment: 69 samples were malignant, 190 samples were benign, and 63 were normal. The

authors processed the dimensionality reduction in three stages. The first phase included a

filtering method, which employed some statistical tests to evaluate features and assigned a

score to each feature. The second phase used two different methods: the wavelet analysis

and the statistical moments; they were applied for comparison. In the wavelet analysis,

the discrete wavelet transform (DWT) was applied to the mass spectrometry data; approx-

imation coefficients were obtained. The obtained signal had a smoother form for the mass

spectrometry data as well as a low dimensionality. The statistical moments used filter-

ing methods for dimensionality reduction. The last phase for reducing the feature space

involved a feature transformation method, which was kernel partial least square (KPLS).

After the dimensionality reduction, the prostate data were classified using several al-

gorithms, such as k-nearest neighbour and SVMs. The classification was processed in two

steps with a 5-fold cross validation. In the first step, prostate samples were classified as

normal and cancerous. The cancerous samples were then classified as benign or malig-

nant. The classifiers’ performances for the two classification steps were 95.8% and 87.2%

respectively.
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CHAPTER 4

Materials and Methods

This chapter discusses the methodology used to implement the tool that finds the ORF

and reconstructs the potential protein isoform for every transcript. The protein isoforms

act as potential biomarkers for estimating prostate cancer progression stages. Furthermore,

some machine-learning techniques that were applied to the extracted protein isoforms to

find a group of them that are differentially expressed throughout prostate cancer’s stages

are illustrated.

4.1 The Dataset

The dataset used for this study was Long’s dataset, which can be found in NCBI’s

repository with the GEO accession no. GSE54460 [27]. The dataset involves roughly 490

billion base pair reads and deals with prostate cancer progression stages with a reasonable

number of samples in each stage. It contains 105 samples from 100 cancer patients. Table

4.1.1 shows the various stages of prostate cancer progression according to the American

Cancer Society, as well as the number of samples in each stage. The samples were grouped

according to their stage or substage and were labeled T1C, T2, T2A, T2B, T2C, T3, T3A,

T3B, and T4.
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Table 4.1.1: Stages of progression of prostate cancer according to the American Cancer
Society

Prostate
Cancer
Stage

Description Number of
Samples

T1c

The tumor is not detectable via imaging techniques.
Cancer is detected using a needle biopsy due to an

elevated serum prostate-specific antigen (PSA).

14

T2 The tumor is palpable, but confined to the prostate. 10

T2a
The tumor is in half, or less than half, of one of the

prostate glands’ two lobes.
23

T2b
The tumor is in more than half of one lobe, but is not

in both lobes.
11

T2c
The tumor is in both lobes but confined within the

prostatic capsule.
30

T3
The tumor has started to spread out of the prostate

tissue.
2

T3a
The tumor has spread through the prostatic capsule

on one or both sides, but has not spread to the
seminal vesicles.

6

T3b
The tumor has invaded one or both of the seminal

vesicles.
8

T4 The tumor has spread to other organs. 1
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4.2 Preprocessing

Singireddy et al. [43] conducted a study on prostate cancer progression and gener-

ated transcripts for each sample in Long’s dataset. In their study, the samples files were

converted from SRA format to FASTQ format. TopHat2 [23] then was used to align the

reads to the reference genome (hg19), which resulted in identifying the accepted reads. The

accepted reads were fed to Cufflinks [50] to assemble the transcripts and to calculate their

FPKM values (fragments per kilobase of transcript per million mapped reads). FPKM is a

measurement unit for RNA-Seq expression.

Reconstructing the transcripts for all samples using Cufflinks generated 43,497 tran-

scripts or features, and some of these transcripts were non-coding RNAs. This study

focuses on coding RNAs (mRNA) that have the potential to code for proteins; thus non-

coding transcripts were removed and the number of features were reduced to 33,801 coding

transcripts. Figure 4.2.1 displays a sample table of the output data from Cufflinks that was

used. The columns represent the transcripts and their FPKM values and the rows represent

the samples, of which there were 105 samples in total. The last column, the class label,

shows the stage of prostate cancer for each sample.

4.3 Our Scheme for Classifying Stages

Even though we deal with several classes (stages of prostate cancer), we perform the

classification as a binary classification. Cancer progression means the cancerous tumor

continuously grows to the next stage. The progression develops in a specific order start-

ing with stage T1C and ending with stage T4 (T1c→T2→T2a→T2b→ T2c→ T3→

T3a→ T3b→ T4). This thesis focuses on finding differentially expressed protein iso-

forms between neighboring stages. For example, it compares samples from T1c with T2,

from T2 with T2a, from T2a with T2b, and so on.

Stages T3 and T4 contained a small number of samples, which affects the classifier
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Figure 4.2.1: Sample file from preprocessing phase, displaying some transcripts names
with their FPKM values for all samples, rows, and the class, last column.

generalization power; as a result, stages T3, T3a, T3b and T4 were merged into a new

group named T34. The expression variation in protein isoforms between the latter stages

of progression of T34 compared to T2c were studied. For the two stages, our experiment

involved 47 samples (30 and 17 samples for stages T2C and T34, respectively). The new

stage, T34, represented the critical transmission of the tumor from inside the prostate cap-

sule to outside the prostate.

4.4 Finding ORFs

A tool for finding ORFs and corresponding protein isoforms from RNA-Seq data was

implemented. A detailed description of the tool mechanism is illustrated here; Figure 4.4.2

shows a schematic view of the proposed method. The proposed tool reads transcripts and

performs the whole process on each transcript individually, then subsequently considers

the next sequences in the input file. It translates all six reading frames into amino acid

sequences using the codon table. Then all possible ORFs are obtained, and only the longest
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one in each frame is held. Finally, the longest ORF among the six candidates is considered

the potential ORF for the transcript.

The original sequence is read from (5’→ 3’) to obtain the three positive reading frames.

In order to obtain the three negative reading frames, one need to obtain the complemen-

tary strand of the positive DNA strand. As DNA is antiparallel, we also need the reverse

complement sequence to keep the 5’ and 3’ ends correctly oriented.

Figure 4.4.1 shows an example of obtaining the reversed complementary sequence. In

the example, the original sequence is read from (5’→ 3’) and the three positive reading

frames are obtained. Two steps are done to obtain the three negative frames. First, the tool

finds the complementary sequence for the original sequence by exchanging each (A, T or

U, C, G) with (T, U or T, G, C). Second, the complementary sequence is reversed, so it can

be read (5’→ 3’), in the same manner as the first strand.

Figure 4.4.1: Obtaining complementary sequence from original mRNA sequence.

After that, the tool scans each reading frame individually and detects all possible ORFs,

namely the protein isoforms. The ORF extends from the start codon AUG and continues

until the reading frame defined by the start codon is terminated by one of the three trans-

lation stop codons UGA, UAA, or UAG. The translation process begins by interpreting the

start codon into Methionine, and includes it in the polypeptide chain. When a start codon

(AUG) is found in the middle of the ORF, it is translated into Methionine, and the trans-

lation process continues until a stop codon terminates it. In the next step, by comparing

the length of the detected isoforms in the six frames, the tool selects the longest one as the
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most relevant isoform for the given transcript [54].

Figure 4.4.2: Schematic view of proposed tool for translating and identifying the actual
ORF.

4.5 New Measurement for Quantification

In any given cell, only a fraction of its genes are turned on at a given time; this is the

concept of gene expression. Any change in the perfectly controlled process will affect the

cell and may cause diseases such as cancer. In other words, irregular expressions in tumors

make cancer cells different from healthy cells.

Gene expression can be measured using different methods; RNA-Seq data was used in
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this work. the thesis’s interest is measuring the expressions of protein isoforms that were

constructed using the proposed tool. The expression level is calculated for isoforms in

each sample, and by comparing different samples, we can extract some information about

prostate cancer progression.

To estimate the number of supporting fragments, a new measurement derived from

FPKM value is considered. The new quantification method makes the measurement of

abundance more accurately related to only those fragments that are located within that

region. FPKM values for all transcripts are computed by Cufflinks, shown in Figure 4.2.1.

The FPKM unit considers all fragments within a transcript, while only the fragments

that fall within the actual ORF region need to be taken into the account for this thesis. If

L(transcript) is the length of a given transcript and L(ORF) is the length of its ORF, then

AFPKM =
L(ORF )

L(transcript)
× FPKMvalue (4.5.1)

Figure 4.5.1 shows an example of how one finds abundance with the proposed measure.

The new FPKM value is called adapted FPKM (AFPKM). It takes into account the propor-

tion of the transcript that is actually translated into protein and ignores the non-coding part.

Figure 4.5.1: Use of fragments to measure abundance of protein isoforms.
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4.6 Feature Selection and Classification

With 33,801 transcripts or features, it is important to reduce the dimensionality of

the problem by applying feature selection to improve the classification performance. For

this, the mRMR feature selection method [33] was used. The features here are the protein

isoforms with their AFPKM values; and the class labels are the prostate cancer stages.

Figure 4.6.1 shows the pipeline of the machine-learning approach. In the figure, there

is a table that involves transcripts and their FPKM values for a pair of stages. The table acts

as input to the proposed tool to identify the ORF for each transcript and obtain the corre-

sponding protein isoforms. The feature selection filters out noisy and redundant features.

The filtered features are sent to the classification algorithms to detect protein isoforms, or

biomarkers, that are differentially expressed.

Weka was used to perform the feature selection and the classification [18]. It is a well-

known data mining tool developed at the University of Waikato, and it is commonly used

in bioinformatics.

4.6.1 Feature Selection

Among 33,801 protein isoforms or features per sample, there is a significant number

of irrelevant and noisy transcripts that affect the classification’s accuracy. They make the

classification algorithms perform poorly and consume a large amount of memory and time.

Thus, feature selection technique was used to reduce the dimensionality of the problem and

to remove features that degraded classification performance.

The feature selection technique mRMR [33] was applied; it is a wrapper method used

to select a subset of features. MRMR embeds a classification algorithm to choose the most

relevant features. The algorithm mRMR incorporates a classifier to determine the best

subset of features that can classify the samples. Different classifiers were experimented

with, and Naive Bayes gave the best results with default parameters.
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Figure 4.6.1: Pipeline of our method for prostate cancer progression classifications.

4.6.2 Classification

After feature selection, different classification algorithms that discriminate between

prostate cancer stages were applied. Various classifiers that classify the samples based

on the classification rules learned in the training phase were tested. SVM [11] was used,

and the linear, polynomial, and radial basis function kernels were experimented with grid

search optimization. Random forest [4] and the J48 decision tree [39] were also tested.

Additionally, the Naive Bayes classifier was used to compare its performance with all other

classifiers. Finally, the differentially expressed protein isoforms in the desired stages were
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obtained. To evaluate the classifiers and maintain their generalization capability, a 10-

fold cross-validation was used. Chapter 5 assesses the performance of the classifiers using

several performance measures.

4.6.3 Comparison Between Using Protein Isoforms as Features and

Using Transcripts as Features

In a previous study [43], Singireddy et al. used the same dataset used in this thesis;

the dataset include 105 prostate cancer samples along with their FPKM value. They ap-

plied some feature selection algorithms on the pairwise stage T2c-T34 which consists of

47 samples. They found a set of 11 transcripts shown in Figure 4.6.2, that were able to

discriminate stage 2 of prostate cancer from subsequent stages with very high accuracy.

Two experiments were conducted to test the significance of using protein isoforms in-

stead of whole transcripts as biomarkers for prostate cancer progression. First, classifica-

tion results were compared with [43] results for the pairwise stage (T2c-T34). Second,

we fed our tool with those 11 transcripts to find the actual ORFs in each. Then AFPKM

was computed using the Formula 4.5.1. Finally, different classifiers were run and their

performances were evaluated using protein isoforms, compared to transcripts. .

Figure 4.6.2: Set of 11 transcripts for discriminating stage 2 of prostate cancer from stages
3 and 4 obtained by Singireddy [43].
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CHAPTER 5

Results and Discussion

This chapter discusses the results of the approach in finding biomarkers for prostate

cancer progression. Protein isoforms extracted using the proposed tool were processed us-

ing the feature selection technique. The feature vectors were input to the classifiers, and the

classification performance was graphically visualized. Classification and feature selection

algorithms were employed to find differentially expressed protein isoforms. Classification

performance measures for pairwise stages are discussed. Furthermore, an experiment was

conducted to test the significance of using protein isoforms instead of whole transcripts to

differentiate between prostate cancer stages. The classification performances were com-

pared using protein isoforms and transcripts. Finally, the biological significances of some

selected protein isoforms are demonstrated.

5.1 Generating Protein Isoforms

A tool for finding ORF and reconstructing protein isoforms was implemented. The

tool was fed with 33,801 transcripts to identify the potential proteins coded in them. The

first prototype of the proposed tool was been written in Python; hence, it is easy to install

on many different platforms. Unlike existing tools, the proposed tool can process several

transcripts at a time and obtain the actual ORF for each of them. The main module accepts

the transcripts in FASTA format as inputs and then outputs two files. One of the files

contains sequences in FASTA format, which include an identifier for the sequence, and the
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amino acid sequence of the predicted protein isoform. The FASTA file can be searched

in a protein sequence database to similar proteins using BLASTP, for example. Figure

5.1.1 shows an example for the first output file. The second file contains more detailed

information, such as the sequence identifier; the polypeptide chains for all six frames;

identified ORFs for all six frames along with their lengths; and the detected ORF (the

potential protein isoform) for a transcript; and its position in the sequence. The amino acid

sequences in the generated files have the same order as the input file.

The identified protein isoforms are used as features that incorporate different machine

learning techniques to identify a small group of isoforms that are differentially expressed

in the various stages of prostate cancer progression.

Figure 5.1.1: Sample of output file containing the ORF.

5.2 Feature Selection Results

The feature selection method mRMR was applied; it resulted in identifying 36 protein

isoforms for the set of all pairwise stages. Figure 5.2.1 shows the transcripts IDs for the

differentially expressed protein isoforms across different stages. The number of selected

protein isoforms for pairwise stages T1c-T2, T2-T2a, T2a-T2b, T2b-T2c, T2c- T3a, T3a-
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T3b, and T2c-T34 are 3, 8, 5, 3, 3, 4, and 10 respectively. More information about the

selected protein isoforms such as the location (their locus) in the corresponding chromo-

some and gene name can be found in Appendix B. The classification efficiency using the

selected isoforms is discussed for each pairwise stage in the following section.

Figure 5.2.1: Transcripts IDs for differentially expressed protein isoforms across different
stages.

5.3 Classification Results

The selected features by mRMR were employed to build a classification model for all

pairwise stages. Bayes Net, Naive Bayes, JRip, random tree, and random forest were tested.

The accuracy range for all classifiers was between 82.98% and 100% with an average of

93.46%. The Bayes Net classifier performed significantly for three pairwise stages out of

seven by predicting all samples correctly.

Figures 5.3.1 and 5.3.2 show the recalls and precisions of different classifiers using

the selected protein isoforms. The x-axis represents pairwise stages of prostate cancer

progression while the y-axis displays the efficiency measurement used. As shown in the

figure, the recall of the Bayes Net classifier outperformed other classifiers for most of the

pairwise stages. For stages (T1c-T2), (T2-T2a), (T3a-T3b), and (T2c-T34), Bayes Net

achieved a perfect recall (its recall=1). Regarding Precision, all the classifiers achieved

ideal precision (a precision = 1) for distinguishing between sub-stages T3a-T3b.

The area under the ROC curve (AUC) results was visualized to differentiate between
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Figure 5.3.1: Classification performance for all pair-wise stages using recall as perfor-
mance measurement.

Figure 5.3.2: Classification performance for all pair-wise stages, using precision as perfor-
mance measurement.

prostate cancer stages. Figure 5.3.3 shows the classifiers’ performance considering the

AUC value. For T2c-T34, AUC for the Bayes Net and Naive Bayes classifiers reached

0.99, while it reached 0.95 for random forest.

Regarding F-meaure, the classifiers’ results can be seen in Table 5.3.1. The F-measure
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Figure 5.3.3: Classification performance for all pair-wise stages, using AUC as perfor-
mance measurement.

for Naive Bayes is noticeably high for all pairwise stages (above 0.90). Additionally, Naive

Bayes achieved perfect results for the pairwise stages (T1c-T2), (T2-T2a), and (T3a-T3b).

(T2b-T2c) were the hardest pair to be classified by all classifiers with an F-measure = 0.82

on average. Similar to all other performance measurements, (T3a-T3b) were accurately

classified by most of the classifiers using F-measure.

Table 5.3.1: Classification performance for all pair-wise stages using F-measure as mea-
surement.

Stages Bayes Net Naive
Bayes

JRip Random
Tree

Random
Forest

T1c-T2 1 0.93 0.89 0.96 0.96
T2-T2a 1 0.95 0.82 0.80 0.95
T2a-T2b 0.94 0.94 0.92 0.91 0.92
T2b-T2c 0.76 0.95 0.74 0.90 0.76
T2c-T3a 0.93 0.98 0.97 0.97 0.98
T3a-T3b 1 1 0.93 1 1
T2c-T34 0.98 0.98 0.87 0.91 0.95

In addition, SVM was tested with linear, ploynomial, and RBF kernels. Figures 5.3.4
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and 5.3.5 show the accuracy and AUC values of the SVM classifiers for all stages. The

accuracy for all classifiers throughout all pairwise stages varied between 79.4% and 97.8%

with an average of 91.06%.

The AUC value for the pairwise stage (T2c-T3a) was 0.97 by SVM-linear, SVM-

ploynomial, and SVM-RBF. Similarly, (T3a-T3b) achieved AUC=0.94 with all classi-

fiers. The SVM with the RBF kernel achieved the best performance for (T2a-T2b) with

an AUC=0.87, while the other kernels’ scores were 0.73.

Figure 5.3.4: Performance of SVM classifiers with selected protein isoforms, using accu-
racy as measurement.

In general, the results illustrate that the selected protein isoform could be used to differ-

entiate samples across all stages with a high level of accuracy. The protein isoforms could

be investigated further as potential biomarkers of prostate cancer progression.

5.4 Results for Using Protein Isoforms Versus Transcripts

Figure 5.4.1 shows the classifiers’ performances and compares using transcripts iden-

tified by [43] and using our protein isoforms. As shown in the figure, for most of the clas-

sifiers, the thesis’s proposed method provides superior performance while using a smaller
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Figure 5.3.5: Performance of SVM classifiers with selected protein isoforms, using AUC
as performance measurement.

group of biomarkers. Using ORFs detected by our model for discriminating T2c-T34 stages

almost always achieved better results than using original transcripts. J48 performance im-

proved by around 10% when using protein isoforms. Only the SVM-Polynomial achieved

higher accuracy when using transcripts instead of using protein isoforms, with 91.2% for

the former and 84.5% for the latter.

In the second experiment, the performance of the transcripts was compared to the previ-

ous study with their ORFs. The ORF for each transcript was found and applied to different

classifiers using them. The performance of the 11 identified transcripts was compared with

the performance of their corresponding ORFs for discriminating between stages T2C and

T34 of prostate cancer. Figure 5.4.2 shows the classification accuracy for the comparison

between using the original transcripts (the FPKM values) and the ORFs detected in them

(the AFPKM values). As shown in the figure, using protein isoforms instead of RNA tran-

scripts boosts the classification performance in some classifiers, using default parameters

such as SVM-linear and SVM-polynomial.
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Figure 5.4.1: Comparison between this thesis’s protein isoforms and transcripts reported in
[43].

5.5 Discussion and Biological Significance

The 36 transcripts shown in Figure 5.2.1 were obtained using the feature selection

technique mRMR. It was found that a great proportion of the detected isoforms or genes

are associated with cancer or other diseases. In this section, the biological significance of

selected biomarkers is highlighted.

Studies [10] and [42] demonstrated that CREB was involved in tumor initiation, pro-

gression, and metastasis. Another study focused on utilizing the CREB protein for thera-

peutic purposes in cancer [56]. The authors stated that CREB was a critical regulator of cell

differentiation and proliferation. They suggested that overexpression and over-activation of

the protein were noticed in diverse cancer tissues including prostate cancer. However, the

down-regulation of CREB in cancer cells inhibits tumor growth and induces apoptosis.
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Figure 5.4.2: Comparison between using transcripts with original FPKM [43] and the same
transcripts with AFPKM, and its effect in classification performance for (T2c-T34).

The protein isoform detected in the HIST1H4F gene is a member of the H4 histone

family. Fraga et al. [17] found that cancer cells had changed forms of histone H4. The

changes appeared early in cancer and accumulated during the tumor progression. The

authors suggested that the changing of histone H4 is a common characteristic of human

tumor cells.

The Gse1 coiled-coil protein (GSE1) is expressed differentially between stages T2a-

T2b. Chai et al. state that the GSE1 protein is overexpressed in breast cancer, and the

silencing of GSE1 remarkably suppresses breast cancer cells’ proliferation, migration, and

invasion. They concluded that GSE1 plays an important role in promoting breast cancer

progression [7].
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In the pair (T2b-T2c), different expression levels for the Biglycan protein were detected.

It has been shown that high a expression level of Biglycan is present in various cancers

such as endometrial [26], pancreatic [2], and gastric [21]. Xing et al. explored the function

of Biglycan in colon cancer progression. Decreasing the expression levels of the protein

prevents colon cancer cell migration and invasion. In addition, down regulating Biglycan

induces apoptosis in cancerous cells [57].

Payne et al. identified the protein HIST1H4K (which is from the same family as the

nominated biomarker HIST1H4L) as a prostate cancer biomarker. The biomarker showed

minimal correlation with PSA, which is the target protein in any typical prostate cancer test

[42]. The authors suggested integrating HIST1H4K with a PSA test to diagnose prostate

cancer in patients.

HSP70 belongs to a class of proteins called heat shock proteins (HSPs). In general,

HSPs’ expression levels are higher in cancer cells. The HSP70 protein is highly expressed

in some cancers; However, its reduction has led to tumor regression [34]. Murphy et al.

conducted an intensive study on HSP70 and its role in cancer and concluded that HSP70

gene can function as an oncogene [29]. There are many studies that discuss HSP70’s as-

sociation with cancer [5], [9]. One study focused on investigating HSP70 as a biomarker

for prostate cancer [1]. The authors suggested that HSP70 could be a potential biomarker

for prostate cancer. Their experimental results showed that HSP70 was overexpressed in

patients’ plasma, whereas the patients’ PSA levels were normal.

It has been shown that changes in the PTMA expression (the protein in the transcript

NM 001099285) is involved in the development and progression of prostate cancer [46].

Another study demonstrated that lower expression levels of Prothymosin alpha (PTMA)

were linked to the inhibition of prostate cancer initiation [19].
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In order to obtain a further insight, the hypothesis that the PTMA expression increases

with the progression of prostate cancer was investigated for this thesis. Figure 5.5.1 shows

the expression trend level of the ten chosen isoforms between stages T2C and T34. The

x-axis represents the 10 identified protein isoforms, while the y-axis represents the median

of AFPKM values across different samples from each group. As shown in the figure, the

expression level for the protein isoform that we identified in PTMA was by far higher in

stage T34, compared to T2c (1.3 and 0.1 respectively).

Figure 5.5.1: Comparison between median of AFPKM values for 10 selected protein iso-
forms in stages T2C and T34 of prostate cancer.

Transcript NM 001099285 in particular had a significant FPKM variation between

T2C and T34. Suzuki et al. found that PTMA’s expression was involved in human prostate

cancers progression [46]. The authors conducted an experiment in vitro and studied autopsy

cases of those who died of prostate cancer. The study covered samples of different prostate

cancer stages as well as benign samples. The results showed that the PTMA expression

level correlated with prostate cancer development; the levels were the highest in the autopsy
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cases.

In all of the thesis’s samples, a sudden increase in the expression of PTMA was experi-

enced as the tumor progressed across later stages. The literature review about Prothymosin

(PTMA) supports the thesis’s result and makes the protein a potential biomarker for prostate

cancer progression monitoring between stage 2 and subsequent stages. It is worth further

investigation.
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CHAPTER 6

Conclusion and Future Work

6.1 Contributions

An open reading frame (ORF) is a continuous sequence of codons that begins with a start

codon and ends with a codon. Finding ORFs that correspond to a given mRNA transcript

is a major step in reconstructing protein isoforms and is vital for a better understanding

of RNA alternative splicing effects in diseases like cancer. Prostate cancer is one of the

most widespread types of cancer, especially in developed countries. Finding biomarkers is

a vital step in the early diagnosis of the tumor and in classifying stages in the progression

of the disease.

In this work, a new tool that can find ORFs and protein isoforms for any given transcript

was proposed. One of the advantages of the tool over other existing tools is the ability to

identify the actual ORF for a transcript. Moreover, it obtains the ORFs for more than one

transcript at a time, which eliminates the burden of manually processing of each transcript.

A model that uses RNA-Seq data and machine learning techniques to detect prostate

cancer progression was also proposed. The tool was used to find the ORF for a given

mRNA sequence and to then identify the corresponding protein isoform. Some machine

learning techniques employed the generated protein isoforms, and the model was able to

discriminate between stages of prostate cancer with a very high accuracy.
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6.2 Future Work

Possible extensions of this work include improving the quantification method by in-

vestigating more precise statistical measures for counting only the relevant reads inside

the ORF. Several applications of this tool involve a standalone tool for public use and an

embedding of integration with a variety of databases such as UniProt.

Further investigations could be done on functional and interactomics analyse of the

relevant proteins and their interactions with other proteins and molecules. Such integrations

will result in insight about the biological aspects of the disease that are not captured by

conventional approaches, which cover up to RNA transcripts or merely genes. Moreover,

an investigation of additional classifiers and feature selection algorithms may improve the

results.

The results achieved by the proposed model are closely related to prostate cancer. How-

ever, having a larger number of samples in each progression stage would improve the

model, and further biological experiments are highly recommended. Finally, the model

could be extended to other types of cancers and their progression stages.
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APPENDIX A

Supplementary Information

A.1 Input Sequence for Translation Tools

The following is the sequence for the transcript >hg19 chr7 89841000 89866992 +

used in Chapter 3 as an input for the translation tools.

>hg19 chr7 89841000 89866992 +

GCCCCCTCCGAGCTCCCCGACTCCTCCCCGCGCTCCACGGCTCTTCCC

GACTCCAGTCAGCGTTCCTCGGGCCCTCGGCGCCACGAGCTGTCCGG

GCACGCAGCCCCTAGCGGCGCGTCGCTGCCAAGCCGGCCTCCGCGCG

CCTCCCTCCTTCCTTCTCCCCTGGCTGTTCGCGATCCAGCTTGGGTAGG

CGGGGAAGCAGCTGGAGTGCGACCGCCGCGGCAGCCACCCTGC

AACCGCCAGTCGGAGGTGCAGTCCGTAGGCCCTGGCCCCCGGGTGGGC

CCTTGGGGAGTCGGCGCCGCTCCCGGGGAGCTGCAAGGCTCGCCCCTG

CCCGGCGTGGAGGGCGCGGGGGGCGCGGAGAAAGTGAAGAGAGGAA

ATTGGAAAATTGTGAGTGGACCTTCTGATACTGCTCCTCCTTGCGTGGAA

AAGGGGAAAGAACTGCATGCATATTATTCAGCGTCCTATATTCAAAGGATA

TTCTTGGTGATCTTGGAAGTGTCCGTATCATGGAATCAATCTCTATGATG

GGAAGCCCTAAGAGCCTTAGTGAAACTTTTTTACCTAATGGCATAAATGGT

ATCAAAGATGCAAGGAAGGTCACTGTAGGTGTGATTGGAAGTGGAGA

TTTTGCCAAATCCTTGACCATTCGACTTATTAGATGCGGCTATCATGTGGTC

ATAGGAAGTAGAAATCCTAAGTTTGCTTCTGAATTTTTTCCTCATGTGGTAGA
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TGTCACTCATCATGAAGATGCTCTCACAAAAACAAATATAATATTTGTTGCT

ATACACAGAGAACATTATACCTCCCTGTGGGACCTGAGACATCTG

CTTGTGGGTAAAATCCTGATTGATGTGAGCAATAACATGAGGATAAA

CCAGTACCCAGAATCCAATGCTGAATATTTGGCTTCATTATTCCCA

GATTCTTTGATTGTCAAAGGATTTAATGTTGTCTCAGCTTGGGCAC

TTCAGTTAGGACCTAAGGATGCCAGCCGGCAGGTTTATATATGCAGCA

ACAATATTCAAGCGCGACAACAGGTTATTGAACTTGCCCGCCAGTT

GAATTTCATTCCCATTGACTTGGGATCCTTATCATCAGCCAGAGAGA

TTGAAAATTTACCCCTACGACTCTTTACTCTCTGGAGAGGGCCAGTGGT

GGTAGCTATAAGCTTGGCCACATTTTTTTTCCTTTATTCCTTTGTCA

GAGATGTGATTCATCCATATGCTAGAAACCAACAGAGTGACTTTTAC

AAAATTCCTATAGAGATTGTGAATAAAACCTTACCTATAGTTGCCATTA

CTTTGCTCTCCCTAGTATACCTCGCAGGTCTTCTGGCAGCTGCTTATC

AACTTTATTACGGCACCAAGTATAGGAGATTTCCACCTTGGTTGGA

AACCTGGTTACAGTGTAGAAAACAGCTTGGATTACTAAGTTTTTTC

TTCGCTATGGTCCATGTTGCCTACAGCCTCTGCTTACCGATGAGA

AGGTCAGAGAGATATTTGTTTCTCAACATGGCTTATCAGCAGGTTCA

TGCAAATATTGAAAACTCTTGGAATGAGGAAGAAGTTTGGAGAATT

GAAATGTATATCTCCTTTGGCATAATGAGCCTTGGCTTACTTTCCCTCC

TGGCAGTCACTTCTATCCCTTCAGTGAGCAATGCTTTAAACTGGA

GAGAATTCAGTTTTATTCAGTCTACACTTGGATATGTCGCTCTGC

TCATAAGTACTTTCCATGTTTTAATTTATGGATGGAAACGAGCTTT

TGAGGAAGAGTACTACAGATTTTATACACCACCAAACT

TTGTTCTTGCTCTTGTTTTGCCCTCAATTGTAATTCTGGGTAAGATTAT

TTTATTCCTTCCATGTATAAGCCGAAAGCTAAAACGAATTAAAAAAG

GCTGGGAAAAGAGCCAATTTCTGGAAGAAGGTATGGGAGGA

ACAATTCCTCATGTCTCCCCGGAGAGGGTCACAGTAATGTGAT
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GACAAATGGTGTTCACAGCTGCCATATAAAGTTCTACTCATGCCA

TTATTTTTATGACTTCTACGTTCAG

TTACAAGTATGCTGTCAAATTATCGTGGGTTGAAACTTGTTAAATGAGAT

TTCAACTGACTTAGTGATAGAGTTTTCTTCAAGTTAATTTTCACAAATGT

CATGTTTGCCAATATGAATTTTTCTAGTCAACATATTATTGTAATTTAGG

TATGTTTTGTTTTGTTTTGCACAACTGTAACCCTGTTGTTACTTTATATT

TCATAATCAGGCAAAAATACTTACAGTTAATAATATAGATATAATGTTAA

AAACAATTTGCAAACCAGCAGAATTTTAAGCTTTTAAAATAATTCAATGG

ATATACATTTTTTTCTGAAGATTAAGATTTTAATTATTCAACTTAAAAAG

TAGAAATGCATTATTATACATTTTTTTAAGAAAGGACACGTTATGTTAGC

ATCTAGGTAAGGCTGCATGATAGCATTCCTATATTTCTCTCATAAAATAG

GATTTGAAGGATGAAATTAATTGTATGAAGCAATGTGATTATATGAAGAG

ACACAAATTAAAAAGACAAATTAAACCTGAAATTATATTTAAAATATATT

TGAGACATGAAATACATACTGATAATACATACCTCATGAAAGATTTTATT

CTTTATTGTGTTACAGAGCAGTTTCATTTTCATATTAATATACTGATCAG

GAAGAGGATTCAGTAACATTTGGCTTCCAAAACTGCTATCTCTAATACGG

TACCAATCCTAGGAACTGTATACTAGTTCCTACTTAGAACAAAAGTATCA

AGTTTGCACACAAGTAATCTGCCAGCTGACCTTTGTCGCACCTTAACCAG

TCACCACTTGCTATGGTATAGGATTATACTGATGTTCTTTGAGGGATTCT

GATGTGCTAGGCATGGTTCTAAGTACTTTACTTGTATTATCCCATTTAAT

ACTTAGAACAACCCCGTGAGATAAGTAGTTATTATCCTCATTTTACACAT

GAGGGACCGAAGGATAGAAAAGTTATTTTTCAAAGGTCTTGCAGTTAATA

AATGGCAGAGTGAGCATTCAAGTCCAGGTAGTCATATTCCAGAGGCCACG

GTTTTAACCACTAGGCTCTAGAGCTCCCGCCGCGCCCCTATGCATTATGT

TCACAATGCCAATCTAGATGCTTCCTCTTTTGTATAAAGTCACTGACATT

CTTTAGAGTGGGTTGGGTGCATCCAAAAATGTATAAAAATATTATTATAA

TAAACTTATTACTGCTTGTAGGGTAATTCACAGTTACTTACCCTATTCTT
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GCTTGGAACATGAGCCTGGAGACCCATGGCAGTCCATATGCCTCCCTATG

CAGTGAAGGGCCCTAGCAGTGTTAACAAATTGCTGAGATCCCACGGAGTC

TTTCAAAAATCTCTGTAGAGTTAGTCTTCTCCTTTTCTCTTCCTGAGAAG

TTCTCCTGCCTGCATAACCATTCATTAGGGAGTACTTTACAAGCATGAAG

GATATTAGGGTAAGTGGCTAATTATAAATCTACTCTAGAGACATATAATC

ATACAGATTATTCATAAAATTTTTCAGTGCTGTCCTTCCACATTTAATTG

CATTTTGCTCAAACTGTAGAATGCCCTACATTCCCCCCACCCCAATTTGC

TATTTCCTTATTAAAATAGAAAATTATAGGCAAGATACAATTATATGCGT

TCCTCTTCCTGAAATTATAACATTTCTAAACTTACCCACGTAGGTACTAC

TGAATCCAACTGCCAACAATAAAAAGACTTTTATTTAGTAGAGGCTACCT

TTCCCACCAGTGACTCTTTTTCTACAACTGCCTTGTCAGTTTGGTAATTC

ACTTATGATTTTCTAATGTTCTCTTGGTGAATTTTATTATCTTGTACCCT

CTTTTTTTTTTTTTTTTTTTTTAAAGACAGAGTCTTGCTCTGTCACCCAG

GCTGGAGTGCAGTGGCACGATCTCGGCTCACTGCAAGCTCTGCCTCCCGG

GTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGT

GCCCGCCACCATGCCCGGCTGATTTCTTTTTGTATTTTTAGTAGAGACGG

AGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCC

GCCCGCCTTGGCCTCCAAAGTGCTGGGATTACAGGTGTGAGCTACCGCGC

CCGGCCTATTATCTTGTACTTTCTAACTGAGCCCTCTATTTTCTTTATTT

TAATAATATTTCTCCCCACTTGAGAATCACTTGTTAGTTCTTGGTAGGAA

TTCAGTTGGGCAATGATAACTTTTATGGGCAAAAACATTCTATTATAGTG

AACTAATGAAAATAACAGCGTATTTTCAATATTTTCTTATTCCTTAAATT

CCACTCTTTTAACACTATGCTTAACCACTTAATGTGATGAAATATTCCTA

AAAGTTAAATGACTATTAAAGCATATATTGTTGCATGTATATATTAAGTA

GCCGATACTCTAAATAAAAATACCACTGTTACAGATAAATGGGGCCTTTA

AAAATATGAAAAACAAACTTGTGAAAATGTATAAAAGATGCATCTGTTGT

TTCAAATGGCACTATCTTCTTTTCAGTACTACAAAAACAGAATAATTTTG
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AAGTTTTAGAATAAATGTAATATATTTACTATAATTCTAAATGTTTAAAT

GCTTTTCTAAAAATGCAAAACTATGATGTTTAGTTGCTTTATTTTACCTC

TATGTGATTATTTTTCTTAATTGTTATTTTTTATAATCATTATTTTTCTG

AACCATTCTTCTGGCCTCAGAAGTAGGACTGAATTCTACTATTGCTAGGT

GTGAGAAAGTGGTGGTGAGAACCTTAGAGCAGTGGAGATTTGCTACCTGG

TCTGTGTTTTGAGAAGTGCCCCTTAGAAAGTTAAAAGAATGTAGAAAAGA

TACTCAGTCTTAATCCTATGCAAAAAAAAAAATCAAGTAATTGTTTTCCT

ATGAGGAAAATAACCATGAGCTGTATCATGCTACTTAGCTTTTATGTAAA

TATTTCTTATGTCTCCTCTATTAAGAGTATTTAAAATCATATTTAAATAT

GAATCTATTCATGCTAACATTATTTTTCAAAACATACATGGAAATTTAGC

CCAGATTGTCTACATATAAGGTTTTTATTTGAATTGTAAAATATTTAAAA

GTATGAATAAAATATATTTATAGGTATTTATCAGAGATGATTATTTTGTG

CTACATACAGGTTGGCTAATGAGCTCTAGTGTTAAACTACCTGATTAATT

TCTTATAAAGCAGCATAACCTTGGCTTGATTAAGGAATTCTACTTTCAAA

AATTAATCTGATAATAGTAACAAGGTATATTATACTTTCATTACAATCAA

ATTATAGAAATTACTTGTGTAAAAGGGCTTCAAGAATATATCCAATTTTT

AAATATTTTAATATATCTCCTATCTGATAACTTAATTCTTCTAAATTACC

ACTTGCCATTAAGCTATTTCATAATAAATTCTGTACAGTTTCCCCCCAAA

AAAGAGATTTATTTATGAAATATTTAAAGTTTCTAATGTGGTATTTTAAA

TAAAGTATCATAAATGTAATAAGTAAATATTTATTTAGGAATACTGTGAA

CACTGAACTAATTATTCCTGTGTCAGTCTATGAAATCCCTGTTTTGAAAT

ACGTAAACAGCCTAAAATGTGTTGAAATTATTTTGTAAATCCATGACTTA

AAACAAGATACATACATAGTATAACACACCTCACAGTGTTAAGATTTATA

TTGTGAAATGAGACACCCTACCTTCAATTGTTCATCAGTGGGTAAAACAA

ATTCTGATGTACATTCAGGACAAATGATTAGCCCTAAATGAAACTGTAAT

AATTTCAGTGGAAACTCAATCTGTTTTTACCTTTAAACAGTGAATTTTAC

ATGAATGAATGGGTTCTTCACTTTTTTTTTAGTATGAGAAAATTATACAG
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TGCTTAATTTTCAGAGATTCTTTCCATATGTTACTAAAAAATGTTTTGTT

CAGCCTAACATACTGAGTTTTTTTTAACTTTCTAAATTATTGAATTTCCA

TCATGCATTCATCCAAAATTAAGGCAGACTGTTTGGATTCTTCCAGTGGC

CAGATGAGCTAAATTAAATCACAAAAGCAGATGCTTTTGTATGATCTCCA

AATTGCCAACTTTAAGGAAATATTCTCTTGAAATTGTCTTTAAAGATCTT

TTGCAGCTTTGCAGATACCCAGACTGAGCTGGAACTGGAATTTGTCTTCC

TATTGACTCTACTTCTTTAAAAGCGGCTGCCCATTACATTCCTCAGCTGT

CCTTGCAGTTAGGTGTACATGTGACTGAGTGTTGGCCAGTGAGATGAAGT

CTCCTCAAAGGAAGGCAGCATGTGTCCTTTTTCATCCCTTCATCTTGCTG

CTGGGATTGTGGATATAACAGGAGCCCTGGCAGCTGTCTCCAGAGGATCA

AAGCCACACCCAAAGAGTAAGGCAGATTAGAGACCAGAAAGACCTTGACT

ACTTCCCTACTTCCACTGCTTTTTCCTGCATTTAAGCCATTGTAAATCTG

GGTGTGTTACATGAAGTGAAAATTAATTCTTTCTGCCCTTCAGTTCTTTA

TCCTGATACCATTTAACACTGTCTGAATTAACTAGACTGCAATAATTCTT

TCTTTTGAAAGCTTTTAAAGGATAATGTGCAATTCACATTAAAATTGATT

TTCCATTGTCAATTAGTTATACTCATTTTCCTGCCTTGATCTTTCATTAG

ATATTTTGTATCTGCTTGGAATATATTATCTTCTTTTTAACTGTGTAATT

GGTAATTACTAAAACTCTGTAATCTCCAAAATATTGCTATCAAATTACAC

ACCATGTTTTCTATCATTCTCATAGATCTGCCTTATAAACATTTAAATAA

AAAGTACTATTTAATGATTTAACTTCTGTTTTGAAATGTTGTATACACGT

GGATTTTTTTCTCATTAAATAATAATTCTAGTA
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APPENDIX B

Supplementary Results

B.1 Protein Isoforms Selected by mRMR Feature Selec-

tion in All Pairwise Stages

Table B.1.1: Details about selected protein isoforms from Long’s data set across (T1c-T2)
pair-wise stage.

Transcript ID Chr Description Gene
NM 000110 1 Homo sapiens dihydropyrimidine

dehydrogenase transcript variant 1
DPYD

NM 000710 14 Homo sapiens Bradykinin receptor B1 BDKRB1
NM 001042574 15 Homo sapiens CREB regulated

transcription coactivator 3 transcript
variant 2

CRTC3
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Table B.1.2: Details about selected protein isoforms from Long’s data set across (T2-T2a)
pair-wise stage.

Transcript ID Chr Description Gene
NM 001146192 1 Homo sapiens syntaxin 4, transcript

variant 1
ZMYND12

NM 001272095 16 Homo sapiens Bradykinin receptor B1 STX4
NM 003540 6 Homo sapiens histone cluster 1 H4

family member f
HIST1H4F

NM 004860 17 Homo sapiens FMR1 autosomal
homolog 2

FXR2

NM 032850 15 Homo sapiens zinc finger FYVE-type
containing 19, transcript variant 3

ZFYVE19

NM 145892 16 Homo sapiens RNA binding protein,
fox-1 homolog 1, transcript variant 2

RBFOX1

NM 153274 1 Homo sapiens RNA binding protein,
fox-1 homolog 1, transcript variant 2

BEST4

NM 172350 1 Homo sapiens CD46 molecule, transcript
variant n

CD46

Table B.1.3: Details about selected protein isoforms from Long’s data set across (T2a-T2b)
pair-wise stage.

Transcript ID Chr Description Gene
NM 000681 10 Homo sapiens adrenoceptor alpha 2A ADRA2A

NM 001134473 16 Homo sapiens Gse1 coiled-coil protein,
transcript variant 2

GSE1

NM 001145138 11 Homo sapiens RELA proto-oncogene,
NF-kB subunit, transcript variant 2

RELA

NM 007225 17 Homo sapiens neurexophilin 3 NXPH3
NM 032023 10 Homo sapiens Ras association domain

family member 4
RASSF4

Table B.1.4: Details about selected protein isoforms from Long’s data set across (T2b-T2c)
pair-wise stage.

Transcript ID Chr Description Gene
NM 000029 1 Homo sapiens angiotensinogen AGT
NM 001711 X Homo sapiens Biglycan BGN
NM 032023 10 Homo sapiens Ras association domain

family member 4
RASSF4
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Table B.1.5: Details about selected protein isoforms from Long’s data set across (T2c-T3a)
pair-wise stage.

Transcript ID Chr Description Gene
NM 001198979 1 Homo sapiens small ArfGAP2, transcript

variant 2
SMAP2

NM 003546 6 Homo sapiens histone cluster 1 H4
family member l

HIST1H4L

NM 032875 17 Homo sapiens F-box and leucine rich
repeat protein 20, transcript variant 1

FBXL20

Table B.1.6: Details about selected protein isoforms from Long’s data set across (T2c-T3a)
pair-wise stage.

Transcript ID Chr Description Gene
NM 002154 5 Homo sapiens heat shock protein family

A (Hsp70) member 4
HSPA4

NM 006465 15 Homo sapiens AT-rich interaction
domain 3B , transcript variant 2

ARID3B

NM 024604 12 Homo sapiens RNA polymerase II
associated protein 3, transcript variant 1

RPAP3

NM 182485 4 Homo sapiens cytoplasmic
polyadenylation element binding protein

2, transcript variant B

CPEB2
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Table B.1.7: Details about selected protein isoforms from Long’s data set across (T2c-T34)
pair-wise stage.

Transcript ID Chr Description Gene
NM 001024674 14 lin-52 DREAM MuvB core complex

component
ADRA2A

NM 001023567 15 golgin A8 family, member B, transcript
variant 1

GOLGA8B

NM 001099285 2 Prothymosin, alpha, transcript variant 1 PTMA
NM 001198979 1 small ArfGAP2, transcript variant 2 SMAP2
NM 001256 17 cell division cycle 27, transcript variant 2 CDC27
NM 002437 2 MPV17, mitochondrial inner membrane

protein
MPV17

NM 003387 2 WAS/WASL interacting protein family
member 1, transcript variant 1

WIPF1

NM 001257413 17 IKAROS family zinc finger 3, transcript
variant 12

IKZF3

NM 006214 10 phytanoyl-CoA 2-hydroxylase ,
transcript variant 1

PHYH

NM 016940 21 RWD domain containing 2B , transcript
variant 1

RWDD2B
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