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ABSTRACT 

PART I

A report is presented on the study of the reactions of aryl- 

carbinols with bromine and iodine in various organic solvents. It was 

found that triarylcarbinols in reaction with bromine or iodine in meth­

anol solution were converted to the methyl triarylmethyl ethers. Ketones 

and aldehydes were obtained when benzhydrols and benzyl alcohols were 

treated with bromine in methanol solution. Some of the corresponding 

methyl benzhydryl ethers could be obtained from the reaction of several 

benzhydrols with iodine in solution with methanol, in yields depending 

on the nature of the aryl substitution. The probable presence of a 

carbonium ion intermediate in the reaction was demonstrated by the iso­

lation of bis-(h-methoxyphenyl)-methane in 82$ yield from the reaction 

of Ij-methoxybenzyl alcohol with iodine in solution with anisole and 

acetone. The possible mechanisms of the reaction which were studied 

are discussed and methods of proving these mechanisms are advanced. The 

preparations of several previously unreported compounds are described.

PART II

A mechanistic study of the base catalyzed methanolysis and hydro­

lysis of several hydrogen phthalates is reported. The hydrogen phthal- 

ate esters of the following benzhydrols were prepared for this study: 

lr-nitrobenzhydrol, 4-bromo-V -nitrobenzhydrol, k~nitro-V -t-butylbenz- 
hydrol, lj-chlorobenzhydrol, and U-methylbenzhydrol. The tendency of 

these esters to undergo these solvolytic reactions is discussed in terms 

of possible mechanisms and related in a qualitative manner to Hammett CP 

values. A new kinetic approach to studying the base catalyzed solvol-

ii
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ysis of benzhydryl hydrogen phthalate is described. The results of the 

kinetic study are interpreted to elucidate the mechanistic path involved. 

Two esters were at least partly resolved into their optical isomers, 

and some solvolytic reactions involving these active esters are presented. 

A description of a new preparative method leading to benzhydryl hydrogen 

phthalate esters is included. The preparations are reported of several 

compounds that are unknown in the chemical literature.

iii
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PART I

REACTIONS OF ARYLCARBINOLS WITH BROMINE AND IODINE

CHAPTER I 

INTRODUCTION

Reactions of alochols with bromine and iodine have long been known 

in the chemical literature. One of the earliest systematic approaches 

to the problem of an interaction between halogens and solvents was re­

ported in 1903 by Lachman'*' who attempted to explain the observed colours

of iodine in solution with several organic solvents. He showed that

solvents which contained available non-bonded electrons (e.g. methyl 

alcohol, ethyl ether, acetone, ethyl acetate, thiophene, acetonitrile 

and pyridine) always gave a brown solution with iodine. Solvents which 

did not contain one or more free available electron pairs (e.g. hexane, 

toluene, chloroform, bromobenzene, nitroethane and carbon disulfide) 

invariably produced the normal violet solution. He accounted for these 

observations by proposing the existence of an unstable addition product 

(eqn. l) which is formed between iodine and a solvent molecule when the

Solvent + I2   > (Solvent + 1^) (l)

latter is capable of donating a pair of electrons. It is interesting
2to note that Beckmann had earlier suggested the formation of such a 

complex.

1 A. Lachman, J. Am. Chem. Soc., 25, 50 (1903)*

2 E. Beckmann, Z. Physik. Chem., 5., j6 (1889).
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2

■z
In 19W; Fairbrother^ suggested that complex formation between 

halogen and alcohol molecules was due to polar factors within the halo­

gen molecule. It was proposed that the symmetrical ionic structures 
+ +X X , X X may contribute more to the actual normal state of the 

halogen bond, especially in bromine, and still more iodine, than had 

been heretofore supposed. Thus the presence of an electron donor, like 

the oxygen atom in an alcohol molecule for example, may result in 

donation of an electron pair by the donor into the empty 5P orbital of 

the I+ species or into the polarized iodine molecule (eqn. 2 ), hence

R-0:  ---- > I+l" fR-0-l"| + I" (2)
I I
H [_ H

destroying the electronic symmetry and effecting a permanent ionization 

of the iodine molecule. Fairbrother supported his conclusion by cor­

relating the tendency of iodine to form brown solutions in some solvents, 

with the apparent dipole moment of iodine in those solutions. Values of 

the dipole moment, (a measure of the extent of polarization of the 

iodine molecule), were determined to be 0.6 D in benzene (red-violet 

solution), 0 .9  D in para-xylene (dark red), 1 .3 D in l,k-dioxane (brown), 

and 1.5 D in diisobutylene (brown). These solvents were chosen because 

they have very little polar nature yet exhibit the observed variety of 

colouration with iodine in solution.

A photometric study of a 1:1 complex between iodine and ethanol
k(eqn. 3 ) has been reported by Hamm, The equilibrium constant for

CH^CHgOH + I2 CH^CHgOH-12 (3 )

3 F. Fairbrother, Nat., l6o, 87 (1-9̂+T)- 
k J. S. Hamm, J. Chem. Phys., 20, II7O (1952).
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5

equation J> was determined to be 6.0 mole fraction units.

Andrews and Keefer^ studied the reaction between bromine and tert­

iary amyl alcohol (eqn. k). The authors assumed that trimethylethylene

Br2 + C5Hu 0H (C5Hl0) + Br2 (CH^BrCCHBrCl^ 00

(C^H q̂ ) was the intermediate product which resulted from a bromine 

induced dehydration of the alcohol. The olefin then underwent rapid 

bromination to produce trimethylethylene dibromide.

The rate of disappearance of bromine was determined to be first 

order in bromine and second order in alcohol, and was faster than the 

rate of diminution of the oxidizing power of the solution. This was 

explained by suggesting that the rate-determining step involved a 

reaction of a 1:1 alcohol-bromine complex with another molecule of 

alcohol to yield a reducible colourless intermediate (eqns. 5 ,6 ).

C5Hu 0H + Br2 £ast> C5Hn OH-Br2 (5)

Cj-H^OH-Brg + Cj.H^0H — — ■■> Reducible Colourless Intermediate (6)

The authors concluded that the reducible colourless intermediate was not 

the alkyl hypobromite since one would expect that such a moiety would 

decompose much too rapidly to allow for the high concentration observed. 

Again, the presence of hypobromite as an intermediate would result 

simultaneously in an equimolar concentration of hydrogen bromide (eqn. 

7). Only traces of hydrogen bromide could be detected. Finally it was

C-H,. OH + Br_ y.. :■>? C H . OBr + HBr (7)5 il d ii

5 L. J. Andrews and R. M. Keefer, J, Am. Chem. Soc., 7 5. 5557
(1953).
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shown that the terminal reaction product was formed by a reaction whose 

rate was dependent on the concentration of the intermediate to the first 

power only, and is independent of the acid concentration.

Since the intermediate was formed through the reaction of the 

alcohol-bromine complex with a second molecule of alcohol, the authors 

suggested as a probable structure

and that the breakdown is possibly initiated by the attack of a third 

alcohol molecule (eqn. 8).

There is not sufficient evidence to substantiate any predictions con­

cerning the details of the breakdown process.

Keefer and Andrews in a subsequent publication^ reported on the 

results of the determination of the equilibrium constant for the 

general reaction

CH, H 
i 5 ,

CH, - C - 0 - Br3 Br ... HOC H..,5

K
ROH + X, ==^ ROH-X,'2 (9)

where R =* t-amyl, i-propyl, and t-butyl.

K
(R0H-X2)

c (R0H)(X2)

(1953).
6 R. M. Keefer and L. J. Andrews, J. Am. Chem. Soc., 75* 35^1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The values of K for the reactions of iodine with tertiary amyl alcohol, c
isopropyl alcohol, and tertiary butyl alcohol, and o£ bromine with

tertiary butyl alcohol were all within the range of 0.5 to 1.6 litres

per mole. They concluded that the stability of the complex (ROH-X^) is

substantial and that its concentration is significant.

The above proposed mechanism is in contrast with one suggested by
7Ingold and his co-workers to explain the iodine induced dehydration of 

tertiary alcohols (eqns. 10,11, 12).

ROH + 2I2 ^=^R0HI+ + 1^“ (fast) (10)

R0HI+ --->R+ + H0I (slow) (11)

R+  > Olefin + H+ (fast) (12)

This scheme was proposed as an analogy with a unimolecular elimination 

mechanism that Ingold had found successful in explaining the decompos­

ition of sulfonium salts.

Several reactions of alcohols and halogens to give products other
Q

than complexes or olefins have been reported. Bugarszky has reported 

that ethyl acetate was obtained when ethanol (two parts) was treated 

with bromine (one part) in aqueous solution (76$). Although no mechan­

ism was proposed, the reaction proved to be first order in bromine con­

centration. In a separate experiment the same author has shown that 

tribromide ion (Br̂  ) does not enter into reaction with ethanol.

7 M. L. Dhar, E. D. Hughes, C. K. Ingold, A. M. M. Mandour,
G. A. Maw and L. I. Woolf, J. Chem. Soc., 2113 (19̂ 8)*

8 S. Bugarszky, Z, Physik. Chem., J8, $61 (1901).
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QFurther investigation of the above reaction by Farkas and his co- 

workers has shown the presence o£ acetaldehyde as an intermediate. The 

authors proposed the following scheme (eqns. 13,1*0 .

CH_CHo0H + Br.  > CH,CHO + 2HBr (1 3)3 d d 3

CH^CHO + Br2 + HgO  > CH^COOH + 2HBr (lh)

The rate of the reaction was found to be independent of the hydrogen ion

concentration at pH less than 3 an<* it was shown that hypobromous acid 

is not involved in any rate determining step. Three possible mechanisms
I

that are supported by experimental results were suggested by the authors.

The first mechanism (eqns. 15,16,1 7) involves the formation of ethyl 

hypobromite.
+

CH,CH OH + Br0 CH CH -O-Br + Br" (slow) (15)5 2 d 3 ^ jj
+ ,

CH CH -O-Br ^7 % CH,CH_OBr + H (slow) (l6)3 2 H 3 d

CH„CH.0Br --- > CH CHO + HBr (fast) (17)3 2 3

The decomposition of the ethyl hypobromite (eqn. 17) to give the alde­

hyde is supported by the known elimination of hydrogen chloride by alkyl 

hypochlorites to produce an aldehyde*^ (eqn. 18).

RCHgOCl ---- > RCHO + HC1 (18 )

However, equation l6 should be sensitive to H concentration and 

the rate should therefore be dependent not independent as observed by 

the authors on the hydrogen ion concentration.

9 L. Farkas, B. Perlmutter, and 0. Schnachter, J. Am. Chem. Soc.,
71, 2829 (19̂ 9).

10 F. D. Chattaway and 0. G. Backeberg, J. Chem. Soc., JOOO (1923).
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The reaction represented by the second mechanism is initiated by a 

hydride abstraction:

CH^CHgOH + Br2 ----> CH^CHQH'+ HBrg" (slow) (1 9)

CH^CHOH ----> CH^CHO + H+ (fast) (20)

HBr2" ----> H+ + 2Br" (fast) (21)

The third possible mechanism involves the displacement of a hydrogen 

atom by a bromine atom;

CHjCHgOH + Br2  > CH^CHBrOH + HBr (slow) (22)

CH^CHBrOH > CH^CHO + HBr (fast) (2 5)

This last mechanism was dismissed by the authors as untenable because of 

the lack of precedence for this type of reaction occurring at room 

temperature.

Kaplan^ has reported on the results of a study on the effect of the 

substitution of tritium for protium on the a-carbon of ethanol on the 

rate of oxidation by bromine. This was done to distinguish if possible 

between the three proposed mechanisms of Farkas, Perlmutter and Schachter. 

In the second and third mechanisms a carbon-hydrogen bond is ruptured in 

the rate-determining step (eqns. 19 and 22 respectively). In the first 

mechanism this bond is broken in a subsequent fast step (eqn. 17). The 

two cases can be distinguished by comparing the rate of reaction of the 
normal compound with that of one which has been isotopically substituted

11 L. Kaplan, J. Am. Chem. Soc., ’j6 , U6h5 (195*0*
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12 15at the position of bond rupture. There is experimental evidence *  ̂

and theoretical justification^"^ that if a bond involving the iso­

tope is broken in the rate-determining step, the molecule containing 

the heavy isotope will react more slowly than that containing the light 

isotope. The rather large isotope effect, 0.57 in this study, requires 

that the rupture of the carbon-hydrogen bond occur in the slowest step. 

Again, due to the lack of dependence of the reaction rate on the hydro- 

bromic acid concentration, Kaplan concluded that the hypobromite is not 

a precursor of acetaldehyde. Hence, the first mechanism of Farkas and 

co-workers (eqns. I5-I7 ) appears to be ruled out as the mechanism of the 

reaction. The third mechanism (eqns. 22,2 5) was eliminated on similar 

grounds proposed previously by Farkas and his co-workers that it re­

quires that hydrogen be replaced by bromine in a second order reaction 

at room temperature. Farkas* second mechanism (eqns. 19-21) appears 

much more reasonable in the light of Kaplan* s work because it involves 

the rupture of a carbon-hydrogen bond in the slow step and because

similar values of the kinetic isotope effect have been reported by 
17Melander in the reactions of ethanol with ortho and meta-nitro- 

benzenediazonium salts.

12 C. Reitz, Z. Physik. Chem., AI7 9, 119 (1937).

13 F. H. Westheimer and N. Nicolaides, J. Am. Chem. Soc., 71» 25
(19̂ 9).

1U J. Bigeleisen, J. Chem. Phys., 17» 675 (I9if9 ).

15 L. Melander, Arkiv. Kemi, 2, 211 (1950)•

16 H. Eyring and F. W. Cagle, Jr., J. Phys. Chem., 5 6 , 889 (1952).

17 L. Melander, Arkiv Kemi, jj, 525 (1952)
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Support for the formation of methyl hypobromite was claimed by 

Meinel^* ̂  as an intermediate in the reaction of a variety of olefins 

with bromine in methanol solution. Excellent yields were obtained of 

products corresponding to what one would expect if the elements of
4.methyl hypobromite were to add as CH^O and Br across the ethylenic 

double bond. Meinel concluded from his studies that the following 

sequence was operative (eqns. 24,2 5):

CH OH + Br v.  ^ CH OBr + HBr (24)5 d 5

CH,OBr + R0C=CR0 --> R C(OCH )CBrR (2 5)
$ d d d 3 d

The author noted a great increase in the reaction rate upon the addition

of silver nitrate, and this kinetic effect was explained by the precipi­

tation of bromide ion. When bromide ion is removed from the first step

(eqn. 24) the reaction becomes irreversible and the concentration of the
20methyl hypobromite intermediate will increase.

18 K. Meinel, Ann., £10, 129 (193*0.

19 K. Meinel, Ann., $16, 237 (1935).

20 The same effect may possibly be noted if the following scheme
represents the reaction studied by Meinel:

R2C=CR2 + Br+ —  Br" --- > RgC-CBrRg + Br" (2 6)

R0£-CBrR0 + CH OH  > R.C(CH 0)CBrRo + H+ (2 7)
d d $ d $ d

Br" + Br- Br " (2 8)2 3
An alternate first step could be the formation of the bridged bromonium 
ion which may then be opened by a nucleophilic attack involving methanol. 
The increase in the rate of reaction on the addition of silver nitrate 
would accompany the removal of bromide ion as silver bromide, thus pre­
venting the conversion of free bromine to the unreactive tribromide ion 
(eqn. 28). Silver may also aid in the heterolytic dissociation of 
bromine (eqn. 2 9), to increase the concentration of the active bromine 
species in the initial attack (eqn. 2 6).

Br2 Br+ + Br" ---8— > Br+ + AgBr (2 9)
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21Bartlett and Tarbell have studied the reaction of stilbene with 

bromine in methanol solution in order to investigate the nature of the 

reaction between bromine and methanol. The addition of equivalent 

amounts of sodium bromide or hydrogen bromide had the same rate re­

tarding effect. However, acidification with either hydrogen chloride 

or sulfuric acid had very little effect on the reaction rate. If methyl 

hypobromite is formed as the reactive intermediate (eqn. 3 0) the

CH OH + Br. <  CH OBr + H+ + Br" (3 0)3 2  3

addition of either hydrogen or bromide ions should have decreased the

reaction rate by decreasing the methyl hypobromite concentration. The

authors concluded that methyl hypobromite is not the intermediate that

attacks the ethylenic bond. They suggested that instead, the initiator

of the reaction must have been something whose concentration is reduced

by the addition of bromide ion but not by the addition of hydrogen ion.

Bromine was proposed to be that initiator (eqns. 31*52).

(C6H5 )CH=CH(C6H5) + Br2 --- > (CgH^CH-CHBr^H^) + Br" (3 1)

(CgH^)CH-CHBr(C^H^ )+CH^0H ----> (CgH^C^OCH^-CHBr (C^H^+H* (32)

22Swain has studied the oxidation of isopropanol with bromine in 

aqueous solution and has shown that the reaction is first order in the 

concentrations of both bromine and alcohol (eqn. 3 3).

CH-CHOHCH- + Br_ --- > CH.COCH, + 2HBr (3 3)5 5 2 3 3

21 P. D. Bartlett and D. S. Tarbell, J. Am. Chem. Soc., 38* ^8 
(1956).

22 C. G. Swain, R. A. Wiles, and R. F. Bader, J. Am. Chem. Soc.,
§2, 19̂ 5 (1961).
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It was also shown that the reaction rate was independent of the concen-
— "j-trations of Br and H in the range pH 1 to pH 3* The essential differ­

ences between the transition states for hydride and proton transfer in 

similar systems with the same force constants and hydrogen isotope 

effects were presented in a discussion that shows that these two trans­

ition states have different electron distributions. In a proton trans­

fer the transition state may resemble

R! : H : *2

where the hydrogen is being transferred from R^ to R̂ . In the hydride 

transfer the transition state may resemble

In a transition state which involves proton transfer the electron 

density is higher both relatively and absolutely on R^ and Rg. These 

groups are farther apart, and the distance as well as the force con­

stants are much more sensitive to substituents because the antibonding
23makes energy a weak function of distance.

The CH isotope effect of 2.9^ * 0.1 in isopropanol-2-d shows that 

this bond is broken in the rate determining step. In 1-fluoroisoprop- 

anol-2-d the CH isotope effect is 2.83 * 0.1. Thus the relative 

insensitivity of the isotope effect to the electron-seeking nature of 

the fluorine substitution shows by the above argument that hydride 

transfer occurs from the 2-carbon in isopropanol. Conversely the 

change in the isotope effect for OH from 1.1+9 to 2.06 for the unfluor-

• 23 H. C. Longuet-Higgins, Rec. trav. chim., 73, 825 (1956).
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inated and fluorinated isopropanols respectively, shows the substitutive 

sensitivity that is associated with a proton transfer from the oxygen 

atom. The authors concluded that the mechanism (eqn. 34) for the
CH CH

±s- 1 ^  - IBr —  Br H —  C —  0 —  :0Ho — > Br + HBr + C = 0 + H,(V (3 4)
| 42 ■ | 5
CH, CH,3 3

oxidation of isopropanol by bromine in aqueous solution must involve 

hydride transfer from carbon and proton transfer from oxygen.
24S It has been shown by Clarke and Esselen that when 2,5-dibromo- 

4-aminobenzhydrol is treated with bromine in chloroform solution a 

splitting takes place whereby 2,4,6-tribromoaniline and benzaldehyde 

are produced (eqn. 35)*

C6H5CHOHC6H2Br2NH2 + Br2  > CgH^CHO + CgHgBr NHg + HBr (3 5)
25Clarke and Patch extended the research to include aminoaryl- 

carbinols containing an aliphatic residue and also to tertiary carbinols. 

Ethyl-4-dimethylaminophenylcarbinol and isobuty1-4-dimethylaminophenyl- 

carbinol were found to undergo an elimination reaction with bromine, 

yielding in both cases the hydrobromide of p-bromodimethylaniline 

along with propionaldehyde and isovaleraldehyde respectively. When 4- 

dimethylaminodiphenylmethylcarbinol was treated in the same manner, the 

same aniline derivative was obtained along with acetophenone. Similar 

treatment of triphenylcarbinols substituted at one, two, or three para

24 L. Clarke and G. J. Esselen, Jr., J. Am. Chem. Soc., 331

25 L. Clarke and R. H. Patch, J. Am. Chem. Soc., 34, 912 (1912).
1135 (1911).
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positions by the dimethylaraino group yielded the same derivatives as

before along with the corresponding substituted benzophenone.
26Kohler and Patch were the first to note the oxidation of p-di- 

methylaminobenzhydrol as a minor side reaction to the cleavage reaction 

with bromine. Nitric acid, nitrous acid and other reagents that are 

capable of forming substitution products by direct action upon aromatic 

compounds, split these hydrols in the same manner and with the same 

ease as do the halogens. The compounds that give a large proportion 

of cleavage product when treated with halogens undergo an equally 

extensive cleavage with these reagents.

Kohler and Patch concluded that "cleavage and replacement of 

hydrogen are similar processes, promoted equally by the same groups,

hindered in the same way, therefore the result of the same mechanism."
27A recent investigation of the factors affecting the relative 

rates of cleavage, oxidation and ring bromination in the arylcarbinol 

system has shown that the cleavage yield is best in the benzhydrol 

system when both aromatic rings are substituted in the para position 

by the methoxyl group. Ring bromination occurs as a competing reaction 

in nearly all the reactions reported, while oxidation was important 

when ring bromination was blocked by other substitution, and when the 

compound was not sufficiently activated for cleavage to occur. In the 

case of benzhydrol and If,4*-dimethylbenzhydrol, ring bromination was 

so depressed that a quantitative oxidation of the alcohol to the cor-

26 E. P. Kohler and R. H. Patch, J. Am. Chem. Soc., 58, 1205 
(1916).

27 E. M. Arnett and G. B. Klingensmith, J. Am. Chem. Soc., 8 7»
1025 (1965).
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Ill-

responding ketone was obtained. It-Methoxybenzyl alcohol underwent cleav­

age with bromine to produce a 6l$ yield o£ k-bromoanisole. U-Methoxytri-

phenylcarbinol gave a very small yield of the cleavage product. Kinetic
28studies on the above reaction have shown that the rate of brominative 

cleavage of methoxy-activated benzhydrols is determined by the nature of 

the substitution on both aromatic rings of the system. Variation of the 

V-substituent in k-methoxy-4'-X-benzhydrol produces a significant 

change in the rate of cleavage (eqn. 3 6)-

CH^OCgH^CHOHC^X + Br2 --- > CH^OCgH^Br + HCOCgH^X + HBr (3 6)

As X is varied in the series: methoxyl, methyl, hydrogen, bromo to nitro,

a 19 fold decrease in the reaction is observed.
29A mechanism was proposed that was in conformity with the kinetic 

data and the general theory of electrophilic aromatic displacements.

°H Br/0H
CH^O^^-CAr + Br2— > CH^O^+^CAr + Br" — Xm^O^J^-Br + ̂ 3 CH0 + HBr

H H
(37)

It was shown that the benzhydrol hypobromite was not the inter­

mediate by preparing the k,lf'-dimethoxydiphenylmethyl hypobromite
30according to the method of Padwa^ and subjecting it to the reaction

28 E. M. Arnett and G. B. Klingensmith, J. Am. Chem. Soc., 8 7, 
1032 (1965).

29 E. M. Arnett and G. B. Klingensmith, J. Am. Chem. Soc., 87, 
1038 (1965).

30 C. Walling and A. Padwa, J. Org. Chem., 2J, 2976 (1962).
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conditions. No cleavage product was obtained, instead the -dimeth- 

oxybenzhydrol and its acetate were recovered in nearly quantitatively 

yield.

A compound of some interest was obtained by treating ,k"-tri- 

methoxytriphenylcarbinol with bromine in dichloromethane solution. Red 

needles were obtained from the reaction and on the basis of an analysis 

of an ultraviolet absorption spectrum and a nuclear magnetic resonance 

spectrum the compound was suggested to be trianisylcarbonium tribromide. 

The compound exhibited remarkable stability but quenching with water 

regenerated the carbinol.

The reactions of arylcarbinols with bromine and iodine became of 

interest in our laboratory with the observation that the methyl ether of 

triphenylcarbinol was obtained when a mixture of the carbinol and iodine 

was allowed to react in a solution of acetone and methanol. It was 

decided to investigate the limitations of the reaction and to determine 

whether it would be of value as a preparative procedure.

Previously Reported Synthetic Methods for Ethers
31The Williamson synthesis of asymmetric ethers involves the 

alkylation of hydroxy compounds by organic halides. This is usually 

accomplished by the addition of the alkyl halide to the alkali salt of 

the alcohol (eqn. 3 8)•
RONa + R'X  --> ROR* + NaX (3 8)

31 A. W. Williamson, Phil. Mag.. (3 ) 350 (I8 5 0).
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Syntheses of alkylphenyl ethers are carried out by heating under

reflux conditions, an alkali phenoxide in aqueous or alcoholic solution

with alkyl halides.

Benzyl halides undergo a facile reaction with alkoxides to yield 
3I4. 35ethers * while triarylmethyl chlorides react directly with the 

alcohol^ (eqn. 39)*

Ar_CCl + ROH --- > Ar COR + HC1 (3 9)3 3
Asymmetric ethers may also be prepared by the alkylation of

37 38 39alcohols by alkyl sulfates , sulfites or sulfonates (eqn. kO).

2R0Na + (CH^SO^  > 2R0CH^ + NagSO^ (kO)

The preparation of higher analogues of unsymmetrical ethers is 

complicated by the preparation of the required sulfates.

32 A. I. Vogel, J. Chem. Soc., 6l6 (l9k8).

33 W. T. Olson, et al., J. Am. Chem. Soc., 6 9, 2k51 (lykj).

3k W. J. Monacelli and G. F. Hennion, J. Am. Chem. Soc., 63
1722 (I9I+7 ).

35 W. S. Emmerson, et al., J. Am. Chem. Soc., 6 9, 1905 (19̂ 7)•

36 A. C. Nixon and G. E. K. Branch, J. Am. Chem. Soc., 58,
k92 (1936).

37 W. Cerchez, Bull. Soc. Chim. France, k̂j, 762 (I928).

38 W. W. Carlson and L. H. Cretcher, J. Am. Chem. Soc., 69,
1952 (I9k7).

39 V. M. Rodionow, Bull. Soc. Chim. France, (k) k5, 118 (1929).
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Alcohols can be made to lose water under acidic conditions to yield 

symmetrical aliphatic ethers^ (eqn. 4l).

2R0H + H+ ----> ROR + H^O* (4l)

Good yields are very dependent upon the reaction temperature,.be-
41cause high temperatures favour olefin formation. Some unsymmetrical

ethers may be prepared by acid catalyzed dehydration. For example,

t-butyl alcohol added slowly to a boiling mixture of ethanol and 15$
42aqueous sulfuric acid gives a 95$ yield of t-butyl ethyl ether (eqn. 

42). Sodium hydrogen sulfate can be used to obtain an 82$ yield of

(CEL )_COH + H+ + C-ELOH --- > (CH_)_COC_EL + ELO+ (42)
5 5  d. 5 J 5 £ J 5

45t-butyl 1-propyl ethers , starting with t-butyl and i-propyl alcohols. 
Of relatively minor importance is the gas phase dehydration of

44-46 / \alcohols by solid catalysts such as alumina (eqn. 45). Thorium

Al 0
2R0H ■ ,H q2-> R0R (43)

40 P. P. Schorigin and Ya. Makaroff-Semlhanski, Ber., 6£, 1293 
(1932).

41 A. I. Vogel, J. Chem. Soc., 6l6 (1948).

42 I. N. Hultman, A. W. Davis, and El. T. Clarke, J. Am. Chem. Soc.,
42, 366 (1921).

43 J. F. Norris and G. W. Rigby, J. Am. Chem. Soc., 2088 (1932).

44 R. El. Clark, W. E. Graham, and A. G. Winter, J. Am. Chem. Soc.,
42 , 2748 (1925).

45 V. N. Ipatieff and R. L. Burwell, Jr., J. Am. Chem. Soc., 65.
969 (19̂ 1).

46 N. M. Gullinane and S. J. Chard, J. Chem. Soc., 821 (1945).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

dioxide at 450° is used to obtain diphenylether from phenol in 64$
1+7yield.

The addition of alcohols to olefinic compounds provides an easy 

method for making ethers which may otherwise be difficult to obtain, 

particularly those which contain a second functional group. The 

reaction is often catalyzed by dilute sulfuric acid. Generally, alkyl­

ated olefins and primary alcohols are the most suitable reactants. 

Tertiary alcohols are practically non-reactive. For example, trimethyl-
ljAethylene and ethanol give a 90$ yield of ethyl t-amyl ether (eqn. 44).

ch3ck=c(ch5 )2 + c2h oh ---->  Cgiyo-c hu  (MO
k 9 50Mineral acids and boron trifluoride can be used to condense phenols

with unsaturated compounds in the cold (eqn. 45). Three molecules of

\  /  H+ ” JlArOH + ^ 0 = 0 ^  ----— > Ar-0-C-CH (45)

methanol can be added to vinyl acetylene in the presence of boron tri­

fluoride and mercuric oxide to yield 2,2,4-trimethoxybutane in 65$
51yield. However, in the presence of sodium methoxide, 4-methoxy-l-

47 E. Briner, J. Bron-Stalet, and H. Paillard, Helv. Chim. Acta,
]£, 619 (1932).

48 T. W. Evans and K. R. Edlund, Ind. Eng. Chem., 28, 1186 (1936).

49 J. B. Niederl and S. Natelson, J. Am. Chem. Soc., 5J5, 272 (1928).
50 F. J. Sowa, H. D. Hinton, and J. A. Nieuwland, J. Am. Chem. Soc., 

54, 2019, 3695 (1932).
51 D. B. Killian, G. F. Hennion, and J. A. Nieuwland, J. Am. Chem. 

Soc., 56, 1786 (1934).
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cp
butyne is obtained in 6l$ yield. Unsaturated ketones undergo a 

reaction with alcohols in the presence of boron trifluoride etherate 
or tke so<jium alkoxide'*'**̂  to yield f3-alkoxy ketones (eqn. 46).

0 0
\ II II
^C=CH-C-R + ROH --- > R-0-C-CH2-C-R (46)

Acrylic esters undergo a similar reaction with primary and secondary

alcohols and phenols to yield the corresponding p-alkoxy- and |3-aryl-

:om a 
60-62

57-59oxypropionates. 1 p-Alkoxypropionitriles are obtained from a

reaction of acrylonitrile with primary or secondary alcohols 

(eqn. 47).

CH2=CH-CN + ROH ----> R-O-GHg-CHgCN (47)

52 R. A. Jacobson, H. B. Dykstra, and W. H. Carothers, J. Am. Chem. 
Soc., 56, 1169 (193̂ ).

53 D. B. Killian, G. F. Hennion, and J. A. Nieuwland, J. Am. Chem. 
Soc., j?8 , 892 (1936).

54 N. A. Milas, et al., J. Am. Chem. Soc., 70* 1602 (1948).

55 B. Puetzer, C. H. Nield, and R. H. Barry, J. Am. Chem. Soc.,
62, 835 (19̂ 5).

56 R. C. Elderfield, B. M. Pitt, and I. Wempen, J. Am. Chem. Soc.,
][2, 1340 (1950).

57 C. E. Rehberg, M. B. Dixon, and C. H. Fiser, J. Am. Chem. Soc., 
62, 2970 (19̂ 7).

58 C. E. Rehberg, and M. B. Dixon, J. Am. Chem. Soc., 72, 2205 
(1950).

59 R. H. Hall and E. S. Stern, J. Chem. Soc., 2035 (1949).

60 C.»F. Koelsch, J. An. Chem. Soc. , 65, 437 (̂ 9̂ 3).

61 W. P. Utermohlen, Jr., J. Am. Chem. Soc., 67, 1505 (19̂ 5).

62 R. V. Christian, Jr., and R. M. Hixon, J. Am. Chem. soc., 2 2,
1333 (19W).
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Alcohols may undergo an addition reaction with oxides to give 

hydroxy ethers. The reaction is a trans opening of the ring and the
63mechanism and stereochemistry are well known. For example, cyclo- 

hexene will suffer methanol addition to yield trans-2-methoxycyclo-
64hexanol in 82$ yield (eqn. 48). When a unsymmetrical epoxide reacts,

°0H
+ CH OH ----> / Ho\ W

either a primary of a secondary alcohol is formed, depending on which

carbon-oxygen bond is broken.^ ^

Preliminary studies on the synthesis of ethers using iodine have 
69 70been carried out * 1 and have shown that the reaction is of synthetic 

value when applied to di- and triaryl carbinols (eqn. 49). It was
IPAr COH + CH OH ---£—> Ar^COCH (4 9)3 3 3 3

63 S. Winstein and R. B. Henderson, 'Heterocyclic Compounds",
R. C. Elderfield, ed., Vol. I, John Wiley and Sons, New York, 1950* 
pp. 22-42.

64 S. Winstein and R. B. Henderson, J. Am. Chem. Soc., 65, 2196
(19̂ 3).

65 H. C. Chitwood and B. T. Freure, J. Am. Chem. Soc., 68, 680 
(19^6 ). ”

66 A. R. Sexton and E. C. Britton, J. Am. Chem. Soc., 70, 3606 
(19W).

67 P. D. Bartlett and S. D. Ross, J. Am. Chem. Soc., 70* 926 (1948).

68 W. Reeve and I. Christoffel, J. Am. Chem. Soc., J2, 1480 (1950).

69 J. M. Prokipcak, Ph.D. Thesis, Faculty of Graduate Studies, Uni­
versity of Windsor,. 1964i

70 R. F. A. Jobin, Ph.D. Thesis, Faculty of Graduate Studies, Uni­
versity of Windsor, 19o4.
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found by titrimetric methods that the role of the iodine is that of a 

catalyst only. Triphenyl carbinol afforded the methyl ether (90$), the 

ethyl ether (80$), the n-propyl ether (78$), the i-propyl ether (̂ 5$)> 

and the benzyl ether (50$) when allowed to react with the corresponding 

alcohols in the presence of iodine. Benzhydrol proved amenable to the 

preparation of a similar series of ethers, with corresponding yields 

significantly smaller: the methyl ether (70$), the ethyl ether (52$)*

and the n-propyl ether (k2$). Benzyl methyl ether could not be prepared 

in even small yields from benzyl alcohol and methanol in the presence of 

iodine. Furthermore, 4-nitrobenzhydrol, k-nitro-k'-bromobenzhydrol and 

ij-nitro-4'-t-butylbenzhydrol failed to undergo ether formation.

It was subsequently decided to make a study of the effect of nuclear 

substitution on the ability of an aryl carbinol to undergo iodine cata­

lyzed ether formation and also to determine if it would be possible to 

induce the above mentioned nitro substituted benzhydrols to undergo 

ether formation with bromine as the catalyst.

In the course of these investigations it was found that with tri- 

arylcarbinols and simple alcohols, bromine and iodine yielded exclusively 

the corresponding unsymmetrical ethers. With benzhydrols, bromine effected 

oxidation to the corresponding ketone with yields greatly dependent on the 

nature of the aromatic substitution, while iodine gave the corresponding 

mixed ethers in yields also greatly dependent on the nature of the 

aromatic substitution. Only one benzyl alcohol was observed to undergo 

ether formation with iodine. Several benzyl alcohols were capable of 

being oxidized to the corresponding aldehyde by bromine.
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Previously Reported Oxidative Synthetic Methods for Aryl Aldehydes and 

Ketones:

Aryl aldehydes can be prepared by the oxidation of aromatic side 

chains with chromium trioxide in acetic anhydride solution. The cor­

responding diacetates are the intermediates which are stable to 

further oxidation (eqn. 50)* These compounds are readily hydrolyzed

Cr0  ̂ HP1ArCH, ----2--> ArCH(0C0CH ) — > ArCHO (5 0)
5 Ac20 5 2 2

71-73in acid solution to the corresponding aldehydes. The procedure

is generally applicable to the preparation of benzaldehydes carrying 

nitro, halo, and cyano substituents. Manganese dioxide in an acidic

medium has been used to prepare 3> 5-di-metbylbenzaldehyde from mesi-
7h 75tylene. Chromyl chloride1 is often used to effect the oxidation

of a hydrocarbon to yield an aldehyde (eqn. 50*

CrO Cl
ArCH, -----— ArCHO (5 1)5

71 S. V. Lieberman and R. Connor, Org. Syntheses Coll. Vol. JI,
khi (19^3).

72 A. F. Walton, R. S. Tipson and L. H. Cretcher, J. Am. Chem. Soc.,
6j, 1501 (19 5̂).

73 S. M. Tsang, E. H. Wood and J. R. Johnson, Org. Syntheses, 2b,
75 (19^).

"jk C. S. Marvel, J. H. Saunders and C. G. Overberger, J. Am. Chem. 
Soc., 68, 1085 (19̂ 6).

75 D, Law and F. M. Perkin, J. Chem. Soc., 259 (19̂ 7)
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76 77Selenium dioxide' or copper nitrate'1 can be used to oxidize
benzyl halides directly.

Aliphatic aldehydes may be obtained by the hydrolysis of ozonides 

which are intermediates formed in a reaction between ozone and olefinic 

compounds (eqn. 52). However, the oxidation of olefinic side chains on

RCH = CH2 g-jj— > RCH0 + ch2° (52)

an aromatic nucleus to form aromatic aldehydes often gives erratic 

results and as a consequence, other oxidants are employed. Usually 

nitrobenzene in dilute alkali solution will effect the desired 

oxidation.^

Sodium dichromate in the presence of sulfanilic acid gives 

excellent yields in the oxidation of isoeugenol^ (eqn. 55).

CHO

Na2Cr2°7 If 1
OCH.

OH

76 C.H. Fisher, J. Am. Chem. Soc., 56, 2056 (193*0*
77 J.W. Baker, W.S. Nathan and C.W. Shoppee, J. Chem. Soc., 18^8

(1935).
78 L.N. Ferguson, Chem. Revs., 58. 227 (19*̂ 6).
79 R.R. Davies and H.H. Hodgson, J. Soc. Chem. Ind. (London),

62, 90 (l9*+3).
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The controlled oxidation of benzyl alcohols by chromic acid in 

aqueous acid solution (eqn. 5^) is a useful method of preparing aromatic

CrO
ArCHo0H  ArCHO (5U)

 ̂ H+
80aldehydes. Nitrogen tetroxide has been reported as having been used

to oxidize p-cyanobenzyl alcohol in chloroform solution to p-cyanobenz-
8laldehyde. The oxidations of ortho and para-nitrobenzyl alcohols with

82nitric acid to produce the corresponding aldehydes has been reported.

Phenolic benzyl alcohols have been oxidized to the corresponding alde-
83hydes by m-nitrobenzenesulfonic acid in basic media.

The Oppenauer reaction has been applied to the preparation of
Qkbenzaldehydes. The benzyl alcohol, a high boiling aldehyde, and an 

aluminium alkoxide catalyst are heated together, and the volatile 

benzaldehyde product is allowed to distill from the reaction mixture 

(eqn. 5 5).

Al(OR)
ArCHgOH + RCHO ---  ArCHO + RCHgOH (5 5)

80 L. I. Smith et.al., J. Org. Chem., k, 323 (1939).
81 J. N. Ashley et.al., J. Chem. Soc., 115 (19̂ -2).

82 B. F. Helferich, R. Streech and E. Gunther, J. Prakt. Chem.,
151. 251 (1938).

83 F. Manus, J. Prakt. Chem., 138, 25k (19̂ 1).

8 k C. Djerassi, Organic Reactions, Vol. 6, John Wiley and Sons,
New York, I95I, p.207.
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The hydrolysis of gem-dihalides has been useful in the preparation 

of benzaldehyde (eqn. 5 6). Toluenes substituted with chloro, bromo,

Br H O
ArCH^ --- — > ArCHBr2 ----  > ArCHO (5 6)

fluoro, or cyano groups can be dibrominated and the resulting benzal 

bromides hydrolyzed directly to the corresponding aldehydes in the 

presence of calcium carbonate or sulfuric acid.^'^

The oxidative preparative methods of aryl ketones are somewhat 

similar to those for aryl aldehydes. Methylene groups may be oxidized

readily to the corresponding ketone by a variety of oxidizing agents,
8*7 88such as selenium dioxide and oxides of nitrogen. The chromic acid

oxidation of 4,4'-diacetylaminodiphenylmethane yields the corresponding
, 89benzophenone in 70$ yield. Also 2-benzoylpyridine is prepared from

2-benzylpyridine (eqn. 57) *-n 86$ yield by the action of potassium per-

n ^- ch2- ^ '

85 G. H. Coleman and G. E. Honeywell, Org. Syntheses, Coll. Vol. II,
89 (19̂ 3).

86 W. L. McEwen, Org. Syntheses, Coll. Vol. II, 133 (19̂ *3)-

87 G. R. Waitkins and C. W. Clark, Chem. Revs♦, 56, 235 (19̂ 5)•

88 J. L. Riebsomer, Chem. Revs., 36, 157 (19̂ 5)*

89 H. Rivier and A. Farine, Helv. Chim. Acta, 12, 865 (1929)*
' ! 340C2

UNIVERSITY OF WINDSOR
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90manganate. Tetralin has been found to be oxidized to a-tetralone

(eqn. 58) by passing dispersed air through the liquid and then hydro-
91lyzing the mixture with an aqueous alkali solution.

0

f *  (58)

The preparation of aryl ketones by the ozonolysis of 1,1-diaryl 

olefins has little synthetic value. The oxidation of olefins with 

potassium permanganate or chromic acid to furnish ketones has been 

reported. An example (eqn. 59) is the oxidation of diisobutylene to
92methyl neopentyl ketone. This procedure, however, seems to have its 

best application in the aliphatic system.

0
KMnOi II

(ch5)5cch2c (ch5)=ch2 -----2— > (ch5)5cch2-c-ch5 (5 9)

The oxidation of secondary alcohols has a wide application in the 

synthesis of aryl ketones. With chromic acid as the oxidant, m-bi- 

phenylmethylcarbinol and 2-phenyleyelohexanol are oxidized in acetic

90 E. H. Huntress and H. C. Walter, J. Am. Chem. Soc., 'JO, 310k
(19 W).

91 E. B. Thompson, Org. Syntheses, 20, 9^ (19̂ 0)«

92 W. A. Mosher and J. C. Cox, Jr., J. Am. Chem. Soc., 12, 570^ 
(1950).
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acid solution to the corresponding ketones (eqn. Similarly,

OH
" A   CrS  r^ Y c6H5 (6 0)

CH„C00H

a-nitroacetophenone has been obtained by the chromic acid oxidation of

lat 
96-98

95the corresponding alcohol. The mechanism of the chromic acid oxidation

of alcohols has been extensively treated in the chemical literature.

The Oppenauer reaction can be used as a means of oxidizing secondary 

alcohols to ketones in a manner similar to that previously described for 

aldehydes (eqn. 6l). An extensive investigation of the reaction using

R2CH0H+ R'2C0 R2co + r.2choh (60

99aluminum tertiary butoxide has been published, and the literature 

pertinent to this synthetic method has been reviewed.*^

93 C. C. Price and J. V. Karabinos, J. Am. Chem. Soc., 62, ll60 
(19^0 ).

94 W. F. Huber et.al., J. Am. Chem. Soc., 68, 1109 (1946).

95 1*. M. Long and H. D. Troutman, J. Am. Chem. Soc., "Jl, 2469 
(19̂ 9).

96 Q. A. Mosher and E. 0. Langerak, J. Am. Chem. Soc., 'Jl, 286
(19̂ 9).

97 H. Westheimer, Chem. Revs., 45, 419 (19̂ 9)-
98 H. A0 Neidig, et. al., J. Am. Chem. Soc., 72, 4617 (1950).

99 H. Adkins and R. C. Franklin, J. Am. Chem. Soc., 63, 238I 
(1941).

100 C. Djerassi, Organic Reactions, Vol. 6, John Wiley and Sons, 
New York, I95I, p.207.
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The hydrolysis of gem-dihalides (eqn. 62) to give ketones has been

HP°RgCXg  --  > R2C0 + 2HX (62)

reported in the chemical literature^'*’’"'*'̂  and is similar to that pre­

viously mentioned for aldehydes.

101 C. S. Marvel and W. M. Sperry, Org. Syntheses, Coll. Vol. I,
95 (19̂ 1).

102 L. A. Bigelow and R. S. Hanslick, Org. Syntheses, Coll. Vol. II,
2kk (19^3 ).

103 G. Wittig and F. Vidal, Chem. Ber., 81, 3 6 8 (19̂ +8).

10^ L. Schmerling, J. Am. Chem. Soc., 68, 1650 (19^6 ).
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CHAPTER II 

DISCUSSION OF EXPERIMENTAL RESULTS

The novel synthetic route to mixed arylmethyl-alkyi ethers described 

here seems to be a useful one particularly from the viewpoints of facility 

and absence of side-reactions. The facility arises from the single-step 

nature of the synthesis; other syntheses require the preparation of at 

least one of the reactants from more readily available starting materials. 

For example, in the Williamson synthesis of methyl triphenylmethyl ether, 

the readily available triphenylcarbinol must first be converted to the 

triphenylmethyl chloride, which then is made to react with methanol. 

Usually aryl carbinols are much more readily available than the halides 

because the former are frequently the direct result of a Grignard 

synthesis.

Table I summarizes the results obtained on the application of this 

method to the aryl carbinols studied. In addition, the following aryl 

carbinols failed to yield ethers with methanol and iodine: k-nitrobenz- 

hydrol, k-bromo-k'-nitrobenzhydrol, k-nitro-k'-t-butylbenzhydrol, and 

benzyl alcohol. It is seen that yields tend to decrease as the carbinol 

which undergoes the reaction becomes less substituted with groups that 

would tend to stabilize the corresponding carbonium ion formed through a 

heterolytic cleavage of the carbinol at the CO bond. For example k- 
methylbenzhydrol gave a good yield of the ether with methanol while 

benzyl alcohol showed no evidence of ether formation under the same 

conditions. This is consistent with the known greater stability of the 

k-methylbenzhydrol carbonium ion when compared to the benzyl carbonium 

ion.
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Table I

Ethers Prepared From Aryl Carbinols With Iodine Catalysis

Ether Yield ($)

Methyl triphenylmethyl ether 91

Ethyl triphenylmethyl ether 87
n-Propyl triphenylmethyl ether 80

1 i-Propyl triphenylmethyl ether 6 l

Benzyl triphenylmethyl ether 52

Methyl a-naphthylphenyl-p-tolylmethyl ether 100

Methyl phenyl-p-tolylmethyl ether 96
Methyl k-chlorodiphenylmethyl ether 85
Methyl 4-bromo-4'-chlorodiphenylmethyl ether 100

Methyl k-methoxybenzyl ether 73
1-Pheny1phtha1an 82

1,1-Diphenylphthalan 85

However, 4-nitrobenzhydrol shows no evidence of ether formation 

while k-methoxybenzyl alcohol gave a good yield of the corresponding 

methyl ether. The presence of a nitro group in the para position on 

one of the aromatic rings evidently makes the carbonium ion so unstable 

through the inductive effect of the nitro group transmitted across the 
ring that the ion does not form. On the other hand, the k-methoxyl group 

probably is able to contribute enough to carbonium ion stability that 

heterolytic cleavage of the 4-methoxybenzyl alcohol under the influence 
of iodine is probably more facile than the corresponding step in k-nitro-
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The well-known stability of the triphenylmethyl carbonium ion again 

corresponds with the excellent yield obtained of the methyl and ethyl 

ethers of triphenylcarbinol.

The presence of a carbonium ion which was suggested as an intermed­

iate in the iodine catalyzed dehydration of alcoholŝ " was shown by the 

isolation of a good yield (82$) of bis-(4-methoxyphenyl)-methane from a 

solution of J+-methoxybenzyl alcohol, anisole and iodine in acetone. This 

product is the one expected in an electrophilic attack by 4-methoxybenzyl 

carbonium ion on anisole. If the carbonium ion is generated in the 

presence of a simple aliphatic alcohol, it will undergo nucelophilic 

attack by the alcohol to yield the ether (eqn. 6 3).

ROH + I2 <--^ R+ + (0H-I2)" — R' °H > ROR* + H+ (6 3)

Nucleophilic attack by the aliphatic alcohol on the carbonium ion 

probably is governed to a large extent by the relative bulkiness of the 

former. Aliphatic alcohols having greater bulk will be hindered in their 

attack at the carbonium ion site and the yields will be correspondingly 

smaller. This trend was observed in both the triphenylcarbinol and benz­

hydrol systems. Again, aryl carbinols which form more stable carbonium 

ions will do so more rapidly, and the ether yield will be correspondingly

larger. This trend was also noted in the experimental data.

1 M. L. Dhar, et al., J. Chem. Soc., 2113 (19^)«
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The mechanism for the ether formation is probably best represented 

in the following manner;

+
C-OH tig v

—  C-0
H

C-0/)\
H

— C+ + HOI

+ I (6k)

(65)

—  C+ + ROH > — C-OR + H+

HOI + HI h20 + i2

(66)

(67)

The regeneration of iodine would also explain the catalytic activity as 

determined by the titration of the reaction mixture with a standardized 

solution of sodium thiosulfate. Alternately, hypoiodous acid may also 

be eliminated in a bimolecular mechanism;

R

H

VI/ 0: 1 + / c — 0I V
H

I-> R-O-C + HOI + H (68)

It may be possible to distinguish between the two mechanisms by 

preparing the methyl ether of an optically active carbinol where the 

asymmetric center is at the carbinyl carbon atom. If an optically in­

active ether is the product, the open carbonium ion must have been 
formed in a unimolecular reaction which was followed by planarization 

and loss of optical activity. However, if the ether is optically pure, 

the mechanism representing its formation must not involve an open 

carbonium ion. Either the second mechanism described above (eqn. 6 8)
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must have prevailed, or possibly yet another, a coordinated collapse of

an ion pair intermediate (eqn. 6 9). The existence of ion pair intermed-
2iates in solvolytic reactions is well documented.

+

1
 > — C-O-R + H + HOI (6 9)

I

Absolute configuration studies on the optically active carbinol and 

ether would show whether the reaction occurred by the inversion (eqn. 6 8) 

or the retention of configuration (eqn. 6 9) about the carbinyl carbon 

atom,
It would be of interest to determine the scope and limitations of 

the Friedel-Crafts reaction catalyzed by iodine. Of interest may also 

be any reversible character in the reaction when catalyzed by iodine, 

as well as the ratios of ortho, meta and para substitution obtained by 

this reaction when compared to those obtained by metal halide or acid 

catalysis.

The methyl triarylmethyl ethers prepared by bromine catalysis were 

probably the result of a reaction scheme analogous to that for iodine. 

However, the reactions involving the oxidation of mono- and diaryl 

carbinols to aldehydes and ketones respectively probably do not count as 

a. fruitful step the formation of the corresponding carbonium ions by the 

heterolytic cleavage of the carbinol. If this, were not so, one would

2 J. Hine, Physical Organic Chemistry, 2nd ed., New York, McGraw-Hill 
Book Company, Inc., 1962, pp. 15̂ -155*

H

R
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expect that some of the corresponding methyl ether would be obtained, 

as the reaction is conducted in methanol solution. No methyl ether 

has been detected in any of the oxidation reactions using bromine.

The course of the reaction may only be speculated upon at this 

point because kinetic and isotope effect data are needed for a more 

complete interpretation of the experimental results. The general trend 

in the yield data summarized in Table II seems to be that aryl carbinols 

substituted with a nitro group give better yields of oxidation product 

than those that are halo-substituted which in turn give better yields 

than the remainder. This trend is in the opposite sense for that noted 

in the ether formation with the same compounds and iodine. It thus 

appears that those carbinols that yield least stable carbonium ions in 

reaction with iodine and as a result produce the smallest yields of 

ethers, give the best yields of oxidation product in reaction with 

bromine.
For example, ^-bromo-^1-nitrobenzhydrol proved unreactive with 

iodine in methanol, yet gave 100$ yields of k-bromo-k'-nitrobenzophenone 

in reaction with bromine in methanol. Due to the electronegativity of 

the bromo substituent and the inductive effect of the nitro group, the 

bonding electrons in the carbinol group would be displaced from their 

'normal' orientation in benzhydrol in the directions indicated:

( w r)'N
H-> C<-0 <—  H

*
< W ° 2 >

This would increase the acidities of the a and hydroxyl hydrogens.
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Table II

Products Obtained On Oxidation With Bromine

Product Yield ($)

Nitrobenzophenone 100

It-Bromo-V -nitrobenzophenone 100

If-Nitro-h* -t-butylbenzophenone 95
it-Chlorobenzophenone 100

4-Bromobenzophenone 100

-̂Bromo-it-' -chlorobenzophenone 100

it-Methylbenzophenone 81

Benzophenone 37
Benzaldehyde 93
5-Bromobenzaldehyde 10

Ir-Bromobenzaldehyde 40

lt-Nitrobenzaldehyde 82

if-Me thoxybenz aldehyde 61

In addition, the free electrons residing on the hydroxyl oxygen would be 

less available for donation to a positively charged bromine ion. As a 

final consequence, the complex formed between the alcohol and the 

positive bromine ion (eqn. 7 0) will not eliminate hypobromous acid as 
easily because of the increase in the strength with which the oxygen

+
(70)H - C - O - H  + Br H- C-0/

Br

\ H
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atom is bound to the carbon atom. The positive charge of the complex 

may further increase the acidity of the a hydrogen to a point where it 

may be readily replaced in a simple bromination step (eqn. 7 )̂*

1 Br
+ , Br

1 / 1 /
H- C - 0 + Br0 ---> Br-C-0

I \ 2 1 \
1 H H

+ HBr (71)

This would then be followed by one of two possible eliminations: 

+
I /Br-C-0
I \

I /
Br - C - 0 

I '

Br

H

Br

H

->Br -C-O-Br + H+ -- > C =  0 + HBr + Br+ (7 2)

->Br — C — 0-H + Br+ ---> C = 0 + HBr + Br+ (7 3)

The greatly reduced yields of the corresponding benzophenones 

which were obtained when the oxidations of h-nitrobenzhydrol and h-bromo 

h'-chlorobenzhydrol were attempted in ether of carbon tetrachloride 

solutions may have been caused by a simple decrease in the reaction rate 

This is an effect that a decrease in solvent dielectric constant 

(methanol: 32.6; ethyl ether: ■̂•3 } carbon tetrachloride: 2 .2 ) often 

has on ionic processes.

This oxidative procedure may have useful applications in the 

oxidations of aryl carbinols in systems where other synthetic procedures 
may be at a disadvantage. For example, there appears to be little tend­

ency for benzyl alcohols to undergo oxidation to benzoic acids when 

nearly equimolar amounts of bromine are used.
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Summary And Conclusions

It appears that alkyl arylmethyl ethers may be prepared in a facile 

manner by an iodine-induced dehydration of the corresponding alcohols. 

The arylmethyl carbonium ion probably is the moiety that undergoes 

nucleophilic attack by the aliphatic alcohol, and the mechanism which is 

consistent with the experimental results is irepresented below.

+
ROH + I t===^

R —  0
H +

H
R — 0/

\
+ I

—  R + HOI

(7*0

(75)

R + R'OH -> ROR' + H (76)

H + I + HOI -> h20 + I2 (77)

It is seen by this proposed mechanism that iodine is regenerated 

as it is used which is consistent with the observation that it is not 

consumed in the reaction. In the situation where oxidation is not 

possible, the reaction of triaryl carbinols with bromine in methanol 

solution to yield methyl ethers probably occurs by a mechanism 

analogous to that for iodine.

The determination of the mechanistic path of the brominative 

oxidations of mono- and diaryl carbinols requires kinetic and isotope 

data, but at least the procedure may be of some practical use as a 

synthetic method.
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The preparation of several benzhydrols substituted on the a carbon 

with deuterium is currently in progress (eqn. 7 8). It is anticipated 
Ar Ar
I I
C-0 + NaBDi ---> D - C - O — H (7 8)
I 4 I
Ar Ar

that a study of the kinetic isotope effects observed in the oxidation

of these benzhydrols with bromine will elucidate the mechanistic path

of the reaction. It may be possible to correlate the effect of aryl

substitution on the kinetic isotope effect with hydride or proton

abstraction mechanisms by a technique similar to one previously
3described by Swain.

3 C. G. Swain, R. A. Wiles, and R. F. Bader, J. Am. Chem. Soc., 8 3,
19̂ 5 (1961).
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CHAPTER III 

EXPERIMENTAL PROCEDURE

Preparation of Ketones

Benzophenone, U-nitrobenzophenone, and h-chlorobenzophenone were 

obtained commercially from Aldrich Chemical Company. The preparation 

of h-bromo-h*-chlorobenzophenone will serve as an example of the gen­

eral procedure used in the syntheses of the remaining benzophenones.

h-Bromo-V-Chlorobenzophenone. - Bromobenzene (200 g., 1.27 mole) and 

4-chlorobenzoyl chloride (175 g., 1 .0 mole) were placed in a two-litre 

three necked resin kettle equipped with a mechanical stirrer, condenser 

and drying tube. Aluminum chloride (150 g., 1.1 mole) was added in 

small portions with stirring to keep the reaction mixture in the temper­

ature range 60-80°. Stirring was discontinued when the mixture became 

too viscous to allow for efficient stirring. After six hours of 

reaction time the mixture had set to a black solid. The apparatus was 

disassembled and the solid product was chipped out and hydrolyzed with 

ice-water. The crude product was recovered by filtration, washed with 

water and air dried. Recrystallization of the product from a chloro- 

form-petroleum ether (b.p. 5O-600) solvent pair gave flaky buff-coloured 

crystals of h-bromo-lf'-chlorobenzophenone (25I g., 85$) melting in the 

range lU9-150°« This melting point corresponds with that previously 
reported.* The infrared absorption spectrum of the compound showed a

1 M. Gomberg and J. C. Bailer, Jr., J. Am. Chem. Soc., $1,
2255 (1929).
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carbonyl absorption band at 1660 cm * and aromatic ring skeletal absorp­

tion bands at lk85 and 1590 cm *̂

k- Bromo-k1 -Nitrobenzophenone. - In the manner described above, k-nitro- 

benzoyl chloride (186 g., 1 .0 mole), bromobenzene (200 g., 1 .5 mole) 

and aluminum chloride (150 g., 1.1 mole) were used to prepare k-bromo- 

k*-nitrobenzophenone after ten hours of reaction time. A purification 

scheme similar to the one above was followed and gave the pure ketone 

(260 g., 85$) in the form of pale yellow flakes melting sharply at 

12k.5°. A melting point of 125° has previously been reported.^ The 

infrared spectrum of the product showed a carbonyl band at 1675 cm S  

an aromatic ring skeletal absorption band at 1595 cm S  an<* nitro 

absorption bands at 1550 and 1360 cm

Analysis: Calcd. for Cj^HgBrNO^: C, 51*00; H, 2.6k.

Found: C, 50.89; H, 2.55.

k-Nitro-k1-t-Butylbenzophenone. - t-Butylbenzene (150 g., 1.1 mole), 

k-nitrobenzoyl chloride (23O g., 1.25 mole) and aluminum chloride 

(200 g., 1 .5 mole) were similarly used to prepare k-nitro-k'-t-butyl- 

benzophenone in a period of five hours. Following the purification 

scheme previously described, the pure ketone (218 g., 70$>) was obtained 

as a pale yellow solid melting in the range 112-113°. The infrared 
spectrum of this previously unreported ketone showed a carbonyl absorp­

tion at I67O cm”*-, and nitro absorption bands at 1550 and I36O cm

2 P. J. Montagne, Ber., kg, 2256 (I9I6 ).
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Analysis: Calcd. for Cj^H^NO : ^2.2; 6.05.

Found: C, 72.6; H, 6.I3.

4-Bromobenzophenone. - Bromobenzene (157 8 *t 1*0 mole) benzoyl chloride 

(141 g., 1 .0 mole) and aluminum chloride (150 g., 1.1 mole) were used to 

prepare 4-bromobenzophenone in a similar manner to that above in a 

period of ten hours. Following the usual purification scheme gave the 

pure ketone (195 &•, 75$) melting in the range 79*5-80°, (in agreement 

with that previously reported^). In the infrared spectrum, a carbonyl 

absorption at 1670 cm  ̂and aromatic ring absorptions at 1595 flnd 1490 

cm * were noted.

4-Methylbenzophenone. - Toluene (I38 g., 1.5 mole), benzoyl chloride 

(141 g., 1.0 mole) and aluminum chloride (150 g., 1.1 mole) were used 

to prepare 4-methylbenzophenone in a manner similar to that above. On 

recrystallization from petroleum ether (b.p. 30-60°), the pure ketone 

was obtained as white needles (176 g., 90$) melting in the range

57-58°. The observed melting point is in fair agreement with 59*5°

previously reported.^ A carbonyl absorption band at 1665 cm  ̂and an 

aromatic ring absorption band at 1620 cm  ̂were evident in the infrared 

spectrum.

Preparation of Carbinols

Benzyl alcohol, benzhydrol, trlphenylcarbinol, 4-methoxybenzyl 

alcohol and 4-nitrobenzyl alcohol were obtained from commercial sources.

3 W. D. Cohen, Rec. trav. chim., 38 115 (1919)*

4 A. G. Davies, et al., J. Chem. Soc., 3475 (1954).
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The remaining benzhydrols were prepared by the reduction of the cor­

responding benzophenones. Lithium aluminum hydride was used for the 

reduction of those ketones which were not nitro-substituted. Sodium 

borohydride was used to reduce the nitro-substituted benzophenones 

as this reagent will reduce a keto carbonyl in a much more facile manner 

than it will reduce the nitro group. The reduction of ^-chlorobenzo- 

phenone will serve as an example of a reduction with lithium aluminum 

hydride, and the reduction of 4-nitrobenzophenone with sodium boro­

hydride will serve as an example of a reduction with that reagent.

U-Chlorobenzhydrol. - A suspension of lithium aluminum hydride (6.0 g., 

0,l6 mole) in ether (200 ml) was prepared in a one litre, round bottom,

3 necked flask which was fitted with a reflux condenser, magnetic stirrer 

and an externally applied ice bath. To this suspension was added a 

solution of i+-chlorobenzophenone (108 g., 0.5 mole) in tetrahydrofuran 

(500 ml). The addition rate was adjusted to maintain gentle reflux.

When the addition was complete, ethyl acetate was added drop-wise 

(ca. 10 ml) to destroy the excess lithium aluminum hydride. The mixture 

was then made acid to litmus with Normal hydrochloric acid. The appar­

atus was disassembled and the reaction mixture was poured into one litre 

of cold water contained in a two litre beaker. A stream of air was 

directed over the stirred mixture for a period of fourteen hours, during 

which time the crude carbinol crystallized. The solid was isolated by 

filtration and allowed to dry in a stream of air. Recrystallization of 

the crude product from a chloroform-petroleum ether (b.p., 30-60°) 

solvent pair yielded the pure 4-chlorobenzhydrol (103 g., 9b̂ o), melting
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in the range 60-61°. This is in agreement with previous workers.'* The 

infrared spectrum of the product showed the following bands; free OH 

stretching at 3560 cm *, aromatic skeletal vibrations at 1600 and lk93 

cm’*, and CO stretching at 1018 cm”*.

k-Bromobenzhydrol. - In a similar manner k-bromobenzophenone (26 g.,

0.1 mole) was converted with lithium aluminum hydride (2 g., 0 .0 5 mole) 

in ether solution (250 ml) to k-bromobenzhydrol (2 3 .5 8*> 89$)* This 

carbinol melted in the range 58-60° in agreement with that previously 

reported. The following bands were observed in the infrared spectrum 

of the product; free OH stretching at 3560 cm *, aromatic skeletal 

vibrations at 1595 and lk92 cm’*, and CO stretching at 1017 Cm’*.

k-Bromo-k1-Chlorobenzhydrol. - By a similar method k-bromo-k'-chloro- 

benzophenone (50 g., 0.17 mole) was reduced with lithium aluminum 
hydride (3.0 g., 0.08 mole) in tetrahydrofuran solution (kOO ml) to 

yield as a white crystalline solid, k-bromo-k’-chlorobenzhydrol (k8 g., 

9k$) melting in the range 99-100° which is slightly lower than a prev­

iously reported"̂  melting range of 103-10k°. The infrared spectrum of 

the product included the following bands: free OH stretching at 3570

cm"*, aromatic skeletal vibrations at 1600 and lk98 cm *, and CO 

stretching at 1020 cm"*.

5 J. 0. Halford and E. B. Reid, J. Am. Chem. Soc., 6 3, 1873 (l9kl).
6 C. F. Winans, J. Am. Chem. Soc., 6l, 356k (1939)*

7 R. Baltzly, S. DuBreuil, W. S. Ide, and E. Lorz, J. Org. Chem.,
lk, 775 (I9k9).
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k-Methylbenzhydrol. - By a similar method k-methylbenzophenone (39*2 g., 

0.20 mole) was reduced with lithium aluminum hydride (k g., 0.1 mole) 

to yield 1)—methylbenzhydrol (31 g., 79$) in the form of white feathery 

crystals that melted in the range 52-53°- The range 51-53° has prev-
Q

iously been reported. The following bands were noted in the infrared

spectrum of the products free OH stretching at 3590 cm’"*', aromatic
-1 -1 skeletal vibrations at 1620 and 1500 cm , and CO stretching at 1025 cm 1 •

k-Bromobenzyl Alcohol. - By a similar method commercially available k- 

bromobenzoic acid (100 g., 0.5 mole) was reduced with lithium aluminum 

hydride (l6 g., 0.k2 mole) during one hour of heating at reflux temper­

ature in ether solution. k-Bromobenzyl alcohol (90 g., 9&f>) was obtained
-Oas a white solid melting in the range 75-7° > In excellent agreement with 

9other workers. In the infrared spectrum, the following bands were noted: 

free OH stretching at 3550 cm aromatic skeletal vibrations at 1595 a°d 

lk90 cm *■, and CO stretching at 1010 cm

3-Bromobenzyl Alcohol. - Commercially available 3-bfomobenzoic acid 

(20 g., 0.1 mole) was reduced in a similar manner with lithium aluminum 

hydride (k g., 0.1 mole) during one hour of heating at reflux temperature 

in ether solution. 3-B^omobenzyl alcohol (15-5 g-> 8 3 /0 was isolated by 

distillation at atmospheric pressure in the range 252-25k°. Previous 

authors have reported a range of 255-257°-^ The infrared spectrum of

8 A. G. Davies, J. Kenyon, B. J. Lyons, and T. A. Rohan, J. Chem. 
Soc., 3V75 (195k).

9 W. H. Carothers and R. Adams, J. Am. Chem. Soc., k6, 1675 (192k).

10 J. K. Koch and G. S. Hammond, J. Am. Chem. Soc., 75» 3^3 (1953)•
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the compound included the following bands: free OH stretching at 36IO

cm *■, a doublet at 1570 an^ 5̂9^ cm  ̂ which at least one represents 

aromatic skeletal vibrations, and CO stretching at 1015 cm-*'.

h-Bromo-V-Chlorotriphenylcarbinol. - Magnesium turnings (2 ^ .3 g., 1.0 

mole) and ether (200 ml) were placed in a one litre, three necked, round 

bottom flask fitted with a reflux condenser, addition funnel and a nitro­

gen inlet tube. While the mixture was magnetically stirred, a few ml. of 

a solution of bromobenzene (157 mole) and ether (300 ml.) were

added from the funnel. A small crystal of iodine was used to initiate 

the preparation of the phenylmagnesium bromide Grignard reagent. The 

rate of addition of the bromobenzene solution was adjusted to maintain 

the reaction mixture in a state of gentle reflux. Following the com­

pletion of the addition, the reflux was maintained for an additional 

thirty minutes by the external application of heat. The reaction mix­

ture was then cooled in an ice-bath, while finely divided if-bromo-V- 

chlorobenzophenone (200 g., 0 .6 8 mole) was added slowly enough to ensure 

complete absorption by the reaction mixture. The mixture was again heated 

under reflux conditions for a period of thirty minutes, and then cautiously 

quenched with the drop-wise addition of distilled water. When the mixture 

showed no evidence of reaction with the further addition of water, it was 

poured into one litre of rapidly stirred ice-water made acid with concen­

trated hydrochloric acid (200 mis). The organic layer was separated from 

the aqueous layer. The former was reduced by evaporation in vacuo to a 

heavy oil. The oil was made to crystallize from a chloroform-petroleum 

ether (b.p. 30-6 0) solvent pair and l»~bromo-V -chlorotriphenylcarbinol 

was obtained as a solid melting in the range 96-100°. A second recryst-
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allization in the same manner as the first yielded the pure compound 

melting sharply at 103.5°j agreement with previous w o r k e r s . ^

The infrared spectrum of the compound included the following bands: free 

OH stretching at 5570 cm \  aromatic skeletal vibrations at 1600 and 1500 

cm-*, and CO stretching at 1018 cm

Ct-Naphthylphenyl-p-tolylcarbinol. - By a synthesis similar to that de­

scribed above, the Grignard reagent prepared from a-bromonaphthalene 

(10̂  g., 0.5 mole) and magnesium (15 g., 0.53 mole) was made to react 

with b-methylbenzophenone (98 g., 0.5 mole) to yield ct-naphthylphenyl- 

p-tolylcarbinol. The product melted in the range 112.5-113-5°, (report­

ed 109°).^  The following bands were noted in the infrared spectrum: 

free OH stretching at 3550, aromatic skeletal vibrations at 1600 and 

lk9k cm-*-, and CO stretching at 1010 cm

2-Benzoylbenzoic Acid. - In a manner similar to that previously describ­

ed the Grignard reagent formed from bromobenzene (118 g., 0.75 mole) and 

magnesium (19 g., O .78 mole) was added to an ether solution of phthalic 

anhydride (ill g., 0.75 mole). Purification of the product by recryst­

allization from a chloroform-petroleum ether (b.p. 30-6 0) solvent pair 

gave 2-benzoylbenzoic acid (98 g., 58$) m.p. 123-125, (reported^ 126- 

127°). In the infrared spectrum the following bands were noted: a broad 

hydrogen-bonded OH stretching which merged with CH stretching at J000 to

11 B. A. Stagner, J. Am. Chem. Soc., 38, 2078 (1916).

12 J. M. Prokipcak, Ph.D. Thesis, Faculty of Graduate Studies,
University of Windsor, 1 9 6 b, p. 96

13 C. L. Arcus, J. Kenyon and S. Levin, J. Chem. Soc., k07 (1950-

llf W. J. Gensler, et al., J. An. Chem. Soc., 7 8, 17^5 (1956).
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3100 cm”*-, a doublet carbonyl band at I69O and 1670 cm"*-, and aromatic

skeletal vibrations at 1600, 1580 and 1I+90 cm"*-.

Diphenylphthalide. - By a method previously described, the Grignard 

reagent prepared from bromobenzene (118 g., 0 .7 5 mole) and magnesium 

(19 g., O .78 mole) was slowly added to phthalic anhydride (50 g., O.3I+ 

mole) to yield diphenylphthalide (86 g., 83$) m.p. 117-121°, (reported*-'* 

115°). The infrared absorption spectrum included the following bands: 

a broad hydrogen-bonded OH stretching band centered at approximately 

3500 cm"*-, carbonyl stretching at I760 cm”*-, and aromatic ring skeletal

vibrations at 1612, 1600 and 11+95 cm *". The spectrum was too complex

to assign a band corresponding to CO single bond stretching.

2-Methylolbenzhydrol. - By a method similar to one previously described, 

2-benzoylbenzoic acid (2 2 .6 g., 0 .1 mole) was reduced with lithium alum­

inum hydride (7 .6  g., 0 .2 mole) in ether solution (300 ml) under reflux 

conditions over a period of one hour. The diol was obtained as a white 

solid, m.p. 115-117°* (reported*-̂  76°). The infrared spectrum of the 

compound showed the following bands: free OH stretching at 3600 cm *",

hydrogen-bonded OH in an intense broad band centered at 33^0 cm *", 

aromatic ring skeletal vibrations at 1600 and 11+92 cm *■, and CO stretch­

ing at lOOh cm”*-. There was no evidence of a carbonyl absorption.

2-Methyloltriphenylcarbinol. - Similarly, diphenylphthalide (10 g.,

O.O33 mole) was reduced with lithium aluminum hydride (1.9 S<* 0.05 mole)

15 J. S. Chamberlain and M. F. Dull, J. Am. Chem. Soc., 50, 3091 
(1928).

16 P. Pernot and A. Willemart, Bull, soc. chim. France, 321 (1953).
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at the reflux temperature in ether (200 ml) during a period of one hour. 

2-Meth yloltriphenylcarbinol was obtained as a pure white solid melting 

in the range of 162-163°, (reported*^ 159°) and having the following 

bands in the infrared spectrum: free OH stretching at 3595 cm”*, an

intense broad hydrogen-bonded OH band centered at 35^0 cm"*', aromatic

skeletal vibrations at 1596 and II487 cm *, and CO stretching at 1001
-1 cm .

l»-Nitrobenzhydrol. - A solution of if-nitrobenzophenone (22.7 8* > 0*1

mole) and tetrahydrofuran (300 ml) was prepared in a one litre erlen-

meyer flask. While the solution was being magnetically stirred, sodium

borohydride (3 g., 0.08 mole) was added in 0.5 gram portions, each

dissolved in 5 millilitres of ice-cold distilled water. The temperature
oof the reaction mixture was kept below 35 by increasing the length of 

time between the additions of the sodium borohydride solutions. When 

the addition was complete, the mixture was allowed to stir for a period 

of fifteen minutes. The mixture was then poured cautiously on a slurry 

of ice (500 g.) and hydrochloric acid (25 ml). The tetrahydrofuran was 

allowed to evaporate from the hydrolyzed mixture in a stream of air which

caused the crystallization of the lj--nitrobenzhydrol. The solid was isol­

ated by filtration and air dried (22.2 g., 97$) m.p. SkS'J0. Recrystal­

lization of the crude material from methanol gave the pure compound
o 18 omelting in the range 7^-75 (reported 73"75»5 )• The infrared

17 A. Guyot and J. Catel, Bull. soc. chim. France, (3 ) 35> 5^7
(1907).

18 B. B. Smith and J. E. Leffler, J. Am. Chem. Soc., JJ, 2509 (1955).
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spectrum of the compound included the following bands: free OH stretch-
-1 -1 ing at 35^0 cm , aromatic ring skeletal vibrations at I606 and lk95 cm”

and nitro group stretching at I523 and I35O cm”*-.

k-Nitro-k*-t-Butylbenzhydrol. - In a manner similar to that described 

above, sodium borohydride (5 g., 0 .1 3 mole) was used to reduce k-nitro- 

k*-t-butylbenzophenone (9k g., 0 .3 3 mole). k-Nitro-k*t-butylbenzhydrol 

was obtained as a white crystalline solid (93 g-> 98$) m.p. 110-111°.

The infrared spectrum of this previously unreported compound showed a 

free OH absorption at 35^5 cm”*, aromatic skeletal absorptions at 1607 

and IU92 cm”*, and nitro group absorptions at I523 and 135k cm"*.

Analysis: Calcd. for C^H^NO : C, 7I.7; H, 6.72.

Found: C, 72.3; H, 6.9 1.

k-Bromo-k*-Nitrobenzhydrol. - By a method similar to that described 

above, k-bromo-k*-nitrobenzophenone (10 g., 0 .0 3 3 mole) was reduced with 

sodium borohydride (1.3 g-» 0.035 mole). k-Bromo-k*-nitrobenzhydrol was 

obtained after recrystallization of the crude material from an acetone- 

water solvent pair (8.0 g., 80$), m.p. l60-l6l°. This compound, which 

is previously unreported, showed the following bands in the infrared 

spectrum: free OH stretching at 3560 cm”*, aromatic akeletal vibrations

at 1608 and lk8 9 cm”*, and nitro group stretching bands at 1525 and 1351

-1cm .

Analysis: Calcd. for C^H^BrNO^: C, 50-67; H, 3-28-

Found: C, 50.k5; H, 3.2 7.
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Reactions Of Carbinols With Iodine

In the reactions with iodine, the alcohols and iodine were usually 

dissolved in acetone and allowed to remain at room temperature for two 

hours. The iodine was then destroyed with aqueous sodium thiosulfate, 

the acetone solvent was removed by evaporation and the crude product was 

recrystallized. Authentic samples of some of the ethers were prepared 

by previously known methods, (usually by the Williamson synthesis) and 

mixed melting points were determined to demonstrate that the reaction 

product was in fact the ether. The preparation of methyl triphenylmethyl 

ether will illustrate the general procedure followed in the remainder of 

the preparations.

Methyl Triphenylmethyl Ether. - A solution of triphenylcarbinol (10 g., 

O.O585 mole), methanol (l6 g., 0.5 mole) and iodine (12.7 g.* 0.05 mole) 
was prepared in acetone (100 mis). The mixture was magnetically stirred 

for a period of two hours at room temperature. The mixture was then 

poured into a slurry of ice and water containing enough sodium thio­

sulfate to consume the iodine. The acetone and methanol were allowed 

to evaporate in a stream of air, which caused the crude ether to precipi­

tate. The crude material was isolated by filtration, air-dried and re­

crystallized from petroleum ether (b.p. 50-60°), to yield methyl tri­
phenylmethyl ether (9.6 g., 91$) m.p. 75“77°* A second recrystallization 

from hot ethanol produced the pure ether (9.1 g., 86$) m.p. 81.5-82.5°* 
(reported^ 80-82°). An authentic sample of the ether was prepared from

19 H. H. Hart, J. Chem. Soc. , 1*63 (1958).
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triphenylmethyl chloride (5 g., 0.018 mole), methanol (50 mis) and pyri­

dine (20 mis). After recrystallization from hot ethanol the authentic 

ether sample had a melting point 82.5-8 3.5°. The melting point of a 

mixture of the two ether samples was determined to be 83-8 3.5°.

In the following preparations only the pertinent data such as 

quantities of reagents, yields and melting points will be given.

Ethyl Triphenylmethyl Ether. -

10 g., (O.O385 mole) triphenylcarbinol

1 2 .7 g., (0 .0 5 mole) iodine 

23 g.) (0 .5 mole) ethanol 

100 ml. acetone

Yield, 9-7 g., (870)
Melting point, 82.5-8 3.5°> (reported20 83°)

Mixed melting point with authentic sample, 82-83°

Mixed melting point with methyl triphenylmethyl ether, 5̂ -63°.

n-Propyl Triphenylmethyl Ether. -

10 g., (O.O385 mole) triphenylcarbinol x

12 .7 g.f (0 .0 5 mole) iodine 

30 g., (0 .5 mole) n-propanol 

100 ml. acetone

Yield, 9 .3 g., (800)
Melting point, 51»-55°> (reported21 56°)

Mixed melting point with authentic sample, 52-53°*

20 A. C. Nixon and G. E. K. Branch, J. Am. Chem. Soc., 58, U92 (I9 36).

21 B. F. Helferich, P. E. Speidel and W. Toeldte, Ber., 56, 767 (I923).
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i-Propyl Triphenylmethyl Ether. -

10 g., (O.O585 mole) triphenylcarbinol

1 2 .7 g., (0 .0 5 mole) iodine 

50 g.; (0 .5 mole) i-propanol 
100 ml. acetone

Yield, 7.1 g., (61#)

Melting point, 112-115°, (reported22 111-115°)

Mixed melting point with authentic sample 112-llU°.

Benzyl Triphenylmethyl Ether. -

10 g., (0.0585 mole) triphenylcarbinol

1 2 .7 g.j (0 .0 5 mole) iodine

10 .8 g., (0 .1 mole) benzyl alcohol 

100 ml. acetone

Yield, 7.0 g., (5236)

Melting point, 105-106°, (reported2  ̂106-107°)

Mixed melting point with authentic sample, 105-106°.

Methyl q-Naphthylphenyl-p-Tolylmethyl Ether. -

5.24 g., (0 .0 1 mole) a-naphthylphenyl-p-tolylcarbinol

2 .6 g., (0 .0 1 mole) iodine

l6 g., (0 .5 mole) methanol

100 ml. acetone
Yield 5 .2 8 g., (10074)

22 J. F. Norris and R. C. Young, J. Am. Chem. Soc., k6 , 2582 (192̂ ). 

25 G. L. Stadnikov, Ber., 57B, 6 (l92lf).
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Melting point, 50-52°, (reported2** 121-122°).

Infrared spectrum, aromatic skeletal vibrations; 1605 and 1495 cm"1,

CO stretching; IO76 and 1027 cm"1, 
no OH stretching.

Analysis: Calcd. for C2^22°: C’ 88*73; H, 6.54.

Found: C, 8 8.70; H, 6.6l.

Methyl Phenyl-p-Tolylmethyl Ether. -

4.0 g., (0 .0 2 mole) 4-methylbenzhydrol

5*5 g.) (0 .0 2 2 mole) iodine

16 g., (0 .5 mole) methanol

100 ml. acetone

Yield, 4.1 g., (96^)

Boiling point 160-162/10 mm, (reported2'’ I6O-I65/IO mm).

Infrared spectrum, aromatic skeletal vibrations: 1605, 1510 and

1^92 cm"1,

CO stretching: IO85 cm"1, 
no OH stretching.

Analysis: Calcd. for C^H^O: C, 85.4; H, 7*18.

Founds C, 84.9; H, 7 .49.

Methyl 4-Chlorodiphenylmethyl Ether. -

11 g., (0.05 mole) 4-chlorobenzhydrol

12.7 g., (0 .0 5 mole) iodine

24 W. Dilthey, et al., J. Prakt. Chem., 109, 313 (1925).

25 A. G. Davies, et al., J. Chem. Soc., 3474 (1954).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 g•> (0 .1 mole) methanol 

50 ml. acetone 

Yield 9 .9 g., (85*)

Melting point, 27-29°, (not reported).

Infrared spectrum, aromatic skeletal vibrations: 1610 and 1500 cm"

CO stretching: 1100 and 1022 cm"*,

no OH stretching.

Methyl lt-Bromo-V -Chlorodiphenylmethyl Ether. -

10 g., (0 .0 5 3 mole) k-bromo-4'-chlorobenzhydrol

1 2 .7 g., (0 .0 5 mole) iodine 

5 g., (0 .1 mole) methanol 

100 ml. acetone

Yield, 10.5 g., (100$)

Melting point 87-88°, (not reported).

Infrared spectrum, aromatic skeletal vibrations: 1600 and 1^93 cm ^

CO stretching: 1020 and 1097 cm

no OH stretching.

Analysis: Calcd. for C^H^gBrClO: C, H, J.QQ.

Found: C, 5 k.2k; H, 3.68.

Methyl If-Methoxybenzyl Ether. -

10 g., (O.O725 mole) U-methoxybenzyl alcohol

12.7 g.> (0 .0 5 mole) iodine 
l6 g., (0.5 mole) methanol 

100 ml. acetone
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Yield, 8.0 g., (7336)

Boiling point 220-225°/7^5 n®1* (reported2^ 225.5°/758 mm.).

Index o£ refraction, I.5I5O (18.5°; D line of sodium).

An authentic sample of the diether was prepared according to the 

method of Cannizzaro in which k-methoxybenzyl chloride (prepared by the 

action of thionyl chloride on 4-methoxybenzyl alcohol) is made to react 

with methanol. The compound prepared according to this method was ob­

served to distil in the range 220-225° and had the index of refraction 

1.51^7 (18*5° D line of sodium). The infrared spectra of the two products 

were identical: aromatic skeletal vibrations at l6l0 and I507 cm CO 

stretching at IO87 an<* 1030 cm"\ No OH stretching was noted in either 

spectrum.

1-Phenylphthalan. -

2 g., (0.00935 mole) 2-methylolbenzhydrol

3 g., (0.012 mole) iodine

25 ml. acetone

Yield, 1.5 g., (82$)

Melting point, 32-35° (reported2"̂ 35°)

Infrared spectrum, aromatic skeletal vibrations: 1603 and 1̂ 9̂ - cm S

CO stretching (intense): 1025 cm \

no OH stretching.

26 von S. Cannizzaro, Ann., 137» 2*4-6 (1866).

27 A. Pernot and A. Willemart, Bull, soc. chim. France, 321
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1,1-Diphenylphthalan. -

1*5 g*) (0 .0052 mole) 2-methyloltriphenylcarbinol

2 g.j (0 .0079 mole) iodine 

50 ml. acetone

Yield, 1.2 g., (85$)

Melting point, 101-102° (reported^ 99-101°).

Infrared spectrum, aromatic skeletal vibrations: I598 and 1^90 cm’"*',

CO stretching (intense doublet): 1015 and 102^

1 cm"1,

no OH stretching.

Reaction of 4-Bromo-4'-Chlorotriphenylcarbinol With Iodine. - 

5 g., (0 .013^ mole) 4-bromo-k'-chlorotriphenylcarbinol 

V g., (O.OI58 mole) iodine

3 g., (0.1 mole) methanol 

50 ml. acetone

When the reaction mixture was poured into the sodium thiosulfate-ice 

slurry, a solid precipitate was obtained almost immediately. Recrystal­

lization of the crude product from a chloroform-petroleum ether (b.p. 

30-60°) solvent pair yielded a white crystalline solid, (5 g.) which 

melted and resolidified in the range 87-89° and again melted with decom­

position in the range 170-175°* The same reaction product was obtained 

when tetrahydrofuran was substituted for acetone as the reaction solvent.

28 A. M. Creighton and L. M. Jackman, J. Chem. Soc., 31^  (i960)
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Again, the same reaction product was obtained when the methanol was 

absent from the reaction mixture entirely. The melting point of an 

intimately ground mixture of the product and the carbinol was over the 

range 110-170°.

Subtle differences in the infrared spectra of the carbinol and the 

reaction product were evident: the free OH stretching band was shifted

slightly to 358O cm a broad intense hydrogen bonded OH stretching 

band made its appearance at 33^0 cm”*- where in the spectrum of the 

carbinol there was only a very weak corresponding band; a new CH

stretching band at 2875 cm”'*' was evident in the spectra for the reaction

product; similarly, a new band at 1053 cm  ̂was noted which usually is 

the result of CO single bond stretching in alcohols and in some ethers;

finally, a band at lMt8 cm corresponding to aromatic skeletal

vibrations, which was evident in the carbinol spectrum was absent in 

the spectrum of the product.

Analysis: C, 55-79; H, k.k9} Br, 22.06; Cl, 9-79-

No iodine was detected in the elemental analysis of the compound.

The analysis corresponds to a compound of stoichiometry C-^Hj^BrClOg.

Iodine-Catalyzed Friedel-Crafts Reaction. -

5.h- g., (0 .0 5 mole) anisole

6.9 g-, (0 .0 5 mole) h-methoxybenzyl alcohol
12.7 g., (0 .0 5 mole) iodine

hO ml. acetone

The mixture was allowed to stand with stirring for a period of one- 

half hour, during which the temperature of the mixture spontaneously rose
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to approximately 5̂°* The mixture was hydrolyzed by pouring it into a 

solution o£ sodium thiosulfate and ice-water. The mixture was extracted 

twice with 50 ml. portions of ether. The ether extracts were dried over 

anhydrous potassium carbonate, treated with decolourizing charcoal and 

reduced in vacuo to an oil which crystallized on standing at 10° (9*̂  8 -t 

82$) m.p. 35-hl°. The product was dissolved in ethanol and cooled where­

upon white crystals of bis-(4-methoxyphenyl)-methane (1.3 g.) m.p. Mt-46°
2Q Q

(reported k6 -k7 ) was obtained. The infrared spectrum of the product

showed the following bands; aromatic ring skeletal vibrations at 1613* 

I585, 1506 and lk6 k cm multiple CO stretching bands in the region I3OO 

to 1030 cm methoxyl CH stretching at 283O cm’^; and aromatic CH 'out 

of plane' bending overtones at 1875 an(* 1775 cm”  ̂which corresponds with 

l,lf disubstitution on the benzene nucleus.

The nature of the product was confirmed by oxidizing 1.5 g. of the 

material with chromic oxide (2 g.) in acetic acid (23 ml,). After two 

recrystallizations from methanol, h,h'-dimethoxybenzophenone (0.6 g.,

30$) was obtained in the fora of sand-coloured crystals that melted in 

the range lhh-lh5° (reported^ lh3.5-1^5°)*

Reactions Of Carbinols With Bromine

In the reactions with bromine, the carbinols and bromine were 

usually dissolved in methanol and the resultant solution was allowed to

29 P. D. Bartlett and J. D. McCollum, J. Am. Chem. Soc., 7 8, lh48 
(1956).

30 E. M. Arnett and G. B. Klingensmith, J. Am. Chem. Soc., 8 7t 
1028 (1965).
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remain at room temperature for twelve hours. The excess bromine was 

consumed by sodium thiosulfate and the reaction products were isolated 

and purified. The reaction of ^-nitrobenzhydrol with bromine in methanol 

solution will serve as an example of the general procedure followed.

Oxidation of ^-Nitrobenzhydrol. -

To a stirring solution of ^-nitrobenzhydrol (5 g., 0.022 mole) in 

anhydrous methanol (50 ml.), contained in a 125 ml* erlenmeyer flask, 
bromine (15 g., 0.09k mole) was added cautiously. A pronounced increase 

in the temperature of the solution was noted upon the completion of the 

bromine addition, The loosely stoppered reaction mixture was allowed to 

stand overnight and then poured into a slurry of ice (200 g.) and sodium 
thiosulfate (15 g.). The hydrolyzed mixture was extracted twice with 

50 ml. portions of methylene chloride. The organic phase was dried over 

sodium sulfate and was reduced to approximately kO ml. in volume by 

distillation of some of the volatile solvent under reduced pressure. 

Petroleum ether (b.p. 30”60°) was added, which caused the precipitation 

of k-nitrobenzophenone (5 g., 100$) m.p. 155-156°. The mixed melting 

point with an authentic sample was undepressed, and the infrared spectrum 

of the product was identical with that for k-nitrobenzophenone.

The following reactions were completed in a manner similar to that 

described above. Only the pertinent information is given in the follow­

ing examples.

Oxidation Of k-Bromo-k1 -Nitrobenzhydrol. -

5 g., (0.0162 mole) k-bromo-k1-nitrobenzhydrol 
10 g., (0.0625 mole) bromine
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50 ml. anhydrous methanol

Yield, 5*0 g., (100$) i)-bromo-î ■, -nitrobenzophenone 

Melting point, 123-1214°; mixed melting point, 123-1214°.

Infrared spectrum: identical with that for h-bromo-h’-nitrobenzo­

phenone . '

Oxidation Of ^-Nitro-V-t-Butylbenzhydrol. -

5 g., (0.0175 mole) h-nitro-V-t-butylbenzhydrol 

5 g.> (O.03I mole) bromine 
50 ml. anhydrous methanol

Yield, 4.7 g., (95$) It-Nitro-V-t-butylbenzophenone 

Melting point, 109-111°; mixed melting point, 110-112°.

Infrared spectrum: identical with that for 4-nitro-V-t-butylbenzo

phenone.

Oxidation Of ^-Chlorobenzhydrol. -

5 g., (0 .0 2 3 mole) 4-chlorobenzhydrol

5 g., (0 .031 mole) bromine

50 ml. anhydrous methanol

Yield 5 g., (100$) 4-chlorobenzophenone
o 1 oMelting point, 75-75 ; mixed melting point, 7^-75 •

Infrared spectrum; identical with that for lr-chlorobenzophenone.

Oxidation of If-Bromobenzhydrol. -
5 g., (0 .0 1 9 mole) 4-bromobenzhydrol

5 g., (0 .031 mole) bromine

50 ml. anhydrous methanol

Yield 5 g., (100$) ^-bromobenzophenone

Melting point, 79-80°; mixed melting point, 79-80°.
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Infrared spectrum: identical with that for 4-bromobenzophenone.

Oxidation Of 4-Bromo-41-Chlorobenzhydrol. -

5 g., (0.017 mole) 4-bromo-4'-chlorobenzhydrol 

5 g,} (0 .031 mole) bromine 

50 ml. anhydrous methanol

Yield 5 g,, (100$) 4-bromo-4'-chlorobenzophenone 

Melting point, 146-150°; mixed melting point 147-150°.

Infrared spectrum: identical with that for 4-bromo-4*-chlorobenzo­

phenone .

Oxidation Of 4-Methylbenzhydrol. -

5 &•> (0 .025 mole) 4-methylbenzhydrol

10 g., (O.O63 mole) bromine
50 ml. anhydrous methanol

Yield, 4 g., (81$) 4-methylbenzophenone
sO oMelting point, 53-56 ; mixed melting point, 53-55 •

Infrared spectrum: identical with that of 4-methylbenzophenone.

Oxidation Of Benzhydrol. - Bromine (60 g., 0.375 mole) was added to a 

solution of benzhydrol (54 g., 0.294 mole) in anhydrous methanol (450 ml.) 

at a slow rate to maintain the temperature of the mixture below 40°. After 

stirring for a period of two hours, the solution was poured into a rapidly 

stirred slurry of sodium thiosulfate (50 g.) and ice (l Kg.). The mixture 

was extracted with two 100 ml. portions of petroleum ether (b.p. 30-60°) 

which were then combined, dried over sodium sulfate and distilled. The 

fraction boiling in the range 295-505° was collected and was crystallized 

from petroleum ether (b.p, 30-60°). The solid thus obtained, (19.8 g.,
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37#), m.p. 46.7° ', was shown to be benzophenone by the undepressed mixed

melting point with an authentic sample.

In the distilling flask there remained approximately 10 ml. of

material that crystallized on cooling. One gram of a white crystalline

material melting in the range 208-211° was isolated from this mass. A
31careful analysis^ of the infrared spectrum of the compound showed that 

it was probably 1,1,2,2-tetraphenylethane: aromatic CH stretching, JIOO- 

3000 cm *; aliphatic CH stretching, 2900 cm”*; monosubstituted benzene 

'out of plane' CH bending overtones, 1949, 1&75; 1800, and 1730 cm S  

aromatic skeletal stretching vibrations, 1597, 1580, 1490, and 1446 cm"* 

monosubstituted benzene CH 'in plane' bending, 690 cm * (770-730 band

possibly obscured by chloroform solvent). Tetraphenylmethane has been
32 oreported to melt at 210 .

Analysis: Calcd. for c2 6ii22: C, 93*38; H, 6.64.

Found: C, 93-41; H, 6.53-

Oxidation Of Benzyl Alcohol. -

20 g., (O.I85 mole) benzyl alcohol

30 g., (O.I87 mole) bromine

50 g., anhydrous methanol

Yield, 5-0 g., (25#) benzaldehyde

Boiling point, I78-I820 (reported^ 178.1°)

31 With the assistance of Introduction To Practical Infra-red 
Spectroscopy, A. D. Cross. London: Butterworths Scientific Publications,
I960, p.59.

32 K. M. Johnston and G. H. Williams, J. Chem. Soc., 1170 (i960).
33 E. Brauer and C. von Rechenberg, J. Prakt. Chem.,(2) 101, 119

(1921).
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When a 50$ by weight aqueous solution of sodium thiosulfate 

(enough to discharge the bromine colour) was added to the reaction mixture 

instead of the normal hydrolysis previously described, much better yields 

(18.2 g., 95$) could be obtained. When the reaction mixture was analyzed 

by gas chromatographic techniques (diethyleneglycol succinate column, 5 

meters long, flow rate: helium, 60 ml./min., column temperature: l60°) the 

major component (at least 90$ of total peak area excluding water and

methanol peaks) had the same retention time as benzaldehyde in a synthetic

mixture with methanol under the same operating conditions. The character­

istic odour of benzaldehyde was noted at the column exit when the major 

component had been eluted. By a similar technique benzyl alcohol was 

shown to be completely absent in the analyzed reaction mixture.

When the hydrolysis step was completely omitted, and the reaction 

mixture was distilled directly upon completion of the reaction period, 

the following fractions were obtained:

1 65-100°: 45 ml. methanol-bromine mixture

2 100-120°: 1 ml. water

5 126°: 2 ml. constant boiling aqueous hydrobromic acid

4 178-182C: I5 .8 g., (79$) benzaldehyde.

Benzoic acid (0.45 g., 0.0057 mole) was isolated after two recrystalliz­

ations of the residue in the distillation flask first from petroleum 

ether (b.p. 50-60°) and then from water, m.p. 122°, mixed m.p. 121-122°.
The infrared spectrum of the benzaldehyde prepared in this manner 

was identical to that of authentic benzaldehyde. A few drops of thd pro-' 

duct placed on a watch glass underwent air oxidation to yield benzoic acid, 

m.p. 121-122°.
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Oxidation Of 3-Bromobenzyl Alcohol. -

5 g., (0 .0 2 6 mole) 3-bromobenzyl alcohol

8 g., (0 .0 5 mole) bromine

50 ml. anhydrous methanol

Yield 0.5 g., (10$) 3-bromobenzaldehyde.

Boiling point, 22Q-2J>2°/r{kl mm. (reported^ 228-230°/726 mm. ). 

Infrared spectrum, no OH stretching,

carbonyl stretching: 1697 cm”\

aromatic skeletal vibrations: 1590 â d lkkO

Oxidation Of k-Bromobenzyl Alcohol. -

10 g., (0 .0 5 3 mole) k-bromobenzyl alcohol

15 g*> (0 .09  ̂mole) bromine
50 ml. anhydrous methanol

Yield k g., (k0$) k-bromobenzaldehyde.

Melting point, ^k-^6 °, (reported^ 57°) •

Infrared spectrum, very weak OH stretching: 3605 cm

carbonyl stretching: I7OO cm

aromatic skeletal vibrations: 1590 cm"̂ .

Oxidation Of k-Nitrobenzyl Alcohol. -

10 g., (O.O65 mole) nitrobenzyl alcohol

15 &• f (0 .09k mole) bromine
100 ml. anhydrous methanol

3k C. Mettler, Ber., 2810 (I9O5 ).

35 J. B. Bowen and E. M. Wilkinson, J. Chem. Soc., 751 (1950).

6k

-lcm
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Yield 8.1 g., (82$) 4-nitrobenzaldehyde.

Melting point, 105-106°, (reported^ 106.5°)*

Infrared spectrum, OH stretching (very weak): 3^00 cm"'*',

carbonyl stretching: I7IO cm

aromatic skeletal vibrations: 1605 cm” ,̂

nitro group vibrations: 1524 and 13^-5 cm”*',

Oxidation Of 4-Methoxybenzyl Alcohol. -

20 g., (0.1̂ 5 mole) 4-methoxybenzyl alcohol

24 g., (0.15 mole) bromine

100 ml. anhydrous methanol

Yield 12 g., (6l$) 4-methoxybenzaldehyde.

Boiling point, 240-245°/740 mm., (reported^ 2480°/760 mm.).

Infrared spectrum, no OH stretching,

carbonyl stretching: 1695 cm”*-,

aromatic skeletal vibrations: 1600 and i486 cm

multiple peaks in the region 1300 to 1000 cm

Oxidation Of 4-Bromo-4'-Chlorobenzhydrol In Carbon Tetrachloride And In

Ether Solution. -

When the oxidation of 4-bromo-it-1 -chlorobenzhydrol (5*7 8* > 0.019 

mole) with bromine (15 g., 0.094 mole) was attempted in carbon tetrachlor­

ide (100 ml.) solution, it was noted that the apparent rate of reaction 

was greatly diminished. Where 100$ yield of the ketone was obtained with

36 0. L. Brady and S. Harris, J. Chem. Soc., 492 (1923).
37 F* V. Grimm and W. A. Patrick, J. Am. Chem. Soc., 45, 2799 (1923)*
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methanol as the solvent, only 1 gram (18$) was obtained with carbon tetra­

chloride as the solvent after fifteen hours of reaction time. Approxi­

mately k grams of an unidentified oil was obtained which could not be 

crystallized and showed a weak carbonyl absorption (1660 cm in the 

infrared spectrum. Similar results were noted when ether was used as the 

solvent.

Oxidation Of k-Nitrobenzhydrol In Carbon Tetrachloride. -

Only a small yield of k-nitrobenzophenone (1.5 8.> 15$) m.P- 136- 

137*5 ° > was obtained when k-nitrobenzhydrol (10 g., 0.0655 mole) was 

treated with bromine (15 g., 0 .09k mole) in carbon tetrachloride (100 ml.). 

The infrared spectrum of the unidentified oil showed a very weak carbonyl

absorption at l66l cm ^f the usual nitro bands at 1520 and 13k0 cm and

aromatic skeletal vibrations at 1600 and lb$ 0 cm

Ether Formation With Triphenylcarbinol. -

10 g., (O.O585 mole) triphenylcarbinol 

8 g.; (0.05 mole) bromine 
100 ml. anhydrous methanol
Yield 10.1 g., (98$) methyl triphenylmethyl ether.

Melting point, 81-83°; mixed melting point 81-83°.

When the preparation of isopropyl triphenylmethyl ether by the 

above procedure was attempted, triphenylcarbinol was recovered in 95$ 
yield, and a powerful lachrymator was produced. The lachrymator was 

thought to be bromoacetone.
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Ether Formation With g-Naphthylphenyl-p-Tolylcarbinol.

67

10 g., (0 .031 mole) a-naphthylphenyl-p-tolylcarbinol 

10 g., (0.0625 mole) bromine 

100 ml. anhydrous methanol

Yield 10,1 g., (100$) methyl a-naphthylphenyl-p-tolylmethyl ether. 

Melting point, 50“55°*

Infrared spectrum, identical with that for methyl a-naphthylphenyl-

p-tolylmethyl ether prepared by iodine catalysis.
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PART II

ACYL-OXYGEN FISSION IN BENZHYDRYL HYDROGEN PHTHALATE ESTERS

CHAPTER I 

INTRODUCTION

It has been demonstrated in the chemical literature that when the 

a-carbon atom of an alcohol is substituted with one or more aryl groups, 

these compounds and their carboxylic esters have an increased tendency 

to undergo a base catalyzed'solvolysis by a unimolecular alkyl-oxygen 

fission mechanism. Many reports have been published in the literature 

describing the effect that substitution on the aryl groups has on that 

mechanism. Of particular interest in this Dissertation is the mechanism 

of the hydroxide and methoxide catalyzed solvolytic reactions of hydrogen 

phthalate esters of substituted benzhydrols.

The previous work reported thus far has dealt almost exclusively with 

esters of aryl carbinols that are substituted in the para position of one 

or more of the aryl rings with groups that are able to release electrons to 

the aromatic ring(s). This provides an additional means of stabilization 

of the arylmethyl carbonium ion which is formed as an intermediate by a 

heterolytic alkyl-oxygen fission in the unimolecular mechanism.

It would be expected that electron release by the para substituents in 
the benzhydryl system would facilitate the heterolytic fission of the alkyl- 

oxygen bond of the hydrogen phthalate ester in a unimolecular process. The 

benzhydryl carbonium ion formed in such a manner could be stabilized by 

these para substituents in the following manner (eqn. l).
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where X = alkyl, alkoxyl, dialkylami.no, or other electron donor.

R = hydrogen phthaloyl.

No systematic study has hitherto been reported on the effect of 

electron withdrawing groups in the para position of the aryl groups on 

the mechanism of the solvolysis of benzhydryl hydrogen phthalates. Nitro 

substitution for example should prevent the stabilization of the benz­

hydryl carbonium ion by the aryl groups and thereby inhibit the unimole­

cular dissociation. It was decided to make a study of some solvolytic 

reactions of the hydrogen phthalate esters of several benzhydrols, some 

of which were substituted with the nitro group.

Possible Mechanisms Involved In The Solvolysis Of Hydrogen Phthalate 

Esters Of Benzhydrols

I Unimolecular Dissociation

The initiating step in the unimolecular mechanism is a heterolytic 

dissociation of the alkyl-oxygen bond in the ester portion of the mole­

cule to yield two fragments: the benzhydryl carbonium ion and the 

hydrogen phthalate anion (eqn. 2).

At At Ar

Ar 0=0 Ar Ar'OH
R = alkyl or hydrogen
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If the ester undergoes solvolysis with an alcohol, the products are 

phthalic acid and the corresponding alkyl benzhydryl ether. Aqueous 

solvolysis yields the benzhydrol and phthalic acid as products.

Electron releasing substituents in the para positions of the aryl 

groups will enhance the rate of solvolysis of the benzhydryl hydrogen 

phthalate by the unimolecular mechanism by contributing to the stability 

of the carbonium ion, and increasing the rate of its formation. If the 

carbinyl carbon atom is a seat of asymmetry, racemization will occur on 

alcohol solvolysis through planarization of the carbonium ion. As a 

result the alkyl benzhydryl ether obtained will be racemic. This type 

of mechanism is termed SNl'(from Substitution, Nucleophilic, Unimole­

cular ).̂

II Bimolecular Nucleophilic Substitution (ŝ 2)*

This mechanism involves a one-step nucleophilic attack on the 

carbinyl carbon of the ester (eqn. 3 ) with a simultaneous loss of

Ar „ Ar Ar
R + I • |

— > Q... CH... ( CgH^r — > RO-CH + CgHgO^ (3 )
H I > I

Ar 0=C Ar Ar
OH

R = alkyl or hydrogen

hydrogen phthalate anion. The nucleophilic attack is on the side of the

carbinyl carbon opposite to the leaving hydrogen phthalate anion. This
2results in a Walden inversion about the carbinyl carbon atom. Racemiz-

1 J. L. Gleave, E. D. Hughes, and C. K. Ingold, J. Chem. Soc., 236
(1935).

2 P. Walden, Ber., jgO, 31^6 (1897).
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ation of the asymmetric centre in resolved optically active benzhydryl 

hydrogen phthalates does not occur by this mechanism and the ether 

product which is obtained in the alcoholysis reaction, will possess the 

same degree of optical purity as the ester.

Very often, S^l and processes occur competitively in the same 

solvolytic reaction. A measure of the relative contributions of each 

of the two processes to the overall hydrolysis or alcoholysis reaction 

is the optical purity of the alcohol or ether product: the greater the 

optical purity of the product, the greater the S^2 character of the 

mechanism. A necessary condition for the formation of the alkyl benz­

hydryl ether by either of the two processes is the cleavage of the alkyl- 

oxygen bond in the original ester.

Ill Ester Interchange By Nucleophilic Attack At Ester Carbonyl By Solvent

Nucleophilic attack by a solvent molecule (water or alcohol) at the 

ester carbonyl of the hydrogen phthalate ester leads to ester interchange 

(eqns. k-,5). Because acyl-oxygen fission occurs, the nature of the

Ar *0 OR

CH-O-C -(f J

Ar 0=C Ar 0=C Ar 0=0.
OH OH OH

Ar
I

HC- 0" + ROH
I
Ar

R = alkyl or hydrogen 

asymmetry at the a carbon atom of the benzhydryl moiety remains intact.

UHVERSITY OF WINDSOR irnm m  .
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I

HC-OH + R0“
I
Ar

(5)

Ar 0 \ ORI \V
> CH-OjC /  \

Ar

HC-0 + R- ° - C H 0
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If the hydrogen phthalate ester undergoes solvolysis by an aliphatic 

alcohol, the products are the free benzhydrol and the hydrogen phthalate 

ester of the aliphatic alcohol. If the original ester was optically 

active, the benzhydrol obtained after solvolysis will also be optically 

active.

IV Ester Interchange Through Phthalic Anhydride Intermediate

Ester interchange in the case of base catalyzed solvolysis may occur 

through an intramolecular nucleophilic attack at the ester carbonyl by the 

carboxylate anion (eqns. 6,7,8). As in the third mechanism described

Ar 0 Ar 0"\ Ar ft

f - y - Q  Hr  o_ + < ° X )  (6)
Ar 0-C. Ar ftv, Ar n

*0 °

Ar Ar
I I

HC-0- + ROH  > HC-OH + R0_ (7)
I I
Ar Ar

( Y  + R0“  => R-0-C-<f ^  (8)

0

R = alkyl or hydrogen

above, the free benzhydrol and the alkyl hydrogen phthalate are again the 

reaction products. Acyl-oxygen fission occurs in this mechanism also.
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This is responsible for the retention of configuration about the a 

carbon atom in the benzhydryl group.

One may distinguish between the above described four mechanisms in 

the following manner. In the solvolysis with an alcohol, mechanisms I 

and II have the alkyl benzhydryl ether as one of the products; mechan­

isms III and IV yield the free benzhydrol. Further, racemic ethers 

are obtained from the alcoholysis of the optically active ester by 

mechanism I while the ether is obtained with optical activity intact by 

mechanism II. Mechanisms III and IV may be distinguished between by a 

study of the kinetics of the reaction which will be described later.

Discussion of Previous Work

An extensive treatment of hydrogen phthalate esters of benzhydrols 

and other aryl carbinols has been undertaken by Balfe, Kenyon and co­

workers. Their studies extend mostly to aryl carbinols that carry 

electron-releasing groups in the para positions of the aryl rings. The 

reactions that were studied are generally characterized by an alkyl- 

oxygen fission mechanism associated with the S^l process.

For example Balfe and co-workers have reported on the facile alkyl- 

oxygen fission in the ester and other derivatives of k-methoxybenz­

hydrol. ̂  It was reported that (+)-k-methoxybenzhydryl hydrogen phthalate 

when treated with 10 N aqueous sodium hydroxide yielded methoxybenzhy- 

drol that had underwent extensive racemization (eqn. 9 ). Saponification

5 M. P. Balfe, M. A. Doughty, J. Kenyon, and R. Poplett, J. Chem. 
Soc., 605 (19̂ 2).
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(+) — £ 1 ™  >  ̂ Ĥ0H + c8H6°i+ ^
o=c 

'''oh

of benzhydryl hydrogen phthalates in concentrated aqueous sodium hydroxide 

solution tends to be favourable for the conservation of optical purity, 

because when the same reaction is carried out in more dilute solution, 

more racemization occurs. Again, the trituration of the optically active 

esters and ethers of it-methoxybenzhydrol with cold concentrated hydro­

chloric acid yielded racemic it—methoxybenzhydryl chloride. It was also 

reported that (-)-l+-methoxybenzhydryl hydrogen phthalate on warming in 

methanol solution produces a quantitative yield of the racemic methyl 

lj-methoxybenzhydryl ether (eqn. 10). Racemization of the alcohol occurs 

even on heating in contact with water.

OCH

(-) CH-O-C
o=c

OH

OCH.

CH^OH
>  (dl) CH-OCH + CoH^O

warm
(10)

In another paper, Balfe and co-workers have reported that the (+)

hydrogen phthalate ester of a-naphthylmethylcarbinol in reaction with 

formic acid yielded the inactive formate ester (eqn. 11). On treatme 

with acetic acid, the inactive acetate ester was obtained. Similar

it- M. P. Balfe, et al., J. Chem. Soc. , 797 (19̂ 6).
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CH.

(+) CH-O-C
0=C

OH

HCOOH
*  (dl)

CH 0 

1 “CH-O-CH +  CgH^O^ ( u )

results were noted in the formic and acetic acid solvolysis of the (-) 

benzoate and acetate esters. Furthermore, the corresponding racemic 

methyl ether was obtained on heating the same (+) hydrogen phthalate , 

ester with aqueous methanol (eqn. 12).

CH-O-C
CH,OH5
h 2o

CH.

CH-OCHj +  CqH604 (12)

Extensive racemizations were observed in a similar series of reactions 

of carboxylic esters of phenylmethyl carbinol, and the reactivity of these 

compounds by the S^l mechanism was not as great as in the a-naphthylmethyl- 

carbinol series.

The authors observed that the tendency of the hydrogen phthalate 

esters of a-naphthylmethylcarbinol and phenylmethylcarbinol to undergo 

racemization during hydrolysis with weak alkali is less marked than for 

the hydrogen phthalate ester of 4-methoxybenzhydrol.

In a subsequent study of the hydrogen phthalate esters of p-anisyl- 

a-naphthylcarbinol and p-anisylmethyl-carbinol, it was shown by Balfe and
co-workers that these compounds react with carboxylic acids and alcohols

• 5to give racemic products. It was observed that the hydrogen phthalate

5 M. P. Balfe, et al., J. Chem. Soc., 80i+ (19̂ 6).
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esters of the following carbinols showed a decreasing tendency to give 

racemic reaction products in the order given: p-anisyl-a-naphthylcarbinol, 

h-methoxybenzhydrol, p-anisyl alcohol, a and Jf substituted allyl alcohols, 

a-naphthylmethylcarbinol, 2-chlorobenzhydrol, 3-methoxybenzhydrol and 

phenylmethylcarbinol. This is also the order in which one might arrange 

these carbinols so that they are in order of decreasing electron avail­

ability at the carbinyl carbon atom. The authors concluded that the 

experimental results are in accord with the unimolecular mechanism and 

that the cleavage of the hydrogen phthalate esters is promoted by elec­

tron release to the carbinyl carbon atom. An augmenting factor in the 

racemizations studied was claimed by the authors to be the dissociating 

influence of solvents with high dielectric constants through ion 

solvation.

The racemization of (+)-2,4*-dimethylbenzhydryl hydrogen phthalate 

has been observed to occur in anhydrous formic acid in ten minutes to 

yield the inactive hydrogen phthalate esters. This suggests that the 

carbonium ion formed in the alkyl-oxygen bond dissociation is stable 

enough to undergo spontaneous racemization (eqn. 13).

CH.
CH-O-C-

0=C
OH

CH.

CH
(+)— ■> 5 HC+ + (CqH^)'

CH.
(dl)CH-O-C

0=C.
OH

CH.
(13)

6 M. P. Balfe, M. K. Hargreaves, and J. Kenyon, J. Chem. Soc.,
375, (1951).
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Davies and White have observed a facile alkyl-oxygen unimolecular 

heterolysis in several reactions of the hydrogen phthalate ester of

carbonate solution and rapidly reprecipitated by acidulation of the 

solution (eqn. 1̂ ). l,2,3j^+-Tetrahydro-l-naphthyl-p-tolyl sulfone is

0

obtained as the product of the reaction 1,2,3,^-tetrahydro-l-naphthol

or its hydrogen phthalate ester with sodium p-tolyl sulfinate in formic

acid solution. Again, spontaneous racemization of the ester occurs in

acetic acid solution containing a trace of sulfuric acid. Finally,

Davies and White reported that the ester decomposed into 1,2-dihydro-

naphthalene, if left for long periods of time in formic acid solution.

It was concluded by the authors that the reactions that were studied

are characteristic of a unimolecular alkyl-oxygen heterolysis.

Several more papers are to be found in the literature describing

additional experimental evidence supporting the S^l mechanism in the

solvolysis of benzhydrol hydrogen phthalates. The effect of a para 
8methyl group was shown to be a stabilizing influence on the it-methyl-. 

benzhydryl carbonium ion, which increased the tendency for carboxylate

7 A. G. Davies and A. M. White, J. Chem. Soc., 3300 (1952).

8 A. G. Davies, et al., J. Chem. Soc. , (195*0 •

7
1,2,3,*+-tetrahydro-l-naphthol. They found that the optically active

ester undergoes 90$ racemization on being dissolved in an aqueous sodium

(+) 0H + c8H6°i+

(1*0
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derivatives of the corresponding alcohol to undergo the unimolecular
gheterolysis. Similar effects are reported for para alkylthio^ and para 

dialkylamino^ substituents.

Goering recently has reported the randomization of the carboxyl 

oxygen atoms and the racemization of the unsolvolyzed ester in the sol­

volysis of optically active 4-chlorobenzhydryl U-nitrobenzoate-carbonyl-
lQ 2̂
0 in 80 and 90$ aqueous acetone. Solvolysis (eqn. 15) is accompanied 

by the randomization of the carboxyl oxygen atoms (eqn. 16) and the race­

mization of the unsolvolyzed ester (eqn. 17). The mechanism for the 

reaction was proposed to involve an ion pair in which the carboxyl oxygen 

atoms are equivalent (eqn. 18).

0 0 
II K II

R-O-C-Ar  ROH + HO-C-Ar (15)

18 rtl80 0 0
II K lfl II II

2 R-O-C-Ar  R-O -C-Ar + R-O-C-Ar (l6)

0 0 
II K II

(+) R-O-C-Ar  (dl) R-O-C-Ar (17)

9 M. P. Balfe, R. E. Darby and J. Kenyon, J. Chem. Soc., 382 (1951).
10 M. P. Balfe, et al., J. Chem. Soc., 790 (1952).
11 H. L. Goering, R. G. Briody and J. F. Levy, J. Am. Chem. Soc.,

8^, 3061 (1963).
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o o
II K + Ks solvolysis

productsR-O-C-Ar ^ / (18)
0

Where R = if-chlorobenzhydryl 

Ar = h-nitrophenyl

The data show that an ion pair return mechanism is responsible for 

the randomization and racemization effects observed in the original ester. 

In 90# aqueous acetone 72# of the ion pair intermediate (eqn.18) returns 

to substrate. Of the portion that returns the authors have shown that 

81# regenerates the original ester and 19# is converted to the enantiomer. 

In 80$ acetone, 60# of the intermediate returns, and of this fraction 78# 

is by retention of configuration and 22# by inversion to the enantiomer.

Interesting consequences were noted when the above reaction was
12studied in the presence of azide ion. The randomization of the carboxyl 

oxygen atoms associated with ion pair return occurs, but the unsolvolyzed 

ester does not undergo racemization. This is apparently the result of the 

interception of the intermediate pair by azide ion that would normally 

return with loss of activity, but not the ion pair which returns with 

retention of activity. They determined furthermore that in the presence 

of azide ion, 82# of the 4-chlorobenzhydrol liberated is formed by acyl- 

oxygen fission, whereas solvolysis in the absence of azide ion occurs 
exclusively by alkyl-oxygen fission. This shows that in the presence of

12 H. L. Goering and J. F. Levy, J. Am. Chem. Soc., 8 6, 120 (I96U).
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azide ion, carboxyl oxygen equilibration will continue while ion pair 

return to give the racemic ester does not occur. The authors conclude 

that there are two intermediates which are involved; an ion pair that 

returns with retention of configuration, and one that returns with 

racemization.

The nucleophilic attack by solvent on the ester carbonyl which 

leads to ester interchange (solvolysis mechanism III, eqns. b,5) has
ixbeen extensively reported on in the literature. As an example, Bender ^ 

has reported on the alkaline hydrolyses of ethyl, isopropyl, and t-butyl 

benzoates. The object of his investigation was to determine which of 

the two possible mechanisms for carbonyl attack by hydroxyl ion was 

operative in these examples. The first mechanism is the addition of 

hydroxyl ion to the carbonyl group followed by a complex sequence of 

possible steps. The second is the simple displacement of the alkoxide

ion in a one step concerted reaction. The alkaline solvolyses were
18carried out on the esters bearing 0 in the carbonyl group. The 

hydroxyl addition mechanisms for one of the isotopically substituted 

esters is represented below (eqns. 19-2U).

0
IIR-C-OR' + OH" v -  R-C-OR* (19)

OH

13 M. L. Bender, J. Am. Chem. Soc., 1626 (1951).
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Where R = phenyl

R1 = ethyl, isopropyl, and t-butyl.

By stopping the reactions before completion, Bender was able to
3.8isolate unhydrolyzed ester that had a smaller 0 content (eqn. 2 3) than

the original ester. This observation"could be explained by the above
mechanism quite well, and not by the concerted one-step displacement

18(eqn. 2 5), which has no provision for the loss of 0 by the unhydro­

lyzed ester.
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0 0
li

HO >  HO-C-R + R* 0 (25)
R

A study of the kinetics of the alkaline hydrolysis of methyl hydro-
14gen phthalate has been reported by Bender, Chloupek and Nevue in which 

it was shown that the o-carboxylate anion has an intramolecular catalytic 

effect on the hydrolysis.

The hydrolysis rate constant was reported by the authors to be 

dependent on the pH of the reaction solution as shown in figure 1.

1 2  3 4 5 6 7
pH

Fig. 1. - The rate of hydrolysis of methyl hydrogen phthalate 
with pH.

14 M. L. Bender, F. Chloupek and M. Neveu, J. Am. Chem. Soc., 80,

o— c

5.5

5384 (1958)
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It is significant that the pK of methyl hydrogen phthalate (3.22)^ 

coincides very nearly with the inflection point in the pH-rate profile.

The plateau reached in the value of the hydrolysis rate constant for 

pH greater than h is explained by the authors as representing the rate of 

the intramolecular carboxylate-catalyzed hydrolysis. Increasing the pH 

beyond k will not generate more carboxylate anion, and as a result, the 

rate does not significantly change up to pH 7, which was the upper limit 

of the study. As a result, the authors proposed that phthalic anhydride 

is generated through an intramolecular nucleophilic attack by carboxyl­

ate anion on the ester carbonyl (mechanism IV, eqns. 6,7,8).

A recent report has been made by Thanassi and Bruice^ on the 

participation of the carboxyl group on the hydrolysis of several mono­

esters of phthalic acid. Their data shows that phenyl and 2',2',2'-tri- 

fluoroethyl hydrogen phthalates hydrolyze more slowly at pH 2 than at 

pH 5. The authors propose that this shows that the reaction rate is 

dependent on the mole fraction of the ester in the ionized form and that 

it is carboxylate anion that participates in the hydrolysis.

On the other hand, methyl and 2'-chloroethyl hydrogen phthalates 

show a decrease in the rate as the pH is increased from 2 to 5* The 

authors conclude from this that the rate is dependent on the mole fraction 

of ester that is not ionized, and that in these two examples the neutral 

carboxyl group (COOH) catalyzes the hydrolysis.

The rate of the hydrolysis of propargyl hydrogen phthalate showed

15 F. H. Westheimer and 0. T. Benfey, J. Am. Chem. Soc., 7 8, 55^9
(I956)..

16. J. W. Thanassi and T. C. Bruice, J. Am. Chem. Soc., 88, rjkrj 
(1966). ““
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no alteration with pH changes, and therefore appears to be equally cata­

lyzed by both the carboxylate and neutral carboxylic groups.

The experimental evidence seems to support the authors' statement 

that the hydrogen phthalate esters having good leaving groups (phenoxyl,

2',2’,2'-trifluoroethoxyl) hydrolyze with the catalysis of the carboxyl­

ate anion, and those that have poor leaving groups (methoxyl, 2'-chloro- 

ethoxyl) hydrolyze with the catalysis of the neutral carboxyl group. 

Propargoxyl is apparently a borderline case, being lost on hydrolysis 

catalysed equally by both the carboxylate anion and the neutral carboxyl 

group.

The authors offer no explanation for the apparent disagreement of
17their data with that of Bender's in relation to the work on methyl 

hydrogen phthalate.
X8Puckowski and Ross have demonstrated the reluctance of the hydrogen 

phthalate esters of some nitro substituted benzhydrols to undergo a uni­

molecular dissociation which is associated with racemization of the sub­

strate ester. The resolution of 2-, 3-, and k-nitro-, 3>5-dinitro, and

3-bromobenzhydrol and some reactions of the alcohols and their esters in 

a unimolecular alkyl-oxygen fission have been reported by these authors. 

The tendency to react.by this mechanism was investigated by studying the 

hydrolysis of the optically active esters, the solvolysis in methanol, 

formic acid and acetic acid, and the reactivity towards p-tolyl sulfinic 

acid.

17 M. L Bender, F. Chloupek and M. Nevue, loc. cit.

18 R. T. Puckowski and W. A. Ross, J. Chem. Soc., 3555 (̂ 959)•
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Hydrolysis of these esters in ethanolic sodium hydroxide solution, 

in 0.2 N aqueous sodium hydroxide, or in an excess of 10$ aqueous sodium 

carbonate solution at reflux temperature yielded the optically active 

alcohols with little racemization. The hydrogen phthalate esters showed 

little reaction with boiling glacial or 70$ acetic acid. Racemic formate 

esters were obtained in good yields from the reaction of the optically 

active hydrogen phthalate esters with hot 98$ formic acid. The alcohols 

were obtained when the esters were treated with sodium p-tolylsulfinate. 

The authors conclude that the following substituents are arranged in the 

order of decreasing tendency to aid in the alkyl-oxygen fission mechanism: 

h-NH2, 2-NH2, 3-NH2, 3-Br, 2-, 3-, 4-N02, 3,5-(NO^. No mechanisms were 

discussed by the authors which may have led to acyl-oxygen cleavage of 

the hydrogen phthalate esters of the nitro-substituted benzhydrols.

Our interest in this problem was to determine the effect on the base 

catalyzed hydrolysis and methanolysis reactions of benz;hydryl hydrogen 

phthalates when the benzhydryl moiety was substituted at one or both of 

the ^-positions with electron seeking groups.
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CHAPTER II 

DISCUSSION OF EXPERIMENTAL RESULTS

The preparation of the benzhydryl hydrogen phthalates was designed 

with the purpose in mind of determining whether, at least qualitatively, 

a transition point in the algebraic sum of the Hammett CF values*' could 

be reached that would represent the point where the unimolecular solvol- 

ytic mechanism was becoming energetically unfavourable.

i Jaffe has treated the problem of the additive nature^ of the 

Hammett 0* values in a review of work reported by other authors. It was 

shown that the Hammett equation (eqn. 26) applies very well

log f- - GT/Q
o

where K is the rate or equilibrium constant in the reaction of 

a series of substituted aryl compounds,

K is the ionization constant for each of the benzoic acids o
substituted with the groups referred to in the definition of K,

O' is the substituent constant for the substituent,

is a proportionality constant and is dependent on the conditions 

and nature of the reaction.

to a series of diaryl compounds where only one of the rings is substi­

tuted and equally well to a series carrying substitution on both rings

1 L.P. Hammett, Physical Organic Chemistry, chaps. 3, ^ an^ 1, 
McGraw-Hill Book Company, Inc., New York, 19̂ 0.

2 H. H. Jaffe, Chem. Revs., £5, 2^7 (1955).
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if one of the substituents is the same in the whole series. The Hammett 

equation in a modified form (eqn. 2 7) can be applied to a compound having

log = n <r/o
o

n rings that are symmetrically substituted with the same groups.

If a diaryl compound has different substitution on each of the two 

rings another version of the Hammett equation may apply (eqn. 28). This

log §- = 0 (0 1 + 0 -2 ) (28)
o '

form of the equation implies the additivity of the O' values which has

no theoretical basis but which can be verified empirically.
3For example, McCullough and Barsh have reported a study which 

shows that in the dissociation of some unsymmetrically substituted di- 

phenylselenium dibromides (eqn. 2 $), the logarithm of the equilibrium

Ar’ Ar1
I K I

Br-Se-Br ^  Se + Br0 (2 9)
1 1 2
Ar" Ar"

constant for the dissociation shows a linear dependency on the algebraic 

sum of the Q* values of the aryl substituents.

The hydrogen phthalate esters of the following benzhydrols were 

prepared: lr-nitrobenzhydrol, 4-bromo-i+'-nitrobenzhydrol, 4-nitro-l+'-t-

butylbenzhydrol, 4-chlorobenzhydrol, and 4-methylbenzhydrol. It should

3 J. D. McCullough and M. K. Barsh, J. Am. Chem. Soc., 71, 3 O3 I
(19̂ 9).
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be noted here that the procedure previously described by Rutherford and 
1).co-workers for the preparation of hydrogen phthalate esters of tertiary 

alcohols did not prove adequate with the nitro substituted benzhydryl 

alcohols. After much experimentation it was found that sodium hydride 

removed the proton from the alcohol group quite readily and without 

complications. The resultant sodium benzhydrylate reacted rapidly with 

phthalic anhydride to give excellent yields of the hydrogen phthalate 

esters.

Table I

Values Of ( + O'g) For Benzhydryl Hydrogen Phthalates

p-Substituent °’l 5 p' -Substituent *1 +

no2 +0.778 Br +0 .232 +1.010

no2 +0.778 H 0.000 +0 .778

no2 +0.778 (CH3)3° -0 .1 9 7 +0.581

Cl +0 .227 H 0.000 +0 .227

0H3 -0 .1 7 0 H 0.000 -0 .170

It can be seen from the table that the sum of the Hammett CT-values 

( +  <7̂ ) ranges from +1.010 in the case of i+-brom-V -nitrobenzhydryl 

hydrogen phthalate to -0.180 for the h-methylbenzhydryl ester. Since

k K. G. Rutherford, J. M. Prokipcak, and D. P. C. Fung, J. Org. 
Chem., 28, 582 (I9 63).

5 Values from compilation of D. H. McDaniel and H. C. Brown,
J. Org. Chem., 2£, k20 (1958).
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Davies and his co-workers^ had previously reported that optically active 

Ij-methylbenzhydryl hydrogen phthalate yielded racemic it-methylbenzhydryl 

methyl ether when solvolyzed with methanol it was decided to subject the 

above prepared esters to the same conditions (2k hr. reflux). Davies' 

observation in the case of the if-methylbenzhydryl ester ( =

0.170) was confirmed since only the methyl ether of k-methylbenzhydrol 

was obtained (20$ yield) as well as unreacted ester (7̂ -$)* No U-methyl- 

benzhydrol was detected. Hence no acyl-oxygen cleavage of the ester 

occurred.

In the case of the remaining hydrogen phthalate esters the results 

were not conclusive. High yields of unreacted starting materials were 

obtained at the end of 2k hours (Table II). Although some neutral 

product was obtained in the case of 4-nitro-k-t-butylbenzhydryl and 

U-chlorobenzhydryl esters,a carbonyl band was noted in the infrared 

spectrum of each. This could have resulted from a competing esterifi- 

cation reaction with the carboxylic acid group of the hydrogen phthalate 

ester and methanol. It was decided then to resort to sodium methoxide 

catalyzed solvolysis in order to enhance the reaction rate.

Table II summarizes the results of the solvolysis of the hydrogen 

phthalate esters with methanolic sodium methoxide and with methanol.

6 A. G. Davies, et al., J. Chem. Soc., 3^7^ (195̂ 0*
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Table II

Influence Of ( + CT̂ ) Values On Yields Of Solvolysis Products Of

4-X-41-Y-Benzhydryl Hydrogen Phthalate

X Y (o'1 + o'2) Alcohol 
$ Yield-

Ester , bRecovery —

no2 Br +1.010 97 92
N°2 H +0 .778 96 94

\ N02 (ch5)3c +0 .581 91 82

Cl H +0 .2 2 7 93 86

CH3 H , -0 .1 7 0 84 74

a From the solvolysis of the ester with methanolic sodium

methoxide (5 minutes at room temperature), 

b From 24 hour reflux in anhydrous methanol.

It can be seen, that from the yields of benzhydrols obtained,acyl- 

oxygen fission occurs to the exclusion of alkyl-oxygen fission with 

those esters which have positive ( +  OT'g) values. Indeed, even in 

the case of the 4-methylbenzhydryl ester + Cf g = -O.I7 0) 84$ of

the reaction occurred by acyl-oxygen cleavage. Only 10$ of the alkyl- 

oxygen cleavage product (methyl ether) was obtained. Although it would 

be of interest to examine similar solvolysis of benzhydryl hydrogen 

phthalate esters which possessed higher negative values of ( + O'^),

it was decided that at Idast a trend had been established and that the 

more interesting path of research for the present would involve the 

determination of the mechanism of the acyl-oxygen fission.
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There are two possible mechanisms for the sodium methoxide solvolysis 

of the benzhydryl esters (eqns. 30,31,32).

0II 0
> RO + 0/\

CH^OH > ROH + CH^O-CM 

“O-C,

II
(30

II
0 0

p 0
RO-G > CH^O-C + R0 (31)

oc

RO + CH., OH 3 » ROH + CH 03 (32)

R = Substituted Benzhydryl

The anhydride mechanism as depicted by equation (3 0) is attractive 

in view of Bender's work (p. 82 Chapt.l) which shows the intramolecular 

catalytic effect of the carboxylate anion. In our case, since the 

reaction is studied in basic solution, this intramolecular catalytic 

effect of carboxylate anion should be enhanced. Thus the addition of 

increasing amounts of base up to the equivalent point should result in 

a proportional rate enhancement in methanolysis. This was shown to be 

an erroneous assumption. Figure 2 shows the results of adding increas­
ing amounts of sodium methoxide to k-bromo-^1-nitrobenzhydryl hydrogen 

phthalate. It can be seen from the graph that as we progressively add 

sodium methoxide to a methanolic solution of the ester (0 .0 1 mole), no 

appreciable methanolysis occurs even at the end of twenty-four hours
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10.0 11.010.59.0 9-5

Moles CH_0"3 Added x 10'

Fig. 2. - Methoxide catalyzed methanolysis of ^-bromo-V -nitrobenz- 

hydryl hydrogen phthalate. Moles hydrol obtained vs moles methoxide added 

per 0.010 mole ester. Numbers indicate length of reaction period in hours. 

©  Yield of hydrol calculated from precipitate weights.

A Yield of hydrol calculated from neutralization equivalent.

(25 ) until the equivalent point is reached. Further addition of meth­
oxide results in a progressive increase in the amounts of 4-bromo-it-' - 

nitrobenzhydrol produced after one hour reaction time. Thus when 11.2 

mmoles of methoxide is added to 10 mmoles of ester, approximately
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methanolysis is realized at the end of one hour. When 10.3 mmoles of 

methoxide are added to 10 mmoles of ester, 20$ methanolysis occurs in 

the same length of time.

It is to be noted at the left portion of the graph that when 9.314-

mmoles of methoxide is added to 10 mmoles of ester, no appreciable

difference in yields of k-bromo-4' -nitrobenzhydrol is observed at the 

end of three and twenty-four hours (3$-10$). The product of some of

the alcohol before equivalency was reached could result from the

initial pouring of the methoxide solution into the solution of benz­

hydryl ester. Thus high local concentrations of methoxide were 

probably formed giving rise to high rates of methanolysis in these 

regions.

It would appear from the above considerations that the intramole­

cular catalyzed methanolysis of the benzhydryl ester is relatively 

insignificant and that this mechanism can be discounted as a reaction 

path. It was decided however to substantiate this indirect evidence 

with a study of the kinetics of the reaction. If the 'anhydride' 

mechanism (eqn. 30) prevails, then the addition of base in excess of 

an equivalent amount of ester should cause no rate enhancement. If 

however methanolysis occurs by the normal path (eqn. 3 1) a rate 

increase should be observed paralleling that which is observed in 

normal hydrolysis of esters. Thus the rate equation should take the 

form:

d[ester] = _k [ester][CH0-]dt 2L 3 excess
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Such kinetic studies for methoxide catalyzed methanolysis present 

a major problem. Since the concentration of base (OCH ") does not change 

regardless of the mechanistic path, the titrimetric methods usually 

followed in normal ester hydrolysis cannot be employed. It was decided 

to follow the rate of reaction by the gravimetric method. The following 

procedure proved convenient both for methoxide and subsequent hydroxide 

reactions with h-bromo-4'-nitrobenzhydryl hydrogen phthalate.

The ester was dissolved in tetrahydrofuran. A methanol solution 

containing a known amount of methoxide anion was added. Aliquots of the 

reaction mixture were removed at specified intervals and rapidly acid­

ified. From the weights of the precipitates obtained, the concentration 

of the unchanged ester anion was calculated in the following manner.

By mass balance N. + N_ = N.J A B A .

and NaMa + = W

where NA = number of moles of ester or ester anion in the A
precipitate.

N„ = number of moles of alcohol in the precipitateD

N. = number of moles of ester or ester anion at time = 0 
Ai
in the precipitate

volume of aliquot „ , - . r ,= --- ~ ■ v   --  X number of moles of ester usedReaction volume .in the experiment.

M. ss molecular weight of the ester = 458A
Mg = molecular weight of the alcohol = 508 

W *s precipitate weight.
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Substituting with = N. - N.B A. Ai

we obtain NAM^ + (N̂  - na ^B = W
i

NAMA + V ^ B  - * Wi

KA<MA - V  “ " - V"!1

w - n a .“ b
N =  i—

MA " “B

Finally, [ester] =
NA

volume of aliquot

w “ na .mbi

= v v v

Thus it can be seen that the above method enables the convenient 

determination of the concentration of unchanged ester in each of the 

experiments. From the slopes and the base concentrations, dependency 

of methoxide in excess of equivalency can be determined.
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Exp. No.1

Exp. No.2
Exp. No.3

Exp. No.. 1+
3-7

10 1.5 2.50 05 2.0
Time (hr.)

Fig. 3* " Methoxide ion catalyzed methanolysis of 4-bromo-V-nitro- 

benzhydryl hydrogen phthalate. First order in ester concentration.

Excess methoxide ion: exp. No.l, 0.0010; exp. No.2, 0.0020;

exp. No.3, 0.0030; exp. No. If, O.OOkO mole methoxide ion per 0.020 mole

ester in 275 ®1. reaction volume.

Fig. 3 shows the first order dependency of ester anion concen­

tration in experiments which involved increasing concentrations of 

methoxide ion in excess of equivalency. When the slopes (Table III) 

were plotted against the concentration of excess methoxide anion the
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Table III

Proportionality Of Ester Methanolysis Rates With Excess Methoxide

Ion Concentration

Experiment Methoxide Ion Added In Excess of Equivalency k^=Slopes —

No. moles per 0 .0 2 0 moles 
ester in 275

(mole lit.”'*') (hr'1)

1 0 .0010 0 .00364 -0 .3 8 2

2 0 .0020 0.00728 -0.596

3 0.0030 0.01091 -0.952
4 0.0040 0.01454 -1.374

a Taken from the first order plot (^n[ester] vs time; Fig. 3)

straight line observed in Fig. 4 was obtained indicating first order 

dependency of methoxide. There can be no doubt then that the 4-bromo- 

4'-nitrobenzhydryl ester undergoes methoxide ion catalyzed methanolysis 

by a path which involves attack of methoxide ion at the ester carbonyl 

group in accordance with the known path followed by the hydroxide ion 

catalyzed hydrolysis of esters.

Thus the second order rate law for the reaction is then:

dfoter] _ _v [..t.r][CH,0] (33)dt 2 3 excess

where k0 = -slope of plot of k- vs [CH 0] in Fig. 3
d L J GXC6SS

kg calc, ts 92.O f.mole” ĥr. ^
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. - 1.0

w<DCUO
CO

Fig. k. - First order slopes (from Fig. 3) vs concentration of 

excess methoxide ion in the methanolysis of l̂ -bromo-l̂ -,-nitrobenzhydryl 

hydrogen phthalate. First order dependency of rate on methoxide ion 

concentration.

It then became of interest to see if the same mechanism was oper­

ative in the hydroxide ion catalyzed hydrolysis of the same ester. 

Although intuitively one would expect the same mechanism to prevail, 
(bimolecular reaction), it should however not be assumed because a 

different solvent is used and hydroxide ion has less nucleophilic 

character than does methoxide. Thus it is conceivable that the rate of 

carbonyl addition of hydroxide would be slower thus enhancing the poss­

ibility of intramolecular participation of the carboxylate anion.

II
^-0.5

0
0 0.005 0.010 0.015

(mole lit-'*')
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The kinetics will again differentiate between the two mechanisms.

Figures 5 and 6 show the kinetic dependency of both ester and 

hydroxide ion in the hydrolysis of k-nitro-k'-bromobenzhydryl hydrogen 

phthalate. In order to effect reaction within the period of time ob­

served for the methanolysis reaction, the concentration of hydroxide 

was of necessity increased about ten-fold over the methoxide concen­

tration used in the previous study. The kinetic data resemble those 

of the methanolysis studies for the same ester. Hydroxide ion shows 

the same catalytic behaviour when added in excess of equivalency with

3 .0

Exp. No. 5

n(U Êxp.No.6to<u
c
I

\  Exp.No.7

Exp.No.8

Time (hr. )

Fig. 5- - Hydroxide ion catalyzed hydrolysis of k-bromo-k'-nitro- 

benzhydryl hydrogen phthalate. First order in ester concentration. 

Excess hydroxide ion: exp. No.5, 0.013k; exp. No.6, 0.0252; exp. No.7, 

O.O368; exp. No.8 , 0.0816 mole hydroxide ion per 0.010 mole ester in 

I3 7 .5 reaction volume.
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respect to the ester. Thus when the logarithm of the unhydrolyzed 

ester concentration was plotted against the reaction time, lines were 

obtained that showed first order rate dependency on the ester concen­

tration (Fig. 5)-
The lines in Figure 5 are straight at least in the range of the 

percentages of conversion found in the methanolysis study (Fig. 3 ).

The apparent increase in the hydrolytic rate with increasing conver­

sion is probably not a kinetic effect, but only a mechanical error 

caused by an incomplete precipitation of the reaction products or 

incomplete transfer of the products to the weighing crucibles. This 

gravimetric method becomes increasingly sensitive to errors arising 

from incomplete collection of the products as the hydrolysis nears 

completion. A loss or gain of 2 mg. of precipitate, for example, at 

98$ completion (last datum point in experiment No. 8, Fig. 5 ) will 

cause an uncertainty of 0 .6 0 logarithm units at that point.

With the exception of the initial slope of the line representing 

the kinetic data of experiment No. 8 (Fig. 5 ) initial slopes 

(first order rates) obtained from the hydrolysis experiments were 

directly proportional to the concentrations of hydroxide in excess of 

equivalency (Table IV, Fig. 6 ).
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Table IV

Proportionality Of Ester Hydrolysis Rates With Excess Hydroxide Ion

Concentration

Experiment Hydroxide Added In Excess of Equivalency akj=Slopes —
No. moles per 0 .0 1 0 mole 

ester in 137*5 ml*
(mole lit.""'*')

initial

(hr’1)

5 0 .013h 0.0975 -0 .250

6 0 .0252 0 .1833 -0 .5 8 0

7 0.0368 O .2676 -0 .800

8 0 .0816 0.593^ -0.95^

a Taken from the first order plot (in[ester] vs time; Fig* 5)

Fig. 6. - First order slopes (initial slopes from Fig. 5) X£ con" 
centration of excess hydroxide in hydrolysis of h-bromo-h1-nitrobenz- 
hydryl hydrogen phthalate. First order dependency on excess hydroxide 

concentration.
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It may then be concluded that the hydrolysis of if-bromo-̂ ' -nitro- 

benzhydryl hydrogen phthalate in alkaline solution is first order in 

the concentration of the ester anion and first order in the concen­

tration of the hydroxide ion which is added in excess of equivalency 

(eqn. 3k).

d[edte''J' = -yMterHOH-;]excess (34)

where kp = -slope of plot of k vs [OH-] (Fig. 6)
c. JL 6XC6S S

• > kg calc. = 3.O5 lit. mole-1 hr.-1

The second order nature of the alkaline hydrolysis of this ester 

indicates that the ester anion and the hydroxide ion are both involved 

in the rate determining step. In the interpretation of these kinetic 

results a problem arises here which did not arise in the methanolysis 

studies. Thus the absence of 4-bromo-4'-nitrobenzhydryl methyl ether 

in the methanolysis of the benzhydryl ester discounted any arguments 

that the kinetics could be explained by a classical methoxide induced 

Walden inversion resulting in allcyl-oxygen cleavage. However, If-bromo- 

-nitrobenzhydrol only is obtained from the hydrolysis of the benz­

hydryl ester whether alkyl-oxygen or acyl-oxygen cleavage occurs.

Thus the second order kinetics obtained from the hydrolysis experi­

ments can differentiate between carboxylate anion participation and 

normal ester hydrolysis (both of which result in acyl-oxygen cleavage), 

but cannot differentiate between normal ester hydrolysis and bimole- 

cular elimination (S^2) of phthalate anion (bimolecular alkyl-oxygen 

cleavage). The problem was solved quite conveniently in the following
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manner; The optically active hydrogen phthalate ester of If-bromo-̂ '- 

nitrobenzhydrol was prepared. Methanolysis of this ester yielded 

optically active 4-bromo-lf’-nitrobenzhydrol ([a]^+ 0.23°). Since the 

methanolysis reaction was shown unequivically to result in acyl-oxygen 

cleavage, the configuration of the hydroxyl group was then established. 

When the same optically active ester was subjected to hydroxide ion 

catalyzed hydrolysis, the same optical activity ([a]j^+ 0 .50°) was 

noted in the benzhydrol. If the reaction would have proceeded with 

Walden inversion, then a change in sign of rotation would have been 

realized. It was thus shown conclusively that the hydroxide ion cata­

lyzed hydrolysis of the benzhydryl ester followed the same mechanistic 

path as the methoxide catalyzed methanolysis reaction.

Some interesting offshoots developed as a result of some of the 

synthetic procedures used in the course of this program. Attempts to 

prepare the sodium salt of some nitro-substituted benzhydrols by treat­

ment of the latter with triphenylmethyl sodium resulted in near quant­

itative amounts of bis-triphenylmethylperoxide. It appears that hexa- 

phenylethane is the intermediate which undergoes an oxidation. This 

may prove to be of interest not only from a mechanistic standpoint, but 

also as a synthetic route to triarylmethyl peroxides since the reaction 

occurs with nitrobenzene as well.

Again, the reaction of the hydrogen phthalate ester of h-bromo-h'- 

nitrobenzhydrol with thionyl chloride yields the benzhydryl chloride and 

phthalic anhydride. The sequence of probable steps is indicated by 

equations (35) and (3 6). It would be interesting to study the reaction 

from the mechanistic standpoint. If the reaction is stereospecific it 

may prove fruitful for the synthesis of some optically active benzhydryl
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chlorides.

f  0 Y '  0
w y . 0  s°cip ?

Ar Ar 0=C
OH OH

(35)

CH Cl
\ 01s- C

+ 0 (36)

Summary And Conclusions

The hydrogen phthalate ester of 4-methylbenzhydrol undergoes partial 

alkyl-oxygen cleavage with 'oxide1 catalyzed methanolysis and hydrolysis 

although the major portion of the reaction follows acyl-oxygen cleavage. 

Alkyl-oxygen fission is minor with the introduction of electron seeking 

groups in the para position of one or both of the rings such that the 

algebraic sum of the Hammett O' values is positive. When high positive 

values are reached (> 0.5)* aryl-oxygen fission occurs.

Acyl-oxygen fission occurs by normal ester solvolysis in the case 

of 'oxide' catalyzed methanolysis and hydrolysis of 4-bromo-4'-nitrobenz- 

hydryl hydrogen phthalate. No carboxylate anion participation is evident. 

Again, classical bimolecular elimination (Ŝ 2) was not observed. Thus 

solvolysis studies on optically active 4-bromo-4'-nitrobenzhydryl ester 

indicated no bond breaking at the carbinyl carbon atom.

Although the hydrogen phthalate ester which was studied kinetically 

possessed a relatively high Hammett ( CT̂  + CT̂ ) value it is proposed 

that carboxylate anion participation in the 'oxide' solvolysis of benz-
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hydryl esters which undergo acyl-oxygen cleavage is probably not very 

significant although other compounds should be studied to substantiate 

this postulate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10 6

CHAPTER III 

EXPERIMENTAL PROCEDURE

Preparation Of Substituted Benzhydrols

^-Nitrobenzhydrol, It-bromo-V -nitrobenzhydrol, if-nitro-V - t-butyl- 

benzhydrol, h-chlorobenzhydrol and L-methylbenzhydrol were prepared by 

methods described in Part I of this Dissertation.

Preparation Of Hydrogen Phthalate Esters

It was found in the course of these studies that the hydrogen 

phthalate esters of the nitro-substituted benzhydrols could not be pre­

pared in useful yields by any of the common preparative methods. Some 

of the attempts to prepare i)~bromo-4'-nitrobenzhydryl hydrogen phthalate 

will be described below.

Bromo--Nitrobenzhydryl Hydrogen Phthalate. - A solution of 4-bromo-^'- 

nitrobenzhydrol (l g., O.OO325 mole), phthalic anhydride (0.U8 g., O.OO325 

mole), anhydrous tetrahydrofuran (25 ml.) and pyridine (10 ml.) was heated 

under reflux for a period of two hours. At the conclusion of the reaction 

period it was poured into a slurry of ice (300 g.) and concentrated hydro­

chloric acid (25 ml.). A crystalline precipitate was collected, dried and 

recrystallized from chloroform. This proved to be 4-bromo-V-nitrobenz­

hydrol (0.9 g., 90$ recovery) melting in the range 157-l6l°. Similar 
results were obtained when the reflux period was extended to five hours 

in length.

It was decided to attempt to prepare the ester by a method found in 

this laboratory to be useful in preparing hydrogen phthalate esters of
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aryl carbinols. * k-Bromo-k'-nitrobenzhydrol (l g., O.OO325 mole) was 

dissolved in anhydrous tetrahydrofuran (25 ml.) and to this was added 

an ethereal solution of sodium triphenylmethyl until a red colouration 

in the reaction mixture persisted. Phthalic anhydride (0.5 g., O.OO33 

mole) was then added and the solution was allowed to stir overnight in a 

tightly stoppered flask. When hydrolyzed with water, the reaction mix­

ture produced two immiscible phases. Where the organic layer was in 

contact with air the formation of yellow crystals could be seen. When 

the space above the solution was swept with nitrogen the crystallization 

process ceased. With the readmittance of air to the flask the crystal­

lization process resumed. The precipitate was collected by filtration, 

air dried, and recrystallized from boiling tetrahydrofuran. A white 

solid (l g. ), m.p. 190°, was obtained that was shown to be triphenyl­

methyl peroxide. Identical results were obtained when nitrobenzene was 

substituted for the k-bromo-k1-nitrobenzhydrol.

Also unsuccessful was the heating under reflux conditions a sol­

ution of k-bromo-k1-nitrobenzhydrol (5 g., 0 .0 1 6 mole) and phthalic 

anhydride (2.k g., 0 .0 1 6 mole) in tripropylamine (50 ml.) for a period 

of ninety minutes. Unidentifiable oils were obtained.

Equally unsuccessful were the reactions of the alcohol with sodium 

dispersion in the presence of phthalic anhydride at room temperature 

and at 0°. Phthalic acid was the only recognizable product obtained.

Again unsuccessful was the reaction of potassium hydrogen phthalate

1 K. G. Rutherford, J. M. Prokipcak, and D. P. C. Fung, J. Org. 
Chem., 28, 582 (1963).
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with h-bromo-U'-nitrobenzhydryl chloride prepared from the alcohol and a 

slight excess over equivalency of thionyl chloride.

Of limited success was the following reaction: To a solution of

4-bromo-V-nitrobenzhydrol (15-̂  g., 0.05 mole) in tetrahydrofuran (100 
ml.) was added a solution composed of phthaloyl chloride (7.2 g., 0.05 
mole') and tetrahydrofuran (25 ml. ). The mixture was magnetically stirred 

and heated under reflux for ten minutes in a 500 ml. round bottom single 
neck flask equipped with a reflux condenser. Pyridine (20 ml.) was added 

to the hot solution which caused the immediate precipitation of pyridine 

hydrochloride. The entire mixture was quenched on a slurry of ice (500 g. ) 

and hydrochloric acid (50 ml.) and from this resulting mixture a yellow oil 
was obtained. The oil was dissolved in chloroform (100 ml.). The organic 

phase was separated, dried over anhydrous calcium chloride and mixed with 

petroleum ether (b.p. 30-60°) (ca. 50 ml. ). The precipitate which formed 

was collected by filtration, air dried and then dissolved in cold 2$ 
aqueous potassium carbonate solution (500 ml. ). The basic solution was 

clarified by filtration through a fine sintered glass disk and then rapidly 

poured into a slurry of ice (500 g.) and hydrochloric acid (50 ml.). The 

white solid which was obtained was recrystallized again from a chloroform- 

petroleum ether (b.p, 30-60°) solvent pair. U-Bromo-k’-nitrobenzhydryl 

hydrogen phthalate (2.3 g., 10$) was obtained as a white crystalline solid, 
m.p. 185°> neutralization equivalent ^58, (C^jH^BrNOg requires b-56.3)-
The infrared spectrum of the compound showed the following bands: a broad

-1 -1 OH band beginning at 3500 cm and merging with CH stretching at 3°00 cm

(characteristic of carboxyl OH stretching), an ester carbonyl stretching

at I736 cm”  ̂and an acid carbonyl stretching at 1702 cm”'*', aromatic
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skeletal vibrations at 1602 and IU90 cm”1, and nitro group stretching at 

152^ and I350 cm"1.

Analysis: Calcd. for C21Hll+BrN06: C, 55-3; H, 3.6 0.

Found: C, 5^.7; H, 3.2 3.

Near quantitative yields of the same ester could be obtained in the 

following manner. A solution of k-bromo-h'-nitrobenzhydrol (31 g., 0.10 

mole), phthalic anhydride (1 6 .3 g., 0 .11 mole) and pyridine (100 ml.) was 

prepared in a 300 ml. conical flask. While stirring the solution, sodium 

hydride (5 .2 8 grams of a 50$ dispersion in mineral oil, 0.11 mole) was 

added at a rate adjusted to keep the temperature of the solution below 

35°. When the addition was complete, the flask was loosely stoppered and 

the mixture was magnetically stirred for a period of six hours. The mix­

ture was then poured very slowly into one litre of 2 N hydrochloric acid. 

The organic material was extracted twice with chloroform (200 ml.). The 

organic material was washed several times with 0.1 N hydrochloric acid, 

dried over anhydrous sodium sulfate and reduced in vacuo to a gum. The 

gum was dissolved in 0.2 N. sodium hydroxide (750 ml.), and the resulting 

solution was filtered through a fine sintered glass plate. The solution 

was slowly acidified with dilute hydrochloric acid yielding the crude 

ester (h2 g., 92$) melting in the range 171-180°. Recrystallization of 

the crude from a chloroform-petroleum ether (b.p. 30-60°) solvent pair 

produced the pure ester (38 g.) melting in the range I8h-l85°. This 
product gave an undepressed melting point on admixture with the ester 

prepared by the previous method. The infrared spectrum of this product 

was identical with that previously described.
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h-Nitro-h'-t-Butylbenzhydryl Hydrogen Phthalate. - By a method similar to 

the one described above, if-nitro-lf'-t-butylbenzhydrol (28.5 S« > 0.10 mole), 

phthalic anhydride (16.3 g., 0.11 mole), sodium hydride (5.28 g., 50$ dis­

persion, 0 .1 1 mole) and pyridine (100 ml.) were used to prepare If-nitro- 

V-t-butylbenzhydryl hydrogen phthalate (35.5 g., crude, 91$). Recrystal­

lization of the crude ester from a chloroform-petroleum ether (b.p. 30-60°) 

solvent pair yielded the pure ester (31 g.), melting in the range 103-105°, 

neutralization equivalent kj>6, (Cg^Hg^NO^ requires ^33)* The infrared 

spectrum of the product included the following bands: a broad OH band

extending from 3500 to approximately 3000 cra’  ̂where it merged with CH 

stretching, an ester carbonyl band at 1730 cm"*, an acid carbonyl band at 

1702 cm *, aromatic skeletal vibrations at 1600 and l̂t-92 cm”*, nitro 

stretching bands at 1521 and 13^9 cm"*, and an ester CO single bond 

stretching band at 1270 cm *.

^-Nitrobenzhydryl Hydrogen Phthalate. - By a similar method lf-nitrobenz-

hydrol (23 g., 0 .1 0 mole), phthalic anhydride (1 6 .3 g. , 0 .1 1 mole), sodium

hydride (5 .2 8 g., 50$ dispersion, 0 .1 1 mole) and pyridine (100 ml.) were

used to prepare l+-nitrobenzhydryl hydrogen phthalate (33 g-, crude, 88$).

Recrystallization of the crude material in the manner previously described
o 2 oyielded the pure ester m.p. 157-158 (reported 158 ). The infrared 

spectrum included the following bands: a broad OH stretching band extend­

ing from 3500 cm * into the CH stretching bands at 3000 cm"*, an ester 
carbonyl stretching band at 173& cm"*, an acid carbonyl stretching band at

2 R. T. Puckowski and W. A. Ross, J. Chem. Soc., 3560 (1959)*
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1708 cm”*, aromatic skeletal vibrations at 1600 and IU9U cm"*, nitro 

group stretching bands at 1529 and 135̂ - cm \  and an ester CO single bond 

stretching at 1292 cm *.

4-Chlorobenzhydryl Hydrogen Phthalate. - By a method similar to that de­

scribed above, If-chlorobenzhydrol (22 g., 0 .1 0 mole), phthalic anhydride 

(1 6 .3 g., 0 .1 1 mole), sodium hydride (5 .2 8 g., 50$ dispersion, 0 .1 1 mole) 

and pyridine (100 ml.) were used to prepare k-chlorobenzhydryl hydrogen 

phthalate (27 g., crude, 7̂ $). The pure ester (22 g. ), m.p. 152-153° 

(unreported) was obtained on the recrystallization of the crude material 

from a chloroform-petroleum ether (b.p. 30-60°) solvent pair.

Analysis: Calcd. for C ^ H ^ O ^ d : C, 68.76; H, b.12.

Found: C, 68.36; H, U.01.

The infrared spectrum of the compound showed the following bands: a broad

OH stretching band extending from 3500 to approximately 2750 cm *, an ester 

carbonyl at 1730 cm”*, an acid carbonyl at I7IO cm *, aromatic skeletal 

vibrations at 1600 and 1^98 cm”*, and an ester CO single bond stretching at 

1282 cm”*.

k-Methylbenzhydryl Hydrogen Phthalate. - By a method similar to one pre­

viously described, ^-methylbenzhydrol (20 g., 0 .1 0 mole), phthalic anhyd­

ride (1 6 .3 g.j 0 .1 1 mole), sodium hydride (5*28 g., 50$ dispersion, 0 .1 1  

mole) and pyridine (100 ml.) were used to prepare if-methylbenzhydryl 
hydrogen phthalate (32 g., crude, 90$). After recrystallization, the 

pure ester was obtained as feathery white crystals (22 g. ) m.p.120-122°

(reported^ 120-122°). The infrared spectrum of the compound showed the

3 A. G. Davies, et al., J. Chem. Soc., 3^7^ (195*0.
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following bands: a broad carboxyl OH stretching in the range 3500 to

3100 cm *, an ester carbonyl stretching at I728 cm’\  an acid carbonyl 

stretching at I703 cm *, aromatic skeletal vibrations at lk83 cm”*, and 
an ester CO single bond stretching at 1287 cm”*.

(+)-Bromo-k>-Nitrobenzhydryl Hydrogen Phthalate. - A solution of k-bromo- 

k*-nitrobenzhydryl hydrogen phthalate (20 g., O.Okk mole), brucine (l6 g., 

O.Okl mole) and acetone (2̂ 0 ml.) was heated at the boiling point for ten 

minutes. Without allowing the solution to cool, the solvent was removed 

by evaporation at reduced pressure. The salt, which was obtained as a 

bright yellow spongy glass-like material, was dissolved in toluene (kOO 

ml.) and to the resultant solution was added methylcyclohexane (200 ml.). 

Chilling the solution caused the precipitation of the brucine salt as a 

bright yellow powder (15 g.) m.p. 100-110°. Two recrystallizations of 

this powder from a similar toluene-methylcyclohexane solvent pair gave 

the apparently optically pure salt as a brilliant yellow powder (10.5 g.)> 

m.p. 138-lkO0. The specific rotation of the salt could not be measured 

because of the intense colouration imparted to even dilute solutions by 

the salt. The melting point of the salt could not be increased nor the 

range decreased by further recrystallizations. The salt was dissolved 

in acetone (200 ml.) and the solution was poured into a rapidly stirred 

cold solution of hydrochloric acid (kOO ml., 0.2 N). The ester recry­

stallized readily and was isolated by filtration and air dried. The 
ester was recrystallized once more from a chloroform-petroleum ether 

(b.p. 30-60°) solvent pair. The ester was obtained as a white solid 

(5.I g., 23io on resolution) m.p. 180-181°C, [a]p5+ 0 .870 (f,2j c, k.O in 

acetone). All rotations were determined with a Rudulph polarimeter,

Model No.80.
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(+)-4-Nitro-V-t-Butylbenzhydryl Hydrogen Phthalate. - By a method similar 

to that previously described, the brucine salt (5 -2 g.) m.p. 180-185° was 

obtained from an ethanol solution of the racemic lf-nitro-4'-t-butylbenz- 

hydryl hydrogen phthalate (7 .7 g., O.OI78 mole) and brucine (6 .9 g.,

0.0175 mole). The crude salt had a specific rotation [a]^-9.9° (z, 2; 
c, 2.0). The specific rotation of the salt increased to -10.^° after one

more recrystallization from ethanol. A third recrystallization from
25 oethanol yielded the apparently pure diastereoisomer, -10.5 (I, 2;

c, 2.0 ), m.p. 18^-186°, (k.O g.). By means of an acid decomposition 

similar to that previously described the brucine salt ( ^ .0  g.) was decom­

posed to yield the optically active h-nitro-!+'-t-butylbenzhydryl hydrogen 

phthalate (1.5 g* > 29$ on resolution), m.p. 113°> having [oO^ +1.87°,

(i, 2; c, 3 -3 in chloroform).

Solvolytic Reactions of Hydrogen Phthalate Esters 

I With Sodium Methoxide

h-Nitrobenzhydryl Hydrogen Phthalate. - The ester (3*8 g., 0.01 mole) was 

dissolved in anhydrous tetrahydrofuran (30 ml.) and to this was added a 

methanol solution of sodium methoxide (l.O g., O.Okk mole sodiumj JO ml. 

methanol). The solution was stirred for five minutes and then poured 

over a slurry of ice (20 g.) and concentrated hydrochloric acid (5 ml.). 

h-Nitrobenzhydrol (2.2 g., 96$) was precipitated, melting in the range 
72-75°• The infrared spectrum of the product was identical with that 

previously described for this compound. The mixed melting point was 

undepressed.
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4-Bromo-4'-Nitrobenzhydryl Hydrogen Phthalate. - In a manner similar to

that described above, 4-bromo-4'-nitrobenzhydrol (j.O g., 97$)> m.p. I5O- 
. o154 , was obtained on reaction of the corresponding hydrogen phthalate 

ester (4.5 g.> 0.01 mole) with sodium methoxide (1.0 g., 0.044 mole sodium 

30 ml. methanol). The infrared spectrum of the product was identical with 

that of the authentic compound. The cold aqueous phase which was obtained 

as the filtrate in the isolation of the 4-bromo-4'-nitrobenzhydrol was 

saturated with potassium chloride and extracted with ether (50 ml.). The 

organic phase was reduced in volume by evaporation at reduced pressure to 

10 ml. and cooled. Methyl hydrogen phthalate (0.2 g., 12$) m.p. 82-83° 

was collected as a fine crystalline solid.

4-Nitro-4'-t-Butylbenzhydryl Hydrogen Phthalate. - In a manner similar to 

that described above, 4-nitro-4'-t-butylbenzhydryl hydrogen phthalate 

(4.3 g., 0.01 mole) underwent solvolysis with sodium methoxide (l.O g., 

0.044 mole sodium; 30ml. methanol). 4-Nitro-4'-t-butylbenzhydrol 

(2.6 g., 91$) was obtained melting in the range 106-109°. Recrystalliz­

ation of the product from a chloroform-petroleum ether (b.p. 30-60°) 

solvent pair yielded the pure compound (2.1 g.) m.p. 109-111°. The infra­

red spectrum of the product and of the authentic alcohol were identical. 

The mixed melting point was undepressed.

4-Chlorobenzhydryl Hydrogen Phthalate. - In a manner similar to that de­

scribed previously 4-chlorobenzhydrol (O.8 3 S*> 93$)> m.p. 53-55 , was 
obtained on the reaction of 4-chlorobenzhydryl hydrogen phthalate (1.5 S«> 

0.0041 mole) with sodium methoxide (0 .5 g»> 0 .0 2 2 mole sodium; 30 ml. 

methanol). Recrystallization of the product from a chloroform-petroleum
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ether (b.p. 30-60°) solvent pair yielded the pure alcohol (0 .6  g.), m.p. 

58-59°* A mixed melting point with an authentic sample was undepressed.

The infrared spectrum of the product was identical with that of the 

authentic compound.

4-Methylbenzhydryl Hydrogen Phthalate. - In a manner similar to that 

described above, 4-methylbenzhydryl hydrogen phthalate (5*0 g., 0.0145 

mole) underwent reaction with sodium methoxide (l.O g., 0.044 mole sodium; 

30 ml. methanol) to yield 4-methylbenzhydrol (2.4 g., 84$), m.p. 49-50°*

The infrared spectra of the product and the authentic alcohol were 

identical. An oil (0.3 g*, 10$) was also obtained having an infrared 

spectrum identical with that for 4-methylbenzhydryl methyl ether which 

was prepared by the previously described iodine synthesis.

(-t-)-4-Bromo-4'-Nitrobenzhydryl Hydrogen Phthalate. - (+)-4-Bromo-4'- 

nitrobenzhydryl hydrogen phthalate (4.0 g., 0 .0088 mole) was dissolved in 

anhydrous tetrahydrofuran (30 ml., distilled from PgO^ and stored over 

sodium) and the resulting solution was poured into a methanol solution of 

sodium methoxide prepared by the dissolution of sodium (0 .5 g*, 0 .0 2 2  

mole) in 30 ml. anhydrous methanol (distilled from magnesium methoxide). 

After five minutes of reaction time, cold dilute hydrochloric acid (400 

ml., 0 .075 N) was added to the solution and the resulting mixture was 

cooled. A precipitate of (+)-4- bromo-4'-nitrobenzhydrol (2.15 g*> 80$), 

m.p. 157-^590  ̂was collected having [cc]^ +0.23° (̂ ,2; c, 2 .15 in acetone).

(+)-4-Nitro-4'-t-Butylbenzhydryl Hydrogen Phthalate. - When (+)-4-nitro- 

4'-t-butylbenzhydrol hydrogen phthalate (1.3 g*> 0 .0030 mole) was solvol- 

yzed with sodium methoxide in a manner similar to that previously described,
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^-^-nitro^'-t-butylbenzhydrol (0 .6 g., 71$)> m.p. 109-110° was obtained. 

It possessed a very feeble rotation in solution with chloroform (25 ml.). 

The observed rotation in chloroform solution (0.6 g. in 25 ml.) was approx­
imately +0 .01°, [cc]^ +0 .21°; (l, 2; c, 2.4).

II With Methanol

4-Nitrobenzhydryl Hydrogen Phthalate. - 4-Nitrobenzhydryl hydrogen 

phthalate (5 .0 g., 0 .0 1 3 mole) was dissolved in anhydrous methanol (50 ml.) 

and heated under reflux for a period of twenty-four hours. At the end of 

that time, cold water was added to the warm solution until the mixture 

became cloudy. Upon cooling the solution, a total of 4.7 grams (94$ 

recovery) of the unreacted ester was obtained as a crystalline powder, 

m.p. 155-1580. The product was identified by a mixed melting point with 

an authentic sample and by its infrared spectrum.

4-Bromo-4'-Nitrobenzhydryl Hydrogen Phthalate. - When treated in a similar 

manner with methanol (50 ml.), 4-bromo-4'-nitrobenzhydryl hydrogen phthal­

ate (5.O g., 0 .011 mole) yielded the unreacted ester (4.6 g., 92$ recovery), 

m.p. 181-184°.

4-Nitro-4'-t-Butylbenzhydryl Hydrogen Phthalate. - When 4-nitro-4'-t- 

butylbenzhydryl hydrogen phthalate (5 g., 0.0115 mole) was treated with 

methanol (50 ml.) in a manner similar to that described above, the un­

changed ester m.p. 97-102°, was recovered (4.1 g., 82$ recovery), along 
with an uncrystallizable oil (0 .3  g.). The infrared spectrum of the oil 

showed a broad and weak carbonyl band at I725 cm  ̂and broad nitro 

absorption bands at 1525 and 1550 cm
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4-Chlorobenzhydryl Hydrogen Phthalate. - In a similar manner, unchanged 

4-chlorobenzhydryl hydrogen phthalate (4.3 g., 86$ recovery), m.p. 150- 

151°, was recovered from the treatment of the ester (5*0 g., 0.0135 mole) 

with anhydrous methanol (50 ml.) at the reflux temperature for twenty-four 

hours.

4-Methylbenzhydryl Hydrogen Phthalate. - When 4-methylbenzhydryl hydrogen 

phthalate (5 .0 g., 0.0145 mole) was heated in boiling anhydrous methanol 

(50 ml.) for twenty-four hours, the unchanged ester (3 .8 g., 74$ recovery) 

was obtained, along with an oil, (0 .6 g., 20$) that had an infrared 

spectrum identical to that of methyl 4-methylbenzhydryl ether prepared by 

the previously described iodine synthesis.

Ill With Aqueous Sodium Hydroxide

(+)-4-Bromo-4'-Nitrobenzhydryl Hydrogen Phthalate. - A solution of (+)-4- 

bromo-41-nitrobenzhydryl hydrogen phthalate (2 .25 §•> 0.0049 mole),
25® o[a]p + 0.31 {l, 2; c, 9 in tetrahydrofuran) in tetrahydrofuran (25 ml.)

was poured into an aqueous solution of sodium hydroxide (400 ml., 2 N).

The mixture was allowed to stand with stirring for a period of thirty 

minutes. During this time a crystalline precipitate was formed. The 

solution was made neutral (pH 7 ) with dilute hydrochloric acid. The 

precipitate was then collected by filtration and air dried. The precip­

itate was identified as (+)-4-bromo-4*-nitrobenzhydrol (1 .2 g., 80$), m.p. 
156-158°, + c, 6 in acetone). The filtrate from the

above separation was further acidified which caused a cloudiness to 

appear probably due to the precipitation of unhydrolyzed ester.
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Reaction Of 4-Bromo-4’-Nitrobenzhydrol With Thionyl Chloride. - To a 

mixture of 4-bromo-4'-nitrobenzhydrol (3.I g., 0 .0 1 mole) and chloro­

form (10 ml.) was added thionyl chloride (1 .5 g., 0.02 mole). The 

resultant mixture was heated on a steam bath for one hour taking care 

to exclude moisture with a calcium chloride drying tube. The volatile 

material was removed by evaporation at reduced pressure. Prolonged 

extraction of solvent in vacuo caused the red oil to crystallize 

(m.p. 45-48°). The crystalline mass was dissolved in dry benzene 

(100 ml.), and decolourized with activated charcoal. Petroleum ether 

(b.p. 30”60°) was added to the solution which was then cooled. 4- 

Bromo-4’-nitrobenzhydryl chloride was obtained in the form of needles 

(2 .6 g., 80$), m.p. 51°. The infrared spectrum of the compound showed 

the following bands: aromatic skeletal vibrations at 1607 and 1493

cm nitro group stretching at 1528 and 1353 cm"\ No OH band was 

evident in the spectrum. After storage for thirty months in an un­

sealed jar, the product still melted sharply at 51° •

Analysis: Calcd. for C1xH BrClN0o: C, 47.81; H, 2.7 8.V  7
Found: C, 47.85; H, 2 .7 8.

Reaction Of 4-Bromo-4'-Nitrobenzhydryl Hydrogen Phthalate With Thionyl 

Chloride. - To a solution of 4-bromo-4'-nitrobenzhydryl hydrogen 

phthalate (4.6 g., 0 .0 1 mole) and chloroform (50 ml.) was added thionyl 

chloride (3*0 ml., 0.042 mole). The resulting solution was heated on a 
steam bath under reflux for two hours. The volatile materials were com­

pletely removed by evaporation at reduced pressure. The heavy oil so 

obtained was boiled in petroleum ether (100 ml.). Cooling the solution 

induced the crystallization of phthalic anhydride (1.4 g., 95$)> m.p.
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129-150°. When the petroleum ether was removed _in vacuo an uncrystal- 

lizable"'oil (5 ,0 g. ) having an infrared spectrum identical with that 

for it-bromo-41 -nitrobenzhydryl chloride except for three weak bands 

(1850, I78O, and 1262 cm which are found in the phthalic anhydride 

infrared spectrum.

Reaction Of U-Bromo-k1-Nitrobenzhydryl Hydrogen Phthalate With Aqueous 

Potassium Hydroxide. - If-Bromo-V-nitrobenzhydrol (3 .0 g., 97$) was 

completely precipitated from solution after two hours when ^-bromo-V- 

nitrobenzhydryl hydrogen phthalate (U.6 g., 0 .0 1 mole) was dissolved in 

5 N aqueous potassium hydroxide (100 ml.) and maintained at 0̂°. The 

ester (k.5 g., 98$) however, was precipitated unchanged by the addition 

of hydrochloric acid to a potassium carbonate solution (5$, 100 ml.) of 

k-bromo-k’-nitrobenzhydryl hydrogen phthalate (1+.6 g., 0 .0 1 mole) even 

though the solution was maintained at U0° for five hours.

Kinetic Study On The Solvolysis Of it-Bromo-V-Nitrobenzhydryl Hydrogen 

Phthalate

I With Methoxide

The kinetics of the solvolysis of U-bromo-^’-nitrobenzhydryl 

hydrogen phthalate with methanolic sodium methoxide were followed 

initially by two methods. Known amounts of the ester (^ .5 8 %• > 0.010 

mole) were dissolved in anhydrous tetrahydrofuran (40 ml. volumes). To 

these solutions were added carefully pipetted amounts of standard meth­

anolic sodium methoxide solution (0 .93 +̂ N) prepared from anhydrous 

methanol (500 ml.) and freshly cut sodium (11.5 g*> 0*5 mole). The 

resulting solutions were tightly stoppered and kept in a constant 

temperature bath (25° * 0.5°) for varying lengths of time. The samples
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were then poured quantitatively into ice-cold water (300 ml.) and the 
resulting solutions were rapidly made acid (pH 2) with 2 N hydrochloric 

acid. The precipitates were allowed to remain in contact with the 

mother-liquor for one-half hour to ensure high yield of recovery of the 

precipitates. The precipitates were collected in pre-weighed sintered 

glass crucibles (medium porosity), washed with distilled water, air- 

dried for six hours, and finally dried in vacuo for twelve hours. The 

weights of the precipitates were noted, and their neutralization equiv­

alents were determined. From the weight of the precipitate, the extent

of solvolysis for each sample may be calculated as shown below.

Setting: = number of moles of ester in the precipitate.

N„ = number of moles of alcohol in the precipitate.B

= neutralization equivalent of ester = ^58.

Mg = molecular weight of alcohol = 308.

W = weight of precipitate.

Then by mass balance:

NA + N_ = 0.010A B

and NaMa + NgMg = W
I

Substituting: (0.010 - Ng)MA + NgMg = W

0.010Ma - NgMA + NgMg = V

1+.58 - Ng(MA - Mg) = W

N = M 8 - w 
B 150
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Table V below summarizes the amounts of methoxide solution, 

reaction tirnê ,precipitate weights and the number of moles of alcohol 

obtained under these conditions.

Table V

Methoxide Solvolysis Of 4-Bromo-V-Nitrobenzhydryl Hydrogen Phthalate -

Gravimetric Study

Run No. Methoxide
Solution

Stock
(0.93^)

Reaction w nb

1
(ml. ) (moles) (Hr.) (s.) (moles)

1 10.0 0 .0093^ 3 k.k9 0.00060

2 10.0 0 .0093lr 2 k k.kk 0 .00093

3 10.5 0.00981 1 k.kk 0 .00093

k 11.0 0.01027 1 k . 2 2 0.00214-0

5 11.5 0.0107^ M it.11. O.OO3I9

6 12.0 0.01121
/

1 3.98 0.0014-00

Sample calculation 

Run No. 1s NB
k.5& - 1<-.U9 

150

= 0.00060 moles alcohol

The number of moles of If-bromo-lf’-nitrobenzhydryl hydrogen 

phthalate may also be determined from the neutralization equivalent 

(N.E.) of the precipitate obtained from the kinetic experiments.
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Let N.E. = Ma + Ng'Mg

where = N.E. of the pure ester (4̂ 8 g.)

Mg » molecular weight of the alcohol (308 g.)

Ng'= number of moles of alcohol associated with each mole 

of ester in the precipitate

v,*.   «= mole fraction of alcohol in the precipitate

But Na + Ng = 0.010 = total number of moles in the precipitate

0.010NT
N =  ------- —V + 1

N.E. - M
Substituting N ' = —-------MJ

N.E. - M 
Nfi - 0.010 ---  —

N.E .  -  HA + Mg

\

= 0.010 M -E - - ^N.E. - 150

Table VI summarizes the reaction conditions and the extent of 

solvolysis of each sample determined through its neutralization 

equivalent.
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Methoxide Solvolysis Of k-Bromo-k’-Nitrobenzhydryl Hydrogen Phthalate -

Neutralization Equivalent Study

Run No. Methoxide Stock 
Solution (0 .93k N)

Reaction
Time

N.E. nb

(ml. ) (moles) (Hr. ) (g.) (moles)

1 10.0 0 .0093k 3 k67 0.00028

2 10.0 0 .0093k 2k k70 O.OOO38

■ 3 10.5 0.00981 1 k75 0.00052

k 11.0 0.01027 l 527 O.OOI83

5 11.5 0 .0107k l 581 0.00285
6 12.0 0.01121 l 622 0 .002k7

Sample Calculation

Run Ho. 1: Nb = 0.010 j f f i  -

= 0 .00028 moles alcohol

Since the titrimetric determinations of the extent of solvolysis 

were in fair agreement with the gravimetric determinations, the former 

method was abandoned and subsequently the kinetics were studied by only 

the gravimetric method.
A second, slightly different, method of conducting the kinetic 

study was used in the remaining kinetic experiments with sodium methox­

ide. The ester samples (9.16 g., 0.020 mole) were dissolved in volumes 

of anhydrous tetrahydrofuran (150 ml.). Varying amounts (22.5 to 2 5 .7
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ml.) of the methanolic sodium methoxide stock solution previously de­

scribed (0.93^ N) were pipetted into volumes of anhydrous methanol 

(100 ml.). The methanol solutions were then poured rapidly and with 

stirring into the ester solutions to start the kinetic experiments. 

Immediately, the reaction solutions were diluted to exactly 275 ml- 

with anhydrous methanol (less than 5 nil. being sufficient), and tightly 

stoppered. The solutions were kept in a constant temperature bath 

(25° ̂  0.5°). At intervals during the length of the reaction period, 

aliquots (50 ml.) were removed from the reaction flasks and were 

quenched and finally weighed in exactly the manner described above.

The concentration of unsolvolyzed ester remaining in each 50 nil. 

aliquot can be calculated in the following manner. Since 0.020 mole

of the ester was originally dissolved in 275 ml., each 50 ml. aliquot
50of the reaction mixture will contain x 0.020 or 0.00364 mole of^75

alcohol and ester together. Therefore we may write by the mass balance 

law:

na + nb " 0.00364 mole/5 0  ml.

and NaMa + NgMg = W/5 0  ml.

Substituting as previously described, we obtain for a 50 ml.

aliquot,
W - 1 120 /N. = --- =-~-- moles of unhydrolyzed ester/5 0  ml.

A  JLpv/

na -1and [ester] = tt-KcK mole li,:*U.UpU

W - 1.120 , -1= — 3̂0—  »u in.
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Tables VII to X summarize the kinetic data obtained from the 

methoxide catalyzed methanolysis of 4-bromo-4' -nitrobenzhydryl hydro­

gen phthalate.

Table VII

Kinetic Experiment No.1

9 .1 6  g., 0 .0 2 0 mole ester; 2 2 ,5 ml. methoxide stock solution 

(0.021 mole NaOCH^); 275 ml. initial volume; 50 ml. aliquots.

Sample
No.

Time 
(Hr. )

W 
(§• )

[Ester] 
mole lit ^

£n[Ester]

1 0.50 1.537 0 .0556 -2.89
2 1 .00 1.^59 0.0452 -3.10

3 1.50 1.402 O.O376 - -3.28

4 2 .0 0 1 .352 0 .0309 -3.48

5 2 .5 0 1 .314 0.0259 -3.65

Sample Calculation 

Sample No.l [.««] .

= 0 /0556 mole lit. -1
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Table VIII

Kinetic Experiment No.2

9.16 g. , 0.020 mole ester; 25.6 ml. methoxide stock solution 
(0.022 mole NaOCH^); 275 ®1. initial volume; 50 ml* aliquots.

Sample
No.

Time 
(Hr. )

W
(s.)

[Ester] 
mole lit.

in[Ester]
-1

1 0 .2 5 1.548 O.O57O -2 .8 6

' 2 0 .5 0 1.495 0.0500 -3 .00

5 0.75 1.432 0.04l6 -3-18

4 1.00 1.385 O.O353 -3.34

5 1 .25 1.354 0 .0312 -3.46

Table

Kinetic Experiment No. 3

9 .1 6 g., 0.020 mole ester; 24.7

IX

ml. methoxide stock solution

(0.023 mole NaOCH^); 275 ml. initial volume; 50 ml. aliquots.

Sample Time W [Ester] in [Ester]
Nb.' (Hr. ) (g.) mole lit. 1

1 O.I67 1.564 O.O598 -2 .8 2

2 0.333 1.497 0 .0503 -2.99

3 0 .5 0 0 1.440 0.0426 -3.16
4 O .667 1.397 O.O369 -3.30

5 0.833 1.357 0 .0316 -3.46
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Table X

Kinetic Experiment No.il-

9 .1 6  g., 0 .0 2 0 mole ester; 2 5 .7 mi-* methoxide stock solution 

(0.02if mole NaOCH^); 275 ml* initial volume; 50 ml. aliquots.

Sample
No.

Time 
(Hr. )

W
(s.)

[Ester] 
mole lit.

£.n[Ester]

1 0.153 . 1.5^7 0.0570 -2.86

; . 2 0 .2 6 7 1. i+68 0.0if61f -3.07

3 O.ifOO i.to6 0.0581 -3.27
it 0.533 1.368 0.0331 -3.

5 0.667 1.325 0 .0273 -3 .60

II With Hydroxide

The kinetics of the alkaline hydrolysis of if-bromo-if'-nitrobenz­

hydryl hydrogen phthalate were followed by a gravimetric technique 

similar to that described above. In all the kinetic experiments with 

aqueous hydroxide, the following method was used. Samples of the 

ester (if. 58 S*, 0.010 mole) were dissolved in volumes of anhydrous 

tetrahydrofuran (30 ml.) and these solutions were quantitatively added 

to volumes of aqueous potassium hydroxide solution (100 ml.) of differ­

ent concentrations. The solutions were immediately diluted to 157*5 
ml. (less than 10 ml. being sufficient). The solutions were kept in a 

constant temperature bath (25° - 0.5°). At intervals during the length 

of the reaction period, aliquots (25 ml.) were withdrawn from the 

reaction flasks and were quenched and the precipitates weighed in 

exactly the manner described previously.
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The concentration of the unhydrolyzed ester in each 25 ml. aliquot 

can be calculated in the following manner. Since 0.010 mole of the

ester was originally dissolved in 157*5 of total solution, each 25

25ml. aliquot of the reaction mixture will contain --"oV X 0 .0 1 0 oriPlO
0.001816 mole of alcohol and acid together. Therefore we may write by 

the mass balance law:

Na + Nb = 0.001816 mole/2 5  ml.

and NaMa + NgMg = w/2 5 ml.

Substituting as before, we obtain for each 25 ml. aliquot:

N - w - °-56°A “ 150

na[Ester] = 0 .025

. » ; mole lit. ' 15*75
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Table XI

Kinetic Experiment No.9

4.58 g., 0.010 mole ester; 100 ml. 0.U68 N potassium hydroxide 

solution (0.0468 mole K0H); 157*5 ml. initial volume; 25 ml. aliquots.

Sample
No.

Time
(Hr.)

W
(g*)

[Ester] 
mole lit. ^

£n[Ester]

1 O .583 0.715 0.0413 -3.19
.2 0.917 0.679 0.0317 -3.45

3 1.416 0 .6 3 2 0.0192 -3.95
4 2.084 0.581 O.OO56 -5-18

Sample Calculation 

Sample No.l [Ester] ss 0.715 - 0.560 
3-75

= 0.0413 mole lit. ^

Table XII

Kinetic Experiment No. 6

4.58 g., 0 .0 1 0 mole ester; 100 ml. 0.352 N potassium hydroxide

solution (0.0352 mole K0H); 137*5 ml., initial volume; 25 ml. aliquots.

Sample
No.

Time
(Hr.)

W
(g.)

[Ester] 
mole lit.""'*'

in[Ester]

1 0.75 0.715 0.0413 -3 .18

2 1.42 O .667 0.0285 -3.56

3 2.25 0 .6 1 3 0.0141 -4.26

4 2.83 0.585 O.OO67 -5.01
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Table XIII

Kinetic Experiment No.7

4.58 g•> G.010 mole ester; 100 ml. 0.234 N potassium hydroxide 

(O.O23U mole KOH); 137-5 ml- initial volume; 25 ml. aliquots.

Sample
No.

Time
(Hr.)

W
(g- )

[Ester] 
mole lit.

2n[Ester]

1 0.917 ' 0.7^5 0 .0493 -3-01

• 2 1.355 0.729 0.0451 -3-10

5 1.917 0.703 0 .0382 -3 .26

4 3 .000 O.67O 0 .0293 -3-53

5 h.083 0.637 0.0205 -3-89

Table XIV

Kinetic Experiment No. 8

4 .5 8 g., 0.010 mole ester; 100 ml. O .916 N potassium hydroxide 

(O.O9I6 mole KOH); 137-5 ml- initial volume; 25 ml. aliquots.

Sample Time W [Ester] in[Ester]
No. (Hr. ) (g.) mole lit. ^

1 0.333 0.724 0.0437 -3-13
2 O .667 O.676 0.0304 -3-49

3 1.000 0.649 0.0237 -3-74

4 1-333 O .616 0.0149 -4.21

5 2.083 0 .567 O.OOI87 -6.29
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