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ABSTRACT

éteady rotational flow of gases is studied in the plane and
in three dimensions. OStarting from the flow equations in orthogonal cur-
vilinear coordinate system, sets of restrictions on the geometries of
flow corresponding to different flow conditions are deduced.

For the planar flow, density, entropy and velocity are elim-
inated. from the flow equations to obtain a pressure equation in natural
‘coordinates. The fesuiting eqﬁation is a linear hyperbolic partial dif-
feréntial equation of the second order. An exceptional case is encoun-
tered when the pressure equation is not obtainable from the equations
of flow. 1In tﬁis case’the stream lines are demonstrated to be straight.

- The pressure equation for planar flow is solved explicitly
for vortex flow, flow through a parabolic channel and the flow through
a hyperbolic channel. Substitution of the solution into the flow equa-
tions yields properties of flow, namely velocit;, entropy and density.

For three dimensional flow the general floﬁ equations are
seen to reduce to two independent pressure equations. Three categories
of three dimensional flow are identified. Typical examples of flow for
each category are investigated in detail. 1In the first category flow
of gases emaqating from a spherical ball and from a cylindrical bar is
studied. Flow of gaSes swirling about the axis of éylinder and through
a hyperboloidal tunnel are investigated under the second‘éategory. Flow
of gases through a tunnel with elliptical cross sections is studied to
illustrate the nature of solution encountered in the third category of

flow.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, it is proved that the only flow possible, with the
stream lines as taken in the example of the third category of flow, is

incompressible and irrotational.

iv
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Chapter 1

INTRODUCTION

(a) Historical Sketch

Advances in the theory of compressible fluid flow have been
rather slow because of the basic non-linearity of the fundamental flow
equations. In particular, rotational problems have provided quite a
challenge due to ;he presence of thermodynamic variables like density
and pressure in the flow equations.

Friedmann [ 1924} investigated rotational and irrotational
flow of gases and was the first to deduce from the equations of state,
motion and energy some relationships that he termed the 'compatibility
equations'. The establishment of these relations, achieved by the elim-
inaticn of the pressure and the density from the equations satisfied by
the motion, was done by Friedmann for the most general case of unsteady
flows.

Crocco [ 1937] deduced a pressure theorem and obtained a
single differential equation governing the stream function for the plane,
rotational flow of a perfect gas. However, the treatment was limited to
isoenergetic flows.

Little progress was made in the next decade as far as the
solution of the rotational problem was concerned. Prim ([1947], [1948],
[1949]) carried out an extensive investigation into the nature of rota-
tional flow. His work has the status of a landmark. Munk and Prim [1948]
discovered the canonical equations of motion and the substitution prin=-
ciple that made possible a simplified formulation of the flow problem.

1 v
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Munk and Prim showed that for steady flow of gases, with equation of

q
state in the product form, if reduced velocity vector w defined as X ,

a
where a is the ultimate velocity magnitude, is used in place of velocity
vector q, then the density can be eliminated from the general. equations.
The field properties of the flow are then completely defined by the dy-
namic equation and the continuity equation. These constitute a set of
four equations in four dependent variables, namely the three components
of w and pressure. Given a soiution of this set of equations, one can
solve the syétem by further preassigning entropy. This canonical system .
of four equations was obtained independently by Hicks, Wasserman and
Guenther [19477. |

Prim utilized inverse methods to obtain the flow solutions.
The solutions sought were those defined by the differential equations
and were prescribed having certain geometrical or kinematical properties,
rather than prescribed boundary conditions. The problems that Prim con-
sidered belong to plane flow fields, axially symmetric flow fields and
truly spatial flow fields. Some of these problems are as follows:

(i) Three parameter generalization of the Prandtl-~Meyer
Corner flow.

(ii) Investigation of conditions under Which the stream
lines of flow are isometric curves for the perfect.gases.

(iii) Investigation of the conditions under which the
stream lines coincide with lines of constant speed for gases with
product equation of state. This work was carried out by Nemenyi and
Prim in a concurrent manner.

(iv) Investigation of generalized Beltrami flows.
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(v) Generalization of Crocco's stream function equation
for plane and axially symmetric flows.

(vi)  Generalization of Créccd's pressure theorem for
plane and axially symmetric flows.

(vii) Generalization of Poritsky's superposition principle.
Berker [1956] rederived the compatibility equations which were discovered
by Friedmann. Berker, however, considered the specific case of steady
motion. This results in a coﬂsiderablevSimplification»of the compati-
bility conditions.

Ozoklav [(1959, (1964)] applied the inverse method technique
to Berker's compatibility equations. dzoklav considered the flow through
a hyperbolic channel, and later, extended the work for plane and axially

symmetric flows.

(b) Scope of the present work.

It is apparent from the survey of the literature that not much
attention has so far been directed to three dimensional flow. Very few
exact solutions are available. Furthermore the method of solution, so
popular with the investigators thus far, suffers from a serious drawback
in that 'it assumes a velocity form a priori.  For a fixed family of
stream lines an infinite family of velocity fields is.poésible. The
velocity field, therefore, is not unique for a given family of stream
lines and pressure distribution. [Prim (1952)]

The present work is intended to be a comprehensive treatment
of the rotational flow problem. The problem is discussed from the twin

points of views of dimensionality and exactness.
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In section 1 of chapter 2 the non~linear partial differen-
tial- equations governing the flow of inviscid and thermally non-conducting
gases subject to no extraneous force field are forﬁulated in general
orthogonal curvilinear coordinate system. In section 2 of this chapter
the complex variable technique for finding the geometry of the flow
(in plane) is explained. This technique was first employed by W. Tollmién
(1937) and later used by P. Nemenyi and R. Prim (1948).

Chapter 3 deals with plane, steady, rotational flow of gases.

In first part of this chapter (secfion 2) Qe invéstigéte
the following: |

(i)  The conditions under which the étream lines coincide
with lines of sonic velocity magnitude for any gas.

(ii) The conditions under which the stream lines coincide
with lines of constant velocity magnitude for any gas. These conditions
were investigéted by Prim and Nemenyi (1952) for only those gases which
obeyed the product equation of state. This, therefore, represents a
generalization of Prim and Nemenyi's result.

(iii) The conditions under which the stream lines are con-
centric circles or parallel straight lines.

(iv) The conditions on pressuré, density, velocity, speed
of sound and vorticity if any of the first four-vériables is constant
along the stream lines.

(v) The conditions under which the orthogonal trajectories
are isobaric curves in an -orthogonal isometric net.

(vi) The conditions on straight stream lines in orthogonal

isometric net.
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In the second part of chapter 3 (Seétions 3 and 4) we develop
a linear hyperbolic partial differential equation of the second order in
pressure for the general natural coordinate system forﬁed by the family
of stream lines and their orthogonal trajectories. We find that this
pressure equation, which fails only for the case of straight stream
lines, gives us the unique pressure distribution for a given set of
boundary conditions. We find the velocity, the density, the entropy
and Mach number in terms of the pressure distribution in section 4. We
find that whereas the Mach number field is unique for a given pressure
distribution and the family of stream lines, the other variables velocity,
density and entropy can be chosen in an.infinite number of ways when the
equation of state for the gas is in the product form. These results,
therefore, satisfy Prim's substitution principle.

In section 5 we soive the flow problem when the stream lines
are straight. This is the case when pressure equation is not obtainable.

In section 6 we study the different forms of isometric nets
and find the pressure equations which hold for these forms. These pres-
sure equations are solvable for the correspondingly prescribed boundary
value problems.

In secFﬁons 7, 8 and 9 we study in details the vortex flow,
the flow ﬁhrough a parabolic channel and the flow through a hyperbolic
channel. The study of flow through a hyperbolic channel was done by
Ozoklav (1959) by using the inverse method.

Chapter 4 deals with the solutions of flow problems in three
dimensional space without any restricting assumptions of symmetry which

make a reduction to two independent variables possible.
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In the first part of this chaptef (sectionsll and 2) we
develop the three pressure equations, of which any gwo are independent.
We obtain these pressure equations from the equations of flow in natural
coogdinates (g,m,¥) with metric coefficients 8128, and.g3. Here 8y is
the scale factor along the stream line. We divide the three dimensional
problems in three categories |

I. When %81 _ %81

=0
an S
- II., Either EEL or EEL is zero
- W
. % %
I1I. Neither an nor 3¢ is zero .

- In all these three categories pressure distribution is
uniquely defined by the properly posed boundary value problem. |

In section 3 and 4 we obtain the expressions for velocity,
the density, the entropy and the Mach number as functions of pressure;
and study the choice of coordinate systems.

In sections 5 and 6 we solve for the flow of gases emanating
from a spherical ball and a cylindrical bar. These cases belong to the
first category.

In sections 7 and 8 we study the flow of gases swirling about
an axis of cylinder and the flow of gases through a hyperboloidal tunnel
with circular cross sectionsf These are the examples of flow that belong
to second category.

Finally, we study an exampleof the third category problems

and solve the flow of gases through a tunnel with elliptic cross sections.

This example isstudied to illustrate the nature'of_solution encountered
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in this category of flow.

Finally, we prove that the only flow possible when the
stream lines are the cﬁrves of intersection of the hyperboioids of one
sheet and the hyperboloids of two sheets is incompressible and irfotational

flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

: PRELIMINARIES

Section 1. Equations of fluid motion in general orthogonal

curvilinear coordinates.

The differential equations governing the three dimensional
unsteady motion of a compressible fluid, in the absence of external

forces and heat conduction, are:

pa =~ gradp : (21.01)
~ (Conservation of momentum)
%ff + div (pg) =0 (21.02)
~ (Conservation of mass)
%%'+ q * grads = 0 (21.03)
~ (Changes of state are adiabatic)
o = olp,9) (21.04)

(Caloric Equation of State)
wherein a denotes the acceleration vector, q the velocity vector, p the
density, p the pressure and s the specific entropy. In this section we
express these five non-linear partial differential equations in ortho-
gonal curvilinear coordinates [Lamb (1932)]. We consider the orthogonal
curvilinear coordinate system (g, s ) obtained from the three families
of surfaces

= c mN=c,. and ¢‘= c.. Let

(VA )

1’ 2 3
X =X (g; ur 1[“‘) N
y=vy (& n, ¥) | (21.05)
zZ = z (g: s ’Lb‘) ' ‘

be the equations of the three families of surfaces. The squared element
of arc length in this coordinate system is of the form

2, - = - .
as® = g7(5,n,%) ag™gi(5,mMan+el(g,nar?  (21.06)
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where 812 By and gy are the metric coefficients. Now through any point
P pass the three curves which are mutually orthogonal. Along the curve
of intersection of 1] = const and ¥ = const varies E-only. We call it a

E-curve. Likewise mM-varies along T~curve and ¥ varies along Y~-curve.

X

Let e be the unit tangent vector to the curve along which € increases
in the direction of & increasing; e, the unit tangent vector to the

curve along which 7 increases in the direction of 1 increasing and eq
the unit tangent vector to the curve along which | increases in the dir-

ection of ¥ increasing.

In these coordinates, let

g= ,evl u(g’ M w" ) + iz V(g) s 'Lb" t) + ’ev3 W(g: s 1{}‘, t)
(21.07)
Using (21.07), we get

a —_—
< =

¢hg
+
N
2.
h ——
la
I
[p]
[+V]
+
[1+]
[\
+

where
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du u ou Vv Jdu w Jdu 1 agl 9 og 1
31:_+——+*S—+_W+m UV —= - v 20+
ot g, of g, N g3 M g8, an 98 8,83
%uw % 2%
3y o )’
v u dv Vv oV W oV 1 og agl 1
a2='gz+—-g:+-————+——--5{—[y+———— %uv_l_uza +
g1 05 8, oM 84 818, 0§ n 8,83
G B
oY an |2 (21.08)
W u oW VvV oW W oW 1 ag3 2 agl 1
%=§+*?+*§"ﬁw‘—$UW“'Uﬁf+““
g, 08 8, 0N 8,4 183 o8 8283
w3 2%
on N (?
and
1 d d d
. N N £ 2 b2 .
div (pq) 55,8, | 52 (g,840u) 5 (g,850v) + 57 (818,0%) (21.09)
Also
1 2 1 ¥ 1
= —_——+ — —+ —_ —
grad 6 = e g, 95 2 g, N 23 gy W (21.10)

vhere p is any scalar point function.
Putting the results (21.07)~— (21.10) in the vector equations of motion
(21.01)— (21.03) we get the five non-linear partial differential

equations in general orthogonal curvilinear (g, s ¢) net as:

1

d3u u dou VvV Jdu w du 1 agl 2 ag2
S e T, e, 3Wa~vg 82,
g, 95 8, on g4 818, n 8183
og o8 1 op
1 2 %e3
— + — .
guw T $ 5.0 % 0 (21.11)
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av+u 6v+v av+w Bv+ 1 g B_g2 2ig_3 1
—_—t——=+t——F T Yvw T - —
ot g, 9 g, N &4 W 8,83 Y an 8,8,
‘ dg dg 1 3 : ’
%“V 3 T am | g,e on (21.12)
oW udw VvV OW W ow 1 Bg3 2 agl 1
—t o — ot — — p— — F —— —2 .yt ==} +
og og 1 o _
——1 - 2 —-g + —_— ]..1
ng o v 3 g3p b (2 3)
op 1 ) o) _ 0 (
— At 1= (g + — + = = 1.

os U 38 Vv o8 w Os

3t g, 9% g, M g3gv‘- - (21.15),

These five equations and the state equation

p=rp (pss) ' (21.16)
form a system of six equations involving six unknown functions.

Since 81> 8y and 83 correspond to a triply orthogonal set of
surfaces in Euclidean 3-space, these metric coefficients satisfy a set

of six partial differential equations of Gauss [Moon and Spencer (1960)]:

d 1 ng 2 1 3, 1 g, 38, .-

—_— (= — v — —%) + =

du* (8i Bul) * ouJ (gj BuJ) ;E&F du 0 (21.17)
and

a%, 1% % i 3%, d;

duJ duk —'E; du S;T 81 ud SEE ’ (21.18)

where i,j,k are 1,2,3 respectively or any cyclic permutation and ul,uz,u3

are &, 1, ¥ or any corresponding cyclic permutation.
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Sectionvz. TheAgeomgtry of ofthoggpal curvilinear net in
plane.

In this section we give an account of % method which was
first employed by W. Tollmien (1937) and later used by P. Nemenyi and
R. Prim (1948).

We consider the plane orthogonal curvilinear net (g, )
which is composed of two families of curves § = constant.and T = constant.

The squared element of arc length in this coordinate system is given by

as® = gi(5, ) ag® + g5 (g, M) an®  (22.01)
Here gl(g, n) and g, (g, 1) are the metric coefficients such that the
necessary and Sufficient restriction on 81 and &y to correspond to an
- orthogonal set of curves in Euclidean plane [Moon and Spencer (1960) ]

is given by Gausss equation

ol ag2 0 1 og,

—— —

—_— + — | — =0 0 |
2t |g, 3 § on| e, on (22.02)

By definition

2 2 |
g, (8§, m) =ﬁ\/k§§) +‘(§% | _(22.03)

g, (8, n) =’\/<‘§')ﬁ)2 4(%% ’ | (22.04)

Also since the curvilinear net (€, m) is an orthogonal net, we have

S——p——. . m— + . -— 0 [ ]
2 " an % (22.05)

Now introducing the complex variable z = x + iy, we get from (22.03) and

(22.04)
9z _ ia '
5 g, e | (22.06)
and
oz _ iB
5 g, e (22.07)
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wherein O and 8 are real functions of § and 7.
Putting (22.06) and (22.07) in (22.05), we get
+ . . —
818, {cosa cosf sinQ 51né} 0
or
cos (p-a)=0

which implies that

sin (B -~ a) =11
Whence

o1B = 1O e:‘.(B -a) _ + 510 (22.08)
In the sequel, we take eiB = ieia ' - (22.09)

Eliminating z between (22.06) and (22.Q7) and using (22.09),

we get S iay _ 9 . iy _
on (816 ) -3z (ig,e) =0
or
agl o ag2 o
—t + . —_— . 3 £ + —_——
on Tis i T ey (22.10)

By separating (22.10) into real and imaginary parts, we get

da 1 agl
— e L .1
8 g, O (22.11)
and
Faled 1 ag2 -
R S o (22.12)

Having thus obtained the set of relations (22.06), (22.07), (22.09),

(22.11) and (22.12) the geometry of the net can be obtained by the know-

ledge of two limitations on the metric coefficients gl(g, n) and 8y (g,Tﬂ.
Let us assume that we are given one of the limitations on

metric coefficient 8y (g, ﬂ) as:
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14

gg_z =0 - | ' - (22.13)
From (22.12) and (22.13), we get

g, =8, (n) (22.14)
and |

a=a (g) (22.15)

Using (22.15) in (22.11), we get

ee o’ (e) = S8
g?_a(é) -

or
8,8 = 27 () [, (wen + 4(2) (22.16)
where ¢ is a real arbitrary function of E.

: Using (22.14) and (22.16) in (12.06) and (12.07), we get

5 - i o’ (é)ng (n) an + ¢ (é)} 1) (22.17)
and
‘gﬁ = 1ig, eia(g) (22.18)

Using (22.18) and integrating (22.17), we get
z=1 em_(g)J gz(n)dﬁqu (2) 8 g+ i

where C1 + iC2 is a complex constant of integration.

2

or _
X =J $(g) cosa(g)ds - sina(g)ng(n)dn e, (22.19)
and . | . - o
y = Jb(é) sina(g)dg + cosa(é)J g,{ndn + ¢, (22.20)
Equations (22.19) aﬁd (22.26) describe tﬁg geométry of orthogonal curvi-
linear net. Since 4(£) is an unknown function, the geometry of the net

depends ﬁpon one more condition on the metric coefficient 8- In the
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particular case when the condition on g1 is such that ¢(€) = 0 ox

$(&) =.(const ).(a’(g)), we get 7 = const. as the family of concentric

circles which in the limiting case is a family of parallel straight lines.
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CHAPTER 3
STEADY PLANE ROTATIONAL GAS FLOW

Section 1. The flow equations in natural coordinates.

In this section we set the equations governing the steady,
plane and rotational gas flow in natural coordinates consisting of the
stream lines T = const. and their orthogonal trajectories &= const. i.e.

we take these two systems of curves as our coordinate curves. Let

X =x (‘i;”ﬂ)
' (31.01)

Y=y (§,ﬂ)-

be the equations of these two families of curves.
In this way we use the cylindrical coordinate system (£,1,z)
based on the plane orthogonal net (§,n) so chosen that the velocity vec=-

tor q has the components (u,o0) at any point P or if we take e, as the

unit vector tangential to the curve T = const. in the direction of &-

increasing and e, as the unit vector tangential to the curve § = const.

in the direction of T-increasing, then g =u(§,n) ) (31.02)
‘The squared element of arc length is of the form

2 _ .2 2, 2. 2 ‘

ds® = g7 (€,m)dg" + g2(g,n) dn (31.02)

Since the plane flow is steady, equations (21.11) to (21.16) for such a

flow are:
-5 __.O .

3 o 3E (31.03)
u2 agl 1 o
—_ = == = 1.0
g, o 5 3 - (31.04)
(0 ) = | '
52 (gzpu) 0 | | | | (31.05)
oS
S 0 (31.06)

16
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p= plp,s) | (31.07)

vhere the metric coefficients & and g, satisfy

o) 1 ag2 al1 agl )
—— — —, 4+ —f— —— =3
% |5, = o z, 0 (31.08)

In the case when the motion is rotational our knowledge is
limited and does not extend much beyond the important results of R. Prim

(1952). We shall study such a flow in chapters 3 and 4.
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Section 2. General Theorems
o ’ Theorem I, If the velocity is sonic throughout

the two dimensional steady compressible fluid flow, then the stream

lines are a system of concentric circles or in the limiting case a

family of parallel straight lines.

Proof: Since the velocity is sonic throughout the flow,
we have by (31.06)

u (§,Tl) =c (P(%;ﬂ),s(n))

Here c is the local speed ofvéound, given by c2 =‘g%
or

Bu _ 3 30

. Putting (32.01) in>(31.03), we get
2 2
3o 3t T o€ 0 or 3t |€ 30 T o0 0 (32.02)
oc c?

Now ¢ 3p +-—E > 0, therefore, from (32.02) we get

2 . -

3¢ = O (32.03)
Putting (32.03) in (31.03), we get

:0—1—1- = @- =

de 0 and 3 0
Therefore, if u(g,n) = c(€,n), then

u

-0 | ‘ _(32.04)_

op -

=0 (32.05)
and . a .

o0

3~ O ‘ (32.03)
Substituting (32.03) and (32.04) in (31.05), we get

og

52 _ _
SE 0] or g, gz("r]) | (32.06)
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which is one of the two limitation$ needed to find the geometry of flow.
From (31.04), we get

=1__ o
on °

o

Now the right hand side of this equation is a function of 7 only, there-

fore, differentiating partially w.r.t. £, we get the second limitation as:

'g‘zgﬁ (log g,) =0 (32.07)
Equation (32.07) is satisfied by setting

g; (8,m) =b(§) c(n)  (32.08)
Putting (32.08) in (31.08), we get |

en) /

/87 w0 -0
Whence b(E) # 0, c(n) = A gz(n) where A is an arbitrary constant.
or c(n) = A.[ gz(n) dt B where B is an arbitrary constant.
Therefore; ) |

g;(5,m) = b(g) [Afgz(n) dn + 1% (32.09)
and

g, (&m) =g,(n) | (32.06)

Putting (32.06) in (22.12), we get

-

g% =0 i.e. a=al(g) ' ‘  (32.10)
Putting (32.09) in (22.11) and using (32.10), we get

b(g) = -2&) |
Therefore,

g, (&m) = -a’(é‘)fgz(n) an - 5 «18) (32.11)

Comparing (22.16) and (32.11) we find that the unknown function ¢(§) in
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(22.16) is given in terms of a? (€) i.e.

$(8) = -2 a”(g) | | (32.12)
So from (22.19) and (22.20), we get

x =c; - sina(8) [fe (man + 7]  (32.13)
and

y = c,= cosa(g) [fg,(m)an + 3 ] S (32.14)

which are the equations of two families of curves.

Eliminating Eand 7 from (32.13) and (32.14), we get

(x = e)?+ (v - e )% = [fg,(man + 372 © (32.15)
and |
-Z——:——El = - cota(g) (32.16)
1

From (32.15) we conclude that the stream lines 7 = constant are concen=
tric circles which have A = 0 for the limiting case. From equation
(32.12) when A = O,'a’(g).= O i.e. @ is a constant and, therefore,
equation (32.16) gives a system of parallel straight>lines; So in the
limiting case when A = O, the orthogonal trajectories and, therefore,
the stream lines are a family of parallel straight lines.

In the case when A # 0, from (32.09), we get EEL +
, og
and g%l # 0. Therefore, from (31.04) %% #0 i.e.p= p(n). So when

0.

A# 0 (i.e. in the case of concentric circles as sStream lines), p = p(n).
However, in the case when A = 0, we get from (32.09) that

S—L = 0 and, therefore, from (31.04) EE = 0., Since 92 = 0 also from
" n o€

(32.05), we find that p = constant in the case of straight parallel

stream lines.
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Theorem I1. If the velocity magnitude is constant along each

stream line in two dimensional compressible fluid motion, then the only

possible flow fields are the general vortex flow or in the limiting case

flow in parallel sﬁraight lines.

Proof: This theorem was first proved for éhe special case of
a perfect gas (Nemenyi and Prim (1948)) and was later generalized for
only those géses which had a product equation of state i.e. p = P(p) S(s)
[Prim (1952)]. 1In both the prbofs the method employed was the same which
we have mentioned in section 2 of Chapter 2.

Here, we have this théorem for any gas with no restriction
on the state equation and use the same method.

du

We are given that u = u(n) i.e. Sg = 0. By substituting

ou 0 in (31.03) and using (31.06), we get

38
§§'= 0 and %§'= 0

So the assumption of this Theorem gives us (32;03), (32.04) and (32.05)
by which we established in‘Theorem I that the only éossible flow fields
are the general vortex flow or in the limiting case flow in parallel
straight lines.
Corollary 1

- If pressure or density is constant along each individual
stream line in the flow, then the result of Theorem T (or Theoremiﬁ)-also

holds.

Theorem 111, If one of the four unknown scalar functions u,

p, p and ¢ (the local velocity of sound) is constant along each stream

line of the flow, then the other three unknown scalar functions and the
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vorticity vector w are also constant along each stream line of the flow.

Proof: From equations (31.03) and (31.06), we get

and

Therefore, we arerequired to prove

(1) 20_- =% _,

o of
and oc _ | op _
L - o=pP =g
=13 of
oW
(ii) 2c _ —
3¢ °=>ag 0
To prove (i) we know
c = c(p,s)
or
B _ 3¢ 30,3 3 _dcdp (.08 _
55 o0 0% s o ap oz \“og O by 61.06)
Since gc > 0, therefore,
op
9C _ =3 90
8 57 0
(ii) Finally, since the vorticity.vector W=V X q, thergfore,
w = S - (g, u) along the diréction perpendicular.to
g,8, on 1
the plane.
or
w=-1[u (logg,) +&
&, on 1 on

Differentiating partially w.r.t. £ and partially w.r.t. 7, we get
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ow 1 agz B Bu A au B 62'
v 2l ] (32.17)
ogan
and
20 1 2, 3 ( ) 3u 1 aua( ) 32 : )
— =% [u—(logg,) t— 1 -— [5-3H{1log g,) T ux=7 (log g
2 1 on 9 1 d 1
n g2 on  an S gy M i
Bzu
+ — : .
vl (32.18)

Using (32.06), (32.07) and (32.04) in (32.17) and(32.18), we get

oW’ d
—-— = ——— - O
3E =0 but 3 #

Therefore the vorticity vector ® is also constant along each stream line
of the flow.

Theorem IV (Converse of theorems I and II). 1f the stream

lines are concentric circles or parallel straieht lines, then either

au 0 oru = c(p sl

Proof: We consider the'two cases separately.
Gase I. (Stream lines form a family of concentric circles).
In this case 1 = constant are the concentric circles ‘and
g = constant are the radial lines.. .
The squared element of arc length for this system is
ds? = n? ag? + an? C o (32.19)

Using 8, = T and 8,y =1 (since'gl and g, are mon-zero and positive) in

(31.03) - (31.06), we get:
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Quplapg 32.20
Y38 p g . ( )
W _1»

Y p AN (32.21)
d _ L '

sz (pu) _ ( )
98 - 32.23
g = © | (32.23)

From (32.22), we get

Y3 P e
or
p3E " "u o (32.24)
From (32.20) and (32.23), we get
)
Qu e 80 g (32.25
U3 o eg | )
. Putting (32.24) in (32.25), we get
' 2
ou ou
- — ===0
u 0§ u a8
or
3 2
Lry-S71=0 (32.26)
o€ u 5
U C
From (32.26) we conclude that either %i— =0 oru - u_- = Q

i.e. if the stream lines are concentric circles, then either <=0 or u = c.
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Case I1. (Stream lines are parallel straight lines).
Let 1 = constant be the stream lines H to &S-axis and
€ = constant be the orthogonal trajectories ‘I to n~axié. Squared ele-

ment of arc length is:

2 _ 22 2
ds® = d&° + dn (32.27)

so that g, = g, =1.

n
~
> 1):Co-n.st.
»&
fo) -l
f:Con;t.
Usirg g, =g, =1 in (31.03) - (31.06), we get
ou 1 dp
_ 4 = =

vt 50 (32.28)

o _ |

an = © (32.29)

o =

ag(pu) 0 (32.30)

S _
Y N L (32.31)
ine £ 80 - 1 3u : ;
Using o 2 = -3 3z as obtained from (32.30) in (32.28) taking in account
h
that s _ o (32.31), we get
og
2

(- eloss)y o

oS u
i.e. Either gu _ 0 oru=c

3g o
1 59586

UNIVERSITY OF WINDSOR LIBRARY
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So if the stream lines are parallel straight lines, then either

=0 or u = c¢.

Sl

Theorem V. If the orthogonal trajectories of stream lines

are isobaric curves and the orthogonal curvilinear net is isometric,

then the stream lines are simple source flows or flow in parallel

straight lines.

Proof: Since the orthogonal trajectories given by g =

constant are the isobaric curves, therefore, %% =0 (32.32)
Also by assumption g, (g,m) = 8, (g,m) = g (€,m) (say) (32.33)

Using (32.32) and (32.33) in (31.04), we get

ég. =
S 0 (32.34)

Putting (32.34) in (31.08) and using (32.33), we get
22
=0

which is satisfied by setting

Art+B

g(g,m) =¢ > (32.35)
where A and B are the constants.
Putting (32.35) in (22.11) and (22.12), we get

2 _ _ |

=0 . oo . . . 32,

3 . (32.36)
and

o0 .

o A (32.37)
From (32.36) and (32.37), we get

@ =An+tc ' (32.38)

where ¢ is a constant.
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Putting (32.38) and (32.35) in (22.06) and (22.07), we get

dz _ AGiB 1 aryc) ' (32.39)
ag e e .

~and
-%% = 1 A5TB ei(A”Jrc) (using 12.09) (32.40)

Integrating (32.40) and using (32.39), we get

. AE+B oA (Ante)
Z = + (k, + ik, ) where k, + ik, is a constant
A 1 2 1 2

By separating into real and imaginary parts,we get

AE+B
x = S—— cos (AnfC) + k - (32.41)
and
JASTB
y = =5 sin (Aqic) + k, (32.42)

which are the equations of the two families of curves.

Eliminating &&y from (32.41) and (32.42), we get

(= k)2 H (y - k)2 =gy - P | (32.43)
and
y -k,
ok, can (Antc) (32.44)
1

From (32.43) we conclude that the orthogonal trajectories are coricentric
circles which in the limiting case»when A = 0 become a family of pérallel
straight lines. From (32.43) we conclude that the stream lines are lines
through (kl, k2) and in the limiting case when A= 0 become a family of
parallel gtraight lines.

So the two cases are when A = O and when A # O. In the case
when A # 0, from (32.35), we get %% # 0 and hence %E # 0 though é% = 0.

Therefore,
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when the stream lines are radial lines,p=p(E). 1In the case when A = 0,

from (32.35), we get

o8 _
5 0 (32.45)

Putting (32.44) in (31.05), we get:

p o u og

Putting from this in (31.03) and using (31.06), we get

o5 d 3

or u==a<a

Therefore, again in the limiting case p = constant.

Theorem VI, When the stream lines are straight lines and

orthogonal curvilinear net is isometric, the stream lines must be a

family of radial lines or a family of parallel lines.

Proof: As the stream lines are straight, the stream line
inclination angle a given by (22.11) and (22.12) must remain constant
along each stream line i.e.

9% _

og
Putting (32.46) in (12.11), we get

0 - (32.46)

08,

=0 o o 2.
on L . (32_47)

Putting (32.47) in (31.04), we get

.b_Eco = s
or p =
3 p = p(&)
i.e. if stream lines are straight, then the orthogonal trajectories are
isobaric.
Therefore by Theorem V, the result of this Theorem VI is
established.
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Section 3 Pressure Equation

To obtain the solutions of problems in the case of plane,
steady and rotational gas flow Ozoklav[(1959), (1964)]used the compati-
bility equations for steady gas flows which were obtained by Berker
(1956). These equations contain only the velocity field q and are
obtained by eliminating the pressure, the density and the specific en-
tropy from the equations (21.01) - (21.04).

However, we elimiﬁate the velocity, the density and the
specific entropy from the non-linear partial differential equations
(31.03) — (31.06) which govern the plane, steady and rotational flow
of gas in natural coordinates and thus obtain a linear partial differ-
ential eduation of second order in pfessure.

From equation (31.05), we get

(g,0u) = ¢ (n)
where.¢ is an arbitrary fuﬁction of 1

or

~¢(n) ‘ ' (33.01)

Substituting for p from (33.01) in equation (31.04), we get
2 agl B g U ap

T R

OQIC.‘

Aséuming that u # 0, we get
818, ) op
%, ¢(n) am
an

u = (33.02)

Equation (33.02) expresses u in terms of p.

Substituting for u from (33.02) in (33.01), we get:
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$2(n) g, 1 o
p=——y — — (33.03)
8,8, oM 2o
on

Equation (33.03) expresses p in terms of p-

We eliminate p and u from (31.03), (33 02) and (33 03) to

obtain
/
1 gy, ,EE 2 [ &8, op o
¢(n) o “an ) E¢(n) g om
' on ‘ on
or
1 gy 62p 3 op (
- == +t= =+ .04
o e, J|oEen T e E) R 33.04)
; .
8.8 g
_ %152 _ 2
where G agl B/Bn(log gl)
m

1f b/agl # 0 or » (since p and g, are non-zero and positive), then the

pressgpe function p(&,m) in steady, plane and rotational gas flow is

given by:
2
sp ;93 _a_p_ _a L 5 0
a8an Tom +2 (1og g ;) (log G) N (33.05)

Equation (33.05) is a linear hyperbolic partial differential equation
of the second order in canonical fprm. In this equation pressure p is,
the dependent variable and the natural coordinates g,m are the indepen-
dent variables. For a particular flow problem this equation can be
solved to get the pressure as a function of position. |
However, the exceptional cases when the pressure field is

not given by (33.05) are:
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(i) 1 g
8. =0 or 30 =0 (++ g, is non-zero and
| 8 positive)
on om ‘

i.e. when the local radius of curvature of the stream line is zero.

This case is of no physical importance.

(ii) 1

I
—_— = or _— =,
on on

This is the case when the local radius of curvature of the

stream line is infinity di.e. a case of straight stream lines. In

this case pressure is the solution of the equation.

ap _ '
T 0 | (33.06)
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Section 4. Velocity, density, entrépy and Mach number for

the flows whose pressure is the solution of equation (33.05).

From the previous section we know that if the radius of cur-
vature of the stream lines of flow is not infinity, then the pressure
function is given as a solution of the pressure equation (33.05). 1In
this section we consider only such flows. Let

- p=P(gm) o (34.01)
be the solution of equation (33.05) for a given problem of plane, steady

and rotational gas flow. Substituting (34.01) in (31.03) and (31.04),

) we get:
du_ _ g
pu Y (34.02)
and
1 cP ( )
™ 34.03
-9 n
an(log g;)
Dividing (34.02) by (34.03), we eliminate p and get
.l. -a—u == _-a— 'QP; . '—'l
% T Tan (log g,) Y
on
Integrating w.r.t. £, we get
u(g,m) = £(n) F(g,n) (34.04)

where f(n)_is an. arbitrary function of 7 and F(@,n) is a known function

of £ and 1 given by 3
~ire- S ) S S R
ﬁan (log )] * (5 ] dg

F(E,m) = e (34.05)
. "Equation (34.04) gives us the velocity distribution for the flow

problem.
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Substituting (34.04) in (34.02) or (34.03), we get

p(g,m) = c(E.m) . (34.06)
£%(n)
wherein £(1) is the same unknown function used in (34.04) and G(E,n)

"-f [5-(10g &) I"[SE+ S50z
1

' _ oP , on
G(é;’ﬂ)— ‘e
am 2 (34.07)
aT](105;; g;)

is a known function given by

Equation (34.06) gives us the density function for the flow. Now we
find the Mach number at any point in the flow region. By definition
Mach number at any point is given by

M= (34.08)

o |

Where u is the local speed of gas there at that point and ¢ is the
speed of sound.

From (31.05), we get:

%E(log p) = - %EEIOg (gZU)]

Using (34.04) for u in this equation, we get

3 _ 2
ag§1°g p) = ~3glloe (g,)F)] ‘ (34.09)
Putting for u from (34.04) in (31.03) and for E-%% from (34.09) in
: (31 03)," equatlon (31. 03) is ’
_ Bg
F{ — F —_— 2
or . *
M2=y.3=1+ : (log gy) + g
o2 o
a§(1°g F)
or
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[ e 1 | |
M '\/1 + o (1log g2)> gE(IOg . (34.10)

Substituting for ?(g,n) from (34.05) in (34.10), we get

'g: (log g,) oF

M=f 1SSt o ' (34.11)
S (log g,) <
omn 1Y g

Equation (34.10) or (34.11) gives us the Mach number at any point in
the flow in terms of the pressure there.
Now since the flow at any peint is subsonic, sonic or super-

sonic according as M § 1, from (34.11), we get:

<P,

[2:(10g 5,)] + &

AV
o

(34.12)

3 . P
[an(log g,)] gg

according as the flow at any point is subsonic, sonic or supersonic.

Finally from equation (31.06) we find that the entropy
is constant on each stream line i.e.

s = U(n) (34.13)
wherein ¥ is an unknown function of T« We have in both the velocity
function and the density function given by (34.04) and (34.06) an
unknown function f(n) involved. Also, we have in entropy function
‘given by (34.13) another unknown function Y(n) involved. These two
functions are non-vanishing differentiable functioms and remain constant
on each stream line since q+ grad ¥ = 0, q.grad £ = 0.

We cannot determine these two functions uniquely from the

knowledge of state equation of the gas in general. For a given gas
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when the pressﬁre function is given by equafion (34.01), we have many
flow fields possible and the number of these flow fields depends upon
the state equation of the gas. There are two types of gases.

Type I: Gases obeying the product equation of state.

Type I1: Gases having the equation of state not in product
form.

For gases having the product equation of sfate the unknown
functions £(n) and Y¥(n) can be chosen in an infinite number of ways
S0 £hat the state equation of the gas holds. Let

p=R(p)s(s) (34, 14)
be the equétioﬁ of state for a gas of type I.

. Substituting for p, p and s from (34.01), (34.06) and

(34.13), we get
g[P(g,n)j = £(n) s[¥(n)] | (34.15)

As the left hand side of this equation is a known function
of n say a(n) but the right hand side is the product of two unknown
functions of 1, therefore, we can have an infinite number of choices of
£(n) and V(1) under the restriction that (34.15) holds.

Therefore, corresponding to a unique pressure distribﬁtion/
we get an infinite family of flow fields ‘sharing the same stream lines
if the equation of state is of the product form. From this we find that
our results satisfy the Prim's substitution principle [Prim (1952)].

| For the gases of type II the unknown functions f(n) and

U(n) related by the state equation

p = p(p,s)
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may be uniqﬁely determined as illustrated by.thé following example. Let

p = (aS}+ bs)" ‘ ‘ - (34.16)
be the equation of state not in the product form. Here a and b are
constants and T is any fve or ~ve integer or a fraction.

Differentiating (34.16) partially w.r.t. € and using equation

(31.06), we get:

n~1
op . na “{ .l .90 ,
Y 7o o (34.17)

Substituting for p and p from equations (34.01) and (34.06), we obtain

2 op,1 L1 o1
na oz -l V'3 T E(n) (34.18)
(p) n 3¢

Since left hand side is known, the function f(n) is uniquely determined
from this equation. Substituting this value of f(ﬂ) in (34.16), we ob-
tain the function w(rp in a unique way.

Therefore, when the equation of state is of the form (34.16),
then the velocity field, the density field and the entropy field are
uniquely determined for flow fields sharing the same stream lines, the

same pressure field and the same Mach number field.
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Section 5. Plane steady flows whén pressure.is not given

as a solution of the pressure equation §33.0§)

We know that pressure of a given problem 'is not the solution
of equation (33.05) vhen the radius of curvature of stream lines of
flow is either zero or infinity (section 3, page 29). Therefore, in this
section we study the case when the radius of curvature of the stream
‘lines is infinity i.e. the stream lines are straight lines (the other
case of zero radius of curvature being of no physical importance).

For such a case

2 |
Y 0o (35.01)

where o is the local angle between the straight stream lines and the
x-axis and 1} = constant are straight stream lines.

Putting (35.01) in (22.11), we get

EEL

on
Using (35.02) in (31.04), we get

=0 | (35.02)

b _ | |
an 0 (35.03)

Now we divide the flow patterns with straight stream lines into two
groups as:
‘(i) The straight- parallel flows.
(ii) The straight non-parallel flows.
and study these one by one.
(1) The straight parallel flows: By Theorem IV (Section 2,

page 23) and Theorem III (Section 2, page 21), we have for such flows

U
Y 0 (35.04)
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5-9-.:
o 0 . | (35.05)
ol
Ay 0 (35.06)

From (35.03) and (35.06), we get

| p(g,m) = A | . (35.07)
where A is an a?bitrary constant and can be fixed for a'given problem.

Having thus obtained the pressure, the other flow variables

(i.e. u, p and s) are obtained>by solving the linear partial differen-
tial equations (35.04) and (35.05) by prescribing appropriate boundary
conditions and using the caioric equaﬁion of state (31.07) for the
regions of continuous motion.

(ii) ’ The straight non-parallel flowvws.

Let )

p(g,n) = P(3) (35.08)
be the solutién of equation (35.03) for a given problem with non;parallel
straight lines.

Putting (35.08) in (31.03), we get

ou 2+ 7(g) = o . ' " (35.09)

13 _
Putting for pu from (35.09) in (31.05), we get

2
/v O u . 9 7 du _
or
3u
-2 log| 9% =0
3 —
g,P \i)_
or
u(g,m) = £(n) {Jg;’(g) dg + %%% ' -(35.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-39

where £(1) and ¢(n) are the arbitrary functions of e

Putting (35.10) in (35.09), we get

p(g,m) = 2(n)§:fg ¥ (g)ae +‘%Ln%}-
(n

Using (35.11) and (35.08) in (31.07), we get the specific entropy s

(35.11)

so that SE = 0 also holds. | |
Finally, from (31.05) and (31.03), we get
1 _ 13
8 ,u ag(gz w) o 3
and
2
-all- = ,_—(-:-— 'a‘g L O
U 3E 5 3¢ («: of (31.06))
Eliminating 1 QJp between these two equations, we get
p of
au_e? 3
U3 " g;; 3% (g,u)
or
2 og
Mz=y-—=1+u—2/gﬂ
C2 og 208
or 3
—(log g,)
M=f1 +-gi——————z— | - (35.12)
ag(10g u) .

where u is given by (31.10)
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Section 5 b. Source Flows
A familiar flow pattérn, which belongs to.groﬁp (ii) of non-
parallel straight stream lines, is of radial flow due to some source.
Choosing the radial lines through the source as our stream lines and
the concentric circles with centre at the source as our orthogonal tra-
jectories, we get
g, (g,m) =g,(g,m) = & - (35.13)

-Putting for gz(g,n) from (35.13) in (35.10), (35.11) and (35.12), we get:

u(g,m) = £(n) %fe‘grﬂ’(@)dg + %ﬂ%}  (35.14)
o(z,m) = ! (35.15)
- & 2 P (ag + %%ﬁ)z} |
| and
y = & P(e) (35.16)

§fe° ¥ (enseit3 Y
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Section 6. Some special forms of isometric nets and pressure

equation.

In this section we take some special forms of isometric nets
and find the restrictions on these forms from Gauss's equation obtaining,
thereby, some well known coordinate systems (Moon and Spencer (1961)).

We then obtain the pressure equation (33.05) for these forms

~and give the Riemann-Green function, associated with each of these lin-

ear hyperboli; equations in pfessure, for the coordinate systems of
form I cénsidered.
- A plane orthogonal curvilinear-net (@,n) is an isometric net
if the metric coefficients gl(g,n) and gz(g,n) ére equal i;e.
: _ : g,(&;m) = g,(g,m) =g (g,m) (say)

For such a net Gauss's equation (31.08) is

(:——- +-5—— (log g) =0 | o (36.01)
n ) .

Form 1.

{z(z) + h(n)} g2<g,n> (36.02)

where the different cases for this form under study are (i) when n = 1

85(5:7]) = 83(%:”)

(ii) when n = -1 (iii) when n = =3 (iv) when n = -% and (v) when
3

n = =_.

2
From .(36.02), we get

32 €(e) + n(n) fﬂ(g) - f'2<a) '.

2 (s &) = R | jooweo
and

2

d _n fE) ) ) ' () - K () .

a2 (g g) =3 Ee) h(n))zﬂ } (36.04)
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Putting (36.03) and (36.04) in (36.01), we get:

£(2) £°(2) + n(n) ¥ (n) - £0e) - K () + £ () + n(ne’(g) = o

a2

dgom

Taking of this equation, we get

¢ () +d (e (2) =0
Whence B (n) # 0, f/(g) +0
/4 /3
h f fé} _
¥ (n £ ° | (36.09)

is the restriction on the form I from Gauss's equation.

1f (36.05) holds, then

b (n) £ (g)
Since the left hand side is independent of £ and the right hand side is
independent of 1 and the two sides are equal, each side is equal to k2
(some constant).
Therefore:

£"(g) + 1> £/(g) = o (36.06)
and

W () - k2 H () =0 (36:07)

The eigenfunctions of the ordinary differential equation (36.06).are
sin kg, cos kg and ¢ (constant) when k2 #F 0 or O and the eigenfunctiéns
of (36.07) are'gkn, ékn‘ and ¢ (constant).

| Now we substitute (36.02) in pressure equation (33.05) and

find that the pressure equation for the form I is

sz +nh,(’n) _B__{;}_+n+2 £
oom 9 {f(€)+h(n)} of 2 {f»

L(p) =
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This is a linear partial hyperbolic differential equation of second
order and the general solution of Cauchy's problem for this equation
can be obtained by Riemann method. This method depends on finding a
certain subsidiary function, often called the Riemann-Green function,
which is the solution of a characteristic boundary value problem for
the adjoint equation. We, therefore, find the Riemann-Green functiop
“for the equation we wish to solve by Riemann method. Fof our form I,
we first reduce (36.08) to a fype of hyperbolic equation whose Riemann-

Green function is already found by Mackie (1956).

We let
£(€) = r,
- =) _ (36.09)
. h('r]) s

and get the equation (36.08) reduced to

2 1
dp 4 §n+22 p v
[2 - > ) (36.10)

drds (rts)
for the region where f,(g) 0 andbh,(n) # 0.

Mackie constructed the complex integral solution of this
type of equation and such a complex integral gives the Riemann-Green
function fér an appropriate choice of contour. [Copson (1957-58) J. For

equation (36.10) the Rlemann-Green function is

R(r;siR:S) —<_r%g_s)__g_l F[l 22 2:1: —(%58%51:?‘3 (36.11)

where Fla,b,c;z] is a hypergeometric function which is convergent for
Izl<1 only since c-a-b * 0.
Now we consider some important well known isometric nets

which belong to this form I for different values of n. These different
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important nets are used for finding the solutions of different problems.
In the sequel, z = x + iy and w = EF in.

(i) whenn =1,

i

g7 (g, = g2 (5,1 = £(5) + h(n) =g” (g,m)

and the coordinate nets are

2
w

N J—

(a) Parabolic cylinder ccordinates z =
and (b) Elliptic cylinder coordinates z = a.cos h w.
For both these curvilinear nets the pressure equation (33.05) is given
by (36.08) wherein n = 1 is substituted and the funqtions £( &) and h(TD
are put in for the two systems. .

(ii) when n = -1,
2 _ 2 _ ! — 2
817 By~ f(g)tn(n) ®

and the two nets are

(a) logarithmic curves z = %ﬁ log w

(b) logarithmic tangent curves z = 2% log tan w.
For these nets n = -1 for the pressure equation (36.08) and f(g) and

h(n) are given by the two nets respectively.
(iii) when n = =2

2 _ 2 _ 1 _ 2
817 & qf(g)(n))2 8

and the coordinate nets are

For these systems n = -2 and f(%), h(n) are the respective

values of the systems in (36.08).
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(iv) when n = -3,

2 2 _ 1 . g2
B1 7 By (£(e)+n(m33
The coordinate net for this case is cardioid cylinder

= l; and in pressure equation (36.08) we have n = -3.
2w

Nt

coordinates

(v) when n = -3/2,

2 2 _ 1 —_ 2

0 R mb

For this case coordinate system is rose-coordinates

z=/2 Q%_ and n = -3/2 in (36.08) for pressure equation.
(vi) when n = ~1/2,
gf = gg = = g
Y £(g)+n(n)
The coordinate net for this case is hyperboliq cylinder
coordinates z = /2 wl/2 and the pressure equation is obtained from

(36.08) by taking n = -1/2 and the functions f(£), h(n) of the system.
Form II.
2 _ 2 _ 2 — 12
g1(8m) = g5(5,m) = g(n) = h(n) (36.12)
Putting (36.12) in (36.01), we get

b’ ()=~ () =0 | (36.13)

The general solution of equation (36.13) is

h(r) = £ (36.14)
where ¢ and d are arbitrary constants. An impqrtant curvilinear net
belonging to this form is given by (36.14) when ¢ = 1 and d = O is

substituted in it. For this case the coordinate system is circular-
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iw . .
cylinder coordinates z = e such that 1 = constant are circles and § =

og
amn

pressure equation (33.05) for this case as:

constant are radial lines. Now as # 0 for this case, we have the

2 .
QP4 9B .
3zan | ot (36.15)

This equation can be solved for Caxchy's problem without using
the Riemann's method.
Form I11X

g1(5,m = g3(g,m = £7(5) = °(g) ~ - (36.16)

Pﬁtting (36.16) in (36.01), wé get

£(z) £7(z) - £ (2) = o (36.17)
The general solﬁtion for this equation is

£(g) = °5Hd (36.18)
wherein ¢ and d are the arbitrary constants.

(i) when c =0, d = 0, we get the rectangular net z = w.
Taking the stream lines as 7 = constant and the orthogonal trajectories
as £ = constant, we get the flow in parallel straight lines parallel ﬁo
x-axis in (x,y) plane. This case has already been discussed in section
5 of this chapter.

(ii) ~when ¢ = 1, d = 0, we get the circular-qylindgr coor-
dinate net z = e" so that the stream lines 1} = constant are the radial
lines. This case has also been discussed in section 5 and for these
two cases of this form III we cannot use the pressure equation (33.05)

as proved in section 3 of the present chapter.
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Section 7. Vortex Flow,

When 7 = constant, the stream lines, are concentric circles
(n>0) and € = constant, the orthogonal trajectories, are radial lines,

we get a vortex flow. g=Cbnst
I

For this flow our net i
X = 1ncos g,
y = 1n sin g,

and

ds? = n2ag? + dn2 (37.01)

Pressureiequation for this flow is given by

2

§_p_ + op =0
N Eam € | (37.02)
or
-é—- -52 — O -
an L1 =
i.e.

p(g,m) = i%i). + 9(n) | _ (37.03)

where ¢(E) and w(n) are the two arbitrary functions of £ and Nrespectively.

Now there are two possibilities

(1) ¢’(§) # 0 i.e. %‘é# 0
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‘or _ '
(ii) ¢'(§)=o fe. L=p
In case (i)
Let p = P(Z,mn) be given by (37.03). We put for p in
(34.04) and (34.06) to get the velocity and density distributions.

However, substituting (37.03) in (34.11), we get

M=

0|

=1 i.e. the flow is sonic at every point in the

~flow region. Since in this case %g # 0, we get %g # 0 and g% # 0.

Putting u = ¢ in (31.03), we get

9.-+_a.§.: 0
P dp
. i.e. cp = g(s) where f(s) is an arbitrary function of entropy.
or using g% = c2, we get
p = -g_(_sj + h(s) (37.04)
p

wherein h(s) is another arbitrary function of s.

Now here the fundamental property of all aétual media that,
entropy remaining constant, the pressure increases with density and,
density remaining constant, pressure increases with entropy holds. There-
fore, for these gases which obey form (37.04) for the state equation,
our results hold.

In éase (ii)

p(g,m) = ¥(n) o (37.05)
Putting (37.05) in (34.04) and (34.05), we get

u = £(n) _ (37.06)

and
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p = -flzl(—%) w'/(n) ' e (37.07)

Wherein f(n) and w(n) are arbitrary functions. Putting (37.05) and

(37.07) in state equation, we get s = s(1).
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Section 8. Flow in a parabolic channel

m—

=8 figl.

In this section we study the flow of gases in an infinite
channel whose walls are two confocal parabolas. We take the family of
confocal parabolas confocal with the parabolic walls as our stream lines
in order to obtain the flow in this channel.._We denote this famiiy Bf
‘parabolas by 7 = constant such that when the walls are given by N = a
and 1 = B, the stream lines of flow are a < 1} < B.

With this choice of stream lines made for tHe parabolic
chanﬁel, we take the other family of confocal parabolas £ = constant,
which are also confocal with the family n = constant, as our orthogonal

trajectories where - < £ < to.
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So our infinite channel is given by a < < B; ~* < € < +o , The
equations for the two families of curves for this choice of natural

coordinates are:
1,2 2 — :

x=5(n" -89, y=28n (38.01)
The squared element of arc length is

as? = (g2 + n?) [ag® + an?] (38.02)
wherein the metric coefficients for this coordinate system are

2\1/2

n)

gl(é,n)'= g,(8,m) = (g2 + (38.03)

Since g ~ 8 in this system of curvilinear coordinates, by equation

2
(38.03) our system corresponds to n % 1 in form I ofvsection 6 of this
chapter and is an isometric net.

We solve this problem of flow of gases, in this section, by
using the pressure equation (36.08) established for coordinate systems
"of form I. However; this problem could also be solved by the method of
using compatibility equations [Berker (1956)] and making the applications
of the inverse method [Nemenyi (1951)] as carried out by Ozoklav (1959)
for finding the flow of gases in a hyperbolic channel.

Pressure equation (36.08) for the present flow in the

channel takes the form

2%, m i 38 m_,
3gan §2+n2 38 52*“02 an

(38.04)
as n =1, £(g) = gz and h(n) = nz in this flow. Equation (38.04) is a
second order linear partial differential equation of hyperbolic type in

canonical form. In this equation pressure p is the dependent variable

and £,7 are the independent variables. Our aim is to represent a solution
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p by properly pregcribing the boundary Value problem for it. For.solving
(38.04), to get the pressure at any point, we must prescribe the values
of p and that of the 'outgoing' derivative of p on a curve C which is a
free curve ( i.e. C is nowhere tangent to a characteristic direction).
1f, however, the intitial curve degenerates into a right angie formed by

the characteristics £= com T e then we pose the boundary value problem

2J
“called the characteristic boundary value problem in which merely the

and 1= ¢ are prescribed.

1 2

Therefore, to get p we prescribe the pressure along the

‘values of one quantity p on §5=vc

wall (i.e. characteristic curve of (38.04))-n =a (orT]= B) and along
the orthogonal'trajectory E=1v (i.e. second characteristic curve of
. (38.04)) since these two are at right angle. |
As the domain of dependence of a point P is enclosed by
the two characteristic curves through P to the boundary, therefore, if
pressure is prescribed along an orthogonal trajectory &= v and the arc
B2C2 of n=a ( or the arc BIC1 of 1= B), we can then solve for the

pressure at any point inside the region C,B B ¢, (fig. 1).

" 221
Let
p(5a) = £(8) 0 <g < v
p(v,m) = gln) ¢« <n < B ~ (38.05)

with the restriction £(v) = g(a)

be the values of pressure prescribed along the arc A2B2 and the arc

BZBl so that it attains the unique value at Bz(v,a).

So our problem is to solve for pressure in the region A2A1B1B2
when it is governed by (38.04) and is subjected to the boundary conditions
(38.05). To achieve this we first transform the equations (38.04) and

(38.05), by changing the independent variables, to obtain a more
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convenient form.

- We let

g2 =1r, ‘ . (38.06)

0’ =s } | '
and get

L(p)-f:%i“g—s+;'ig(%%§+%§§)=0 (38.07)
with the boundary coﬁditions

p(r,s;) = a(x) 0< r < 1

p(rl,S) = b(s) s;< s < s, (38.08)

with the restriction a(rl) = b(sl)

- .2 2

= v", 8. = a” and s, = B”. By this transformation

1

the original flow in parabolic chammel (infinite) is transformed into

the infinite rectangular channel bounded by r = 0, r = ® and s = 15

s = Sy This transformation is from Oxy plane to the first quadrant

of Ors plane such that the stream lines 7 = constant (bounded by n=a,
n = g) énd their orthogonal uajectories E = constant (bounded by g =0,
£ = m.for upper half) are mapped into straight lines parallel to r-axis
(bounded by s = 515 8= sz) and parallel to s-axis (bounded by r = O,
rb= ). The region A2A1B1B2 of channei, under study, is mapped into Ehe
region szlﬁl'ﬁzas shown in fig. 2.

By this transformation, our problem is to solve for preésure

1A2B2B1 when pressure is governed by (38.07) inside this

region and the boundary conditions are prescribed by (38.08) on the sides

at any point in A

r = r; and s = Spe
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S
»
K1 S=5 - M
MSF‘_?Q sS= § _____ Q
F=¢ rz:‘i r::q
Az P s=s B,
) "r

fiQZ.

We shall soive this problem by Riemann's method. Let
M(R,S) by any point inside the rectangle so that MQ and MS are the
two characteristic curves through M, given by s =S and r = R, meeting
the boundary curves in Q,P. Riemann's method of solving the problem
depends ultimately on finding a certain subsidiary function, associated
with the operator L of (38.07) & often called the Riemann-Green function,
whlich is the solution of a characteristic boundary value problem for the

adjoint equation. Therefore, we first find this function R(r,s;R,S)

which is the solution of the adjoint equation of (38.07) i.e.
2R 1 3R _3 R 2

N(R) = - OR _3_ SR, 2 .- 8.
E(R) = 3ras ™ (xte) Br = 2(rFs) 3s T (he)2 R =0 (38.09)
Such that
. ro, _

R(r,S;R,S) = expf i on s =35,

% 2(A1S)

(38.10)
_ S|

R(R,s;R,S) = exp f onr =R

< 2wy ® ‘

and R(R,S;R,8) =1 at (R,3).
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From (38.10) R(r,s;R,S) is such that

=13/2
R = ££i§)§75 on s =_§, \
(ri)> 2
)2 - o
(E+§)1/2 onr =R (38.11)
and R=1 at r =R, s =S }

From (38.11) we guess that R(r,s;R,5) is of the form

1/2, =
R(r,s;R,S) = gﬁ&j——é—r—@ F(a,B,v;z) (38.12)
(8+5)3/ 2
where
~ _ (x-R)(s-8) (38.13)

277 (R18) (rt+s)
so that conditions (38.11) hold. Here F(a,B,v;z) is a hypergeometric

function in which 4,8 and v are unknown constants to be determined and

2
_ a a(at1)p(p+1)
Fla,B,v;z) =1 + —% z + v(vH1) ‘g—“ EETEEL (38.14)

This series is convergent for lzf < 1 and is convergent for Izl= 1
also, if v = @ - B > 0. [Friedrichs (1965)] .

Substituting (38.12) in (38.09), we get

-

) : 5 .
| f?z) 3z §2.+<5 z 1l 2z + 1 ﬁE)

S 3
ot 35 \aras " rts 3s T T as|f (B Tameyz F(2) =0

(38.15)

From (38.13), we get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

zpz 1 2, \
dr s (—:r+s)2 (2%-2),
32z _ 2z -1 $
dras (rts)2?
1 1 oz _ __z ' ’

and (<r+§> - <r+s>> 2s ~ (rts)2 (38.16)

/
. Substituting (38.16) in (38.15), we get

z(l-z)F”(z) + (1-32)F (2) - % F(z) =0 (38.17)

This equation is the Gaussian differential equation with

a =1/2, 8 =3/2 and v = 1. Therefore,equation (38.17) possesses a

unique solution F(%, %, 1;z). Hence the Riemann-Green function is
~ 1/2; =
R(r,s;R,5) = {2te) “(r8) gl 3. (38.18)
(§*§)3/2 2 E

wherein 2z is given by (38.13). This hypergeometric function F(%,%,l;z)

is only convergent for |z| < 1 as v-a-B<0 here & M(i;é).is the point
where representation for pressure (i.e. p(¥) = p(R,S)) is to be found
and (r,s) is any point. Mackie [(1954),(1955),(1956)] obtained a
Cont;ur integral formula for the Riemann-Green function of the partial
differential equation of the type wé have.

Now having found Riemann-Green function,4given by (38.18),
for the operator L of (38.07), we get the so}ution of pressure at M for
-(38.07) with the boundary conditions (38.08) as: ECourant and Hilbert

(1965) pages 454-55].

T 1;

: +s Y20, 43 R (.
p(M) = p(ﬁ,’é) _ p(rl’Sl) (r1 sl) ( 1 ) [l 3 1 R)(S sl)]

®05)3/2 22 ’(ﬁyg)(;1+s1)
L e 1/2 <15 13 x-R)(S-s
(ri5)/2 2 : 1
R
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5 y
1 —_

(r,0y) 2 (x,5)

3/2

} dy

(38.19)

(R+3)

ol

where in the integrals on the right hand side (x,y) are the variables and
(rl,sl) will be considered as constant. Equation (38.19) gives us the
solution of the pressure equafion (38.07) with the boundary conditions
(38.08). We now express this solution (38.19) in a form which will be
more helpful in numerical calculationé by finding a relationship between
the hypergeometric function entering in our solution and the completé
elliptic integral of the second type.

Now the complete elliptic integral of the second type, denoted

by E(k), is /2
- 2_ .2
E(k) = 1-k“sin“¢ dé
o ,
or
2 .4 2.6
C |22 (Le3yC K le3.5\0 K0
k) = 5| W% -G 3 - GRS |
or
_ = 11...2 :
E(k) = 5 F {-gszglsk } C . - -(38.20)
13 J
However, the hypergeometric function in our problem is = F E,;,l;kj
where

K2 = (z-R)(8-5) (38.21)

(R+S)(rts)

In order to find a relationship between this hypergeometric function in
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(38.21) and the coxr;p-lete elliptic integral of second type expressed in
terms of hypergeometric function in (38.20), we make use of a relation
o.f contiguity between the hypergeometric functions given as: |

(v-a-p)Fla,B,v;z] = (v-a) Fla-1,8,v;z] -p(1l-z) Fla,p+l,v;z] (38.22)

Putting @ = 1/2, p=1/2, vy=1 and z = k2 in (38.22), we

get -
=113 .2 -2 E(k) o T T e N
F{ 5 50 L3k } T 1K (38.23)
where we assumed that k2 = QE-EHE-S) is tve. If however,
(R+S) (xts)
r=-R)(S-s) _ ,2 2 . ' 2 2 .
(&75) (z+s) k“ where k“ is *ve, then we replace k“ by -k“ in (38.15)
to get

2727

/2
wherein El(k)= J"\l
o

: E. (k)
F[; 3 15_k2]= 2 11
1+k%sin%s  do

T s ()

Y 1+k2 )
- . -— ~- _
Therefore, if L—‘)—(—“)‘ff S=8) - -kz, then
(R+8)(r+s)

-

Fli3d ;a3 =2 Y u? g/t . (38.24)
2°2 i
1+k2 |- ,

By using (38.23) or (38.24), as the case may be, we solve for pressure
inside the rectangle (thus the parabolic channel) which is given by

(38.11) and do the numerical calculations.
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Section 8b.

Let p = P(€,1) be the pressure distribution in the region
A2A1B2B1 as obtained by solving the- properly prescribed boundary value
problem given by equations (38.04) and (38.05). This distribution of
pressure is unique for the chosen systeﬁ of stream lines for our pro-
blem.

However, when we substitute for pressure in equations
'(34704) and (34.06) for finding the density distribution and the velo-
city distribution in the Qame region AZAleBl’ we find that the arbi-
trary function f(1), remaining constant on each stream line, enters
into the two e#pressions for velocity and density. Again, if we ﬁse
the caloric equation of state for the flowing gas, then we shall have
for the expression of specific entropy the unknown funétion f(n) in-
volved. The number of ways for which this unknown function of 1) can
be determined further depends upon the‘form of the state equation of the
flowing gas.

As proved earlier in section 4 this number is not uni que,
in general, whether the equation of state is in product form or the
equation of state is in nonproduct form. For product equation of- state
for any fuqc;ion.of n (for f(n))'which is non-vanishing differenqiablé
function the family of velocity fields, the density fields and the
entropy fields obtained satisfy the Euler's equations oflﬁotion for
the defined unique pressure field i.e. to have a unique flow field we

have to have a uniquely defined function f(n) which will have the given

pressure field P(g,n).
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Likewise, for gases with non~-product equation of state we
have to define uniquely the arbitrary function f(m) in order to get a
unique flow for our problem. |

We can achieve this in two ways. By solving (31.06), when
we properly prescribe the boundary value problem for the entropy, we
get the enﬁropy distribution, say

s(n) = aln) - (38.25)
wherein a(mn) is a known function.

Putting (38.17) in the state equation p=R(p)S(s) or

p=f(p,s) and using the expression for p and p also, we get

g[g%éjkgjsfa(n)] = fz(n) which defines f(n) and hence the

flow uniquely. { For p=p(p,s), we get G(E,n) _ 2
P[P(g,ﬂ)],a(n)] £ (n) }

The second way .of getting f(n) and, therfore, the flow is to
find f(n) by prescribing u(g,n) or p(€,n) on an orthogonal trajectory

€ = constant, lying in our region A2A1B2B1.

We now study the Mach number field. By putting for 8, and

g, in (34.11), we get

EV - 3 |
M 1 n “on o3P (38.26)
o8

Since‘this expréssion for M does not depend upon p, u, s or f(n), there-
fore, the Mach number field is unique like the pressure field for the
same stream lines.

In the region under consideration, A2A1B1B2, we have

g >0,

and n>0
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Therefore, for the region above AéAi £ >0 and N > 0 and

on the line A2A1 € =0 and n > 0. We take these two cases separately.

For the region above AZAl the flow is subsonic, sonic or

supersonic according as

3P .1

an "3 2 0 (38.27)
0§ ' ,
On the line £ =0 (assuming that ok # 0) the flow is sonic at every

e

point.

So we conclude from these that the flow is sonic on 1ine

) A2A1 but the flow at any other point in the region is supersonic 1f the

rates of change of pressure w.r.t. § and 7 at that point have opposite
signs, subsonic if these rates of change have the same sign and is sonic
if the rate of change of pressure w.r.t. 7} is zero there.

Finally, by using equation (34.10) we study the flow when a

particle of gas moves down along a stream line from the point P on the

orthogonal trajectory & = v to the point Q on the orthogonal trajectory

un
i
©

@A

Ury
1]
o
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Case I Let the flow be subsonic in the region under consideration.

2+nEL ) :
S 2(10g F) ’
og

therefore, g;(log F) <0 i.e. log F increases as & decreases, or
=]

Since M=/1%

F(g,n) and therefore the velocity increases when the flow is subsonic
and the particle of gas moves down from P to Q.

Case 11 Let the flow be supersonic. In this case, we get
)
~=llog F) > 0
sgelog F)
i.e. as § decreases log F decreases, or F(g,n) and therefore the velo-

city magnitude in this case of supersonic flow decreases when the gas

particle moves from P to Q.
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Section 9. Flow in a hyperbolic channel
‘ 4

N= m—B

=T n=o0

fig1.

In this section we study the flow in'a channel whose walls
are the two branches of a hyperbola. We take the family of confocal
hyperbolas which are also confocal with the hyperbola of our channel as
the stream lines. This choice gives us the flow in the hyperbolic chan-
nel. We tgke the family of confocgl ellipses also confocal with the 4
stream lines as our orthogonal trajectories given by £ = constant. Let
N=p8 and n = n- B be the walls of this infinite channel. The streén
lines and orthogonal trajectories defining different points of this

channel are given by 1 = constant and £ = constant where
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m-B<N<B nd 0<E<+w
The equations of these two families of curves are

x = a cosh € cosn , y = a sinhZ sinm '(39.01)
The squared element of arc length is

ds? = a%(sinh%z + sin’n) [ ag? + dnz] | (39.02)

where the metric coefficients for this coordinate system are

1/2 (39.03)

g,(&m) = g,(8,m) = a(sinh®¢ + sin’n)
Since gl(g,n) = gzgg,n) in this system>of curvilinear coordinates
(by equation (59.03)), our system corresponds ton = 1 in form I of
section 6 of this chapter and is an isometric net.

In this section, like section 8, we use the pressure equa-
tion (36.08), established for coordinate systems of formI, to study
the present flow problem. This problem has been solved by Ozocklav using
the compatibility gquations of gas flow and the inverse method [Ozoklav
(1959) J.

| Substitgting n =1, f(g) =/a sinhzg ,h(n) =/a sinzn in -

equation (36.08), we get the pressure equation for the flpw in a hyper-

bolic .channel as:

a% .1 sinyg 3 .3 sinh2s  3p _
3g3m 2 (sinh%gtsin®n ) 3% 2 (sinh?&t sin’m) an

(39.04)
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Equation (39.04) is a second order linear hypefbolic partial differen-
tial equation in canonical form with p as the dependent variable and
E,n as the independent variables.

Here in this problem as the pressure function, given by
(39.04), is symmetrical about 1= % (i.e. y-axis), therefore, we study
the distribution of pressure in the region 0 < €< oo, a <1< B by
only considering the region 0 < & < », /2 < 1 < B. For the lower
part of the channel we shall Have the corresponding distribution of
pressure.

As in this problem,also, the characteristic curves of
equation (38.04) gntersect at a right angle, we can prescribe the char-
acteristic boundary value problem in which the boundary curﬁe (i.e. tﬁe
initial curve) is considered to degenerate into two characteristic arcs
and we merely prescribe the quantity p on these two arcs § *= constant
and m = constant.

Therefore, let
p(2,8) = £(2) onn=p for 0<E<a,
pa,n) =g(n) on &=0a for p<n<m/2 (39.05)
with the restriction g(g) = £(a) .
be the values of pressure prescrib;dAglong the arc AB and tée arc BC so
that it attains the unique value at B(a,B).

So our problem is to solve for pressure in the region ABCO

when it is given by (39.04) subject to the boundary conditions (39.05)
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We first transform the equations (39.04) and (39.05) to a

more convenient form from the (é,ﬂ) net to Ors plane By letting

sinh2§ =r,
) (39.06)
sin™m = s
Our transformed problem is to solve . .
2
_ 9o p 1 1 3p . 33p1}_
= + - + o - .
L(p) ords . rts- { 2 3r 2 0s © (39.07)
with the boundary conditions
p(r,sl) = a(r) 0<r <r ‘
(39.08)"
P(rl)s) = b(S) sl ..<_ s S 1 )
with the restriction a(rl) = b(sl).

Here r, = sinhza and S, < sinZB.

By this transformation the flow in the infinite hyperbolic
channel is transformed into the infinite rectangular channel bounded by

r=0, r= o and s = s s = 1, The region ABCO in which we wish to

1’
find the flow in dxy plane is mapped into the region Kﬁéq? in 6rs plane
as shown in fig2.

The stream lines and the orthogonal trajectories are mapped
into'mut;ally orthogonal families of parallel straight lines given by
5 = constant (sl < s < 1) and r = constant (‘O < r < ®). Our problem is

to solve for pressure, inside ZBEGI, given by (39.07) and (39.08).
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| C
- S=1
O. ______
M(irs s=39S
lr. ____________________
=0 ‘Y:-_:s'zi Tz
1
A I A
S=% p B
o) ~
fig 2.

Since these equations (39.07) and (39.08) giving us the pressure distri-
bution are exactly the same as‘(38;07) and (38.08) of previous section 8,
we use the Riemannian method of solving the problém for finding the pres-
sure at any point M(R,S) in the region as done there.

We get thé pressure distribution as given in (38.19) wherein
for this problem r and s are given by (39.06). Hence, we solve for the
flow in hyperbolic channel as was done for the case of parabolic channel.
However, only iﬁ that part of the problem where we discuss the Mach num~
ber at any point in the region we do not use (34.26) for Mach numbers at
different points of the stream line 1 = /2. We know from (34.10) and

(34.11), giving the expression for Mach number, that

oP
= an . _ a(sin2n) 1
oF (sinh2§+sin2n)1/2 é:(log F)
0§ of
, oP _ . - .
i.e. Sﬁ = 0 on the stream line 1 = n/2 and therefore, equation (34.11)

for the Mach number i.e.
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w =/, . inh2% an
sin2n oP

of

is an indeterminate form on 17 n/2. Therefore, only for the line

n =n/2 we cannot determine M from pressure only.
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CHAPTER 4

STEADY ROTATIONAL GAS FLOW IN THREE DIMENSiONS

Secpion 1. The flow equations in natural coordinates

In this section we set the differential equations for the
three dimensional steady and rotational flow of gases in natural coor-
dinates when the assumptions are that there is no heat conduction and
that the gases are subjected to no extraneous.forces.

We consider the_prfhogonal curvilinear coordinate system

( ,¥) obtained from the three families of surfaces £ =c., = ¢, and
LR 1 2

Vo= Cq where Cl’CZ and <y afe the parameters of three families.
| Let
. x = x(§,m,b) 1
y = y(&,m,¥) , (41.01)

z = z(%,n,ﬂf)

be the equations of three families of s;rfaces. The 5quared element of
arc length in this coordinate system is of the form

d52 = 8%(5)719”4‘5\) d§2 + 8§(§m:w)dﬂz + 85(531']:11]‘)&]‘“2 (41-02)
where 81> 8, and &3> the metric coefficients, satisfy the six Gauss's
equations (21.17) and (21.18).

| . Now taking the curve, through any point, glong which g~

increases as our stream lines, we get the orthogonal curvilinear net in
natural coordinates. We now let €5 e, and 33 be the dﬁit tangential
vectors to the three orthogonal curves at a point in the directions of
€-increasing, T-increasing and Y-increasing respectively so that the

velocity vector q is given by

69
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q = u(g,n,¥) e, o (41.03)
Since our flow is steady, we obtain the flow equations in natural coor-

dinates by putting (41.03) in (21.11)= (21.16) and get

ou 1o - 0
Yz T peg O o
u2 %?1 (1og g ‘_%%% =0 (41.05)
1

u2 %Tf (log 81)" P gﬁz (41.06)
_g_g (g,8400) =0 ' (41.07)
as 0
2 0 | (41.08)

p = p(p,s) : (41.09)

We shall study the symmetric flows and the flows without the
‘restricting assumptions of symmetry in this chapter when the flow of

gases is three dimensional, rotational and steady.
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Section 2. Pressure Equations

Three dimensional rotational steady gas flow is governed by
the equations (41.04) - (41.09). To obtain the solutions of problems
for such flows we eliminate the velocity, the density and the specific
entropy from these six non-linear partial differential equations and
obtain three linear partial differential equations satisfied by the
pressure function.

From equation (41;07), we get

8,85 Pu=¢ (n,¥)
where ¢ is an arbitrary function of 7 and V.

or

o= o(n. ) (42.01)

8,834

7

Substituting for p from equation (42.01) in equations (41.05) and (41.06),

we get
g,8,u
23 _ 883"
wt Slee &) = 3EH o
and
_ 883t

23 =
uattlee g) TR D W

Assuming that u # 0, we get

E283 1 2
u=EE—— o e o (42.02)
and
_ BaB3 1
he ¢(n, V) v | (42.03)

2105 g))

Either of the two equations (42.02) and (42.03) expresses u in terms of p.

Substituting for u from equation (42.02) in (42.01) and from équation
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(42.03) in (42.01), we get

2
M ) N . L 0
P P an(10g g;) > (42.04)
8 83 3N
and
2
-9 o L1
=" aw(log gl) > (42.05)
" respectively. )

Equation (42.04) or (42.05) gives p in terms of p. We elim-
inate p from equations (42.04) and (42.05) (or eliminate u from equations
(42.02) and (42.03)) to obtain

agl_ op aglv op

5@7 > - Sﬁ_ v =0 (42.06)

We call equation (42.06) the first pressure equation. This equation 1is
~a first order linear partial differential equation in which p is the
dependent variable and g,n,$ are the independent variables. From this
equation if p is constant along a curve on any one of fhe given surfaces
g€ = constant, then 81 is also constant and vice versa i.e.
p = p(g,) (42.07)
on a syrfacé € = constant.

By eliminating p from (41.05) and (41.06), we get
apitos 8;) 5nleu®) - TH(log g1) 37 (pu) =0
i.e. on a surface § = constant, we have
2 .
pu” = f(gl) (42.08)
where f is an unknown function.

From (42.07) and (42.08), we get
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p=rplg) = p(pu?) : - (42.09)

We eliminate p and u from equations (41.04), (42.02) and (42.04).to

obtain

: 2.2 |
18283 1 3p\ » [818283 1 ol . B182%3 1 poap .
%g;  ¢(n,¥) an %, ¢(n¥) on %,  ¢(n,¥) an a8

an . | o o
or |
g1 .1 _3_2_2_+§_(1° ) 22+ (1, ) Ll=0 (42.10)
P 9g, J|oten oF 8% an o 0B B 3¢ )
an
where
. . _818,83 (42.11)
. - 08,
on

From equation (42.10) the pressure function satisfies the equation

_Q_P_ L 8 __2 =0
if ag1
i # 0 or » __ (since p and g, are positive)

We shall call equation (42 12) the second pressure equatlon.
Likewise, by e11m1nat1ng p and u from (41.04), (42.03) and

(42.05), we get ' ’ : -

2
op + o J op + S oD —_
NEST ag(log ) b 3$(1°g gl) Y3 0 » (42.13)
as the equation satisfied by préssure if _§L -
3.41, % 0 or .
Here
_ B18983 - (42.14)
%
v

UNIVERSITY OF WINDSUR LIBRARY
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We shall call (42.13) the third pressﬁre equation wherein J is given by
. equation (42.14).‘ Since equations (42.06) and (42.12) together give

(42.i3) (or (42.06) and (42.13) together give <42712)L the three pressure
equations are not ipdepenaent but two of these three form an independent
set. |

Thus the preésure function in a three dimensional flow pro-
blem satisfies (42.06), (42.12) and (42.13). These three equations are
linear éartial differential equations of first order, second order and
second order respectively.

For é particular flow problem when the flow equations are
written in n;tural coordinates, there are three possible cases;'

Case I Whenlégl 0 and E%l #0
an R

Case I1 Either %81 _ %8
N 14

Casem %81 _ %8
on b

Case 1 For this case pressure is given as a solution of any two of the
three pressure equations (42.06), (42.12) and (42.13). Here p = p(&,n,V).

Case II (a) When 81 _ but 98]
——.___O ———
A 3 5T #0

s pressure is given as a solution

of the third pressure equation (42.13) and o 0. Here p = p(g,w), -

on
%) %8,
(b) When Pl 0 but . ¥ 0, pressure is given as a solution
of the second pressure equation (42.12) and %ﬁ‘= O. Here p-= p(g,n).
' %8, 8, . a
Case 111 When Sa— = Smr = 0, pressure is given as a solution of an =
and %% = 0. Here p = p(g). We study now the geometric implication of

this case. In this case &, = gl(g) and, therefore, the differential arc
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length along‘the stream line is given by

dsl = g,(g)ag . : (42.15)
Integrating (42.15) from & = d, to &= d,, we get
d2
5, =J g,(2) ag (42.16)
dl
as the arc length between the two surfaces § = d1 and § = d2°

From (42.16) the arc length of a stream line between the
two isobaric surfaces § = d1 and § = d2 does not depend upon m and )
i.e. in this case when pressure is a function of § only the arc length
measured along a stream line, from one isobaric surface to the second
. isobaric surface, does not change from stream line to stream line and
is the same ;e

We shall discuss the flow problems belonging to these three

cases in the following sections of this chapter.
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Section 3. Velocity, density, entropy and Mach hAumber
In this section we consider only those problems for which
pressure is not constant on the surfaces g = constant 1i.e. we consider
the problems for which either pressure is a solution of any two of the
, , og . 0g
three pressure equations (i.e. case of 1 # 0 and 1 #0 ) or pres~
~ v

on

sure is a solution of the second or third pressure equation only

v(i.e. ag1 — or ag1 _ ~ )« We consider these two cases separately.
- =0 == =0
31 R
Case I. Let
p = P(g,m,¥) (43.01)

be a solution of the pressure equations (42.06) and (42.12) for a given

problem of three dimensional rotational steady flow when ag1 £ 0 and

on
;%%-% O. Substituting (43.01) in (41.04) and (41.05), we get
pu gu _ _oF
S , (43.02)
and
pl = i | (43.03)

P on
anclog &)

Dividing (43.02) by (43.03), we get

lou_ o af
. . o
Integrating w.r.t. &, we get
u(g,'r],llf) = f(ﬂ,’LL")F(Em,'LlP) (43-04)

wherein f(n;$) is an arbitrary function of M and ¥ and the function

F(Z,n,¥) is a known function given by
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jfﬁ—(l ) %E de
F(an:w‘) = an ® gl [ _§_EJ (43.05)
on

Equation (43.04) gives us the velocity function.

Substituting (43.04) in (43.03), we get

= 6(g,m,¥) o
p(E,m, 1) £20n. 1) (43.06)
where £(n,¥) is the same arbitrary function used in (43.04) and

6(g,n,¥) is a known function given by

‘[ oP
ortlog &) ag_ g

6(g,n,¥) =
(108 81) an

(43.07)
Equation (43.06) gives us the density distribution. Now we find the
Mach number at any point in the flow region. By definition, Mach num-
ber at any point is given by

M=

oI

(43.08)
where u is the local speed of gas at the point and ¢ is the speed of

sound there. By using (43.04) for u in (41.07), we get

0. - D -

FEL08 o) agtlog§g2g3f(n,¢? F(g,m, W} ] (43.09)
Puttlng for u from (43.04) and for 1 6§ from (43.09) in equation (41.04),
we get

. BF 3 o . B )
or (
log g.8.)
bw=§=\1-§“ 23 (43.10)
Jzlog F)

Substituting for F(@,n,?) from (43.05) in (43.10), we get
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o P
220108 8,85) 5n
A 5P _ : (43.11)
an(log gl) 35- |

M=/l -

Equation (43.10) or equation (43.11) gives the Mach number at any point,
in the flow région, in terms of the known pressure function.

The flow at any point is subsonic, sonic or supersonic

-

according as M = % § 1, therefore, from (43.10) and:(43.11) we get
-gg(locg gz.g:,)- %%
%ﬁ(log g,) | %% <o : (1)
or
%'g'(log g,)
, W Z o (43.13)

according as the flow at any point is subsonic, sonic or supersonic.

We have in both the velocity and the density functions,
given by (43.04) and (43.06) respectively, an unknown function £(n,¥)

involved. This function is a non-vanishing differentiable function

which_is'constant upon each stream line (q . grad £ = 0). Determining
the velocity and density is equivalent to determining this unknown
function f(TbﬂO. | -

For a gas flow with-the pressure function giﬁen by (43.01)
this function f(n,¢) and therefore u,p and s may or may not be unique -
depenaing upon the state equation of gas. For gases there are two

forms of state equations.
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<

Form I: Gases obeying the equation of state‘iﬁ product form.
Form II: Gases with the equation of state not in product form.
For gases of Form I the function £(n,¥) and therefore u, p and s can
be obtained in an infinite number of ways.

B Let »

- p=R[pIs(s] | ~, o (43.14)
be the eqﬁation of state.

Substituting for p and p from (43.06) and (43.01) respectively, we get

%ﬁ.ﬂ.ﬂ:ﬂ = R[P(é,n,llf)]sfs(ﬂ:ﬂf)]
£°(n,¥)

or
o

SEMB = sla(nW)] - Hnl) (43.15)

Since left hand side is a known function, we take it
= a(n,¥) (say)

-~ S[s(n,w)]fz(n,w) = a(n,¢) (a known function) (43.16)
Obviously this equatibn can remain true by an infinite number of choices
of £(n,¥) as long as s(n,¥) is correspondingly chosen each time satisfy-
ing the state equation (43.14).

Therefore, the only possible method of obtaining a unique
flow field is to prescribe on?wéll defined boundary condition for the
velocity or the density or the specific entropy.

‘ However, if we»do‘not préscribe such a boundary condition,
then we get an infinite family of flow fields corresponding to a unique
pressure field sharing the same stream lines. This is known as Prim's

substitution principle (Prim [1952]) for gases obeying the product
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equation of state and this principle is obviopsly satisfied by our flow
results.

Likewise, for gases obeying the.equation of state in Form II
we can show that the unknown functions f(n,¥) and s(,¥) cannot be de-
termined uniquely from the knowledge.of gtate equation of the gas.

| Therefore, for both forms of state eqﬁations of gases we get
a unique solution if one of the threé unknowﬁ functions u, p and s is
prescribed.
Case II. Let p = P(&,n) | | (43.17)

be a solution of the pressure equation (42.12) for a given problem of

% B

three dimensional rotational steady flow when
7 0. For such a

problem tﬁe velocity u, the density p and the Mach number are given by
u(g,n,llf) = f(’ﬂ;ﬂf) F(g)ﬂ) (43-18)

' -2
p(ém,‘i’) G(ém)/f- (n,ﬂf) ' (43-19)

and equation (43.10) or (43.11) respectively.

Here £(1,¥) is an arbitrary function of (n,¥) and F(E,n) and
G(g,mn) are given by (43.05) and (43.07).

The rest of the problem is solved as done in case I.
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Section 4. Choice of coordinate szstems‘

We used the general orthogonal cur&ilineaf,coordinate system
with the metric coefficients 81:8, and 83 in section 2'and obtained the
three pressure equations (42.06), (42.12) and (42.13). These three
pressuie‘equations hold when these are in natural coordinates i.e. when
one of the curves, along which £-increases, of the orthogonal curvilinear
net (&,n,¥) is the stream line of flow of gas.

Now to solve these.pressure equations ie. to obtain the
pressure distribution of a particular flow problem we take that ortho-
gonal coordinate system which fits in with the physical boundaries of
our problem and thereby assists us to substitute (or insert) the boundary
conditions in a reasonably simple way. |

Rectangular coordinate system which is a éoordinate system
composed of the three families of orthogonal surfaces of the first degree
(i.e. planes) does not make a good choice, in many of the actual flow
problems, for their solutions. For these problems, therefore, we use
the coordinate systems formed by the family of orthogonal surfaces of
the second degree (and degenerate cases) or we use the coordinate systems
formed. by the orthogonal surfaces of the fourth degree. However, in most
of ;he physical problems, we study in the following sections, we use the
families of orthogonal surfaces of the second degree (and degenerate cases)
to build up the coordinate systems useful for the probléﬁ. We have ten
important coordinéte systems which include three cylindrical systems,
four rotational systems and three general systems formed by using the

surfaces of the second degree (and degenerate cases) and these are most
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commonly used.
These coordinate systems are as follows:

Cylindrical Coordinate Svystems

(1) Parabolic~-cylinder coordinates.
(ii) Elliptic-cylinder coordinates.
(iii) Circular-cylinder coordinates.

Rotational Coordinate Systems (where the coordinate surfaces

are symmetrical about an axis);
(1) Spherical coordinates
(ii) Parabolic coordinates
(iii) Prolate spheroidal coordinates
(iv) Oblate spheroidal coordinates

General Coordinate Systems

(1) _ Conical coordinates
(ii) Ellipsoidal coordinates
(iii) Paraboloidal coordin#tes
In three dimensional problems often restrictingassumptions
of symmetry are made. Under such assumptions of symﬁetry a reduction to
two independent variables in place of three is done to make a mathemati-
cal problem easier whén, however, it is more complicated. By these
restricting assumptions a condition is put on all the pertinent quanti-
ties of flow to depend only on two independent variables.
In the following sections, however, we shall not put any

restricting assumptions of symmetry.
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In sections 5 and 6 we study the three dimensional problems

when the chosen natural coordinate systems have the property that

0g; o°g;

5 o 0 for the metric coefficient gl(g,n,ﬂf) i.e. pressure function

is not the solution of the pressure equations and p = p(E) only.
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Section 5. Radial flow emanating from the surface of a small

spherical ball.

N=Const.

84

We study the flow of gases emanating from a spherical surface

of a small rédius r

1

> 0 and moving outwards along the rays that pass

through O, the centre of spherical ball (with coordinates (0,0,0).

For finding the solution of flow of gases in this problem

we choose the spherical coordinates consisting of the coordinate sur-

$2 g2 4 g2 = g2

(x2 + y2)1/2 z = tanm

faces

and Y -
b4

i.e. X =
y=

and z =

Here %

cones

t.an'llJ’
]
g sinnc05$,

"

€ sinm sinw,

€ cosn

J

H
IN

€ < =,
<N,

T < 2m

(45.01)

= constant are concentric spheres, 1 = constant the circular

and ¥ = constant the half planes.
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The squared element of arc length is

as? = dgz + gz dn2 + gz sinzn dlifz . (45.02)
wherein the metric coefficients are
81(€:ﬂ)m) =1
gz(i,n,¢? =€ \ ] (45.03)
g84(E,n,¥) = &sinn
3. a9 B
From (45.03) Lo 120, therefore
on d ,
9P _ g
an (45.04)
and
® g o
U (45.05)

By equations (45.04) and (45.05) the pressure function of the flow and,
therefore, velocity, density are not obtained as the solutions from the
pressure equations and equations (43.04), (43.06) respectively.

Substituting the equations (45.03) in (41.04) and (41.07),

we get
du 1 dp _
L4208 =9 .0
vyt o e (45.06)
and
ggtizsinn pul=0 (45.07)

Frﬁm eﬁuations (45.04) and (45.05); Qe gét
p(E,M,V) = (&) where ¢(§) is an arbitrary function of E.
Now by prescribing suitably the pressure function (é.g. on
a ray of a circular cone 7 = constant, ¥ = constant) on ; curve we
get the pressure distribution.

Let the solution of prescribed problem for pressure be
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p(€,m,¥) = P(E) - (45.08)
From equation (45.07), we get |
2 8r.2
n -~ —_ o
or for the region of flow leaving the only vertical ray along z-axis

(n=0), we have sin2n~% 0 and, therefore, for this region

P”gzu
where a(m,V) is an unknown function of ) and V.
Substituting (45.09) and (45.08) in equation (45.06), we get

2
Qg Euo p(g) =o0

v 85 a(n;w)
Taking u # O in this equation, we get
u(g,n,¥) = g%ﬁ?ﬁy ‘fgzP/(g)dg + b(n, V) | (45.10)

which gives us the velocity distribution of the flow where b(n,¥) is

also an arbitrary function of n,¥. From (45.10) and (45.09), we get

2
w) - =a (nﬂlf)

o(g,m;
g? [j’ézP/(é)dé + a(n,wvb(rbw?}

(45.11)

Equation (45.11) gives us the density function. Now we find the Mach

4

number at any point in the flow region.

From equation (45.08), we get

230 _ o
5~ £ ()

Putting in this equation the derivative of p w.r.t. § from-(hs.ll),

C

we get

2o [ [ 22 (2)az + a(n9)b(n.) 2
a?(n, %) [zijgthé)dg + a(h;w)b(n,wﬁ} + 30" (g) ]

. (45.12)

From (45.10) and (45.11), we get
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g”p’ (g)

>

R -M¥#@M§+dm®%mWJ

(45.13)

which gives us the Mach number at any .point.
Equations (45.10) and (45.11) give the general solution of velocity and
density of the flow. Substituting (45.08) and (45.11) in the caloric

equation of state for the gas we find the entropy distribution.
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Section 6. Flow emanating from the surface of an infinite

cylindrical bar of small radius.

We study, in this section, the flow of gases emanating from
the cylindrical surface of a bar of small radius ry > 0 having as its
. s o . .
axis the coordinate axis Z OZ and moving along the rays perpendicular

to. this axis.

*

For solving this problem we choose the circular-cylinder

coordinates consisting of the coordinate surfaces

x? +y? = g2 r SE<o

L=t o 0 <V <o,
and | z =1 o < < two _
l.€.

X = §cos¢;

y = gsinl, | ' o (46.01)
and z=n

Here £ = constant are the circular cylinders, 1 = constant the half-

planes perpendicular to the axis of cylinders and V¥ = constant the half-
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planes through axis of cylinders.
The Squaréd element of arc length is
as? = az? + an? + €2 a}? (46.02)

wherein

81(5,11;1”) = 82-(5371)1[‘[‘) =1 .
. (46.03)
83(§)n31‘ly) =g

From (46.03)
— = gmf‘= 0, therefore, we get

L) R (46.04)

and R =  (46.05)
By equations (46.04) and (46.05), we get i

p(&,1,¥) = ¢(g) where ¢(€) is an arbitrary function of E.
By suitably prescribing £he distribu£ion on a line given by 7 = constant
and ¥ = constant, we remove the arbitrariness of the function ¢.

Let

p = P(E) (46.06)
be the solution of the problem prescribed.

Substituting (46.06) in (41.04) and (46.03) in (41.07), we get

2u, He) _ | . |
v T 7O : (46.07)

and %E§§ pu) =0 | ' ;46.08)
From (46.08), we get
g pu= a(n,¥)

or p = ééf#g) (46.09)

wherein a(m,¥) is an arbitrary function of m,V.
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Substituting (46 09) in (46.08), we get

auy 2 . - :
3 20,0 | (51pce u ¥ 0)
u(g,n,¥) = a(n,w) ng (8)ag + bn,¥) (46.10)

which is velocity function for the flow with a(n,V¥), b(n,¥) as two
arbitrary functions of n,¢h
From (46.09) and.(46.10), we get

a?(n. )
e[ [ &7/(2)ag + aln)b(n,¥]

o(E,mp¥) == (46.11)

Equation (46.11) gives us the density field.

Finally, the Mach number at any point in the flow region is

M=

o=

From (46.06), we get

2= g2p/(e) L fep’(gifr a(n)b(n.d) 3 2 (46.12)
2 [ B (D)az + alnw)p(n)) +6%7(2))

Therefore,

M=/ Jer’ (g)ez + a(n,¥) b(n.¥)
g%’ ()

(46.13)

is the Mach number at any point.
Equations (46.10) and (46.11) give us the velocity and density of the
flow. Substituting (46.06) and (46.11) in the equation (41.09) we find

the entropy for the flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

In sections 7 and 8 we study the problems of three dimensional,

steady and rotational gas flow when the chosen natural coordinate systems

. o)
have the property that either 1 =g ©f

on

=0 for the metric

%| '__C‘QJ

coefficient gl(g:’l']ﬂlf) .
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Section 7 Flow of gases in a circular tunnel when the

gases are swirling about its axis.

Y §= (cnSt.

L A7

Z

We study the flow of gases, inside the circular tunnel of
radius a, circulating about the axis of tunnel when there are no external
forces. For finding the solution of flow of gases in this problem we

choose the circular-cylinder coordinates consisting of the coordinate

surfaces
x2 +'y2 = nz O<n<a
ﬁ = tan § 0<E<2n
Z=1[J‘ -cn<'qf<+oo
i.e.
X = 1 cos§ o
y = m sing . (47.01)

L v
Here 1 = constant are the circular cylinders, § = constanf the half planes
tHroQgh the axis of the tunnel and ¥ = constant the planes perpendicular
to the axis of the cylinder.

For this system of coordinates the squared element of arc
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length is given by
as? = 2 ag? + an? + ai? | (47.02)

so that the metric coefficients are given by

—

g,(&m¥) =1 5 | . ~ (47.03)
g3(§,’ﬂ,¢") =1

- From (47.03), we get
%) . %,
— P O — — O.

Therefore,

&~ o .0
v , (47.04)

i.e. pressure function is independent of V¥ and is the solution of
second pressure equation (42.12).

So the solution of pressure is given by

op _ : _ _
5= © (47.04)
2
and L (p) =n %E%ﬁ + %% =0 (47.05)

From (47.05), we get

a—(n%g) =0

i.e. 7 %g =_a(§) whe:e a(g) is an arbitrary function of &.

or p(g,n,¥) =—$] Ja(é)_dé + b(n)
ox p(g,m) = L&+ b(n) - | (47.06)

where b(n) is an arbitrary function of 7 and d'(§) = a(g). Therefore,
in pressure distribution of the flow given by (47.06) we have two arbi-

trary functions a(Z) and b(m) which can be easily found by prescribing
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the properly posed boundary value probiem.

.As § = constant and 7 = constant are the characteristic
surfaces of equation (47.05) and are mutually orthogonal families of
lines in g,n plane, wé can prescribe the ﬁreséure élong these. Obvious-
ly, from equation (47.04) curves of intersection of the surfaces § =

constant and 1) = constant are isobaric curves and these curves are points

in (g,m) plane.

Therefore, we shall solve the characteristic boundary value
problem for‘ our flow. Let

p(€,a) = ¢(8) 0O<g<2m |

p(2m,m) = () 0O<nga (47.07)

with the restriction ¢(2n)>= T(a). .
The Riemann-Green function aSSOCia-tedeith the operator L in equation
(47.05) is

R = (g,mix,y) =7 : (47.08)
Therefore, the pressure at any point M(x,y) is

X y
e M LT (E A AN

<
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Equation (47.09) giveé us the solution of (47405), (47.07) at any point
M when thé boundary value problem is presc;ibed. Therefore, equation
(47.09) defines the two arbitrary functions of (47.06) by (47.05) and
(47.07). | |

' Substituting (47.06) in (43.04), (43.06) and (43.11),.we

get the velocity, the density and the Mach number at any point in the region as

u(g,n, %) = £(n,¥) [n? b/(n) - a(g)] (47.11)
1

n 20,0 {12 (n) - a(e)}

p(g,m,¥) = (47.12)

and
M=1 ' (47.13)
Thus our flow is given by (47.06), (47.11) and (47.12). The
entropy function can be obtained from the state equation (41.09), (47.06)
and (47.12).

Mach number at any point in the region is 1 if o # 0.

o8
Therefore, we consider this exceptional case when %% ; 0.
In this case, from (47.06), we get
d’kg) = a(€) =0 i.e.
d(€) = constant = k (say) (47.14)
Substifuting (47.14) in (47.11) and (47.12), we get . -

uln,¥) = £(n, % b/(n) - k]

and
1

7 fz(nﬂlf) inzb/(ﬂ) -k}

I

P(ﬂ;¢9

In the case when %8 # 0, u=c fromM =1 in (47.13). Putting u = c(p,s)
>

in (41.04), we get
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2 [24c] o

as lap
or i
As 92 ¢ 0, by assumption that % # O,' we get
o8 14

oc c '
op p

or .
c(p,s) = i(s) : (47.15)

) p
~where £f(s) is an arbitrary function of s.

From (47.15), we get

- £Xs)
op 2

or

2
p =--'f—'§)£)- + h(s) 1is the form of state equation in the

case if 22 # 0. Here f(s) and h(s) are the arbitrary functions of s.

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

Section 8. Flow through tﬁe hyperboloidal tunnel.

Z

h

To study the steady flow of gasés through a tunnel whose wall

is a hyperboloid of one sheet, we take the oblate spheroidal coordinates
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(£,m,V) consisting of the three orthogonal surfaces

2 2 2 .
+ - = 0
2 2 2 2 2.2 L} i9<s m< W
a cos T] a cos T] a sin T]
2 2 2
+ +. =1 50 E< o,

azcoshzg a2cosh2§ azsinhzg

y , :
and L = tan ) ;0< V<2
i.e.

x = a coshf cost cosV,

y = a coshf cosn sin?, 3 . (48.01)
and z = a sinh§ sinn.

Here & = constant are oblate spheroids, T = constant the
hyperboloids of one sheet and Y = constant the half planes.
The squared element of arc length is

. -
as? = a2(sinh2§ + sinzn) ldgz + dn2J‘+ a? coshzg coszn dwz

(48.02)
wherein
— - . 12 .2 \1/2
81(557'])1“) - 82(§)n:w) = a(sinh g + sin'n )
(48.03)
83(§,ﬂ,w) = a coshf cosn _
From (48.03), we get
Bgl og 4
"—.— - O P 0'
alb‘ but an
Therefore, pressure function is the solﬁtion of
U (48. 4)
and
ﬁig_ + 5 3 sinh27? 5 4+ Sinh z dp 1 sinon 2 _ o
9530 L 2(sin h®gtsin‘y) cosh £Jan 2 (0 1 2eiginZy) O5
| (48.05)
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Solution of (48.04) and (48.05) giveé us the pressure distri-
bution in the hyperboloidal tunnél Qith circular cross sections. Hence
by.equation (48.04) we conclude that the pressure function is indepen-
dent of ¥ and, therefore, p =>p(§,n) i.e. the curves of intersection of
oblate spheroids and the hyperboloids of one sheet are isobaric curves.

We can solve for pfessure, thereby, from equation (48.05)
which is a linear hyperbolic partial differential equation of the second
order in canonical form. In tﬁis equation p is the dependent variable
and €,7 are the independent variables. Our objective is to obtain the
solution of this equation by properly posing the boundary value‘problem
for it.

Since the curves of intersection of the surfaces £ = constant
and 1 = constant are isobaric curves, we make a transformation from Oxyz
space to OuB plane so that these curves are points of the plane where-in
pressure will be the point function.

Let

sinhzg =,

_ (48.06)

and sin2 n=a

be the transformation.
Here in this problem of flow through the tunnel 1 = a the )

region inside the tunnel given by 0 < a< n< nl2, 0 < E<® is

transformed into an infinite rectangular chamnel ( 0 < o < =,

Bl = sin2 a< B < 1) in 0 a B plane és shown in the figure?Z.
Further, the problem of posing a well defined boundary value

problem is also made easier by the transformation (48.06). By this

~ e

transformation the families of surfaces £ = constant and 7| = constant
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are mapped into the familieé of orthogonal straight lines & = constant
and B = constant respectively in Oag plane.

Therefore, if pressure is prescribed along the surface. n = a
and some oblate spheroid & = constant, then these boundary values are
well prescribed for their region of influence. This region of influence
can be made larger and larger by taking £ greater in'value.
| Let us suppose that we want to solve for pressure inside'the
‘region of tunnel bounded by § = ¥. For finding the pressure inside this
we prescribe the pressure on the surface € = v as a function of 7 and on
the walls of this region belonging to the tunnel 11 = a as a function of
€. This way wé prescribe pressure on the part of a line Br= Bl and on
the line a = a, (where a, = sinh2 v) in OuB plane when the pressure has
a unique value at (al,Bl). This problem is thus the éharacteristic
boundary value proBlem in which the boundary curve degenerates into a right

angle formed by the characteristics a =a; and g = B, in Oup plane.

1
Let
P(gJa) =f(§) . Onn:ali 0< €<,
' . (48.07)
plv,m) =g(n) oneg=v; a< ngmnf2

with the restriction £(v) = g(a) be the prescribed boundary conditions
- of flow.
By transformation (48.06) the boundary value problem of

(48.05) and (48.07) in xyz space transforms in OaB plane as

2
~3p 3 1 % 4 _ 1 op_
Lﬁp) =32 | | 2atg)  2(1tw) ] 36 2(atp) oa  © (48.08)
and p(G‘;Bl) = a(a) 0< axg al’ ( )
A . 48.09
p(a;,8) = b(p) Bis B< 1
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such that a(al) = b(Bl) where sinh2 v=a and sin2 a= 31.

B
B=l C
D //\ ———————
O — -

- a.—.:&i

A B=B P B

. , fig2.
0

To solve the problem defined by (48.08) and (48.09) we use
Riemann's method. Let M(T,B) by any point inside the reétangle so that
) MQ and MP are the characteristic lines through M.We find the pressure
at M, |

Now adjoint equation of (48.08) is

¥ooe R [ 3 1R _ 1 3R, _2 o _
LR = 038 IECDN 2(1+a)] 8~ 2atg) aa | (ap2 R0 (48.10)

The Riemann-Green function, which is the solution of a characteristic
boundary value problem for this adjoint equation (48.10), is found in the -

next section 9 and is given by

-~ _ (a+ ﬁ)l-/z (atB) (aﬂ)l/z 13 -
R(w,B;a,8) = F(=,2,1,2) (48.11
(o, 858, 5) (E+B‘)3/2(E+1)1/2 ( ) )

2°2°
(where N =1 is put in)

%,%,l,z) is the same hypergeometric function as used in (38.18)
. . -B)la-~a
with z given by -Eg;g%%giégo

Here F(

Having found the Riemann-Green function associated with the

operator L of (48.08), we have the solution for the pressure at M given by
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- (ogrey 2t (1) M2 (52) (5-g)
Z(M) = p(@,B)= pla ,B,) @33 2@y 12 F[2 2:1 +B)(“+QQ
1/ 1/2 E

(o) Eem () bz O e + 50 g

(@+p)3 2(ar1) 12 22 (a+8)(x+q} 2(ntg)
a

% iy 1/2 1/2 (7

afx) (atB) (oF1) bl 3 (a~a)(B-A)]{P/(N) L 3b(a) , _b(a)

(@+5)3 2(aH) 12 222’ (@4) (o) 2(q) 2(1+qp
B

(48.12)

wheré in the integrals on the right hand side A is the variable and QFBI
are constants. FEquation (48.12) gives us the pressure-distribution‘in
the region ABCD'and, therefore, in- the part of the tunnel bounded by the
surface § = v and 11 = a (i.e. the walls).

Let

p = P(E,n) (48.13)
be the solﬁtion of our boundary problem (48.05) and (48.07).

Substituting (48.13) in (43.04) and (43.06), we get the velo-

city and the density as

sinm cosn ' %%
) sinh?gtsin?n oP ds

u(g,n,ll)‘) =e on . f(‘l’],lb') (48.14)
and- BE '
j;ln
- §51nh Etsin q} aﬂ sinh §+51n n §__ as
p(g;m, 1) sin2 2 )
(48.15)

Substituting (48.13) in the expressions (43.10), (43.11) for Mach number,

we get

cosh’s 1
M =[1 + tanhg|l + 3 (48.16)
51nh25+sin2n Sg(log F)
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or

oF
. .2 .2 2 on
_ sinh”8 + sin’p T cosh”€ .

M=11 -tanhg[sinn cos 1 ][1 Sinh’zg-,}_ Sinz‘n} 3P

‘ o8
.| sinncosm %1;

wherein (Sinh2§+sin2n) EE— - dg (48.17)

F = e an

, _ o
From (48.16) and (48.17), we get M = 1 when £ = O provided %E # 0 on

€ =0 i.e. the flow is sonic on the surface § = 0. In the region

bounded by & = v, N = a, we have

2
1 + cosh§ 5 ]> 0
sinh“€tsinn

2 . 2 2
sinh € + sin n}%} cosh §
+
tanhg {. sinn cosm 1 sinh2g+sin2n >0

tanh g[

when € > O,
Therefore, from (48.16) and (48.17) we conclude that the

flow is subsonic, sonic or supersonic according as

%E(mg F) So
or : (48.18)
oF Zo

on /2P
o8

So we find that the flow of gases on the surface £ = 0 is sonic but the
flow é;t any'oﬁher point. in the region is supersonic (5ubsonic) if.the
rates of change of pressure w.r.t. £ and 7 at that point have opposité
(same) signs.

Finally, we study the flow when a particle of gas moves down

along a stream line from the surface Z = v to the surface £ = 0.
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Case I (When the flow is subsonic in the region.)

In this case M < 1. By this assumption we get from (48.16)
that gg(log F) <0 i.e. log F and £ are such that if one increases, the
other decreases. Now along the motion considered § decreases and, there-
fore, log F increases i.e. F increases and thus the velocity increases

when the flow is subsonic and the particle moves down the stream line..

Case 11 Likewise, we prove that the velocity magnitude decreases when a
particle of gas flows from § = v to § = 0 in this case of supersonic flow

in the region.

In section 9, we study the problem of three~dimensional, steady

and - rotational gas flow when the chosen natural coordinate system has
881 o8,
the property tha:sﬁ— # 0 and SET # 0 for the metric coefficient gy°
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Section 9. Flow of gases through a tunnel with elliptic

Ccross sections

We study the flow of gases through a tunnel with elliptic
cross sections and, therefore, choose the ellipsoidal coordinates for the
" natural coordinates here. In this coordinate system the coordinate sur-

faces are

2 2 2
2 22 2 22 2 ’
g g -b €7-c
2 2 2
x~ v z _ 2 2 2
2 +,22- 22—1 b<n <c,
n n -b c =1
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and
2 2 2 ’ ;
_I'_z. - ?_ywz - 2Z'qu =1 0 < WZ < b2
b~ c’-
with gz > c2> nz > b2 >,$2 > 0
o 2 2_p2) (2.2 (b2-12)

()2 = (E)" ()2 = (& b (-9 (b

_X) () o | bAc2ph) o (s9.01)
and ()2 = (22-c?) (%-1?) (2% |

c2(c2-b2)
Here gz = constant are the ellipsoids, n2 = constant the hyperboloids of
one sheet and ¢2 = constant the hyperboloids of two sheets.
The squared element of arc length is

go? = (DD 2, (PN (Een?) 2 (AN 2

(£2-b2)(£2-c? (12-b2) (c2-n2) N (b242) (c2-42)

(49.02)
From (49.02), the metric coefficients of this system are: .
\
_(e2n?) (2P
g (ém,‘x'f) '_/ 3
1 (EZ_bZ)(§2_c2)
() (D) ;
g, (gm0 = ’ (49.03)
2 (nZ_bZ)(CZ_nZ)
| ‘ (242 (1212
and 83(§,Tb11’) L]

| RO TEE
From (49.03)

%) £ 0 ! # 0
an 3 and aw

Therefore, in this case pressure at any point in the region
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of flow is given as a solution of any two of the three pressure equations
(42.06), (42.12) and (42.13). Here p = p(&,n,V).
Substituting (49.03) in (42.06), we get

P(2-1) *g'% = n(5%-¥?) ‘g{% | | - (49.04)

Substituting (49.03) in (42.12), we get

2
O p +[38 + g J_a_P__.__TL__.a_P.=O (4905)
2,2 2_y27 9 2.2 ’
‘M gl gl AN g2
The third pressure equation (42.13) can be obtained by eliminating %%

between (49.04) and (49.05) and, therefore, is an equation depending
upon (49.04) and (49.05). So the solution obtained from (49.04) and
(49.05) will also'be the solution of the third pressure equation.

Now equation (49.04) is a partial differential equation of
order one and equation (49.05) is a partial differential equation of
order two. In both these equations p is the dependent variable which is
a function of three independent variables §,n,w.

In solving these equations for pressure we shall have three
arbitrary functions involved whiéh we have to prescribe by a well posed
boundary value problem.

We shall solve this problem by first solving the bouﬁdary
value problem for equatién (49.05) in which we shall considér ¥ as a —
constant parameter for the équation. This equation then is a second
order linear hyperbolic partial differential equation,_for tﬁe function
P> iﬁ canonical form with §,n as tﬁe independent variables.

Let n2 = a2, where b2 < a2< c2, be the wall of this tunnel.

We now transform the equation (49.05) which gives us the pressure in the
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tunnel to another equation which hold in plane.

Let
2 _
g = a, '
5 (49.06)
n=-B
‘be the transformation.
By this transformation the wall of the tunnel nz = a? is
] ] - .2 2 _ .2, 2,2 . .
mapped into the line B = -a”, the surface m = b™Te (e“> 0) into the line

2 2

B = -(b2+€2) and the surfaces n2= d” where b2+€2 < d” < a2 into the

lines ﬁarallel to a-axis and bounded by B = -a2 and B8 = -(b2+€). Like~

wise, the surfaces §2 = f2 where c2 < f2 < wz are mapped into the lines

parallel to B-axis and are bounded by a = c2 + €2 and o = mz.

Therefore, the region 1inside the tunnel in xyz space is
mapped into the OoB plane. The curves of intersection of the surfaces

€ = constant and Tl = constant are points in Oap plane and the infinite
2 2

3

tunnel is mapped into the rectangular region bounded by a =c¢” *+ €

@ = w2 and B = -a2, B = -(b2+€2).

A
&
0 =~ (bre) =P
. o
N:Cz‘*'el N:if.&'p(a
= oy M
T TTTTT T T g
f
[}
3
P ——
P=-22=p
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Now from equation (49.05) the characteristic hypersurfaces of this equation
are £ = constant and ﬁ = constant i.e. the ellipsoids and the hyper-
boloids of one sheet. Since these surfaces are mutually orthogonal, we
can prescribe the boundary value problem for (49.05) by prescribing
pressure along one of the surfaces § = constaﬁt and one of the surfaces
7 = constant. We, therefore, regard ' as a constant parameter in this

equation (say, ¢2 = -N2)

Let

p(e2,2) = £(52) el < gl< P <ot ]

p(v2,1f) = g(n?) b2 < n? < &2 > (49.07)
with the restriction g(az) = (Yz)

f
2 _ 2 . . 2 _ .2
be the boundary values on the wall 17 = a” and an ellipsoid £ = v

for the pressure function so that on their curve of intersection the
two prescribed functions have the same value.
By transformation (49.06) the equations (49.05) and (49.07)

are transformed into

2
o p 3 1 - dp __.l____. 2 _
203 ey + sem?yd 3 T 20ty a0 " © (49.08)

’

subject to the boundary conditions.

P(G;Bl) = a(a) @, <ax cci2
pla,,8) = b(p) By<B<B, - (49.09)
such that a(az) = b(Bl)

Here a = c2+e2 =0, &F Y2 = az and B = --a2 = 61, B = -(b2+32) = 32.

By transformation our problem is to solve (49.08) for

pressure at any point inside the rectangle when on a = az, g = Bl pressure
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is prescribed. We solve this problem given by (49.08) and (49.09) by
using Riemaﬁn's method. Let M = (@,B) be any point inside the rectangu-
lar region through which we pass the two characteristics MP and MQ,

As in Riemann's method we first find the Riemann-Green
function which is the soclution of a characteristic boundary value pro-

blem for the adjoint equation,

2R _[ 3 1 ] 2R 1 3R = 0 (49.10)

(R) 2008 | 2(atp) | 2(atND) | 8 - 2(atp) ow (OB*B)_Z

of (49.08), therefore,taking R(a,B;¢,8) as the Riemannian function we

have the follow1ng conditions on R.

(a+5)3/2 [qm?7L/2

R(a,B;a,B) = @+B)3/2 [a ]1/2 (49.11)
on the characteristic g =F
(@p)t?
R(a,p3a,B) (a+§}1/2 | (49.12)
on the characteristic @ =71
and
R(&,5;3,F) = 1 (49.13)

Now conditions (49.11), (49.12) and (49.13) on R(a,B;E}E) are satisfied if

) = (ot8) (o) (D) 12
(G+B)3/2( +N2)1/2

. _ (a-a ‘
wherein z Q*B)(a+5) and a,b,c may be any constant numbers. Now we

wish to fix these a,b and c so that equation (49.10) is satisfied.

ﬁ(a,ﬁ;& B Fla,b,c;z] (49.14)

Substituting (49.14) in equation (49.10)7we get
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dz 3z M Pz 1 _pz , _1 3z _
20 g ¢ (2) +%,aaas i 2(a+g) 3p i atp dp ~ (G+B) aa}'F (2)
+’ZK§;B$1 F(z) =0 (49.15)
Since z = -(g;%)(alﬁg’ we get
oy |
gi'%é ,fl”faiB;Z o S ,,(49'16)
322 ZZ 1 { (
BCLBB ((L'*'B)z 49-17)
and
1 1\oz _
(75 - )% - e (49:19)

Substltutlng (49 16) - (49 18) in equation (49.15), we get

z(1- z)F (z) + (1~ 3z)F (z) - 3 F(z) (49.19)
This equation (49.19) is the Gaussian differential equation

z(l-z)F”(z) + [e~(atb*+1)z] F’(z) - ap F(z) =
with a = 1/2, b = 3/2 and ¢ = 1.
Therefore, equation (49.19) possesses a unique solution which is regular
at z = 0 and which does not vanish there. Assuming F(0) = 1, this

solution is denoted by

-

F(z) ='F [2 392 ’(oc+§)(a+5) ) - .(49.20)
Using (49 20) in (49 14), we get _
== _ (o) Y 2(atE) (et 2 (a-8)(B-6)
R(a,B35,F) @) 2ty 12 My (otp) (a75) ]
' (49.21)

Therefore, the solution of equations (49.08), (49.09) and, thereby, by

the help of (49.06) of equation (49.05) subject to the boundary conditions
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(49.07) is

p(M) = p(a,B) = P(T)R(a 3 5230' B)

P

+f R(v,-8,53,8) {2’ (v) +§ﬁ(—§%ﬁ;—lf dv

T

Q

= / b(A b(A)

*J R(ap:n58,5) 1o () + g(aﬁ) ¥ 2(k'2-1lf2)} a

T

Let

p = p(g,n,¥) (49.23)

be the solution (49.22).

Substituting (49.23) in (49.04), we get

2 _ (2212 llf' 2P
allf n 242 3N

or

'
p(&,m,¥) =£§3;—1Uﬁ- -g-f-] -;L ap +¢(n,8)  (49.23)
(g%

wherein ¢(n,§) is an arbitrary function which we find by prescribing the
pressure along a surface ¥ = constant i.e. p(g,n,wb) = f(g,n).

Thus we get ‘ o _

p = p(g,m, ) (49.24)

Equation (49.24) gives us the solution for pressure function
at any point.insdie the range of influence of the characteristic hyper=

surfaces £~ = Y2 and 10 = a2 when the pressure is also prescribed on a

surface ¥ = ¢s in the region.
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We can also obtain some particular solution of pressure by
first finding the general form of pressure satisfied by (49.04) and then
finding the restrictién on the form by (49.05).

Let

p = (g2-n")"(g>-" O (49.25)
be the form of p.

Substituting (49.25) in equation (49.04), we get m = n and, therefore,
| P = (§z'nz)m(§2-¢2)m satisfies (49.04)
Substituting this expression for p in (49.05), we get m = =1 if
2§2_n2_,4r2 £ 0.
Therefore, we get an exact solution of (49.04) and (49.05)

as given by
b = A
(6%-1P) (g%-4%)

for the region where 2§2-n24¢2% O. Here A is an arbitrary constant.

(49.26)
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Section 10. Theorem. The curves of intersection of the two

families of surfaces, the hyperboloids of one sheet and the hyperboloids

of two sheets, cannot be the stream lines of the three dimensional com-

pressible fluid fiow problem. The only fluid motion possible with the

above curves as the stream lines is the incompressible and irrotational

fluid motion.

Proof: We first consider the compressible fluid motion and
choose the ellipsoidal coordinates for the natural coordinate system as
done in section 9.

Equations of these families of surfaces, the squared element
of arc length for the system and the metric poefficients of this system
are given by the eduations (49.01), (49.02) and (49.03) respectively.

The compressible fluid motion is theﬁ given-by the equations (41.04) to
(41.09) and the pressure function of the flow is the solution of the

equations (49.04) and (49.05).

Taking

g

£" = x,

2 _

n = =y, (410.01)

and w2v= -2

as the transformation,equations (49.04), (49.05) become

1 o) + ap ' ;
(x +y) 3y (x + z) - (410.02)
and
2
o p + 3 + 1 ap + 1 op =0
2 oy xty | xtz’ ay | xbty ox (410.03)

From equation (410.02), we get

p = Flx, (xty) (xtz) ]
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or

p = Fla,B] . ' (410.04)
wherein ‘

o = x

} (410.05)

B = (xty)(xtz)
Substituting for p from (410.04) in (410.03), we get

g2/ 2—8' [ g1/2 5—} + (2« W+z) [ g %EJ =0 (410.06)

Letting 2xtytz = v, we find that

o v)| 2 2
= - = - 0
B(X;y,z) - z 4 N ’qj‘ 7

i.e. we can take «,B,v as the three independent variables. Using the
fact that p = F(a,B) only and a,B,v are the independent variables in

equatibn (410.06), we get

S | 1/2 F | _
as{f‘ aa] %,

a2 2F ).
53[5 aB-J °

or
oF _ 6(a) ] |
Fole? 1/2° ,
B , " (410.07)
SF _ H(a) i
oB 32

wherein G(a), H(a) are the two unknown functions of a.
From_equations (410, 07), we get

6(a) + 5~ H’(a)‘= 0

1/2

Since a »B are the independent variables,
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G(a) = 0,
1’(a) = 0
6(a) =0, | :
} (410,08)
H(a) = H

wherein:H is some unknown constant.

Using equations (410.08) in (410.07), we get

oF _H_
B g2
or
p = Fa,g) = Eﬂ +3 | (410.09)

where J is the unknown constant also.

Using equation.(49.03) in (41.07) and equation (41.09) in (41.05), we get

_ k(n,¥
pu = (410.10)
(gz_nz)llz(gz . ,4?2)1/2
and
2 oH
put = (410.11)
(8%-n) (%-1) |
From equations (410.10) and (AIO.IL); we get
' oH .
u = (410.12)
k(n) (g2-n2)H/2(z242)1/2
and
_ ) |
o= k——gl—?m (410.13)

Substituting for p, u and p from equations (410.09), (410.12) and (410.13)

in equation (41.04), we get
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H=0 : (410.14)
Putting (410.14) in (410.09) and (410.12), we get

p=4d (const)
and

u=20

Therefore, ﬁe cannot have the family of curves considered in
this theorem as the stream lines of a compressible fluid flow.
| We now take the incompressible fluid flow with the chosen
family of curves as the stream lines.

Let p = Py be the density of the fluid. From equations

(41.04) and (41.07), we get

-% o, u? +p = Aln,¥) . (410.15)
and
g = Bt (410.16)

po(gz_nz) 1/2(52_,4]2) 1/2

wherein A(n,$), B(n,¢) are the two unknown functions.

From (410.15) and (41.05), we get

arl 2 24 _ 2 34 (n,d)
an[?_glpou:l 8 an ?

Substituting for u2 from (410.16) and for gf from (49.03), we get

Bzg[,@!] — (..2 2)(52_w\2) BAQH,EE)

20, >N an

o
A}

Since the left hand side is a function of 7,V and the right hand side is

a function of £ also, we get

2 = 2= | 0
an > 3 (410.17)
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Likewise using (41.06) for (41.05), we get

3A_ ., BB _
3 =9 s = ©

From (410.17) and (410.18), we get
A = constant,

B = constant

Therefore, the flow variables are:

B
u =
2 1/2 1
o (e2-r)) /2(242) 112
2
p=As % 2 g 2
o, (8%-17) (2-47)
Finally,v x q = ———-] 1~ ) &y 3
~ ~ 818283
3. 3 3
% an 3
B
2 2,7 L
p, (85D UL -2 0 0

or

the incompressible flow is an irrotational flow.
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(410.18)
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