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Abstract

Induction motors are frequently used in many automated systems as a major driving

force, and thus, their reliable performances are of predominant concerns. Induction

motors are subject to different types of faults and an early detection of faults can

reduce maintenance costs and prevent unscheduled downtime. Motor faults are gen-

erally related to three components: the stator, the rotor and/or the bearings. This

study focuses on the fault diagnosis of the bearings, which is the major reason for

failures in induction motors.

Data-driven fault diagnosis systems usually include a classification model which

is supported by an efficient pre-processing unit. Various classifiers, which aim to

diagnose multiple bearing defects (i.e., ball, inner race and outer race defects of

different diameters), require well-processed data.

The pre-precessing tasks plays a vital role for extracting informative features from

the vibration signal, reducing the dimensionality of the features and selecting the best

features from the feature pool. Once the vibration signal is perfectly analyzed and a

proper feature subset is created, then fault classifiers can be trained. However, classi-

fication task can be difficult if the training dataset is not balanced. Induction motors

usually operate under healthy condition (than faulty situation), thus the monitored

vibration samples relate to the normal state of the system expected to be more than

the samples of the faulty state. Here, in this work, this challenge is also considered

so that the classification model needs to deal with class imbalance problem.
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Chapter 1

Introduction

1.1 Background

Induction motors (IMs) play a significant role in industries and impact on a wide

portion of industrial applications. Hence, IMs’ performance and safety should be

monitored to prevent unexpected failures and decrease downtime and maintenance

cost of the system [5]. In other words, an appropriate monitoring technique to assess

the automated system condition is needed to guarantee its reliability, efficiency and

controllability. The monitored abnormalities in IMs are mainly related to defects

which are occurred in critical components such as the bearings, the stator and the

rotor [5]. However, bearing defects are the major reason for induction motors failure

[6, 3].

1.2 Bearing Data

The Case Western Reserve University (CWRU) Bearing Datasets [7] are one of the

most frequently used reference data in the area of bearing diagnostics. CWRU dataset

contain the vibration data of the bearing under normal condition and also with differ-

ent defects including the ball, inner race and outer race. Defects ranging from 0.007

inch in diameter to 0.028 inch in diameter. The vibration data for healthy and faulty

condition are recorded for motor loads of 0 to 3 horsepower.

The CWRU data has some latent characteristics in which some vibration signals

are dominated by classical bearing fault features, and others are less clear or visualize
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other fault symptoms. Localized defects in bearings create a sequence of broadband

impulse responses in the acceleration signal as the bearing components recurrently

strike the fault. The exact location of the defect determines the nature of the impulse

response sequence [8].

CWRU data are available for public and contain fan and drive end vibration data

as well as rpm. The datasets have become a standard reference in recent years and

motivated many researchers in the field of bearing fault detection and diagnostic

[8] so that Smith and Randall perform an extensive analysis on these datasets and

ranked them as easily diagnosable to non-diagnosable. In this study, some data from

non-diagnosable datasets (based on their research) is used.

1.3 Goals and Contributions

The large portion of IM’s faults is related to bearing defects, hence, early detection

and diagnosis of faults, which occurred in this component, is a substantial task. The

goal of this work is to design a data-driven fault diagnosis system to detect bearing

faults. To this aim, firstly the state-of-the-art data-driven techniques to diagnose

bearing defects are studied. The preprocessing task to analyze the vibration signal is

an inevitable part of a data-driven system. Thus, different preprocessing techniques

are investigated to find the efficient method that could reveal the fault index better

than others.

Secondly, this work aims to diagnose the bearing defects under the multi-class

imbalanced condition. As in real world applications, data samples are often collected

under skewed-class distribution, there is a need for some techniques for the ease

of classification in the class imbalance condition and to facilitate training the fault

classifiers. Diagnosing multiple bearing defects under the class imbalance condition is

a challenging task since most of the classifiers are mainly devised for the class-balance

distribution of data. Moreover, some of the classifiers can handle the class-imbalanced

2



data for the binary class situations.

Finally, this work proposes a sampling technique to diagnose bearing defects under

class imbalance condition. The proposed technique is compared with the state-of-the-

art techniques.

1.4 Related Work

Many works have been focused on the processing of the bearing vibration signal to

identify the system state, i.e., normal condition or any defects. Vibration signal is

mainly analyzed in three different domains; Time, Frequency and Time-Frequency

domains. Various fault diagnosis system make use of data-driven techniques to ex-

tract informative features from the bearing vibration signal. For instance, Ravi and

Mohanty [9] used Fast Fourier Transformation (FFT) to analyze frequency-domain

features, and Liu and Han [10] extracted several time-frequency features by means

of Local Mean Decomposition (LMD). In addition, time-domain features have been

extensively studied due to their insensitivity to the change in motor load and the

need for low computational efforts [11].

Apart from feature extraction that is an essential task in bearing vibration anal-

ysis, a qualified intelligent classification algorithm is needed to diagnose samples of

bearing vibration accurately and efficiently. Data-driven diagnostic techniques are

usually make use of a classification algorithm to diagnose faults [12, 13]. Various

classification algorithms such as fuzzy systems [14] and neural networks [15, 2] have

been considered for fault diagnosis. In this work also intelligent fault classifiers are

used to diagnose bearing defects.

These fault classifiers aim to distinguish faulty (e.g., outer race defect, inner race

defect or ball defect) and normal samples and determine the bearing health condition.

However, these fault classification algorithms are typically based on the assumption

that number of faulty samples are almost equal to number of normal samples. In

3



other words, most of these fault classifiers are not designed for skewed-class data

distribution, while collected data in industrial processes are often imbalanced [16]. In

fact, IMs operate in the normal condition, hence, samples of normal class expected to

be greater than faulty ones. Since class imbalance problem endangers the classification

performance, some techniques should be applied to deal with this problem. Different

approaches to handle class imbalance in the level of data and algorithms are also

considered in this study.

In data-level approach, sampling techniques which aim to provide a balance dataset

is used. These methods tries to re-balance the dataset by under-sampling of the ma-

jor class, e.g., Random Under-Sampling (RUS) or over-sampling of the minor class,

e.g., Random Over-Sampling (ROS). In this approach, the goal is to create a dataset

with the equal class distribution that can be used by the most of the fault classifiers.

The benefits and the drawbacks of RUS and ROS as simple sampling methods along

with state-of-the-art sampling techniques such as synthetic minority over-sampling

technique (SMOTE) [17] and a novel sampling techniques based on missing data

imputation, are studied in this work.

There exists other methods to tackle class imbalance problem for instance by

performing some modification on classification algorithms, i.e., defining the weight or

the cost of contribution of samples in the classification task [18].

Another approach is combinations of sampling and ensemble schemes which can

lead to more versatile systems and obtain better performance [4]. In this approach, a

re-balanced set of samples obtained by the sampling methods is used in the ensemble

of the fault classifiers (i.e., Adaboost.M1 and Bagging) for diagnosing bearing defects

under the class imbalanced condition.

1.5 Outline

The subsequent chapters of this study are structured as follows:
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Chapter 2 discusses about induction motor faults and fault characteristic fre-

quencies. Moreover, some published papers which have studied fault diagnosis of

induction motors are reviewed. The goal of this work to propose a diagnostic scheme

for bearing fault detection is briefly explained.

Chapter 3 defines different module of a data-driven diagnostic scheme which

is commonly inclusive of prepossessing and classification modules. Then, the state-

of-the-art techniques that have been applied in many literatures for each modules

are explained. These techniques are basically related to feature extraction in three

different domains; Time, Frequency and Time-Frequency and, feature reduction. The

detailed modules of this diagnostic scheme, the role of each module and the important

fault classifiers are described in this chapter.

Moreover, in real world applications, data samples are often collected under skewed-

class distribution and there is a need to develop fault classification module to deal

with this problem. The details of this problem is discussed in next chapter.

Chapter 4 describes the problem of class imbalanced in designing a data-driven

fault diagnosis system. Moreover, different approaches to handle the problem of class

imbalance are addressed and explained. Besides, a novel sampling technique to re-

balance the data samples is proposed in this chapter.

Chapter 5 relates to experimental results obtained from the three different data-

driven diagnosis system that operates under balanced and imbalanced conditions.

Firstly, the results of a diagnostic system which makes use of wavelet packet transform

and linear discriminant analysis are presented. Secondly, the experimental results for

the combination of empirical mode decomposition and five different dimensionality

reduction methods are provided. Finally, a data driven diagnostic system inclusive of

all the state-of-the-art preprocessing techniques and class imbalance learning methods

is described. The performance of each module w.r.t. class imbalance techniques are

also provided.

Chapter 6 contains the conclusion of this work. This chapter firstly discusses

5



about the outcome of two experiments which focus on preprocessing techniques.

Then, the performance of data-driven diagnostic techniques under the class imbal-

ance condition is evaluated and the conclusion is made. The improvements for future

works are also provided in this Chapter.

6



Chapter 2

Induction Motors Principles and Previous

Works

2.1 Induction Motors

Induction motors are one of the most important components in many automated sys-

tems, and thus, their safe and reliable operations are of paramount importance to

guarantee the driving force needed for the systems [19]. IMs can experience various

type of faults, and thus, an accurate and early diagnosis of faults can prevent break-

down and an unscheduled maintenance and decrease service cost [20]. This work

aims to diagnose bearing defects in IMs. These faults are basically categorized into

distributed and local defects [21]. The former category of defects includes surface

roughness, waviness, misaligned races and off-size rolling elements, on the contrary,

the local defects include cracks, pits and spalls on the rolling surfaces [22]. Previous

studies on IMs’ source of failure hold the view that faults originated from the bear-

ing cover a large proportion of failure distribution (41%) in comparison with stator

winding (37%), rotor (10%), and other parts (12%) [6, 23]. Hence IM’s failure di-

agnosis is concerned with bearing condition analysis has attracted the attention of

many researchers [19, 22].

Generally, these defects may occur in different parts of the bearing as depicted

in Figure 2.1. However, spalling of the races can be considered as the most frequent

defect [22].

Bearings are one of the most important components in induction motors, and their

7



Outer Race

Inner Race

Rolling Element
“Ball”

Figure 2.1 – Components of a ball bearing [1]

defects are the most frequent causes for machine breakdown. This has motivated a

significant number of research efforts on vibration-based bearing defects diagnostics

over the past twenty years [24]. Localized defects in bearings create a sequence of

broadband impulse responses in the acceleration signal as the bearing components

recurrently strike the fault. The exact location of the defect determines the nature of

the impulse response sequence [8].

A number of works have studied characteristic defect frequency [22, 8, 25, 26, 27].

The frequency of the defect impulses can be explained by the following equations.

These frequencies are also depicted in Figure 2.2.

Fundamental cage frequency:

Fc =
1

2
Fs

(

1− Dbcos(θ)

Dp

)

; (2.1)

Ball defect frequency:

Fbd =
Dp

Db

Fs

(

1− D2
bcos

2(θ))

D2
p

)

; (2.2)
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Inner race defect frequency:

Fid =
N

2
Fs

(

1 +
Dbcos(θ)

Dp

)

; (2.3)

Outer race defect frequency:

Fod =
N

2
Fs

(

1− Dbcos(θ)

Dp

)

. (2.4)

where Fs is a shaft rotation frequency, Db and Dp are the ball and the pitch

diameters respectively, N is the number of rollers and θ is the bearing contact angle.

Drive end bearing defects frequencies are provided in Table 2.1[26].

Db

Dp

θ Fs

Fid

Fod

Fc

Fbd

Figure 2.2 – Schematic diagram of the bearing including the dimensions and frequency
characteristics of the defects [2].

Table 2.1 – Fault frequencies

Position Inner Ring Outer Ring Cage Train Rolling Element

Drive End 5.4152 3.5848 0.3983 4.7135

9



2.2 Literature Review

IMs have been extensively used as a primary source of power in various industries. As

a result of their simplicity and rigidity, IMs gained a key role in many industries such

as power plants, aerospace and petrochemical industries [28]. However, components

aging and different type of defects can result in IMs failure and even system breakdown

[29] and, thus, prompt diagnosis of IMs defects is strategically essential for industries,

not only to improve reliability, efficiency and productivity of the systems, but also to

minimize the maintenance cost [5, 30, 31, 32].

Various faults can occur in IMs that are typically categorized into two groups: me-

chanical damages (e.g., bearing defects, air gap eccentricity and broken rotor bars)

and electrical damages (e.g., phase to ground, phase to phase and turn to turn con-

nections in stator winding) [19, 23]. Recent studies on the source of faults in IMs show

that bearing defects is the most frequent fault in IMs compared to stator winding,

rotor bars and shaft/coupling [3, 23].

Moreover, a recent study [3] shows that bearing has the (69%) the distribution of

induction motor faults. Figure 2.3 illustrates the extrapolated distribution of failure

in IMs achieved by Austin H. Bonnet and Chunk Yung in their reliability paper[3].

Figure 2.3 shows that failures initiated in the bearing are covered almost two-thirds

of fault distributions and the stator windings has almost one-fifth.

Hence, diagnosing bearing defects, which is the focus of this work, and performing

prompt corrective actions can help preventing system failure and reduce the cost of

unscheduled downtime.

Contemporary schemes to diagnose bearing defects in IMs are commonly based

on the mathematical model of the system [33, 34]. However, performance of these

diagnostic schemes highly depends on the accuracy of the model, which is not easy

to obtain and subjected to inevitable assumptions and conditions. In this respect,

data-driven model-free techniques have been extensively used for diagnosing faults in

10



IMs in recent years. This work also focuses on data-driven techniques for diagnosing

bearing defects in IMs.

�������
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���
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�
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Figure 2.3 – The extrapolated distribution of failure in IMs[3]

Bearing defects can be divided into two categories of distributed and local [21].

The first group of defects contains surface waviness, roughness, off-size rolling ele-

ments and misaligned races. On the other hand, the local ones consist of spalls, pits

and cracks over the races or the rolling elements [22]. These local defects are the most

dominant mode of failure in IMs, which result in consecutive and periodic impulses

in machine vibrations anytime a roller moves over the defective surface [35]. Then,

a prevalent technique for diagnosing bearing defects in IMs is based on the process-

ing of the raw vibrational signals to extract informative features for the use of fault

classifiers [36, 37, 38, 39, 40, 41, 42, 43].

Various signal analysis techniques have been applied to the non-stationary and

complex vibrational signals to extract discriminant features, including time-domain

analysis, frequency-domain analysis (e.g., Fourier Transform) and time-frequency-

domain analysis (e.g., Fast Fourier Transform, Wavelet Transform and Empirical

Mode Decomposition) [22, 37, 38, 44, 45, 26, 46]. However, actual vibrational spectra
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are usually represented by a considerable number of frequency or time-frequency com-

ponents, i.e., high dimensional feature sets, which cannot be easily handled. These

extracted features can be further processed by feature selection (FS) or dimensionality

reduction (DR) techniques, in order to filter out redundant features, reduce the com-

putational burden and provide a more informative and discriminant set of features

for fault classifiers to recognize faulty and healthy states [47, 48].

The number of training samples for each class (i.e., normal and different classes

of faults) plays a vital role in the performance of the diagnostic systems, however,

in designing of the most diagnostic classifiers, it has been assumed that the observed

samples from different classes have almost the same distribution, i.e., balanced class

distribution. However, in real world applications, systems (e.g., induction motors)

usually operate under the normal condition and, thus, samples of the normal state are

expected to be more than samples of faulty classes. This can result in the collection

of challenging imbalanced sets of samples, which further complicate the process of

learning from the samples and diagnosing the faults. The main drawback with the

imbalanced feature sets is that typical fault classifiers are usually biased w.r.t. the

major class (i.e., normal state) and, therefore, there is a higher misclassification rate

for the samples of the minor classes (i.e., faulty classes). Although a considerable

number of data-driven techniques have been applied for diagnosing bearing defects in

IMs [48, 49, 50, 8, 51], there is a need to design data-driven techniques for diagnosing

bearing defects under the class imbalance conditions. Hence, in this work various

state-of-the-art data-driven techniques have been designed for diagnosing bearing

defects under the class imbalanced conditions.

One of the contributions of this study is such a general integrated scheme for di-

agnosing bearing defects from sets of features with class-imbalanced distributions of

the samples. This diagnostic framework includes various state-of-the-art feature ex-

traction, feature selection and dimensionality reduction techniques along with various

advanced techniques for the class-imbalanced learning. These CIL techniques include

12



some state-of-the-art data-level, algorithm-level and ensemble-based approaches.

Besides, this work proposes a novel oversampling technique for class imbalance

learning. The novelty of this approach is in generating a set of incomplete samples

representative of the minor classes and imputing them by resorting to the expectation

maximization algorithm to produce new synthetic samples of the minor classes. The

proposed diagnostic scheme is verified w.r.t. the standard and widely-used Case

Western Reserve University (CWRU) bearing datasets [7].

Over this diagnostic scheme, an empirical comparison of the performance of the

data-driven techniques has been made with a triple objective. The former is to exam-

ine which technique outperforms the others in diagnosing bearing defects in IMs. The

second one is to study the impacts of various feature extraction and reduction tech-

niques in the diagnostic performance. The third one is the sensitivity analysis, where

the performance of the diagnostic scheme is examined w.r.t. several datasets with

different CI ratios. The diagnostic scheme is designed in a way that well-established

conclusions can be extracted. The attained results show that the proposed novel

technique outperforms other state-of-the-art class imbalance learning techniques in

diagnosing bearing defects in terms of both performance measures and stability of

the attained results.

2.3 Motivations and Case Study

The ultimate goal of this work is to design a diagnostic scheme which is able to detect

multiple bearing defects (i.e., inner race defect, outer race defect and ball defect) in

IMs, while the number of collected samples representative of each defect is less than

the number of samples of the normal state. It is very common to collect vibration data

with a skewed class distribution, since IMs often operate in the normal condition. A

key requirement to design an efficient data-driven diagnostic system is then the ability

of diagnosing multiple defects under the class imbalance problem.
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Here, drive end and fan end bearing data from the Case Western Reserve Univer-

sity (CWRU) Bearing Data Center is used as a case study. More information about

CWRU bearing data is also available in Chapetr 1.

Various data-driven scenarios to diagnose bearing defects are investigated in this

work. In order to analyze the efficiency of each scenario, CWRU bearing data is used.

For each scenario, some datasets of CWRU are selected and the related methods are

applied. Information related to the datasets used in each scenario is provided in

Chapter 5.

2.4 Summary

This chapter provides basic information about induction motor faults and frequency

characteristics. Different fault categories are mentioned; faults distribution and the

importance of bearing faults are explained. After that the related works in the field

of fault diagnosis of IMs are studied and some of these important literatures are

referenced. Then, the goal of this study, to design a data-driven diagnostic system is

stated. In the end, the motivation of the work which is multi-fault classification and

the problem of class imbalance condition is briefly explained. Next chapter presents

the data-driven diagnostic system including preprocessing module and intelligent fault

classifiers.
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Chapter 3

Data-driven Diagnostic Scheme

A data-driven diagnostic system generally consists of two main module of preprocess-

ing and classification. Preprocessing is an inevitable task for bearing fault detection.

While the collected vibration signal is usually high frequent and non-stationary, there

is a need for signal analysis to reveal the hidden characteristic and important signa-

tures in normal and faulty signals. A well-processed signal provides the discriminant

features for intelligent fault classifiers to enhance the accuracy of fault classification.

To this aim, preprocessing may consist of one or all of these tasks: segmenta-

tion, feature extraction, feature selection and dimensionality reduction. This chapter

explains the state-of-the-art and widely used techniques for extracting important fea-

tures from the data and analyzing the extracted features to reduce the dimension of

the feature space and increase the accuracy of the diagnostic system.

3.1 Segmentation

Each collected dataset is indeed a vibration signal contains l representative samples.

In this work, these samples are collected at 12kHz, which results into a time duration

of approximately 10s. However, the collected samples during this interval represent

various periods of the rotational procedure and, it is necessary therefore to segment

the whole signal into successive intervals, resembling various non-overlapping samples

collected at different time stamps. According to our experiments, fixing the length of

segments to 1024 is a proper choice beyond which the performance measures begin

to decrease. This value is fixed for all scenarios resulting into m non-overlapping
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segments of length 1024.

3.2 Feature Extraction (FE)

Generally speaking, the efficiency of the fault detection techniques depends on the

efficiency of the employed feature extraction (FE) methods that exploit informative

features in fault diagnosis process. In other words, bearing fault diagnosis methods

should process highly frequent raw signal in an efficient way to extract as many

important features as possible which could deliver more discriminant information to

classification model. These preprocessing methods mainly focus on three different

domains; time, frequency, or timefrequency. In this study the state-of-the-art feature

extraction methods commonly used in majority of data-driven diagnostic systems are

explained and applied on CWRU bearing data.

3.2.1 Time-Domain

The simplest preprocessing method, also robust to load-changes issues, is the scheming

of the statistical time-domain features. In order to obtain time-domain features of any

vibration data in this study (e.g. Normal, Inner race defect, Ball defect and Outer race

defect), firstly the vibration data is segmented with respect to the class labels. Once

the representative samples of each class are divided intom none-overlapping folds (i.e.,

the intersection of all the folds is zero), different statistical measures are calculated

for each fold. These time-domain measures are defined to create the feature vectors

[mean, root−mean−square, skewness, kurtosis, crest−factor, impulse−factor,
margin− factor, entropy].

Considering k − th (1 ≤ k ≤ m) segment of the vibration signal S, the eight

features can be formulated in following, where lk is the total number of samples in

k− th segment and xik stands for the i− th sample in the k− th segment. µk and σ2
k

stand for the mean and the variance of the samples in the k−th segment, respectively.
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P stands for the probability mass function.

Mean

X1 =

∑lk
i=1 xik
lk

(3.1)

Root Mean Square

X2 =

(

∑lk
i=1(xik)

2

lk

)1/2

(3.2)

Skewness

X3 =

∑lk
i=1(xik − µk)

3

(lk − 1)σ3
k

(3.3)

Kurtosis

X4 =

∑lk
i=1(xik − µk)

4

(lk − 1)σ4
k

(3.4)

Crest Factor

X5 =
max(|xik|)

( 1
lk

∑lk
i=1 x

2
ik)

1/2
(3.5)

Impulse Factor

X6 =
max(|xik|)
1
lk

∑lk
i=1 |xik|

(3.6)

Margin Factor

X7 =
max(|xik|)

( 1
lk

∑lk
i=1

√

|xik|)2
(3.7)

Entropy

X8 =

lk
∑

i=1

−P (xik) log2 P (xik) (3.8)

3.2.2 Frequency-Domain

To extract frequency-domain features, the fundamental frequencies of the vibrational

signals with the bearings defects and their amplitudes usually must be determined

prior, which is not a realistic assumption in online monitoring applications, where

the non-stationary conditions change the vibrational spectra. Here, the FE module
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initially performs Fourier transform F of each segment of the vibration signal, ana-

lyzes its frequency spectrum and extracts statistical features in the frequency domain.

For the sake of a fair comparison, it calculates eight statistical features that can be

formulated, similar to {X1, . . . , X8} in Time-Domain section.

3.2.3 Time-Frequency Domain

Two state-of-the-art techniques are used to extract time-frequency domain features

from the vibration signal. These dual-domain analysis techniques are Wavelet Packet

Transform (WPT) and Empirical Mode Decomposition (EMD) that are widely used

for non-stationary and nonlinear signal analysis. WPT and EMD map raw vibration

data to more explanatory and useful features aiming to enhance classification accuracy

[26, 52].

Wavelet Packet Transform (WPT)

WPT is an extension of wavelet transform, which aims to decompose signal into dif-

ferent frequency sub-bands with higher resolution and provide local structure analysis

of the spectrum [53]. WPT makes use of low and high pass filters and iteratively de-

composes both, approximation and details coefficients, into two parts, unlike Discrete

Wavelet Transforms, which only consider the approximation coefficients for further

decomposition; and, thus, it provides a richest signal analysis. WPT decomposition

can be organized in a binary tree with leaves of equal-size that represent frequency

sub-bands of the same width [52].

Figure 3.1 illustrates level by level decomposition of a signal up to level three. The

time and the frequency presentation of a signal is on the top and on the leaves of a fully

decomposed WPT tree, respectively. As each level of the tree is traversed there is an

increase in the trade off between time and frequency resolution. In wavelet transforms,

Figure 3.1, hk and gk are high pass and low pass wavelet filters, respectively. These are
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known as quadratic mirror filters (QMF) that can be obtained by means of scaling

function φ(t) and a selected wavelet function ψ(t). WPT of a signal x(t), can be

explained by means of the following functions [52]:

W2n(t) =
√
2
∑

k

h(k)Wn(2t− k) (3.9)

W2n+1(t) =
√
2
∑

k

g(k)Wn(2t− k) (3.10)

whereW0(t) can be described with φ(t) function, andW1(t) with the ψ(t) function.

Regarding to the recursive relation of components between the jth and (j+1)th level,

the signal can be decomposed as:

dj+1,2n =
∑

m

h(m− 2k)dj,n (3.11)

dj+1,2n+1 =
∑

m

g(m− 2k)dj,n (3.12)

where dj,n stands for the wavelet coefficients of the level j in sub-band n, and m

stands for the number of the wavelet coefficients.

In this study, the vibration signals are decomposed using discrete Meyer wavelet

with Shannon entropy. Moreover, at each step of transformation, downsampling by

2 is performed leading to less number of samples in the final packs (i.e., leaves) for

further decomposition. Given an arbitrary segment of time-domain vibration signal

of lk samples, WPT with a tree depth of j results in 2j final packs. Each pack (i.e.,

k − th), at depth of j, contains around Q wavelet coefficients, where Q = lk/2
j. The

FE module then extract the eight different statistical features {X1, . . . , X8} from the

final 2j packs of the tree by calculating the respective formula using the Q wavelet

coefficients of each pack. This produces eight different statistical features for each

wavelet packet and, thus, results in 8×2j features. As an example, the wavelet packet

decomposition which is done down to the fifth level (j = 5), results in 8 × 25 or 256
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Figure 3.1 – Three-levels wavelet packet decomposition.

features.

Empirical Mode Decomposition (EMD)

This study makes use of a powerful signal processing technique, so-called Empirical

Mode Decomposition (EMD) [54], in the first level of feature extraction unit. EMD

is a data analysis technique that can be applied to any complicated sequence of

data. EMD can deal with nonlinear and non-stationary signals while traditional

signal processing techniques, such as Fourier Spectral analysis, work based on the

linear and stationary assumptions. Thus, EMD as an adaptive processing technique

is applied to fault diagnosis of motor vibration signals. Figure 3.2 illustrates the

IMFs and their respective residual extracted from vibration signals for inner race

defects. EMD considers local characteristic time scales to decompose signal into a

finite number of components referred to as “intrinsic mode functions” or IMFs. These

IMFs are based on two essential conditions [44, 55]:
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Figure 3.2 – Empirical mode decomposition of the vibration signal containing charac-
teristics of the inner race defects.

1. The entire signal must contain either equal number of extrema and zero-crossings

or the difference must be at at most equal to one;

2. At each point, the mean value of the envelopes defined by local maxima and

local minima becomes zero.

There exists a simple assumption that any signal can be explained by a set of

different IMFs, where each IMF shows an oscillation mode among the data. Thus,

given any signal Sk, the decomposition method can be summarized as follows [55]:

1. Extract all the local extrema of Sk.

2. Interpolate between the minima and the maxima to form lower and upper en-

velopes evpmin and evpmax, respectively, so that all the data points between

them are completely covered.

3. Calculate the related mean M = evpmin+evpmax

2
.

4. Calculate the difference between the signal and the mean as diff = Sk −M.
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5. If diff satisfies two necessary conditions as an IMF, then it should be considered

as the component Ci = diff. If not, then it can be treated as a sequence of data

(i.e., Sk), and returns to the first step to iterate the sifting procedure.

6. Compute Ci which is the finest scale or the shortest period of the ith component,

and then, subtract it from the data to determine the residual as follows ri =

Sk − Ci

7. Iterate on the residual ri if it still has at least 2 extrema.

At the end, the decomposition of the given signal Sk results in a set of IMFs,

c1, c2, . . . , ci, i = 1, . . . , θ and a final residual term rθ. By summing up the θ attained

empirical modes and the corresponding residual rθ, one can obtain Sk as follows:

Sk =
θ
∑

i=1

Ci + rθ (3.13)

EMD decomposes the vibration signal into various IMFs with the same sample

size as in the original signal. The size of IMFs is usually large, and thus, they can not

be treated easily by means of online fault classifiers. To overcome this issue, eight

statistical features, {X1, . . . , X8}, extracted from each intrinsic mode functions. As

an example, selection of the first 7 IMFs and extraction of 8 fetures from them results

in 56 (i.e., 7× 8) statistical features in total.

3.2.4 Singular Spectrum Analysis (SSA)

SSA is another state-of-the-art technique to analyze the vibration signals. It makes

use of the Hankel matrix and Singular Value Decomposition (SVD) for feature ex-

traction [56, 57] and noise reduction from the vibration signals [58]. This can be con-

sidered as a non-parametric technique for time-series analysis, that aims to express

any one-dimensional vibration signal Sk(t) by a collection of multiple independent
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principal components, which may include white noise or different trends. This tech-

nique aims to extract the most informative components, i.e., new features, based on

the respective singular values. This technique can be summarized as follows: (1) It

initially embeds lk data points of the signal Sk = (x1, x2, . . . , xlk) into the Hankel

(trajectory) matrix A as follows:

A = [X1 : . . . : Xn] =

















x1 x2 . . . xn

x2 x3 . . . xn+1

...
...

. . .
...

xm xm+1 . . . xlk

















m×n

(3.14)

Hence signal Sk is projected into n lagged vector of size m, where n = lk − m + 1

and Xi = {xi, . . . , xi+m−1}T ∈ Rm, (i = 1, . . . , n); (2) It then applies SVD on the

trajectory matrix A to cancel out the noise, which results in two orthogonal matrices

Um×m and Vn×n. Matrix A can be reconstructed through A = UΣV T , where Σ is a

diagonal matrix, which composed of the square roots of the eigenvalues ζi of A
TA.

The trajectory matrix A can be reformulated as follows:

A =

q
∑

i=1

√

ζiUiV
T
i (3.15)

where {ζ1 ≥ ζ2 . . . ≥ ζq ≥ 0} are eigenvalues, Ui denotes the respective orthonormal

eigenvectors, Vi=A
TUi/

√
ζ i stand for the principal components and q=min(m,n); (3)

It then splits the total set of m components into ∆ disjoint sets and, consequently,

groups the Eigentriples (i.e.,
√
ζi, Ui, Vi) of similar characteristics δ ∈ [1,∆], that are

used then to reconstruct the trajectory matrix; (4) It then makes an average over the

skew-diagonal elements of the newly grouped matrices to form a Hankel matrix. This

is true since these values contribute into the same element in the newly derived vector

ψδ = {ψδ1, ψδ2, . . . , ψδlk} ∈ Rlk , i.e., principal component. ψδ is indeed the projected

vector of the δ−th disjoint matrix, which can be obtained through diagonal averaging
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of the elements of the set as follows:

ψδi =



























1
i

∑i
j=1 φj,i−j+1 1 ≤ i ≤ m

1
m

∑m
j=1 φj,i−j+1 m ≺ i ≺ n

1
lk−i+1

∑m
j=i−n+1 φj,i−j+1 n ≤ i ≤ lk

(3.16)

where φj,i−j+1 stands for the elements of the δ− th disjoint matrix. It finally extracts

reconstructed signals ψδ = {ψδ1, ψδ2, . . . , ψδlk}, δ = 1, . . . ,∆ as the most informative

features. The FE module then calculates eight statistical features from each recon-

structed signal. This results in extraction of 80 statistical features from each segment

of the vibration signal (i.e., 8× 10).

3.3 Feature Reduction

A crucial requirement for the practical implementation of an online diagnostic system

is the capability of providing a small set of informative features, to guarantee efficient

learning and immediate decision making and diagnosis. This can be performed by

resorting to Feature Reduction (FR) techniques. The FR module (see the Figure 5.8)

contains state-of-the-art techniques for Feature Selection (FS) and Dimensionality

Reduction (DR).

3.3.1 Feature Selection (FS)

FS techniques aim to select and preserve a proper subset of n′ informative features

from all the extracted features n in order to attain more precise performance measures.

FS techniques usually include a selection criterion and a search strategy. These

techniques have been well studied and compared in [59, 60].

Here, two variants of Linear Forward Selection (LFS) [61] are used for feature se-

lection. In general, LFS is a wrapper-based forward selection strategy, which can limit
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the number of selected features in each forward selection step and, thus, significantly

decreases the number of evaluations. These two LFS variants are Sequential Forward

Selection (SFS) and Sequential Floating Forward Search (SFFS) [61]. Besides, in this

work, another state-of-the-art technique, so-called Minimal-Redundancy-Maximal-

Relevance (mRMR) [62], is used for feature selection.

SFS [61, 59] initially creates an empty subset, evaluates each candidate feature

along with the current subset, i.e., previously selected features and, then, appends the

best feature into the current subset. SFS algorithm, then, has a hill-climbing search

mechanism and terminates when the preset number of features has been reached [61].

FSFS is a variant of floating techniques [63], which retreats features as long as

the evaluation criterion is improving.

mRMR is a two-step FS algorithm, which merges the minimal-redundancy-

maximal-relevance criterion and the wrapper [62]. This is a computationally in-

expensive technique, which can find a small subset of informative features.

All of these FS techniques use the wrapper approach for the subset evaluation.

The wrapper iteratively performs cross-validation and evaluates the estimated per-

formance, i.e., F-measure, of a classier to select a proper feature subset, i.e., those

that maximize the F-measure during the search [64].

3.3.2 Dimensionality Reduction (DR)

DR techniques, on the other hand, aim to project the large scale set of features onto

a lower dimensional data space so that the diagnosis process can be performed faster

and even more efficient. Moreover, the obtained low dimensional features can decrease

the storage space. These state-of-the-art dimensionality reduction techniques include

two unsupervised approaches principal component analysis (PCA) [65] and locally

linear coordination (LLC) [66]. The FR module also includes three supervised DR

approaches: linear discriminant analysis (LDA) [67, 68], neighborhood component

analysis (NCA) [69] and maximally collapsing metric learning (MCML) [70].
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PCA is one of the most popular unsupervised technique for data analysis and

feature reduction [71, 72]. PCA is a non-parametric technique which aims to extract

latent information from data, while reducing the dimension of the feature space.

PCA is indeed an orthogonal linear transformation of the patterns to a set of new

coordinates in a way that the maximum variance by means of any projection of the

patterns lies on the first coordinate, i.e., the first principal component, and the second

largest variance lies on the second coordinate along with others.

LLC [66, 65] Locally Linear Coordination as an unsupervised dimensionality re-

duction method aims to map the different internal representation of the features into

a single global coordination. The automatic alignment to new feature space is ob-

tained by performing an eigensolver process on already trained model, unlike some

methods that tries to adjust the objective function. The procedure summarized in

two main steps: (1) create a mixture of local linear models using an EM-algorithm.

(2) Perform local model alignment, (i.e. compute a weighted matrix by means of the

obtained local models and their respective weights) to achieve the low-dimensional

data representation [66].

Multi-Class LDA [67, 68] aims to discriminate the samples of different classes as

much as possible by means of the linear combination so that the classifiers are able to

determine the samples of each class easily and accurately in a new feature space. The

goal of LDA, as an optimization problem, is finding the optimal projection matrix W

while maximizing a separation function J which is defined as follows:

J =
|W TSbW |
|W TSwW | , (3.17)

in which Sb and Sw stand for the matrices of between class scatter and within

class scatter, respectively. These matrices are computed by:

Sb =
1

n

c
∑

i=1

ni(µi − µ)(µi − µ)T (3.18)
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Sw =
1

n

c
∑

i=1

ni
∑

j=1

ni(xij − µi)(xij − µi)
T (3.19)

where n stands for the number of whole patterns, ni indicates the number of

patterns per ith class, c stands for the number of class labels, µi is the sample mean

for the ith class, µ stands for the overall mean vector, and xij is the j
th sample in ith

class [68]. Given the generalized eigenvalue problem:

SbW = λSwW (3.20)

one can obtain the optimal projection matrix W , which maximizes the function J

through eigenvalue decomposition of matrix S−1
w Sb and taking the eigenvector ei which

has the largest eigenvalue λi [68]. Finally, the projected data can be obtained by

y = W Tx.

NCA Neighborhood Component Analysis [69] aims to learn a transformation ma-

trix which maximizes the performance of the kNN classifier. NCA finds the expected

leave-one-out performance by means of a random variant of kNN classification. Given

a random arbitrary pattern xi, it initially calculates the probability of drawing xj as

a neighborhood pattern for xi as follows:

Pij =
exp(−||Wxi −Wxj||2)

∑

k 6=i exp(−||Wxi −Wxk||2)
, Pii = 0 (3.21)

It then makes use of a random selection rule to compute the probability Pi where

i− th pattern can correctly classified as follows:

Pi =
∑

j∈Ci

Pij (3.22)

where Ci = {j|ci = cj} stands for a set of patterns, which belongs to the same class

with xi. The expected number of correctly classified patterns then can be computed
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by:

f(W ) =
∑

i

∑

j∈Ci

Pij =
∑

i

Pi (3.23)

NCA aims to maximize the above objective function by means of a gradient decent

optimizer w.r.t. W which yields to a transformation matrix that best reveals similarity

based on the class labels. NCA can project the data onto a low-dimensional feature

space by restricting the matrixW in a non-square matrix format of size q×n, (q < n).

The projected feature space then can be computed by y = Wx.

MCML Maximally Collapsing Metric Learning (MCML) [70] is a supervised

method that can perform dimensionality reduction on the data by means of a learned

metric. MCML is based on the idea that an ideal metric is a metric in which the

points belong to the same class could be projected into a location close to each other

while the points of the other classes projected to a far location. The ideal metric

can be achieved by solving the convex optimization problem which aims to collapse

all patterns of the similar class to a particular point, and at the same time, project

patterns of other classes into a very far distance point. MCML focus on learning

Mahalanobis distances:

D[f(xi), f(xj)] = (xi − xj)
TA(xi − xj) (3.24)

where xi and xj are two points inXm×n space and A is positive semi-definite (PSD)

matrix. Considering the most ideal scenario, when the distance of the patterns in the

same class becomes zero and patterns of different classes are located on infinity far

distance, it can be viewed as a linear projection, Wx, of mapping x while A = W TW .

MCML tries to learn matrix W such that the patterns of the same class mapped to a

single location. This leads to create a convex optimization problem to find the optimal

A that can be solved by means of a first order gradient method. Once the procedure

for a full rank metric A is done, a low rank projection of A can also be calculated.

After diagonalizing A into A =
∑n

i=1 λieie
T
i , where λ1 ≥ λ2 · · · ≥ λn are eigenvalues of
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A and ei are the corresponding eigenvectors, only q largest eigenvalues are considered.

Hence, projecting the data onto a q-dimensional space can be specified by the rows

of the low rank projection matrix Wq×n. The result of projection is described as:

W = diag(
√

λ1, · · · ,
√

λq)[e
T
1 ; · · · ; eTq ] (3.25)

3.4 Classifiers

The classifiers considered in this study are, Multi-Layer Perceptron (MLP), Naive

Bayes (NB), k-nearest neighbor (kNN), random forest (RF) and decision tree (DT).

In order to estimate how accurately the fault classifiers perform in practice, 10-

fold cross validation is applied. Then, the performances of different classifiers are

evaluated. The performance measures considered in these experiments are weighted

average of F-measure, weighted average of Matthews correlation coefficient (MCC),

weighted average of receiver operating characteristic (ROC) area and Macro average

geometric (MAvG) which are derived from the confusion matrix and explained in

Chapter 5.

3.5 Summary

This chapter has discussed about a general data-driven diagnostic scheme inclusive of

prepossessing and classification modules. The state-of-the-art techniques applied in

majority of published papers to diagnose bearing defects are considered and explained

in this chapter. Generally, the data-driven diagnostic system can be summarized as

a four-step process, including segmentation, feature extraction, feature selection and

fault classification. Each of these steps and the related techniques w.r.t three different

domains, time-domain, frequency-domain and time-frequency domain, is discussed.

In order to find the best scenario to diagnose bearing defects in multi-fault condition,
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some of these techniques are implemented and applied on the bearing datasets and the

experimental results are provided in Chapter 5. Moreover, considering that number

of samples for class of normal is not always the same as the number of samples in

minor classes or faults, so there is need to design a data-driven diagnostic system

under class imbalance condition. This problem is explained in next Chapter.
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Chapter 4

Data-driven Diagnostic Scheme Under

Class Imbalance Condition

This chapter explains and proposes various approaches for diagnosing faults under

class imbalance (CI) condition. Besides, CI is defined and it is mentioned that why

class imbalance may happen. Moreover, the solutions to deal with this problem is

addressed and related methods are explained.

4.1 Class Imbalanced Learning

The process of measuring and gathering raw data from different sources to analyze

and detect anomalies, unusual trends and faults is crucial to enhance decision-making

process. Many of the industrial processes, such as IMs, usually operate in the normal

state. Thus, it is very common for the diagnostic systems to collect a large number

of samples of the normal state in the batch of data, while only a very few faulty sam-

ples could be collected in practice. Various diagnostic schemes have been applied to

industrial processes, however, detecting faults under the CI condition is a challenging

task with growing attention from both academia and industry [73, 74].

CI can occur due to various reasons. Whether it is caused by error in data collec-

tion, limitations in time, cost, storage and privacy or because of the intrinsic proper-

ties of data. CI is an integral part of the real world problem and enormously common

in practice [75, 16, 4]. An imbalanced dataset can be described as a set of samples, in

which the proportion of the representative samples of one class is significantly larger

than other class. The amount of this proportion brings up the definition of ‘imbalance
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ratio’, which is an important factor in selecting a proper classification technique. The

imbalance ratio indicates the collected data are highly imbalance, moderate or low.

CI problem arises when the number of representative samples of one class far

exceeds others. The major (minor) class in an imbalance dataset referred to a class

with more (less) number of samples, while the rarer class is often the class of interest

and should be detected with high accuracy. Standard classifiers usually require to

accurately classify samples of the minor class as well as the major class. However,

most of the classifiers usually require datasets with almost equal class distribution,

while an imbalanced distribution results in misclassification of samples of the minor

class and jeopardizes the classification performance. Besides, these classifiers usually

consider the classification accuracy as a performance evaluation measure. However,

the classification accuracy can be biased towards the overrepresented classes and

cannot effectively reveal the prediction of the representative samples of the minor

class [16].

Therefore, in CI conditions new techniques should be utilized to effectively clas-

sify faults or samples of the minor classes. These techniques are needed to construct

classification models, that are able to accurately diagnose the most important and

infrequent samples of faults [75]. Several techniques have been proposed to tackle CI

problem [16, 75, 4, 76]. These techniques, depending on how they deal with the CI

problem, can be divided into three main categories; algorithm-level approaches, data-

level approaches and cost-sensitive methods [16]. The former category, addresses the

problem by designing or modifying a classification algorithm in a way that it considers

the importance of rare samples as well as frequent ones [4, 77]. The second category,

often exploits different data processing techniques (i.e., sampling process) in order to

re-balance the data distribution prior to feature extraction, feature selection and/or

classification. These methods are generally more versatile because they can be inte-

grated to any classification model [4, 17]. The third category includes cost-sensitive

methods, which can belong to two previous categories. They either use different mis-
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classification cost associated with each class sample (i.e., data-level approach) or alter

the training procedure to take costs (i.e., algorithm-level approach) in order to bias

the classifier toward the rare class [78, 79]. Various cost-sensitive learning techniques

have been developed for CIL including cost-sensitive decision trees (CSDT) [80], cost-

sensitive neural networks (CSNN) [81], cost-sensitive boosting methods, AdaCost,

AdaC1, AdaC2 and AdaC3 [82, 83, 79]. Sometimes, cost-sensitive techniques are

preferable to resampling techniques in some specific domains, however, definition of

the misclassification cost is usually difficult and challenging [4, 16, 84, 18]. Cost-

sensitive techniques are not then suitable for online monitoring applications and,

thus, they are not considered in this work. Apart from these categories, ensemble-

based techniques are successfully applied for CIL. Ensemble techniques (e.g., Bagging

or Boosting) are usually merged with one of the above categories, in order to im-

prove the accuracy. While cost-sensitive methods and algorithm-level approaches are

usually problem-dependent, integration of data-level approaches and ensemble-based

techniques are more versatile and have been effectively used for CIL in many works

[75, 4, 76].

4.2 Data-Level Approaches

Data-level approaches, that are independent of the underlying classifier, are often a

helpful solution for CIL. These methods try to reduce the effect of the skewed class

distribution by adding samples of the minor class, e.g., random oversampling (ROS)

or eliminating the available samples of the major class, e.g., random undersampling

(RUS). ROS and RUS are simple methods to provide a balance class distribution;

however, they are not ‘intelligent’, since they randomly choose their sampling sub-

set, which may lead to over-fitting in the learning process or loss of important in-

formation. There exist some informed sampling techniques such as the synthetic

minority oversampling technique (SMOTE) [17]. SMOTE has been widely used to
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overcome the weakness of RUS and ROS. Another variation of informed sampling

is the cluster-based oversampling (CBO) which aims to deal with the within-class

imbalance problem along with the between-class imbalance problem [85].

Here, a novel oversampling technique has been developed which is based on im-

putation of missing values on samples of the minor class. This oversampling tech-

nique is based on expectation maximization (EM) [86], which is referred to as EM

imputation-based over-sampling (EMI-OS). SMOTE and EMI-OS, as representative

state-of-the-art sampling techniques are selected and applied for CIL with different

imbalance ratio to re-balance the class distribution a priori.

4.2.1 SMOTE

SMOTE aims to generate some artificial samples to oversample the minor class instead

of oversampling with replacement [17]. The number of created ‘synthetic’ samples de-

pends on the required oversampling ratio. Given samples of the minor class, SMOTE

generates some relevant synthetic samples as presented in Algorithm 1 [16, 17]. Each

newly generated sample is along the line between a selected sample of the minor class

xmin
i and its nearest neighbor xmin

j (see step 4), which provides a more general region

for the minor class and can be effectively used in the CIL process. Thus, SMOTE

avoids overfitting problem with ROS.

4.2.2 EMI-OS

EMI-OS is an EM imputation-based over-sampling technique, that aims to decrease

imbalance ratio by generating new synthetic samples similar to samples of the minor

class.

In order to gain a balanced dataset, it initially splits the dataset into subsets of

samples of the minor class Smin and major class Smaj. It then iteratively induces

random missing values on samples of the minor class, Smin
t , where t stands for the
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Algorithm 1: SMOTE [17]

Inputs:

Smin is a subset of samples of a minor class

α is the oversampling rate

k is the number of nearest neighbours

Definitions:

mmin is the # of samples of Smin

for i = 1, . . . ,mmin do

for j = 1, . . . , α do

1. Find a set k-nearest neighbors for xmin
i

Ni =
{

xp ∈ Smin| dip ≤ diq ∀ xq /∈ Ni

}k

p=1

where dip (diq) stands for the Euclidean distance between xi and xp (xi
and xq).

2. Select a nearest neighbor of xmin
i , xmin

j ∈ Ni

3. Select a random number γ, where 0 ≤ γ ≤ 1.

4. Create a new synthetic sample

x
os(j)
i = xmin

i + (xmin
j − xmin

i )× γ

end

end
5. Return mmin × α newly generated samples

Smin
new =

{

x
os(j)
i | ∀i, j : i = 1, . . . ,mmin, j = 1, . . . , α

}
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iteration number, and forms Smin
mis . EMI-OS then estimates missing values of Smin

mis

by resorting to the expectation maximization imputation (EMI) technique [86] and

returns Smin
est . It then selects only imputed samples of Smin

est to form Smin
imp and, then,

merges these newly imputed samples that are representative of the minor class with

the previous subset of samples of the minor class Smin
t . This creates a new and larger

collection Smin
t+1 of representative samples of the the minor class for the subsequent

iteration. This procedure iteratively continues to create and combine samples of

the minor class, until the number of samples of the minor class mmin
t reaches to the

number of samples of the major class, mmaj. The pseudo-code of EMI-OS is presented

in Algorithm 2.

4.3 Ensemble-Based Approaches

These techniques have been recently used for CIL [4]. Ensemble-based methods can

be categorized into two major groups of (a) cost-sensitive ensembles and (b) en-

semble learning along with data processing. The former, cost-sensitive ensembles,

includes various cost-sensitive boosting techniques such as AdaCost, AdaC1, AdaC2

and AdaC3 [82, 83, 79]. The latter, ensemble learning along with data processing,

can be categorized into three subgroups: (b.1) Boosting-based ensembles techniques

which embed data processing techniques into boosting algorithms such as SMOTE-

Boost [87], RUSBoost [75], and DataBoost-IM [88], (b.2) Bagging-based ensembles

can be divided into OverBagging [89], UnderBagging [90], and UnderOverBagging [89]

strategies. Bagging-based ensembles include various algorithms, e.g., SMOTEBag

[89], AsymmetricBag [91] and Bagging Ensemble Variation (BEV) [92] algorithms,

and (b.3) Hybrid ensembles which merge both boosting and bagging algorithms to

form an ensemble of ensembles such as EasyEnsemble and BalancedCascade [93]. Hy-

brid ensembles slightly under-perform SMOTEBag and RUSBoost, while they have a

more complex structure as an ensemble of ensembles [94]. Hybrid ensembles are com-
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Algorithm 2: EMI-based oversampling (EMI-OS)

Input: S is a class imbalance dataset

Definitions:

Smin is the subset of samples of the minor class

Smaj is the subset of samples of the major class

mmin is the # of samples of the minor class

mmaj is the # of samples of the major class

C is the # of classes in S
Require: Smin

os = ⊘
1. Copy samples of major class into Smaj

for i = 1, . . . , C − 1 do
2. Set a counter t = 1

3. Copy samples of ith minor class into Smin(i)
t

while m
min(i)
t ≺ mmaj do

4. Induce random missing on Smin(i)
t to form Smin(i)

mis

5. Call EMI subroutine to estimate missing values

[

Smin(i)
est

]

= EMI(Smin(i)
mis )

where EMI stands for the EM imputation [86]

6. Use imputed samples of Smin(i)
est to form Smin(i)

imp

7. Merge the minor subsets

Smin(i)
t+1 = Smin(i)

imp ∪ Smin(i)
t

8. t = t+ 1
end
9. Create the oversampled subset of minor classes

Smin
os = Smin(i)

t+1 ∪ Smin
os

end
10. Return the balanced dataset Sb = Smin

os ∪ Smaj
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putationally expensive and not suitable for online monitoring applications, and thus,

are not considered in this work. A critical review on this topic has been performed and

efficient ensemble techniques for CIL are compared in [4]. Among various ensemble-

based approaches for CIL (see Figure 4.1), RUSBoost [75] and SMOTEbag [89] are

the most commonly used and robust techniques [4]. Moreover, RUSBoost is a simpler

method with less computational complexity, which is able to perform fast on both

binary and multi-class imbalance problems. Therefore, RUSBoost and SMOTEbag

are considered in this work as representatives of the ensemble-based approaches.
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Figure 4.1 – major techniques to tackle class imbalance problem [4].
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4.3.1 RUSBoost

RUSBoost algorithm is made of two important component; RUS and AdaBoost.M2

[75]. The former is a random undersampling method, which reduces number of sam-

ples of the major class and makes the RUSBoost learning process faster. The latter,

boosting technique, aims to construct a composite classifier, which is often more accu-

rate than each individual weak classifier. AdaBoost.M2 algorithm adjusts distribution

weights of the samples, by assigning a higher weight to the misclassified samples in-

cluding the representative samples of the minor class and also adjust voting weights

of the individual base classifiers. This scheme also helps to avoid the loss of poten-

tially useful samples, which can be occurred in RUS. The pseudo-code of RUSBoost

is presented in Algorithm 3 [75].

4.3.2 SMOTEBagging

SMOTEBagging, so-called SMOTEBag (Algorithm 4) [89], is based on two compo-

nents; SMOTE and Bagging algorithms. The former creates new synthetic samples

by interpolating samples of the minor class to construct various balance subsets St

from the CI dataset S and, then, iteratively makes use of the more balanced and

diverse subsets St to train T weak classifiers ht and constructs a bagged ensemble.

SMOTEBag enhances the diversity among the base classifiers by changing the

ratio of bootstrap replicates and generating various synthetic samples by SMOTE,

over the bagging iterations. To construct these subsets, SMOTEBag resamples from

the major class with replacement at rate 100%. It does not oversample each minor

class separately. It uses a percentage value β% (range from 10 to 100) to control

the number of newly generated synthetic samples of the minor classes. It initially

resamples some original samples of the minor classes and, then, uses SMOTE to

create new synthetic samples of the minor classes.
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Algorithm 3: RUSBoost [75]

Inputs:

S = {(xi, yi)|xi ∈ X, yi ∈ Y }mi=1 is a CI dataset

h is the weak learning algorithm, i.e., Base-Classifier

T is the maximum # of iterations or Base-Classifiers

m′ is the percentage of total samples of the minor class

Definitions:

m is the # of samples

1. Initialize the weight of each sample wi =
1
m

for t = 1, . . . , T do
2. Do RUS on samples of the major class until m′ condition satisfies and
Form S ′

t with distribution w′
t

3. Construct a weak ht based on S ′
t along with w′

t

4. Compute the error, ǫt w.r.t. S and wt

ǫt =
∑

i:ht(xi) 6=yi

wt(i)(1− ht(xi, yi) + ht(xi, y))

5. Compute parameter γt =
ǫt

1−ǫt

6. Update the weight distribution wt

wt+1(i) = wt(i)γ
1

2
(1+ht(xi,yi)−ht(xi,y:y 6=yi))

t

7. Normalize wt+1(i) = wt+1(i)/
∑

iwt+1(i)

end
8. Return the final hypothesis:

H(x) = argmax
y∈Y

T
∑

t=1

ht(x, y)log
1

γt
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Algorithm 4: SMOTEBag [89]

Inputs: S is a CI dataset; T is the number of Base-Classifier; k is the number
of nearest neighbors

Definitions: C is the number of classes in S; Smaj is the subset of samples of
the major class; Smin(i) is the subset of samples of the ith minor class,
i = 1, . . . , C − 1; Smaj

r and Smin
r (i) are the resampled subsets of samples of

the major and ith minor class; SWR(A,B) is the function of sampling with
replacement to draw B samples from the given set A.

for t = 1, . . . , T do

1. β = t
T

2. Resample the major class with replacement at 100% as follows:
Smaj
r = SWR(Smaj,mmaj)

for i = 1, . . . , C − 1 do

3. Resample from original samples of the ith minor class with
replacement at the percentage of θ = mmaj

mmin
i

· β

Smin(i) = SWR(Smin(i), θ ·mmin
i )

4. Set α = mmaj

mmin
i

· (1− β)

5. Create new synthetic samples by means of SMOTE as follows:
Smin
new (i) = SMOTE(Smin(i), α, k)

end
6. Construct St subset by means of samples of all classes as follows:
St = {Smaj

r ∪ Smin
r (i) ∪ Smin

new (i)|∀i}
C−1
i=1

7. Train a base-classifier ht → Y using St

end

8. Find the composite hypothesis: H(x) = argmax
y∈Y

∑T
t=1 ht(x, y)
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4.4 Algorithm-Level Approaches

There exists another group of machine learning techniques, so-called algorithm-level

approaches, to alleviate class imbalance problem [4, 77]. These techniques aim to

adapt classification algorithms in order to bias the learning toward the minor class

[78, 79]. Various efforts have been made to modify kernel mechanisms in the learning

process such as Kernel-based support vector machines (KSVMs) [95]. Here, Weighted

Extreme Learning Machine (WELM) [96] is used as a state-of-the-art algorithm-level

approach, which also makes use of cost information.

4.4.1 Weighted Extreme Learning Machine

Extreme Learning Machine (ELM) is a generalized single hidden layer feedforward

network (SLFN) with flexible processing nodes [97, 98]. ELM has been widely used

for many machine learning applications due to its fast learning speed and good gen-

eralization performance. Weighted ELM (WELM) has been lately proposed to tackle

the CI problem [96]. WELM can also belong to cost-sensitive approaches, since it

uses a misclassification cost in a weighting scheme.

Given a set of multi-class samples {xi, yi}mi=1, where yi is the vector of length C

(i.e., the number of classes), WELM makes use of an m×m diagonal weight matrix

W associated with each sample xi and increases the corresponding weight of sample

of the minor class(es), in order to enhance the impact of the minor class(es) and

decreases the relative impact of the major class. WELM then reformulates the ELM

optimization problem by means of the diagonal weight matrix W (the reader can

refer to [96] for the detailed explanation), in order to maximize the marginal distance

2/||λ|| and to minimize the weighted cumulative error ξi w.r.t. each sample:







Minimize: LELM = 1
2
||λ||2 + ηW

2

∑m
i=1 ||ξi||2

Subject to: h(xi)λ = yTi + ξTi , i = 1, . . . ,m
(4.1)
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where ξi = ||Hλ − Y ||2, H stands for the hidden layer output matrix, λ is the

output weight, Y is the target vector and η is the regularization parameter to adjust

the optimization terms. This optimization problem can be solved by means of the

Karush-Kuhn-Tucker (KKT) theorem [99] which yields to:

λ̂ = H†Y =







HT ( 1
η
+WHHT )−1WY if m < l

( 1
η
+HTWH)−1WHTY if m � l

(4.2)

where l is the number of hidden nodes and H† stands for the Moore-Penrose

generalized inverse of the matrix H [97, 98]. The output funcion of WELM then can

be obtained as follows:

f(x) =







h(x)HT ( 1
η
+WHHT )−1WY if m < l

h(x)( 1
η
+HTWH)−1WHTY if m � l

(4.3)

where f(x) = [f1(x), . . . , fC(x)] stands for the output function vector. The pre-

dicted class label of x then can be obtained by argmax
i

fi(x), i ∈ |1, . . . , C|.

4.5 Summary

In this chapter, class imbalance (CI) problem is explained. CI is a common problem in

many real world case studies. CI happens since the number of samples from different

classes (i.e., normal and faults) are not necessarily as equal as each other. In this work,

the number of samples represent normal operation condition of IMs is larger than the

number of samples that represents each class of fault. In this chapter, the solutions

and the stat-of-the-art techniques to deal with CI problem are addressed and a novel

sampling technique is also introduced. Some parts of the next chapter describe the

experimental results of the diagnostic system under class imbalance condition. The

proposed scheme includes all the sate-of-the-art preprocessing techniques explained

in Chapter 3 and the CIL methods described in this Chapter.
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Chapter 5

Experimental Results

This chapter includes three different experiments for diagnosing bearing faults in in-

duction motors. Firstly the performance measures used for evaluating the accuracy

of the diagnostic system in these experiments are explained. Then, the experimental

results related to each of the experiments are explained in separate sections. First

experiment relates to results obtained from the diagnostic system which is a combina-

tion of the wavelet packet transform as a FE method and liner discriminant analysis

as a DR method. Six different intelligent fault classifiers are used in this experiment.

In the second experiment, combination of empirical mode decomposition with five dif-

ferent dimensionality reduction techniques are evaluated and the experimental results

are presented. Finally, in the third experiment combination of various state-of-the-

art signal analysis methods with different feature reduction techniques under class

imbalance condition is studied. All the FE and FS methods used in this experiment

were explained in Chapter 3. Moreover, the CIL methods described in Chapter 4,

are applied on CWRU bearing data and the achieved results are presented in this

chapter.

5.1 Performance Measures

Performance evaluation is a challenging task under class imbalanced conditions. While

accuracy is a performance measure in balanced conditions, it cannot be an appropri-

ate measurement for imbalanced datasets as it has bias over the largest class [100].

Although, in two-class imbalanced problem, it is easy to provide some proper mea-
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surements to evaluate the accuracy of the classifiers, in multi-class imbalance condi-

tions, it is difficult to carefully evaluate the classification performance. Thus, it is

necessary to apply different appropriate metrics to provide an accurate and reliable

assessment. These performance measures are weighted average of F-measure, MCC

and ROC which are derived from the confusion matrix for imbalanced conditions.

These performance metrics are defined below [100, 101]:

Weighted F −measure =
c
∑

i=1

(wi · F-measurei) (5.1)

WeightedMCC =
c
∑

i=1

(wi ·MCCi) (5.2)

WeightedROC =
c
∑

i=1

(wi ·ROCi) (5.3)

MAvG = (
c
∏

i=1

Acci)
1

c (5.4)

where c is the number of class, F-measurei, MCCi and ROCi stand for the re-

spective performance measures for a particular class i. Besides, wi is the the weight

of the ith class and Acci stands for the accuracy on class i, which can be calculated

by [100, 101]:

wi =
ni

∑c
i=1 ni

(5.5)

Acci =
correctly classified samples of class i

total number of samples in class i
(5.6)

where ni is the size of ith class.

For a particular class i, the F-measure is formulated as follows:

F −measurei =
(2× precisioni × recalli)

precisioni + recalli
(5.7)
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in which:

precisioni =
TPi

(TPi + FPi)
(5.8)

recalli =
TPi

(TPi + FNi)
(5.9)

where FPi is the number of false positives, FNi is the number of false negatives

and TPi and TNi stand for true positives and true negatives for a specific class i,

respectively.

Consider a confusion matrix Γ as depicted in Table 5.1 for a c-class problem

where γp,q, (p, q ∈ [1, c]), referred to the value in row p and column q of the matrix

Γ. Hence, TPi, FPi, FNi and TNi can be calculated as follows:

Table 5.1 – Confusion matrix for the multi-class problem

Predicted
class 1 class 2 · · · class c

Actual

class 1 γ1,1 γ1,2 γ1,q γ1,c
class 2 γ2,1 γ2,2 γ2,q γ2,c
· · · γp,1 γp,2 γp,q γp,c

class c γc,1 γc,2 γc,q γc,c

TPi = γi,i (5.10)

FPi =
c
∑

p=1

γp,i − γi,i (5.11)

FNi =
c
∑

q=1

γi,q − γi,i (5.12)

TNi =
c
∑

p,q=1

γp,q − FNi − FPi − TPi (5.13)

The MCC per class, MCCi, can be computed then as follows:
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MCCi =
(TPi×TNi−FPi×FNi)√

(TPi+FPi)(TPi+FNi)(TNi+FPi)(TNi+FNi)
(5.14)

Moreover, area under ROC curve for the ith class depends on true positives and

false positives. ROCi is a function of a varying threshold. The Mann-Whitney

statistic is considered to calculate the ROC area for a particular class i (the reader

can refer to [101, 102] for a more detailed explanation).

These performance measures that are obtained by means of different classifiers are

compared together to find out whether the fault classifiers could properly classify the

imbalanced data. For the sake of brevity, hereafter weighted average of F-measure,

weighted average of MCC and weighted average of ROC are written as ‘F-measure’,

‘MCC’ and ‘ROC’, respectively.

5.2 First Experiment - Combination of WPT and

LDA

This experiment aims to extract and select a proper set of features for diagnosing

bearing defects in induction motors. Firstly, the vibration signals are analyzed by

the wavelet packet transform, which is explained in Chapter 3, to extract informative

time-frequency domain features.

Vibration signals for normal status, ball defect, inner race and outer race defects

are depicted in Figure 5.1. The fault diameters of 0.021 and 0.028 inches are consid-

ered for ball and inner race fault state. Data for outer race defect includes 0.021 inch

fault diameter that is gathered in three different positions (i.e., centered, orthogonal

and opposite) relative to load zone. Data for 0.028 inch diameter is not available.

In this experiment, vibration signals are decomposed to eight levels using discrete

Meyer wavelet with Shannon entropy. An eight-level decomposition generates a total

of 28 = 256 packs. Then, each pack is segmented and the entropy of each segment
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Figure 5.1 – Raw vibration signals of different classes: normal, ball defect, inner
race defect, outer race defect. The faulty signals include different diameters of defects
simulating incipient faults.

is calculated to create more informative feature space. For feature selection, three

scenarios are considered as follows:

1) In the first scenario, all the features are fed to the classification module.

2) In the second scenario, the seven most informative packs based on the motor

bearing vibration frequency, explained in Chapter 1, are selected. In this case, user

knowledge about the parameters of the system is needed to calculate the fundamental

frequencies of the faults.

3) In the third scenario, linear discriminant analysis (LDA) is applied on the

obtained large scale data to reduce the number of features in an efficient way which

is easier for the classifiers to discriminate different classes.

The classification results of the first scenario for each classifier are reported in

Table 5.2 and illustrated in Figure 5.2. The bold entries in the Table 5.2 stand for the

highest value of the respective performance measure in this scenario. The attained

results show that RF outperforms other competitors according to all performance

measures. In the first scenario, kNN, MLP, DT, NB, and SVM take the subsequent

ranks, respectively, except MLP which has the higher rank according to the ROC
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Table 5.2 – Comparison of the classification evaluation factors obtained by each clas-
sifier in first scenario.

Factors
First Scenario

MLP NB SVM kNN RF DT

F-Measure 0.952 0.872 0.801 0.957 0.971 0.942
MCC 0.936 0.847 0.771 0.942 0.962 0.924
MAvG 0.951 0.820 0.746 0.952 0.964 0.937
ROC Area 0.998 0.962 0.874 0.968 0.999 0.968
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Figure 5.2 – Performance evaluations (i.e., F-measure, MCC, MAvG and ROC area)
obtained by each classifier on the first scenario.

area.

In the second scenario, random forest still outperforms other competitors (see the

bold entries in Table 5.3 for the second scenario). The performance measures of the

second scenario are also illustrated in Figure 5.3. In the second scenario, DT, kNN,
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Table 5.3 – Comparison of the classification evaluation factors obtained by each clas-
sifier in second scenario.

Factors
Second Scenario

MLP NB SVM kNN RF DT

F-Measure 0.773 0.660 0.747 0.792 0.874 0.844
MCC 0.719 0.597 0.690 0.727 0.835 0.796
MAvG 0.700 0.510 0.659 0.760 0.855 0.815
ROC Area 0.890 0.900 0.835 0.856 0.978 0.919

MLP, SVM, and NB take the next ranks, respectively. MLP still has the second rank

according to the ROC area measure. However, the figure shows that the performances

of the trained classifiers in the second scenario are lower than those trained in the

previous scenario. Performance estimation of the SVM classifier can be affected by

cost and gamma parameters values. These parameters are adjusted by means of the

grid search strategy [103].

Table 5.4 – Comparison of the classification evaluation factors obtained by each clas-
sifier in third scenario.

Factors
Third Scenario

MLP NB SVM kNN RF DT

F-Measure 1 1 1 1 1 1
MCC 1 1 1 1 1 1
MAvG 1 1 1 1 1 1
ROC Area 1 1 1 1 1 1

In the last scenario, as displayed in Figure 5.4, there is a significant improvement

on classification performances of all classifiers as they reached to a maximum perfor-

mance equal to one. The detailed classification evaluation factors obtained by each

classifier for third scenario is provided in Table 5.4.

It is shown that using LDA along with the wavelet packet transform leads to

better classification performances. LDA carries out dimensionality reduction of the

extracted features in a way that all the selected classifiers are able to perfectly separate
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Figure 5.3 – Performance evaluations (i.e., F-measure, MCC, MAvG and ROC area)
obtained by each classifier on the second scenario.

normal and fault classes. The performance of the MLP, SVM, and NB classifiers

are significantly improved by means of the provided features in the third scenario.

The computational time is also significantly reduced for the MLP classifier since it

receives a much smaller feature set as input. In addition, RF can classify data very

well compared to other classifiers in all three scenarios.

5.3 Second Experiment - Combination of EMD

and DR Methods

This experiment focuses on the CWRU bearing datasets, which include vibration sig-

nals of a 2hp (horse power) motor (1750 rpm). These vibration signals are sampled at

52



MLP
 NB
  SVM
 kNN
 RF
 DT

0.0


0.2


0.4


0.6


0.8


1.0


 


 


P
er

fo
rm

an
ce

 M
ea

su
re

s


Classifiers


 F-Measure 
  MCC 
  MAvG 
  ROC Area


Figure 5.4 – Performance evaluations (i.e., F-measure, MCC, MAvG and ROC area)
obtained by each classifier on the third scenario.

12kHz frequency representing various conditions including the normal, rolling element

fault, inner race fault and outer race defects.

The fault diagnosis unit contains two major modules for feature extraction and

dimensionality reduction. The former contains the empirical mode decomposition

(EMD) which is one of the most attractive techniques to process the nonlinear and

non-stationary vibration signals explained in chapter 3. The latter contains vari-

ous state-of-the-art DR techniques named as PCA, LLC, LDA, NCA and MCML

which are also described in Chapter 3. The prepared features by means of these DR

techniques are then fed to the decision making module, which contains different clas-

sifiers, i.e., Multi-Layer Perceptron (MLP), Naive Bayes (NB), k Nearest Neighbor

(kNN), Decision Tree (DT), and Random Forest (RF). In order to evalute the effect

of DR techniques on performance of classifiers, two different scenarios are considered
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as follows:

1) In the first scenario, 16 IMFs (i.e., features) extracted by means of EMD from

vibration signals are used in the fault classification module.

2) In the second scenario, five different DR methods are applied on the extracted

features to reduce the number of features in an efficient way which is easier for the

classifiers to discriminate different classes. Then these features of the new feature

space fed as inputs to the fault classifiers.
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Figure 5.5 – Two dimensional features achieved by different DR techniques.
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Figure 5.5 illustrates the achieved two-dimensional features, by means of each

feature reduction method along with the class labels, i.e., normal, ball, inner race,

and outer race. The attained features by means of each DR technique are then fed

to the fault classifiers in the decision making module. The performances of fault

classifiers are carefully evaluated through a 10-fold cross validation scheme by means

of various suitable performance measures. These performance measures are weighted

average of F-measure, weighted average of Matthews correlation coefficient (MCC),

weighted average of receiver operating characteristic (ROC) area and Macro average

geometric (MAvG) which are already defined in this Chapter.

Figure 5.6 illustrates the attained performance measures by means of each classi-

fier trained by the features obtained through different DR techniques. For instance,

the label ‘MCML-RF’ in the figure stands for the performance measure achieved by

RF classifier which was trained by a feature set obtained through MCML DR tech-

nique. The first panel in the Figure 5.6 indicates that kNN and RF outperform

other classifiers and MCML and LDA outperform other DR techniques in terms of

F-measure. Other panels in the Figure 5.6 show more or less the same rank, except

for the third panel which shows that the first scenario ‘No-DR’ (i.e., the right most

five values) achieves a better rank in terms of ROC.

In order to compare these DR techniques, all the performance measures obtained

by all classifiers are presented through a boxplot. Figure 5.7 presents the distribution

of all performance measures obtained by all classifiers for each DR technique. This

figure shows that MCML outperforms other DR techniques in providing useful and

informative features for the fault classifiers. MCML is the most stable DR approach

with the least variation (i.e., smallest box) and the highest mean value. LDA is

positioned in the second rank; it is comparable with MCML except for the weak

performances that are achieved along with DT and NB. NCA takes the third rank

as a supervised DR technique, however, it achieves a few low performances along

with NB which causes a larger variation compared to the NO-DR method (see also
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Figure 5.6 – The performance measures obtained by means of each classifier trained
by means of the features of different DR techniques. F-measure, MCC, ROC area and
MAvG are presented in different panels from top to bottom.

Figure 5.6 for more details). NO-DR, PCA and LLC take the subsequent ranks,

respectively. This can be explained through the unsupervised nature of the PCA and

LLC methods. NO-DR achieves the fourth rank compared to PCA and LLC with

the cost of higher computational time. The lower performances of PCA and LLC are

due to their unsupervised nature, i.e., they cannot explain some percent of variability

among the features since they cannot see the class information. However, one can

increases the variability explained by the PCA and LLC models by increasing the

number of features with cost of increasing the computational time. LLC has also

the most unstable results due to the weak performance achieved along with the NB

classifier. This study also shows that using MCML along with the kNN and RF can
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lead to the best performances.
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Figure 5.7 – Boxplot illustrates the distribution of the performance measures (i.e.,
F-measure, MCC, MAvG and ROC area) attained by all classifiers for different DR
techniques, where solid circles represent the distribution of the performance measures,
the red dashes stand for maximum and minimum values, the solid squares stand for the
average value for each DR method, and the red crosses stand for 1 and 99 percentiles
of the performance values.

5.4 Third Experiment - Diagnostic System under

Class Imbalance Condition

The proposed diagnostic scheme of this experiment is presented in Figure 5.8. Fig-

ure 5.8 illustrates various state-of-the-art feature extraction and feature reduction
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techniques (explained in Chapter3) along with CIL techniques. In addition, the fault

classification module contains a novel and several state-of-the-art CIL techniques as

explained in Chapter 4. These techniques are considered for diagnosing bearing de-

fects under CI condition.

In order to better analyze the performance of diagnostic scheme under different CI

condition, three different datasets D1, D2, D3 with three different level of imbalance,

low, moderate and high are created from the CWRU bearing vibration records. These

datasets contain samples of normal state (i.e., as majority) and samples of different

defects (i.e., as minority). Two different defect width, i.e. 0.007 inch and 0.021

inch, motor load of 2 hp, shaft speed of 1750 rpm with sampling rate of 12 KHz are

considered in this study. The number of selected samples for class of normal and

defects, imbalance ratios and defect width are specified in Table 5.5. In this table,

the imbalance ratio of (20:1), (100:1) and (200:1) means that the number of samples

in the class of major are 20, 100 and 200 times greater than the number of samples

in the minor class and categorized as low, moderate and high class imbalance (i.e.,

LCI, MCI, HCI) datasets, respectively.
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Figure 5.8 – Block diagram of the proposed diagnostic system under class imbalance condition
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Table 5.5 – Number of samples in each of the created datasets

Class Defect Width (in.)
Length of Signal No. of Segmented Samples

D1 D2 D3 D1 D2 D3

Normal - 819,200 819,200 819,200 800 800 800

Ball
(DE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Ball
(FE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Inner
Race
(DE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Inner
Race
(FE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Outer
Race
(DE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Outer
Race
(FE)

0.007
and
0.021

40,960 8,192 4,096 40 8 4

Total 1,064,960 869,352 843,776 1040 848 824
Imbalance
Ratio

20:1 100:1 200:1 20:1 100:1 200:1

(LCI) (MCI) (HCI) (LCI) (MCI) (HCI)
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The fault classification module receives the CI sets (i.e., LCI, MCI and HCI)of

samples as input and learns the relation between the features and defects to diagnose

bearing defects under the CI conditions.

The CIL techniques, except for WELM, use the decision tree C4.5 algorithm as a

base classifier, since it has been extensively used in CI domains [104, 105]; and perform

K-fold cross validation on the input sets to avoid bias in the estimated performance

caused by a single split of the available samples into training and test subsets.

Diagnostic results are compared in terms of weighted averages of ROC, MCC and

F-measure. These performance measures are used to evaluate the performance of each

module and to compare the impacts of each feature extraction and reduction technique

in the diagnostic performance. Besides, this experiment also aims to evaluate and

compare the diagnostic performance of CIL techniques w.r.t. feature extraction and

reduction modules at different CI ratios. Figures 5.9, 5.10, 5.11, and 5.12 compares

the state-of-the-art techniques in each module for diagnosing bearing defects over all

three scenarios.

Figure 5.9 depicts the distribution of the performance measures attained through

each feature extraction technique. The boxes illustrate the distribution range of the

performance measures (dots) between the first and third quartiles, solid brown square

represents the mean of the performance measures for each FE technique, solid red line

indicates the median value of the performance measures attained through each FE

technique, and green dash lines represents the outlier range. These feature extraction

techniques are ranked w.r.t. the mean values as FFT, WPT, EMD, SSA and Time

domain analysis. FFT has also the smallest box, which shows the minimum variation

of the performance measures and the most stable FE technique. Time domain features

produce the largest window and also has the maximum number of outliers, i.e., the

most unstable diagnostic performances.

Figure 5.10 shows the distribution of the performance measures obtained through

each feature selection technique. These feature selection methods are ranked w.r.t.
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Figure 5.9 – Boxplot represents distributions of the performance measures attained
by each feature extraction techniques

the mean values as FFS, FS and mrMR. FFS has also the smallest box, which indicates

the least variation and maximum stability among other competitors. However, the

performance measures attained by these feature selection methods are very close to

each other.

Figure 5.11 represents the distribution of the performance measures achieved

through each dimensionality reduction technique. These DR techniques are ranked

w.r.t. the mean values as NCA, LDA, MCML, PCA and LLC. NCA has also the

smallest box, which indicates the least variation and the most stable DR technique.

LLC yields the largest box and the maximum number of outliers, which represent the

maximum instability among other DR techniques.

Figure 5.12 illustrates the distribution of the performance measures attained by

each CIL technique. These fault classification techniques are ranked w.r.t. the mean
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Figure 5.10 – Boxplot represents distributions of the performance measures attained
by each feature selection techniques

values as EMI-OS, SMOTE, SMOTEBAG, WELM and RUSBoost. EMI-OS has

also the smallest box, which represents the least variation and the most stable CIL

technique. EMI-OS significantly outperforms other CIL techniques. RUSBoost and

WELM yield the largest boxes and the maximum number of outliers, respectively,

which result in the most unstable diagnostic performances.

Figure 5.13 shows the distribution of the performance measures obtained by each

CIL technique through each FE technique for the scenario with the low imbalance

ratio (LCI). The mean value of the performance measures obtained by each class

imbalance learning technique is shown with a distinct marker. The average of per-

formance measures over CIL methods w.r.t each FE techniques are calculated and

connected by means of a distinct line for the sake of better comparison.

This explanation is valid for the rest of figures in this study.
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Figure 5.11 – Boxplot represents distributions of the performance measures attained
by each dimensionality reduction techniques

Figure 5.13 shows that EMI-OS outperforms other CIL techniques regardless of

the type of feature extraction, i.e., EMI-OS is insensitive to the type of extracted

features. It is also the most stable fault classification technique. The rest of the CIL

techniques are ranked as SMOTE, SMOTEBag, RUSBoost and WELM. The last two

are the most unstable CIL methods.

In Figure 5.14, the level of imbalance is increased to the medium level (i.e., MCI).

This figure represents the distribution of the performance measures obtained by each

CIL technique through each feature extraction technique for the scenario with the

medium imbalance ratio. Increasing the imbalance ratio does not change the rank

of CIL techniques except for WELM and RUSBoost. This indicates that EMI-OS

outperforms other CIL techniques regardless of the type of extracted features and the

imbalance ratios.
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Figure 5.12 – Boxplot represents distributions of the performance measures attained
by each CIL technique

SMOTE and SOMTEBag are the subsequent ranks with a slight difference. WELM

outperforms RUSBoost with increasing the imbalance ratio and, thus, WELM and

RUSBoost are ranked fourth and fifth for the scenarios with medium and high imbal-

ance ratios.

Figures 5.13 and 5.14 show that increasing the imbalance ratio results in significant

reduction of the performance measures obtained by RUSBoost and WELM, i.e., these

techniques are very sensitive to the imbalance ratio and their performances decrease

by increasing the imbalance ratio. On the other hand, EMI-OS outperforms other

CIL techniques and is robust to the change of the imbalance ratio. The performance

measures obtained by EMI-OS are even improved by increasing the imbalance ratio,

which is due to the use of EMI for producing a large number of discriminant samples.

Figure 5.15 shows the distribution of the performance measures obtained by each
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Figure 5.13 – Boxplot illustrates distributions of the performance measures on the sce-
nario of the Low imbalance ratio attained by each feature extraction technique w.r.t.
various CIL techniques (i.e., the mean values attained by each CIL technique are con-
nected for a better visual evaluation)

CIL technique through each dimensionality reduction and feature selection technique

for the scenario with the low imbalance ratio. The mean value of the performance

measures obtained by each CIL technique is shown with a distinct marker. The fig-

ure shows that EMI-OS outperforms other CIL techniques regardless of the type of

dimensionality reduction and feature selection techniques used for the feature reduc-

tion. EMI-OS is also the most stable fault classification technique. The rest of the

CIL techniques are ranked as SMOTE, SMOTEBag, RUSBoost and WELM. The last

two are the most unstable CIL techniques.

Considering feature reduction methods, increasing the level of imbalance to the

high level could make an effect on some CIL techniques . Figure 5.16 shows the

distribution of the performance measures obtained by each CIL technique through
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Figure 5.14 – Boxplot illustrates distributions of the performance measures on the
scenario of the medium imbalance ratio attained by each feature extraction technique
w.r.t. various CIL techniques (i.e., the mean values attained by each CIL technique are
connected for a better visual evaluation)

each dimensionality reduction and feature selection technique for the scenario with the

high imbalance ratio. The figure shows that increasing the imbalance ratio change the

performance of WELM and RUSBoost considerably. Moreover, This indicates that

EMI-OS outperforms other CIL techniques regardless of the type of feature reduction

and the imbalance ratio. SMOTE and SOMTEBag are the subsequent ranks with a

slight difference. WELM outperforms RUSBoost with increasing the imbalance ratio

and, thus, WELM and RUSBoost are ranked fourth and fifth for the scenarios with

medium and high imbalance ratios.

Figures 5.15 and 5.16 also confirm that increasing the imbalance ratio results in

significant reduction of the performance measures obtained by RUSBoost andWELM,

i.e., these techniques are very sensitive to the imbalance ratio. They also show that
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Figure 5.15 – Boxplot illustrates distributions of the performance measures on the
scenario of the Low imbalance ratio attained by each feature reduction technique w.r.t.
various CIL techniques (i.e., the mean values attained by each CIL technique are con-
nected for a better visual evaluation)

EMI-OS outperforms other CIL techniques and is not very sensitive to the change of

the imbalance ratio. They also indicate that the performance measures obtained by

resorting to EMI-OS are even improved by increasing the imbalance ratio.

Figures 5.15 and 5.16 also illustrate the rank of dimensionality reduction and fea-

ture selection techniques. In general feature selection techniques outperform dimen-

sionality reduction techniques as already represented in Figures 5.10 and 5.11. Feature

selection techniques are also more stable compared to the dimensionality reduction

techniques. NCA outperforms other dimensionality reduction techniques. The at-

tained performance measures through NCA are comparable with the attained results

through feature selection techniques. Figures 5.15 and 5.16 also shows that, with

increasing the imbalance ratio, the difference between the attained results through
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Figure 5.16 – Boxplot illustrates distributions of the performance measures on the
scenario of the high imbalance ratio attained by each feature reduction technique w.r.t.
various CIL techniques (i.e., the mean values attained by each CIL technique are con-
nected for a better visual evaluation)

the feature selection techniques and the supervised dimensionality reduction tech-

niques (NCA, LDA and MCML), is reduced. On the other hand, the unsupervised

dimensionality reduction techniques (PCA and LLC) under-perform other competi-

tors. This is particularly more significant for the scenario with the high imbalance

ratio.

The attained results in Figures 5.15 and 5.16 show that feature selection techniques

have first rank, followed by supervised and unsupervised dimensionality reduction

techniques as second and third ranks, respectively, in diagnosing bearing defects under

CI conditions.

In order to find the most relevant features that have the major impact on im-

provement of the classification performance, Table 5.6, Table 5.7 and Table 5.8 are
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provided. The common features selected by all the three feature selection methods,

i.e., SFS, SFFS and mRMR are presented in these tables. From Table 5.6, Table 5.7

and Table 5.8, it can be conclude that RMS, Mean value and Entropy are the most

important features in LCI, MCI and HCI conditions, respectively; while margin factor

does not have any effect on the performance of fault classifiers. In addition the most

informative packs among 32 packs of the wavelet packet transform are packs number

10, 13, 18 and 23. For empirical mode decomposition, the first three IMFs play vital

role to provide proper features. Besides, components number 1, 2 and 9 extracted by

means of SSA technique appear as important features in further processing by feature

selection methods.

Table 5.6 – Common features selected by all FS methods under LCI condition

FE method Feature No. Statistical Feature Component No.

Time 1, 3, 4, 5 RMS, Skewness, Kurtosis, Crest factor -

FFT 1, 2, 8 RMS, Mean, Entropy -

WPT 177 RMS 23rd pack

EMD 1, 18, 24 RMS, Mean, Entropy 1st and 3rd IMFs

SSA 9, 24, 66 RMS, Entropy, Mean 2nd, 3rd and 9th Comp.

Table 5.7 – Common features selected by all FS methods under MCI condition

FE method Feature No. Statistical Feature Component No.

Time 2 Mean -

FFT 1 RMS -

WPT 73, 178 RMS, Mean 10th and 23rd packs

EMD 1, 10, 16 RMS, Mean, Entropy 1st and 2nd IMFs

SSA 18 Mean 2nd Component
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Table 5.8 – Common features selected by all FS methods under HCI condition

FE method Feature No. Statistical Feature Component No.

Time 1, 6, 8 RMS, Impulse, Entropy -

FFT 3, 8 Skewness, Entropy -

WPT 98, 144 Mean, Entropy 13rd and 18th packs

EMD 1, 8 RMS, Entropy 1st IMFs

SSA 65 RMS 9th Component

5.5 Summary

In this chapter, the proper metrics to evaluate the performance of the diagnostic

system are firstly introduced. Then, the chapter provides the experimental results

related to three different experiments. The diagnostic system of the first experiment

focuses on preprocessing methods. It considers the wavelet packet transform for

analyzing the vibration signals and, then, liner discriminant analysis to provide a

new feature set with a lower dimension and more discriminant ability.

The second experiment, focuses on designing an efficient multi-step pre-processing

scheme to diagnose bearing defects in IMs. In this experiment, the combination of

empirical mode decomposition with five different state-of-the-art dimensionality re-

duction techniques are considered. The diagnostic system makes use of the newly

transformed features to train various fault classifiers about bearing faults. The ex-

perimental results provide a comparison to show the effect of various DR techniques

(i.e., supervised and unsupervised) on the performance of the diagnostic system.

Lastly, the experimental results of the data-driven techniques in diagnosing bear-

ing detects under class imbalance condition are presented. The proposed diagnostic

system includes the state-of-the-art feature extraction and feature reduction methods

and also contains the different class imbalance learning methods. The data-driven

diagnostic scheme is shown in Figure 5.8. The proposed scheme is applied on the

bearing datasets with three different imbalance ratios; Low, medium and high. The
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achieved results are presented and the effect of CIL techniques along with the feature

extraction and feature reduction methods are compared. From the obtained results, it

can be seen that the proposed sampling technique, so-called EMI-OS, could perfectly

enhance the accuracy of the data-driven diagnostic system under the class imbalance

condition in all scenarios of this experiment. Moreover, the proposed method could

maintain its performance in a high level, while different feature extraction and feature

reduction techniques under low, medium and high imbalance ratios are applied.
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Chapter 6

Conclusions

The ultimate goal of this study is to designe an efficient integrated scheme for di-

agnosing bearing defects in IMs, under the class imbalance condition, which is quite

relevant for actual diagnostic problems. To this aim, firstly an efficient pre-processing

scheme, as the first experiment, is proposed for diagnosing bearing defects. The pre-

processing scheme includes two main sub-modules: wavelet packet transform and

linear discriminant analysis. The proposed method has been applied to the simulated

bearing vibration signals, i.e., normal, ball defects, outer race defects and inner race

defects with different diameters. The attained results have shown that the proposed

method is effective in extracting discriminant features from the vibration signals, in

a way that various fault classifiers in the diagnostic module can classify them with a

very high accuracy.

Since the pre-processing module plays an important role to provide the most infor-

mative features for the diagnostic system, another state-of-the-art signal processing

technique, called EMD, is investigated in the second experiment. The second scheme

has also two main sub-modules: (1) extracting informative features, i.e., intrinsic

mode functions, from the vibration signals by means empirical mode decomposition

(EMD). The extracted IMFs are segmented to compute the entropy of each segment.

The attained features are normalized, and, then, fed to the subsequent sub-modules;

(2) feature reduction by means of different dimensionality reduction techniques to

construct an informative set of small-sized features in both supervised and unsuper-

vised manners, that best separate the different classes of bearing defects. To study the

efficiency of these DR techniques, the state-of-the-art unsupervised and supervised
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methods are implemented and compared for reducing the dimension of the features.

The reduced features obtained by each DR technique are used to train various classi-

fiers to diagnose bearing defects including normal state, ball defects, outer race defects

and inner race defects with different diameters. The experimental results reveal the

effectiveness of the developed feature extraction and reduction modules in providing

discriminant features for diagnosing bearing defects.

The first and second experiments show the importance of feature extraction and

dimensionality reduction techniques in processing the raw signals and providing useful

features for the data-driven diagnostic system.

Moreover, in the real world applications, data samples are often collected under

skewed-class distribution and there is a need for some techniques to ease the classi-

fication in class imbalance conditions and to facilitate training the fault classifiers.

Hence, the classification module of a data-driven diagnostic system needs to be en-

hanced to be able to maintain a satisfied accuracy once encounters the class imbalance

condition.

In order to diagnose multiple bearing defects under the class imbalance condition

the third experiment is considered. The proposed scheme of the third experiment

contains four modules including segmentation, feature extraction, feature reduction

and fault classification. In the feature extraction module, several state-of-the-art

techniques have been devised in the diagnostic scheme to extract informative sets

of features from the vibrational signal. Feature reduction module includes various

state-of-the-art feature selection and dimensionality reduction techniques, which aim

to eliminate redundant features and generate discriminant and useful sets of features

for the subsequent module. Fault classification module is made of some state-of-the-

art data-level, algorithm-level and ensemble-based approaches for the class imbalance

learning, that are adopted for diagnosing bearing defects.

In the fault classification module, a novel oversampling technique, called EMI-OS,

for class-imbalance learning and diagnosing bearing defects has been developed, which
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is based on the expectation maximization imputation technique. The novelty of the

EMI-OS algorithm stands in producing a set of incomplete samples representative of

each minor class and imputing them by resorting to the expectation maximization

algorithm. This allows EMI-OS to generate new synthetic samples of the minor class.

EMI-OS efficiently diagnoses bearing defects under the class-imbalance condition and

improves performance measures. This improvement is more significant for the sce-

narios with the high class imbalance ratios. This scheme has been evaluated on the

CWRU bearing datasets. Besides, three different scenarios are used to evaluate the

sensitivity of the diagnostic system to the class imbalance ratio.

The achieved results show that the proposed novel oversampling technique, EMI-

OS, outperforms other state-of-the-art CIL techniques in diagnosing bearing defects

in terms of both performance measures and stability of the attained results. The

experiments suggest that EMI-OS is a promising technique to deal with CI scenarios,

extensible to classification of class-imbalance datasets and other areas of industrial

applications, which looks to be a worthwhile direction for future research. This in-

tegrated diagnostic scheme also enables an empirical comparison in each module to

study the impacts of the state-of-the-art feature extraction and reduction techniques

in the diagnostic performance.

6.1 Improvements and Future Works

The proposed data-driven diagnosis system is applied on the CWRU bearing datasets.

Further research can be conducted to evaluate the performance of this diagnostic

system on the other bearing datsets with different operating loads. It is also noticeable

that this work only considers the bearing defects since they are the major reason for

induction motors failure. However, there exist other mechanical and electrical faults

such as broken rotor bar or those that are initiated in stator windings. This diagnostic

system can also be evaluated to diagnose these faults in the future works.
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