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ABSTRACT

The aim of the present work is to generalize the T-structures
of G. Legrand (Thdse; Rendiconti del circolo Matematico di Palermo;

Serie 2, t. vii, 1958, pp. 323-354; t. viii, 1959, pp. 5-48) by consider-
ing a linear operator J acting on the complexified tangent space Ti of

a differentiable manifold Vn satisfying a relation of the form Jr+1%kr+l
(identity), where r>1 is an integer and A a nonzero complex constant.
Such structures willrbe called Almost r-Product Structures, briefly
2eL.DeS.

We introduce the subject by giving the necessary historical
background as well as some comments on important results.

We define an a.r.p.s. on a differentiable manifold Vn (of class
ém ) and introduce bases adapted to this structure. This helps us to
obtain a charactérization of the infinitesimal connections (defined on
the set of adapted bases which has a natural structure of principal
fibre bundle) in terms of J. Further we generalize the concepts of
curvature tensor and the holonomy group of these connections.

Next we consider a complex symmetric tensor G on Vn equipped
with a.r.p.s. Introducing the compatability condition JG = AG, we obtain
a singular Riemannian structure subordinate to the a.r;g.s. By defining
special adapted bases and special connections, we are able to get a
characterization of these connections by conditions on J and G. We also

obtain a characterization of these singular Riemannian structures in

iid
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terms of the holonomy groups of these connections.

In order to investigate the conditions for complete integra-
bility of a.r.p.s., we give a short introduction on completely integrable
systems and construct a tensor determined on this structure which we
call the torsion tensor.

The operators C and M of Lichnerowicz are generalized by

) s

defining the operators C and M as follows:

s s s

C¢(vl,...,vt) = ¢(Jvl,...,Jvt)

s t s

Md)(vl,....,vt) = ¥ ¢ (vl, SRPRAAPEY .,vt)

’ k=1 ‘
where vi,e..,v, € T)C(, ¢ is a t-form and 1 <s< rtl.

The following are the main results on the study of these

operators.

1

(a) Let r be an odd integer, s =5 ¢ a linear form, and
T the torsion form of an a.r.p.s. Then,
s s s
+ +
A4 4cde  -MdCd = F L ¢ .1
s s

Consideration of these operators M,C also gives a local

result for the torsion form T:

(b)  T(u,v) =_ 57 -Mu,v)
4\
o4 dk .
where T(u,v) = tjk u'v ; tjk are the components of the torsion tensor

and I-);(u,v) is a generalization of the Nijenhuis tensor.

iv
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We again consider the complex symmetric tensor G and say that

G is hermitian with respect to J if

Je + Y(36) = o.
wheret(JG) is the transpose of JG.

The resulting structure is called an almost r-product
hermitian structure subordinate to the a.r.p.s., briefly H-structure.
Such structures may exist on a differentiable manifold of a dimension
which has to be a multiple of (r+l) (where r>1 is an integer). The mani-
fold is not necessarily of even dimension as stated in the study of
n-structures., Most of the other properties of the almost hermitian
structures in the broad sense generalize in a natural way to the
H-structures.

Finally we examine some details which appear in the study of
H-structures Sy generalizing the concepts of hermitian and pseudohermitian
structures, almost kahlerian structures, kahlerian and pseudokghlerian

structures.
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CHAPTER I

General Introduction

(a) A new approach in classical geometry was initiated by
Eli CartanlB, 5.5, Chern14 and A. Weilg. From their work has been
developed a new technique of creating structures over the object of
study as the foundation, and the derivation of‘the needed properties
from these structures.

These structural ideas have been responsible for the growth
of many new concepts, such as vectors and tensor fields, algebras of
vafious sorts, fibre spaces and fibre bundles. The background of this
development is the history of Differential Geometry. Differential
Geometry in its general sense is a study of relations between global
and local prqperties of a differential geometric object. The spaces
under consideration are not only topological spaces but are also consi-
dered to be differentiable manifolds, so that @ethods of differential
calculus may be applied. Thus, one studies the existence of different
structures on a differentiable manifold. Such an existence brings in
analysis which linearizes a problem by replacing the study of an object
by the study of its infinitesimal (or linear) parts. For example,
differentiable manifolds are replaced by tangent spaces (differentiable),
differential maps by Jacobians, and Lie groups by Lie algebras. For the
global study of the problem, all these linear parts are pieced together
over each point of the object under study, and end up as what is known

as a fibre space. This fibre space is equipped with more structure to
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obtain the notion of a fibre bundle. 1In this way by building mofe and
more structures over the object of investigation, more information about
the object can be obtained.

(b) A. Weil’ pointed out in 1947 that there exists in a com-
plex space a tensor field F of type (1,1) Qhose square is minus unity.
C. Ehresmannlo’11 defined in 1947 an almost complex space as an even
dimensional manifold which carries a tensor fiéld F whose square is minus
unity. The present work is based on special types of structures called
G-structures of the first kindlz, which are defined by linear operators
satisfying some algebraic felations. Such structures have been exten-

14 10,11

sively studied by S.5. Chern™ ', C. Ehresmann , A, Frolicherls,

1 1 -
A, Lichnerowiczz, G. Legrand , D. Bernard 2, H.A. Eliopoulos R
20 19 . ;
D.C. Spencer” , K. Yano and many others. We are particularly interes-
ted in the work of A. Lichnerowicz and G. Legrand. G. Legrand1 studied
a generalization of the almost complex structures by considering a linear
operator J acting on the complexified tangent space Txc at any point

2 =32 (identity) where A is

X € Vn satisfying a relation of the form J
a nonzero complex constant. Such structures were called ﬁ-structures.

For the remaining case, A = O, H.A. EHopoulos introduced almost tangent
structures3, The object of the present wqu is to generalize .m-structures
by considering a linear operator J acting on Vn satisfying a relation of
the form gt o hr+1 (identity) where r 2 1 is an integer and A is a

nonzero complex constant. We call such structures almost r-product

structures, briefly a.r.p.s. An attempt on similar lines was made in
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1960 by C.J. Hsu7 but very few of the properties were discussed. For
the remaining case, A = 0, H.A. E.liopoulos4 genéralized almost tangent
structures by considering nilpotent operators of degree r 2 2. 1t is
also worth mentioning that the study of affine connections on a differ-
entiable manifold with a system of r distriButions (r > 2) has been
extensively made by several authors:8516517518.

(¢) In this work we assume that the differentiable manifold
Vh as well as the subspaces Td""Tr of T; are of class éb unless we
state it to the contrary. It is also assumed that the manifolds intro-
Cuced are of dimension at least equal to 2, arc-wise connected and the
second countability axiom is satisfied.

Most of the properties concerning n~structures generalize in
a natural way to a.r.p.s. However, while generalizing the notion of the
almost hermitian structures in the broad sense (Chapter 6), we observe
that such structures are able to exist on differentiable manifolds ¢f a
dimension which has to be a multiple of (r+l), where r is any integer

Z 1.

For the remaining case, A = 0, H.A, Eliopoulos discussed
'Euclidean structures compatible with almost tangent structures'5 and
generalized this conception to r-tangent structures6. A similar attempt
has been made to study 'Singular Riemannian structures compatible with
n-structureS‘zs, and furthermore, we have generalized this conception

1
to 2.r.p.s. (Chapter 3} This topic was not discussed by G. Legrand .

In a way, it can be said that Chapter 3 constitutes one of the
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additional contributions to the usual generalization of m-structures.
S S7
The introduction of the operators C and M ' on the a.r.p.s.

was a great success in the sense of natural generalization of the opera-

tors C and M considered by Lichnerowic22 and Legrandl, except for the

rtl

restriction that r is odd and s = ;-

It has been considered advisable to give a short account of

necessary basic concepts at the beginning of some of the chapters.
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CHAPTER 2
Connections and the Holonomy Group of Almost r-Product Structures

2.0. Basic Concepts

(A) Infinitesmial Connections. Let E be a principal fibre

bundle, differentiable of class éb, of which the base is a differentiable
manifold Vn of dimension n and the structure group is a Lie group G,
operating on itself by the left translation. We denote by p the canonical
mapping E-*-Vn. Let 92 be the tangent vector space to E at a point z.
A vector of 92 will be called vertical if it belongs to the subspace
Vz of 92 tangent to the fibre.

For each z€¢E let 1hZ be a subspace of 92 with the following
properties:

"a) 1h_ depends differentiably on z.

b) 1hz is supplementary to Vz. Any vector o of GZ is then
the suﬁ of a vertical vector Va and of a vector lha.elhz. Va,
(respectively 1ha) is the vertical part (respectively horizontal) of a.
If Va = 0, a is called horizontal.

c) 1hZ is invariant under operation by G on E, i.e.

g
the elements g of G.

1h = Dglhz where Dg denotes the operation of right translations by.

If for each GZ such a space 1hZ exists we say that an infini-
tesimal connection is defined on E.
To an infinitesimal connection is canonically associated a

7

l-form w with values in the Lie algebra L of G, that is to say, for any
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z € E, a linear mépping of 92 into L: for QE'BZ, W(a) is the element
of L generated by Va. The l-form w possesses the following properties:
| (a') w depends differentiably on z.

(b") if o is vertical, w(a) is the element of L generated
by a;

(e") w(Dg@) = (adjg_l) w(a) where (adjg-l) denotes the
image of the element g-1 under the adjoint representation.
Conversely, let w be a l1-form on E with values in L having the three
preceding properties. Let us denote by 1hz the subspace of 92 consisting
of the vectors o such that w(a) = 0. The field Ih, defines an infinites-
imal connection and w is the associated 1-form.

(B) GComplex Linear Connections. We consider a differentiable

manifold Vn. Let Ti be the complexified vector space of the tangent
vector sPace.Tx at the point x th. Let uslsay that a base of the vector
space T; is a complex base relative to x. Let Ec(vn) be the set of com~
plex bases relative to the different points of.Vn and p the mapping
EC(Vn)--%Vn such that a complex base relative to x is made to correspond
to the point x itself. The set Ec(vn) admits a natural structure of a
principal fibre bundle with base Vn and structure group GL{(n,c). We
will call a eomplex linear connection any infinitesimal connection on
EC(Vn). One is able to determine such a connection by a 1-form w on
EC(Vn) with values in the Lie algebra of GL(n,c). The 1-form w may be
represented by an nxn matrix of which the elements w§ are pfaffian forms

on EC(Vn) with complex values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(C) Curvature Form of the Complex Linear Connection. The

. . iy .
curvature form of a complex linear connection (wj) is the tensor 2-form

on EC(Vn) with values in the Lie algebra of GL(n,c) defined by

Q; d(wJ) Wy ANV ( )

For any vector ¢ tangent to Ec(Vn) at the point (ei), let us put
6°*(e) = 6™ (po); the 6°" are pfaffian forms on EC(Vh). One is then able

to write

2

i__._

“;

i Ok 0 i i
1/2 Ry 10 N6 (Rj k2 =~ Ry

and the R; K2 defines a tensor on Vn. It is called the curvature
b

tensor of the complex linear connection.

(D) Holonomy Groups of the Complex Linear Connection. The

paths which we will examine in the present work will be supposed differ-
entiable (of class éo) pliece-~wise, that is to say formed by the product
of a finite number of differentiable paths.

A path z(t) of the principal fibre bundle E equipped with an
infinitesimal connection is called 'horizontal! if all its tangents are
horizontal.

The holonomy group at z is the set w; of the elements geG
such that z and zg-l may be connected by a horizontal path.

It can be shown that ¢; is a subgroup of G and that the holonomy
groups ﬂé, w;, at two points z,z' are two conjugate subgroups.

We call the restricted holonomy group at z the set o, of

elements g e G such that z and zg"1 may be connected by a horizontal path

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of whigh the projection onto the base Vh will be a loop homotopic to O.

One can show that o, is an invariant subgroup of w;. It is
also easy to prove that o, is the connected component of the identity
of w;.

Suppose that we have associated to each point x of Vn a
neighbourhood u(x) of x. A loop ]_.x at x will be called small if it is
contained in u(x). Let L(x,y) be a path joining X to a point y of Vn
and l.y a small loop at vy« The loop at x ix = L(x,y)-l.Ly.L(x,y) will
be called a 'Lasso' with origin x. The factorization lemma of .-
Lichnerowicz allows us to replace any loop at x homotopic to O by a
loop formed with a finite product of lassos with origin x, of which the
development (the solution of the differential equation guldg = w(dz)

such that g(0) = g, is called the development of the path z(t) on G

0
beginning with go) leads to the same elemeat of the holonomy group o
at an arbitrary point z above x 2.

If Vn is equipped with a complex linear connection, the holonomy
group of this connection turns out to be a group of linear transformations
of T;. It is this group which is usually called the homogeneous holonomy
group of the complex linear connection at x. Similarly one can find the
restricted homogeneous holonomy group of the connection at x.

For further details one is referred to 1 and 2.

2.1. Almost r-Product Structures (a.r.p.s.)
o0
(A) Let Vn be a differentiable manifold of class C . We

will denote by T; the complexified space of the tangent space Tx at
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X € Vn. An almost r-product structure on Vn is defined by the knowledge

of (rtl) proper subspaces To,...,Tr of Ti such that

C

T
T, = To(B...$Tr and dlm(Tk) = n, # 0; %)nk = n.

Any vector v of T; is the sum of vectors ka eTk'- If A is a

nonzero complex constant and r>1 is a positive integer, let us set

Jv = MByv + wE v+ ... +‘wrPrv) (2.1.1)

1

where 1,w,w2,...,wr are (rtl) roots of unity.

c ,
We thus define on Tx a linear operator J such that

LTl 1
J = A (identity) (2.1.2)

To this operator J, there corresponds a complex tensor defined by

(Jv)1 = F%vj v €T
j x
From the relation (2.1.2), we obtain
k k © . r—}—l i
J 'kl v r

where 8§ is kronecker delta.

Conversely, let us suppose given on a differentiable manifold
V> a field of tensors (F?) of class 6n , satisfying (2.1.3) at each
point of Vn. We disregard the case where F; is proportional to the
kronecker tensor 8;. At a point x eVﬁ the linear operator on T; defined

by the tensor (F;) has eigenvalues h,kwl,...,hwr. Let T, be the eigenspace

k
of T: generated by the eigenvectors corresponding to kwk\(k = 0,400,T);

. c
v being any vector whatsoever of TX 5
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10

v0=v+‘i‘Jv+‘lEJ2v+...+l';Jrv
A A
is a vector of TO. Indeed,
Sk L rk
VO=(r+l)Pv+Pva + . *P VW
0 1 0 : r g

= (r+l) PV + 04+ ...+ 0

Similarly, in general, one can say that

v + wlr. Jv/a + ... F er-w-l)f ‘-Jé/}\[: +

\@:

+ lerv/xr

I

(rrl)P.v+ o+ oo F0+ ...+ 0

is a vector of Tﬁ’ 0_<:,Q§_r

i

Moreover, v, t oo T v

o - (r+1) (POV S Prv)

= (rtl)v, i.e.,

1

v=m(vo+...+vr)

o :
H =T oo T
ence Tx OG) 1] -
Vn is thus equipped with a.r.p.s.

(B) Adapted Bases for an a.r.p.s. Given V_ equipped with

a.r.p.s., let us consider a basis (eo; ) of T, such that Je = ?»wke s

K k %
0<k < + < = 0. ! i
r and L 1_<_0Lk__1k, n_, 0. As TX is a direct sum of TO""Tr’
one can deduce that there exists a basis (ei) = (ea 5eeesey ) of ¢
0 X
such that (ea ) is the basis of 'l‘k and Jea, = }\wkea . Such a basis of

k k k
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11

T; is called a basis adapted to a.r.p.s.
In the sequel, we assume the following notations.
Ve =0 =n_ + ... %Fn . Then P cee
e set P_1 and Pk ng n, hen ke 1 k’ﬁk’
We further denote by Nk’ the set of indices (ak,ﬁk,...).

<P .

(C) Matrix Representatlon of Fj. Let us assume that F; is

referred to an adapted base. We know that if vréTi, then (Jv)1 = F%vJ
3

where v~ are the components of v. Let us set v = e;; we have

(Jea Y* = FivJ), where v’ are the components of e, + Og<mgr
m 3 o m
Also (Jea ) = Aw e,
; m m
Therefore
o .
f_,m i_.m  i__i % i am i ar
(Jea) —‘(}\.W ea) Xw (ea‘) FaV +...+FCLV+..'+FQ,V
- m m m 0 m r
a Q.s
As v™ =1 andv™ =0 for $# m so we have

A (e =t (2.1.5)

m m

B Bs
Now (ea y ™= 5am etc and (ea ) =0 for ($=0,.0.7M,00.,1),

m m m
where A\ denotes the missing integer.
B B
s
Hence F ™ = A w'd " etc and F,, =0 for (§=0,...5m,...,1).
m m

We conclude thaf F; is represented by a matrix of the form

MWoIoo 9917 O
010 - .
FL = - (2.1.6)
j . . ]
0 r
r0 e v . AW Ir&
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12

i it matrix and (O, is the n_ x n_ zero
where (Imm) is the n x n_unit mat ( s.m) s o

matrix ($ #m; S,m = 0,...,1).

(D) Let (ei) and (ej‘)' be adapted basis at x €V . Then

ej‘ = Ajlei N (2.107)
‘Since T; = Toﬂ) ...®Tr and each Tk is invariant under J, we have:
"k
egr = AB' e, s k=0,..0,r (2.1.73a)
k k k

o ,
and setting (A 1,{ ) = A € GL(n, ,c) we have that the matrix A = (Al,) is
B'x k k J

of the form

%0 %1 © ° %r
010 ) .

A = - . . (2'1'8)
orO ) ) " Arr

We shall denote the set of all matrices of the form A by G(nr)

LEMMA 1: G(n,) is a Lie subgroup of GL(n,c)

PROOF: We must prove that (a) G(nr) is a multiplicative

subgroup (abstract) and (b) G(nr) is an analytic subgroup of GL(n,c).

(a) Let AA'e G(nr). Using multiplication by blocks we have
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13

\] 1
A00 0 A 00 0 AOOA 00 0
Aar= y . . = . €G(n_)
. . . r
0 ; 0 A 0 Al
AL rr rr rr|
Al 0
and A-1 = 00.
. e G(nr) .
0 Al
rr

Hence G(nr) is a multiplicative subgroup (abstract) of GL(n,c).

(b) G(nr) is closed because the equations (2.1.7a) are satis-
fied. Also any closed subgroup of a Lie group G is an analytic subgroup
22

of G. . Hence G(nr) is an analytic subgroup of GL(n,c).
It is also very easy to prove the following lemma.
LEMMA 2: G(nr) is composed of all the elements of GL(n,c)

. i
which commute with the matrix Fj.

2.2 Gp-Connections
(A) Let Ep(Vn)-be the set of all the bases adapted to a.r.p.s.

relative to the different points of Vn’ and p be the canonical mapping
: v >V
p: E (V)>V

such that an adapted basis at x is made to correspond to the point x

itself. Ep(vn) has, with respect to p, a natural structure of aprincipal
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fibre bundle of base sPaée Vn whose structure group is thelSubgroup
G(nr) of GL(n,c)... (For more details we refer to the Appendix I).
Any.infinitesimal connection defined on Ep(Vn) will be called
almost r-product connection, briefly Gp-co?nection.
Given a covering of Vn by neighbourhoods endowed with local
cross sections of Ep(Vn), a Gp-connection may be defined in each ngigh—
bourhood u by a local form with values in the Lie algebra of G(nr);

such a form may be represented at x<‘:Vn by means of n x n matrices whose

elements are local pfaffian forms (with complex values) denoted by
T = (ni) | | (2.2.1)
u _

Hence a Gp-connection is represented by the matrix

nOO 001 . | . . . 00r

%10 .

. ' . (2.2.2)
ro - » [ . . ‘r)Err

where 7, is the matrix of the same kind as A, in (2.1.8) but without
the restriction of the non-singularity of Akk’?'

THEOREM 1: With respect to Gp-connection the absolute
differential of(??)is equal to zero i.e.‘7(F§)= 0.

PROOF; We refer the tensor(F?)to bases adapted to the Gb-

structure. The absolute differential of(E;)is given by
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i i i S
F.)=4d + nF, - 7F
v(J') (P;) STy

Since (F?) is given by (2.1.6), d(F;) = 0. Also, taking into considera-

tion the form of the matrix (2.1.6) and the matrix (2.2.2), we have

Po p P Pg po B
VF- FITF _(oFoﬂ'F“ Tr/i DTT/IS-/HT /l‘f

. - o “4\. A pﬁ-
B. B o _a.B _B £, %, 54:. Pa wh' ST AW S
v E( = Tra— E( - A_F& - TT°<:_ F“a_— T‘;‘A- F°(h. Tl.o(a\./{ “a G(A' .(A'

ll

A (Tr ’\‘\'P"') - .

P P P ﬁa«. Trp“/{w.&g'(,&.— T}.O(A/{HRS’(A

§7 F c’a JL TT F -]— A[: TT anb oLy ﬁb. %o
.h

; ‘&"’a %n o<0.=#'&"</£
Fq W L @
_,mu(w )PA o d OF
= o oo 7Z{c.- %
Hence‘?(F?) =0 (2.2.3)

Conversely, let us consider a complex linear connection and a covefing

of Vn by neighbourhoods equipped with local cross-sections of Ep(Vn).

This connection may be defined on each neighbourhood by a local form, with
values in the Lie algebra of GL(n,c) represented by a matrix (w?) whose
elements are complex-valued local pfaffian forms. We will say that (w%)

defines the connection relative to the adapted bases of the considered
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local section. In order that the given connection can be identified
with a Gp-connection, it is necessary and sufficient that (wi) belongs
to the Lie algebra of the structure group G(nr) ;f Ep(Vn) i.e. to be
given by the matrix of the form (2.2.2), Comparing with the relations
cbtained in theorem 1, we obtain the follo&ingvtheorem:

THEOREM 2: In order that a complex linear connection may be
identified with a Gp-connection, it is necessary and sufficient that the
tensor (F;) have a zero absolute differential with respect to this

connection.

2.3. Curvature Tensor of a Gp-Connection
Suppose that a Gp-connection is given on Vn equipped with

Aa.r.p.s. The curvature of this connection is defined by
of = ant + rian? | (2.3.1)
il A )

where the tensor 2-form (2.3.1.) is the form of the connection.

From (2.3.1) we get, by using the matrix (2.2.2)

A Bo _Bo A
?o Po __.Po /‘o ,“_Po A- OL_“_ ° Tl. A-“— (-]
QO(O: OL““(0+ H/‘o/\ “°(o+ et AAA e °(°+ T )

: A B Br Ay
P R + Trp'“mr "edW + T AT
Qﬂmé ch%~ TTO/\TK%t+ N o, N "

Po. P __P Be _An
Q =dm N ™o+ T AT
% “a Tro a /‘A_ °(a
= o (o) -+ -+ o
= o 1o osazbsA
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Hence we have the following matrix representation of 7:

250 %1 ° * Y%
N O ' )
i 0 .
()= 1 . (2.3.2)
i . .
OrO ’ : : ) Qpp
QBk =Q
where ( . ) = k'

k

By contraction on the upper and lower indices one obtains

B
oo _ dnﬁo
Po Bo

r r
jeeesee3fd T = dm T .

Br Br

Let us put ¥ = ?\wmﬂﬁm for each (m = O,...,r).'
m

This defines \1/ R \Ill, ....,\1/r 2-forms with scalar values (complex). We

will say that \I/m is the m~th characteristi¢ form of the G -connection.

B
One has \I,'n =AW dan

- m
results that \pm's are closed forms.

for every m. It is easy to see from these
Let us assume that there is given on Vn a linear connection
i i .
(real or complex), say (wj). Let (Qj) be its curvature form. The

0 iy _ iy .
scalar 2-form (Qj) = d(wj) is closed and homologous to O.

17

Let us set X = n; - d(w;,'). X defines a scalar l-form. We have
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i

: - ° B‘L °.
G T /NS B R ek /lap+---+/iﬂ:/lf7.‘.

w wh lBo /9
< (L S)

A(aT- 4 )

’H(T‘f— 2) (2.3.3)
Ad(X)

d (AX).

¥y Ve 01, .
Hence (\I’O Feg e “;f) - M) is homologous to O.
w J
o .
Finally if one takes a Riemannian connection, Q;’ = 0, which means that
\I,]_ ‘I’r

(‘I/O 4 ;"1-4‘ +;'l:) is homologous to O.
One can further prove that the homology class in Vn of the

forms \I/m does not depend on the considered Gp-connection. Indeed, let

us suppose given another G_-connection defined relative to adapted bases

- ¥ ¥A
by (’T?Bo, ..../n\B ). Let @m be the m~th characteristic form of this
0 r
connection.
. ¥m ¥
, /A m
Let us define 43: Y - nY > a scalar 1-form. We have
m NAX
A w %m y m A%,
o N
m ™ m
- dM, — dT
=AW ( & -(m) - (2.3.4)
m Aw Ao
=Auw d( T‘-‘( - :‘
™ ™
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This means that the cohomology class of@m is the same as that of \I/m.
Obviouély, this result is true for (m = O,...,r). Hence the statement
is justified. One calls such a class the characteristic cohomology class
of the a.r.p.s. determined by the operator J. This leads to the following
theorem:

THEOREM 3: The characteristic 2-forms of all the Gp-connections

belong to the same cohomology class of degree 2.

2.4 The Holonomy Group of a Gp-Connection

(A) We shall prove the following theorem:

THEOREM 4: A necessary and sufficient condition in order that
a complex linear connection in a manifold Vn be a Gp-connection of an
a.r.p.s. is that the holonomy group of the connection be a subgroup
of G(nr) .

PROOF: 1If Vh is endowed with a Gp-connection, any horizontal
path constructed on EC(Vn) relative to the complex linear connection
identifies with the Gp-connection,and, starting at an adapted base s,
ends at an adapted base. One deduces from this that the holonomy group
at s of this connection is a subgroup2 of the structure group G(nr) of
the fibre bundle Ep(Vn).

Conversely, let Vn be a differentiable manifold endowed with
a complex linear connection. Let us consider the point XGEVn, and assume
that there exists at x a complex basis s such that the holonomy group q%
of the connection at s is a subgroup of G(nr); the elements of qg are

matrices of the form (2;1.8). Let A be a nonzero complex constant, and
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let us consider at the point x the tensor whose components with respect

to the base s are

F™=aw 8 etc

Xm
B
and F"l'=0
xﬁ

This is the tensor represented by the matrix (2.1.6).

¥

m

for (£ # m; £L,m =

O’III,r)I

It will be

invariant under the transformations by the elements oflps because

aJ = Ja is trivially true.

-+
Jz,...,Jr, J° 1, one obtains
2 0 0..° 0
Aw IOO 01 Or
) 010 .
J° = e
2r
%0 ° - ©o A Irr
rtl 0
MW %i %z
O .
o 10 , .
o .. . arLrlr),
r0

The latter of the results (2.3.5) provides

k., k
1.2
Fj Fk

rr

r
BOQOJ =

On the other hand if one computes the powers

r O
A Ioo 91 r
%10
0 . . . hrwrrl
r0O rr
Identity (2.3.5)
(2.3.6)
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From the tensor F; we deduce by parallel transport in Vh
a tensor F; defined over the whole manifold Vn with absolute differential
equal to zero, 2, Moreover, the relations (2.3.5) and (2.3.6) remain
true at every point of Vn. Sinceﬁ]@?) = 0, then by the theorem 2, the
given connection may be identified with a ép-connection.

(B) The restricted holonomy group

~)

Let Vn be the universal cover2 of the differentiable manifold

Vn equipped with a.r.p.s., and q the cannonical mapping q§335>vn. Each
point of‘V; admits an open neighbourhood V such that ¢ is a homeomorphism
of Vonto q(V). One can thus define on’G; an a.r.p.s. by the inverse
image under ¢q of the a.r.p.s. given on Vﬁ. In a similar way, one can
define a Gp-connection onlvz. Its homogeneous holonomy group2 at the

~ -
point??evn may be identified with the restricted homogeneous holonomy

group of the given connection at the point x = q§:
LEMMA 3: Let SkG(nr) denote the set of matrices of G(nr) for

>which Akk = Ikk for each k = 0,1,..,vs Then each Sk

G(nr) is an invariant
subgroup of G(nr).

PROOF: If B and B' belong to SkG(nr), then by definition
det = det|A' = 1. We must prove that (B'-l)B and (B'-l).B.B'
Akk kk .
also belong to SkG(nr). We shall prove for a fixed k only since the

other cases can be proved analogously.

1)

P
In the sequel we shall replace Vn by its universal cover Vn without

changing the notations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

-1 -1
- -1 -
where detI A'kk'AkkI = detIAikl .det[ Akkl = (det]Aﬂk,) 'detIAkk, 1
v 1 , /
which implies that (B')B belongs to SkG(nr).

Also
-1
1 . . Al O
A0 * %00 00
-1
(B')B.B' = .
-1
0 A' LA A
rr rr rr

-1 -1
were aetlay g A | = e [ el | el
(det lAlck})_l.detIAkk'.detlAlLkl

= 1 . 1 . 1 =1

]

-1
Hence (B')B.B' belongs to SkG(nr).
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THEQREM 5: 1In order that the restricted homogeneous holonomy
group of a Gp-connection be a subgroup of each SkG(nr), it is necessary
and sufficient that the characteristic forms l}'k,s of the connection be
zero at any point.

PROOF: Let s be an adapted basis at the point x EVﬁ. Let us

0

assume that the restricted holonomy group ez is a subgroup of SkG(nr) for
a fixed k. This assumption will be true at every point of Ep(Vn). We

introduce at the point X the covariant tensor to of order n o whose
components with respect to the basis s are
Mt TR T

t, ..-E:E_h

' " i,:""‘.'n

R (243.7)
R

It can be shown that the tensor t. is invariant under oy Indeed,

0

til,...,in are different from zero only when :'Ll,...,ink is a permutation
of nk_1+1,....,nk. On the other hand
: : h +l,s M
1, ty Rt R
't'-t... "=A~l".A'lk€- e ee, L ’
7‘ ’ 2 }hh . 7‘ ?ﬂh 4_'3 ’ hh
n +l)-' M ')h
where t , , ﬁ(f‘{""), ﬁ(h-‘)hh k¢ Rk
oL s e, d - / « o e p .
h-t - oL ceey
( )I (h l)hb\ (h'()‘ a((h-"')h P(k")" Iz(h‘l)h
R k
t / / /
and & « s > & . e l) * joesd O
(h’l)l, M(P; (h-l)h

k

N\
 for (m = O,...,(k-l),..,,r) and 1< p <0y -
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B(h—l)l P(h—t)mh nh:ﬂa Tt ﬂh
o e g = AL, AL RE
(h-), ne (R, Linn, Py P
n, ! R
n, +
' k-t ”h
A,« A
(k-0 )
:cJ.e.'t ' .
.n "
kAt N
qu’ . ./Xi'
nhj' > e, hh
- ‘(h")" . &(h")n
n +1 ,
ket s . .’-nh
Hence t_, T = Ei . Y
e Y

This justifies the statement.

By parallel transport, t, generates a tensor defined on the
whole V_, which we denote by t. We have Pt = 0. If U is an open
neighbourhood of Vn endowed with a loéal cross-section of Ep(Vn), there
exists a differentiable function ef with complex values # O defined on

U such that we have with respect to U,

My 4
t.

: = . .
‘l,..-,oh};' E;q’...)‘nh

| )"')n
3 M3 e fvghﬁ' Tk
vt‘i'"...’cnh:‘_(CL-e)- E;.’...,l + ’e 4-"’..1,""'

hh o}
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On the other hand,

nh:"~""nh a i

oy, _
Vse.'---»inh =-M, € . . _.....Tgnh&,...,a

h'l‘l,..,’nh a Rt

R ..
o VE =-Tr . i —_

x ) . o o x x > ,vo"x

th-), ’ (h-:)hk (R-y, @ “(h..)z_ (h-ohh

a nh_f') * :Ylh
....'ﬂ;(
(h_.)n “(h—‘): FS
d(h"l)l °<(h"|)n hj-(l’ 2 Ylh
= "'( ” + 1, )
(k-9 (-0, T X key
k "k
o n +l’
- - h h-l 2 nh
- (Tl;( ) &
RT Ryt 2 & '
i-‘)| (h'l)h'
Thus we have
oL N o, oot m
t. . -ﬁ- R k- k
v*l"""h—{<dﬁ—ﬁx )E .
Rk k I
' R

; k
S' e oo .; = 0 = L) A
ince t. , i, , we have df T 1so

a
l{)k = }\wkﬂz:k = }\wkdnak = }\wkdzf =0 as }\wk ¥ 0.

k k

2
R
(FA )
cd

.

N
4

B

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

~Hence the characteristic form lpk is everywhere zero.
We would have been able to make an énalogous argument by
varying k and SkG(nr) such that det\Akki = 1 for O&k €r. Finally
we say that alllpk‘s are everywhere zero.
Conversely, let us‘consider a differentiable manifold‘Vn,
simply connected, equipped with a Gp-connection, and let us assume that

W, is zero at any point of V. Relative to each local section of Ep(vn)
a.

one has dﬂdk = 0. Let x be a point of Vn. Then one is able to find an
k

open neighbourhood U of x equipped with a local section of Ep(Vn) and a

function f with complex values # O defined on U such that with respect
"k
to the cross-section, = df.
A k
We consider the covariant tensor t of the order o defined

on U, whose components relative to the local section are

h:l,---,nh .ﬁ' -
-t' ...,}_ =E L. L . e,

Its absolute differential is determined by
n+t,....n o

. k-t ° *h *? (le" ﬂ-h‘)z o .
Vti,...,[, = E- . < ) xh

L.

[} nh )

. t’ﬁn

Given an adapted base s at the point x, the holonomy group
(7;,of the connection at s is, as we have seen, a subgroup of G(nr). Since

t is zero on U, the elements of o obtained by development of the loops
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at x situated in U leave ¢t invariant. One deduces from this that they
belong to. an invariant subgroup SkG(nr). Since we may associate with

every point x such a neighbourhood U, it follows from the Lichnerowicz
factorization lemma 2, that for every s‘E.Ep(Vn), o, is a subgroup of

SkG(nr). Proof is the same, by varying k from O to r.
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CHAPTER 3
Singular Riemannian Structures Compatible with the a.r.p.s.

3.0 Introduction

Differential geometry is concerned with the study of geometric
objects defined on differentiable manifolds. One of the simplest geometric
objects is a field of non-singular, symmetric, second order covariént
tensors, and the branch of differential geometry which studies the
structures associated with this object is called Riemannian geometry.

A differentiable manifold Vn of class é) is said to admit a
structure of a Riemannian manifold of class Ca(a<b—1) if there exists on
Vn a symmetric tensor G of class ¢? such that, if gij are the components
of this tensor for the arbitrary frames then thg associated quadratic ’
form is ds® = g, . ol.ol,

. ij

We shall assume that the quadratic form is positive definite
(which is of greater interest from the geometric point of view) which
implies that det|G} > O. The more general case of indefinite G, with
det IGl # 0 is important for the theory of relativity. Alternatively,
G is given by associating with the tangent space T; at x:&Vﬁ a scalar
product:

(u,v) = 8;5Y vJ, where u,vET:;

The well-known theorem of Whitney2 states that a differentiable

manifold of class CbQﬁs positive or b =®) always admits a structure of

28
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a Riemannian manifold of class Cb-l. On the other hand, such a result
is not true in general for the real analytic ﬁanifolds. We can introduce
only one Riemannian metric of class én ."This classical result is
accepted.

The object of this chapter is to investigate some properties
of G defined on a differentiable manifold Vn’ equipped with a.r.p.s.,

by constructing over it a singular Riemannian structure.

3.1 Rp-Structures

Let us suppose that one has defined on Vn’ equipped with a.r.p.s.,
a complex metric of class ép, that is, a symmetric tensor G = (gij) for
which the components, in a system of local co-ordinates (xi), are complex
functions of the (xi) of class éb, with the condition that the rank of
G = (gij) is nj. We will say that the metric G is compatible with a.r.p.s.
if the scalar product of two arbitrary vectors of T; is proportional to
the scalar product of one of the vectors with the transform of the other
by J. This means that for any pair of vectors u, v-eli, one has

(u,Jv) = Au,v) | (3.1.1)

where (u,v) denotes the scalar product gijule

The condition (3.1.1) can be expressed as

ij k _ ik
giju Fkv ‘ Kgﬂsu v
or

g. .FJ = Ag

ij k ik
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or

JG = AG. (3.1.2)
We will say,'in the above case, that Vn is endowed with a singular
Riemannian structure subordinate to the a.r.p.s.; we call such a
structure an Rp—structure.

With respect to a basis adapted to a.r.p.s., (3.1.2) can be

written as

0
Aw IOO ] 0

00" Cor 00" ° JOr
rr| | xO rr 0" " Tpr

It is easy to see from above that G has the form:

%00 %1 " %r
_lo. .0 '
G = .10 11 ' where G, = (GOL ) is an
_ . : oPo
’ 1. B XD, matrix of ramk nj,
. - . 0
r0 rr (3.1.3)

THEOREM 6: Given an arbitrary quadratic form on Vh defined

by a tensor M = (mij) of rank n and a linear opefator J on T; such that

Jr+1 = hr+1 (identity), one can always obtain from M an Rp—structure
PROOF: Let us set G = J .M+ I LM+ ...+ AT (3.1.4)
We shall prove that one can take for G the matrix defined by (3.1.4).

Operating by J on both sides of (3.1.4) we have
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36 = 3 g Taeerg T A A L 4 AT

I

AL g 2 T I, T

fl

AR I T e, L T Lo

= AG.
Hence we see that (3.1.2) is satisfied.

Moreover, from (3.1.4) with respect to a basis adapted to a.r.p.s.,

we have
r
(rF)A My, %1 " Oor _ ‘

where M_ = (m ) is an

0 0 - 00 %oPo

10 11 ‘
c = ' . . ny X ng matrix.
. . . 0
%r0 ' rr A (3.1.5)

= (r+1)Krma . Since M is of rank n, we have

This means that g
a B
(0140]

oPo

det 8q, 8 179 0. Moreover, we note that under a change of basis
0~0
= Ah 1 m in particular we have
mj|k, j'ﬁ('/hi’ P
AL M
h 1 0,70
m, ., = A m o = A A m
%80 %o Po Bt % Bo MoMo
_ 2

so that det |4 o) = Cdetfa D) (deer ) # 0

Hence G = (gij) is of rank ng.

3.2 Rp-Adapted Bases
We consider at a point x of V  a basis (ei) adapted to an

a.r.p.s. and the corresponding dual basis (91). We have
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Lo %o Bo
ds? =g, 0405 =5 6.0
: ij mOBO

Since the quadratic form is of rank ny, one can always find an ortho-
normal base (ea, ) for TO by taking suitable linear combinations of

(e(L ). By doing so ds? can be written as
0

as? = > (eao)z.

1

One can also find families of vectors (ea! ), 1<agr by taking

, a
suitable linear combinations of (em ) respectively, such that
a
Je , = hwaea, . It is quite clear that the new vectors
a ! '
(ei') = (ea, jeqy 3eceeiey, ) form an adapted basis for which (ea, ) are

0 1 r
orthonormal. In this case we will say that such a basis is adapted to

the subordinate Rp-structure. Such a basis will be called Rp-adapted
basis.
Suppose ‘now that (ei) and (ej,) are two Rp-adapted bases.

Then we have:

Al AJ

= A 2.1

Brpr T A8y (3.2.1)

1y o 4= =g = -
where (A ,) = A =14, 0 and (g, ,,,) =C = Ino 0 0
. 0 0
0 A . .
rr . . .
o - . . 0

32

In the sequel we shall use Ar instead of Arr' We may write (3.2.1) in

the form
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¢ = a%(ac) | (3.2.2)

where t(AG) stands for the transpose of (AG),

or
I 00 A 0 Ya) o0---0 ASa) 0.+ -0
n, 0 0 o ‘o
0 o .l= Jo o .|= 0 0 :
o ° . - . . . . . ¢
o . . . 0 0 al o - 0 0 . .0

or Ag(AO) = In which implies that A  is orthonormal. We thus see that

0 0

a transformation matrix between any two Rp—adapted bases is of the form

R = ) where AO is orthonormal

Let O(nr) be the set of matrices of the form R. This set is a subset

of G(nr) such that its elements satisfy the relation Rt(RG) =G

THEOREM 7: O(nr) is a Lie subgroup of G(nr)

PROOF: Let R and R,& O(nr). Then we have

(rey) SRR 6)=(RR, ) E(R,0) S(R)=(0){ () (o)} ()

= Re“(R)=R"(G) *(R)=R*(RG)=C
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and

EhHER ) = k7 HEe R = k) ™

I

(R"H (R)S(re) (&7
=f(re)"(R7) = (@ (&
= G. |
Hence RR, and ﬁi belong to O(nr). This means that O(nr) is an abstract

1
subgroup of G(nr). Using the condition AS(AO) = Ino, one éan say that
O(nr) ié a closed subgroup of the Lie group G(nr). Hence we deduce that
O(nr) is a Lie Subgroup22 of G(nr).

Let ER(Vn) be the set of all the Rp-adapted bases at different
points of Vn and let p:ER(Vn)—9Vn4be the mapping, such that each Rp—
adapted basis at a point x€ Vn, is made to correspond to the point x
itself. Then ER(Vn) has, with respect to p, a natural structure of a

‘principal fibre bundle with base space Vn and structure group O(nr),

(for more detail we refer to Appendix I1).

3.3 Rp-Connections

Any infinitesimal connection defined on ER(Vn) will be called
an Rp-connection. Given a covering of Vn by neighbourhoodsvendowed with
the local cross-sections of ER(Vn), an Rp-connection may be defined in
each neighbourhood u by a form Wu with values in the Lie algebyavLO(nr)
of O(nr). Such a form may be represented at x€EVh by means of a matrix
of order n whose elements are complex valued linear forms at x. The

form W will be locally denoted by Wu = (W?), where W; = LO(nr).
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To determine the form of the elements of LO(n?), we recall that
O(nr) consists of matrices R of GL(n,c) which commute with J and are
such that Rt(RG) = G, The Lie algebra of O(nr) ~consists of the set of
all the infinitesimal right translations of O(nr) defined by a tangent
vector at the identity glement of O(nr). Thus one can show that

LO(nr) consists of matrices

A 0
0

o
I

such that RG + S(RG) = 0. (3.3.1)

r

For more details we refer to Appendix II.

With respect to Rp—adapted basis the condition (3.3.1) means that

-KO o - . -0 t(AO) O + + -0 0
0 0 o 0
. + : . =
0 . . . 0 . . 0 0
or
- t
+ \ = . L] L]
Ay (AO 0 (3.3.2)

Clearly, ER(Vn) may be considered as a sub-bundle of the fibre
bundle Ec(Vn) of all bases. Thus any Rp-connection defines canonically
a linear connection with which it can be identified.

Conversely, let us consider a complex linear connection and a
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covering of Vn by open sets, each equipped with a local section of ER(Vn).
This connection may be defined on each neighbéurhood by a local form,
with values in the Lie algebra of GL(n,c), represented by a matrix

(wj) whose elements are complex-valued local Pfaffian forms. In order
that the given connection be identified with an Rp-connection, it is
necessary and sufficient that (w?) belong to the Lie algebra of the
stfucture group O(nr) Of'ER(Vn)’ that is to say that the following condi-

tions be satisfied:

,waa Bb

a

a B
w ' + oyl =0 (3.3.4)

The condition (3.3.3) expresses that the absolute differential of the
tensor (F?) is zero (a necessary and sufficient condition that one has
a G_-connection). The condition (3.3.4) means that the sub-matrix

(WEZ) belongs to the Lie algebra of the orthogonal group O(no,c). In

order to interpret (3.3.4), we introduce the absolute differential of

the metric tensor in the given connection as follows:

- k
Veiy T 98y T By Vi T Byt

We recall that with respect to an Rp-adapted basis
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A
xg )

go30500 °
0
(g;5) = ? and gonoBo:EﬁLB'
0 0
Hence we have
d o o ceafl sA.
Vi 4 pr doa po ghPL imz Pe
, Ao
= o*(%{Pw«-l- +3/,F «)(%«A P&
- o =(0) = (e) = o, :
A A
‘ Ao 2y wo
vgo(oFO =0 (a/’oPa'w"(o-r T /'A.Fow"(‘?) (g;(vo p°+
Po - «ss=toO
o~ (W, totr-- ) (w rox )
o oy
= .__(UJO(O-;— wpo)_ o
Ao
v%t’(mpm“ <%/*ome°(m+ g ) <°<"' A P"‘
= —(0) - (o) = o e m <
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This leads to the following theorem:

THEOREM 8: The absolute differential of the metric tensor
in an Rp-connection is zero.

Combining this result with‘?(F§)4= 0, we have

THEOREM 9: In order that a complex linear connection be able
to be identified with an Rp-connection, it is necessary and sufficient

that the tensors (F;) and (gij) have zero absolute differential.

3.4 The Holonomy Group of an Rp-Connection
Let us consider an Rp—connection. Any horizontal path
constructed on Ec(vn) relative to the complex linear connection coincides
with the Rp-connection, and; beginning at an Rp-adapted basis b ends at
an Rp—adapted basis. One cqncludes from this that the holonomy group at
b of the the complex linear connection is a subgroup of O(nr).
Conversely, let Vn be a differentiable manifold endowed with
a complex linear connection; and let us suppose that at the point x of
Vn there exists a complex basis b such that the holonomy group \Pb of
the connection at b is a subgroup of O(nr). Let us consider at the
point x the tensors (gij) and (F;) for which the components relative to

b. are given by

gG,B =0 for 1g8,mgr; =3
[m - 3 - ’ga‘oﬁo G‘B
and a - o
F™=awod"; F"=0;0¢m#sgr.
Bm Bs
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These tensors are invariant under q%. By parallel transport
on Vn one obtains the tensors (gij) and (F;) defined on the whole mani-

fold. Now, at the point x, we have:

rHl i L

'Sj’ which implies that J A

Also

-z
[
aQ
1
>
oQ
[=N
Il
rx
(4]

J
H F
ence kgji

= hgik or JG = AG.
These relations femain true at any point of Vﬁ. Thus Vn may be endowed
with an Rp—structure. Since the tensors (gij) and (F;) are invariant
under le, they therefore have zero absolute differentialz. Thus the
given connection may be identified with an Rp-connection. This leads to
the following theorem:

THEOREM 10: 1In order that a differentiable manifold has an

Rp-structure, it is necessary and sufficient that there exists a complex

linear connection whose holonomy group is a subgroup of O(nr).
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3.5 ANote on Characteristic Forms '
An Rp-connection determines canonically a Gp-connection. We

can thus associate with it characteristic forms defined by

i i i h
wheref}, = dn, + . 7, is a tensor 2-form.
er J "h J
1f the connection is defined with respect to the Gp-adapted basis by
(n;), we have
a
‘Pk Aw dﬂdk

Since the given connection is an Rp-connection, we have:

T + 1 =0 or ﬂao 4‘ﬂao =0 or ﬂ&o = 0,
Bo 0 0
. a
0 0]
HencelP =Aw dn_~ = 0.
0 o
0
We thus state the following theorem:

THEOREM 11: The first characteristic form \pO is zero for

any Rp-connection.

REMARK .1: One can easily verify that the rest of the theory on this topic

is the same as given in Chapter 2.
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CHAPTER ¢4
Integrability of an a.r.p.s.

4.0 Completely Integrable Systems.
We consider the space Rm, and a differentiable system of

linear equations in R" of the form
o 1
= Atex* =0 (4.0.1)

where (¢ = 1,...,a) and agm,
assuming that 6% are linearly independent, where the variables (xi) in
the coefficients A? take generic values.

NOTE: A point (xi) is generic for the system (4.0.1) when
the matrix (A?) is of rank a (as 6" are linearly independent so (Ag) are
of rank a).

DEFINITION: A manifold defined by the equations fi(xi,...,xm)=o;

(1 =1,.4.,m) is called an integral manifold of the system (4.0.1) if

the 6%'s are zero on the manifold when the equations afj dxi = 0:
x1 ?

(j =1,...,m) hold.
We are interested, in particular, in integral manifolds of
the dimension (m-a). Let us examine whether there exist manifolds pass-

ing through a generic point M with co-ordinates (x;). Let us put

0

a
= (A]). id - i
B ( i) Let us consider the sub-matrix B(l,z...,a,m-a+l,...,m)

which is a matrix of the order a x a being different than zero at M , as

O’

04
— A . . T . . 1- d
th.e rank of B ( i) 18 a his tmplies that etB(l)Z--o;agm‘a’}'l,o"m)%o

41
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at MO which means that there exists a neighbourhood where it is # O.

Then in this neighbourhood of M we can solve the equation (4.0.1) for

0

the a-differentials in terms of the othef m~-a differentials. Calling

. . ' a .
these differentials dzl,dzz,...,dz , We can write

m
m-a
1 k- 1,k
dz = :Z: Bl dz = ;g: B, dx
k=m-atl k=1
m m-a
22 =3 0 B axt=3 B2 axt.
— k ~ Tk
k=m-atl k=1

We thus see that the integral manifold, if it exists, can be defined by
expressing zl,zz,..,za as functions of xl,...,xm"a in a suitable way.
THEOREM 12: 1If there exists an integral manifold passing
through a generic point, we may obtain it by integrating a system of
ordinary differential equations and this integral is unique.
m-a m-atl

1
PROOF: Let Mo(x 02X > X,

0 ,...,xg) be a generic

point. Let us set m~-a=h. Let us consider the point (xl,...,xh) as a
, h _ 1 h m .
point of R'. Let O = (xo,...,xo). We take the sphere S of R defined

A A
by %_ (x -x0)2_<_ R2. Any radius of this sphere is given by the h
A=l
h h
parameters (cl,...,c ) such that (cl)2 + eeo F+ (c )2 = 1. Then any

point in the sphere is given by
h
x1=c1t;...,'xh=c t; 0<t<R

a
For every integral manifold which we try to find, the z (a=1,...,a)

will be the functions of the coordinates of the point inside S and when
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a
we move along a radius of the sphere the unknown functiomSz satisfy the
equation (4.0.2). By substituting, we find

h

dzt = Z B;(cl,...,ch,t)ckdt
k=1
or
dz* =<?1(cl,...,ch,t) with the initial conditions
i +4 A A
Zl:xglfm:x =x0(kﬂw.uw

h . . : . L
For each h-tuple cl,...,c there exists a unique solution in some inter-

val (O,t), where depends continuously on (cl,...,ch), so that t

%o 0
attains its minimum. Let R be this minimum. We thus see that if there
is ah integral menifold of dimension h passing through MO it is given

in the interior of S by integration of a system of ordinary differential
equations and furthermore it is unique.

DEFINITION: The system (4.0.1) is called completely integrable
if it passes by each generic point and is an integral manifold of dimen-
sion (m~a) in a neighbourhood of that point.

Let us investigate the necessary and sufficient condition for
the complete integrability of the given system. We can first make. the
following remark:

If a form @ vanishes for a manifold, then its exterior differ-

ential also vanishes for the manifold. Then for every integral manifold,

dea,s vanish. We have

a6% =

N =

bijdx%»\de | (4.0.3)

dxl,...,dxh,dzl,...,dza forms a base for 9a, where h = m-a. One can
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h,el,...,Qa is linearly inde-

easily show that the sequence dxl,...,dx
pendent. By taking this sequence as the base of the linear differential

forms, we have

}‘.+—§— ¢ oMeH, (4.0.4)

a _la i Janl o i
6" = ~~dx~+D.. d
d Ecijdx dx in X ~~dx o
For any integral manifold passing through MO’ the L.H.S. of (4.0.4)

vahishes and the second and thitrd term of its R.H.S. vanish. Hence
c? dx'adxd = 0=C% = 0 as dxAdx)
1) 1]

is a part of the base. Hence for every point of an integral manifold
in the vicinity of MO’ the coefficients C?j vanish. This leads to the
following statement:

In order that the system (4.0.1) be completely integrable, it
is necessary and sufficient that for every generic point the coefficients

a .
Cij vanish. Thus one must have

% = o)~ w?

Foees +6_Awc.
a
. 13
(For more details we refer to E. Cartan, ).
This introduction will help us to investigate the condition

for complete integrability of an a.r.p.s. on Vn which is the aim of this

chapter.
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4.1 Torsion Tensor of an a.r.p.s.

Let us consider a covering of the differentiable manifold
Vn’ of class Coo, endowed with an a.r.p.s., by open sets each having a
local section of Ep(Vn). The local section above some open set U
associates to each point x€U an adapted base (ei) for which ﬁe denote

the dual cobase by (91). Let us put

i1 15k i _

6" == c. 6 ¢t o+l = .1.
d 2 S5k y where ik K 0 (4.1.1)
Let U' be another open set of the cover; (9 ) and C are

lkl

defined in an analogous manner for the local section above U'. At each

point xe& UNU', there exist some matrices (A ® )eGL(ﬂs,c) for (Og¢ssr)

B'
such that ' /
of al) Bo oy, &y PA—
g = APLB ; o3 0=A ;9 (4.1.2)
°<A
We will write by putting AP, =0 for s ¥ t
, ¢
o' = Aj o3’ i ' (4.1.3)
from which d,e = dﬂ /\9 -+ A da -/ ﬁ, (/
il A
or C 9/\5 d/) N+ 3 A Cﬁe /
. . . ’ﬂ l, . / , _J'/ .ﬁ f
< i - L ﬂ
4 _ : /\6 Lag C, On6
or %ij(ﬂk'ﬂ ,9/\ __B/sl(Ag/}g +2,'4;’Cﬁ£’
' 2 2

< 4 4
or’()(A)e/\e-i- (1 ?chg.h/qh,/q{,)ﬁAH:O.
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1 3t 1 t
As 6° 67 and 9k/\ 91 are linearly independent, so one deduces in

particular

iad gk i
Caterf = & 3%k (4.1.4)
We will use the following notation in the sequel:

— E N M N = +-n. + +o- .
If CLSC. NS then SG NS, Ns NO +NS-1 NS+1 Nr

Hence we have " _ _ < P,
A 2R 1 3 s
CF/.;%AA{’:S, A/{;_//S" A /;C@,/a; (4.1.5)

This is true for every (0gs<r).

1

Let (Ad s) be the inverse matrices of (A? ) respectively.
Then the equation: (4.1.5) are equivalent to °
/
A
A
APTA o, U "s' )

Using the notation (2.1.4), we put

~k Ce

't = 0 for P <~ 7 < P and
A k-1 R

oy <4
P V/s FA;Z for every (0<s<r).
A

It is seen that (t k) are the components of a tensor of type ( ) We
call it the torsion tensor of the a.r.p.s. The associated vector 2~
i

=t 9‘]/\9k is called the torsion form.

. i
form, defined by T 3k

REMARK 2: Let us suppose that the torsion form is zero on Vn

equipped with an a.r.p.s. The fonmnula (4.1.1) becomes
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s By ¥, % B '
dé’(”:n_c’s pas +3C Bab, LEm
a‘PA Cz. F’,QYm
A+l

One is then able to say, according to the terminology used by E. Cartan,
a a . a,
that 4@ ~,...,d0 T belong to the ring determined by the forms (0 °),...,
a :
(6 ¥) respectively.

Given a linear connection (complex or real) without torsion,
for example a Riemannian connection, defined relative to some adapted
basis by (w%). Let (91) be the dual cobase of the considered adapted
base (ei). Let us put w —-X

The assumption of the vanishing of the torsion form of the

connection leads to

X Bs %s Be *a
oLe ePAwFA+--- +9AAWP+---+B AUJ’PA

s Xs P
_—_ePAwA-.-ZX /39/\5"+2 Pﬁmﬂx\a

( __Xi‘_/e PAA é“: whese. (L #m*S)
f%/%d /ﬁsfas
o(
P" °‘ 2 Pl) ” Bli 8
PA /3—2/3/3 L m /é(/am
q «A FA s
LY. 8 ~6 .
* z (XIBA/“J As A)
(4.1.6)

Let (Tl) be the torsion form of the a.r.p.s. We have

—

o Y Bs As
T": -é-( A/‘(:X_.SFA)ﬁ A b
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Also let us set :
P ‘(/S °(/5 O(A IBI
m =W - Y

One is then able to define G -connection by (4.1.7). By substituting the
a -

values of %BS and T SA in (4.1.6), we get
s

oy F °(/s ﬂe Pra o,
A T Y B T oo

By comparing (4.1.8) with the result of remark 2, one sees that the
torsion form of this Gp-coﬁnection coincides with (Ti). This leads to
the following theorem:

THEOREM 13: In order that an a.r.p.s. be without torsion,
it is necessary and sufficient that there exists a Gp-connection without

torsion.

4.2 Integrability Conditions

We will say that an a.r.p.s. on Vh is completely integrable if
the fields of subspaces TO’Tl""’Tr are completely integrable in the
neighbourhood of each point.of Vn. We shall first of all study the in-
tegrability conditions of a fixed subspace TS of T;. The subspace Ts
may be defined by the system of equations dquk = 0 where O0<k # s<r and

oo
(z k) are complex-valued functions of class C . 1If TS is integrable,
a
then one caichoose ¢ ka dz in an adapted basis of the cotangent space
o
)

a’ .
(Ti)*. It then follows that d@ k;;d(dz = 0 and so that components

: a
Cék . k
1]

are zero. Thus the torsion tensor T will be zero. This is the
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necessary condition for Ts to be integrable.

Conversely, suppose that an a.r.p.s. is given on Vn for which
the components C:j are zero. Let us further assume that.the structure
is of class C¥, Consequently it is the same on the field of subspace
Ts defined by 5 s 4 1
(F—-/lwé_)dx =0

1 4 (4.2.1)

Indeed, first of all, these equations can be written as the following

(r+l) equations:

(F A0S e e
,e

For 1 =8, and £ = s, we have
. «,
S S : S, _
(Ffs—'/lwsgﬁ‘)d;{S:o:;x(/lws-—//w/'&é" C o = o(dx =0,
s . :

for i = B ,'Z= k where Orsl;( #+ S £ r; we have

k A %k
(F //wS—k)olx —o=;(,/w //w}ahc %ilx_;
/" as W =FE W

(o4
Hence dx k = 0.

This system must be of rank (n-nk) and is equivalent to a system of

(n-—ns) equations:

6 =38" & =0 | (4.2.2)
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a.
where Bjk are real valued functions of class Cw.

We thus see that the system (4.2.1) satisfies the conditions
of Frobenius for the complete integrability of Ts' Indeed, for

0<k # s €r, we have

s Uyt <
de«k/\{(nﬂ%)(/\:')-'“[/\a (A8 ) (Aadi}
' : °( oy

g,(S 0 S/
= {—a’; Cﬁ/z v, Igf 9‘/"+ZC :9/%9 }-{(/\;/ (/\9 (n8 ) ("0/}:0’

a

since terms of the first bracket contain € k for every 0<k # s<r,
a

where (O k) =6 k(l)/\ oo 9ak(nk).

It follows (since the Pfaffian system (4.2.2) is completely iq;egrable)
a w
that there exist locally, functions (2 k) of class C such that
Q. Bk q,

6k = BBk dz = = 0 where (B ) is regular.
k

k a
Thus the system (4.2.2) is equivalent to the system dz k. 0.

Hence Ts is integrable. Thi§ leads to the following theorem:

THEOREM 14: Let Vn admit an a.r.p.s. In order thataa subspace
TS of T: is integrable, it is necessary that the components Cilf = 0.
(0gk # s<€r). This condition -is sufficient only if the manifold and
its structure both are real analytic.

COR: Under the same assumption of the above theorem, all the

subspaces Tk (0 ¢k €r) are integrable if the torsion tensor is zero.

Finally, combining the above two results we have the following

theorem:
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THEOREM 15: 1In order that an a.r.p.s. on Vn is completely
integrable, it is necessary that the torsion tensor is zero. In case the
manifold and its structure are real analytic, then this condition is also

sufficient.
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CHAPTER 5

s s
The Operators C and M on the a.tep.S.

s s
5.0 The Operators C and M

Assuming that the given manifold Vn is equipped with a.r.p.s.,
we generalize the operators C and M considered by Lichnerowicz2 and
Legrand1 as follows:

Let us denote by /\E, the vector space of exterior t-forms with
complex values defined on Vn. If Vyseee,V, are any t vectprs of T; and

q} is a t-form, we define

S s s
C ?(Vl,....,vt) = ?(J vl’...,J vt)

s t
s
M cp(vl,...,vt) = ZCF (vl,...,J vk,...,vt) (5.0.1)
k=1
where (1¢s ¢rtl).
In the sequel, the following notation will be used for the sake of

convenience:

h1 h2 3 PSJ J 1J
Fi Fh ...Fh = 15F1=F1.

Using these notations, we have

h1 . 1,
F Fl = F, 3=y
h— 1

‘ rlSJ
i
r

if \-il"”’it are the components of cP with respect to a fixed base at
. S S
~a point x, then the components of C cP and M CP are respectively given

by

52
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s s4 S 7
(CCP)A/,; « ,4'6_: 'E:(,'l ) "é q:}, ,76
€ 5/,
S < . - e
(M¢}¢,’ < 4:6-_- /QZ/F‘:A?‘JI,- )¢f('/)b)‘f{-f-l) f_.
Proposiﬁion 1. For any t-forﬁ , we have
1
(a) IE” NS L) o= ar,
} S ' s, sj
(a) (CC?)%L"°"it = Fii' 'Fiz Jyssas53y°
setting s = r+l, we have .
| atl Gk
4! at! 7 &) (F )?) :
— . SRR )
((:_ﬁﬁ)‘aa '°"'dé-—- (jF: ) ('/:? 2 “¢ Z,) ¢
atl 7 At A
2
= (/’ S )(/{ &, ) (ng.)?s,"“'%—
(A.-H)f
= // ¢¢.I’ .,l:é .
Hence rgl _}\'(rﬂ)t.
—t- s
< h¢ v . b . <
(b) (Mp)“",...) t » " l'f'h__,) "y k+,) 2 é)
=1

setting s = r¥l, we get
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A+ t At
(M‘?}‘_. ,{L_:E' 4h¢‘l’."":h~)’ ’{h—H’ > A
t 4+l |
= Z/‘, gihqi’ s 4h sh, ket sty
k=,
2+t

It is easy to deduce that if Cf is any l-form then C = M and Cr+l=Mr%1=%F*{

DEFINITION: For fixed k, the following t-form

- T
« < %k R
hw R (a) ?“.Ae(m

—_ - ...nBQ 6
&) CF°( ) o X L > cees X 6 A n
qb(ﬁ, ? h(u h(c\), b‘(u h(‘»)

will be called a t-form of type (a,b) where a+b=t.8 This definition has
i1
intrinsic meaning. Indeed, if (93 ) is the dual cobasis of another

adapted basis (ej,) then

j!

o . 8!

6 k=A(?l'<QJ‘ = Aa]fa k' and
j . B

& oa T B

oK =4kl = Ak K.
J Py

Hence the statement is justified.
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THEOREM 16: G° and M° transform a t-form of type (a,b) into

a t-form of the same type.

s sg,' 57; 57
PROOF: — e o s
CP), e e b P Vg
for a t-form of type (a,b) we have
S
’(C<F)°( )...,o(h , o ,...)o(-h
h(u (a) h(u (¢)
_ = "Ry, ﬁ Rea Fs: Ry 'B ﬁM) ?b wp /3
= . _ e /3 , s /é
« /? k
h(') °(h(“) h(“ ( («) )
Now P Ph
s PRy s sk w
F e = AW go( 2
°(h(1) h(') -
and < = S $m /B/?(” £ (}7’]’—'—“’;"'}2)""/‘)
Ra , _ £Ze, .
—P Q) ._eﬁ Z /l w g;(k
X m @
h(n
Moreover, w + w " = 0 implies that 2 w = -WSk.

bsnd Sn— w —— —
- oL h(n)
&h(u h(l)
Using these results and simplifying, we get
s
as ackh L Ls 4sk

(CMMM’”w o AW oy

Therefore L ts tSh - where atb=t.

(C<P)(q = A w Playe) ?
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s t
(b) (M?}j-",, LZ 4-4?4,---,41

! L-1? "1+/

For a t-form of type (a,b), we have

pu— d—'
o, A oL, ,-'2
bR CPO{"(JH Xhepey Tl e A Rees

5 F.-s ﬁk{ﬁ)¢ - /é_ cas e(k
+ - coe, o ,0-(- ;"‘)9(& _" &(ﬁj g &
b= x&w d/"(u Ry Rew (k-1

As shown previously in (a), we have - /3
Fh(;., s sh P " ) /Bk(/,,z ——//sws/\v S; A(p)
Fo( =AW S"(/\, ar "ZA A(p)
kep (4 (#
for every 1< p ga and every 1< p¢b, respectively. Substituting these
values and Slmpllfylng, we get

1) 0= 2 A0S, g
. = ol
( (8) b=t k( xk() &(ﬁ

Lo o J
fz%?b AY“)

~l) I)

“55/:

A
" L | .
- Z g— ?SP(/"(’U ' ‘)dk(“}, xk(:} ’ A(ﬁ") &(Aj &(")

/*(ﬁ/
" Hence (M?S)(q 2) ::' /{ w (a_.,&) ¢(ﬂ/-&)

The theorem is therefore proved.
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5.1 Torsion Tensor in Local Coordinates
Let us consider a form of type (1,0), <?° = CP(I 9(1k (k fixed);
<P k
A t d = -+ + : 5.1.1
we pu P <¥>(2,0) (1,1) CF(O,Z)’ ( )

. rtl .
we assume that r is odd and furthermore we Set s =—§- . With these

conditions, we have
zs ask

CSOL(P = w E ¢<zlo) C'J"+ 4,("/3/}

tl

=/ {4)(2. o) ‘f’(,,,)"‘ 4’(",&/} (5.1.2)

S S sk
Ce¢ = Aw ¢,
0( g? .S' .S/Q{ ¢(2 .) ¢(,’,) ¢(o 2,)}
s s
MSG‘ CS¢ /l w { w ({%; 9/— 1¢(°/2'))_]
' At

, s 2] (4)(2/0)_ 96(0’&}) (5.1.3)

Hence we have the following result:

Finally, .

/|al<}>+COL1> M"LC‘? 4/\4)( 2)" (5.1.4)

h %p
On the other hand ol = <p°<oLe +oL4°o(/\6

R xR £ 74 /\:h
= -'-zjct’o(hC.c,‘ R c&"(h
ol
Now we know from chapter &4 that C.(b\ — t _h\ — and all
BY.  Pu’kr
kh h h
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a
others are zero, where {‘ﬁ - are the components of the torsion form T k
K%k
(k:fixed). Hence we have F o«
d4 = 430({-_—._6/\6+a‘.<i>/\9
R PRk
Using previous results it is easy to say that -

Y,
& ot Ph/\ o R
(o,2) = 2' R Ph:‘b.

Substituting this value of C}’ « in (5.1.4) we get
A+ ( 52 ) < At O(h PA Yl{

T4 Cag- AdCo= 2A Rty o0ns iy

a
In case we consider a form of type (0,1) 7S:¢'c'i 9 and proceed exactly
k
. _rt
as above with r odd and s Ty s we get Al t% F Yk

At - 8 ~8

/’Acp—er‘i’ Mdcd = 24 <;>°(h Bt
Combining these two results, we say that for any linear form 1> ¢ g and
B % Iz
e

N Y 9/\9
f-'atwcozsé M CP=ad (%f " *9’~ A )
atl °(/z (5.1.6)
2A ¢ T

where T k is the torsion form (k:fixed) of the a.r.p.s. Proceeding in a

r odd, we have

similar way by varying k from O to r, one can easily deduce the following
theorem:
. _rhl .
THEOREM 17: Let r be an odd integer, s T, a linear fomm,

and T the torsion form of the a.r.p.s. Then,
A+l At!

A alcf-g-CoL? MoLC‘{" 44T (5.1.7)

We may use this result to obtain an expression for the torsion tensor
S,

. , . i

in local co-ordinates in terms of the tensor Fj. Let us take a system

of local co-ordinates (x~). The linear form ¢ is defined by ¢ =<ridx1.
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We shall represent by the symbol ’Bj, the partial derivative operator:

3—. » One has

2x* | .
(dc;.). i 3,95~ % %

By taking into account the relation

F F — F /‘ S B éne is able to write
<

(rsfchécp) =L (2% 5( F%
Sm
CELET e Fr (3R )4
SgEm S, Sm
FGFA,(B‘ FQC F;')
Sg Sm 25 m At
= B By 2% @F m) A(M-—?f#)
+{l§:( Fg”‘ F " )- F x)}ff ,
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from which we have

., s 2o [0
(j/?.dﬁ?'kég‘i‘?-— PQaLC:‘?bez{;FEa(: £

s' s S
m ™ £
F'j "BjFx )_F

5.2 Relation between the Torsion and the Brackets of certain Vector

Fields

Let the infinitesimal transformation defined by the vector
field x be denoted by xf where f is a function.,. Let u,v be any two

vector fields,c? be any léform, then it is well-known that

dgp(u,v) = ug(v) - vg(u) - ([u,v]),

where [u,é] is the Poisson's bracket of two vector fields u,v. Making

use of this formula, we have

Cslotcp(u,v)= dq ( Tu.5v) .
= Js'uc?(;v)—- i'v‘?(j"’“)" (L 3w T4),

iEatum =wd (G- vedw - $(FLad)

Toa

By setting r=s=l, one gets the definition of torsion tensor given by

Legrandl.
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(‘S'la(.éc? (w,v)= d é?(ﬂéu-,‘v)-}-.ol.(:ct’(u,a’v)

At

= §'u4>(ag'v)~ v/lcg;(u)_ <P(5'[§‘u,zﬂ)

A+l

s S
+ A udw)- Zsfvcf(i?u)- ‘P(J[‘*JT"J),

Also CF .T =<?.(T(u,v), where T(u,v) is the vector with components

[l

(T(u,v))iL t;kujvk. Substituting all these values in (5.1.7), we get

s 8 S¢S S s
7"r+1 [u:VJ +[JU)JVJ - J{_Ju,\a -J {:UaJV] = 'AKﬁ]:'T(u:V).

Let us set
s s S ¢S s s
I;I(u,v)‘=[Ju,Jv + ?\ﬁ_l [u,\a -J [Ju,\a ~J [u,Jv]
where we shall call !g(u,v) the generalized Nijenhuis tensor, as it is

obviously true that by setting r=s=l we get the definition of Nijenhuis

15,
tensor .

- 2
Nu,v) = [Ju,Jv] +J (u,\a - J[Ju,\_a - J[u,J\Z] .

Using this, we get

T(u,v) = o ﬁ(u,v) (5.2.1)
() =27 -

" Hence we state the following theorem:
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THEOREM 18: In order that the a.r.p.s. be without Torsion,
it is necessary and sufficient that the generalized Nijenhuis tensor
E(u,v) = 0,

Connecting the result of the above theorem with the integrability
conditions (Chapter 4), we state the following theorem:

THEOREM 19: In order that an a.r.p.s. be completely integrable,

it is nécessary and sufficient that the generalized Nijenhuis tensor be

equal to zero.
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CHAPTER 6
Hermitian Structures Subordinate to a.T.pe.Se.

6.0 Almost r-Product Hermitian Structures, l??-riefly H-Structures

Let Vn be a differentiable manifold endowed with a.r.p.s.
Let us assume that we have defined in Vh a complex symmetric tensor
G = (gij)’ whose components in a system of local co-ordinates (xi) are
complex functions of the (xi), of class Coo , with determinant everywhere
different from zero. We will say that G is hermitian with respect to

. - ' , c
J if one has at each point x and for any pair of vectors v,w of TX

(Jv,§w) = -hr+1(v,w) » | (6.0.1)

where (v,w) denotes the scalar product gijvle.

We will say that Vn is endowed with an almost r-product hermitian struc-
ture subordinate to the a.r.p.s. The equation (6.0.1) can be written as

i} _
k ¢ . .rtl
F Fj 8 = M 853 (6.0.2)

Multiplying both sides by Fﬂ, we get

r
k € j rtl _j
F = -
Fs FFhge =7 T8y
or
rtl
k — o - _ rtl _j
FiTn Be ™ M T 8y
or
rHl
k rtl ¢ _ j
LA Bpge™ " Fgygy
63
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i Bkn h &ij°

By making suitable changes of indices we have

k

k
F, gkh -F

h 8ki
which means that

Je + Y36y = o
where t(JG) is the transpose of (JG).

Let us set F,, = FF
1]

i gkj' This means that
= k :A k == -
Fij 7 FiBug T 7Fy 8y T 7Pyl

(6.0.3)

therefore Fij + Fji = 0 and (Fij) are the components of an exterior

2-form F which we will call the fundamental form of H-structure.

Let

the matrix (glJ) be the inverse of (gij). Then from (6.0.2), we get

a_& h_zg’ A."‘l
Ec’.a.% Fﬁ»% 9he - 9;,;'
where Aﬂ&- lf; "3"&2_ -a/t.-l'e"d.
REE AR
A h‘ie’-’h‘l A+
°* Ean&- g’ %‘h,{ A g—.«.;
A A_‘zb a A+l
or }.&Fﬂ.bg Sie == g:_'j,

o an. ?&_% /, ?’4}

Let us define a linear operator J on TX by the tensor
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we have ca 4 ab
FFi=Fed F,9=F.F.% %=4 %hﬂ

or A

'j q (6.0.6)

Moreover, we have

r r ¢ r+1

= Fiijlg = oA g..e (6.0.7)

T
N
i] 1]

S
F? is certainly not proportional to the kronecker tensor 8;, (as one
would then have from (6.0.6) and (6.0.7): 85 = 0). The relation

(6.0.6) shows that J determines an a.r.p.s. and it follows from (6.0.7)
that the metric (gij) is hermitian with respect to J. Hence we state

the following theorem:

THEOREM 20: Given an exterior 2-form(Fij) of rank n and a
Riemannian metric (gij) both of class go and defined on Vn such that
(6.0.4) is satisfied, one can always define an a.r.p.s. and a subordinate
H-structure.

THEOREM 21: G is Hermitian with respect to J iff for any

Lh"éTi (u,dv) + (Ju,v) =0 (6.0.8)

where ( , ) is the inner product defined by G.
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PROOF: Let us suppose that G is hermitian with respect to J.

c
Let u,ve Tx’ then

R
A
(L, Tv) + (Ju, ) = 32&“ (gv) + %hh(:ru) v

h

Tl

- kR h h £
g';hd'l:hv-kg'hh‘:i,uv

h

R Ry 4
(%5 + Fnte ju

or (u,Jv) + (Ju,v) = O because of (6.0.3)
Conversely, let us suppose that (u,Jv) + (Ju,v) =0 for
every u, ve€ 'l‘;. Let v,w GT;, then we must prove that

r rtl
(Gv,dw) + Ao (v,w) =0

c c
One can always find a vector ueTX for every vector weTx such that

w = Ju. Assuming this we have
!
At “r

A+
(Jv, aﬁ:w)—:— A (yw)=Jy .Tu}—f-/{ (v, T«)

= jﬂ[(ﬁcu)-f(% 7%)]

= 0.

The theorem is, therefore, proved.
If we set v = u in (6.0.8), then we get (Ju,u) + (u,Ju) =0
or (Ju,u) = 0 for every ueTi.

We may thus state the following theorem:
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THEOREM 22: If G is hermitian with respect to J, ther any
vector of T: is orthogonal to its transform by J.
In order to obtain an expression for G relative to a basis.

adapted to a.r.p.s., we have from (6.0.1)

%“m P""= (eo(m’ epm) =" j—a—-f-l J—eo(m’ ’Te,ﬂm)

4 4m

m
-_ | w €
- at! (/{wev(m’/{ /3'")
A m am m(4+Y) — -

-—— e e = — W - a, '
== (W&, 2, )= =%  Tupp nfm
Therefore 8, = 0 for every O<&m<r.

mPm -

This condition is equivalent to the condition that

G = : | . . : (6.0.9)

Now if NysMyseee,n  are all different from each other, then (6.0.9)
is incompatible with the assumption that det |G{ # 0. 1In order that

an d.r.ps.Se. on Vn admits an H-structure, it is necessary that n. =n =..=nr=m

01

(say). This means that n = (r*1)m. In the sequel we will assume this

condition.

The general transformation equations of the tensor field gij’
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in an adapted basis, are given by

A M
ik(' :'= f\ %} for 0g<s €1
4 Pa /34 /‘A/*'-s
and
?/ ,: M‘ for Ogs#%f<r
One can also deduce that
k RAS Y,
k. F 9 =Fa +...+F 9
UPhs % RPs % % Ps “s %, B,
= o -+ 4+ O
= o (6.0.10)
and
A Y ¥ ~,
F.=F 9 =F° 4 -+Fg 4 +F
Ube e g wyp T nh,

S
[o} +...-+/'UJ?°( +"'+O

"

(6.0.10")
=Aw %APL

Now one is able to say that the fundamental form F and the

quadratic form'ds2 can be written as
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s o
FLASWa gao
é:\_'l‘l dAP& ‘

. ﬁﬁ, o £ S=+4L 6?4.
A Pe (6.0.11)

ots"-—-wza, 0.0

o W

At

6.1 GH-Adapted Bases
THEOREM 23: 1If G is a Riemannian metric hgrmitian with

respect to J, there always exists a basis adapted to an a.r.p.s., such

that G will have the form

O I . . I
m m m
I 0 ‘
m m
G: : ' ' : (60101)
I . . . 0
m m

where Im is an m x m unit matrix, 0m is an m x m zero matrix and G is
an n X n matrix; also.n = (r¥l)m

PROOF: Let Vn be a differentiable manifold equipped with an
H-structure. Let us choose at the point x an adapted base (ei) and

consider two subspaces Ts and Tm where Tm is fixed and (s=0,..;ﬁ,...,r)

B

. . . m
is arbitrary. There exists a vector v = A e of Tm such that

ﬁm m
(1)

(e

3V

@ 8 ) =1 and (e, Y ) =0 for ¥# 1.

*(1y  ™(1) ¢y ™(1)
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This condition can be written as

&q AT=39 (Kronecker symbol)

B

. m .
where one can determine A in a unique manner by a Cramer system of
linear equations. In a general way, for a given @ s there exists a

vector ¥ such that

Bl'ﬂ

The n vectors va are linearly independent; indeed, let us
n
consider a linear relation

Multiplying the two parts by e, we have,

o)

Ap v .e = 0, which implies that

b b a
A AY =0 A =0 A" = 0.
(ea‘s s 8 ) or Sab or 0
(a)  (b)
Hence Vv_ form a bases of T .
B m
m
”~
Let us set e T g for every (s = 0,.44,m,s0.,r) and
s s
ea'm - VBm; then it is easy to see that the set of vectors (ei,) =

seees€y, ) constitute an adapted bases in the sense of Chapter 2.

(

It is also quite obvious that under these conditions G will have the

e 1
“o

following form (6.1.1)."
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One can now deduce that (6.0.11) can be written as:

ond.
F :
Cav
Any base, with respect to which one has the relation (6.1.2),

will be called adapted to H-structure, briefly GH-adapted bases.

Suppose now that (ei) and (ej,) are two G -adapted bases, then

PR
gk‘zl = A1(|AJ1 gij ) (6-1-3)
where
%00 O "
i _ A K
(Ak|) - . 3 Akk (AB'k)e GL(nk,c)
Q Arr
and (gk,") =G 1is as .given by (6.1.1).

In the sequel we will use A instead of A, and A for (Ai').

We may thus write (6.1.3) in the following form:

G = AY(40) | (6.1.4)

where t(AG) is the transpose of (AG),

or
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t t
01 Im Ay 0 0 (Al) (Ar)
. t .
L (AO) 0 . .
L] t t .
A .
L 0 0 . (AO) (Al) 0
0- (8).°(n), * (4)° ()
) 0/ *. Y"1 Nl M
t .
(Al) '(Ao)} 0 .
(a).5(a), ' 0
T 0/°
Hence we have the following iﬁz—l‘)‘ relations:
(A)5(a) =1 1< s €
0 s m = %
(a)(a) =1 2%s gr
1 s m =N
. . (6.1.5)

t
A A)=1
( r-l) ( r) m
These results can be combined into the following single result:

(Ak)t(As) =1 for Ogk gr-1 and ktlgsgr, which

implies that t(As) =(A;l) or (As) = t(;\-i). (6.1.6)

We thus see that a transformation matrix between two GH-

adapted bases is of the form
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H = . where each Ak satisfies the

0 A condition (6.1.6).

Let u(m) be the set of matrices of the form H. This set is
the subset of G(m) such that its elements satisfy the relation
(1)E(HG) = G, where

G(nr)_= G(m)' when ng = N eees Tn_Sm

THEOREM 24: u(m) is a Lie subgroup of G(m).

PROOF: Same as given in Theorem 7 (page 32).

Let EH(Vn) be the set of all the GH-adapted bases at the
different points of Vn and let p: EH(Vn)-—-9>Vn be the mapping such that

a G.,-adapted basis at a point xe?Vn is made to correspond to x itself.

H
EH(Vn) has then with respect to p, a natural structure of a principal

fibre bundle with base space Vn and the structure group u(m).

(for more details we refer to Appendix I).

6.2 GH-Connections

Any infinitesimal connection 2 defined on the fibre bundle
EH(Vn) will be called a GH-connection. Given a covering qf Vn by
neighbourhoods endowed with the local sections of EH(Vn), a G-
connection may be defined in each neighbourhood v by a form v, with

values in the Lie algebra Lu(m) of the group u{m). The form W, may
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be represented at)cEVh by means of a matrix of the order n,vwhose
elements are complex-valued linear forms at x; it will be dencted
locally by w = (w?), where (w?)é Lu(m).

To determine the form of the elements of Lu(m), we recall that
u(m) consists of matrices H of GL(n,c) which commute with J and are
such that (H)t(HG) = G. The Lie algebra of u(m) consists of the set of
all the infinitesimal right trénslations of u(m) defined by a tangent
vector at the identity element of u(m). Thus, one can show that Lu(m)
consists of n x n matrices which commute with J and are skew-hermitian
with respect to G&ZZ. Explicitly, it means that Lu(m) consists of
matrices of the form H such that HG *+ t(HG) = 0, where HG is the conju-
gate of HG. (For more details we refer to Appendix II). (6.2.1)

With respect to a GH-adapted basis the condition (6.2.1) can

be written as

t .t e -
0 (Al) (Ar) 0 A« - - A o
t . .
- [} . Al . -
t ) . — .
(AO) Y Ar « + . .0 0
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or
0, (a)+a E(a) + A 0
> 1 020 e 2 WAy 0
Ya)ta, O ’
o b =
(Ao) Ar) * * ° O

Hence we have the following relations:

>
-+
o
—
>
~
Il

o

for 1<s<r

>

+
ct

~~
>
~

1l
@]

for 2¢s gr

hg
+
~
—~
>
~—r
i
o

which mean that

- t
A+t 7(a) =0 (6.2.2)

O¢k <r-1; ktl<s <r.
Clearly, EH(Vn) may be considered as a sub-bundle of the fibre

bundle Ec(Vn) of all bases. Thus any G, -connection defines canonically

H
a linear connection with which it may be identified.

Conversely, given a complex linear connection and a covering
of Vn by open sets, each equipped with a local-section of EH(Vn). This
connection may be defined on each neighbourhood by a local form, with

values in the Lie algebra of GL(n,c), represented by a matrix (wj) whose

elements are complex-valued local Pfaffian forms. 1In order that the
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given connection may be identified with a GH—connection, it is necessary

and sufficient that (w;) belong to Lu(m); that is,

Be < |

W = w"‘ PN for (0g¢m #4£€ < r) (6.2.2)
U Po
Br oAs -

W, + w = O for (O£k5r-1; ktl<s <r) (6.2.3)

The condition (6.2.2) expresses that V(F;)= O (necessary and sufficient
condition that one has a Gp—connection). In order to interpret the
conditions (6.2.3), we introduce the absolute differential of (gij)’

assuming that (6.2.2) is true. We have

_ ok K
Ne;; = "8y ¥ 7 By Yyt

With respect to a GH-adapted basis, we have

| k k
Y% = — -
%MPM %b. me;(m 99(,” R ufam
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Pe « g
o = — (W, + W =0 as oM o
3°lmP‘m °(m PL)
Vg 9w hsam); Rerss€a
— wr _— 'J-T oy (QS SA—, . -+ S ~
“Wps” " Fmpa T Fmt, ’

A y A
"'(3"‘ w°+...+ UJ-A -;-3 UJ¢
A Pa g;’,s o Afs TR )

"

Ao Ar A,

- (%“hl‘owﬁs"‘ g A N %«h/l,_wp,, )

oo+ o+ wRa . +e)
kR
.—(o+ +w.<5+.--+o)

If the condition (6.2.2) is already satisfied, then (6.2.3) is equivalent
to {7@ij): 0. This leads to the following theorem:

THEOREM 25: 1In order that a complex linear connection may be
identified with a GH—connection, it is necessary and sufficient that
the tensors (F;) and (gij) have zero absolute differential.

We will say that a complex linear connection defined on a
differentiable manifold equipped with a complex matric (gij) is
Euclidean if §7(gij)= 0. The preceding theorem.expresses that one is
able to identify the GH-connection with Fhe Euclidean Gp-connection,
(for the metric defining H-structure).

Let us consider on Vn a linear connection with respect to

the Gp-adapted basis by the matrix (w;). The forms (w;') defined

B o
Qaj'—"ws:O for 0g<s #FLer v
s Pt - (6.2.4)
and ?vg‘; = wgllz Ogkgr
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define a linear connection which we can identify with a G_-connection.
We will say that it is the Gp—connection induced‘by the given connection.
THEOREM 26: The Gp-connection induced by a Euclidean
connection is again Euclidean.
PROOF: Let us define a Euclideaﬁ connection on Vﬁ relative

to the GH-adapted basis by (w;); then we know that

k h .
va'i,—j.:_w.é %’hj_ wg' %ih:-o 2 that 40

Vg —..(uJ/I‘ 9 .- +w’/m-l} _‘_o,,_....,.w,,n'g )
R A R A %
/Ip J’,,._, w//"'
-— .. oy o+ O e o
= O fm— (o sm < 4A)
’{I ’{s-l A
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Let the induced Gp-connection be represented by the matrix

(w;), then in this connection

_ a~k Ak
Ngyy = W87V By
znd we have
A/’z Ap
v = e (w -t -+
%«m Bm % 3:1, P “m ?—JA la,,,)
/\/ﬂ J}Ak
"\ Y Pty T t Yl 4)

Also
YV ! + Z‘:JA
s G . pe)
A A + é;fil
-— +
C w/BS %{m /Il ﬁs q’m //A-)
A /fm A

!
|
)
3
)
5
o
4
&
o
3
A
~—

il
©
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Hence the Gp-connection induced by (wi) is again Euclidean. We may
thus state the following theorem:

THEOREM 27: Any given Euciidean connection can be
identified with a Euclidean Gp-connection and hence with a GH-connectionL

Vh can be endowed with the structure of Riemannian manifold
(from the theorem of Whitney) and then from the fundamental theorem of
Riemannian geometry; we may assert the existence of a unique Euclidean
connection of thelmanifold Vn. The induced connection is then a
GH—connection which we call the first canonical connectionz.

(a) Let (wi), respectively C%;), be the forms defining the
Riemannian connection, respectively the first canonical connection,

relative to some local section of EC(Vﬁ)' Let us put

i i k Ai i k
fresncd 9 - = 6
wj xjk 3 W, ¥ ik

where (67) is, at each point, the dual basis of the basis defined by
. A

the local section. We will say that the CX;k), respectively (X;k),

are the components of the Riemannian connection, respectively first

canonical connection, relative to the local section considered. Let
i i i i 12

a,, =¥. -¥.., then the a,  are the components of a tensor ~. With
jk jk jk jk

respect to the Gp-adapted basis we have

“S %c(s YG(S °<S 45
R TRl WLE AR RS
o % %s %s

‘8 k= X,as[x,za;/{ =- %
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Let K?(F;) be the absolute differential of the tensor (F;) in

the Riemannian connection. Let us introduce the covariant derivative
V. (F?) defined by
k]

i y 1ol ok
F,) = F.).6
vt = Vo
with respect to the Gp-adapted basis, we have

R R

VFg = o!.F;':-t- wth,j - Wy F;
a VF=zdF < ¥ - 5\ Fy, Hen
«
VRFO;SS- x:Sh FF:' - \A;s hFa:‘s = xjfs hFA:_ {g; :h ;s
_ xdss S Pi _ x;:hmj SZ‘; o
A SN
<
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o -
o Ms 'us s a{f
F;. > —Ww é;;- ,JLJ ér
vh Ps X /l ( Ps ) Pk “s
S
= —Aw X —-,{w -
B A g R
S "(
—aAw Y
/Z‘s/‘ ) (6.2.5)
- o?_; 9 stXO{S
Similarly F = 27 . (6.2.6)
ks~ R |
Cne can deduce from this that
o = g Fy 9, (1) (6.2.7)

2\
end this relation remains valid with respect to any base.

Finally . p
Al -4: / t ?
Xﬂh ng P F}; Vk(@) - (6.2.8)

Let us note that since the Riemannian connection has zero torsion we

have

i k

i-_ 43 i_ ]
d0” = OAw, =K, 60
j XJk
and so the components of the torsion tensor for the a.r.p.s. are given

P
by -t____x____ S 1 °<.$ O(S
s ¥ Ps S \g"éf% LAwS <V%F/.§‘V/'§E?)

X (6.2.9)

JCPs .uws(xF VPSF{)-

and -
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The torsion form of the first canonical connection is defined by

!

N\ . .
st = got + kA0
|
= -wi_h ol + ?;1:/\93'
J J

= Q; - w?)aej (6.2.10)

i

gk~ ol

jk
(V- 9,5 )6 €
L F ) en
tu Wk

Relative to the Gp-adapted bases, we have

/{(sz °(:<; Qh/\ &2 101. 0 SS4A
Bk i
o R B
_ Y—Sh 0 A B s

£ Y. B X ¥, é
= - Y/ss‘o' 8°A 6°_ Xﬁs? 651\ 8 (6.2.11)
s S s S
« % AR °‘s g A

v 3 s
AT ¥, B ""'"Ts(vps?s VFPSMM‘Q

The second term of this result represents the torsion form of the

Qe ePeSe
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We thus note that the first canonical connection is a GH-—
connection for which the vanishing of the torsion form implies the
vanishing of the torsion form of the a.r.p.s. This leads to the
following theorem:

THEOREM 28: On a manifold Vn equ‘ipped,with an de.TeDseSe,

there always exists a G -connection whose torsion form vanishes only

H
if the torsion form of the a.r.p.s. vanishes.

The curvature form of the first canonical connection is

defined by

Let (\Q,J) be the curvature form of the Riemannian connection

4

ﬂl = def + oW

/\Wh°
3 j L

according to (6.2.8),
Ai i 1 i h
. =w, T > F_V(F,);

) 2\

one deduces from this

vv(F ) (6.2.12)

Ni_ Al 1
.n_ijj-% 2V( V(F)+ 2h

4) 2\
where VV(F?), the absolute differential of the tensor l-form (VF?)
in the Riemannian connection, is defined byVV(F?) = d(VF?)’hq;vF"—
J

WfAV( F").
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(b) We will characterize the second canonical connection of
the connection of Chern -Libermann by the following properties:
(1) It is a G, -connection.

(ii) Relative to the G,-adapted basis, its torsion form

is expressed by

o

Zz

& B X

s s s s

= l)s O A0 + T
SYS ?

I
v

a a
where (T O,....,T r) is the torsion form of the a.r.p.s. and

85

o o
o A - 3 3 .

(bp X CeeLd e, b,g 74_) is an antisymmetric tensor with respect
[-] . A

to the lower indices.

Let us show that there exists one, and only one, connection

satisfying these conditions. Let (C;k) be the components of the desired

. i . . ,
connection, (xjk)’ those of the Riemannian connection. Let us set

i i i
= C -
a-jk jK Xjk

The (O';k) are the components of a tensor. The tensor form of the

connection is defined by

i ik .
0"~ 0
Eo

I

i i i k
- 6 .
1/2 (c'kj o‘jk) A0

i

Relative to the G, -adapted bases, the conditions (i) and (ii) become
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%s . .I°(s
CFsh Cpsh. > - (6.2.14)
ol B
C + C =0
Fsh A R (0g¢ssr-1);(stlgmgr)
..,4: (6.2.15)
o 2
Fs X
We can write (6.2.14) as
o o vy ol
S s S S
s =-%-, .. . ==Y (6.2.16)
Psh ) Ps R 5 Fsh P.sh
s P % m
673h-+ G‘O(Mk:—-(x/?s h+ Xo(mh) (6.2.17)
s

Since the Riemannian connection is Euclidean, the second part of (6.2.17)

is zero. Using (6.2.15) one then obtains

< & < < «, .2

S S S S S
(ii) CS‘PY:G'Y_zcx_—k/X_:O-XX_:—X —
S s S/s S /3 S/s ﬁ S/ E‘s

B B - A B

'S m » m ]

(iii) &~ = — 6';( ¥ =-S‘¥°( = —deﬂ'y = X

s s m°s S M S /n .{-c’m ?sqm
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If one introduces the covariant derivative Vk(F;) of the

iy . . . , .
tensor (F.) in the Riemannian connection and if one puts

k,.i kh i
V F = F
one is able to

express the preceding results in the forms

g ) ¥ .
(i = -
: O}sxs o!z/wsv sYs
o of
(ii) G—-s_ = / f
’fs’.{s Oz)WSVPSFs
o

i

(V) O = e Fxs
R¥ T ads ¥, /35
<. -
(v) s S - - / Ny
,C:lszé pz/,wsvxs ,:;Bs (6.2.18)
ol 3
vi) &5 = - L S
s$ 2 Aus® V;s%
olg 3
(vit) &S o -1 s
A% T T il
o -
vitd) oo o v"(SF
’igf 245 P;?;

Conversely, these formulas define a tensor on Vn and the

connection which is associated with it by (6.2.13) satisfies the
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condition set down. Let us note that formulas (6.2.18) remain valid
with respect to any Gp-adaptaibase.
The torsion form of the connection may be expressed, relative to the Gp-

adapted bases, by

o A Y o ¥
s s % s % , s Y%
V E _8nAb +— (V. -V E. )9Aa (6.2.19)
21/’ Fs S 4/{60 Ps XS ).{s PS
from which one deduces
of
bS =< V'F A
, = T ¢ < S & .
P¥s  Auw® Bs¥s > T © S >

with respect to any base whatsoever, one is able to write

. 2 4' ch
1 ! _
csgh_-:a—;&F;,V 4,,?.( V.F +/—;v . E gvg&//-; f 6.2.20)

Indeed, this formula actually defines a tensor, for which
the components with respect to a Gp-adapted basis coincide with those
which are defined by (6.2.17). One deduces from this that, relative to
any base whatever, that is to say an arbitrary local section of Ec(vn)’

the components of the connection of Chern-Libermann are

"Y
ik 4R &Aa’Fv (6.2.21)

A.
-
r
Ao

h_ 4
4ﬁ(r—' Fg.thh— RV E
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6.3 The Holonomy Group of the GH-Connections

Let us consider a GH-connection; any horizontal path constructed
on EC(Vn) relative to the linear connection identified with the given

G,-connection and beginning at a G

H ~adapted basis z, ends at a GH-

H
adapted basis z'. One deduces from this that the holonomy group2 at z
of this connection is a subgroup of u(m).

Conversely, let Vn be a differentiable manifold equipped
with a linear connection and let us suppose that at a point x of Vn
there is a basis z such that the holonomy group LPZ of the connection

et z is a subgroup of u(m). Let us consider, at the point x, the tensors

(gij) and (F;) for which the components with respect to the basis z are

defined by
0 «« « I )»wOIOO )
n . .. iy _ Mr1111
(gij): . o and (Fy) = o
I oc 0 0 .Mrlrr

These tensors are invariant under Y, (a subgroup of u(m)). By
parallel transport on Vn’ we obtain the tensors (gij) and (F;) defined

on the whole manifold. Now at the point x we have

h h A+ <

F, Fro F =4 S,

9
R < (6.3.1)

Also F'; grhh"i‘ Fh%h‘_ F %o( Fm Fpmg'
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A o
-k h £ ¢
o ‘ _ | g
BRIV FXSSXP+ Fﬁ’m o ¥
| B, ¥
=F +F
% Bm |
- © = o =o where o gL#Em+£SSn
Hence
F]; gkh:v-FE Bk’ (6.3.2)

and these two relations remain true at any point of Vn' Thus Vﬁ may

be endowed with a H-structure subordinate to an a.r.p.s. Since the
tensors (gij) and (F;) are invariant under Y , they have zero absolute
differential,zg thus the given connection may be identified with a

GH-connection. Hence the following theorem:

THEOREM 29: A necessary and sufficient condition that a
linear connection on Vn be a CH-connection of a H-structure subordinate
to a.r.p.s., is that the holonomy group of the connection is a subgroup
of u(m). |

Suppose now that Vn is a differential manifold equipped with
a metric (gij). We will say that a basis z at the point x of V_ is
adapted to the metric if the components of the metric tensor with

respect to z are

m m m
= 1 . ' .
(g, ;) m ‘ ;
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Further suppose that n = (rtl)m. Given on Vn a Euclidean connection

and let us suppose that there exists at the point x of Vn a basis z,
adapted to the metric, such that the holonomy group le is a subgroup

of G(m). By assumption {7gij = 0, the metric tensor is thus invariant
under LPZ. It follows that q)z is a subgroup of ¥(m). Then as above,
-one may equip Vn with g H~-structure subordinate to a.r.p.s. for which
the metric coincides with the initial metric. Thé given connection

can then be identified with a GH-connection. We have thus proved:

THEOREM 30: A necessary and sufficient condition that
& Euclidean connection in Vn be a GH—connection of a H-structure
subordinate to the a.r.p.s. is that the holonomy group of the connection

be a subgroup of G(m).

6.4 The Characteristic Forms of a GHfConnection

Let Vn be a differentiable manifold endowed with a WH=-structure.
Any GH-connection determines canonically a Gp-cénnection. We can thus
associate with it characteristic forms as defined in Chapter 2. If the

connection is defined relative to the G -adapted basis by
o
4, ol kR R
('{T s v e, Tl ), one has LP :AL«J OL(“-* ),OSKSI‘-
Po F/\, R h

Since the given connection is a G, ,-connection, one is able to write,

H

relative to the GH-adapted basis,

P %s

o Mo =0 (osksrl, kigssn).

One deduces from this that
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'y wkq)s =0 (6.4.1)

Excepf for the relation (6.4.1) between characteristic forms, there will

be no basic change in the results which we developed in Chapter 2.

NOTE: If we put r = 1, then k =0, s =1, w = -1;

P, Y =0 Yo =¥, X 2a
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CHAPTER 7
Particular Cases of H-Structures

7.0 Hermitian and Pseudo-Hermitian Structures

Given a H-structure on Vn’ we wiil say that it is hermitian
if the underlying a.r.p.s. is integrable, that is, for each xOéVn
there exist n complex-valued functions (zi), defined in an open neigh-

bourhood v of x_., such that at each point x of v, the subspaces

O}
Té(OSssi‘) detemining the a.r.p.s. may be defined by dz € = 0 where
(0O€k # s<r). The basis of T}C( dual of (dz') is adapted to the a.r.p.s.

With respect to this basis one thus has

2 « B
ds=22 & p g where (1 gagm)
where adm
& %s B A

a4 (o) (a)
and
s %
(o) (a)
F=AZ L 6 ~ 6 ,
Con SCA)PI(“) > (1gs #€gr).
The a.r.p.s. underlying the hermitian structure is necessarily without
torsion.
Conversely, suppose we have a H-structure for which the
underlying a.r.p.s. is without torsion. Such a structure will be called
a Pseudo~Hermitian structure, briefly P-H-structure. In an analytic
case, that is to say when Vrl and the a.r.p.s. are of class Cw, a P-H~

structure is hermitian. We recall that in the Riemannian connection

we have, relative to the Gp-adapted basis,

93
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Vh F ‘35
« s

GFp A Kk

~s~ SX—S
VhFP :i—A L3 P.Sh

s

and the components of the torsion tensor of the a.r.p.s. are given by

o o Lo
t _xf'.. L —

PSYS Ps s \‘sp

FV_

k .
S5 F . =TF, ., we obtain
ince i i ng,

Vo (Fiy) = v, (F; £s) = s vhwg‘) + F‘;vh(gkj>

It

k
F)y.
7, (F})
. 1
Let us set r = 1, that is we consider a m-structure .

We have

k
F“é B % p, VR, )
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Hence we state the following theorem:
THEOREM 31: For an almost hermitian structure in the broad

. 1 . .
sense we have:

VFP VF“PO

with‘respect to a m-adapted bésis, where §7h denotes the covariant
derivative in the Riemannian connection and (Fij) is the fundamental
form of the almost hermitian structure.

NOTE: Oné is no longer able to generalize this result in the case of
Q.TePeS.

Let us now consider a G -adapted basis; with respect to this

. H
basis, we have
« o
$ / $ < A
___r..sv_F'_ (2% 0 & 8§ €
Ps LAw” A [ 1

"
I

Y

b NI DN
i
M
~

oM
g
NN
2

-

J
X
A

|
+
W
i
o

(7.0.1)

"
o
A
1)
N
PN
|
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Similarly O(S '

¥ =" sV Fe( (7.0.2)

Then we get

«g s s
-._::(x-— /——"" ___..):——’-——-S( ""V F_- (7.0.3)
Ps M5 s’s AP adw H o P Ps sMs
and - ..-
g(_ °(
,t \K —-_..... (7.0.4)
PsMs ( fsAs /“‘:F_g 2)0° Et Ms)

We see from the ahove results that the a.r.p.s. underlying

H~structure is without torsion if and only if - F('i ~ (respectively
s s's
F s B s i d .
v a B) is symmetric with respect to uS and BS (respectively u, an BS)

But since: v b'; E (respectively Vu Fa. 8 ) is antisymmetric with
§ s -
respect to a d B— (respectively G.S and Bs) such a symmetry condition
implies thaty- Fs = (respectively F ) = 0.
Us “gPs Us sBs
Indeed
V=V R u=-VE ="V F,
Mg SFS X MsT P M M Bs s
also v F V F V F v F
Mg %P s Bs%s % Ps#s T #sBs ¢
therefore av F =o

or V/ASFO(SFS:O'

Similarly V F‘ = o
A, LB '
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Hence we state the following theorem:

THEOREM 32: In order that a H-structure by Pseudohermitian,

it is necessary and sufficient that, relative to the G}-{-adapted basis

one has at any point

VE = 3VF-

Mo ZsPs F‘s (7.0.5)
ol o
or equivalently X =0 ; - . =e (7.0+6)
s Ms Ps As

The condition (7.0.6) remains valid with respect to any Gy

adapted basis. With respect to any base whatsoever, the P-H-structures

may be characterized by

h h |

e =
FeViFsy TV F T O (7.0.7)
Indeed, the first part of (7.0.7) defines a tensor (P 'k)’

such that one has with respect to a G -adapted basis

ae]

= 6 £ 8S sA)
R o R, Gt /33 Vlhn 7 1

S 41
= Fy,
S VMSFOSSP: 6st F Mg
S M “

1
N
€

M

I

N

i
~

1
o
-
E(h
<

(7.0.8)
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the other components being zero.
Given a P-H-structure on a differentiable manifold Vn’ the
torsion form of the Chern-Libermann connection is determined, relative

to the Gp—adapted basis, by the formulas

o o B ¥
S 'S S S
_ | (7.0.9)
- —— 6 A B .
2 a’/\wsv FPSXS _
Z, L B %

2 =- —Ls F g 8B (7.0.10)

Since the a.r.p.s. is without torsion, one obtains by exterior
dlfferentlatlon of the two parts of (7.0. 9) and (7.0.10), expressions of
d EL and d SL not containing any term of type (1,2). By introducing
the curvature form (ﬂ?) of the connection, let us write Bianchi's

identity
ds =-Q;A 6 - C;k oA 5 (7.0.11)
vhere (C;k) are the components of the connection.

lelative to the Gp~adapted basis one has

ol
..-C

ﬁ‘s 'G‘s (7.0.12)
I?.
Jl 5. = °‘s 4

It follows then from (7.0.11) that _ﬂ.ﬁ NG for (0<s<r)
. S
does not contain any term of type (1,2). Let (R; kl) be the curvature
s ;

tensor of the connection defined by-
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one thus has

‘{S
R . _=20 :
PSQXSSS (700013)
3
and S (7.0.14)

- = O
PR AN

Let us set (7.0.15)

h
R«'.j, ke~ 9::;1 Rg} ke -

i is antisymmetric not only with respect to the indices k and £,

R, .
ij,kA
but also with respect to the indices i and j. Let us agree to say that
two indices are of the same type if they are both between (km) +1 and
(km) + m for Og¢k gr. Then one sees that, with respect to any Gp—

adapted base, is zero as soon as the indices i and j, or the

RERY
indices k and £, are of the same type.
7.1 Almost r-Product Kahlerian Structures

An almost r-product hermitian structure on a differentiable
manifold Vh;(n=(r+l)m) will be called almost r-product Kahlerian,
briefly rk-structure, if the fundamental form F is closed. With respect

to any base. whatsoever, this condition is written as

F . +¢.F , + F =0 1.1
and this relation must be satisfied at any point of Vn’ whatever 1,j,k,

may be.
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If one takes the Gp-adapted basis, one is able to decompose

the relation (7.1.1) in the following way:

V. F-~-=0 | V.FE =o (7.1.2)
& %P % 5P
V [y +V C +V o (7.1.3)
Relative to the(%fadapted bases, these conditions may be written
¥ .
- .=0 ¥, 3 =9 (7.1.4
Psxs > s : )
« p Y
S s
X..--t'Y-o?-i-Xj_::o (7.1.5)
FS’XS E.'s S «SFS

One can regard the condition (7.1.2) as expressing the

nullity of the tensor (rijk) defined by

A Y F°Ts{§s ; é"g&i;:’v‘ E (7.1.6)

TP % % %Ps

the other components being zero. With respect to any base whatsoever,
1 ,.h h
= —= (F F ~F F .1.
TR TR (7.1.7)

Tk h).

Similarly the conditions (7.1.3) express the nullity of the tensor

S .
( ijk) defined by

=V.F +VF_+VE 019
LA

F
<><~s Fs?s °<s PS}Q‘ F’s \‘fs"fs_. Fs ?
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the other components being zero. With respect to any base whatsoever

one has

1
S..,.=— (p . +P_ _+P ) (7.1.9)

where we set

Pigi ™ Ftvh(Fij) " F?Vk (Fip)-

7.2 A Note on Kahlerian and Pseudokghlerian‘Structures

A H-structure on Vn will be called Kahlerian if the under-
lying a.r.p.s. 1s integrable and the fundamental form F ié closed. It
will be called Pseudokahlerian if the underlying a.r.p.s. is without |
torsion and F is closed. In other words, a:. H-structure is Kahlerian
(respectively Pseudokahlerian) if it is at the same time hermitian
(respectively Pseudohermitian) and almost r—produét Kahlerian.

In order that a H-structure be Pseudokahlerian it is necessary
and sufficient that, at any point of Vn? one has with respect to the
Gp-adapted bases

-0 . _=0. =
VX E( °; VX F. ;V,).; E‘sﬁs o (7.2.1)

S .S/Bs- S ;{SIBS
This is to say that the coyariant derivaﬁive of (Fij) in the Riemannian
connection is zero. The following theorem may bé deduced from this.
THEOREM 33: In order that a H-structure be Pseudokazherian it
is necessary and sufficient that the Riemannian connection be a Gp-

connection, that is to say it coincides with the connection of Lichnerowicz.
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APPENDIX I

We show that EP(Vh) is a differentiable principal subfibre
bundle of Ec(vn) with basé v and structure group G(nr).

Let us consider EC(Vn) as the set of all complex bases at
different points of Vn. Let p':EC(Vn)-—?Vn be the canonical mapping
such that a base relative Ua;céVhris.made to correspond to the point
x itself. It is well-known 2 that under this mapping EC(Vn) has, with
respect to p', a natu%al structure of a principal fibre bundle with
base Vn and the structure group GL(n,c). Furthermore, let us consider
a canonical mapping p: EP(Vn)——9 Vn such that a base adapted to
a.r.p.s. relative to x:éVh is made to correspond to the point x itself.
We also assume that the mapping p is the restriction of the mapping
p'e Previously we have proved that G(nr) is a Lie subgroup of GL(n,c).
Hence the right translation byg;éG(nr) is the Festriction to EP(Vn)
of the right translation operated on Ec(Vn). From this it is obviously
true that for every xe\ﬁﬁ there exists a neighbourhood v of x and a
differentiable section of EC(Vn) with values in Ep(Vn). Hence one can
deduce from the propositionl,5,2 of D. Bernard12 that Ep(Vn) is a
differentiable principal subfibre bundle of Ec(Vn) with base Vn and

structure group G(nr).

NOTE: A similar proof follows for references given under Appendix I,

Chapter 3 and Chapter 6.
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APPENDIX IT

We show that the set LO(nr) of matrices R satisfying the
identity RG + t(RG) = 0 is a Lie algebra of O(nr).
Let us assume that RG + t(RG) = 0 and RT(‘E + t(R]‘G) = 0.

For simplicity, we set RG = X and RIG =Y. Also set
Z= [X9YJ =X¥—-_YX.

“ F(Z) fxY) - “(vx)

)

N

Hy) @ - fx)
= (-9 (X) - (%) (D)

=YX -XY
:"‘-Zo

Hence t(Zl) + Z = 0, which implies that [X,Y] € LO (nr).

NOTE: A similar proof follows for the reference under Appendix IL in

Chapter 6
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