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ABSTRACT 

In anaerobic environments, sulfate-reducing bacteria (SRB) may precipitate sparingly-

soluble, fine-grained sulfides as by-products of dissimilatory sulfate reduction. This bio-

mechanism lends importance to environmental remediation research for its ability to immobilize 

harmful metals from contaminated environments. This research focuses on the effectiveness of 

this mechanism within a novel bioreactor treatment method employed at the Stockton coal mine 

in New Zealand. The bioreactor consists of a matrix of organics and ground mussel shells that 

intercept and neutralize acidic mine drainage (AMD) runoff while also serving as a substrate to 

sustain SRB that enhance removal of harmful dissolved metals. Material collected from the 

bioreactor will be used to provide SRB enrichments in the lab to investigate their ability to 

precipitate biogenic zinc-sulfides (ZnS). This study uses a combination of solution chemistry and 

scanning electron microscopy (SEM) to understand the crystallization kinetics and 

morphological/bacterial relationships during ZnS formation. This, in tandem with RNA-based 

community analysis and investigations into relevant functional genes/metabolic pathways via 

metatranscriptomics will enhance understanding of the key microbial influences in situ. The 

objective of this work is to investigate the microbial causal relationships related to early 

nucleation of biogenic ZnS within a chemical, solid phase, and omics framework. 
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Chapter I: Introduction 

1.1 Acid Mine Drainage  

Acid Rock Drainage (ARD) is a form of weathering and is in some respect pollution when 

it is associated with mining operations and inadequate tailing storage facilities. Both underground 

and surface mining operations require the excavation of large quantities of earth material to 

obtain the desired resource. Substantial amounts of tailings and/or spoils from these processes 

are usually maintained at the site before they can be re-processed or used to refill excavations. 

These materials often contain abundant sulfidic minerals, primarily pyrite (FeS2), that when 

liberated from the sub-surface begin to weather upon exposure to water and oxygen (Equation 

1.1) (Johnson et al. 2005).  

FeS2 +  3.5O2  + H2O  ↔  Fe2+  +  2SO4
2−  +  2H+  (Eq. 1.1) 

Ferrous iron (Fe2+) is further oxidized in these environments to ferric iron (Fe3+) (Equation 1.2) 

which serves as an oxidizing agent for additional pyrite (Equation 1.3).  

Fe2+ + 0.25O2  +H+  ↔ Fe3+  + 0.5H2O   (Eq. 1.2) 

FeS2 + 14Fe3+ + 8H2O  ↔  15Fe2+ +  2SO4
2−  +  16H+ (Eq.1.3) 

Present iron-oxidizing bacteria can exasperate the problem by catalyzing the conversion of 

Fe2+ to  Fe3+, increasing the rate of pyrite oxidation (Blowes et al., 2003; Nordstrom et al., 1997; 

Schrenk et al., 1998; Silverman et al., 1964). The result of this weathering reaction chain is a net 

increase in acidity attributed to the generation of H+ ions (effluent usually characterized by a pH 

of 2-3), which can cause the dissolution of other potentially toxic metals present along the ARD 

pathway, including Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, and Zn (Akcil et al., 2006, Sparks et 

al., 2005). The inherent geology of an area may result in the production of acid drainage naturally, 
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such as in the weathering of iron sulfide-bearing rocks by rainfall and/or running water. In this 

case, local acidification may be termed Acid Rock Drainage. However, Acid Mine Drainage (AMD) 

pollution is more commonly associated with active or abandoned mining operations. This 

discharge can disrupt local ecosystems through decreases in pH, altering of substrate availability, 

and increased metal loading (Salomans 1995) as metals may improperly substitute into vital 

functional pathways or disrupt cycling of biologically significant elements, causing stress to 

terrestrial and aquatic organisms (Flemming et al., 1989). Furthermore, metal concentrations, 

even at the trace level, from AMD can compromise drinking water sources if not contained 

properly (Cravotta et al., 2008; Lefticariu et al., 2015). The production of effluent is also a financial 

burden on mining operators and stakeholders. AMD is a widespread environmental issue. In 1989, 

it was estimated that approximately 19,300 km of streams and rivers, and ca. 72,000 ha of lakes 

and reservoirs worldwide had been seriously damaged by mine effluents (Johnson et al., 2005), 

with Tremblay and Hogan estimating the liability cost of AMD-associated remediation to be in the 

realm of US$100 billion (Tremblay et al., 2001). In Canada, an estimated 750 million tonnes of 

waste rock and 12,500 ha of tailings have the potential to form AMD (Mulligan et al., 2001). 

Research conducted on the South Bay Mine and Mill of Northwest Ontario, for example, 

estimated the effluent of 15 t/y of zinc and other metals in AMD into the nearby lake; a result of 

10 years of mining activity (Kalin 2001). In the Eastern United States, a 1995 EPA report stated 

that an estimated 20,000 km of rivers and streams are polluted by AMD, of which about 90% is 

due to underground abandoned coal mine sites (Ziemkiewicz et al., 2003). It is further estimated 

that there are approximately 200,000 sites in the United States that do, or have the potential to, 

produce acid mine drainage via sulfide ore dissolution (Hochella et al., 1999). 

1.2 Acid Mine Drainage Research and Treatment  
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Early AMD research focused on its formation and detrimental effects and was often 

organism or site-specific (Barnes et al., 1968; Chapman et al., 1983; Koryak et al., 1972; Roback et 

al., 1969; Wassel et al., 1983). Much research has been directed at the microbial communities of 

AMD sites, as groups of acidophilic iron-oxidizing bacteria, as stated previously, are responsible 

for a large portion, if not the majority of the AMD produced at any given site (Baker et al., 2003). 

AMD sites also exhibit relatively low microbial diversity, making them good test subjects for 

metagenomic surveys that seek to unravel the complexities associated with the in situ functioning 

of bacterial communities. As iron redox chemistry is the main driver of microbial metabolism in 

AMD environments, research has concentrated on iron oxidizers such as Acidithiobacillus 

ferrooxidans (formerly Thiobacillus ferrooxidans) and Thiobacillus thiooxidans within the 

Gammaproteobacteria and Leptospirillum ferrooxidans within the Nitrospirae (Denef et al., 2010). 

Various groups within the phyla Actinobacteria, Acidobacteria, Firmicutes, and within the class 

divisions of the Proteobacteria (α, β, γ, and δ) have also been identified that exhibit iron and/or 

sulfur oxidation/reduction potential (Baker et al., 2003; Bond et al., 2000; Tan et al., 2007).  

However, with increased resolution in metagenomic and metatranscriptomic techniques, more 

relevant iron-oxidizing species are being characterized, including those of the Ferrovum genus 

(Hallberg 2010; Hua et al., 2014).  

Publications based on AMD treatment options were not popularized until the early 

1990’s. Dunbabin and colleagues suggested the use of constructed wetlands to sequester metals 

from industrial waste water and mine seepage. Hedin and colleagues researched the treatment 

of low pH AMD using limestone as a neutralizing agent, with Benner and Blowes publishing 

abundant research on permeable reactive barriers (PRBs) for neutralization and metal removal, 

to name a few (Blowes et al., 1995, 2000; Benner et al., 1997, 1999; Dunbabin et al., 1992; Hedin 

et al., 1994). Other research focused on the influence of microorganisms on the remediation of 
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AMD, such as the biogenic formation of low solubility metal precipitates to remove metals from 

waste streams (Urritia et al., 1994; Evangelou et al., 1995). Generally, the two main objectives in 

treating AMD include neutralizing the acidity of the effluent and removing potentially harmful 

metals from solution. Taking these strategies into account, research and literature today have 

divided treatments into two main categories; active treatment and passive treatment.  

Active treatment is a direct approach where the pollution is remediated using chemical 

agents and/or engineered barriers. Chemical and physical processes in active treatment may 

include reverse osmosis, evaporation, and ion exchange, or the regular addition of biocides or 

neutralising agents such as lime (calcium oxide), slaked lime, calcium carbonate, sodium 

carbonate, sodium hydroxide, or magnesium oxide and hydroxide to effluent and effluent 

pathways. Active treatment may also include the use of limestone drains, limestone-bedded 

channels, or water covers to prevent oxidation. These latter approaches buffer the acidity of the 

AMD up to an acceptable level, usually circum-neutral pH of 6.5-7.5, while also promoting the 

precipitation of metal-hydroxides, metal-carbonates, and other insoluble metal-complexes (da 

Silveira et al., 2009; Johnson et al., 2005). These induced chemical reactions have been shown to 

successfully remove metals from solution and increase pH levels. However, they are considered 

more labour-intensive and expensive due to regular maintenance and monitoring.  

Alternatively, passive treatment options seek to take advantage of natural materials to 

buffer acidity and precipitate metals, including the use of constructed or regenerated wetlands, 

artificial bio-reactors, or compost bioreactors/wetlands (Gazea et al., 1996). These systems are 

designed to intercept AMD and treat it through the microbial-catalyzed reactions that occur 

within them. They may be further categorized as in situ or ex situ systems. In situ methods are 

generally less labour-intensive, and have a greater lifespan able to treat more effluent over longer 

time periods (ex. anaerobic wetlands, permeable reactive barriers), whereas ex situ methods use 
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technologies that allow for regulation of the chemical parameters that exist within them (ex. 

sulfidogenic bioreactors) (Sánchez-Andrea et al., 2014). Furthermore, ex-situ systems are more 

applied to achieve metal recovery and are often limited by costs of the substrate used as electron 

donors (Weijma et al., 2001). There is no “one size fits all” approach to implementing a passive 

treatment system, however the common components include an organic carbon source, a 

neutralizing substance, a solid but porous substrate for microbial viability, and a substrate to 

sustain species of sulfate-reducing bacteria (DiLoreto et al., 2016; Vasquez et al., 2016; Weber et 

al., 2015). Costa and Chockalingam have studied the effects of various different substrates for 

passive systems, such as using rice husks, or various matrices such as cereal straw or sand. It was 

concluded in these works that a neutralising material is necessary for incorporation into reactors, 

and that some porous substrates perform better than others (rise husk > cereal straw) 

(Chockalingam et al., 2006; Costa et al., 2008). The presence of sulfate-metabolizing bacterial 

species is also vital. Sulfate-reducing bacteria are an important component of passive systems due 

to their ability to reverse the reactions of AMD with respect to metal mobility, and abundant 

research has implemented these species in the application of passive systems (Luptakova et al., 

2005, 2007, 2012; Neculita et al., 2007). Thus, despite the detriment some bacterial species have 

on AMD environments via the promotion of sulfide dissolution, the application of others may be 

beneficial.  

1.3 The Sulfate-Reducing Bacteria 

Microbes play an important role in passive treatment applications by degrading harmful 

compounds and/or altering the speciation of metals. Bacteria, specifically, are omnipresent in the 

environment, with estimates of prokaryote numbers on earth in the range of 1029 to 1031 

(Kallmeyer et al., 2012; Whitman et al., 1998). This ubiquity poses a tremendous influence over 

the biogeochemical cycling of matter and energy by bacteria. These single-celled organisms 
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exploit the available energy from light and/or redox reactions to drive their cellular metabolism 

and reproduce, transforming organic and inorganic compounds in the process. Within the cycling 

of sulfur, the sulfate-reducing bacteria (SRB) define a diverse taxonomical group of chemotrophic 

bacteria that can utilize sulfate (SO4
2−) to initiate electron-transport phosphorylation, generating 

sulfite (SO3
2−) as a terminal electron acceptor during cellular metabolism, reducing it to sulfide 

species (S−). This dissimilatory sulfate reduction requires an electron donor, which is commonly 

hydrogen (Equation 1.4) or a reduced carbon substrate such as acetate (Equation 1.5), lactate, 

butyrate, and/or propionate which is consequently oxidized (Druschel et al., 2002; Hansen 1994; 

Muyzer et al., 2008).  

SO4
2−  +  4H2  + H+  ↔ HS− + 4H2O  (Eq. 1.4) 

SO4
2−  +  C2H3O2 

−(Acetate) ↔ HS− + 2HCO3
− (Eq. 1.5) 

Although these compounds are favoured in terms of SRB metabolism, species have been shown 

to thrive off a variety of other substrates including sugars, amino acids, aromatic hydrocarbons, 

methanol, and carbon monoxide, to name a few (Hansen 1994; Morasch et al., 2004; Sass et al., 

2002; Stams et al., 1985). SRB thrive mainly in anaerobic environments or microenvironments 

where reducing conditions persist, as a redox potential (Eh) of at least -100 mV is generally 

required for sulfate reduction (Postgate., 1979). However, research has shown SRB to be able to 

survive in aerobic environments as well (Mogensen et al. 2005; Sigalevich et al., 2000). SRBs have 

been detected in the shallow and deep subsurface, fresh and marine water sediments, 

hydrothermal vents, oil fields and hydrocarbon seeps, and wastewater treatment plants (Muyzer 

et al., 2008). Thus, SRB can live within a wide range of environmental tolerances, though favour 

some environments or parameters (such as an abundance of sulfate) over others for sustained 

growth and reproduction.  
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In terms of taxonomy, sulfate-reducing bacteria have been classified within 4 different 

bacterial phyla based on the hypervariable region of the 16S ribosomal RNA (rRNA) gene; the 

Proteobacteria, Firmicutes, Nitrospirae, and the Thermodesulfobacteria, as well as two lineages 

within the Archaea (Castro el al., 2000; Muyzer at al., 2008). Many SRB reside in the class 

Deltaproteobacteria (within the Proteobacteria) and are more involved with dissimilatory sulfur 

cycling, including species within the genus Desulfovibrio, and in the families Desulfobulbaceae and 

Desulfobacteraceae. This is followed by the class Clostridia (within the Firmicutes) which are more 

so diverse organic degraders, including Desulfotomaculum spp. Desulfotomaculum spp. are also 

classified based on their ability to form endospores, and thus can persist in chemically or physically 

hostile environments (Widdel et al., 2006). Sánchez-Andrea and colleagues reviewed the relevant 

groups of SRB that have been identified in reactors for the treatment of AMD. These genera are 

outlined in Table 1.1 along with a list of the known substrates used as electron donors. They 

include species of Desulfobulbus, Desulfobacterium, Desulfohorhadbus, Desulfobacca, 

Desulfomonile, Desulfovibrio, and Desulferella within the class Deltaproteobacteria and 

Desulfosporosinus, Desulfitobacterium, and Desulfotomaculum within the class Clostridia, based 

on 16S rRNA sequence (Sánchez-Andrea et al., 2014). 

1.4 SRB-Metal Interactions 

Coupled with the reduction of sulfur, SRB have been shown to directly and indirectly 

transform a variety of metals. Metalloids, including selenium and arsenic, may be reduced via 

specific or non-specific enzymes. These include cytochromes and hydrogenases which can also 

reduce Fe, Cr, U, Mn, and Pd (Barton et al., 2015). These metals may be reduced from oxidized 

states to an elemental state where they commonly precipitate as nanoparticles within the 

periplasm and/or cytoplasm of cells. This mechanism is of interest in remediation research as an 

avenue for reducing toxic metal loads in solution or the retrieval and extraction of more valuable 
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metals. For example, gold in the oxidized state Au(III) may be reduced to elemental Au(0) by 

Desulfovibrio desulfuricans resulting in nanoparticle precipitation within the extracellular space 

(Creamer et al., 2006). Within the context of AMD research, sulfate-reducing bacteria have 

demonstrated the ability to facilitate the removal of potentially toxic metals from solution 

through the binding of metals with a portion of the reduced sulfur that is the by-product of their 

sulfate metabolism (Foucher et al., 2001; Huisman et al., 2006; Tuttle et al., 1969). This includes 

chalcophilic transition metals such as Cu, Zn, Cd, Ag, Hg, As, and Pb. Dissolved metals are 

kinetically favoured to react with the hydrogen sulfide diffused from the cells to form sparingly 

soluble fine-grained metal-sulfides in these environments according to the generalized Equation 

1.6, where M2+ represents a dissolved metal and MS represents the metal-sulfide.  

M2+ + HS− ↔ MS +  H+  (Eq. 1.6) 

Such is the case in the formation of zinc-sulfide, for example (Equation 1.7).  

Zn2+ +  HS− ↔ ZnS +  H+  (Eq. 1.7) 

These reactions may also occur with S2- as the sulfide species, in which case H+ would not be 

generated. This indirect biomineralization mechanism makes these species an attractive 

component of passive treatments for chalcophilic metals due to the low solubility of metal sulfides 

in relation to hydroxides and carbonates (Table 1.2). Furthermore, AMD-affected environments 

generate high sulfate concentrations, making them a suitable (although undesirable) natural 

analog for the proliferation of sulfate-utilizing prokaryotes. As stated previously, SRB are applied 

in passive systems in tandem with organic substrates which they utilize as electron donors, and 

neutralizing agents, which create a suitable environment for sulfate reduction. Sulfide speciation 

is highly controlled by pH (Figure 1.1) thus it is essential to buffer local pH to facilitate metal sulfide 

formation and precipitation. Low pH values (< 4), may decrease the rate of H2S dissolution, and 
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thus the rate of reaction of metals with HS- or S−,  as well as increasing the solubility of metal 

sulfides (Lewis et al., 2010).  

Of the metals of concern, zinc (Zn) has attracted much attention in the avenues of AMD 

research. Although less harmful in its metallic form, Zn can be toxic in relatively low 

concentrations upon reaction with acids and/or oxygen and is prevalent in AMD waste, and 

whereas trivalent metal species including Al3+or Fe3+may undergo reduced mobility due to 

hydroxide precipitation with an increase in pH, divalent Zn may remain in solution under the same 

chemical circumstances (Radhika et al., 2006). Furthermore, Zn can be a relatively safer 

representative of more toxic metals, making it an ideal candidate for biogenic sulfide studies 

(Azabou et al., 2007). Past research has focused on the formation of nanometer to micrometer-

scale, zinc sulfide minerals because of HS− liberation from SRB in regions of high sulfate and zinc 

concentrations. Zbinden and colleagues observed zinc sulfide biogenesis in the tubes of pompeii 

worms living at deep-sea hydrothermal vents, where mineralization occurred in association with 

filamentous bacteria. The mechanism behind ZnS formation was speculated to be a result of either 

bacterial sulfate reduction or chemical processes, as zinc sulfide precipitation may occur 

abiotcially at high temperatures (Zbinden et al., 2001). Mineral structure was determined to be 

analogous to that of the zinc sulfide polymorphs wurtzite and sphalerite (Zbinden et al., 2003). 

Alternatively, natural biofilms collected from the flooded Piquette mine of Wisconsin 

(approximately 8-10 °C) where spp. within the family Desulfobacteriaceae were detected, have 

been shown to contain abundant bacterially-derived spherical ZnS mineral precipitates. The water 

was modest with respect to zinc concentration (< 5 ppm Zn), however carbonate host geology 

provided a favourable circumneutral pH environment for sulfide mineralization. This 

phenomenon suggests that SRB under these natural environmental conditions can remove metals 

from solution as well as serving as important players in the formation of low-temperature ZnS ore 
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deposits (Druschel et al., 2002; Labrenz et al., 2000). Moreau et al. showed that biogenic zinc 

sulfides from the same site precipitate initially as nanocrystalline sphalerite and wurtzite that 

concentrate into 1-5 micron-scale spheroids (Moreau et al., 2008). These spheroids were 

suspected to grow via intermittent aggregation of the ZnS nanoparticles, as indicated by 

disordered stacking sequences, potentially during episodic sulfate reduction. It has been 

hypothesized by these authors and others that both organics and cell wall constituents play a role 

in mineral precipitation, however, it is unknown to what extent these materials serve as growth 

templates (Gondikas et al., 2012; Moreau et al., 2008; Yoon et al., 2012). Laboratory studies using 

both mixed cultures and pure strains of SRB have found similar results to the natural biofilms. In 

batch experiments performed by Castillo and colleagues, zinc concentrations fell from 260 mg L-1 

to below detection limits in the presence of a mixed inoculum of SRB from metal-laden mining 

districts of the Iberian Pyrite Belt (IPB), Portugal, corresponding with the formation of ZnS 

precipitates of sphalerite and wurtzite. It was determined that the use of SRB could reduce the 

mobility of all metals in AMD-affected landscapes, even in the presence of sulfate and zinc 

concentrations up to 2000 and 260 mg L-1, respectively (Castillo et al., 2012). The spore-forming 

SRB Desulfotomaculum nigrificans has also been exhibited to ameliorate Zn at 210 mg L-1, a 

concentration once considered to be fatal, via bioprecipitation and biosorption, providing insight 

into the importance of metal-tolerant species (Radhika et al., 2006). A similar lab study found 

mixed SRB cultures enriched from wastewater treatment sludge were capable of removing over 

95% of dissolved zinc from concentrations up to 150 mg L-1 (Azabou et al., 2007). Peltier et al. 

assessed the stability and reactivity of zinc sulfides formed by SRB of the Desulfovibrio sp. A 

decrease in aqueous zinc concentration was observed in batch experiments and biogenic zinc-

sulfides were more resistant to re-oxidation than chemically produced species (Peltier et al., 

2011).  
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1.5 Omic Approaches in AMD Studies  

Observations from natural environments, as well as research from mixed cultures and/or 

pure strains of SRB enriched from AMD regions have demonstrated the effectiveness of biotic 

sulfide generation in metal-removal pathways, especially at low temperatures where sulfide 

generation may be thermodynamically constrained. However, rarely in nature do individual 

microbial groups function alone; rather there exists a complex network of substrate sharing 

and/or competition between different bacterial guilds, often partitioned by distinct chemical or 

redox zones. SRB will coexist with multiple species, contending for carbon substrates with 

methanogens and homoacetogens, and often relying on the degradation products of amino acids, 

sugars, and long-chain fatty acids by fermentative bacteria (Muyzer et al., 2008; Ozuolmez et al., 

2015). Few studies have explored the interactions of SRB with other species and associated metal-

sulfide precipitation (Alexandrino et al., 2014; Zhang et al., 2016), thus a research gap exists in 

this context. If the goal of passive treatment systems for AMD is to develop a pseudo-natural 

environment suitable for prolonged SRB activity and concurrent metal immobilization, then the 

bacterial community must be better quantified and understood. Phylogenetic approaches utilizing 

specific genes to infer taxonomy, such as the bacterial 16S rRNA gene, are a valuable part of 

unravelling microbial diversity (Baker et al., 2003; Baldwin et al., 2015; DiLoreto et al., 2016; Tan 

et al., 2007) however, combining these techniques with shotgun sequencing approaches resulting 

in meta data sets (metagenomics or metatranscriptomics for total DNA or RNA, respectively) 

provides a more powerful, holistic analysis of the in-situ functioning of a bacterial community. It 

is therefore beneficial for geochemists to expand their techniques into the “omics toolbox” to 

investigate these interactions and improve and develop reliable treatment technologies. Such 

endeavours have recently been undertaken in AMD-affected landscapes (Bertin et al., 2011; Chen 

et al., 2016; Hua et al., 2014) yet seldom have they been applied to remediation technologies for 
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AMD, despite many reviews stating the potential of such research (Dick et al., 2015; Fraser et al., 

2015; Garris et al., 2016; Moran et al., 2009; Moran et al., 2013; Simon et al., 2011). This is not 

surprising, as sequencing platforms, bioinformatics pipelines, and constructed libraries are only 

now being optimized for large microbial meta data sets. These innovations are changing the way 

microbial ecologist examine how bacteria influence their environment; from a focus on taxonomy 

(who is there) to an emphasis on function (what are they doing). 

1.6 The Mussel Shell Bioreactor  

 As stated previously, passive treatment systems for acid mine drainage require a source 

of organic carbon, a neutralizing substance, and a solid substrate for bacterial adhesion and 

sustenance. Ease of construction can be increased if the materials selected are sourced locally 

and are readily available. An innovative passive bioreactor treating AMD at the Stockton Coal 

Mine of New Zealand fits all these criteria. The Stockton mine resides in the Brunner Coal Measure 

(BCM) on the South Island of New Zealand, where sulfidic coal has a high Fe leaching and acid-

generating potential due to the hydrolysis and oxidation of pyrite (FeS2). Al liberation is 

prominent, with release from micaceous and feldspathic-rich rocks, as well as liberation of Cu, Ni, 

Zn, Cd, As, Pb, and Mn (Black et al., 2005; McCauley et al., 2010). The reactive mixture treating 

metal-laden effluent is ground mussel shell material composed primarily of green-lipped mussels, 

otherwise waste from the seafood industry, and is termed a Mussel Shell Bioreactor (MSB) 

(DiLoreto et al., 2016). The material has a high calcium carbonate (CaCO3) content for 

neutralization of acidic mine effluent as well as a high organic content (5-12 wt%) for bacterial 

metabolism, including sulfate reduction (Crombie et al., 2011; Trumm et al., 2010). The bioreactor 

(Figure 1.2), which consist of 3 cells, intercepts drainage from the Whirlwind seep at the Stockton 

site. The first cell allows for the settling of sediment, before effluent is drained into the second 

reactive cell, consisting of a trapezoidal pit filled with mussel shell waste product, where acid 
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neutralization and metal removal takes place before outflow to a third settling pond. Assessment 

of the MSB performance demonstrates removal efficiencies of up to ~99% of dissolved Al and Fe, 

and >90% Ni, Tl, and Zn, while increasing drainage pH from 3.4 to 8.3 (DiLoreto et al., 2016). Over 

time, a geochemical gradient developed with depth in the bioreactor, with an oxidizing zone of Al 

and Fe oxyhydroxide precipitates overlying increasingly reducing layers characterized by 

amorphous Al hydroxides and sulfides. Microbial-induced sulfide generation is theorized to 

contribute to metal removal in the anoxic layers of the MSB, as prior 16s rRNA amplicon analysis 

based on extracted DNA sequences detected the presence of a sulfate-reducing community in this 

zone of the mussel shell bioreactor (DiLoreto et al., 2016). Eh and pH values for pore water from 

reduced layers (<-55 mV and 7.1-8.3, respectively) also eluded to bacterial sulfate reduction, as 

bicarbonate (HCO3
−) is a common by-product of fatty acid oxidation leading to local acidity 

decrease (Equation 1.5).    

1.7 Thesis Overview 

1.7.1 Objectives and Hypotheses  

Knowledge of the positive contributions of SRB to passive treatment systems for AMD 

have been thoroughly compiled over the past decade of research. However, as sequencing and 

software technologies allow for higher throughput, more detail can be revealed about the 

interactions between bacterial groups that permit favourable reactions for remediation. This new 

information can then be combined with traditional chemical approaches to track the fate of 

metals and other parameters of interest. This thesis will address the limited and disparate 

information on multi-bacterial species and function in a passive AMD treatment system, with 

emphasis on the establishment of sulfate-reducing genera and concurrent metal-removal by 

sulfide biogenesis. The bacterial inoculum used in this study was derived from the Mussel Shell 

bioreactor of the Stockton Coal Mine of New Zealand; a currently functioning passive treatment 
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technology. Selective enrichments from the chemically reduced layer (e.g. zone of anoxia) of the 

bioreactor were used to seed batch experiments to measure the chemical dynamics and microbial 

function operating in the MSB. In these experiments the presence and absence of zinc and 

Thallium were measured, specifically. Both these metals are common elements in AMD effluent 

and are a concern at the Stockton site, thus are appropriate for chemical tracking. Data collected 

will be divided into two chapters in this dissertation.  

The first data chapter of this thesis will focus primarily on physico-chemical and solid 

phase measurements and observations and will test the following three predictions:  

1) Over time, microbial treatments will exhibit a decrease in dissolved sulfate concentration 

and concurrent production of hydrogen sulfide due to the metabolism of sulfate-reducing 

bacterial species within the community. This will coincide with zinc-sulfide mineral 

precipitation in Zn-amended treatments, resulting in net metal removal of Zn as the 

primary chalcophilic metal, and Thallium as a trace element.  

2) Bacterial activity will be lessened in metal-supplemented treatments compared to 

designated controls due to toxicity effects on the bacterial community. 

3) Sulfide precipitates within batch experiments will be lower in abundance compared to 

raw bioreactor material. It is predicted that present organics from the raw bioreactor 

material will provide greater surface area and physical templates for metal nucleation and 

eventual mineral precipitation.  

These predictions are summarized as the following respective null hypothesis statements: 

1) Changes in sulfate, sulfide, and metal concentrations will not be significantly different 

between abiotic and biotic treatments. 
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2) Bacterial activity will not be significantly different between treatments amended with 

metals and non-amended treatments.  

3) Any zinc sulfide mineral precipitation in batch experiments will be similar in quantity, 

structure, and composition to minerals observed in raw bioreactor material  

To test these hypotheses, the experiment will consist of periodic sampling of experimental 

batches over 37 days (888 hours) while monitoring relevant chemical parameters (Eh, pH) and 

track the behaviour of key chemical species during cell growth and acclimatization, including 

aqueous Zn and Tl, and the active redox pair sulfate (SO4
2−) and sulfide (HS−) which will serve as 

a proxy for biological sulfate reduction (Equations 1.4, 1.5). Chemical analysis will be performed 

in tandem with electron microscopy to characterize and confirm potential metal sulfide 

precipitation as a consequence of microbial sulfur metabolism in both experimental batches and 

raw bioreactor material.  

The second data chapter will focus on taxonomy and gene functioning of the bacterial community 

and will test the following predictions: 

1) Sulfate-reducing genera will comprise a significant portion of the active bacterial 

community. 

2) The potential for translation of key sulfate-reducing enzymes derived from dissimilatory 

sulfate reduction genes will be detected in tandem with increased sulfide production and 

concurrent zinc sulfide precipitation.  

These predictions are summarized as the following respective null hypothesis statements: 

1) Sulfate-reducing genera will not comprise a significantly different proportion of the 

bacterial community than any other genus.  
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2) Dissimilatory sulfate reduction genes transcripts will not change significantly throughout 

the duration of the experiment.  

To test these hypotheses, community RNA will be extracted periodically during the experiment 

and used for targeted amplicon sequencing of the 16S subunit of bacterial rRNA, providing 

snapshots of the metabolically active groups present during early substrate use/competition and 

community establishment. The approach of using rRNA for community analysis is novel compared 

to the traditional use of DNA, as it can provide a finer-tuned investigation of the functionally-

relevant species. The advantages, as well as the biases of an RNA-bases taxonomic approach will 

be discussed in the context of the experiment, and extrapolated to the successful implementation 

and refining of passive treatment technologies. In addition to community characterization, 

extracted RNA will be analyzed through metatranscriptomics; the shotgun sequencing of total 

functional messenger RNA (mRNA) present. This approach will provide insight into the gene 

pathways that have been transcribed and activated within the bacterial population. 

In conclusion, this dissertation aims to combine genomic information with chemical and 

microscopy data under the overarching goal of capturing the events, both physical and biological, 

leading to metal immobilization by a community enriched from a passive treatment technology 

treating Acid Mine Drainage.  
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Deltaproteobacteria 
(Genera) 

Electron donors  Complete (C) 
or Incomplete 
(I) 

Reference(s)  Notes 

Desulfobulbus Hydrogen, Acetate, 
Propionate, Lactate, 
ethanol, mono and 
disaccharides  

I Muyzer 2008; Castro 2000; 
Sass 2002; Hansen 1994 

 

Desulfobacterium Hydrogen, Phenol, 
Acetate, Butyrate, 
Ethanol, Acetone, 
Propionate, Aniline, 
Amino Acids 

C Jansen 1995; Castro 2000, 
Rees 1997 

 

Desulforhadbus Acetate  Elferink 1995  

Desulfobacca Acetate C Elferink 1999  

Desulfomonile Hydrogen, Acetate, 
lactate, pyruvate, 
benzoates, formate  

C Sun 2001, DeWeerd 1990  

Desulfovibrio Hydrogen, ethanol, 
diols, formate, lactate, 
pyruvate, malate and 
succinate, choline, 
benzaldehydes, 

I Muyzer 2008, Castro 2000, 
Hansen 1994 

Model organisms for 
research, genome only 
40% size of E. coli, 
probably the majority of 
spp. of SRB classified 

Desulfurella Lactate, hydrogen, 
acetate, fumarate, 
malate, pyruvate, 
propionate 

C Kaksonen 2004, 
Miroshnichenko 1998  

Thermal environments, 
not known to reduce 
sulfate. 

Firmicutes (Genera)     

Desulfosporosinus  Lactate, fructose, 
glycerol, H2, pyruvate, 
butyrate, yeast 
extract, 

I/C Sanchez Andrea 2014, Spring 
2006 

Commonly in low pH 
reactors, spore-forming; 
fermentation of lactate  

Desulfitobacterium  Lactate, formate, 
pyruvate, H2, 

I/C Sanchez-Andrea 2014; Spring 
2006 

Commonly in low pH 
reactors, spore-forming 

Desulfotomaculum  Lactate, pyruvate, H2, 
ethanol, formate, 
malate, succinate 

I/C Muyzer 2008; Radhika, 2006 Incomplete oxidation of 
substrate to acetate is 
common (acetyl-coA 
pathway) 

Table 1.1: Relevant genera of sulfur-utilizing bacteria recognized in bioreactors treating acid mine 

drainage (AMD). In column three, “C” or “I” represents the ability to completely or incompletely 

oxidize carbon substrates to acetate, respectively. 
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Metal Carbonate Hydroxide Sulfide  

Cu2+ -9.8 -19.7 -35.9 

Fe2+ -10.5 -15.1 -18.8 

Fe3+ NA -37.4 NA 

Mn2+ -10.7 -12.7 -13.3 

Ni2+ -8.2 -14.7 -18.5 

Pb2+ -13.1 -14.9 -27.5 

Zn2+ -10.8 -16.9 -24.5 

Table 1.2: log Ksp values of carbonate, hydroxide, and sulfide 

species of metals associated with acid mine drainage  

Figure 1.1: Sulfide Speciation Dependence on pH (Lewis et al., 2010). 
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Figure 1.2: Overhead view of the Mussel Shell Bioreactor (MSB) at the Stockton Coal Mine of the 

South Island of New Zealand. A, B, and C, represent the 1st sediment retention pond, the 2nd 

reactor cell comprising the mussel shell material, and the 3rd settling pond, respectively. D) cross 

section on the MSB in cell B, exhibiting the upper oxic layers overlying sequentially more 

chemically reduced layers with depth. 
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Chapter II: Physico-Chemical Investigations During bacterially-mediated ZnS precipitation 

2.1 Introduction 

 Reducing dissolved metal concentrations is one of the primary objectives in the 

remediation of Acid Mine Drainage (AMD), regardless of the treatment approach (Akcil et al., 

2006; Johnson et al., 2005). Traditional active treatment options which apply neutralizing agents 

are effective in both increasing drainage pH and facilitating the removal of trivalent metals such 

as Fe3+or Al3+via the precipitation of metal hydroxides and/or metal carbonates. Alternatively, 

the induced precipitation of sulfide minerals is more effective for immobilization of divalent 

metals, such as copper, nickel and zinc, due to their lower solubility.  Thus, these reactions are 

more favourable when low cost and low maintenance passive system approaches are taken for 

AMD treatment (Johnson et al., 2005; Sheoran et al., 2010; da Silveira et al., 2009; Luptakova et 

al., 2012; Wei et al., 2005). The most effective means of divalent metal precipitation in this context 

of passive treatment systems is via reaction with biologically-generated hydrogen sulfide, shown 

in Equation 2.1, where the aqueous metal (M2+) reacts favourably with the hydrogen sulfide 

species (HS- or S2-) to form insoluble metal-sulfides: 

 M2+ + HS− ↔ MS(s) +  H+   (Eq. 2.1) 

One of the biological catalysts of hydrogen sulfide production is sulfate-reducing prokaryotes, 

commonly sulfate-reducing bacteria (SRB) that generate sulfide species as a by-product of the 

reduction of sulfate, coupled with the oxidation of hydrogen (Equation 2.2) or fatty acids 

including, but not limited to, acetate, lactate, butyrate, or propionate (Equation 2.3) (Muyzer et 

al., 2008). 

SO4
2−  +  4H2  + H+  ↔ HS− + 4H2O  (Eq. 2.2)  
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SO4
2−  +  C2H3O2 

−(Acetate) ↔ HS− + 2HCO3
− (Eq. 2.3) 

Past recent studies have concentrated on the immobilization of Zn through this biotic-driven 

mechanism via the precipitation of zinc sulfide (ZnS) minerals by SRB guilds (Equation 2.4). 

Zn2+ +  HS− ↔ ZnS +  H+   (Eq. 2.4) 

Natural examples of this phenomenon have been exhibited in the flooded Piquette lead-zinc mine 

in Wisconsin, where biofilms rich in ZnS mineral precipitates were shown to have a strong 

correlation with SRB communities in the family Desulfobacteriaceae. High dissolved metal 

concentrations, circumneutral-pH buffering by carbonate host rocks, and episodic bacterial 

sulfate reduction were believed to drive ZnS generation in this system (Druschel et al., 2002; 

Labrenz et al., 2000; Labrenz et al., 2004). The mineralized precipitates formed in this 

environment consisted of 1-5 micron-sized spherical aggregates comprising nanocrystalline 

lattices of sphalerite and wurtzite (Moreau et al., 2008). Individual nano-particles were often 

associated with cells and organics comprising the extracellular polymeric substance (EPS) of the 

biofilms, however, it is still unclear to what extent these moieties serve as mineralization and/or 

growth templates, and whether this mechanism is similar in engineered passive treatment 

systems. Yoon et al. observed comparable mineral structures in peatlands and detected a variety 

of SRB as facilitators of sulfide precipitation (Yoon et al., 2012). Other laboratory-based studies 

have isolated enrichments of SRB’s from abandoned mining districts and developed batch 

experiments to examine the potential for ZnS mineral formation and concurrent metal removal. 

In one study, investigators reported that zinc concentrations decreased from 260 mg L-1 to below 

detection limits in the presence of a mixed inoculum of metal-resistant SRB collected from mining 

districts of the Iberian Pyrite Belt, Spain, correlating with the formation of sphalerite and wurtzite 

(Castillo et al., 2012). Other studies have shown that mixed SRB cultures are not only  capable of 
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reducing high dissolved zinc concentrations (e.g. >150 mg L -1), but that the sulfides produced 

appear to be more resistant to re-oxidation than their abiotically-produced counterparts (Azabou 

et al., 2007; Peltier et al., 2011; Utgikar et al., 2002). 

SRB have been applied in passive AMD treatment technologies at various scales over the 

last 30 years, including ex-situ sulfidogenic bioreactors (Christensen et al., 1996; Foucher et al., 

2001; Huisman et al., 2006; Neculita et al., 2007; Radhika et al., 2006; Sánchez-Andrea et al., 2014; 

Weijma et al., 2002) and in-situ anaerobic reactors (Blowes et al., 2000; Burns et al., 2012; Eger et 

al., 1994; Papirio et al., 2013; White and Gadd., 1996). However mining environments , specifically 

AMD environments, can vary in their site characteristics, including local geology and mineralogy, 

climate, pH, redox conditions, sulfate, salinity, flow rates, particle size, and thermal conductivity 

(Amos et al., 2015; Jamieson et al., 2015) and there is agreement across the scientific community 

that the passive treatment system implemented should take into account these parameters for a 

successful design (Hedin et al., 1994 Luptakova et al., 2012; Skousen et al., 1997). Furthermore, 

review and monitoring of the performance of passive systems and mechanistic function, after 

implementation, are integral parts of the remediation plan. 

This research builds on existing knowledge of a passive in situ technology being used at 

the Stockton Coal Mine of New Zealand. In this case a novel approach using mussel shells as the 

primary component of a passive treatment system has been implemented to buffer the influent 

acidity and serve as a carbon substrate to sustain communities of SRB.  At this site, crushed green 

lipped mussel shell material was used to fill in a trapezoidal pit designed to intercept acidic coal 

mine drainage with the goals of reducing metal loads, primarily Al, Fe, Ni, Tl, and Zn, and 

decreasing influent pH (DiLoreto et al., 2016a,b). Analysis has shown that a geochemical gradient 

develops within the bioreactor, going from oxic, to suboxic, to reducing with depth. The redox 

change is concomitant with distinct reaction layers, including an upper allochthonous sediment 
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zone, an iron-rich oxidized zone, an aluminum-rich zone, and a lower, unreacted shell material 

zone at the bottom (DiLoreto et al., 2016a). Bacterial communities in the reducing zone are 

hypothesized to contribute to metal removal (primarily Zn, Tl, and Ni) via biogenic sulfide 

precipitation, however this biotic mechanism has yet to be explored thoroughly within the 

bioreactor.  

This data chapter will assess the physico-chemical potential of enriched bacterial 

communities to decrease Zn and Tl loads, metals of concern at the Stockton site, in batch lab 

experiments. Material from the reduced layers of the Stockton mussel shell bioreactor will 

provide the source of the bacterial inoculum, as this is the region where SRB species have been 

detected (DiLoreto et al., 2016b). It is hypothesized that enrichments from the bioreactor will 

harbour active SRB that will lower initial Zn and Tl concentrations in lab experiments, and that this 

will occur in tandem with observable precipitation of biogenic Zn-sulfide minerals, in accordance 

with afore mentioned research investigations. In parallel with lab-based batch experiments, raw 

material from the bioreactor layer of interest will be analyzed visually and chemically for evidence 

of in-situ ZnS formation, and compared to lab-generated products. To our knowledge, this is the 

first research to investigate SRB-mediated metal-sulfide precipitation as a component of metal 

reduction in both an established passive treatment system as well as in lab experiments. 

Furthermore, ZnS precipitation has only been investigated in either mixed or pure cultures of SRB. 

This study will assess zinc mineralization by SRB within a community of various bacterial groups 

(not SRB exclusively) in a scenario more analogous to a natural, or in the case of passive treatment 

systems for AMD, pseudo-natural environment. 

2.2 Methods 

2.2.1 Site Characterization and Sample Collection 
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 The mussel shell bioreactor (MSB) is located on the west coast of the South Island of New 

Zealand where it is implemented at the opencast Stockton Coal Mine at -41.6606°N and 

171.8757°E. The mining region overlays the Brunner coal Measure (BCM) which is characterized 

by up to 1 wt. % sulfur, with overlying mudstones containing up to 5% pyrite (FeS2). The area 

experiences an average annual temperature of   8̴°C and receives approximately 7000 mm y-1 

rainfall, contributing to Acid Mine Drainage (AMD) production. Numerous AMD seeps are 

associated with excavated overburden at the Stockton site (McCauley et al., 2010). The MSB in 

question intercepts AMD effluent from a source termed the Whirlwind Seep, which generates 

drainage of pH  3̴.3 containing high concentrations of Fe, Al, Zn, Ni, Mn and trace metals including 

As, Cd, Cu, Pb, and Tl (Pope et al., 2010; Pope et al., 2015). The treatment system consists of three 

cells; a primary sediment settling pond, a second cell comprising the MSB where effluent is 

treated, and a third cell for aeration and sediment settling before discharge (Figure 1.2). The MSB 

cell consists of a trapezoidal pit filled with   3̴62 T of green-lipped mussel shell waste, a product of 

the local seafood industry. The mussel shell material provides a source of alkalinity, with the 

accompanying shell meat and organics serving as a carbon substrate for bacterial communities. 

Effluent flows from top down through the bioreactor and exits via a central PVC pipe drain 

(DiLoreto et al., 2016). Sampling was performed on the bioreactor cell after 20 months of 

operation in June 2014, with sediment samples being taken from several depths of the reactor, 

representing the various chemical and redox zones. Material from the reduced layer of the 

bioreactor was used as a source for bacterial enrichments. The zone is characterized by an Eh of 

less that -55 mV and pH ranging from 7.1 to 8.3, with targeted extractions showing a strong 

association with metal sulfides of Zn, Tl, and Ni. Past 16S rRNA amplicon sequencing analysis based 

on extracted DNA confirmed the presence of sulfate-reducers in the layer.  

2.2.2 Bacterial Community Enrichment Conditions  
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A combined 5 g of material was taken from the reduced layer of the mussel shell 

bioreactor and placed into an autoclaved 115 mL glass crimp-top bottle. Postgate Medium C was 

autoclaved, adjusted to pH 7.5, and bubbled under Nitrogen gas and used to fill the crimp vial 

leaving zero headspace to limit oxygen diffusion and serve as an analogue of the sulfate-rich and 

circumneutral chemical environment of the reduced zone of the bioreactor. The medium contains 

per litre of deionized water 1.0 g NH4Cl2, 0.06 g CaCl2 ∙ 2H2O, 0.5 g KH2PO4, 4.5 g Na2SO4, 0.06 

g MgSO4 ∙ 7H2O, 0.004 g FeSO4 ∙ 7H2O, 0.3 g Sodium Citrate, 1.0 g Yeast Extract, and 6.0 g Sodium 

Lactate (Postgate, 1979). The enrichment bottle was sealed with a PTFE/silicon headspace septa 

and left in an anaerobic chamber for 11 days at room temperature and periodically monitored for 

cell growth by counting using using a haemocytometer and a Leica CTR fluorescent light 

microscope, and for hydrogen sulfide production using a H2S-500 Unisense microsensor which has 

a HS- detection limit of < 20nM. Samples were removed for analysis with a sterile 23GTW needle 

on a 10 mL syringe. Cells were deemed metabolically active after seeing steady increases in both 

cell numbers (concentration of ~7.0×107 − 2.0 ×108 cells mL−1) and hydrogen sulfide 

production analogous to prior growth curve observations.  Aliquots were then removed for 

addition to precipitation experiments.  

2.2.3 ZnS Precipitation Experiments  

 The ZnS precipitation experiments consisted of 6 treatments, each performed in triplicate 

in separate 120 mL glass crimp-top bottles.  Treatments for the precipitation experiments are 

summarized in Table 2.1, and included; “Abiotic control” containing 120 mL Postgate Medium C, 

“Abiotic Zn” containing 120 mL Postgate Medium C with 50 mg L -1  Zn, “Biotic Control” containing 

115 mL Postgate Medium C with 5 mL of bacteria,  “Biotic Zn” containing 115 mL Postgate Medium 

C, 50 mg L -1 Zn, with  5 mL of bacteria, “Biotic ZnTl1” containing 115mL Postgate Medium C, 50 

mg L -1 Zn,  5 mL bacteria, and 1 mg L -1 Thallium, and “Biotic ZnTl25” containing 115 mL Postgate 
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Medium C, 50 mg L -1 Zn,  5 mL bacteria, and 25 mg L -1 Thallium. Fresh Postgate Medium C was 

autoclaved, adjusted to pH 7.5, and bubbled under Nitrogen gas before transfer to the crimp-top 

bottles. 5 mL bacterial aliquots were taken from the enrichment culture, and Zn was added as 

ZnSO4 · 7H2O. A concentration of 50 mg L -1 zinc was chosen as an approximate to ensure a high 

enough concentration for ZnS precipitation while being below a limit that would be lethal to the 

bacteria. Thallium was added as Tl2S04 and concentrations of 1 mg L -1 and 25 mg L -1 were chosen 

as a low and high baseline, respectively. Bottles were sealed with PTFE/silicon headspace septum 

and stored in an anaerobic chamber. The experiment was carried out over 888 hours (37 days) 

with sampling points carried out from 0-480 hours, then once at 888 hours. A larger proportion 

of sampling was weighted towards the first 96 hours of the experiment to characterize solution 

chemistry and gene expression through the exponential growth phase, where cellular metabolism 

was expected to be most pronounced.   

2.2.4 Analytical Methods 

  At each sampling time point, analysis was performed for pH, redox potential (Eh), 

hydrogen sulfide, sulfate, and cell counts, and samples were taken for total RNA extraction as well 

as for metals analysis by inductively coupled plasma-optical emission spectroscopy (ICP-OES). pH 

and Eh were measured using an Orion 3 Star Meter with a 9107BN Low Maintenance pH Triode 

and a 9179BNMD Low Maintenance ORP Triode, respectively (Thermo Scientific). 5 mL of liquid 

was removed from crimp-top bottles with a sterile 23GTW needle on a 10 mL syringe and 

transferred to a sterile test tube where measurements were performed immediately. Hydrogen 

sulfide was measured using the same removal procedure with a H2S-500 Unisense microsensor. 

Sulfate concentrations were measured using the Sulfate protocol for the Orion AQUAfast AQ4000 

Colorimeter. 2 mL of sample was removed and filtered through a 0.2 µm nylon membrane filter 

and acidified with 1% HNO3 and stored for metal analysis by ICP-OES. Cell counts were performed 
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as stated previously, but performed only on the Biotic Control, Biotic Zn, and Biotic ZnTl25 

treatments. All treatments were performed and measured in triplicate.  

2.2.5 RNA Extraction and Quantitative PCR 

A total of 5 mL of sample was removed at time 0, 24, 96, 288, 360, and 888 hours and 

immediately flash frozen in liquid nitrogen in cryo tubes, and stored at - 80°C until nucleic acid 

extraction. RNA was extracted using the PowerSoil Total RNA Isolation Kit (MoBio Laboratories 

Inc. Carlsbad, CA, USA, Cat No:12866-25) following the manufacturer’s instructions. After 

extraction, samples aliquots were quality control checked for concentration and purity on an 

Agilent 2100 Bioanalyzer, with samples showing good quality (RNA Concentration >100 ng µl-1, 

RNA Integrity Number (RIN) >6.5) being chosen for further processing. RNA was converted to 

cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions using 10 µL of RNA sample. cDNA products were used in qPCR runs 

targeting the bacterial V5-V6 variable SSU rRNA region of the 16S rRNA gene, with forward primer 

V5F (5 –ACCTGCCTGCCGATTAGATACCCNGGTAG- 3) and reverse primer V6R (5 –

ACGCCACCGAGCCGACAGAGCCATGCANCACCT- 3). Total reaction volumes consisted of 20 µL, 

containing 10 µL POWER SYBR Green (Applied Biosystems), 0.5 µL of each primer, 1.0 µL of cDNA, 

and 8.0 µL dH2O. Cycle threshold (Ct) values were used to compare the relative amounts of the 

target gene across samples. Ct values represent the number of qPCR cycles until a signal is 

detected, thus a lower Ct value represents higher initial concentrations of the target gene.            

2.2.6 Microscopy 

Samples for Scanning Electron Microscopy (SEM) were removed from precipitation 

experiments in the same manner as for solution chemistry analysis and placed on glass slides and 

allowed to air dry briefly. Material was examined using a FEI Quanta 200F ESEM under low vacuum 
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at ranges of 5 to 17 kV with an EDAX® SiLi detector. EDAX® soft- ware was used for collecting 

energy dispersive x-ray analyses. Raw, un-manipulated sludge samples were also analysed from 

the reduced layers of the MSB for comparison to experimental treatments. A portion of the raw 

material was analysed at the Canadian Centre for Electron Microscopy (CCEM) at McMaster 

University, Canada, using a Zeiss NVision 40 cross-beam instrument comprised of a Focused Ion 

Beam (FIB) milling instrument and a Schottky Field Emission Gun (FEG) filament SEM. 

2.2.7 Statistical Analysis  

 Solution chemistry parameters were subjected to statistical analysis across treatments 

when deemed appropriate. Single classification Model I ANOVA was performed to assess 

variability among treatments, resulting in an F-statistic and its associated degrees of freedom and 

p-value. P-values between 0.05 and 0.001 were considered significant, and values less than 0.001 

were considered highly significant. Subsequent pairwise comparisons were performed using 

Tukey’s method to assess differences between treatments, with the same assigned significance 

values as for ANOVAs. 

2.3 Results and Discussion  

2.3.1 Cell Activity and Potential 

 Bacterial community growth and activity were monitored using cell count comparisons in 

the Biotic Control, Biotic Zn, and Biotic ZnTl25 treatments (Figure 2.1) as well as relative Ct values 

of 16S rRNA concentrations by quantitative real-time polymerase chain reaction (qPCR) based off 

the whole community RNA extraction in the respective Biotic Control and Biotic Zn treatments 

(Figure 2.2). Counts were only performed in the higher of the two Tl-spiked treatments to observe 

the response due to a maximum stress scenario. During the experiments 16S rRNA analysis was 

only applied to the Biotic Control and Biotic Zn (to compare a control and metal-amended 
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scenario) due to resource and time constraints. It is noted that Ct values alone cannot provide 

quantitative measurements of the amount of the respective rRNA present, however in this case 

they are used for relative comparison between concentrations in parallel samples. Ct values <25 

indicate abundant nucleic acids while values >25 indicate minimal amounts, thus values are 

displayed in Figure 2.2 as their inverse (multiplied by a factor of -1) to show that lower values are 

indicative of higher concentrations of nucleic acid. The Biotic Control showed an increase from 0 

to 1.84x107 cells mL-1 from 0 to 24 hours, coinciding with an increase in concentration of 16S 

rRNA over the same period indicated by a Ct value increase from -38.2 to -13.9. This region likely 

corresponds with the transition of the dominant bacterial population from the lag phase to 

exponential growth phase, which occurs through 10 to 24 hours after inoculation based off 

previous growth curve observations. Cell division requires protein synthesis, and thus is reliant on 

ribosomes, and by association, the 16S rRNA component of the ribosomal 30S, small subunit. 

Thus, 16S rRNA concentrations generally correlate positively with bacterial growth (Bremer et al., 

2008). There are, however, documented exceptions where rRNA concentration do not always 

scale linearly with growth, such as within strains of the Synechococcus and Prochlorococcus, and 

species of Aphanizomenon, and Vibrio where in fact a negative correlation exists (Binder et al., 

1998; Kerkhof et al., 1999; Sukenik et al., 2012). In the first 24 hours of the experiment, species 

that could exhibit this behaviour are either non-existent or overshadowed by bacterial guilds that 

do exhibit increased 16S rRNA with increase growth. A more detailed analysis of bacterial activity 

linked to taxonomy will be performed in Chapter 3 of this Thesis. rRNA concentrations began to 

decrease after 24 hours in the Biotic Control, likely aligning with the stationary phases of the 

majority of bacterial species present. Total accumulated cell numbers peaked at 96 hours at 

1.54x108 cells mL-1, representing all cells, both active and inactive, followed by a steady decline 
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in cells at the end of the experiment (888 hours), indicative of cell lysis. This time period 

corroborated a decline in 16S rRNA, linked to lessened cell activity.  

In the Biotic Zn treatment, which was supplemented with 50 mg L-1 zinc, a similar trend 

to the Biotic Control was observed within the first 24 hours, with cell numbers and rRNA 

concentration increasing in tandem. However, cell counts numbered 1.04x107 cells mL-1 after 24 

hours, approximately 77% less compared to the Biotic Control, inferring some form of heavy metal 

inhibition on the bacterial community. Heavy metals are known to have harmful effects on 

microorganisms, affecting both cell growth and diversity by replacing essential metals in binding 

sites and/or through interactions with ligands (Bååth et al., 1989; Bruins et al., 2000; Gans et al., 

2005; Giller et al., 1998; Sterritt et al., 1980). Despite having relatively lower toxicity compared to 

other chalchophilic metals, aqueous Zn (present as the ion Zn2+ in solution) can inhibit electron 

transport and has shown to be toxic from a few mg L-1 up to 100 mg L-1 (Wolicka et al., 2015). The 

Biotic ZnTl25 treatment, amended with 50 mg L-1 Zn and 25 mg L-1 Tl, exhibited even lower cell 

counts at 24 hours, at 7.38x106 cells mL-1, 149% less counts than the Biotic Control, confirming 

toxicity effects of Zn and a possible synergistic effect in combination with Tl. Despite less early cell 

counts, the Biotic Zn treatment showed similar rRNA measurements to the Biotic Control at 24 

hours. This observation suggests that there may be a larger concentration of ribosomes per cell, 

and/or perhaps a higher rate of translation per cell in the bacterial community in the metal-

amended treatment, potentially a result of possible upregulated stress-response gene pathway 

activation (Schimel et al., 2007). Despite a high potential for protein synthesis as indicated by 16S 

rRNA concentrations, the Zn-amended treatment only reached a total cell count of 7.2x107 cells 

mL-1 after 96 hours, less than half of the cell count compared to the biotic control. However, cell 

counts appeared to rebound after 96 hours in the Biotic Zn treatment compared to the overall 

decrease that was observed in the Biotic Control for the same time period. Total rRNA 
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concentrations were also maintained compared to the biotic control. It is hypothesized that this 

lag and then rebound in activity was due to Zn toxicity fixated primarily on the early bacterial 

community, where colonizing bacteria could have been obstructed by Zn intake into the cell 

and/or by adsorption to cell surfaces. Late generation cells (after 96 hours) benefited at the 

expense of earlier generations, the latter of which experienced increased mortality from Zn-

related toxicity mechanisms. Castillo et al., came to a similar conclusion from a mixed SRB 

enrichments in the presence of Zn, although this was attributed more to the formation of biofilms 

as a defence mechanism (Castillo et al., 2012). The rebound of the community could have also 

resulted from the proliferation of more metal-resistant species throughout the first 96 hours. 

Bacterial enrichments were sourced from a passive bioreactor system treating acid mine drainage 

where influent water chemistry showed elevated concentrations of Al, Fe, Zn, Ni, and Mn and a 

flow rate of 1-6 L s-1 (DiLoreto et al., 2016a), thus, established microorganisms within the 

bioreactor were likely metal-tolerant, as is often exhibited in enrichments obtained from metal-

laden environments (Azabou et al., Bao et al., 2006; Castillo et al., 2012). In comparison, the Biotic 

ZnTl25 showed the least cell counts after 96 hours, yet mirrored near-identically the trend 

observed in the Biotic Zn treatment, again pointing to a synergistic effect of both Zn and Tl on cell 

toxicity, while also inferring some level of metal-resistance and rebound within the community. 

Cell counts and rRNA levels did not increase after 300 hours in both the Biotic Control and the 

Biotic Zn treatment, signalling a slowdown in microbial growth and metabolism. The experiment 

was designed as a closed system and treatments were not supplemented with any additional 

carbon (sodium-lactate), nutrient, or metal sources after the initial dosage. This design was 

performed to resolve early community function in an environment similar to that of the sourced 

mussel shell bioreactor. Under field conditions, the mussel shell bioreactor at the Stockton mine 

would be continually recharged with various substrates from the breakdown of organics and 
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chitinous material associated with mussel shell material, leading to constant or near-constant 

microbial activity until the substrates were exhausted. Thus, the eventual shut down of the 

microbial community in the batch experiments does not reflect the longevity of the bioreactor 

itself, but rather sheds light on the establishment of the metabolic and community structure. As 

has been agreed upon in other investigations, these results point to the importance of metal-

resistant characteristics of bacteria in the implementation of biotechnological processes. Metal 

efflux mechanisms in metal-tolerant bacteria allow these guilds to function in extreme 

environments, and these species may be better suited in technologies that breakdown organic 

contaminants, xenobiotics, or participate in heavy metal precipitation (Azabou et al., 2007; Nies 

et al., 2000; Rajbanshi et al., 2009). Despite metal concentrations shown to be otherwise toxic to 

bacteria, the community managed to maintain a degree of activity until the carbon substrate was 

seemingly exhausted.  

 2.3.2 Solution Chemistry 

 Bacterial-metal interactions are a vital factor in a successful passive treatment system, 

making it important to test and track the fate of metals in experimental settings that seek to 

simulate and optimize treatment technologies. In this research, the fate of the metals Zn and Tl 

were tested against a bacterial community enriched from the Stockton Coal Mine Mussel Shell 

Bioreactor. In addition, hydrogen sulfide and sulfate concentrations were measured throughout 

the duration of the experiment, as the activity of sulfate-utilizing microbes is important with 

respect to bacterially-induced metal-sulfide precipitation as a metal removal mechanism. Metal 

removal values from solution were calculated by Equation 2.5: 

Metal Removed (%) = 
Mi−Mt

Mi
 X 100  (Eq. 2.5) 
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Mi represents the initial metal concentration in solution where Mt is the metal concentration at 

a specific time point during the experiment. Metal removal values are summarized in Table 2.2 

and displayed over time in Figure 2.3. Outputs of statistical analyses can be found in Appendix A. 

There was a high significant difference in zinc removal among all treatments amended with Zn 

(𝐹3,7 = 1108, p < 0.001) (Figure S1), attributed to differences between the control (no cells) and 

biotic treatments (with cells). All Zn-amended treatments with cells exhibited a decline in aqueous 

Zn concentration over the experiment (888 hours) that was significant compared to the control 

without cells. The Biotic Zn treatment showed a Zn removal of 52.2%, from an initial concentration 

of 50.7 mg L-1 to 24.3 mg L-1, compared to 3.1% in the control (p < 0.001). This was similar to Zn 

removal values observed in both the 1 mg L-1 Tl-spiked treatment (Biotic ZnTl1) and 25 mg L-1 Tl-

spiked treatment (Biotic ZnTl25) at 53.1% and 50.3%, respectively, over the entirety of the 

experiment. Tl removal values for Biotic ZnTl1 and Biotic ZnTl25 were 38.9% and 38.8%, 

respectively. Metal removal of both Zn and Tl in all metal-amended samples was the most 

pronounced in the first 24 hours. This precipitous drop coincided with the exponential growth 

phase of the community as exhibited from cell counts and rRNA concentrations. Bacterial cells are 

known to absorb aqueous metal cations due to the abundance of charged surface sites in 

combination with their high surface area to volume ratio (Beveridge et al., 1989). Teichioic, 

teichuronic, and lipoteichoic acids as well as negatively charged functional groups associated with 

cell wall peptidoglycan serve as primary metal binding sites on gram positive bacteria (Sherbet et 

al., 1978; Yee et al., 2001). Anionic functional groups include carboxyl, phosphate, and hydroxyl 

sites that participate in deprotonation reactions in circumneutral pH environments as indicated 

in Equations 2.6, 2.7, and 2.8, respectively, where “cell” represents a bacterial cell surface 

component (Fein et al., 1997). 

Cell-COOH   R-COO− + H+  (Eq. 2.6) 
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Cell-PO4H  R-PO4
− + H+  (Eq. 2.7) 

Cell-OH  R-O− + H+   (Eq. 2.8) 

During logarithmic growth phase of the bacterial community, the number of accessible binding 

sites for Zn and Tl would also grow exponentially with cell numbers. This is likely reflected in the 

sharp drop in metal concentrations in the first 24 hours. pH values did not decrease below 6 in 

the experiments, and thus substantial deprotonated adsorption sites were available. Similar 

electrostatic adsorption may occur in gram-negative bacteria on cell wall peptidoglycan, 

phospholipids, and lipopolysaccharide, as well as any extracellular polysaccharides (EPS) in both 

gram-negative and gram-positive species (Bhaskar et al., 2006; Decho et al., 1990; McLean et al., 

1990). Adsorption serves as an important metal removal mechanism in combination with metal-

sulfide generation, however cell lysis may result in re-release of metals co-adsorbed to bacterial 

cells or biofilms, whereas sulfidic minerals may have higher stability under the same conditions 

due to their low solubility. After the sharp drawdown at 24 hours, metal concentrations continued 

to decrease gradually. As cell activity lessened in the latter stages of the experiment (beyond 300 

hours), additional avenues of metal removal were likely present, such as immobilization of Zn 

during nucleation and precipitation of Zn sulfides due to the production of hydrogen sulfide by 

sulfate-reducing bacteria.  

Sulfate/sulfide assays showed evidence of bacterial sulfate reduction in all biotic 

treatments. Sulfate removal was calculated in the same fashion as for metals (Equation 2.5), with 

sulfur chemistry summarized in Table 2.3 and displayed in Figure 2.4. There was a significant 

difference in sulfate concentration change among all 6 treatments (𝐹5,12 = 8.746, p < 0.01) (Figure 

S2), likely driven by the differences between biotic and abiotic treatments. The Biotic Control 

exhibited 10.5% sulfate removal, significantly higher (p < 0.05) than both abiotic controls (1.3% 
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for the Abiotic Control, 1.7% for the Abiotic Zn), with sulfate concentration decreasing by 412 mg 

L-1 through the experiment from an initial measurement of 3859 mg L-1. A sulfur removal rate of 

116 ± 42.6 nmol mL-1 day-1 was calculated for the duration of the experiment, with removal being 

most pronounced from 24 to 360 hours. Biotic Zn, BioticZnTl1, and Biotic ZnTl25 treatments showed 

similar sulfate removal values to the Biotic Control, at 13.8%, 7.3%, and 11.6%, respectively, with 

sulfate removal rates of 148.1 ± 23.3, 81.1 ± 36.3, and 121.9 ± 20.1 nmol mL-1 day-1. These values 

were deemed statistically no different than the Biotic Control, thus sulfate removal was relatively 

constant across all treatments with bacteria, regardless of metal content. These sulfate removal 

percentages were low compared to similar studies using pure or mixed cultures of sulfate-

reducing bacteria (SRB), where in some cases 75-100% sulfate removal was achieved (Castillo et 

al., 2012; Hiibel et al., 2011). The bacterial inoculum in this study did not consist of purely SRB 

species, but members of multiple taxa, and thus complete sulfate removal was not expected. 

More energetically favourable metabolic pathways would dominate during early succession. For 

example, the metabolizing of lactate by fermentative bacteria will result in accelerated acetate 

production, which may not rely on dissimilatory sulfate reduction (Equation 2.9). 

Lactate− + 2H2O → Acetate− + HCO3
− + H+ + 2H2 (Eq. 2.9) 

Despite this constraint on sulfur reduction, sulfate removal rates were within ranges typically 

measured for passive treatment technologies, specifically, which are often comprised of multiple 

bacterial groups (DiLoreto et al., 2016a). However, an additional consideration with mixed 

bacterial enrichments is that total sulfate removal may not be translated directly into hydrogen 

sulfide production, i.e., the sulfate removal rate cannot be quantified as the sulfur reduction rate. 

This is because there may be other biotic mechanisms responsible for sulfate removal. This was 

proposed in this experiment, where mass balance calculations showed an overwhelming large 

sulfate removal compared to measured hydrogen sulfide production. Sulfur transformation from 
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sulfate to sulfide is considered a 1:1 stoichiometric conversion, thus in control treatments where 

no metals are present to react with sulfide species, the moles of sulfate reacted is expected to 

equal the moles of sulfide produced (Edwards et al., 1992). Focusing on the Biotic Control, where 

no Zn was present to react with any sulfide generated, the final measured soluble sulfide 

concentration was 17.5 µmol L-1 (peaking at 36.3 µmol L-1) resulting in a generation rate of 0.5 

nmol mL-1 day-1, while over the same period the sulfate removal rate was calculated at 116±42.6 

nmol mL-1 day-1. Thus, sulfide conversion accounted for only 0.43% of sulfate removal. It is likely 

that a portion of soluble sulfide volatized and was lost during sampling periods as observed in 

similar experimental scenarios (Gonçalves et al., 2007; Jong et al., 2003; Nagpal et al., 2000). 

However, this would not account for the entire mass balance discrepancy observed. 

Metatranscriptomic analysis of total mRNA detected metabolic pathways responsible for the 

reduction of sulfate to adenosine-phosphosulphate (APS) in the first 96 hours of the experiment, 

primarily by the potential activation of sulfate adenyltransferase (SAT). This enzyme is key in the 

preliminary activation of sulfate in both the dissimilatory and assimilatory sulfate reduction 

pathways in prokaryotes (Figure 2.5). Downstream genes in the assimilatory sulfate reduction 

pathway were also detected that function to incorporate sulfur into amino acids. However, genes 

involved in the eventual conversion of sulfite to sulfide in the dissimilatory route were not 

detected during the same time frame. This observation shows that despite the activation of genes 

in the microbial community that could activate sulfate, the expression of downstream genes for 

hydrogen sulfide production and liberation from cells was not detected during early experimental 

time points. This would explain the inconsistency in sulfur mass balance calculations in the biotic 

control. High sulfate concentrations were likely only upregulating sulfate adenyltransferases, 

driving the consumption of sulfate, however the complete reduction of sulfur to sulfide species 

was not occurring, at least not in the first 96 hours (Peck et al., 1961). It is likely that this 
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phenomenon occurred in Zn-amended treatments as well, due to a similar observed discrepancy 

in sulfate/sulfide chemistry.   

Soluble sulfide concentrations were very low compared to the corresponding sulfate 

removal rates in the Biotic Zn, Biotic ZnTl1, and Biotic ZnTl25 treatments, with sulfide 

concentrations peaking at 11.2, 14.8, and 15.6 µmol L-1, respectively. Dissolved hydrogen sulfide 

concentrations from these metal-amended treatments varied slightly between Zn and Tl 

treatments but were overall significantly lower than the Biotic Control (all p < 0.001) (Figure S4). 

As sulfur-removal percentages were similar across the Biotic Control and metal treatments 

(between 7-14%), lessened measured H2S in the Biotic Zn, BioticZnTl1, and Biotic ZnTl25 batches 

was likely due to a separate removal pathway for sulfide, as opposed to lessened sulfate utilization 

by bacterial activity. This is also confirmed from consistent 16S rRNA values in the Biotic Control 

vs Biotic Zn treatment reported previously. Metal-sulfide precipitation was predicted to be a 

pathway for hydrogen sulfide removal in the Zn-dosed batches. ZnS generation is a 1:1 

stoichiometric ratio between Zn and S, thus the difference in sulfide concentrations between 

treatments with and without zinc (Biotic Control Vs. Biotic Zn, Biotic ZnTl1, Biotic ZnTl25) is equated 

to the amount to have reacted with aqueous Zn (Table 2.4). It is calculated that in the Biotic Zn, 

Biotic ZnTl1, and Biotic ZnTl25 treatments, 14.2, 13.7, and 14.2 µmol L-1 of sulfide reacted with Zn, 

respectively, and vice versa. This equates to 1.11x10−4, 1.07x10−4, and 1.11x10−4 g of Zn to 

have been removed via ZnS precipitation in the Biotic Zn, Biotic ZnTl1, and Biotic ZnTl25 treatments, 

respectively. This equals 1.83%, 1.75%, and 1.87% of the initial Zn load, and 3.5%, 3.3%, and 3.7% 

of the total Zn that was removed, respectively. The remaining missing balance of Zn is considered 

to have been removed via adsorption mechanisms on cells as stated previously. Despite the 

decrease in cell counts experienced in the Biotic ZnTl25 treatment, there appeared to be no effect 

on H2S production. Both maximum and final hydrogen sulfide concentrations were deemed not 
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significantly different across the Biotic Zn, Biotic ZnTl1, and Biotic ZnTl25 treatments (Figure S3, S4). 

This is evidence that sulfate-reducing bacteria were likely not members of the groups that were 

affected by treatments with Thallium. Taxonomy was not analysed in the Tl-spiked treatments, so 

this cannot be confirmed by omic techniques, however SRB species were identified in the Biotic 

Control and Biotic Zn treatments that showed similar sulfide generation to Tl-amended batches, 

and it likely that sulfide generation in these batches was also a result of SRB metabolism. 

Proliferation of SRB through metal toxicity was theorized to be caused by either inherent metal 

resistance, sacrifice of earlier generations of cells, or a combination of both. The observation that 

sulfide generation did not peak until late in the experiment gives weight to the early sacrifice 

theory, though metal-resistance mechanisms cannot be ruled out. Thallium removal over time 

was likely due to a blend of adsorption and possible incorporation into ZnS as a trace element 

(Cook et al., 2009).  

2.3.3 Scanning Electron Microscopy and Solid Phase Investigations 

 Samples were removed from all treatments for visualization by scanning electron 

microscopy (SEM) to confirm potential biogenic ZnS precipitation as an additional removal 

pathway for aqueous Zn. Micron-scale, metallic, rounded grains were identified after 450 hours 

in all treatments amended with Zn, but not the Biotic Control. Precipitates exhibited a size range 

of 2-5 microns, were often isolated from each other, and were in some cases in association with 

bacterial cells (Figure 2.6 A-D). Energy dispersive spectroscopy (EDS) analysis confirmed that the 

aggregates were composed of zinc and sulfur (wt% range of 0.71:1 to 0.99:1 for Z and S) (Figure 

2.6 E). Peaks for oxygen, sodium, phosphorus, and potassium were also detected in analysis of 

spherical grains but were attributed to high concentrations of these elements within salts in the 

liquid medium used. This is supported by the detection of these elements in areas of samples 

where no spherical precipitates were present, indicating a high background concentration. The 
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possibility that the metal precipitates visualized were abiotically formed Hopeite (Zn3(PO4)2 ·

 4H2O) was ruled out, since no precipitates were observed in either the Abiotic Zn treatment or 

the Biotic Control without Zn (Wolicka et al., 2015). The mineralization occurred in tandem with 

sulfate removal and hydrogen sulfide production, thus there is confidence that the precipitates 

represent a ZnS mineral phases formed as a result of bacterial sulfate reduction within the 

treatments. The presence of zinc sulfide minerals explains lower final hydrogen sulfide 

concentrations in Zn-spiked treatments over controls, despite a similar sulfate removal rate, as 

sulfide was likely scavenged by reaction with aqueous Zn. ZnS aggregates were identified between 

3-7 days after the lowest recorded redox potential, indicating that sulfate-reducing species were 

influencing the chemical environment. Eh measurements were in the range of -150 mV to -330 

mV and coincide with peak hydrogen sulfide generation just prior to the formation of the ZnS 

aggregates across treatments. This observation supports other research with similar redox 

conditions noted in biogenic ZnS investigations (Castillo et al., 2012, Gonçalves et al., 2007; 

Radhika et al., 2006). As stated previously, no ZnS phases were observed in the Abiotic Control 

that was amended with Zn but with no addition of cells, thus it is unlikely that any metal-sulfide 

generation can be attributed to abiotic factors.  Abiotic, thermochemical sulfate reduction is 

proposed by some authors to occur only at temperatures above 100°C (Machel et al., 1995; 

Machel, 2001) or within a range of 175°C to 225°C (Goldhaber et al., 1995) whereas bacterial 

driven reduction dominates at low temperatures (Druschel et al., 2002). Therefore, any metal-

sulfide generation in this experiment is attributed to enzymatic action of bacteria. ZnS spherical 

grains, though present, were scarce in numbers in contrast to observations from comparable 

studies. This observation aligns with the low production of hydrogen sulfide measured in all 

bacterial treatments, credited to the relatively low influence of sulfate reducers within the 

community as a whole. Other species likely dominated during early experimental time points (0-
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96 hours), with SRB thriving afterward, possibly utilizing the degradation products of the early 

community. These bacterial interactions will be investigated further in Chapter 3.  

For comparison, raw material was collected from the reduced layer of the Mussel Shell 

Bioreactor treating the Whirlwind Seep and analyzed under SEM to compare any ZnS in the 

treatment setting to that within these lab experiments. ZnS precipitates have previously been 

identified in a similar Mussel Shell Bioreactor prototype at the Stockton mine in operation from 

June 2009 to March 2012 (Crombie et al., 2011; DiLoreto et al., 2016b). SEM characterization and 

Focus Ion beam (FIB) milling of samples was performed at the Canadian Centre for Electron 

Microscopy (CCEM), McMaster University. Clusters of ZnS aggregates were analysed by EDS in the 

raw material and were present in higher abundances than lab experiments (Figure 2.7). Natural 

precipitates exhibit a similar size range to their lab-generated counterparts (1-5 µm), however 

smaller grains (< 1 µm) were also present (Figure 2.7B). Precipitates formed in concentrated, 

grape-like clusters (i.e. botryoidal habit), made up of many aggregated grains. Minerals appeared 

to form with and around organics and other constituents, material derived from the ground 

mussel shells and associated mussel shell meat. This association, also observed by Moreau et al. 

in the analysis of biofilms from an abandoned flooded Pb-Zn mine, and Yoon et al., from Zn-

enriched peatlands, infers that organics, biofilms, and extracellular polymeric substances (EPS) 

serve to some extent as nucleation sites in these settings (Moreau et al., 2004; Yoon et al., 2012). 

The presence of organics in these environments have shown to lower interfacial free energy and 

thus promote crystal nucleation on the nanoscale, serving as stabilizing ligands and aiding in 

alignment and attachment (Cho et al., 2005; De Yoreo et al., 2015; Dey et al., 2010). It is suggested 

in this work that the availability of these growth templates in the bioreactor at the Stockton mine 

was a factor in promoting grander ZnS nucleation, as these constituents were absent in lab 

experiments, where lessened mineralization was observed. Other attributes of the bioreactor 
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could include a higher and more diverse group of SRB and a more reducing microenvironment, 

where easily degradable carbon sources were more readily and frequently available. Higher Zn 

concentrations are also a possibility, as the Whirlwind Seep serving as the source for the MSB in 

question was characterized by a Zn concentration of 0.26 mg L-1 (± 0.05) and an influent flow rate 

and residence time of 1-6 L s-1 and 0.37-2.2 days (dependent on seasonality), respectively, enough 

to saturate the bioreactor with high levels of metals. Furthermore, targeted extractions identified 

Zn as being highly associated with reducible phases at the depth of the bioreactor analyzed 

(DiLoreto et al., 2016a; DiLoreto et al., 2016b). Surprisingly, few cells were observed associated 

with ZnS phases in the raw bioreactor material, a stark contrast to observations in other work 

(Moreau et al., 2004). The material was analyzed by microscopy several months after extraction, 

which could have contributed to cell death and lysis over time, however it is more likely that 

organics and shell material serve a more important role in nucleation than cell surfaces in this 

scenario. In this case, cells may have also avoided encrustation/inhibition by ZnS minerals, as 

observed in other research, allowing for continual intake of sulfate into the cell and resulting 

sulfide production, contributing to nucleation events (Utgikar et al., 2002). Thus, cells may not 

have served as direct scaffolds for mineralization. This distinction in mineral formation in 

association with organisms is discussed in detail by Dupraz and colleagues, where direct 

mineralization, such as in the external and internal skeletons of calcifying mollusks or algae, is 

defined as “biologically-controlled mineralization”, and indirect mineralization termed as 

“biologically-induced” or “biologically-influenced” mineralization (Dupraz et al., 2009). ZnS 

generation in the presence of SRB may cross boundaries between the latter two mechanisms, as 

ZnS mineralization is not always biotic, but at low temperature settings is considered to dominate, 

and considered to play a major role in sulfide ore deposits (Bastin et al., 1926; Druschel et al., 

2002; Spirakis & Heyl., 1995).  
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To resolve the potential for organics to represent core nucleation centres for ZnS, a 

Focused Ion Beam (FIB) milling device comprised of a Zeiss NVision 40 cross-beam instrument and 

a Schottky Field Emission Gun (FEG) filament SEM was used to cut and analyse a cross-section of 

a ZnS outcrop from the raw bioreactor material. Figure 2.8 shows a before and after image of the 

cut-away section as well as magnified images. Multiple individual minerals were visualized in cross 

section, and it is shown that ZnS spherical grains are solid throughout, with the exception of minor 

porous regions represented by darker spots. EDS analysis revealed that minerals are composed of 

nearly pure Zn and S. Various sized precipitates are agglomerated together, potentially 

representing multiple individual yet local nucleation events. Smaller sized particles (0.5-1 µm) 

were more frequently associated together than larger particles (2-5 µm). Excision of a section of 

the ZnS blooms was attempted using a high vacuum sputter coater, freeze fracturing/etching 

device, that would allow for further processing for analysis by Transmission Electron Microscopy 

(TEM). However, material proved too delicate and could not be manipulated successfully, thus 

nano-structure information could not be gained for this Thesis.  

In a summary report in Science, Labrenz and colleagues applied selected area electron 

diffraction (SAED) patterns to determine that biogenic ZnS in biofilms from a flooded mine were 

composed of randomly oriented, yet finely crystalline sphalerite (Labrenz et al., 2000). Research 

by Peltier et al., found similar results through X-ray absorption Spectroscopy (XAS), where a 

sphalerite-type ZnS phases was determined for precipitates formed by the action of Desulfovibrio 

spp., a common sulfate-reducing bacterium. These minerals proved to be more impervious to re-

oxidation than chemically-synthesized counterparts, credited to greater short-range crystal order 

(Peltier et al., 2011). Based on these findings, a sphalerite-like bulk mineral phase is probable in 

both the lab and field analyzed samples in this work. This is further backed by the system 

parameters, where low temperature and pressure favour bulk sphalerite (Zhang et al., 2003). 
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However, research has shown that at the nano-scale, the ZnS polymorphs wurtzite and sphalerite 

both exist, with Moreau et al., identifying crystal patterns of both within ZnS biofilms, represented 

by disordered stacking sequences, stacking faults, and lattice fringes (Moreau et al., 2004). 

Nanoparticles of both mineral phases were also identified by Castillo and colleagues (Castillo et 

al., 2012). These results point to precipitation events where nanoparticles and aggregates, ranging 

from 3-20 nm, combine to ultimately form micron-scale ZnS grains, a mechanism termed 

crystallization by particle attachment (CPA), as opposed to traditional atom-by-atom or 

monomer-by-monomer crystallization (De Yoreo et al., 2015). Although nano-structure 

observations are beyond the realm of this thesis work, knowledge from these cited reports can 

lend insight into particle nucleation and coarsening within the mussel shell bioreactor, as well as 

provide data on re-oxidation and/or stability of metal-immobilizing sulfide mineral phases.  

From parallel research on biogenic ZnS structure, a nucleation scenario is proposed for 

the nucleation of sulfides in the lab-generated and bioreactor-derived samples. It is theorized 

from the observations in this thesis in conjunction with other work that ZnS nucleation in lab 

experiments was dominated by traditional monomer-by-monomer synthesis in lab experiments, 

primarily through Ostwald ripening, where large individual particles have coarsened at the 

expense of smaller particles. This would explain the presence of relatively larger (2-5 µm), singular 

precipitates and the absence of smaller ones (0.5-1 µm); a consequence of the system evolving 

towards a state of lower overall energy. In contrast, bioreactor-derived ZnS precipitates exhibit a 

wider size range, and these variable-sized moieties coexist within the organic matrix. These 

minerals are theorized to be influenced by crystallization by particle attachment, where larger 

nanocrystals and aggregates combine to form the largest visualized precipitates, with available 

organics serving as initial nucleation sites for growth of nanoparticles before moieties coarsened 

together into micron-scale spheres. The SEM micrographs of various sized ZnS particles in the raw 
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bioreactor material could be the result of multiple stages of this process occurring simultaneously. 

This nucleation hypothesis could be tested by characterization of the nano-structure of both sets 

of precipitates, where greater crystallinity revealed by greater short range order may be revealed 

in lab samples over raw bioreactor samples, but this is allocated to future work.  

2.3.4 Conclusions  

In this data chapter, the following null hypotheses were to be tested:  

1) Changes in sulfate, sulfide, and metal concentrations will not be significantly different 

between abiotic and biotic treatments. 

2) Bacterial activity will not be significantly different between treatments amended with 

metals and non-amended treatments.  

3) Any zinc sulfide mineral precipitation in batch experiments will be similar in quantity, 

structure, and composition to minerals observed in raw bioreactor material. 

 The bacterial community enriched from the passive treatment Mussel Shell bioreactor consisted 

of species capable of sulfate reduction, as evidence from comparison with control treatments. 

Sulfate removal, hydrogen sulfide production, and Zn removal was significantly different in 

bacterial treatments compared to abiotic counterparts, thus the 1st null hypothesis may be 

rejected, and it can be said that SRB were components of the community, and that bacteria were 

able to significantly reduce metal loads compared to controls. However, hydrogen sulfide 

generation and subsequent ZnS production in experimental treatments was much lower than 

anticipated, thus these species contributed to only a minor portion of the community, and were 

active only after more dominant bacterial guilds were metabolically satisfied, evidence of which 

will be presented in Chapter 3. A decrease in zinc concentration was observed in all biotic 

treatments, and this was attributed majorly to adsorption events on bacterial cells by mass 
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balance calculations, but also to a lesser extent by reaction with H2S and subsequent ZnS mineral 

nucleation and coarsening, confirmed visually by scanning electron microscopy. Decreases in Tl 

concentrations was potentially due to trace metal incorporation into sulfides, however future 

analytic work is required to confirm this. Although metal-amended experimental treatments 

yielded lower cell counts, sulfate reduction rates were unaffected, thus SRB specifically did not 

appear to be inhibited, rather earlier members of the bacterial community succumbed to the 

detrimental effects of Zn and/or Tl. Thus, the 2nd hypothesis was somewhat satisfied in that some 

bacteria were affected, while others were not. This hypothesis could be revised in future work to 

test metal toxicity on specific genera of bacteria. Abundant ZnS mineralization was confirmed in 

raw bioreactor material, thus species responsible for influencing nucleation within the employed 

treatment system were successfully enriched in lab experiments. However, the mechanisms of 

nucleation may have varied based on the availability and/or absence of organics as templates for 

mineralization. ZnS varied considerably in size and frequency between experimental treatments 

and raw material, thus the 3rd null hypothesis is rejected, and it is confirmed that the varying 

environments within batches and raw material had a great influence on the nucleation outcome 

of ZnS phases. 
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Treatment  Zn (mg L-1) Tl (mg L-1) Cells (+ present, - absent) 

Abiotic Control  0 0 - 
Abiotic Zn 50 0 - 
Biotic Control 0 0 + 
Biotic Zn 50 0 + 
Biotic ZnTl1 50 1 + 
Biotic ZnTl25 50 25 + 

Table 2.1: Zinc (Zn) and Thallium (Tl) concentrations used in experimental treatments. Treatments 

were performed in Postgate Medium C. Total volumes were 120 mL. Biotic treatments were 

amended with 5 mL of bacterial-enriched media. 
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Treatment 
Zn int. 
(mg L-1) 

Zn final.  
(mg L-1) 

Zn diff 
(mg L-1) 

 
 
 

Zn diff 
(g) 

% Zn 
Removal 

 
 

Zn Removal 
Rate (nmol mL-1 

day-1) 
Tl int. 
(mg L-1) 

Tl 
final 

(mg L-1) 
Tl diff 
(mg L-1) 

%Tl 
Removal 

Abiotic - - -  -  - - - - 

Abiotic Zn 49.9 48.4 -1.5 0.00018 3.1% 0.63±0.02 - - - - 

Biotic Control - - -  -  - - - - 

Biotic Zn 50.7 24.3 -26.5 0.00318 52.2% 10.9±0.16 - - - - 

Biotic ZnTl1 51.2 24.0 -27.2 0.00326 53.1% 11.2±0.45 1 0.6 -0.39 38.9% 

Biotic ZnTl25 49.5 24.6 -24.9 0.00299 50.3% 10.3±0.15 25 15.3 -9.70 38.8% 

Treatment 

𝐒𝐎𝟒 
int. 
max 
(mg L-1) 

𝐒𝐎𝟒 
final 
(mg L-1) 

𝐒𝐎𝟒 
diff. 
(mg L-1) 

% 𝐒𝐎𝟒 
removal 

𝐒𝐎𝟒 removal 
rate  
(nmol mL-1 day-1) 

 𝐇𝟐𝐒 
max. 
(µM) 

 𝐇𝟐𝐒 
final. 
(µM) 

 𝐇𝟐𝐒 generation 

𝐫𝐚𝐭𝐞𝟏 
 (nmol mL-1 day-1) 

 𝐇𝟐𝐒 generation 

𝐫𝐚𝐭𝐞𝟐  
(nmol mL-1 day-1) 

Abiotic 3794 3743.3 -50.7 1.3% 32.6±10.4 3.5 1.7 0.05 0.35 

Abiotic Zn 3874.5 3807.6 -66.9 1.7% 18.8±15.2 1.6 1.6 0.04 0.04 

Biotic Control 3859.8 3447.5 -412.3 10.5% 116.0±42.6 36.3 17.5 0.50 2.42 

Biotic Zn 3810.1 3283.7 -526.4 13.8% 148.1±23.3 11.2 3.3 0.09 1.12 

Biotic ZnTl1 3910.2 3621.8 -288.4 7.3% 81.1±36.3 14.8 3.8 0.10 0.99 

Biotic ZnTl25 3707.2 3273.9 -433.3 11.6% 121.9±20.1 16.3 3.3 0.09 1.09 

Table 2.2: Zn and Tl Solution chemistry values for all 6 treatments. Values are calculated based off 

triplicate analysis. Abiotic and Biotic Controls were not amended with metals.  

Table 2.3: Initial and final Sulfate (SO4
−2) and Hydrogen Sulfide (H2S)  concentrations for all 6 treatments 

with calculated rates of removal and generation. Values are calculated based off triplicate analysis. H2S 

generation rates are calculated over 888 hours (1) and to peak sulfide production (2). 
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A B C D E F 

Treatment  

[𝐇𝟐𝐒] 
Biotic 
Control 
(µM) 

[𝐇𝟐𝐒] 
Treatment 
(µM) 

[𝐇𝟐𝐒]  diff (µM)  
(B-C) 𝐇𝟐𝐒  diff (mol) 

Zn removed by ZnS (g) 
(1:1 ratio with 𝐇𝟐𝐒  diff) 

Biotic Zn 17.5 3.3 14.2 
1.70E-06 1.11E-04 

Biotic Tl1 17.5 3.8 13.7 
1.64E-06 1.07E-04 

Biotic ZnTl25 17.5 3.3 14.2 
1.70E-06 1.11E-04 

G H I J K L 

 

[Zn] initial 
(mg L-1) Zn initial (g) 

Zn initial - Zn 
removed by ZnS (g) 
(I-F) 

% of Zn int. 
removed by ZnS  

 
% of Zn diff removed by 
ZnS 

Biotic Zn 50.7 0.00609 0.00598 1.83% 3.5% 

Biotic Tl1 51.2 0.00614 0.00603 1.75% 3.28% 

Biotic ZnTl25 49.5 0.00594 0.00583 1.87% 3.71% 

Table 2.4: Mass balance estimations of Zn removed from Zn-amended treatments by reaction with 

hydrogen sulfide (H2S), forming insoluble ZnS.  
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Figure 2.2: Cell counts over time for the Biotic Control (red circles) and Biotic Zn (blue 

triangles) against corresponding inverted Ct values from qPCR. 

Figure 2.1: Cell counts over time for the Biotic Control (red circles), Biotic Zn (blue triangles) 

and Biotic ZnTl25 (open green circles) treatments. Values are averages of triplicate counts.  
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Figure 2.3: Hydrogen Sulfide (H2S) and metal concentrations (Zn and/or Tl) over time. A) Abiotic 

Control B) Abiotic Zn C) Biotic Control D) Biotic Zn E) Biotic ZnTl1 F) Biotic ZnTl25. Values are 

calculated based off triplicate analysis. 
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Figure 2.4: Hydrogen Sulfide (H2S) and Sulfate (SO4
−2) concentrations over time. A) Abiotic 

Control B) Abiotic Zn C) Biotic Control D) Biotic Zn E) Biotic ZnTl1 F) Biotic ZnTl25. Values are 

calculated based off triplicate analysis. 
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Figure 2.5: Enzyme and enzyme groups detected by metatranscriptomics analysis in 

two primary prokaryotic sulfate activating pathways. Green circles indicate enzyme 

and enzyme groups detected through mRNA. Enzymes to the right of the red “X” 

were not detected. Enzyme names and enzyme commission numbers (E.C.) are 

displayed.  

Sat (met3) – sulfate adenylyltransferase (E.C. 2.7.7.4) 

PAPSS (cysNC) – 3’-phosphoadenosine 5’-phosphosulfate synthase (E.C. 2.7.7.4 2.7.1.25) 

CysND/CysC – associated enzymes of E.C. 2.7.7.4 2.7.1.25 

CysH - phosphoadenosine phosphosulfate reductase (phosphoadenyly-sulfate reductase E.C. 1.8.4.8) 

CysJI - assimilatory sulfite reductase (NADPH) (E.C. 1.8.1.2) 

Sir - assimilatory sulfite reductase (ferredoxin) (E.C. 1.8.7.1) 

AprAB - adenylyl-sulfate reductase (E.C. 1.8.99.2) 

DsrAB – dissimilatory sulfite reductase (E.C. 1.8.99.5) 
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Figure 2.6: A, B, C, D) SEM images of ZnS precipitates at time 450 hours. E) EDS 

spectrum of the spot marked by the “X” in image “D”. 
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Figure 2.7: SEM images of raw Mussel Shell Bioreactor material taken from the Whirlwind reactor at the Stockton 

Coal Mine, New Zealand. A) Bright spheres represent outcrops of a ZnS mineral phases. B) Spheres on the smaller 

size range, from 0.8 µm to 1.5 µm. C, D) Variable-sized spherical aggregations associated with organic material. E) 

EDS spectrum from a region within image “C” showing minerals are composed primarily of zinc and sulfur.   
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Figure 2.8: SEM images of FIB-exposed ZnS. A) A region before cross sectioning with a Focussed Ion 

Beam (FIB) B) The region in A after sectioning. C, D, E) Magnified images of the cross section face 

showing interiors of ZnS precipitates. Thicker bright coatings near the top of image “C” represent 

Tungsten sputtered onto the sample for structural integrity prior to milling. 
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Chapter III: Bacterial Community Characterization and Functional Analysis Contributing to ZnS 

Formation Assessed through Amplicon Sequencing and Metatranscriptomics 

3.1 Introduction  

 The influence of microbes over their chemical environment, and vice versa, may be 

termed microbial geochemistry, a subclass of the broader field of biogeochemistry. The previous 

chapter of this work focused primarily in this regard, with an emphasis on bacterial influences on 

the solubility of potentially toxic metals in treatment technologies. However, the control that 

bacteria exhibit on their surroundings is not limited to investigations on a discretely physico-

chemical basis. Much knowledge can be gained from combining traditional biogeochemical 

analysis with novel genomic techniques, shedding light on bacterial taxonomy, diversity, and gene 

expression/regulation. These tools together can provide a greater understanding of microbial 

mechanisms of worldly importance, for example, in the sustainable recovery, use, and processing 

of fossil fuels, the treatment and supply of fresh water resources, the effects of climate change, 

and the responsible management of waste from the extraction and refining of materials we rely 

on as a society (Druschel & Dick., 2014). This research investigates the causes and treatments for 

Acid Rock Drainage (ARD), associated with the mining/milling and metallurgical industries. 

Bacteria play a large role in the generation of ARD primarily in mineral oxidation reactions, but 

also serve as key protagonists in passive treatments systems used to treat acidic and metal-laden 

effluents. Within this context it is important to understand which bacterial genes and gene 

pathways are activated during these conditions. Genomic techniques continue to shed light on 

which species are present and active, and by extension, which species are important to the 

dominant biogeochemical reactions (Hua et al., 2014). 
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Genomic techniques for these investigations vary in their target, cost, and specificity. 

Traditionally, the sequencing of species-specific genes from DNA extraction, primarily the highly 

conserved 16S rRNA gene, has been the standard for microbial taxonomic surveys. Much of what 

is known about bacterial diversity in ARD environments has been elicited through this and similar 

approaches, where acidophilic, iron and sulfur oxidizing species have shown to be dominant 

(Baker et al., 2003; Bond et al., 2000; Schippers et al., 2010; Tan et al., 2007). Investigations into 

ARD environments are considered to have moved the field of microbial community ecology 

forward as a whole, as their relatively low diversity and defined chemistry allow for accurate 

modelling and testing of microbial ecology techniques, as well as the accuracy of bioinformatics 

software and pipelines (Denef et al., 2010).  

Community surveys using targeted amplicon sequencing of 16S rRNA genes have not only 

been performed in ARD generating regions themselves, but have also gained momentum in the 

analysis of passive treatment systems that aim to ameliorate ARD. These systems, that aim to 

neutralize pH and immobilize metals as a result of bacterial action, may be improved by microbial 

surveys. Various bacterial guilds have been revealed that contribute to contaminant reduction, 

including those that participate in the anaerobic metabolic processes of methanogenesis 

(methane-producing), sulfidogenesis (sulfide-producing), and acetogenesis (acetate-producing) 

(Dar et al., 2007). Research on bacterial communities and sulfate reduction upon degradation of 

various carbon substrates used in passive ARD treatment systems has indicated high microbial 

diversity at the Operational Taxonomic Unit (OTU) level, with sulfate-reducing bacteria (SRB) of 

the genera Desulfovibrio, Desulfonema, Desulfomicrobium and Desulfotomaculum identified 

along with other abundant bacteria within the phyla Bacteroidetes and Firmicutes (Schmidtova et 

al., 2011). A similar study observed Desulfovibrio and Desulfomicrobium persisting in ethanol fed 

pilot-scale bioreactors, yet low levels of methanogens (Hiibel et al., 2011). These studies, as well 
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as others (Labrenz et al., 2004; Ozuolmez et al., 2015; Paulo et al., 2015) highlight two important 

interactions in anaerobic settings; SRB competition with methanogenic archaea for substrates, 

and SRB reliance on the degradation production of fermentive acetogens. Both scenarios 

contribute to successful passive treatment systems for ARD, as they influence the livelihood of 

the primary metal-immobilizing agents, sulfate reducing bacteria. Methanogens show relatively 

limited capacity in their choice of substrate compared to SRB. These microbes are mainly 

sustained by carbon dioxide, hydrogen, and/or acetate, and are typically out-competed by SRB in 

high-sulfate environments. Thus, the presence of sulfate as well as the available carbon source 

are key factors in interactions (Muyzer et al., 2008). In terms of beneficial associations, fermentive 

bacteria such as acetogens within the class Clostridia utilize sugars, amino acids, long-chain fatty 

acids, or reduced propionate, butyrate, or lactate to produce acetate, an accessible carbon source 

for many SRB (Table 1.1).  

Many studies have applied DNA-based analyses to determine community structure  for 

active bioreactors treating ARD for a better understanding of the bacterial assemblage (Baldwin 

et al., 2015; DiLoreto et al., 2016). DiLoreto et al. looked specifically at a novel passive treatment 

approach using a Mussel Shell Bioreactor (MSB), where they observed guilds of “opportunistic 

microbes” that take advantage of the chemical and redox gradient which develops with depth in 

the bioreactor (DiLoreto et al., 2016). The community was dominated by Bacteroidetes, mainly 

the metabolically versatile Flavobacterium, as well as Acidovorax spp. and Sideroxydans 

lithotrophicus of the Proteobacteria.  These two latter organisms facilitate nitrate reduction 

coupled to iron oxidation. In the more chemically reduced layers, Desulfotomaculum acetoxidans 

were detected as the primary SRB, but in low relative abundance (1-5%).These particular SRB 

organisms are significant in their ability to form spores and use acetate as a carbon source,  

derived from the decomposition of chitin associated with the mussel shells.  Though many studies 
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have investigated and tracked  SRB enrichments of single species with respect to metal-sulfide 

generation as a remediation pathway, few have investigated the entire microbial community. It 

has been observed that SRB benefit from fermentative bacteria that initiate metal removal and/or 

provide reduced carbon substrates, and that this interaction promotes SRB activity, and by 

extension, metal removal by sulfide generation (Alexandrino et al., 2014; Zhang et al., 2016). 

However, these studies have used total DNA extractions as the basis for analysis, and although 

this approach yields information on the entire bacterial community present, no studies to our 

knowledge have been undertaken that utilize RNA as a basis for unravelling microbial function.  

The objective of this chapter is to identify and track the taxonomic and functional changes 

of the bacterial community , with a focus on microorganisms that participate in or influence the 

biogeochemical transformations discussed in chapter II, i.e. the immobilization of Zn as a result of 

zinc-sulfide nucleation. To do this, RNA rather than DNA was extracted from experimental 

treatments and used as the basis for taxonomic identification through 16S rRNA amplicon 

sequencing and metatranscriptomic analysis.  

Total DNA extractions target the double stranded DNA composed in the circular bacterial 

chromosome, and subsequent amplification of the 16S rRNA gene region of that chromosome 

may give a wide breadth of potential microbial culprits in any given environment. However, DNA-

based taxonomy analysis cannot distinguish between active or inactive, or even live or dead cells, 

providing less insight into the metabolically active guilds. Alternatively, total RNA extractions 

target the transcription product of DNA, single stranded RNA. This includes the precursors of 

protein, messenger RNA (mRNA), as well as the more abundant ribosomal RNA (rRNA), the 

primary component of bacterial ribosomes. mRNA sequences can provide information on what 

genes a cell or group of cells are transcribing, while rRNA sequences can be used for taxonomic 

identification of which bacteria are actively translating that mRNA. Due to its folding structure, 



73 
 

rRNA has a higher stability than mRNA in the cellular environment. Despite this difference, rRNA 

degradation has still shown to be appreciable upon cell starvation and death, and thus the analysis 

of both rRNA and mRNA from a total RNA extraction can still give information on the more active 

species in a specific place, at a specific time (Deutscher 2003; Deutscher 2006). It should be noted 

that in defining taxonomy, the use of RNA for 16S rRNA analysis and the use of DNA for 16S rRNA 

analysis are mutually exclusive techniques and should not be confused with each other. DNA-

based techniques target the 16S rRNA “gene” itself from the bacterial chromosome, as opposed 

to RNA-based techniques that target the single stranded rRNA of the bacterial ribosomes.  

The sequencing of total mRNA derived from the total extracted RNA from an environment 

allows for the shotgun sequencing of the total transcriptome, providing a snapshot of all the 

“blueprints” present for protein synthesis within the bacterial community. In this type of analysis, 

rRNA is usually depleted from the total RNA pool, increasing the relative concentration of mRNA. 

This is the essence of metatranscriptomics. The metabolic state of the microbial community can 

be inferred from this information, providing greater resolution than from 16S amplicon 

sequencing (either from DNA or RNA) alone. 

Using both rRNA as a basis for microbial taxonomy and mRNA as a basis for microbial 

function, the early microbial conditions (24-96 hours) of the Biotic and Biotic Zn treatments will 

be assessed to unravel the interactions that exist leading to a community capable of sustaining 

sulfate reducers and resulting ZnS biogenesis. These investigations will provide information on 

how anaerobic metabolizers co-exist in a mixed inoculum derived from a passive treatment 

technology treating AMD. The null hypotheses set out in Chapter 1 will be tested and the results 

discussed. 
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3.2 Methods  

3.2.1 RNA Extraction and Community Analysis of 16S rRNA  

  Samples for RNA analysis were removed from the crimp-top bottles at 24, 48, 72, and 96 

hours with a sterile 23GTW needle on a 10 mL syringe, flash frozen in liquid nitrogen immediately 

in 2.5 mL cryo tubes, and stored at - 80°C until extraction. Aliquots were taken from 2 of the 3 

triplicates and combined prior to extraction to ensure an adequate amount of biomass. RNA was 

extracted using the PowerSoil Total RNA Isolation Kit (MoBio Laboratories Inc. Carlsbad, CA, USA, 

Cat No:12866-25) following the manufacturer’s instructions. Samples for bacterial community 

analysis were quality control checked for concentration and purity on an Agilent 2100 Bioanalyzer. 

Samples that showed good quality were chosen for further processing. RNA was converted to 

cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions using 10 µL of RNA sample. PCR1 amplification of the bacterial V5-

V6 variable SSU rRNA region of the cDNA was performed with primers V5F (5 –

ACCTGCCTGCCGATTAGATACCCNGGTAG- 3) and V6R (5 –

ACGCCACCGAGCCGACAGAGCCATGCANCACCT- 3). The PCR1 reaction mix consisted of 1 µL 

template cDNA, 0.5 µL of each primer, 2.5 µL 10X buffer, 1 µL MgCl2, 0.5 µL DMSO, 0.5 µL BSA. 

0.5 µL dNTP, 0.1 µL Taq DNA polymerase, and ddH2O to a final volume of 25 µL. The PCR1 

thermocycler profile consisted of an initial denaturation for 5min. at 94°C; 25 cycles of 15sec. at 

94°C; 15sec. at 55°C; and 30sec. at 72°C; with a final extension for 1 min at 72°C.  Products were 

purified using AMPure bead purification, following the manufacturer’s protocol. A unique barcode 

was adapted to each sample through a second PCR run for downstream sequencing of samples in 

multiplex. The thermocycler profile consisted of an initial denaturation for 5min. at 95°C; 7 cycles 

of 15sec. at 94°C; 15sec. at 60°C; and 30sec. at 72°C; with a final extension for 1 min at 72°C. 

Products of the second PCR were ran on an agarose gel and then excised, pooled, and purified 
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using a Qiagen Gel Extraction kit. Samples were diluted to 25 ng μL-1 and sequenced using an Ion 

Torrent Personal Genome Machine (Life Technologies). Taxonomic analysis for bacterial 

community composition was performed using the Mac Qiime (Quantitative Insights Into Microbial 

Taxonomy) pipeline (http://qiime.org/). Submitted sequences were assigned into Operational 

taxonomic units (OTUs) using open-reference picking at 99% similarity. Taxonomy was assigned 

to OTUs using the uclust algorithm against the Greengenes database, as per the default settings 

of Mac Qiime, with a minimum cut-off of 50 hits. Reads were normalized to a percent abundance 

based off the total number of hits of each sample.  

3.2.2 Diversity Statistics  

Species diversity and richness statistics were calculated for 16S rRNA amplicon 

community data through MacQiime using the Shannon Diversity Index (H) and the Chao1 Index. 

The Shannon Diversity Index value is calculated through quantifying both the relative abundance 

of a species and the total number of species into a single value through Equation 3.1, where pi 

represents the species abundance  

𝐻 =  − ∑ p𝑖ln pi  (Eq. 3.1) 

The higher the H value, the higher the diversity of the system, with values <1.5 and >3.5 

representing relatively low, and high diversity, respectively. The Chao1 index calculates diversity 

based on the number of rare taxa, represented by only 1 or 2 OUT’s (Equation 3.2), where Sobs 

represents the observed number of species, and n1 and n2 represent the number of species 

observed by only 1, or 2 hits respectively.  

Schao1 =  S𝑜𝑏𝑠 +  
(n1

2)

(2n2)
   (Eq. 3.2) 
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If a sample contains many singletons (single hits) the Chao1 index will estimate higher species 

richness, as it predicts a higher number of rare OTUs likely exist. Higher Chao1 values represent 

higher diversity. 

3.2.3 Metatranscriptomic Analysis 

 Duplicate samples were taken from the Biotic Control at 24 and 96 hours and from the 

Biotic Zn treatment at 24 hours for metatranscriptomic analysis. Total RNA was extracted as 

described earlier using PowerSoil Total RNA Isolation Kits. Samples were checked on an Agilent 

2100 Bioanalyzer for concentration and quality. An RNA concentration of at least 100 ng µL-1 and 

an RNA integrity value (RIN) greater than 7.0 (scale 1-10) was required for further processing. RNA 

aliquots that passed in-house quality control were sent to McGill University and Génome Québec 

Innovation Centre (http://www.genomequebec.com/en/home.html) for metatranscriptome 

preparation, consisting of an rRNA depletion, cDNA reverse transcription, and shotgun sequencing 

of resultant DNA derived from the total mRNA pool. Data outputted in a fastq file format for each 

sample was uploaded to the online bioinformatics pipeline MG-RAST (Metagenomics analysis 

server) for metatranscriptomics analysis (http://metagenomics.anl.gov/) using a minimum phred 

score of 30 for high-base confirmation. 

Functional gene analysis was performed by annotating sequences against the KEGG 

(Kyoto Encyclopedia of Genes and Genomes) database with a minimum %-identity cut off of 60%, 

e-value (expect value) of 1-e-5, and an alignment length of 15 base pairs. The number of hits for 

each protein transcript identified were normalized by dividing by the number of hits of the RNA-

polymerase subunit B, yielding a normalized % abundance value (Fortunato et al., 2015). 

Abundance values from duplicate samples were averaged and used for data interpretation. 

Additional taxonomy analysis from metatranscriptome data was performed by annotating 

sequences against the NCBI (National Center for Biotechnology Information) RefSeq database 

http://www.genomequebec.com/en/home.html
http://metagenomics.anl.gov/
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using the same parameters as used against the KEGG database. The number of hits for each 

bacterial grouping were divided by the total number of hits to achieve percent abundance values 

(% abundance). % abundance values from duplicate samples were averaged for analysis. 

3.3 Results and Discussion  

3.3.1 Community Diversity  

Shannon H and Chao1 diversity indices were calculated for time points 24, 48, 72, and 96 

hours in the Biotic and Biotic Zn treatments and are summarized in Table S1 and shown in Figure 

3.1. Bacterial diversity was high across time points in the Biotic Control (H>3.44), though 

decreased from 24 hours to 96 hours, falling from 5.05 to 3.49. Chao1 Index values for the Biotic 

Control remained relatively constant, though was highest at 48 hours (300.54) and lowest at 96 

hours (250.06). Lower overall diversity at 96 hours coincided with a slow down in microbial activity 

indicated by decreased 16S rRNA concentrations discussed in Chapter 2, and it is likely that the 

community was beginning to degrade in diversity. In the Biotic Zn treatment, an opposite trend 

was observed. Shannon H values increased over time from 2.21 to 4.20 from 24 to 96 hours, with 

Chao1 values increasing from 118.56 to 282.67 over the same period. As the only difference 

between the two treatments was the addition of 50 mg L-1 Zn to the Biotic Zn treatment, it is likely 

that lower diversity at 24 hours was due to metal toxicity effects. This is reflected in relative cell 

counts, where metals were shown to contribute to lower cell numbers, which consequently would 

lead to less species, and lower diversity and richness. The observation that diversity began to 

rebound at 96 hours in the Biotic Zn treatment lends evidence to the hypothesis that metal 

toxicity effects were experienced primarily by the early community (24 hours), as cell counts and 

16S rRNA concentrations also exhibited a rebound after 96 hours, as concluded in Chapter 2.  

 

3.3.2 Microbial Taxonomy  
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Samples for community analysis were taken in duplicate from the Biotic and Biotic Zn 

treatments at times 24, 48, 72, and 96 hours to resolve early community composition in a control 

and Zn-amended sample.  Ion torrent sequencing of the V5 V6 region of the 16S rRNA amplified 

from extracted RNA yielded 1,699,886 raw sequences from all samples, which was reduced to 

424,371 after filtering, with an average size of 35364 sequences per sample (Table S2).  The 16S 

rRNA community analysis showed both treatments were dominated by groups within the phyla 

Firmicutes and Proteobacteria (Figure 3.2), primarily by bacteria within the class Clostridiales and 

family Pseudomonadaceae, respectively (Figure 3.3).  

In the Biotic control, relative abundance of Clostridiales remained high, with the exception 

of a drop at 48 hours, peaking at 63% of the total community at 96 hours. Clostridium spp. were 

the most dominant members constituting the Clostridiales, comprising 88% and 77% of the group 

at 24 and 96 hours (Figure 3.4A), respectively, corresponding to 46% and 35% of all bacteria at 

the same time points. Sulfate reducing bacteria were detected from metatranscriptomic data at 

24 and 96 hours (Figure 3.4B). At 24 hours, species of Desulfitobacterium and Desulfotomaculum 

of the Firmicutes were the most prevalent, at 0.22% and 0.18% of the total bacterial community 

(46% and 38% of total SRB), respectively, with SRB from the Deltaproteobacteria being less 

abundant. The abundance values for Desulfitobacterium (0.22%) and Desulfotomacculum (0.18%), 

though low, are within the top 25 most abundant genera in the samples, thus low percentages 

are a reflection of the high diversity in the samples. At 96 hours, Desulfitobacterium and 

Desulfotomaculum abundances increased to 0.52% and 0.30% of the total community (49% and 

29% of SRB) with Desulfitobacterium hafniense, Desulfotomaculum reducens, and 

Desulfotomaculum acetoxidans detected as the most abundant species.  

With the exception of unclassified bacteria, Pseudomonas spp. of the Pseudomonadaceae 

family were the most dominant next to Clostridium spp. at both 24 and 96 hours according to 16S 
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rRNA and metatranscriptome data, with 16S rRNA analysis also showing the prevalence of 

bacteria of the Moraxellaceae, Lachnospiraceae, and Xanthomonadaceae families through the 

Biotic Control. Overall, a more diverse and even distribution of bacterial groupings was observed 

at 24 hours and 48 hours compared to 72 and 96 hours in the Biotic Control, reflecting the 

decreasing diversity values from the Shannon H and Chao1 indices calculated prior. The 16S rRNA 

amplicon analysis was used to target the bacterial domain, however metatranscriptomics analysis 

provided additional information pertaining to the bacterial and archaeal domains. In this case the 

detection of methanogens was possible. Methanogen numbers were low across the Biotic 

Control, with the highest abundance being Methanococcus spp. at 0.076% and 0.066% for 24 and 

96 hours.  

The 16S rRNA amplicon data from the Biotic Zn treatment showed that the Proteobacteria 

contended with the Firmicutes throughout the time points.  The most dramatic distinction was at 

24 hours, where the family Pseudomonadaceae dominated with 92% abundance (Figure 3.3). As 

was observed in the Biotic Control, Pseudomonas spp. were the most abundant within this time, 

comprising all the Pseudomonadaceae, including Pseudomonas Viridiflava, Pseudomonas 

Fluorescens, and Pseudomonas Putida. Metatranscriptome analysis showed an enrichment of 

Proteobacteria at 24 hours, with both Serratia spp. (59% abundance) and Pseudomonas spp. (23% 

abundance) as the principle organisms. Pseudomonas abundance dropped after 24 hours, when 

Clostridiales became more prevalent. However, it was observed that amongst bacteria within the 

Clostridiales, it was the Lachnospiraceae which was the dominant organism, opposed to 

Clostridium spp. that were observed in the Biotic Control. Very low hits for sulfate-reducing 

bacteria were detected in the Biotic Zn treatment in the first 96 hours from 16S rRNA amplicon 

data or metatranscriptomics data from 24 hours. Contributions from the Xanthomonadaceae 

were low, yet consistent across time points of the Biotic Zn, with species of the 
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Peptostreptococcaceae showing an influence at 48 hours. The dominant abundance of 

Pseudomonas and Serratia of the Gammaproteobacteria at 24 hours reflects the lower diversity 

and richness as indicated by the lowest Shannon H and Chao1 values at this time point. As this 

dominance subsided and species distribution become more even over 48, 72, and 96 hours, 

diversity values increased.  

3.3.3 Functional mRNA Results from Metatranscriptomics  

 Duplicate metatranscriptomic datasets for the Biotic Control at 24 and 96 hours and for 

the Biotic Zn at 24 hours were processed through the MG-RAST server. Sequence counts pre and 

post quality control (QC), as well as sequence lengths, identified protein features, rRNA features, 

and functional categories are summarized in Table S3. Biotic Control samples for 24 hours had 

averaged post QC sequence counts of 7,680,051, mean sequence length of 119 ± 32 bp, 741,126 

identified protein features, and 603,088 annotated identified functional categories, with samples 

for 96 hours at 6,726,477, 117 ± 30 bp, 718,050, and 550,956, respectively.  

Relative normalized abundances of duplicate transcript samples are expressed in Table 

S4, with p-values for changes across time and treatments expressed in Table 3.1. Overall cellular 

function was similar in relative pathway abundance from 24 hours to 96 hours in the Biotic 

Control, with the exception of differential expression in fatty acid, sulfur, and carbohydrate 

metabolism. Acetogenic pathways were higher expressed significantly at 24 hours over 96 hours, 

indicated by increases in the carbon-monoxide dehydrogenase gene (cooS), and acetyl CoA-

synthase genes (cdh) specifically, which encode key enzymes of the primary Wood–Ljungdahl 

pathway for anaerobic acetogenesis (Figure 3.7) (Müller et al., 2013). cooS genes had relative 

normalized abundances of 12.7% and 2.1% at 24 and 96 hours, respectively, with cdh genes at 

11.1% and 0.9% for the same time points. The tricarboxylic acid (TCA) cycle, responsible for the 
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generation of adenosine triphosphate (ATP) through oxidation of acetyl CoA (also named Krebs 

cycle or Citric Acid Cycle) showed upregulation at 96 hours over 24 hours, with multiple genes 

along the pathway increasing in relative functional abundance. Significant gene expression 

changes in this pathway from 24-96 hours included isocitrate dehydrogenase IDH1 (12.4% to 

19.2%), oxoglutarate dehydrogenase sucA (11.6% to 19.5%), succinate dehydrogenase sdh (11.0% 

to 15.2%), SuccinateCoA ligase suc (9.2% to 14.1%), citrate (Si)synthase gltA (5.8% to 10.3%), and 

fumarate hydratase fum (5.3% to 12.3%). Genes involved in sulfate metabolism were low across 

the Biotic Control over 24-96 hours, however did show a significant increase over time. Sulfate 

adenyltransferase met3 (1.2% to 1.7%), 3’-phosphoadenosine 5’-phosphosulfate synthase cysNC 

(1.6% to 3.1%), and assimilatory sulfite reductase (NADPH) (2.2% to 3.3%) showed significant 

upregulation from 24 to 96 hours. These enzymes are primarily associated with the assimilatory 

sulfate reduction pathway, whereas the key genes involved in dissimilatory sulfate reduction, 

aprAB and dsrAB, were below cut off limits or non-existent. Gene pathways controlling 

methanogenesis were also absent, including those involved in the translation of methyl coenzyme 

M reductase (mcr), the key and rate limiting enzyme in methane production in methanogens, as 

well as mtr gene variants (Scheller et al., 2010; Thauer et al., 1990).  

For the Biotic Zn treatment, metatranscriptomics data was only available for the time 

point at 24 hours for incorporation into this Thesis. Samples had averaged post QC sequence 

counts of 8,713,736, mean sequence length of 122 ± 33 bp, 653,339 identified protein features, 

and 590,283 annotated identified functional categories. Acetogenesis was significantly lower at 

24 hours in the Zn-amended treatment compared to the Biotic Control at 24 hours, with cooS and 

cdh genes at 0.07% and 0.005% relative abundance, respectively, inferring a low influence of 

acetogens. TCA cycle genes identified in the control showed higher normalized relative abundance 

early in the Biotic Zn treatment, including isocitrate dehydrogenase IDH1 (23.5%), oxoglutarate 
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dehydrogenase sucA (39.1%), succinate dehydrogenase sdh (52.8%) SuccinateCoA ligase suc 

(25.1%), citrate (Si)synthase gltA (15.1%), and fumarate hydratase fum (19.8%). Sulfate 

metabolism genes exhibited generally higher abundance at 24 hours in the Biotic Zn over the 

control; sulfate adenyltransferase met3 (2.1%), 3’-phosphoadenosine 5’-phosphosulfate synthase 

cysNC (1.7%) and assimilatory sulfite reductase (NADPH) (7.0%). The assimilatory sulfite 

reductase, specifically, showed high relative activity, the enzyme that catalyzes the final step of 

the assimilatory sulfate reduction pathway, generating sulfide for incorporation into amino acids. 

As was observed in the Biotic Control, no dissimilatory sulfate reduction genes or key 

methanogenesis genes were active at 24 hours in the Zn-amended treatment.  

3.3.4 Taxonomic and functional mRNA Interpretation and Analysis  

3.3.4.1 Biotic Control 

 16S rRNA amplicon sequences and metatranscriptomics analysis together lend insight 

into the active metabolic state of the treatments. In the Biotic Control, a high relative abundance 

of vital transcripts of acetogenic genes were observed at 24 hours, including carbon-monoxide 

dehydrogenase (cooS) and acetyl CoA-synthase (cdh), coinciding with a domination by bacteria 

within the order Clostridiales as quantified by 16S rRNA data. It was further resolved from 

metatranscriptomic-derived taxonomy that these bacteria were primarily Clostridium species. The 

genera of Clostridium include many known acetogens, species able to utilize reduced carbon 

compounds, such as lactate, to derive energy, producing acetate as a by product (Figure 3.5A, 

Equations 3.3, 3.4) (Muyzer et al., 2008; Thauer et al., 1997).  

Lactate− + 2H2O ↔  C2H3O2 
−(Acetate)  + HCO3

− + H+ + 2H2 ∆G°’= -4.2 kJ/reaction     (Eq.3.3) 

Lactate− ↔ 1.5 C2H3O2 
−(Acetate) + 0.5H+    ∆G°’ = -56.6 kJ/reaction  (Eq. 3.4) 

SO4
2−  +  C2H3O2 

−(Acetate) ↔ HS− + 2HCO3
−                ∆G°’ = -47.6 kJ/reaction  (Eq. 3.5) 
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Lactate− + 0.5 SO4
2−  ↔ C2H3O2 

−(Acetate) + HCO3
− + 0.5 HS−      ∆G°’ = -80.2 kJ/reaction (Eq. 3.6) 

 

These species were likely rapidly consuming lactate, the primary carbon source used in the 

treatments, within the first 24 hours of the experiment. A decrease in pH exhibited between 0 

and 96 hours supports a generation of acetate (Müller et al., 2013). Clostridum spp. are primarily 

endospore-forming, obligate anaerobes, thus it is not surprising that they are abundant in 

material sourced from the anaerobic layer of the mussel shell bioreactor, and persisted through 

oxygen-deficient enrichments. Clostridium saccharolyticum¸ a species detected throughout the 

Biotic Control time points (7.4% and 22.6% of Clostridium spp. at 24 and 96 hours, respectively), 

has shown to be important in mutualistic relationships with cellulose degraders, removing toxic 

secondary metabolites (Murray et al., 1986). These bacteria could have been involved in similar 

syntrophy in the MSB, while benefiting from the fermented degradation products of chitin and 

cellulose from mussel shell and associated mussel shell organics. Other abundant Clostridum 

included Clostridium botulinum and Clostridium difficile, species more associated with human 

disease, however also spore-forming anaerobes that likely contributed to acetogenesis utilizing 

lactate (Drake et al., 2008).  Similar to the Clostridum, the two main genera of SRBs detected are 

capable of endospore formation. Desulfitobacterium spp. have been well documented in their 

role in reductive dechlorination in degradation of halogenated compounds in the environment, 

growing with lactate as a substrate, but not traditionally acetate (Christiansen et al., 1996; 

Gerritse et al., 1996). Desulfotomaculum reducens has a similar metabolic capacity, showing 

preferred growth on lactate over acetate (Della Vecchia et al., 2014; Junier et al., 2009). These 

species were the most prevalent of the SRB. Other species present show preference for acetate, 

including Desulfotomaculum acetoxidans, as well as Desulfuromonas acetoxidans. Both of these 

species showed a strong increase in abundance from 24 hours to 96 hours, and likely responded 
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favourably to the production of acetate by abundant Clostridum spp. after 24 hours, as acetate-

utilizing SRB are known to be beneficiaries in this regard (Labrenz et al., 2004; Sánchez-Andrea et 

al., 2014). Desulfotomaculum acetoxidans has been detected by DNA extraction from the mussel 

shell bioreactor in previous investigations (DiLoreto et al., 2016).  

Lactate utilization in sulfate reduction is energetically favourable over acetate as an 

electron donor, as shown from Gibbs free energy values (∆G°’) in equations 3.5 and 3.6, likely a 

reason for the prevalence of lactate-utilizing SRB, despite a high probable concentration of 

acetate in the system derived from abundant acetogenic pathways. It is also possible that SRB 

utilizing lactate where doing so through similar fermentive pathways to acetogens, and thus 

contributed, although to a lesser extent, to the abundance of acetogenic transcripts present at 24 

hours. In terms of acetate utilization, TCA cycle transcripts were abundant at 96 hours over 24 

hours, thus acetate metabolism by SRB likely proceeded through a modified citric acid cycle, as 

observed in other sulfate reducers (Figure 3.5B) (Brandis-heep et al., 1983). However, an acetyl-

CoA pathway for acetate oxidation, as observed in Desulfotomacculum acetoxidans and several 

other SRBs, cannot be ruled out, as the vital enzyme formate dehydrogenase showed high relative 

abundance (Figure 3.6) (Schauder et al., 1986).  

It is surprising that Clostridium seemed to outcompete SRB, since in high sulfate 

environments, sulfate reduction with lactate as the electron donor presents a lower energy hurdle 

than acetogenesis (equation 3.6) (Muyzer et al., 2008). It is possible that since the primary SRB 

identified are endospore-forming species, there existed a lag in their activity relative to the more 

metabolically-diverse Clostridium. This coincides with the lack of dissimilatory sulfate reduction 

transcripts in the first 96 hours, yet a later peak of hydrogen sulfide production (360 hours in the 

Biotic Control). The low abundance of methanogens and absence of key methanogenic genes can 

be explained by the chemical species present, as SRBs, even in relatively low numbers, routinely 
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outcompete methanogens for acetate when sulfate concentrations are high (Muyzer et al., 2008; 

Paulo et al., 2015; Stams et al., 2003). Furthermore, methanogens do not generally metabolize 

lactate, and low temperatures favour acetogens over methanogens when H2 is available as a 

substrate in fermenting communities, thus the experimental settings were not conducive to 

methanogen activity (Kotsyurbenko et al., 2001). Regardless, a key observation in the Biotic 

Control is that the more abundant sulfate reducing genera present at 24 hours were likely lactate 

fermenters, while acetate-metabolizing species proliferated later in the experiment, likely thriving 

on degradation products of abundant Clostridium spp.  

3.3.4.2 Biotic Zn 

 The Biotic Zn treatment, amended with 50 mg L-1 zinc, expressed a much lower abundance 

of acetogenic transcripts at 24 hours compared to the Biotic Control, reflected in the absence of 

Clostridiales species. Rather, a dominance of Pseudomonas species was observed, as well as the 

genera Serratia. Pseudomonas cover a wide niche in terms of their metabolic capabilities, and 

have been observed in metal-contaminated soils in multiple studies (Bao et al., 2006; Ellis et al., 

2003; Piotrowska-Seget et al.,2005). Reduced competition due to the inhibition of more sensitive 

species as well as the modification of metal-uptake mechanisms into the cell are additional cited 

reasons for Pseudomonas dominance in metal-laden environments (Diaz-Ravina et al., 1996; 

Norris et al., 1976). The former explanation would also explain the lower diversity values and 

lower cell counts at this time point, as the high metal concentration likely inhibited a number of 

species. The prevalence of Serratia species, detected through metatranscriptomic data, could be 

due to their role as efficient microbial chitin degraders (Monreal et al., 1969; Vaaje-Kolstad et al., 

2005).  Chitin is an abundant carbon source in the Stockton bioreactor, produced and 

incorporated into the mussel shells, thus Serratia could play an important role in liberating more 
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easily degradable carbon from the primary breakdown of chitinous material in the mussel shell 

bioreactor (DiLoreto et al., 2016). However, chitin was not present in the experimental 

treatments, so although Serratia in enrichments were sourced from a chitinous environments, 

they’re growth in the treatments must be due to metabolism of other carbon sources (primarily 

lactate or acetate), confirming with other studies that these species possess a versatile diet 

(Shukor et al., 2008). The fact that Serratia were detected in the Zn-amended treatment and not 

the Biotic Control could be due to similar reasons as Pseudomonas; i.e., less competition from 

metal-intolerant bacteria, also implying a measure of metal resistance in Serratia.  

Coinciding with the dominance of Pseudomonas and Serratia in the Biotic Zn treatment 

at 24 hours was an abundance of TCA cycle transcripts, having significantly higher relative 

abundance than the Biotic Control (Figure 3.7). As acetogenic genes and acetogenic and sulfate 

reducing bacterial species were low in abundance, TCA cycle genes likely corresponded to the 

oxidation of lactate by the dominant species (Pseudomonas) as opposed to the modified acetate 

metabolism pathway as proposed in the Biotic Control. From 16S rRNA data, species of the 

Clostridiales became more abundant in the Biotic Zn treatment over the time periods, as was 

observed in the Biotic Control. However, this was due to an increase in the family Lachnospiraceae 

as opposed to the Clostridiaceae or SRB within the Peptococcaceae, species which were observed 

in abundance in the Biotic Control. It was confirmed from chemical data that the addition of Zn 

did not inhibit SRB species, as sulfate removal rates did not differ between the Biotic Control and 

Biotic Zn treatments. However, as SRB and dissimilatory sulfate reduction genes were not 

identified within the first 96 hours from the Zn-amended treatment, it is possible that a lag existed 

in SRB growth, but that this lag did not affect overall SRB activity. This would explain the identified 

lag in hydrogen sulfide production compared to the Biotic Control. The rebound and plateau in 

16S rRNA concentrations in the Biotic Zn treatment could have also been an indication of late SRB 
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metabolism. Pseudomonas appeared to be outcompeting most other bacteria in the metal-

amended treatment, and this species would not have been producing acetate from lactate 

oxidation via the TCA cycle, thus acetate as carbon source for recognized SRB species in the Biotic 

Control would not have been available until later time points, when acetogens could have 

persisted after the initial dominance of Pseudomonas. It does appear that an assimilatory sulfate 

reduction pathway was active at 24 hours in the Biotic Zn treatment. This pathway reduces 

inorganic sulfur for incorporation into biological components, primarily the amino acid cysteine. 

Active bacteria at this time point (mainly Pseudomonas and/or Serratia were likely culprits for this 

metabolic pathway, as they were the dominant species present. Furthermore, an increase in 

normalized abundance of cysteine-building gene transcripts, including cysteine synthase and O-

acetyltransferase, correlate with increased assimilatory sulfate reduction pathways. 

3.3.5 Conclusions 

 Through 16S rRNA amplicon sequencing and metatranscriptomic analysis, it was observed 

that enrichments simulating early bacterial community establishment of a passive treatment 

system for Acid Mine Drainage were capable of sustaining sulfate reducing bacteria. In the 

absence of Zn, Clostridium species proved to be vital in generating acetate by primary oxidation 

of lactate, as revealed by metatranscriptomics data. Acetate could then be utilized by SRB, which 

showed an increase in abundance over time in experimental treatments. Lactate-utilizing SRB 

were also abundant across early time points, attesting to the kinetically favourable oxidation of 

lactate over acetate. The dominant SRB present were spore-forming types, a characteristic that 

would allow them to contend with acidic and metal-laden environments, such as in the mussel 

shell bioreactor.  
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This scenario differed in a Zn-incorporated setting, where SRBs exhibited a lag in growth, 

although no apparent burden in activity. More metal resistant bacteria showed abundance in 

these treatments, including those of the genus Pseudomonas. These species utilized lactate 

through non-acetogenic pathways, thus substrates for SRB were less available, and contributed 

to their low abundance at the early time points studied. 

Key enzymes involved in dissimilatory sulfate reduction were in low abundance or non-

expressed from 24-96 hours in both treatments. Thus, despite the presence of SRB, hydrogen 

sulfide production by these species was not prevalent until later time points, as indicated by 

solution chemistry data. At these later time points Zn could react with dissolved sulfide and 

precipitate as ZnS minerals, contributing to metal immobilization. Future work on this system 

could survey taxonomy and metabolic activity by metatranscriptomics throughout the entirety of 

the experiment (throughout 888 hours or longer) to resolve microbial functioning at later time 

points and identify the transition of the community from acetogenic to sulfate-reducing. Q-PCR 

investigations not included in this dissertation showed that dissimilatory sulfate reduction genes, 

such as the dsr gene, were not expressed at later experimental time points, despite the measured 

generation of hydrogen sulfide and subsequent sulfide mineral precipitation. It is suspected that 

dissimilatory sulfate reduction by bacteria occurs intermittently, as postulated in other research 

by coarsening patterns in ZnS (Moreau et al., 2004). Thus, dsr transcripts can be easily missed 

when a total RNA extraction is performed at singular time intervals, as single-stranded mRNA 

molecules are known to have a lifespan of only a few minutes (Moran et al., 2013). A more 

rigorous sampling regime (multiple sample points per day) may aid in discerning the nature of 

these cryptic pulses in sulfate reduction in both natural and experimental settings. 

In terms of the hypotheses set forth in Chapter 1: 
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1) Sulfate-reducing genera will not comprise a significantly different proportion of the 

bacterial community than any other genus.  

2) Dissimilatory sulfate reduction genes transcripts will not change significantly throughout 

the duration of the experiment. 

it is confirmed that SRB did indeed comprise a significant portion of the bacterial community in 

the Biotic Control, as select groups were represented within the top 25 most abundant genera. 

However, this was not the case in the metal-amended Biotic Zn treatment, where no sulfate 

reducing bacterial genera made up a significant portion of the community, at least not over early 

experimental time points (0 to 96 hours). Thus, the 1st null hypothesis may be rejected for the 

Biotic Control, but not the Biotic Zn treatment. As for the 2nd hypothesis, dissimilatory sulfate 

reduction genes were not detected during the sampling period in both the Biotic Control or Biotic 

Zn treatment. Although these genes may be detected under a heavier sampling effort over later 

time points, the 2nd null hypothesis cannot be rejected with respect to the data presented here.  
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 E.C. number 
Bio Control 24 to 96 hours 
p-value 

Bio Control 24 to Bio Zn 24 
p-value 

3’-phosphoadenosine 5’-phosphosulfate synthase 2.7.7.4 2.7.1.25 ↑                 0.004386 0.4126 

Acetyl-CoA Synthase 
1.2.7.4 1.2.99.2 
2.3.1.169 ↓              0.0005638 ↓                0.00054 

Aconitase 4.2.1.3 4.2.1.99 ↑                0.002161 ↑              0.000569 

adenylylsulfate reductase 1.8.99.2 0.13 0.8832 

assimilatory sulfite reductase (ferredoxin) 1.8.7.1 ↓                0.008662 ↓                0.00175 

assimilatory sulfite reductase (NADPH) 1.8.1.2 ↑                0.008989 ↑              0.002723 

carbonmonoxide dehydrogenase (acceptor) 1.2.99.2 ↓              0.0007327 ↓                0.00062 

citrate (Si)synthase 2.3.3.1 ↑                0.001264 ↑              0.000569 

cysteine synthase 2.5.1.47 ↑                    0.0193 ↑              0.000545 

dihydrolipoyllysineresidue succinyltransferase 2.3.1.61    ↑                0.007535 ↑              0.000585 

formate dehydrogenase 1.2.1.2 ↑                  0.02383 ↑              0.000515 

fumarate hydratase 4.2.1.2 ↑                0.001495 ↑              0.000755 

isocitrate dehydrogenase (NADP+) 1.1.1.42 ↑                0.001293 ↑              0.000667 

Table 3.1: Significance values acquired through Tukey’s pairwise comparisons for differences in key transcript normalized abundance. P-

values are displayed for changes in normalized abundance of transcripts between 24 and 96 hours in the Biotic Control and between 24 

hours in the Biotic Control and 24 hours in the Biotic Zn treatment. Significant comparisons (p-value <0.05) are shaded, with an up arrow (↑) 

indicting an increase in normalize abundance and a down arrow (↓) indicating a decrease in normalized abundance over the respective time 

intervals or treatments.  
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methyl coenzyme M reductase  2.8.4.1   
oxoglutarate dehydrogenase 
(succinyltransferring)(sucA) 1.2.4.2 ↑             0.0009524 ↑              0.000515 

phosphoadenylylsulfate reductase (thioredoxin) 1.8.4.8 0.822 ↑              0.000517 

serine Oacetyltransferase 2.3.1.30 ↑                  0.03848 ↑              0.000515 

succinate dehydrogenase sdh 1.3.99.1 ↑             0.0002808 ↑                0.03625 

SuccinateCoA ligase (ADPforming) 6.2.1.5 ↑                    0.0091 ↑              0.000515 

sulfate adenylyltransferase 2.7.7.4 ↑                 0.01506 ↑              0.001062 
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Figure 3.1: Shannon H (A) and Chao1 (B) diversity index values for Biotic Control and Biotic Zn 

treatments  
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Figure 3.2: Filtered Operational Taxonomic Unit (OTU) relative abundance data at the 

phylum level. Values based off 16S rRNA amplicon sequences from total RNA extraction 

over 24 to 96 hours. A) Biotic Control B) Biotic Zn  



94 
 

 

 

 

B A 

Figure 3.3: Filtered Operational Taxonomic Unit (OTU) relative abundance data at the 

family level. Values based off 16S rRNA amplicon sequences from total RNA extraction 

over 24 to 96 hours. A) Biotic Control B) Biotic Zn  
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24 hours 96 hours 

A 

96 hours 24 hours 

Figure 3.4: A) Relative abundance of families within the Clostridiales in the Biotic Control at 24 and 96 hours based 

on metatranscriptomic analysis from total RNA extraction. Clostridium species comprised 88% and 77% of the 

Clostridiaceae at 24 and 96 hours, respectively. Absent abundance labels at 24 hours include Clostridiales Family 

XVII. Incertae Sedis (0.03%), Clostridiales Family XVIII. Incertae Sedis (0.08%), Heliobacteriaceae (0.14%), and 

Syntrophomonadaceae (0.13%). B) Relative abundances between genera of sulfate reducing bacteria (SRB) in the 

Biotic Control at 24 and 96 hours.  
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1) Carbon-monoxide dehydrogenase 

2) Acetyl CoA-synthase 

1) Isocitrate dehydrogenase 

2) Oxoglutarate dehydrogenase 

3) Succinate dehydrogenase 

4) Succinate CoA ligase 

5) Citrate (Si) synthase 

6) Fumarate hydratase 

 

Figure 3.5: Key microbial lactate and acetate oxidation pathways. A) Lactate oxidation to acetate through the 

Wood-Ljungdahl pathway utilized by acetogenic bacteria. Lactate is converted to pyruvate via a lactate 

dehydrogenase, which is then converted to acetyl-CoA. Carbon-monoxide dehydrogenase (1) catalyzes the key 

reduction of CO2 to an enzyme-bound carbonyl group, with acetyl CoA-synthase (2) participating in the 

generation of acetyl-CoA, which in turn is converted to acetate. B) A modified Tricarboxylic Acid (TCA) cycle 

utilized by sulfate reducing bacteria to generate ATP via acetate oxidation. Key enzymes detected through 

metatranscriptomics analysis are numbered.  
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Figure 3.6: Acetyl-CoA pathway for acetate utilization by sulfate reducing bacteria. The reaction 

pathway is essentially the reverse of the acetogenic Wood-Ljungdahl pathway. Formate 

dehydrogenase (1) catalyzes the conversion of formate to CO2. 
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Figure 3.7: Key enzyme transcripts of energy metabolism pathways in the Biotic Control at 24 and 96 hours and 

Biotic Zn at 24 hours. The size and colour of the circles represents the normalized abundance of each transcript.  
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Chapter IV: Conclusions 

4.1 Summary 

 The primary goal of this Thesis work was to investigate the physico-chemical and 

microbial functional characteristics that influence remediation pathways in a passive treatment 

system for Acid Mine Drainage (AMD). Emphasis was on the influenced precipitation of zinc sulfide 

minerals by sulfate-reducing bacteria (SRB) as a Zn-removal pathway. In a successful passive 

treatment system, SRB will thrive in the anoxic regions of bioreactors, producing hydrogen sulfide 

as a by-product of their metabolism. This hydrogen sulfide reacts with divalent metals generating 

insoluble metal sulfides, effectively immobilizing these metals from solution; a state where they 

are less bio-available. This mechanism was studied in material from a passive mussel shell 

bioreactor (MSB) implemented at the Stockton Coal Mine of New Zealand using dedicated 

bacterial enrichments in controlled lab-experiments, with a set of defined hypotheses to be 

tested. In this approach, solution chemistry, mineral precipitation, and the functioning microbial 

community could be characterized to resolve the parameters that would allow for a successful 

decrease in metal concentrations.  

 Chapter 2 focused on physico-chemical analysis of bacterial enrichments during ZnS 

precipitation events, tracking cell activity, concentrations of metals (Zn and Tl), sulfate, and 

hydrogen sulfide, and precipitation events through sacnning electron microscopy. Treatments are 

summarized in Table 2.1.  Through experimentation and statistical analysis, it was determined 

that all biotic treatments amended with metals were able to decrease Zn concentrations and 

generate hydrogen sulfide significantly over control treatments (Table 2.2), thus the 1st null 

hypothesis was rejected. Through mass balance calculations, the majority of Zn removal was 

postulated to be by adsorption to cell surfaces, and to a lesser extent by precipitation of ZnS. Zn 
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removal percentages by reaction with sulfide were estimated at 3.5%, 3.3%, and 3.7% for the 

Biotic Zn, Biotic ZnTl1, and Biotic ZnTl25 treatments, respectively. These values coincided with 

relatively low hydrogen sulfide production within the mixed bacterial community compared to 

other pure SRB culture studies. A disproportionately lower production of hydrogen sulfide was 

measured compared to the amount of sulfate removed from the system. This was explained by 

the identification of sulfate-transforming gene transcripts, yet the absence of downstream 

transcripts of hydrogen sulfide production. An assimilatory sulfate reduction pathway was 

believed to be driving early sulfate removal (0 to 96 hours) opposed to a dissimilatory pathway. 

The overall bacterial activity seemed to respond differently in treatments amended with metals 

compared to those without. The addition of Zn and Tl decreased cell counts and imposed a lag on 

cell growth as observed by relative 16S rRNA concentrations, thus the 2nd null hypothesis was 

rejected. However, metals did not appear to affect final SRB contributions (i.e. sulfate removal), 

thus it was hypothesized that inhibitory metal impacts were fixated primarily on the early 

bacterial community.  Scanning electron microscopy (SEM) and energy dispersive spectroscopy 

(EDS) investigations observed precipitates comprised of Zn and S in treatments amended with 

bacteria and Zn after 450 hours, but not in control treatments, thus were believed to be generated 

as a result of bacterial sulfate reduction. The precipitates exhibited a similar size range to 

biotically-influenced ZnS from other studies, as well as to ZnS examined from raw material from 

the anoxic layer of the MSB itself. However, lab generated ZnS differed considerably from natural-

analogues in abundance and formation habit, often observed as rare, single precipitates opposed 

to botryoidal aggregates (Figure 2.6, 2.7). The presence of organics and/or biofilms were predicted 

to have driven ZnS formations in the raw MSB material. Furthermore, though SRB were present 

in the mixed communities of the experimental treatments, their activity was likely hindered by 
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more dominant species, resulting in less ZnS generation than expected.  These observations 

resulted in a rejection of the 3rd null hypothesis.  

 Chapter 3 focused on characterizing the relative abundance of active bacterial groups and 

dominant metabolic pathways in a Biotic Control and a Zn-amended Biotic Zn treatment during 

early experimental time points (24 to 96 hours).  This was performed through 16S rRNA amplicon 

sequencing and metatranscriptomics, both based on total RNA extractions. It was observed that 

both treatments were dominated by the phyla Firmicutes and Proteobacteria, though the 

abundance and genera-constituents of these groups varied with time and with treatment. The 

Biotic Control exhibited an early abundance (24 hours) of families within the order Clostridiales, 

which were resolved to be mainly species of Clostridum. These species remained dominant 

throughout the Biotic Control, with the exception of the 48-hour time point, where Pseudomonas 

spp. showed higher relative abundance, along with bacteria of the, Lachnospiraceae and 

Moraxellaceae. At 24 hours, high relative transcripts for acetogenesis were identified through 

metatranscriptomic analysis, corresponding to lactate utilization by abundant acetogenic 

Clostridium species. This pathway was downregulated at 96 hours, indicating an exhaustion of 

lactate as a carbon substrate. Lactate-utilizing SRB were the most abundant sulfate reducers 

present throughout the Biotic Control, including Desulfitobacterium hafniense and 

Desulfotomaculum reducens, however acetate-utilizing species were also present and showed 

relative increases in abundance from 24 to 96 hours, including Desulfotomacculum acetoxidans 

and Desulfuromonas acetoxidans. The increased abundance of the acetate-metabolising variety 

over time was likely due to the corresponding availability of acetate, generated by Clostridium 

spp. Acetate oxidation was deemed to be occurring through a modified tricarboxylic acid (TCA) 

cycle, due to the increased abundance of transcripts from this pathway detected at 96 hours. 
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Shannon H and Chao1 diversity indices showed decreasing diversity values with time in the Biotic 

Control, driven by cell death in the closed system. 

 In the Bioitc Zn treatment, the genera Pseudomonas and Serratia expressed higher 

dominance at 24 hours with little influence by bacteria of the Clostridiales, including SRB. 

Pseudomonas spp. exhibited a higher resistance to metal loads, as observed in other research, 

and thus were able to persist through early experimental time points and outcompete other 

bacterial groups, while Serratia spp. likely thrived for similar reasons and performed in the 

bioreactor as key chitin degraders. TCA cycle transcripts were the highest of all samples at 24 

hours in the Biotic Zn treatment, inferring this as the primary pathway for lactate oxidation by 

Pseudomonas spp. Low acetogenic pathway transcripts could explain a lag in SRB abundance, as 

acetate would be an easily-utilized carbon substrate for these bacteria. This would also explain a 

lag in hydrogen sulfide production in the Biotic Zn treatment compared to the Biotic Control. 

Despite this apparent lag, final SRB activity did not seem to be affected based on sulfate-removal 

rates that were consistent across metal and non-metal amended treatments. Dissimilatory sulfate 

reduction gene transcripts were either absent or in very low abundance during the time points 

investigated (24-96 hours), and thus sulfide generation was not accelerated until after 100 hours, 

as also indicated through chemical data. Rather, assimilatory sulfate reduction pathways were 

driving early sulfate removal.  

 The detection of SRB in the Biotic Control rejects the 1st null hypothesis for this chapter, 

but low abundances in the Biotic Zn means that the same hypothesis cannot be rejected in the 

context of that treatment. As dissimilatory sulfite reduction genes were not detected during early 

experimental time points, the 2nd null hypothesis set forth cannot be rejected. The major 

Clostridium and SRB identified in both treatments were endospore-forming varieties. This 

observation, along with the apparent metal-resistance of Pseudomonas and Serratia highlights 
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the importance of resistance mechanisms in bacteria that are favourable in remediation 

technologies, including those applied to AMD treatment.  

4.2 Reflections and Future Work 

 With improved sequencing platforms and bioinformatics pipeline software, it is becoming 

less rigorous and expensive to prepare and analyse large microbial datasets from environmental 

samples (Dick et al., 2015). This is allowing researchers to resolve, with more detail, the in-situ 

functioning of metabolic pathways driven by bacteria, such as in metatranscriptomic analysis. Of 

remediation relevance are those involved in the transformation/degradation of contaminants 

into more easily-degradable, less bio-available forms. The work in this Thesis has aided in the 

understanding of one of these positive fundamental pathways; the precipitation of potentially 

toxic metals from solution driven by sulfate-reducing bacteria. Although this process is well 

understood from a mechanistic point of view, there is much to be revealed of how SRB function 

as part of a grander microbial community, and how other species may facilitate or obstruct 

favourable chemical reactions. This research has shown that spore-forming SRB species have 

persisted in enrichments from a metal-laden treatment system. Thus, bacterial resistance to 

extreme conditions and the ability to adapt to fluctuating physical and chemical settings has 

relevance in remediation studies. Similar conclusions have been reached in degradation studies 

of petroleum hydrocarbons and biphenyls by Desulfotomacculum, showing that this genus is a 

vital component in a spectrum of contaminant degradation processes, and should be the focus of 

deeper investigation (Morasch et al., 2004; Selesi et al., 2009). This research has also observed 

the importance of substrate cycling in a microbial community, or simply put; one bacteria’s trash 

is another one’s treasure. SRB may not be able to thrive without easily degradable substrates 

provided by the breakdown of complex carbon (ex. cellulose, chitin, lignin) by other species. An 

example of this was characterized in this study, where lactate oxidation to acetate by fermentive 
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Clostridium paved the way for sulfate reduction. This pathway could be better elucidated by 

applying genomic and transcriptomic techniques in parallel with flux balanced analysis (FBA) to 

quantify the fates of key carbon substrates (Edwards et al., 2002; Rao et al., 2011), and 

investigating a possible reversal of acetate metabolism that is relevant in anaerobic systems 

(Wolfe et al., 2005). The incorporation of stable isotope analysis could also be applied as indicators 

of biological sulfate reduction (Yoon et al., 2012).  

This work has also demonstrated the advantages of an interdisciplinary approach to 

microbial systems, where both molecular and chemical methods can aid in unravelling in-situ 

functioning. For example, traditional assays have relied on the removal of sulfate as a proxy for 

sulfide generation rates, but this research has established that this link is not always clear cut. 

Assessment of gene pathways, including both dissimilatory and assimilatory sulfate reduction, can 

aid in tracking the cycling of sulfur in anaerobic environments and account for discrepancies 

observed from solution chemistry data. Such investigations may also be applied in resolving 

simultaneous sulfide-oxidation pathways that drive cryptic sulfur turnover in sediments, driven 

by mixed consortia of bacteria (Hausmann et al., 2016), or used in settings where SRB activity is 

undesirable, such as in the souring of hydrocarbons or in corrosion of infrastructure by hydrogen 

sulfide (Enning et al., 2014).  

 Though powerful, it should be noted that metatranscriptomic analysis is not without its 

limitations. While it is assumed that transcriptomic investigation reveals the actual active genes 

or gene pathways at a given time, it does not account for post-transcriptional modifications, and 

thus cannot be interpreted religiously as a direct indication of gene output, but rather a proxy for 

gene “potential” (i.e., just because an RNA molecule is synthesized, does not mean it will be 

translated into protein) (Abram et al., 2015., Bikel et al., 2015). The fields of proteomics and 

metabolomics that seek to resolve microbial functioning further down the translation path have 
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potential in future microbial ecology studies, however bioinformatics software, pipelines, and 

libraries are still being developed to interpret accurately the data provided by such techniques, as 

well as overcoming hurdles related to large microbial genetic heterogeneity in environmental 

samples (Otto et al., 2014; Simon et al., 2011; Ulrich-Merzenich et al., 2007). Despite limitations, 

metatranscriptomics currently serves as a valuable and relevant technique, and can be utilized for 

prospecting of key genes or gene pathways, that can then be quantified by techniques such as 

targeted qPCR. Such as approach could add to the data collected for this thesis, if the experiment 

were to be repeated.     

 In conclusion, the data communicated in this dissertation has demonstrated the 

advantages of a multidisciplinary approach in environmental microbial ecology research, where 

chemical, microscopy, and molecular techniques have been combined in efforts to better 

understand fundamental mechanisms in bioremediation applications. These results can be 

applied in the improved implementation and monitoring of passive treatment technologies for 

metal-laden environments, where comprehension of favourable bacterial community functioning 

is required.  
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APPENDICES 

Appendix A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA 
     

Test for equal 
means 

     

      

 
Sum of sqrs df Mean 

square 
F p (same) 

Between groups: 1348.52 3 449.505 1108 9.90E-10 

Within groups: 2.83979 7 0.405685 
  

Total: 1351.36 10 
   

      

Tukey's pairwise comparisons 
    

 
Abiotic Zn Biotic Zn BioZnTl1 BioZnTl25 

Abiotic Zn 
 

0.00025 0.0002519 0.000252 
 

Biotic Zn 
  

0.6098 0.08577 
 

BioZnTl1 

   
0.01734 

 

BioZnTl25 

     

      

      

      

Input Data (Zinc mg L-1) 
    

Abiotic Zn Biotic Zn BioZnTl1 BioZnTl25 

  

1.579646588 26.0607665 27.8481 24.61006527 
  

1.5 26.8454369 27.7504 25.13547997 
  

1.514339959 26.506257 25.9084 
   

Figure S1: ANOVA Output, Tukey’s Pairwise Comparisons, and Input data for zinc 

concentration change across Zn-amended treatments. Square boxes represent statistically 

significant comparisons.   
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ANOVA       

Test for equal means       

       

 

Sum of 
sqrs df 

Mean 
square F p (same)  

Between groups: 594531 5 118906 8.746 0.001076  
Within groups: 163141 12 13595.1    

Total: 757672 17     

       

Tukey's pairwise comparisons        

 

Abiotic 
Control 

Abiotic 
Zn 

Biotic 
Control  Biotic Zn Biotic ZnTl1 Biotic ZnTl25 

Abiotic Control   1 0.02391 0.003345 0.1995 0.0165 

Abiotic Zn   0.03186 0.004375 0.2557 0.02196 

Biotic Control     0.8296 0.7792 0.9999 

Biotic Zn     0.1986 0.9165 

BioZnTl1      0.6583 

BioZnTl25       

       

Input Data (Sulfate diff mg L-1)       

Abiotic Control  
Abiotic 
Zn 

Biotic 
Control  Biotic Zn 

Biotic 
ZnTl1 Biotic ZnTl25 

61.9 24.9 630.7 609.7 246.4 433.3  
9.4 127.8 189.7 525.7 433.3 504.7  

80.8 48 416.5 443.8 185.5 361.9  

Figure S2: ANOVA Output, Tukey’s Pairwise Comparisons, and Input data for Sulfate 

concentration change across all treatments. Square boxes represent statistically significant 

comparisons.  
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ANOVA       
Test for equal 
means       

       

 Sum of sqrs df 
Mean 
square F p (same)  

Between groups: 2325.78 5 465.155 91.72 3.90E-09  
Within groups: 60.8603 12 5.0717    

Total: 2386.64 17     

       

Tukey's pairwise comparisons       

 

Abiotic 
Control  

Abiotic 
Zn 

Biotic 
Control  Biotic Zn BioZnTl1 BioZnTl25 

Abiotic Control  0.8835 0.0001589 0.01254 0.000672 0.000301 

Abiotic Zn   0.0001589 0.002255 0.000256 0.00019 

Biotic Control     0.000159 0.000159 0.000159 

Biotic Zn     0.4191 0.1305 

BioZnTl1      0.9581 

BioZnTl25       

       

Input Data (Hydrogen Sulfide µmol L-1)     

Abiotic Control  Abiotic Zn 
Biotic 
Control  Biotic Zn 

Biotic 
ZnTl1 Biotic ZnTl25 

0 2.66380345 35.91535 9.794877875 13.30115 17.07018  
6.000711406 -0.0146855 37.79986 12.64050273 12.54734 14.05495  

4.57789898 2.01727164 35.16154 11.2176903 18.57779 17.82399  

Figure S3: ANOVA Output, Tukey’s Pairwise Comparisons, and Input data for maximum 

hydrogen sulfide concentrations (H2S max) across all treatments. Square boxes represent 

statistically significant comparisons.   
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ANOVA       
Test for equal 
means       

       

 

Sum of 
sqrs df 

Mean 
square F p (same)  

Between groups: 561.674 5 112.335 9.937 0.000605  
Within groups: 135.655 12 11.3046    

Total: 697.329 17     

       

Tukey's pairwise comparisons       

 

Abiotic 
Control  

Abiotic 
Zn 

Biotic 
Control Biotic Zn 

Biotic 
ZnTl1 

Biotic 
ZnTl25 

Abiotic Control  1 0.001075 0.9904 0.969 0.9904 

Abiotic Zn   0.001014 0.9866 0.9607 0.9866 

Biotic Control     0.002476 0.003262 0.002476 

Biotic Zn     1 1 

Biotic ZnTl1      1 

Biotic ZnTl25       

       

Input Data (Hydrogen Sulfide µmol L-1)     

Abiotic Control 
Abiotic 
Zn 

Biotic 
Control  Biotic Zn 

Biotic 
ZnTl1 Biotic ZnTl25 

1.832548259 2.663803 23.07574 4.788122 1.37074 2.756165  
2.294356701 -0.01469 9.221483 0.447123 4.603399 2.571442  
0.908931375 2.017272 20.30489 4.603399 5.342292 4.511037  

Figure S4: ANOVA Output, Tukey’s Pairwise Comparisons, and Input data for final hydrogen 

sulfide concentrations (H2S final) across all treatments. Square boxes represent statistically 

significant comparisons.   
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 Shannon H  Chao1  

     

Time 
(hours) Biotic  Biotic Zn Biotic  Biotic Zn 

24 5.05009544 2.20870695 260.894118 118.588235 

48 4.85994773 4.60641971 300.538462 248.5 

72 3.44097356 4.14465283 285.607143 287.204545 

96 3.49027076 4.19924901 250.0625 282.666667 

Sample Time Point (Hours)  24 48 72 96 

Biotic Control Unfiltered 146684 
 

36352 66078 53791 

 Filtered 
(minimum 
cut-off 50) 

145926 
 

24564 
 

60456 45071 
 

Biotic Zn Unfiltered 86610 43774 91984 40527 

 Filtered 
(minimum 
cut-off 50) 

74063 
 

34582 
 

75283 31644 
 

Table S1: Shannon H and Chao1 Index values for Biotic Control and 

Biotic Zn treatments for 24, 48, 72, and 96 hours. 

Table S2: Read numbers before and after filtering of 16S rRNA amplicon sequenced samples for 

Biotic Control and Biotic Zn treatment.  
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Uploaded 
Sequence 
Count  

Post QC 
Sequence 
Count 

Post QC 
Mean 
Sequence 
Length  

Identified 
Protein 
Features 

Identified rRNA 
Features  

Annotated 
Identified 
Functional 
Categories  

24 
hours 

Biotic 
Control Sample1 37,626,806 7,788,749 119 ± 32 bp 745,321 3,695 606,967 

  Sample2 36,927,006 7,571,353 119 ± 32 bp 736,930 3,518 599,209 

  Average  37,276,906 7,680,051 119 ± 32 bp 741,126 3,607 603,088 

 Biotic Zn Sample1 53,380,957 8,713,736 122 ± 33 bp 653,339 5,815 590,283 

  Sample2       

  Average  53,380,957 8,713,736  653,339  590,283 
96 
hours 

Biotic 
Control Sample1 28,360,469 5,858,009 117 ± 30 bp 645,646 4,010 495,485 

  Sample2 40,398,374 7,594,944 117 ± 30 bp 790,453 4,523 606,426 

  Average  34,379,422 6,726,477 117 ± 30 bp 718,050 4,267 550,956 

Table S3: Sequence data pre and post quality control for metatranscriptomic datasets analyzed 

through MG-RAST. 
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 E.C. number 
Bio Control 
24A 

Bio 
Control 
24B 

Bio 
Control 
96A 

Bio 
Control 
96B 

Bio Zn 
24A 

Bio Zn 
24B 

3’-phosphoadenosine 5’-phosphosulfate synthase 2.7.7.4 2.7.1.25 1.70 1.53 3.06 3.13 1.75 1.68 

Acetyl-CoA Synthase 
1.2.7.4 1.2.99.2 
2.3.1.169 11.00 11.21 0.88 1.01 0.00 0.01 

Aconitase 4.2.1.3 4.2.1.99 11.59 11.11 18.91 18.49 33.20 33.48 

adenylylsulfate reductase 1.8.99.2 0.03 0.01 0.004 0.005 0.008 0.030 

assimilatory sulfite reductase (ferredoxin) 1.8.7.1 0.16 0.15 0.07 0.08 0.01 0.02 

assimilatory sulfite reductase (NADPH) 1.8.1.2 2.26 2.18 3.23 3.42 7.19 6.73 

carbonmonoxide dehydrogenase (acceptor) 1.2.99.2 12.50 12.89 2.08 2.20 0.07 0.06 

citrate (Si)synthase 2.3.3.1 5.84 5.71 10.46 10.21 15.21 15.02 

cysteine synthase 2.5.1.47 3.60 3.56 5.46 6.07 11.83 11.79 

dihydrolipoyllysineresidue succinyltransferase 2.3.1.61 5.14 4.95 8.92 8.33 15.24 15.32 

formate dehydrogenase 1.2.1.2 6.23 6.36 7.31 7.67 24.40 24.88 

fumarate hydratase 4.2.1.2 5.36 5.27 12.02 12.49 19.84 19.77 

isocitrate dehydrogenase (NADP+) 1.1.1.42 12.60 12.19 19.18 19.26 23.59 23.43 

methyl coenzyme M reductase  2.8.4.1 N/A N/A N/A N/A N/A N/A 

oxoglutarate dehydrogenase (succinyltransferring)(sucA) 1.2.4.2 11.62 11.50 19.69 19.31 38.59 39.54 

phosphoadenylylsulfate reductase (thioredoxin) 1.8.4.8 0.54 0.53 0.51 0.55 1.99 1.98 

serine Oacetyltransferase 2.3.1.30 1.57 1.45 2.04 2.27 3.93 3.88 

succinate dehydrogenase sdh 1.3.99.1 11.03 11.00 15.55 14.84 52.47 53.09 

SuccinateCoA ligase (ADPforming) 6.2.1.5 9.23 9.16 14.57 13.65 25.90 25.83 

sulfate adenylyltransferase 2.7.7.4 1.21 1.15 1.60 1.71 2.24 1.90 

Table S4: Normalized relative abundance values (%) from duplicates for key transcripts across samples. Duplicates are shown from the Biotic 

Control at 24 and 96 hours and from the Biotic Zn treatment at 24 hours. Values are normalized to rpob, and displayed with Enzyme Commission 

numbers (E.C.) 
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Biotic Control  Time    

Time 24 48 72 96 

Unassigned 0.1500 0.2294 0.2115 0.2144 

k__Bacteria;p__Firmicutes 0.5900 0.2438 0.6107 0.6322 

k__Bacteria;p__Proteobacteria 0.2200 0.5268 0.1778 0.1534 

Biotic Zn 24 48 72 96 
Unassigned 0.0294 0.1459 0.2076 0.2351 

k__Bacteria;p__Firmicutes 0.0519 0.5214 0.4347 0.4879 

k__Bacteria;p__Proteobacteria 0.9187 0.3326 0.3578 0.2770 

Table S5: OTU assignments and relative abundance of dominant phyla in the Biotic Control 

and Biotic Zn treatments for 24, 48, 72, and 96 hours. Abundance values are averages of 

duplicate samples. Screw Flanders. 



118 
 

 

 

 

 

 

 

 

Biotic Zn  Time    

#OTU ID 24 48 72 96 

Unassigned 0.0294 0.1459 0.2076 0.2351 

o__Clostridiales;Other 0.0013 0.0425 0.0056 0.0063 

o__Clostridiales;f__ 0.0006 0.0039 0.0006 0.0016 

f__Clostridiaceae 0.0001 0.0022 0.0038 0.0044 

f__Lachnospiraceae 0.0013 0.1985 0.4101 0.4681 

f__Peptostreptococcaceae 0.0484 0.2737 0.0107 0.0042 

f__Veillonellaceae 0.0000 0.0004 0.0035 0.0021 

f__[Tissierellaceae] 0.0001 0.0001 0.0003 0.0012 

c__Gammaproteobacteria;Other;Other 0.0000 0.0000 0.0001 0.0002 

f__Moraxellaceae 0.0014 0.0005 0.0005 0.0005 

f__Pseudomonadaceae 0.8960 0.3097 0.3445 0.2647 

f__Xanthomonadaceae 0.0214 0.0225 0.0126 0.0117 

Biotic Control  Time    

#OTU ID 24 48 72 96 

Unassigned 0.1500 0.2294 0.2115 0.2144 

f__Acholeoplasmataceae 0.0200 0.0000 0.0000 0.0000 

f__Bacteroidaceae 0.0200 0.0000 0.0000 0.0000 

o__Clostridiales;Other 0.0015 0.0094 0.0065 0.0129 

o__Clostridiales;f__ 0.5170 0.0458 0.5867 0.5934 

f__Clostridiaceae 0.0307 0.0005 0.0000 0.0000 

f__Lachnospiraceae 0.0013 0.1400 0.0073 0.0120 

f__Peptostreptococcaceae 0.0006 0.0473 0.0099 0.0135 

f__Veillonellaceae 0.0000 0.0006 0.0001 0.0002 

f__[Tissierellaceae] 0.0000 0.0003 0.0001 0.0001 

c__Gammaproteobacteria;Other;Other 0.0002 0.0042 0.0007 0.0008 

f__Moraxellaceae 0.0017 0.0652 0.0100 0.0069 

f__Pseudomonadaceae 0.0763 0.4514 0.1661 0.1443 

f__Xanthomonadaceae 0.0500 0.0060 0.0010 0.0015 

Table S6: OTU assignments and relative abundance values of dominant families in the Biotic Control 

and Biotic Zn for 24, 48, 72, and 96 hours. Abundance values are averages of duplicate samples.   
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