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ABSTRACT

. Developing laminar annular, entry-region turbulent annular

and entry-region turbulent pipe flows were analytically studied
employing integral methods of solution.

Both the laminar and turbulent annular flow problems were solved
by two methods, a Simplified Model and a General Model. In the
Simplified Model, the ratio of inner to outer wall Tayer thickness was
assumed to be constant at all axial positions and equal to the fully
developed value. The General Model was solved relaxing the constant
ratio of wall Tlayer growth assumption. The assumed velocity
distribution in the developing region was based on fully developed flow.

In developing Taminar annular flows, it was found from inspection
of the velocity profile plots that only near the inner wall, predictions
of the two models differ appreciably. In addition, both model
predictions of mean flow characteristicg, such a core velocity, fapp Re
and incremental pressure drop, are in good agreement with each other.
Further, comparison of results obtained from the General Model is
consistent with previous studies and the only experimental data available.

For entry-region turbulent annular flows, predictions of velocity
profiles (except near the walls), core velocity and pressure gradient
from both the Simplified and the General Models are in reasonable

agreement with available experimental data. Disagreement near the walls

may be due to the inherent problems associated with the measurement of

(iv)
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low velocities and to the unsuitability of applying power law mean
velocity profiles near wall areas. In fact, the scatter of existing
experimental values is indicative of the difficulty involved with
obtaining reliable experimental data in the entire flow area of entry-
regions turbulent annular flows.

For entry-region turbulent pipe flows, the eddy viscosity model
of Reichardt was used together with a linear shear stress assumption
in the wall layer. The purpose of the study was to compare the
results of using the Bernoulli's equation in the core region only
with that obtained by using a macroscopic mechanical energy balance
over the whole flow area. The analysis using the macroscopic energy
balance predicts a much smaller pressure gradient distribution than
that using the Bernoulli's equation. The non-linearity of the shear
stress profile near the edge of the wall layer was takeﬁ into account
separately. The aforementioned procedure was repeated using the

Van Driest eddy viscosity model.

(v)
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\S**

Subscrigts
1

2

radial distance measured from wall
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(43

kinetic energy correction factor = %- v

r
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NOTE:

fully developed
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Tocation
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flows
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CHAPTER I
INTRODUCTION

1.1 Characteristics of Developing Flows

When a fluid enters a duct, a velocity profile develops
(along the duct) until the fully developed profile is reached some
distance from the entrance of the duct. This flow development occurs
in a flow regime referred usually as the developing (or inlet) region.
Tke developing (entrance, inlet or settling) lenoth is the axial length
of the developing region.

The velocity adjustment is due to the presence of boundary layers
(denoted as wall layers in this Dissertation) associated with the inner
and outer walls which increase in thickness as the distance along the
flow increases. This results in a decrease : in the size
of the potential flow region.

The velocity changes from zero at the wall (no-sTip condition) to
core velocity at the edge of the wall layer. Since the mass flow rate
must remain constant, the flow in the central potential core region
must accelerate to compensate for retardation of flow in the wall layers.
As a consequence of wall layer and velocity development, very large

Pressure gradients and wall shear stresses exist in the developing region.
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In Taminar annular flows, the end of the developing region is
marked by the meeting of the inner and outer wall layers. A1l flow
parameters attain their fully developed values at the end of the
hydrodynamic developing region. In turbulent annular flows, however,
the situation is somewhat different in that the inner and outer wall
layers meet initially at an axial location before the end of the
developing region. The velocity profile at this location, still not
fully developed, further readjusts itself in the axial direction until the
fully developed velocity distribution js attained. Most flow parameters,
for example, pressure gradient, wall shear stress, turbulence intensity
reach their fully developed values before the end of the developing
region and generally at different axial positions along the duct.

In this Dissertation, for the turbulent flow analysis, the
developing region is divided into two sub-regions, i.e, entry-region
and adjustment region (within which the wall layers initially meet
and the velocity profile further adjusts itself to the fully developed
profile respectively). The experimental evidence of Okiishi and
Serovy [1] and Paranjpe [2] attest to the existence of two such flow

regimes for turbulent annular flows.

1.2 Flow Geometry

The basic geometry studied is the concentric constant cross-
sectional area annulus. The annular configuration finds itself in various

industrial applications, for example, heat exchangers, axial flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



turbomachinery and atomic reactors. For short annular sections, the
developing region has a considerable effect on pressure drop and heat
transfer rates.

The shape of the entrance to an annular passage will influence
the development of both the thermal and hydrodynamic wall layer growths.
The experimental studies of Okiishi and Serovy [1] and Sridhar et al.
[3] indicated that for a given annulus developing lengths were shorter
using a square-edged entrance than for a rounded entrance. This may
be attributed to the fact that, provided there is no intentional
tripping of a wall layer at the start, a laminar wall layer usually
Precedes a turbulent wall layer for a rounded entrance while the wall
layer is turbulent from the inlet plane for a square-edged entrance
annulus.

In the present analysis, a well rounded entrance is considered
as it provides a convenient mathematical condition of a retatively
flat inlet velocity profile to the annulus. In addition, the hydro-
dynamic wall layers are assumed to initiate from the inlet plane. The
small length of laminar wall layer which precedes a turbulent wall
layer in turbulent flows decreases with increase in Reynolds number,
As relatively high Reynolds number will be considered, in the present
study, the effect on the flow of this small laminar fength will be
neglected.

Pipes and parallel plates are extreme cases of the annulus, that

15, radius ratio zero and one respectively. Entrance-region pipe flow
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studies are of special importance for the design of closed-jet
working sections for wind and water tunnels, as well as for the
design of tubular heat exchangers and hydraulic-pipe systems.

While the velocity distribution for the above cases are
symmetrical, that for the annulus is asymmetrical. This aspect
of the velocity distribution represents a fundamental difference
between these related flow problems. Also, it has been recognized
(Sparrow and Lin [4], for example) that the flow situation in which
the radius ratio tends to zero does not represent the pipe flow
solution. This is due to the presence of the different physical
boundary conditions of zero velocity and maximum velocity at the

Ccentre for very small and zero diameter ratio respectively.

1.3 Purpose of Presen* Research

The present study is directed towards the prediction of flow
characteristics in developing flows through annuli and pipes using an
integral viewpoint. The method of analysis involves writing the
relation between the change in momentum, the pressure drop and the
friction force acting on an element of a wall layer.

In the annular flow study, the main objective is to provide simple,
but realistic, solutions unlike those currently available. Laminar and
turbulent annular flows are investigated. For both of these flows, two
models (a Simplified Model and a General Model) will be considered in

order to check the validity of an assumption used.
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Also, for turbulent annular flows, the proposed analysis
will focus itself onto flow within the entry region only. Very little
information, if any, is presently available on local flow
characteristics in the adjustment region. As in most previous works,
the analysis can only be used up to the end of the entry region since
the Bernoulli's equation ceases to apply after this axial location
due to the disappearance of potential core flow.

In the turbulent pipe flow study, a comparison will be made
between the results using the Bernoulli's equation and that using
a macroscopic energy balance.

For both of the above mentioned flow geometries, the fully
developed situation has extensively been studied analytically and
experimentally and consequently (fully developed flows) will not be
discussed to any great extent in this paper.

Unless otherwise specified, developing steady and isothermal
flow of an incompressible Newtonian fluid through a constant cross-

sectional flow area is considered.
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2.1

CHAPTER II

LITERATURE = SURVEY

General

There are three basic types of developing duct flows, i.e.,

hydrodynamically, thermal and simultaneously developing flows.

Hydrodynamically developing flow refers to flow within a region in

which the thickness of the velocity wall layer is growing. Thermal

developing is related to flow in which the temperature wall layer

is developing. The velocity profile is this region could be either

developing or developed. A combination of thermal and hydrodynamic

developing flow is referred to as simultaneously developing fiow.

The present study will be concerned only with hydrodynamically

developing flows. Many approximate solutions have appeared in the

literature. These will now be discussed.

2.2

for the annulus was undertaken, by Murakawa [6], in 1960.

Hydrodynamic Developing Annular Flows

2.2.1 Laminar Studies

One of the first solutions to the hydrodynamic entry length problem

2 series solution approach and the results which involved an infinite

Series of Bessel functions satisfy the physical boundary conditions only

in part.
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The first and only experimental study to date known to the
author of developing laminar annular flows was presented, in 1961,
by Astill [5] who considered entrance region flows with the inner
cylinder rotating for a radius ratio of 0.732. It was found that for
axial flow with the inner cylinder rotating, four modes of flow
could exist, i.e., laminar flow, laminar flow plus vortices, turbulent
flow and turbulent flow plus vortices. Lines of demarcation of the
four modes were established as functions of axial velocity, rotational
speed of the cylinder, distance from the entrance and the radial
distance across the annulus. He applied various amount of suction at
the inner wall and measured radial and axial velocity profiles for
different angular velocity of rotation.

Techniques of accurate solutions fall into three general
groupings: solutions of Tinearizeq_momentum equations, solutions
by finite difference methods,and solution by stream-tube approach.
These will be considered separately.

(a) Solutions of linearized momentum equations:

Sugino [7], in 1962, adopted the Langhaar approach [8] and

used:
usu v U \)62u
X 3R
' (2.1)
1 dp _
9 o ax = ~Vn

Where o and n were functions of x only. He solved the resulting
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equations and obtained a closed form solution in terms of modified
Bessel functions. He tabulated AP vs 4X, and k(«), fRe, and 4de for

e« = 0.2, 0.5 and 0.833. While his fa Re factors agree with other

PP
researchers, his de value of 0.005 obtained for all the above radius
ratios is in disagreement with other studies and appears to be in
error.

In 1962, Chang and Atabek [9] used the linearization technique

suggested by Targ [10], i.e.,

udu 3u _ g 3u
—3§-+ ViR U X (2.2)

and obtained closed-form relations for the axial velocity and pressure
gradient in the entrance region. They also presented de vs a and
found that Xeq decreases with increase in radius ratio.
Heaton et al. [11]), similar to Sugino [7], used the Langhaar
method of linearization in 1964. Instead of the Bernoulli's equation
in the potential core region they used the momentum equation as boundary
condition to eliminate the pressure gradient term. Shumway
and McEligot [12] further showed that the pressure drop of Heaton et
al. [11] obtained by using the momentum integral equation, differed
from the results based on the mechanical energy equation by 20% for‘XgJO—B.
They concluded that the velocity profiles and AP values of Heaton et al. [11]

are not reliable in this region.

Sparrow and Lin [4] , in 1964, used the method of stretched coordinates (to
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'stretch' the axial coordinate) and in this way were able to 1inearize

the momentum equation. Velocity variation and plots of k(x) vs 4X

were presented for radius ratios of 0,001, 0.01, 0.05, 0.1, 0.2,

0.4, 0.8. The fapre factors calculated from k(x) of Sparrow

and Lin [4] are between 0 and 2% lower than those of Liu [13].
The technique of Targ [10] was also applied by Roy [14],in 1965, who

similar to Chang and Atabek [9] obtained c]oséd—form relations for

the axial velocity and pressure gradient in the entrance region. In

fact, the results of Chang and Atabek [9] and Roy [14] are identical.

(b) Solutions by finite difference methods
The first finite difference approach to the entrance-region

annular flow problem was undertaken by Manohar [15], in 1965, who solved
the momentum equation for « = 0.1, 0.3, 0.5 and 0.7. He presented
graphically the velocity profiles, pressure distribution and hydro-
dynamic entrance lengths.

Shah and Farnia [16], in 1974, used the finite difference method of
Patankar and Spalding [17] for concentric annuli. (Basically, in
this method the axial coordinate x and dimensionless stream function
are used as independent variables and these are used to transform
the momentum and energy equations into finite difference form). They
Presented . Re and fapp Re as a function of 1/X for « = 0, 0.005, 0.1,
and 1.

A modified implicit finite difference method was used by Coney and

E1-Shaarawi [18], in 1975, to analyze the hydrodynamic entrance problem
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10

for concentric annuli.They presented both radial and axial developing
velocity profiles and hydrodynamic entry lengths for fifteen different
concentric annular ducts. Their developing axial velocity profiles

are in good agreement with those of Sparrow and Lin [4].

(c) Solution by stream-tube approach
The complete set of Navier-Stokes equations, without the
boundary layer type assumptions were analyzed, in 1971, by Fuller
and Samuels [19]. They used a stream tube approach and included
the effect of axial vorticity diffusion. They obtained the

velocity profiles for various x/R2 and Re for a = 0.5.

2.2.2 Turbulent Studies

Rothfus et al. [20] in 1955, were among the first researchers
01" turbulent developing annular flows. They found that the outer wall
Shear stress was still approaching its asymptotic value at 250 equivalent
diameters from the entrance. For 5000 < Re < 45000, they reported that
the effect of the level of turbulence at the inlet on downstream flow
was negligible.

The work of Olson and Sparrow [21] in 1963, was based on static
Pressure measurements. They reported that the entrance length, based
on 95% of fully developed pressure gradient, was within 20 to 25
equivalent diameters.

In 1967 velocity profiles at different axial locations along the

annulus were measured for rounded and square-edged entrances by
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Okiiski and Serovy. [1]. It was found that flow separation caused

by the abrupt change in area of the square-edged entrance resulted

in skewed velocity profiles near the inlet. Also for the rounded
entrance, transition from laminar to turbulent flow occuring near

the entrance appreciably affected velocity profiles, shape factors,
displacement thickness and local friction factors. The developing
length for a square-edged entrance was found to be less than that for
a8 rounded entrance.

Nicol et al. [22] in 1967, investigated developing flow through
square-edged entrance annuli only. They measured velocity profiles
and presented correlating equations for the settling length over the
annulus Reynolds number range, 5000 - 50000, relating the equivalent
diameter, Reynolds number and diameter ratio. Quarmby [23], in 1967, from
his experimental investigation reported that the settiing length is of
the order of 30 to 40 hydraulic diameters. The inside surface of the
tube was honed and the Reynolds number ranged from 10,000 to 90,000.

In 1970 Sridhar et al. [3] measured developing velocity profiles
for turbulent flows in smooth concentric annuli with square-edged and
bellmouth entrances. Settling length correlations proposed( similar to
Nicol et al. [22]) for both entrances for 7000 <Re <47500
suggested an inverse radius ratio effect. They observed, as did
Okiishi and Serovy [1],that the settling length with a square-edged
entrance was less than with a bellmouth entrance.

Wilson and Medwell [24], in 1970, used a modified form of
Reichardt [25] momentum eddy diffusivity equation and solved for the
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developing turbulent hydrodynamic and thermal wall layers for
internally heated annuli. Satisfactory agreement was obtained with
the experimental data of Okiishi and Serovy [1]. Their analysis
predicted hydrodynamically fully developed flow was obtained within
10 equivalent diameters. |

Also in 1970, Okiishi and Bathie [26] developed an analytical
model for turbulent flow in the developing region of an annulus.
Their integral approach utilized the empirical wall shear stress
correlation of Ludwieg and Tillman [27] and the assumption of constant
shape factors for both the inner and outer wall layers. Predictions
of displacement and momentum thickness were not unreasonable when
comparison was made with the experimental data of Okiishi and
Serovy [1].

In 1971, Lee and Park [28] made an analytical and experimental
Study of developing turbulent flow through concentric annuli. Their
analytical work was based, similar to Wilson and Medwell [24] on a
modified form of Reichardt's expression for eddy diffusivity of
momentum. Comparison of experimental and predicted eddy diffusivity
in the developing region was not too good.

Developing and developed isothermal annular flow was studied
analytically and experimentally in 1973, by Paranjpe [2]. Unlike
Previous researchers who used the universal logarithmic mean velocity
Profile, he suggested and experimentally verified the use of power

law profiles for fully developed flow (for 92800 < Re < 531000).
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His analytical work in the developing region was also based on power

law profiles and the wall shear stresses were expressed in terms of

the power law constants based on the fully developed flow. Entrance
lengths from the prediction was 15% lower than values found experimentally

and increase with annulus Reynolds number.

2.3 Hydrodynamically Developing Turbulent Pipe Flows

One of the earliest investigations of developing pipe flows was
done by Latzko [29] in 1921. He analyzed the development of turbulent
velocity profile in a pipe by a method analogous to Schiller [30].

The velocity distribution followed the one-seventh power-law. For a
total inlet length of a purely turbulent flow, he found

0.25

de /Dh = 0.69 Re (2.3)

Schiller and Kirsten [31] in 1929, investigated the velocity profile
development in pipes for both rounded and sharp-edged entrances. For
10,000 < Re < 50,000 they found that the fully developed velocity profile
1s attained in 50 to 100 equivalent diameters. They also observed that
while for a rounded entrance, the settling length decreased as Reynolds
number increased, for a sharp-edged entrance the opposite appeared to be
the case. They may be due to the possible existence of a small length
of Taminar wall layer near the inlet for the rounded entrance.

Deissler [32] measured velocity profiles at various distances for

rounded and right-angle-edged entrances for the flow of air in a tube
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over a range 48000 < Re < 580000, His results indicated that the
flow development was more rapid for a right-angle entrance than
for a rounded entrance as the length to reach fully developed flow

was about 45 and 100 tube diameters respectively.

In 1955, Deissler [33], in addition to the usual boundary Tayer

approximations, assumed in the developing flow that the eddy diffusivity,
e, is given by

r2 uy (1 - exp { -rzuy/v }) for y* < 26

m
1]

(2.4)
and ¢ 2

i
A
18

for y* > 26

where r snd K are experimental constants. The eddy diffusivities for
momentum and heat transfer were assumed to be equal. The results
indicate that approximately fully developed heat transfer and friction
are, in general, attained in less than 10 equivalent diameters.

Ross [34], in 1956, used an integral approach and presented an
approximate analytical solution for the turbulent wall-layer flow
Within ten diameters of the entrance. Formulae for momentum thickness,
Pressure drop and head loss were obtained. Comparison of the theoretical
€Xpressions with the few available raw data showed good agreement.

Under the assumption of a logarithmic law rather than a one-

Seventh power law, as suggested by Latzko [29] for the velocity profile,
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Filippov [35], in 1958, calculated turbulent flow development in

the entrance length of a straight tube. Good agreement with experiment
was obtained not only near the wall but also at the outer edge of

the wall layer.

Perhaps the first reliable experimental data on turbulent inlet
flow was provided in 1963, by Barbin and Jones [36]. They measured
mean velocities, turbulence intensities, and turbulence stresses in
the first 40 diameters of pipe length for Reynolds number of 388,000.
While fully developed flow was not attained in this length, the wall
shear stress and static pressure gradient attained their fully
developed values within the first 15 diameters. They also experimentally
showed that velocity profiles in the inlet region were not similar.

Bowlus and Brighton [37], in 1968, used a one-seventh power law
velocity distribution coupled with an expression for the wall shear

Stress based on the Schultz-Grunow [27] re]ﬁfion for flat plates, that
is,

-2.584 ,
T, = 0.185 [Tog,, (Re }_\}I_X_) ] (2.5)

FU'Z
and obtained reasonable agreement with experimental data for the
Core velocity development within the first 25 pipe diameters.

A numerical study based on finité-difference techniques and an
eXperimental investigation of developing turbulent pipe flows were done
by, in 1973, Richman and Azad [38]. They solved simultaneously the

Vorticity transport and stream function equations using a modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

form of Van Driest [39] eddy viscosity model. Very good agreement
was obtained between the analytical prediction and experimental
results.
In 1973, Na and Lu [40] used an integral approach and based
their assumed velocity profile on the general power law mean
velocity profile. The wall shear stress correlation of Ludwieg and
Til1man [27] was used and the variation of the shape factor (and
hence the power law exponent) was considered by utilizing the
entrainment eqhation of Von Doenhoff and Tetervin [27]. Good agreement
was obtained with the experimental results of Barbin and Jones [36].
Wang and Tullis [41] in 1973 studied both analytically and
experimentally turbulent flow development through rough pipes. Their
analysis which was based on the 1ogarithmic velocity profile predicted
that the wall shear stress and velocity profile becomes fully developed
in about 15 and 50 diameters respectively. Also predictions of wall
layer growth, core velocity and pressure coefficient development agree
reasonably well with the experimental data for the first 12 djameters.
Measurement and prediction of turbulence kinetic energy, Reynolds
Stress, velocity profiles and heat transfer were made in the flow
development region of a pipe by Walklate et al. [42] in 1976. The
€Xperimental results indicated an approximately linear shear stress
Variation within the wall layer similar to the case for fully developed
flows. Reasonable agreement was obtained between the measured and

Predicted velocity profiles.
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Also, in 1976, Reichart and Azad [43], from measurements of
the mean velocity profiles in the first 70 diameters of the pipe,
showed a non-asymptotic development for turbulent pipe flows for
56000 < Re < 153000, They also found.that within.the inlet region
the mean velocity along the pipe centre-line "overshoots" the fully

developed value.

2.4 Closure
From the literature survey presented, we may conclude that

(i) for laminar annular flows no simple solution of hydrodynamic
development is available. Further, no prediction of the growth
of the wall layers exists.

(1) for turbulent flows in annuli no complete study of the entry
region using simple expressions for velocity profiles in the wall
layers can be found.

(1i11) for developing turbulent flows in pipes and annuli, there has been
no known attempt other than using Bernoulli's equation for the purpose

of eliminating the pressure gradient term in the analysis.

The present study primarily directs itself to the problems mentioned
above in jtems (i) and (ii). An attempt will be made to provide some
Preliminary information on item (iii) by using a form of the macroscopic

mechanical energy balance equation over the entire flow area of a pipe.
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CHAPTER III

ANALYSIS OF DEVELOPING FLOWS

3.1 General

For most flow geometries, less attention has been given in the
pPast to hydrodynamically developing flows than fully developed flows.
The reason is, for most part, while both problems are difficult to
handle, analysis of developing flows basically involves two independent
variables (R and x) compared to one in the fully developed case. This
fundamental difference between the nature of these two types of flow
has created additional gross non-linearity in the inertia terms in
theNﬁvier-Stokes equation for the hydrodynamic developing flow analysis
Wwhich resulted in complex analytical and numerical procedures
being used in order to obtain solutions.

When we analyze developing flows through annuli, further algebraic
complications arise due to the asymmetrical nature of the velocity
distribution unlike the cases of pipe and parallel plates, limiting forms
of the annular geometry.

For developing flows through annuli, most of the analytical works
in the 1iterature have used the differential approach for the laminar
Case. On the other hand, it appears that all of the few theoretical

Solutions available for developing turbulent annular flows are based

On integral methods presumably because they are more manageable than

18
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differential methods. The present study is based on integral methods

of solution.

3.2 Method of Approach

3.2.1 Hydrodynamic Developing Laminar Annular Flows

Basically, there are eight dependent variables involved in
deve]oping laminar annular flows. They are Uys Uy, u, 6], 62, Tiw®
Tow? P-  As a result, a maximum number of eight independent equations
are needed in order to solve the problem.

As in most integral methods, an assumed velocity distribution
(which will be checked out in Chapter 4) will be specified. Two flow

models were investigated, a Simplified Model and a General Model.
Equations common to both models are:
the assumed velocity distribution for uy and u,
Newton's Law of Viscosity for ™ and Ty
(A)

Continuity Equation

an equation resulting from application of
Macroscopic Mechanical Energy Balance

For the Simplified Model, we have:
(1) Equations of (A)

(i9) The integral momentum equation applied to entire flow area.
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(iii) an assumption of constant ratio of wall layer

‘thickness, (61/8,)= cq = (6/8,)¢q -
In the case of the General Model we have: :
(i) Equations of (A)
(1) Momentum “equation applied to inner wall layer

(ii1) Momentum equation applied to outer wall layer.
In both models, there are eight equations present.

3.2.2 Hydrodynamic Entry-Region Turbulent Annular Flows

As in the laminar flow situation, eight dependent variables
are present and so a minimum number of eight equations is required
in order to obtain a solution. Similar to the laminar flow case,
also, two flow models were investigated, i.e., a Simplified Model and

a Beneral Mcdel. Common to both were:

two equations from assumed velocity distribution h
two equations from assumed wall shgar stress variation (8)
one equation from Conservation of mass [
Bernoulli's equation J

For theSimplified Model we write:
(i) Equations of (B)

(1i) Momentum equation applied to entire flow cross-
sectional area

(ii1) One equation from assumption of constant ratio of
wall layer thickness
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We have for the General Model:
(i) Equations of (B)
(ii) Momentum equation applied to inner wall layer

(iii) Momentum equation applied to outer wall Tayer.
There are eight equztions present in both models.

3.2.3 Entry-Region Turbulent Pipe Flows

There are five dependent variables present in the analysis of
entry-region turbulent pipe flows, namely, u, U, 6§, t andp. At
least five equations are therefore required in order to solve the
Problem. These equations are obtained as follows:

(i) One equation from assumption of linear shear stress
variation in wall Tlayer

(i1) One equation from the assumed eddy viscosity model
(iii) Continuity equation
(iv) Momentum equation applied to the wall layer
(v) An equation resulting from application of the macroscopic
energy balance or the Bernoulli's equation.
We, therefore, have the minimum number of equations required for a

solution, j.e., 5.

3.3 Mathematical Analysis

3.3.1 Developing Laminar Annular Flows

For fully developed laminar annular flows, we may write

_ 2
Ugg = MR™ + m 2n R + mg (3.1)
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where Mmys M, andm3 are functions of the annulus radius ratio and

hence constants for a given annulus. Equation (3.1) is obtained by
integrating the Navier Stokes equation in the axial direction for fully
developed flows. Using the following boundary conditions in

Equation (3.1),

0 at R

R

Urd 1

Ugyq = 0at R=R

2
by direct substitution it may be shown that

. [R? - R12 - 2R,? n (R/Ry)]
[Ry” - Ry% - 2Ry” 2n (Ry/R;)]
or
. [R% - R,% - 2R © zn (R/R,)]
M., - ! (3.3)
[Ry” - Ry% - 2R,Z 2n (Ry/Ry)]

Analogous to Equation (3.2) and Equation (3.3), we assume the
velocity profile in the developing region is, by replacing RM by

R&] and Rsp respectively,

2
[R? - R,% -2Rs, " en (R/R})]

2 2 R 2

Y
U R
[Ra] - R -2.51 n | 5]/R1)]

(3.4)

for the inner wall layer and
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2
u, [RZ - RZ - 2%, an (R/R,)]
Y . 2 2 2 (3.5)
Y e, - r2- 2R, m R /R |
[Rp™ - Ry =278 an R /R
for the outer wall layer.
Equation (3.4) and Equation (3.5) satisfy all the physical
boundary conditions, i.e.,
Uy = Uy (x, 21) =0 3
up = up (x, 8y) = U
o
3R |R=R
5 (3.6)
Uy = u, (x, R2) =0
_ R
Uy = U (x, 52) = U
8U2 -
= =
PR
2 Y,

A short-hand notation will now be used where j = 1,2 refer to
Parameters associated with the inner and outer wall layer respectively.
The assumed velocity distribution may then be written as

2
2 _ 2Rs

2
=[R -RJ j

R/R.
;n (R/ J)] (3.7)

R
; i - 2 Gj 2n (Raj/Rj)]

c:"_‘:

Newton's Law of Viscosity is
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Ty = u Buj (3.8)
aR

The Continuity equation can be expressed as
Ra
I ¢ u 27RdR = AV (3.9)

R

Nriting a macroscopic mechanical energy balance between the entrance
and some distance x from the entrance of the duct, and then different-

fating with respect to x yields

R 2
-AV dp=2ug [ s 2 (28) RdR]dx
Ry
Ro 3 .3
+ mpd [ s (u” - V7)) RdR ] (3.10)
R
:

Equation (3.7) to Equation (3.10) are common to both the Simplified
and the General Mode].

For theSimplified Model, one can write

(i) Equation (3.7) to Equation (3.10)

R
dx - dpA=pd [ f “u
Ry

(11) -1, 27R dx + 1, 27R 2 onRdR ] (3.17)

1 1 2 2

(ii1) 8, = & (8,) = ¢, &, for all x where ¢, = (81/85) ¢4 (3.11a)
Simi]arly, for the General Model, we can write

(1) Equation (3.7) to Equation (3.10)
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(i1) -7y, 2nRdx - = R 2-R.|2)dp =-pd[f6"ué1 2RdR ] U
W 1 R
R 1
1 2
+pd [ S uy 2mRdR ] (3.12)
R
:
(i11) +r, 2uR.d (R.2-R. %) dp =- od [ . 27RdR ] U
11 Tzwnzx-w2-52 p = -p {2 u21r
62
R 2
+pd [ £ 2 u,” 2nRdR ] (3.13)
R(52

The analysis for the two models will now be considered separately.

(a) Simplified Model:
Eliminating the pressure term between Equation (3.10) and

Equation (3.11) the following expression is obtained.
R

V{1, 2R - 1, 27Rydx + od [Rf 2 4% 24RdR ] }
1
RG] 3U1 2 R2 3U2 2
= 2ur [ f (gﬁ—) RdR + f (gﬁ—) RdR ] dx
R R
1 8,
Ry 3 .3
+ampd [ £ ¢ (u” - V°) RdR ] (3.14)
R
:
We define
R, 2 3
B. = 1 _
1 2
84 (3.15)
>
R 2
B = _2_
2 2
P J
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It may be shown that

au (B, - 1)
_ 1 u 1
T - u m— = Zp artnees
Tw 3R R
) EEQ. ) U (82 - 1)
Tow M 3R =2u g
R=R2 2 (] - BZ + n 82)
2 .. 1 3.2 B ’
R R.¢ (il _ 3 +38°_ L+ans, 3
s 2 2 grrdr = mpU? [ 81 6 1725 32 1
2 .. 1N 3.2 B ’
e 11 3 2
i R,™ {3 3B, + 5 B," -3— + B, } ]
B, (1 - B, + 2n B,)2
2 2
(3.16)
. 2
R2 32.2 2 { (1-B1 ) + 4 (B1-1) - 22%n B] }
£E 3 RdR = U° [ .
R, (1 - By + 2n 81)
{ (1-B.%) + 4(B,-1) - 2 2B, }
i 2 2 2 7
2 .
(1 - B, + &n 82)
R 3_2 1 1,2
3 . 1.1
Rf 2 3 pgr= VR - 3(3- %8By +B tnB)
1 2B, 1 (1 -8B, + 2n By)
2 3
B B
5 _ i T 2 - 2
. 3(2-B;+53 5— + B;" 2n By - By 2n B,)
(1 - By + 2n B;)?
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4
B | 2 ,
7 3,2.2,3 B8 3, 2. 3 3 2 3
N30 2By - g8y + 3BT - g+ (3B 5B "4By ) an By - 3By an By + Byan” By)
3
1 - B] + on B1)
2
U3'R.2 -B, + 3 (l-- BZ + B, . 2n B,)
i T S 2 -T2 " P27 P
2B, (- B, + 2n BZ)
2 3
B.2 B
3 _ 2 __2 2 - 2
. 3 (6 B, + 5= -5t B, Zzn B, - B, en Bz)
(1 - B, + en Bz)
7 2 3 B
7. 3 2.3 _ 52 3, 2. 3 3,2 2 3
L 328, - B, + 3B, - g= * (3B,-38,°4B,7)en B, - 7 B,"2n" B, + B,in” B))
3
(1 - B, + 2n Bz)

Using Equation (3.15) and Equation (3.16) in Equation (3.14) we obtain

after extensive algebraic manipulation,

dB, + I, dB (3.17)

8(1 -o)? dx = I, dB; + I, ,

Whe . . o .
re IT and I2 are functions of A], Az, cees A26 defined in Appendix
A, '

From the assumption of a constant ratio of wall layer growth,
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6 '6 -
2 X 2 fd
it may be shown that
1 2
pela=ef, V2
1 /2 d
- l—(—lQ 2 (3.19)
-(+—=+L13 1]
-22Nn o

Finally substituting Equation (3 .19) in Equation (3.17), we obtain
2

f'loz)
- o] B, 3/2 dB

8(1-0)° ) 2! 1,5 2
ReD, - L Ty T2 172 a‘(Eg) *ll & . (3.20)
[1 - {:ﬁzﬁ—g} ]

The term B, can be expressed in terms of B,, using Equation (3.18) as

((;—)‘/2 - 1) ((;‘37‘/2 - 1)

-7 G- -2

- (]
B2 2 lfd

The right hand side of Equation (3.21) is a function of radius ratio only
and hence can be obtained for a given annulus. Thus Equation (3.20) is
reduced to a non-linear first order ordinary differential equation which

Was numerically solved using Simpson's rule. Having abtained BZ’ B1 can

be found from Equation (3.21) and hence we can determine the non-dimensional
wall layer thickness §,/D, and §,/D, from Equation (3.15). The boundary

condition is:

at X = 0, 82 = 1.

(b) General Model:
For simplicity, the pressure term in Equation (3.12) and Equation

(3.13) was eliminated using Equation (3.10) and we obtain
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2 .. R
R T UL 2
“tqy 2R dx + m(Rs R %) A (2um [é 2 (25° RaR ] dx
1

R

+ mpd [ 2(u3 - V3) RdR]}
Ry
R R
Sy Sy 2
= -pUd [é u1 2nRdR] + pod [r u1 2mRdR] (3.22)
R
1 1

for the inner wall layer and

2R. 2\ 1 Ra auy2
ow Zndex + Tr(R2 -85 ) KV—{Zuﬁ[é (Sﬁé RdR] dx

]

+T

R
+ 7wpd [é 2 (u3 - V3) RdR]}

]

) Ry Ry
= old Fé U, 2nRdR] + pd [é u

8o Y

2

9 2mRdR] (3.23)

for the outer wall layer.
It may be shown that
R
‘, 2 (1-8)2

/U, 27RdR = 1 U ——[1 +
Ry 5 b

2(1 - B, + 2n B,)

1
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R 2 2
! 2u, aRdR = v U Rp o 0 - B)

5 B2 '2(1 - B, * an By)

(3.24)

.
£ 2 R,° -3, + 3,2 B13+ 2n B, )
R, Uy ZRR =W UTT1 L, R LN R ]

1 B (1 - By + an By)?

1 1
3

%2 2R2 il -3, + 387 22 4 ns )}
S U 2mdR = - U 2 g E‘ 22 32 2’y
R B

Substituting Equation (3.24) in Equation (3.22) and Equation (3.23) using
Equation (3.15) and Equation (3.16), we get after extensive mathematical

calculations (see Appendix A),

d(s,/D,) d(s,/D,)
Fp 1 h'  F, 227 h _F

dX dX
(3.25a)

d(s,/D,) d(s,/D, )
dX dX

where F1, F2""’F6 are functions of B1 and Bz (and hence 51/Dh and
%,/D.) and are defined in Appendix A.
Also, an equation for the pressure can be obtained by using

Equation. (3.10). This equation may be written in thé form
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Fo 4052/00)  F

dP d(s,/D,)
g Fp 1 h , Fg = + Fg (3.25b)

X~ 7 —x
where F7, F8 and F9 are similar to F1, F2""F6’ functions of B1
and B2 and are defined in Appendix A.

Equations (3.25a) and (3.25b) form a system of non-linear
first order ordinary diff@rential equations which was solved using
the fifth order RDnge—Kutta infegration routine. It is worth

mentioning that Equation (3.25a) may be solved independent of

Equation (3.25b). The boundary conditions are:

at x =0, §/Dp = 0, 62/Dh = 0, P = 0.

3.3.2 Entry-Region Turbulent Annular Flows

Most of the few analytical solutions to developing turbulent
annular flows presently available have used one basic assumption, i.e.,
the shear stress variation in the wall layers is linear. Coupled with
this and an appropriate eddy viscosity model, velocity profiies
Non-dimensionalized with respect to the wall shear stress could be
Obtained. The linear shear stress ‘variation will now be checked.

For fully developed flows, writing a force balance between
R = RM and R = R and R = R, regpectively, we have
2) dx

dpn (R22 -R , 2™

M/ = T2

dpw (R2 - RM2) = 1T

2
(3.26)

o 27Rdx
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From Equation (3.26),

(R® - R,2) R R

2 M
2 =T -——————2)(R - ) (3.27)

ow ( R22_RM

R
T = T 2 M
2 2w T

2
(R, - R

M

Similarly, writing a force balance for the inner wall

layer between R = RM and R =R and R = R1 respectively, we obtain

2 2y _
dpw (RM - R.I ) = Tw 27TR1dX
(3.28)
dpr (RMZ - R%) = v, 2mRdx
From Equation (3.28),
2 .2 2
R, (R, -R°) _ 1,.R R
o=, R (Ry ) e T (4 -R) (3.29)
T W g —7—» 2 2y ' R

It can be seen from Equation (3.27) and Equation (3.29) that for

fully developed flows, while the assumption of linear shear stress
variation 1in the outer wall layer may be acceptable (corresponds to

large values of R), it is not reasonable in the case for the inner

wall layer (corresponds to small values of R). It is unlikely that

8 linear shear stress distribution would exist in the developing region (at
least the entry-region) if such a distribution is not present in the

fully developed case. This observation may be the reason for the

discrepancy between the experimental results of OQkiishi and Serovy [1]
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and the analytical study of Wilson and Medwell [24] near the inner wall

region.
In the present study, the velocity distribution is assumed

to be represented by a general power-law mean velocity profile, that
is,
u,

Yy
ot- (D)

1/n.
"3 (3.30)

where, as in the laminar flow situation, j = 1,2 corresponds to
quantities associated with the inner and outer wall layers respectively.
The radial coordinate Y; is measured from the wall and ns takes
different values for the inner and outer wall layer. The velocities
are time-averaged quantities.
For the present turbulent wall layer flow with a pressure
gradient, the shear stress at the wall will be approxinated by the
empirical correlation of Ludwieg and Tillman [27]. We may, thus,

Write for the inner and outer walls

X
T -0.678 H; Us. -0.268
= 0.123 * 10 G : (3.31)

ol v

The Continuity equation is

R2
£ u 27RdR = AV . (3.32)
]
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Bernoulli's equation applied to the central potential core

region may be written as

dp = - pUdU . (3.33)

Equations (3.30) to (3.33) are common to both flow models analyzed.

For the Simplified Model we can write

(i) Equation (3.30) to Equation (3.33)
| R
(11) -1, 27R dx -1, 27Rydx - dpA =p d [f 2 w2 2:RdR ] (3.34)

Ry
(ii1) §y = 51(62) = cy8, for all x where Cy = (6]/62)fd (3.34a)
and for the General Model
(i) Equation (3.30) to Equation (3.33) R
o]
(14) -1, 2nRydx - 7R 2 _ R]Z) dp = - pd [/ | uy 2nR] U
. : Ry
S9 4
+ pod [ U, 27RdR ] (3.35)
Ry
(i11) -1 2mR.dx - m(R.% - R, %) dp = - d-[fRZ u, 27RdR] U
2w €2 2 5, ) P EoedLL Uy em
Sy
Ry 2
+ pod [r u2 27RdR] (3.36)
R
S2

At this point the analysis for both models will be discussed separately.
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(a) Simplified Model:

Using Equation (3.31) and Equation (3.33) in Equation (3.34)

we get,
-0.678H,  Usy*x -N.268
-0.123 * 10 ( ) pU® 21R, dx
VvV
-0.678H, Us,** -0.268
-0.123 * 10 (—=—) pU” 27R,dx
Vv
_ Ry 2
+ pUdUA = pd [/ © u® 2wRdR]
Ry
We define
S =.R_1
1 7R,
]
R
2R,
2
It may be shown that
Ry R.2 (1 -5,) (1 - 5.)
L7 w2 onReR = 2n Ly 2 1D 1. L
1 S] (ﬁ;‘+ 1) (H_ + 2)
.2 .2
2 Ry 1
TLN S W
Sp7 3y
R22 s (5, -1) (1 -5,
NPT ARy S+ 2)
2 n2 n
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(3.37)

(3.38)

(3.39)
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Substituting Equation (3.39) in Equation (3.37) using Equation (3.30)

and Equation (3.38) we obtain after extensive calculations.

T,dS; + T,dS, = T,dX (3.40)

2 3

Where T], T2 and T3 are functions of EO, E],..E9 defined in Appendix

A.
From the simple assumption of constant ratio of wall layer growth,
i.e.,
$ S
=< =2 (3.41)
2 |x %2 |fd

Tt can be shown that

dS] - [ C!(]-S]) 'Czs] ] ds_z . (3.42)
L aS, + ¢, (52-1) ]

The term S] can be expressed in terms of 52 using Equation (3.41) as

(l—'-a) (l—-a

._El___~__ - 31 (3.43)
] 1 .

(1 - 5 ) (1-35-)

The right hand side of Equation (3.43) is a function of radius ratio
only and thus can be determined for a given annulus.

Using Equation (3.42) in Equation (3.40) yields:
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[ o (1-51) - Co 51 ] N 1 dS
] + Ty, 3 —

( oS, *C, (52-1) ] T3

dX = { T 2

(3.44)

Finally, combining Equation (3.43) with Equation (3.44) results in a
first order non-linear ordinary differential equation which is solved
Numerically using Simpson's rule. From the values obtained for S2
tand X),S] can be determined from Equation (3.43) and 61/Dh and
52/Dh can be obtained from Equation (3.38). The boundary condition
is:

at X =0, = 1.

S»
(b) General Model:

Introducing Equation (3.31) and Equation (3.33) in Equation
(3.35) and Equation (3.36) produces

-0.678H; Us,** -0.268 5
-0.123 * 10 (——) pU” 2nR, dx
Vv
R
2 2 84
+ v(RG] - R;%) pUdU = - pod [s u; 2mRdR] U
Ry
R
Sy 5
+ od [ Uy 2wRdR] (3.45)
Ry
and
-0.678H, Us,** -0.268 2
-0.123 * 10 (——) pU® 2mR,dx
X 2 2 Ra
mR," = R, “) oUdU = - pd [/ € u, 27RdR] U
2 So R 2
3
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R
+ pd [J’ u
R 2

)

2 9rRdR] (3.46)

for the inner and outer wall layer respectively. It can be

shown that
"5 R,E (159 (1-5) N
! u; 2mRdR = 210 —5 — [ - = ]
2
R R (S,-1) (1-S,)
[ % u, 27RR = 20U 25 —E [1 -2
Rs S,° (—+ 1) (=— + 2)
2 2 n, n2
> (3.47)
R
5 RZ (1-57) (1-s,)
s u, 2mRdR = 21U — — [1-—
2
R R (S.-1) (1-S.,)
g‘z u22 2nRdR = 2nU 25 it R —
= o+
52 52 (n2 + ]) (n2 2) .

Employing Equation (3.47) in Equation (3.45) and Equation
(3.46) yields (see Appendix A),

G d(8;/D) , G, d(s,/D) . G
dX X
d (3.48)
G, d(s,/D) , G d(s,/D,) _ Gg
dx dX
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where G1, GZ""GG are functions. of S1 and 52 (and hence 6]/0h and
85/D) defined in Appendix A.
An equation relating the pressure may be obtained from

Equation (3.33) (Bernoulli's equation).

UZ
P = (F - ]) . (3-49)

The pair of first order non-linear ordinary differential
€quations represented by Equation (3.48) was solved numerically

using a fifth-order Runge-Kutta integration routine. The boundary
conditions are:

atx:o’ 61/Dh = 0’ 62/Dh = 0-

3.3.3 Entry-Region Turbulent Pipe Flows

We may write the shear stress distribution in the wall layer
as

T = o(vie) % (3.50)

Defining dimensionless quantities,

y+ = ng 3 ut = u, ‘ (3.51)
u
v
whe re ut = (c_/p )05
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Equation (3.50) becomes:

*
T= pv (1 + %)_U_ZQH:
v dy
T = (1 + s)du+ . (3.52)
Tw dy

The experimental results of Walklate et al. {42] indicate
an approximately linear shear stress variation in the wall layer.
Using this 1linear shear stress assumption and combining with Equation

(3.52), we obtain

+
T -P=0+9 e ' (3.53)

Consequent]y, in order to obtain the velocity distribution a

Suitable eddy viscosity model has to be selected. This approach is

to some extent different from the annular flow cases studied in this
dissertation as a velocity profile is not initially specified.

The continuity equation is

Ro
S “u 2wRdR = AV . (3.54)

The momen tum equation applied to the wall layer may be written as
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8
6(2R0-6) dp + 2Ry, dx = 20Ud [6 u(RO-y) dy]
§ 2
- 2pd [6 u (Ro—y) dy] . (3.55)

A11 previous analytical solutions have used the Bernoulli's eauation
(in the core region) to eliminate the pressure term in the
momentum equation (Equation 3.55).

A differentvapproach was used to eliminate the pressure term in
Equation (3.55). The macroscopic energy balance was used and may

be written in the form

R R
dp &= - L od [/ ¥ ud RAR] - dx s 0 ¢ 2 R : (3.56)
0

c U
0 oR
Combining Equation (3.53), Equation (3.55) and Equation (3.56)"
R

R
2 1 . .0 3 0 a
s (2Ry-s) gt [--Z—pd{if)' u RdR}-dxé (1-5) HW_%(,R]

)
* 2Ry, dx = 2oUd [ 6 u (Ro-y) dy ]

8
- 20d [ £ u® (Ry-y) dy ] . (3.57)
0
Non-dimensionalizing all velocities and all radial distances
With the shear velocity, u* (=(Tw/p)0'5), the continuity and momentum

®quation can be written, after numerous algebraic calculations (see

Appendix A), as
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+
0 + \ S R, F
y + o+ Re + + 0
f (]" -—_-*_-)u dy —"Z—' _U. [6 (]'2R+) 2 ]
S+ R 0
0
and
2R *24 (5)[--2-—“(2--‘51)'{;0 (1 l:.-)% (1- y7y dut 4o+ + 1]
0 D Re Ry* "t 3 CRE oF dy
&+ + + 8 4 s
=yt RFdAd[r ut (0 L) dytr 1-d[RT s uc(1-E )dyt ] (3.58)
0 R 0 R+
0 0 0 0
R+
1 st st +2. , *3 st 0
" Re ‘R_-F(z"ﬁ—'-;-)d[Ro {U (5+(1"ﬁ'+)-~—2—)
0 0 0
0 3 (1 X0y gty ]
sy v (0 gm) dy
st 0
Equation (3.58) cannot be solved as yet until an eddy viscosity
distribution is specified. Two models were tested:
(1) Van Driest wall model:
e . 0.16y% [ 1 - exp (272 du” . (3.59)
" v P %6 dy~

Using Equation (3.59) in Equation (3.53), it can be shown that

T +
du* -1+ /{1 + 0.64y+2 [1 - exp (5%-)]2 (1 - %;—)31
o * . (3.60)
O.32y+2 [1 - exp (%%-)]
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(2) Reichardt Model:

. . +_5 + 2 +—5+ 2
=z st -( = y 101+ 2.5(X-E:—9 ] (3.61)
. +
*[1 - exp {- %;-}]
giving ¥i$
(- )21

dut  _ 8 (3.62)
dyt -~ yT=s

2 o+ + 2
(0 +% 6 [=(om) 10+ 2,505 IM-exp-() 1y
) A

The boundary condition. on Equation (3.60) and Equation (3.62)
is:

at y* =g, yt =0 .

Equations (3.60) and Equation (3.62) were solved by the fifth-
Order Runge-Kutta integration technique to obtain u' and y* for a given
§*  and these values were then substituted in Equation (3.58).

Using integration methods Ry* and X were obtained. This technique
Was repeated for different values of s*.

Finally, to account for the non-linear shear stress variation

In the wall layer and the fact that the shear stress should blend in

Smoothly to zero value in the potential core region, a novel technique

Was adopted. Writing

a
%1(1_91 (3.63)
W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

and differentiating Equation (3.63) with respect to y, we obtain

noting that 2, is a constant value

a- -1

dt 1 _ 1 1
& == 1-H" P - - (3.84)

w

It can be seen from Equation (3.64) that for ay greater than

unity,

and hence the shear stress would merge smoothly to zero value at the
edge of the wall Tayer. |

Also, choosing values of 2, close to unity, the shear stress
Profile can be made approximately linear (to be consistent with

€Xperimental data).
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CHAPTER IV

DISCUSSION

4.1 Discussion of Assumptions

4.1.1 Velocity Profile

For hydrodynamically developing annular flows, velocity profiles
Were assumed. In both the laminar and turbulent cases, the assumed
Velocity distribution was based on fully developed flows, information
Of which is well established. Unlike previous approaches, this method
Simplified mathematical analysis and resulting numerical work for
these probiems considerably. Using the assumed velocity profile,
€Xpressions obtained for momentum aﬁd cantinuity in terms of 815 62
and U can be integrated without resorting to any numerical procedure.

In the laminar flow problem, the velocity distribution satisfied
all the physical boundary conditions:

(i) requirement of no-slip at a wall

(i4) attaining core velocity at edge of a wall layer

(ii1) existence of frictionless flow in potential core region.
In addition, the profile converges to the fully developed profile at the
nitia meeting point of the inner and outer wall layers, thereafter
"eMaining invariant in shape.

For the developing turbulent annular case, the assumed velocity

di : . .
IStribution did not satisfy all the physical boundary conditions as

45
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1t had imposed upon it, some basic Timitations associated with the use of
Power-Taw mean velocity profiles, i.e.,

(1) wall shear stress cannot be obtained from velocity profile

(ii1) velocity distribution does not blend in smoothly with the

core velocity

(iii) agreement with experimental data near the walls is not too

good.
Despite these restrictions, however, predictions of mean velocity profiles
and pressure variation for turbulent entry-region pipe flow were reason-
able (Na and Lu[40], Bowlus and Brighton [37]). The present study
attempts to extend the use of power law distributions to annular flows.

It is worth mentioning that most previous analytical studies in
deve]OPing turbulent annular flows have used indirect means of obtaining
the velocity distribution., For example, from an assumed eddy viscosity
Model and a linear shear stress variation in the wall layer assumption,
the velocity profile may be obtained. In all of these cases, the
Fesulting expression for velocity is rather long and mathematically
inconvenient to handle.

FOr"entrance region flows, the power law exponents are dependent on
312l distance and Reynolds number and for the annulus, they also depend
ON radius ratio and radius of inner pipe as found by Paranjpe [2]. In
the case of pipes, the exponents vary between 1/7 and 1/8 in the entry
region (Na and Lu[40] ). As this variation is not appreciable, the

®Xponent may be approximated to be a constant value of 1/7. Consequently,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

the exponents for annular flows were taken constant and equal to the
values for fully developed flow.

Figure 4.1 shows the variation of 109 u+ vs 1o0g y+ for different
radius ratios and annulus Reynolds numbers for the experimental
inyestigations of Brighton and Jones [44], Rehme [45] and Lee and Park
[28]. 1t can be seen that the relationship in all these cases is linear
for most of the range, (except near the inner and outer walls) thereby

Justifying to some extent the use of a power law mean velocity distribution.

In fact, it is unlikely to expect a power-~1aw velocity distfibution in the

entry-region flow if such a distribution is not present in the fully developed flc
A non-dimensional velocity profile for developing pipe flow

was obtained using an eddy viscosity model and a 15hehk shear ’

stress distribution assumption in the wall Tlayer (discussed 1in

section 4.2.3).

4,1.2 Wall Layer Growth

For the Simplified Models in both the laminar and turbulent developing
annular flow problems, in order to obtain (the minimum number of) eight
€quations, an additional relationship had to be used. For mathematical
Convenience, this relationship was obtained by assuming the ratio of
wall layer thicknesses is constant for all axial positions along the duct,
i.e., (81/62)x = (61/62)fd° For flows through pipes and parallel plates,
the constant ratio assumption is valid since 61762 = 0 and 6]/62 =1

respectively for all axial locations. Consequently, this idea was
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Carried over to the annulus where 0 < o < 1. In addition, while it
appears that this assumption has not been used before in laminar flow
theory, for turbulent annular flows Lee and Park [28] assumed a

Fonstant ratio of wall layer growth in order to simplify their resulting

Numerical work.

4.1.3 Shear Stress Varjation

Unlike Taminar flows, the wall shear stress in turbulent flows
Cannot be determined from an assumed velocity distribution. For developing
turbulent annular flows, the semi-empirical correlation of Ludwieg and
Ti11man {27], valid for turbulent wall layer flow with a pressure
9radient, was adopted for the wall shear stress. Okiishi and Bathie [26]
Used this wall shear stress model in predicting inlet turbulent flow
development characteristics. The effect of transverse curvature on the
‘Udwieg and Tillman [27] friction formula was neglected.

A linear shear stress distribution in the wall layer for developing
turbulent pipe flow was assumed on the basis of the experimental (and
Aalytical) study of Walklate, Heikal and Hatton [42] who measured and
Predicted turbulence properties and heat transfer characteristics in the
entrance region of a pipe. A modification to the linear shear stress
distribution was made to account for the fact that the shear stress profile

shoulg blend in smoothly to zero value (in the potential core region).

4.1.4 Radius of Maximum Velocity
While in laminar annular fully developed flows an exact expression

for the radius of maximum velocity location could be derived, in turbulent
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annular fully developed flows this is not the case. Consequently,
Many researchers have proposed correlations for the radius of maximum
velocity position for turbulent annular flows.

Kays and Leung [46]1 proposed the following empirical expression:

0.343
Ry i} [a + o ] ‘ (4.1)
R, 0.343
[1+a ]
Rothfus et al. [47] employed the following correlation:
R 0.2 '
§M.= %’“ (1 -a) +a (4.2)
2

Clump and Kwasnosk1 [48] used standard polynomial curve-fitting

techniques to the data of Brighton and Jones [44] and obtained

M, (1) [1.08 o3 - 2.2 a® + 1.65 « + 0.48]
R2 2
for 0.0625 < < 1 and
- L (4.3)
Ry
i [1+18.1 (1-0)] «
2 4
>
for 0 < a < 0.0625

Doshi and Gi11 [49] obtained an approximate relationship for RM

Jiven by
.Rﬂ= [ e0* o) ] 1/3 . (4.4)
R2 2
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Also, many researchers have assumed or found experimentally that
RM Can be approximated by its laminar value (for example, Rothfus et

al. [50]), i.e.,

R 2y 1/2
Mo ea) . (4.5)
2 28N o

Equation (4.1) to Equation (4.5) were each used to determine
R+ The wall layers were assumed to meet when Ra] = R52 = Ry (.e.,
at the end of the entry-region). (This information was needed in order
to terminate the numerical calculations for the Simplified Model in the
Case of the turbulent annular flow analysis.) It was found that there
Was no significant difference in the results using any one of the above
relations for the Ry value. For conveniencey only results using Equation
(4‘5) s presented for entry-region turbulent annular flows using the
STmp1ified Model.

4.2 91§£H§§ion of Results

4.2.1 Developing Laminar Annular Flows

(a)

Velocity Profiles

Ve10city profiles at non-dimensional radial distances ¢ = 0.1 to

0.9 are Presented in Figure 4.2 to Figure 4.14. Results obtained from

the Simp]ified Model and General Model analysis are compared with those

f Sparrow and Lin[4] and wherever possible Chang and Atabek [9].
Agreement between the findings of Sparrow and Lin [4] and the present study

T a1l radiay Tocations is quite good, the maximum difference occuring
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near the entrance being approximately 3 percent. It is worth
mentioning that Sparrow and Lin [4]Aused the method of streched
coordinates to solve the developing annular flow problem.

The results of Chang and Atabek [91 agree well with both the
present study and Sparrow and Lin [4] some distance downstream from
the entrance. Their results in the jmmediate vicinity of the entrance
plane, however, appear to be'questionéble.

Two general trends may be seen from the figures plotted. Firstly,
at positions near the bounding surface, i.e., for values of ¢ close to
unity and zero, the flow decelerates with increasing downstream distance.
This is due to retardating effects of wall friction. Secondly, at
radial positions away from the walls, the flow accelerates with down-
Stream distance to compensate for the deficit in mass flow resulting
from the aforementioned retardation near the wall.

From an inspection of thevvelocity profile plots, it can also be
Seen that as the radius ratio increases, the £low tends more and more to
the symmetrical situation, 1.8.» the curve of ¢ = 0.1 and 0.9 (o = 0.2
and 0.8, etc.) fall approximately upon each other. The same CUTrVes,
expectedly, separate out as the radius ratio decreases.

For small radius ratios (e = 0.05, 0.1), agreement between the
Simplified and General Models is encouraging at all but small non-
dimensional radial distances (o = 0.1 0.2). The discrepancy appears
to begin at a small distance downstream from the entrance. The

max i :
mum difference between the two model predictions is approximately
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10 percent. For larger annulus radius ratios, however, both models
are in closer agreement. This result indicates that as the configuration
tends to a péra11e1 plate situation, the constant ratio of wall layer
thickness assumption becomes more valid. This is consistent with flows
through parallel plates in which §4/8, = 1 for all axial locations.

The only direct comparison to date of analytical and experimental
results for developing laminar annular flows to the author's knowledge
s shown in Figure 4.15. The experimental values are those of Astill [5].
Overail agreement with both Models is quite good. The discrepancy near
the inner wall (very small values of ¢) may be due, to some extent, to
difficulties associated with Tow vé]ocity measurements as noted by

Astily [5]. The radius ratio was 0.732 at X = 0.2 x 10'3.

(B) wa1j Layer Growth

The predicted wall layer thickness growth in developing laminar
annular flows is shown in Figure 4.16 to Figure 4.19. To the best of
the author's knowledge, this is the first attempt at predicting wall
layep thickness growth in laminar developing annular flows. The results
OF the outer wall Tayer for both models agree within 5 percent for the
four radiys ratios investigated.

For the inner wall layer, however, there exists a significanf
difference in the nature of the wall layer development between the two
Models. While a smooth uniform growth is predicted by the Simp]ified'

Mode? » the General Model results indicate that the inner wall layer
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thickness grows, overshoots, and then decreases to the fully
developed value within the developing region. Also, it was found

that the axial position of the maximum inner wall Tayer thickness
Tocation shifts away from the inlet plane with increase in radius ratio

(see Table 4.1).

@ X at §=8q0y | X at T=Tymn
0.08 0.0094 0.0055
0.10 0.0096 0.0067
0.50 0.0100 0.0095
0.75 0.0126 0.0112
Table 4.1 Axial Position at 61=51max and =T min

The following may serve as a possible explanation for the inner
wall 1aye§ thickness overshoot. Near the entrance where the fluid
Particles first meet the wall, viscous friction rapidly decelerates the
flow to zero velocity at the wall. Wall layers are formed on each of
the bounding surfaces along the duct, that on the outer wall developing
faster than that on the inner wall. Also, the wall surface area exposed
to the fluid is larger for the outer wall than for the inner wall. The
Outer wall layer, therefore, entrains more fluid than the inner wall
layer. Consequently, the acceleration of the core flow is more strongly
influenced by the wall layer on the outer wall than that on the inner

wall,
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The acceleration in the core resulting from the retardation at
the outer wall may, indeed, act to speed up the flow in the inner
wall layer adjacent to the core. This interaction produces complex
velocity variations as can be seen by the curve for ¢ = 0.1 in the
velocity profile plots. These velocity variations cause the inner
wall shear stress to 'undershoot' its fully developed value within
the developing region. In fact, it was found that the miniﬁum ﬁgint
on the ¢ = 0.1 curve and the minimum inner wall shear stress value
(given in Table 4.1) is at the same axial location. As a consequence
of the 'undershoot' of the inner wall shear stress and in order to
satisfy the continuity equation, an overshoot of inner wall layer
thickness is formed.

It is worth reiterating that the predicted velocity profile
curves agree very well with those of Sparrow and Lin [4]. Consequently,
it would be reasonable to expect that the model of Sparrow and Lin[4]
would have predicted the aforementioned undershoot of the inner wall
shear stress.

The presence of irregularities in hydrodynamically developing flows
has been reported in the literature. Wang and Longwell [51] in
their numerical solution for parallel plates were the first to report
that the velocity profiles have a local minimum at the centre line and
symmetrically Tocated maxima on either side of the centre line near the
walls. Also, Friedman et al. [52] showed for the circular tube that the above

velocity irregularities mentioned by Wang and Longwell [51] were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

significant only for the case of exactly uniform entrance velocity
profile (employed in the present study). Further, Burke and Berman
[53] demonstrated for the pipe case that the velocity irregularities were
not a mathematical oddity as they observed velocity irregularities in
their experimental data.

Finally, the wall layer thickness plots computed from the results of
Campbell and Slattery [54] and Gupta [55] for the pipe (a=0) and parallel
plates (a=1) respectively are shown in Figure 4.16 to Figure 4.19 for

comparison purposes.

(¢) Core Velocity Variation

The predicted core velocity development is presented in Figure 4.20
to Figure 4.23 for the four radius ratios studied. Also shown are the
results of Shah and Farnia [16] and wherever possible Heaton et al. [11].

The Simplified Model seems to underpredict, to some extent, the core
velocity.distribution. The results of the General Model, however, agree
very well (within 2 percent) with tﬁose of Shah and Farnia [16] and Heaton
et al. [11]. In addition, the Génera] Model results agree best with the
results of the finite difference solution of Shah and Farnia [16].

The initial development proposed by Heaton et al. [11] is steeper

that that predicted by both the General Model and Shah and Farnia [16].

(d) Incremental Pressure Drop Number Variation
Wherever possible the findings of Sparrow and Lin [4] are compared
With those of the Simplified and General Models for the incremental

Pressure drop number variation in the axial direction shown in Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

4.24 to Figure 4.27. It can be seen that the agreement between the
Simplified and General Models improves as the radius ratio decreases.

The overall agreement between the three curves plotted is good.

(e) »fapp Re Variation

Shah [56] proposed the following correlation for predicting fapp
Re factors in the hydrodynamic entry region of circular (including

the annulus) and non-circular ducts

¢ pe - 3.84 , [(fRe) + k(=)/(4X) - 3.44/%°-°]

(4.6)
app x0-° 1+¢C X-2

where k(=) and f Re are for hydrodynamically fully déve]oped flow and
C is a constant depending on the duct geometry (see Table 4.2). As
mentioned by Shah [56], the predicted fapp Re factors obtained from
Equation (4.6) agree within +2.4% with the most accurate ‘values in
the 1iterature for the above-mentioned geometries. To the author's
knowledge, Equation (4.6) is the only correlation currently available
which may be applied in the entire developing region of an annulus
(in order to obtain fapp RE factors). Also, Shah and London [57]
reported that the results of Sparrow and Lin [4] and Coney and E1l-
Shaarawi l[18]are approximately 2% lower and 2-4% higher respectively
than those of Shah and Farnia [16]whose results, in turn, agree with
the fapp Re factors of Equation (4.6) within an rms error of 2 percent.

Consequently, the present results for f Re are compared with those

app

Obtained from Equation (4.6) alone. Points obtained for fapp Re from
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Equation (4.6) and this investigation for both models are plotted
in Figure 4.28 to Figure 4.31 from which it may be seen that the

three results are almost identical.

o ¢ x 10°
0.05 50
0.10 43
0. 50 32
0.75 30

Table 4.2 C Values for Different Radius-Ratio
Annuli Extracted from Shah £56].

(f) Comparisonwith Experimental Results with Suction

Figure 4.32 shows the experimental values of
Asti11 [5] in which suction was applied at the inner wall compared
With the predicted velocity profile plots (without suction) at various
X values for o« = 0.732. The measurement of Astill [5] dindicated that
the effect of suction at the inner wall is to decrease the inner wall

layer thickness. This trend may be seen from the figures plotted.

4.2.2 Entry-region Turbulent Annular Flows

(a)  Velocity Profiles

In Section 4.1.1, it was shown from the experimental investigations
of Brighton and Jones [44], Rehme [45] and Lee and Park [28] that the
velocity distribution in fully developed turbulent annular flows may be

reasonably represented by a general power-law mean velocity profile.
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This initial check on the assumed velocity profiles was useful in that
it served to indicate the possible existence of a power-law mean velocity
profile in the entry-region.

Figure 4.33 shows the variation of &n (u/U) with 2n (y/s) for
a = 0.344 (Re = 78800) and « = 0.531 (Re = 142000) derived from the
experimental results of Okiishi and Serovy [1]. For each of the two
radius ratios, a mean line was drawn to fit the experimental data points
through the velocity data at the last measuring station (of Okiishi and
Serovy [1]), i.e., at X= 25 and X = 34.9 respectively. Values of the
wall Tayer thickness and core velocity were estimated from the mean
velocity profile curve and values of u/U and y/s§ were consequently obtained.
The results were then plotted on a 2n-2n scale (shown in Figure 4.33).

It méy be seen from Figure 4.33 that a power-law profile reasonably
represents the velocity distributionas the 1/n1 and 1/n2 values are
approximately constant. It is estimated the uncertainty in the values
of 'I/n.I and 'I/n2 to be within 10 percent. Table 4.3 shows the resulting
exponent values (which were subsequently used as input data in the numerical
study).

The velocity profile plots are presented in Figure 4.34 to Figure
4.36. Also shown are the results of Wilson and Medwell [24] for the
same radius ratios (and Reynolds number). While the three predictions agree
well with each other, one unexpected conclusion may be drawn from the
curves, that is, the Simplified Model also appears to agree better than
otners in the inner wall layer. This may be seen in Figure 4.34

and Figure 4.35.
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a Re 1/n1 l/n2
0.344 78800 0.117 0.177
0.531 142000 0.121 0.128

A

Table 4.3 Experimental Power-Law Exponents Obtained

from the Data of Okiishi and Serovy [1].

) Re 1/n1 1/n2
0.1012 92800 0.049 0.174
" 157000 0.049 0.145
0.0239 315000 0.049 0.145
" 531000 0.049 0.133
0.1003 320000 0.089 0.148
" 451000 0.066 0.139

Table 4.4 Experimental Power-Law Exponents Taken

From Paranjpe [2].
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Also shown in Figure 4.35 is the curve obtained from the results
using information at X=3.81 location as the initial values for a =
0.344 (Re = 78800). The overall agreement between the four curves
in Figure 4.35 1is encouraging. The difference between the predictions
of the Simplified or General Model and Wilson and Medwell [24] near the
outer wall layer region for o = 0.531 (Re = 142000) at X = 5.33 is
partly due to uncertainities in_the value of 62/Dh and hence 1/n2 used
in the analysis. It is appropriate to mention that it is difficult to
extract reliable values for G.I/Dh and 62/Dh from experimental data.

To provide additional confidence to the numerical method, the

analysis was reduced to the pipe case (o = 0) and the resulting velocity
profiles at differenf radial positions (measured from the pipe centre
Tine) are shown in Figure 4.37 and Figure 4.38. Also shown is the
core velocity distribution from the general pipe flow solution of Na
and Lu [40] and the velocity data of the reliable experimental study of
Barbin and Jones [36]. The agreement between the two previous works
and the present study is encouraging (within 1 percent). The corresponding
wall shear stress variation, shown in Figure 4.39, is likewise in concert
with the two previously mentioned works. Not unexpectedly, agreement
of the velocity profiles with the experimental data near the walls is
not as good as that away from the walls, a consequence of a basic 1imit-
ation of power-law velocity profiles.

As the experimental study of Barbin and Jones [36] indicated that the

wall shear stress attained its fully developed value within 15 hydraulic
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diameters, the fully developed shear stress was taken as the value
of wall shear stress at the end of the entry-region, X = 30 (instead
of the value obtained from Blasius formula).

Power-law exponents in fully developed turbulent annular flows
were evaluated by Paranjpe [2] in his experimental study for o« =
0.1003, 0.1012, 0.0239 and 92800 < Re < 531000. In all the previous
relevant works discussed, the 1/n] values were found to be approxirately
> 0.1. A1l except one 1/n1 value, however, obtained by Paranjpe
[2] was less than 0.07 (see Table 4.4). In addition, it was observed
that the 1/n] values were obtained from his experimental data of u+ and
y+ relatively far from the wall (y+ > 125). Consequently, a smaller
value of 1/n] was found.

The experimental velocity profile data of Paranjpe [2] are compared
with the predictions of the Simplified and General Models in Figure
4.40 to Figure 4.42 (using the values of Table 4.4). Only the results
of three Reynolds number are presented (o = 0.1003 (Re = 320,000 and
Re = 451,000) and « = 0.0239 (Re = 531,000 )). In the outer wall layer
(corresponds to small values of'x) both model predictions for o« = 0.1003
(Re = 320,000 and Re = 451,000) reasonably agree with the experimental
data. For the annulus radius ratio of 0.0239, there appears to be some
amount of uncertainty in measurement for X = 7.4 (Re = 531,000).
(b) Effect of Initial Conditions

There is no apparent way of obtaining the axial location where the
turbulent wall layers start from the experimental results of Okiishi and

Serovy [1] and Paranjpe [2] so the wall layers were assumed to start at the
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inlet plane.

For the annulus with « = 0.344 (Re = 78800), Figure 4.35 shows the
predicted velocity distribution of the General Model with both the
following boundary conditions: at X=0, 51/Dh=0’ 62/Dh=0 and at X=3.81,
61/Dh=0'04’ 52/Dh=0.1. The second of these boundary conditions was
obtained by assuming that a Taminar portion of wall layer exists up to
the first measuring station in the experimental study of Okiishi and
Serovy [1]. The difference between the resulting velocity profiles obtained
for the aforementioned two initial conditions can be seen in Figure 4.35
to be negligible.

The prediction of the wall layer thickness using the two above initial
conditions in the General Model is presented in Figure 4.43. While the
results for the outer wall 1ayer‘thickness remain approximately the same, that
for the inner wall 1ayer thickness show a significant difference.

In their pipe flow study, Na and Lu [35] used the following boundary
conditions based on the experimental work of Barbin and Jones [36]: at
¥=0.25, §/D_=0.0055. Solutions with both the initial conditions: X=0,
G/Dh=0 and at X=0.25, G[Dh=0.0055 were obtained for the pipe case. (The
approximate solution for the initial conditions: at X=0, G/Dh=0 was solved
by the procedure described in Section 4.3). It was found, similar to the case
for the annulus, that the effect on the pipe flow plots previously mentioned
using these two different initial conditions was negligible. Figure 4.44
indicates the corresponding wall layer thickness plot. It was found that
for X>2, the two results agree within 2 percent 'with the agreement improving

in the axial direction.
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(c) Wall Layer Growth

The development of the wall layer thickness with axial distance is
shown for the two annulus radius ratios (and corresponding Reynolds number)
of Okiishi and Serovy [1] in Figure 4.43 and Figure 4.45. Reliable
experimental values for comparison are unavailable.

The analysis of the General Model predicts for «=0.344 (Re=78800),
the development of the inner wall layer is faster than the outer wall layer
within the entry region as shown in Figure 4.43. Also, the predicted
growth of the inner wall 1ayer thickness is strongly dependent on the initial
condition unlike the case for the outer wall layer thickness.

The results of Figure 4.45, which show the wall layer thickness variation
for a=0.531 (Re=142,000), would tend to indicate that for a relatively large
value of radius ratio, predictions of the Simp1ifﬁed and General Models are
in close agreement. This fact is consistent with flows through'para11e1
plates (a=1) where 6]/62=1 for all axial positions.

The corresponding curves for the wall layer thickness obtained by
using the power-law exponent values of Paranjpe [2] are presented in Figure
4.46 and Figure 4.47. Similar to the case of the velocity profile plots, only
the results of fwo radius ratios are shown, i.e., a=0.1003, (Re=320,000 and
Re=451,000) and «=0.0239 (Re=531,000). The initial variation of the wall
layer thickness {with axial distance) is predicted by the General Model to
be greater for the inner wall layer than the outer wall layer. The opposite
effect, however, is the case from the Simplified Model predictions.

It can be seen from Figure 4.43 to Figure 4.47 that the length of

the entry-region depends on both the radius ratio and Reynolds number,
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its dependency on radius ratio being stronger than that on Reynolds
number. Further, Figure 4.47 indicates that for a given annulus, the
entry-length increases with a decrease in Reynolds number. The
terminal points on all the curves represent the vanishing of potential
core flow (i.e., the end of the entry-region).

(d) Core Velocity

Figure 4.48 shows the predicted core velotity variation for
@ = 0.344 (Re = 78800) and « = 0.531 (Re = 142,000) with the corresponding
experimental data points of Okiishi and Serovy [1]. The agreement between
the curves and the data is very good. Also, points of Wilson and
Medwe1l [24] obtained from their analytical curve for the same radius ratio
and Reynolds number are shown for comparison.

Also presented in Figure 4.48 is the analytical curve for a = 0.0653
(Re = 23000) obtained from the present study. The power-law exponents
were obtained from the fully developed velocity profile curve of Lee and
Park [28]. Their experimental values (shown in Figure 4.48) are in very
good agreement with the theoretical curve (within 1 percent).

The predicted curves using the power-law exponents of Paranjpe [2]
are shown in Figure 4.49 and Figure 4.50. The U/V values obtained from
the experimental study of Paranjpe [2] are high and appear to be incorrect.
Consequently, his results are not shown in Figure 4.49 and Figure 4.50.

It is worth noting that despite the appreciable difference between
the prediction of the Simplified and General Models for the inner wall
layer thickness for the radius ratios discussed above, the core velocity

Prediction in all cases from both models agree well.
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From inspecting Figure 4.48 to Figure 4.50, it may be
concluded that the dependency of the core velocity varijation on
Reynolds number is greater than that on radius ratio. Also, the core
velocity develops faster as the Reynolds number decreases.
(e) Pressure Gradient

The pressure gradient variation in the entry-region is presented
in Figure 4.51 for the General and Simplified Models along with the
prediction of Wilson and Medwell [24] for o = 0.531 (Re = 142000).
It can be seen that although all three predictions agree well, the
Curve of the Simplified Model is slightly better than that of Wilson
and Medwell [24]. The comparison of the experimental data points
with the curves, however, appear to be not too good.

Also shown in Figure 4.51 are the predicted curves for o« = 0.1012
(Re = 92800 and 157000) and the experimental results of Paranjpe [2].
It may be seen that the fit of the measurements with the analytical
curves is good using the General Model. The same is not the case,
however, with the curve obtained from the Simplified Model analysis.
For comparison purposes, the experimental data points of Olson and
Sparrow [21] for « = 0.5 (Re = 29500) are shown. The wide scatter of
data in Figure 4.51, undoubtedly, indicates the difficulty involved in
obtaining accurate pressure gradient measurements for turbulent flows
in the entry region of annular ducts. It is worth mentioning that the

dp.
value of (dx

)  was taken to be the value at the end of the entry region.
fd .
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4.2.3 Entry-Region Turbulent Pipe Flows

In this section, a comparison is being made to see the effect
on the results of using the Bernoulli's equation in the potential
core region and the macroscopic mechanical energy balance over the
whole flow area.
The results of the core velocity distribution from both the
eddy viscosity models tested, that is, the Reichardt and Van Driest
models, are presented in Figure 4.52. The results obtained from using
the Bernoulli's equation and that from using the macroscopic energy
balance are shown. It can be seen that each of the eddy viscosity
models coupled with Bernoulli's equation yields predictions which are in
very good agreement with the experimental results of Barbin and Jones
[36]. The macroscopic energy balance predicts a very sharp increase
in core velocity near the entrance. This may be due to the small
Pressure gradient variation which is predicted by the macroscopic
eénergy balance equation as can be seen in Figure 4.53. With the small
Pressure gradient and in order to satisfy the momentum and continuity
equations, the analysis predicts that the core velocity increases rapidly.
It was found that the effect on the plots of Figure 4.52 and
Figure 4.53 of increasing the value of ay (in Equation 3.63) up to 1.01
was negligible. The upper limit of a, was taken as 1.01 since it is
required that a value of 2, close to unity be chosen in order to maintain
an almost linear shear stress variation in the wall layer. In Figure

4.52 and Figure 4.53, only the results for ay = 1.01.using Reichardt
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&ddy viscosity model are shown. It is worth noting that the maximum

difference between the curves is less than 0.5 percent.

4.3 Discussion of the Numerical Method

4.3.1 Genera]

For both the laminar and turbulent annular flows studied, the
initial conditions imposed on the resulting differential equations

Produced infinite slopes at the start. This posed a problem at the
X

]

0 location. An attempt was made to expand the equations about the

n

X = 0 location using a Taylor series expansion in order to examine the

behavioyr near x = 0. Due to the very large number of algebraic terms
Present, however, it was found that this approach could not be
€mployed. The methods outlined below were then used to solve the
differentia] equations.

4.3.2 Simplified Model

The results of the Simplified Model reduced to a first order non-
Tinear ordinary differential equation. The Simpson's integration
scheme was used and the following procedure was adopted.
By definition the initial value of B, is unity. The integral
Was split up into two parts and the Timits of integration were 1 to 1.01
mmdéiﬂ t0E§M for the first and second parts respectively. Now, since
1/(a§20 near the inlet plane is very small the contribution to X of
the first part is very small compared to the second part of the integral
and was consequently neglected in the numerical computations. Physically,

this smal1l contribution to X will only affect values of B, ( and hence
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§, and 62) very near the inlet plane.
The number of steps between 1.01 and 82 was increased until

fd
convergence occurred (up to 5 decimal places) and was then found to be

200.
The entire procedure was then repeated for the entry-region
turbulent annular flow problem.

4.3.3 General Model

Three and two first-order non-linear ordinary differential
€quations resulted from the analysis of laminar and turbulent annular
dEVeloping flows respectively. The third equation in laminar flows
Came as a consequence of applying the macroscopic mechanical energy
balance instead of the Bernoulli's equation {in the case of turbulent
annular flows).

Similar to the Simplified Model, the boundary conditions on the
differential equations resulted in infinite slopes at the inlet plane.
The fifth-order Runge-Kutta integration technique was employed and
the following method was used.

Equal values wére assumed for the slopes of 61/Dh’ 62/Dh and P at X = 0
and were put in the computer program for a given step size. The equal
Values of slopes were increased until the following criteria were met.

(1) Slopes were positive for 8, and 62 near the inlet plane

(i1) U/V is greater than unity and increases axially.

The entire procedure was repeated using different step sizes.

Convergence (up to 5 decimal places) was found to occur at an h value
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of 0.00001 and 0.0001 for laminar and turbulent annular flows
respectively.

Finally, it was found that the effect of using different values
for the slopes (instead of equal values) and changing the step-size
Within the integration routine on the resulting values for 61/Dh’ 62/Dh,
P, U/V, 1, etc. were negligible.

4.3.4 Pipe Flow Analysis Using Eddy Viscosity Model

Equation (3.60) and Equation (3.62) were solved for u” and y+
by a fifth-order Runge-Kutta integration technique for a given value
of &* and h. The value of h was decreased until convergence occurred.
Using the values of u+ and y+ (for the 6+ value) in the first of
Equation (3.58) and employing the Romberg integration RO+ was
obtained. The Trapezoida] rule was then used in the second of

Equation (3.58) to obtain X. This procedure was repeated for different

Values of 6+.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

From the present study, the following are the main conclusions.
(a) For hydrodynamic developing laminar annular flows:
(i) The velocity distribution in the wall layers may be
represented by an assumed velocity profile based only
on fully developed flow information.

(ii) The inner wall shear stress undershoots its fully developed
value within the developing region.

(iii) As a consequence of (ii), a non-asymptotic behaviour of
the growth of the inner wall layer thickness is exhibited
which is more significant for small values of the radius
rafio.

(iv) The assumption of a constant ratio of wall layer thickness
for all axial positions becomes more valid as the radius
ratio increases.

(v) The present analysis is the simplest of all the methods

currently available in the literature.

(b) For hydrodynamic entry-region turbulent annular flows:
(i) The general power-law mean velocity profile reasonably
approximates the velocity distribution in both the inner and

outer wall layers within the entry-region.

70
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(ii) The use of the general power-law mean velocity profile
coupled with the Ludwieg and Tillman [27] friction coefficient
yield results which are consistent with available experimental
data.

(iii) The inner wall layer predictions of all methods available are not
as good as the outer wall layer predictions. The results of the
Simplified model, however, is slightly better than the rest.

(iv) The results of the General Model, on using different initial

- conditions in the Runge-Kutta integration routine, show
significant differences in the prediction of the inner wall
Tayer thickness.

(v) The core velocity growth is more dependent on Reynolds
number than on radius ratio.
(vi) The present approach is the simplest of all methods found

in the literature.

(c) For entry-region turbulent pipe flows:
(i) The use of a macroscopic energy balance over the whole flow
area yields a smailer axial pressure gradient than using the

Bernoulli's equation in the core region only.

The following recommendations for future work can be made:

(i) Detailed measurements of veloctty profiles for laminar
f]ow_in the hydrodynamic entrance region of concentric annuli
‘should be undertaken to check the theory presented in this

dissertation.
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(ii) In turbulent entry-region annular flows, a logarithmic
velocity distribution within the wall layers may be used.
The coefficients, generally, which depend on axial distance,
may be taken to be approximately constant and equal to the
fully developed value.

(iii) Velocity and shear stress profiles for turbulent flow in the
entry-region of concentric annuli should be measured and
then compared with the theory postulated.

(iv) Further attempts should be.made to find alternate means
of eliminating the pressure term in the momentum equation

for developing turbulent pipe flows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

REFERENCES

1.  Okiishi, T.H., and Serovy, G.K., "An Experimental Study of the
Turbulent Flow Boundary-Layer Development in Smooth
?nnu];“, Journal of Basic Engineering, pp. 823-836,
1967).

2. Paranjpe, S.C., "An Investigation of Developing and Developed
Turbulent Flows Through Annuli", Ph.D. Dissertation,
%nive;sity of Windsor, Windsor, Ontario, Canada,
1973).

3.  Sridhar, K., Nicol, A.A., and Padmanabha, A.V.A., "Settling
Length for Turbulent Flow of Air in Smooth Annuli with
Square-Edged and Bellmouth Entrances", Journal of
Applied Mechanics, Paper No. 69-WA/APM 24 (1970).

4. Sparrow, E.M. and Lin, S.H., "The Developing Laminar Flow and
Pressure Drop in the Entrance Region of Annular Ducts".
Journal of Basic Engineering, pp. 827-834 (1964).

5.  Astill, K.N., "Modes of Adiabatic Flow in the Entrance Region of
an Annulus With An Inner Rotating Cylinder", Ph.D.
Dissertation, Massachusetts Institute of Technology,
Cambridge, Massachusetts, U.S.A. (1961).

6.  Murakawa, K., "Theoretical Solutions of Heat Transfer in the
Hydrodynamic Entrance Length of Double Pipes", Bulletin
of the Japan Society of Mechanical Engineers, v3, nll,
pp. 340-345 (1960).

7. Sugino, E., "Velocity Distribution and Pressure Drop in the Laminar
Inlet of a Pipe With Annular Space", Bulletin of the
Japan)Society of Mechanical Engineers, v5 pp. 651-655
(1962).

8. Langhaar, H.L., "Steady Flow in the Transition Length of a
Straight Tube", Journal of Applied Mechanics, v9, pp.
A55-A58 (1942).

9. Chang, C.C. and Atabek, H.B., "Flow Between Two Co-axial Tubes
?ear §he Entry", Z. Angew. Math. Mech., v42 pp. 425-430
1962).

10. Stezkin, N.A., "Dynamics of Viscous Incompressible Fluids",
Gostekhizdat Press, Moscow, (1955) in Russian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11.

12,

13.

14,

15.

16.

17.

18,

19,

20.

21,

74

Heaton, H.S., Reynolds, W.C. and Kays, W.M., "Heat Transfer
in Annular Passages: Simultaneous Development of
Velocity and Temperature Fields in Laminar Flow".
International Journal of Heat and Mass Transfer,
v7, pp. 763-781 (1964).

Shumway, R.W. and McEligot, D.M., "Heated Laminar Gas Flow
in Annuli with Temperature-dependent Transport Properties"”,
?uc1e?r Science and Engineering, v46, pp. 394-407

1971

Lin, J., "Flow of a Bingham Fluid in the Entrance Region of an
Annular Tube", M.S. Thesis, University of Wisconsin-
Milwaukee (1974).

Roy, D.N., "Laminar Flow Near the Entry of Co-axial Tubes", Applied
Scientific Reserach, Section A, v14, pp. 421-430 (1965).

Manohar, R., "An Exact Analysis of Laminar Flow in the Entrance
Region of an Annular Pipe", Z. Angew. Math. Mech., vé45,
pp. 171-176 (1965).

Shah, V.L. and Farnia, K., "Flow in the Entrance of Annular Tubes",
Computers and Fluids, v2, pp. 285-294 (1974).

Patankar, S.V. and Spalding, D.B., "Heat and Mass Transfer in
%ound?ry Layers", 2nd Edition. Intertext Books, London,
1970). ‘

Coney, J.E.R. and El1-Shaarawi, M.A.I., "Developing Laminar Radial
Velocity Profiles and Pressure Drop in the Entrance
Region of Concentric Annuli", Nuclear Science and
Engineering, v57, pp. 169-174 (1975).

Fuller, R.E. and Samuels, M.R., "Simultaneous Development of the
Velocity and Temperature Fields in the Entry Region of an
Annulus", Chemical Engineering Progress, Symposium
Series, n113, v67, pp. 71-77 (1971).

Rothfus, R.R., Monrad, C.C.,Sikchi, K.G., and Heideger, W.J.,
"Isothermal Skin Friction in Flow Through Annular
Sections", Industrial and Engineering Chemistry, v47,
n5, pp. 913-918 (1955).

Olson, R.M. and Sparrow, E.M.,"Measurements of Turbulent Flow
Development in Tube and Annuli With Square and Rounded
Entrances", American Institute of Chemical Engineers
Journal, v9, pp. 766-770 (1963).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

22. Nicol, AsA., Medwell, J.0. and Goel, R.K., "Settling Length
for Turbulent Flow of Air in an Annulus", The
Canadian Journal of Chemical Engineering, v45, pp.
97-99 (1967).

23. Quarmby, A., “"An Experimental Study of Turbulent Flow Through
Concentric Annuli", International Journal of Mechanical
Sciences, v9, nd4, p. 205 (1967).

24. Wilson, N.W. and Medwell, J.0., "An Analysis of the Developing
Turbulent Hydrodynamic and Thermal Boundary Layers in
an Intemally Heated Annulus", Journal of Heat
Transfer, Paper No. 70-MT-9 (1970).

25, Reichardt, H., "Complete Representation of Turbulent Velocity
Distribution in Smooth Pipes", Z. Angew. Math.Mech.
v31, p. 208 (1951).

26. Okiishi, T.H. and Bathie, W.W., "An Approximate Method for
Predicting Annulus Inlet Turbulent Flow Development
Characteristics", Jourmmal of Basic Engineering, pp.
667-669 (1970).

27. Schlichting, H., "Boundary Layer Theory", Sixth Edition, McGraw
Hi11 Book Company (1968).

28. Lee, Y. and Park, S.D., "Developing Turbulent Flow in Concentric
a Annuli: An Analytical and Experimental Study", Warme-
und Stoffubertrangung, Bd 4, pp. 156-166 (1971).

29. Latzko, H., "Der Warmeubergang an Einen Turbulenten Flussigkeitsorder
Gasstrom", Z. f.a. M.M., Bd I. Heft 4, p. 268 (1921).

30. Schiller, L., "Die Entwicklung Der Laminaren Geschwindigkeitsverteilung
umd ihre Bedentung fur Zahigkeitsmessungen" Z.f.a. M.M.,
Bd 2, Heft 2, p. 96.

31. Schiller, V.L., and Kirsten,H.J., "Die Entuicklung Der Geschwindig-
keitsverteilung Bei Der Turbulenter Rohvstrommng",
-Z. Tech. Phys., v10, p. 268 (1929).

32. Deissler, R.G., "Analytical and Experimental Investigation of
Adiab§tic Turbulent Flow in Smooth Tubes", NACA, TN 2138,
(1950).

33. Deissler, R.G., "Turbulent Heat Transfer and Friction in the

Entrance Regions of Smooth Passages", Transactions of the
A.S.M.E., pp. 1221-1233, (1955).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34.

35.

36.
37.
38.
39,
40.
41;

42,

43.

44,

45,

Ross, D.,

Filippov,

Barbin, A.

Bowlus, D.

76

"Turbulent Flow in the Entrance Region of a
Pipe", Transactions of the A.S.M.E., pp. 915~
923 (1956).

G.V., "On Turbulent Flow in the Entrance Length of a

Straight Tube of Circular Cross-section", Soviet

?hysigs - Technical Physics, v32, n8, pp. 1681-1686
1958) .

R. and Jones, J.B., "“Turbulent Flow in the Inlet
Region of a Smooth Pipe", Journal of Basic Engineering,
pp. 29-34 (1963).

A. and Brighton, J.A., "Incompressible Turbulent Flow
in the Inlet Region of a Pipe", Journal of Basic
Engineering, pp. 431-433 (1968).

Richman, J.W. and Azad, R.S., "Developing Turbulent Flow in

Smooth Pipes", Applied Scientific Research, v28, pp.
419-440 (1973).

Van Drijest, E.R., "On Turbulent Flow Near a Wall", Journal of

Aeronautical Science, v23, pp. 1007-1011, and p. 1036
(1956).

Na, T.Y. and Lu, Y.P., "Turbulent Flow Development Characteristics

Wang, J.S.

Walklate,

Reichert,

Brighton,

in Channel Inlets”, Applied Scientific Research, v27,
pp. 425-439 (1973).

and Tullis, J.P., "Turbulent Flow in the Entry-region
of a Rough Pipe", Journal of Fluids Engineering, pp. 62-
68 (1974).

P., Heikal, M.R. and Hatton, A.P., "Measurement and
Prediction of Turbulence and Heat Transfer in the Entrance
Region of a Pipe", Proceedings of the Institute of
Mechanical Engineers, v190, n37 (1976).

J.K. and Azad, R.S., "Nonasymptotic Behaviour of Developing
Turbulent Pipe Flow", Canadian Journal of Physics, vb54,
pp. 268-278 (1976).

J.A. and Jones, J.B., "Fully Developed Turbulent Flow in
Annuli®, Journal of Basic Engineering, pp. 835-844 (1964).

Rehme, K., "Turbulent Flow in Smooth Concentric Annuli with Small

Radius Ratios", Journal of Fluid Mechanics, v64, part 2,
pp. 263-287 (1974).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

46. Kays, W.M. and Leung, E.Y., "Heat Transfer in Annular Passages -
Hydrodynamically Developed Turbulent Flow with
Arbitrarily Prescribed Heat Flux", International Journal
of Heat and Mass Transfer, v6, pp. 537-557, (1963).

47. Rothfus, R.R,, Sartory, W.K. and Kermode, R.I., "Flow in Concentric
Annuli at High Reynolds Number", American Institute of
%hemi§a1 Engineers Journal, vi2, n6, pp. 1086-1091
1966) .

48. Clump, C.W. and Kwasnoski, D., "Turbulent Flow in Concentric
Annuli", American Institute of Chemical Engineers Journal,
vl4, n1, pp. 164-168 (1968).

49, Doshi, M.P. and Gil1l, W.N., "Fully Developed Turbulent Flow in an
Annulus: Radius of Maximum Velocity", Journal of Applied
Mechanics, pp. 1090-1091 (1971).

50. Rothfus, R.R., Monrad, C.C., Sikchi, K.G. and Heideger, .
"Isothermal Skin Friction in Flow Through Annular Sections",
Industrial and Engineering Chemistry, V47, pp. 913 (1955).

51. Wang, Y.L. and Longwell, P.A., "Laminar Flow in the Inlet Section of
Parallel Plates", American Institute of Chemical Engineers
Journal, v10, pp. 323-329 (1964).

52. Friedmann, M., Gillis, J., and Liron, N., "Laminar Flow In a Pipe
at Low and Moderate Reynolds Numbers", Applied Scientific
Research, v19, pp. 426-438 (1968).

53. Burke, J.P. and Berman, N.S., "Entrance Fluw Development in Circular
Tubes at Small Axial Distances", American Society of
Mechanical Engineers, paper 69-Wa/Fe-13 (1969).

S4. Campbell, W.D. and Slattery, J.C., "Flow in the Entrance of a
Tube", Journal of Basic Engineering, v85, pp. 31-46 (1963).

55, Gupta, R.C., "Flow Development in the Hydrodynamic Entrance Region
of a Flat Duct", American Institute of Chemical Engineers
Journal, v11, pp. 1149-1151 (1965).

56. Shah, R.K., "A Correlation for Lahinar Hydrodynamic Entry Length
Solutions for Circular and Non-circulat Ducts", Journal
of Fluids Engineering, v100, pp. 177-179, (1978).
57. Shah, R.K. and London, A.L., "Advances in Heat Transfer: Laminar
Flow Forced Convection in Ducts", Academic Press (1978).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

58. Goel, R.K., "An Experimental Determination of Settling Length
for Turbulent Flow of Air in Annular Ducts", M.A.Sc.
Thesis, University of Windsor, Windsor, Ontario,
Canada (1966).

59, Padmanabha, A.V.A., "An Experimental Determination of Settling
Length for Turbulent Flow of Air in Smooth Annuli with
Square and Bellmouth Entrances", M.A.Sc. Thesis,
University of Windsor, Windsor, Ontario, Canada (1968).

60. Paranjpe, S.C. and Sridhar, K., "Effects of Core Support and Core
Curvature on Turbulent Flows Through Annuli", Transactions
of the Canadian Society for Mechanical Engineering,

vd, n3, pp. 137-143 (1976-1977).

61. Sissom, L.E. and Pitts, D.R,, "Elements of Transport Phenomena",
McGraw-Hi11 Book Company (1972).

62. Bird, R.B., Stewart, W,E. and Lightfoot, E.N., "Transport
Phenomena", John Wiley & Sons, Inc. (1960).

63. Hildebrand, F.B,, "Introduction to Numerical Analysis", McGraw-
Hi1l Boak Company, Inc., (1956).

64. Moursund, D.G. and Duris, C.S., "Elementary Theory and Application
of Numerical Analysis", McGraw-Hill Book Company (1967).

65. Reddick, H.W. and Miller, F.H., "Advanced Mathematics for Engineers"”
' John Witey & Sons, Inc. (1962).

66. Nicol, A.A., Ivey, C.M. and Sridhar, K., "The Location of the
Plane of Zero Shear in Annular Flow", Proceedings of the
Third Canadian Congress of Applied Mechanics, pp. 581-
582 (1971).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- Fully
Developed
Flow

Developing
Flow

SRS W

cy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Ficure 3.1 Scuematic oF FLow in INLET REGION OF ANNULUS



‘uoissiwuad noypm panqgiyoud uononpoidal Jayung “Jsumo 1ybuAdod au Jo uoissiuad UM paonpoliday

L4

1.3
LOG U

1.2

1.1

1.0

--—— O INNER
————— ® QUTER (&= 0,52 (Re = 116000))

—— & INNER REHME 15

——ime—.— O INNER LEE AND PARK 28

BRIGHTON AND JONES Il

A QUTER (G=0,02 (Re = 209300))

(@=0.0055 (Re = 23002)))/

Ficure 4.1 VeLocity ProrILEs IN FuLLy Deverored TURBULENT ANNULAR FLows

,;}'ﬁ -
///// ."/',D/
el
a
L | | I
0.5 1.0 1.5 2.0 2.5 3.0
L0G v

08



81

€0 °C0 T'0=p‘00=0)

STTIH0Y] ALTOOTIA TYNOISNIWI(-NOY 'y TNl
X
00 5¢0°0 00 510°0 10°0 500°0
| - _ I T
Ce-twrtyw = ¢
B [7] NIT Qwv Mowwvds —
TAA0W @EIAITdWIS — ~~ —
3004 TVHANI9

i7'0

80

pu I s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

90 9’0 W'0=0¢ P0=2)
ST1404{ ALIOOT3A TYNOISNTWI(-NOY ¢'f; 3un91

X
020°0 S0 mm.o mz_S Sro mom.o
_
[7] NIT Qw Mowwvds — T
THOOW @IAITdWIS ———~~~
- THOOW TANTD
90 =
50 =
— 0=

g0

o>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

6'0 8’0 L'0=0:00=2)
STUA0Y] ALIDOOTI\ TYHOISNIWI(-NOY 1ty o1

X
050°0 G0'0 0 S0 100 5000 0
| | | | _ 0
[7] NI anv Moddwds — T
T[AOW A3I317dWIS ————~—
T13A0W TWH3N39
B 10
. 20
- et
- g0=0 !
* | h ~ [ J

ol >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

000

€020 T0=0'T0=2)
STT1404] ALIJ0TIA TVNOISNFWIQ-NOY G'ly Fnol|

X
5¢0°0 00 510°0 10°0 5000

[ _ I _ |

[6] 3avLv ANV ONVHD

[i7] NIT QW MONYVAS
= HENEE)

o | >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

€070 T0=0T0=p)
ST11404] ALIOOT3\ TNOISNAWI-NOY Q'fy Funol

X
050°0 S0 00 S10°0 10°0 000 0
B TAAOW @AW T T T T T — 10
300K TWAINTO

1'0 = »
n

(0 =

¢'0 =

|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwsad Inoyym paugiyosd uononpoidas Jayung “Jaumo yBuAdos ayy Jo uoissiuad yum paonpoiday

<< ]| <

1.6

1.2

0.8

0.4

¢= 0.4

o

GENERAL MODEL
SIMPLIFIED MODEL
SPARROW AND LIN  [4]

CHANG AND ATABEK L9]

I l l l

b= 06

0 0.005 0.01 0,015 0.02
X

Fieure 4.7 Mon-DivensionaL VELocITY PROFILES
(a=0.1,¢=0.4, 0.6, 0.3

0,05

0.020

98



87

60 °L0°90=0pT0=2)
STII404] ALTOOTE) TWNOISNIWIQ-NOJ §'ly Tun9l

X
0£0°0 50°0 0’0 S10°0 10°0 500°0
_ _ _ _ _
[h] NI QWY MOWdWdS —— ——
THAOW @I4ITdWIS T T T T
THA0N TWYAN39

| >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

€020 T0=¢pT0=0)
STI408] ALIOOT3)\ TWNOISNIWI-NOY §'h unol4

X
0:0°0 620'0 @0 6{0'0 10°0 S00°0 0
_ [ [ _ _ 0
[r] N7 aw Mowivds
THAOW Q3141TdWIS ~7 ~ 7 T .
- TAQOW WYEN9 — — 0
o= Rl
(0= —— =" - - ===
¢'0=
— $0=p — 9T
N l l I l

oDl >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

(90 'S0 7'0=¢ §'0=0)

SITIH04] ALIDOT3A WNOISNIMI(-NOY (‘17 3un91
X
k0'0 q0'0 A0 q10'0 100 000
_ _ _ _ _
THAOW @I4ITdWIS ~ T T
— “TAJ0W TTVYIN39
9'0 =
7’0 =
G0 =
— G0 =p
| | l | /

D>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

STIA0] ALIOOTA) TWNOISNIWIQ-NGY TT'fy Mot

6'0 80 £'0=45'0=2)

X
00'0 Q' 0'0 QLU0 [G'0 @x'0
- T r | | |
TAAOW @AIAITdWIS — =~ =7~
13A0W TTVYINTY
60 = = —
g0 = ————
/0 =
— G0
| | [ N |

"0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

0200

500

¢€'0°C0T0=0p"9L0=20)
ST11404) ALIDOTI) WNOISNIWIQ-NOY 7' N9l
X
a0 100 10°0 $00'0

"0

20 =¢

¢'0

13A0W dIT4TIWIS
THAOW VYANAD

RPN = o= e e e TSy
b3

cQ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

90 9'0 W0=¢ ‘«L0=D)

ST1404] ALIOOTIA TWNOISNTWI(-NOY| ST'f; 3ol

X
000 Q00 510°0 10°0 500°0 0
_ ! _ _
TAAOW Q3T NIS  ——— ===
| 3004 TWIINT9 —
90 = e~ ——
0=
I 50 = B
8’0 =0 ]
_ [ [ l [

0

o >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

020°0

©'0 8'0 L'0=¢ ‘«L'0="n)

ST11408 ALIJOTA WNOISNIWI(-NOY|

X
a0 S10°0

10°0

IRTENL

$00°0

0

80

I}
S

1'0=¢

T300W AIIAITdWIS
00 TVHINTO

— — p—— — wa—

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



l ] [ T
a=0.732
0.20— ———. GENERAL MODEL _
— ——  SIMPLIFIED MODEL
0.15 — o DATA OF ASTILL [5] a
) ¢
9/,
PO x=0.0m2 N
C.05— © |
@]
0 | I | |

FIGURE 4,15 COMPARISON WITH EXPERIMENTAL RESULTS
(a=0.,732)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

0.5 N 1 |
= 0.05
o4 [ CAMPBELL AND
SLATTERY [ 54]
(= 0)
_____ OUTER __
0.3 [~ -7
)
Dw
' cupTA (g =D
[551
0.2 — T INNER
0.1 GENERAL MODEL
—_—————— SIMPLIFIED MODEL
0 I I |
0 0.01 0,02 0.03

X

Fieure 4,16  PrepicTeD “ALL LAYER GROWTH
(a=0.,05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

0.5 | l |
= 0,1
o CAMPBELL. AND —_
SLATTERY [ B4]
a= 0)
0.3 — OUTER
3
D
h ;\
cupTA [55] @@= 1
2\ Jj// — oTe==== INNER —
0.1 GENERAL MODEL o
~— — — = ~SIMPLIFIED MODEL
0 L I l I
0 0.01 0.02 0.03
X
Ficure 4.17 Prepictep Maul LaveER GROWTH
( x=0,10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=—f e

0.5

0.4

0.3

0.2

0.1

97

CAMPBELL AND
staTTErY  [5)

(a=10n

GENERAL. MODEL
——— SIMPLIFIED MODEL

0 0.01 Y 0.02 0.03
Ficure 4,18 PrepicTep WALL LAYER GROWTH
( =0,50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




0.5 | I |

0.4 = SLATTERY [54]

(a =0)
0.3 —
5
3 S
B GUPTA \
[55] @= D

0.2

GENERAL MODEL —_

______ SIMPLIFIED MODEL

0 0.01 0.0 0.03

Ficure 4.19 PrepicTeD WALL LAYER GROWTH
(&=0.75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uoissiwiad noyum pangiyold uononpoidas Jeyund “Jaumo WBLAdoo ay; Jo uoissiwiad yum pasnpolday

< | =

1.6

1.4

1.2

1.0

GENERAL MODEL

SIMPLIFIED MODEL
HEATON ET AL, [11]

SHAH AND FARNIA [16]

0.01

0.02

Ficure 4.20  Core VELocITY VARIATION

(a=0,05

0.03

66



100

&S
[an
| ey
{ r—'t:r_%
! )
| % S
1 1 - —
I ‘f’:"g =2 %
| = £ 5 g
B ! 4 & - 2 — &
i 5z & 5 S
\‘\ B o =

i

<

(o)

()

— — —i —i

= 1l >

o
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ficure 4,21  Core VELOCITY VARIATION

(a=0.D



‘uoissiwiad noyum pangiyold uononpoidas Jeyund “Jaumo WBLAdoo ay; Jo uoissiwiad yum paonpolday

1.6

1.4

1.2

1.0

a=0.05

GENERAL MODEL
SIMPLIFIED MODEL

HEATON ET AL, [11]

SHAH AND FARNIA [16)

0.01 0.02 0.03

Ficure 4,22  PrepicteD Core VELOCITY VARIATION
(=050

L01



102

¢0'0

0’0

X

Q/'0=0)
NOILVI¥VA ALIJOTEA 307 GALIGRYY  ¢Z'f RNOLY

10°0

[91] VINYVA OGNV HVHS
TIA0W AITATTdWIS

TIA0ON TWHENTO

9'1

s T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

5¢0°0

(6C'0 =0 )

NOLLYINV/ ¥y dOY( NSSTJ TVANTRON]

0’0 GI0°0

X
10°0

'l N0

0

[f] N any Mowuvds
J300W Q3141TdWIS
TAA0 TVHANTD

80

)/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

Ol'0=0)

NOLLVINVA YIFWN}| dO¥( INSSTIJ TVINTWIUON]  G7'fy Fnol
X
q0'0 a0 q10°0 10°0 Q00 0
_ _ _ _ _
(1] N7 aw Mowdvds  — T /
TIAOW QITHI WIS ————~—~ /
T3AOW TVANTD \l
| N | [ [ ‘

¢'0

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

05'0=2)
zo:.<E<> mm.%:z dOy(] FANSSTYY ékzu.ﬁmu_: g7y 3914
X
c20'0 00 GI0'0 100 000 0

[ _ _ [ _ 0

A0 @T4I71dWIS
TAA0W TVHANTS

—
— —
- mmm St Gmmm G eama S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

(&'0=20)

NOLLVINV) ¥3GWNY dOY] Jenssy VINIWRWON] /g’ Tunold
X
G0'0 Q00 G10'0 10°0 00 0
| _ | _ _
A0 (31T TdWIS — = == ==
Ta00W “TVRENT9 —
/
/
/7,
\\
S0 =D
| | | I | \

7'0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

0.02

0,015

0.01

I [
|
o
d £
2 8 Y
=
35 =
i
]
l
|
|
|
3
o
1
S
T — l#:::i__
§3 o
&
oL
=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.005

FIGURE 4,28 Fapp Re VARIATION

(a=0,05



108

~J
[ I | =
|
=a]
— —=
(e
) o
. d & _ =
g g W ' =
2 5 7
(TR
z
§$§
:
|
[
| LN
- | =
(auw]
—
[wsn]
I
S
' o
S N i
R = <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. : VARIATION
FicwreE 4.9 ¢ APPRE A

(a=0.D

LY3



109

I |
|
{
A
A
=
i £ _
2 3
=
5 = 3
|
|
|
|
|
- ] —
wn
o=
I
S
S e}
= S =
&
u_%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.02

0.0

0.01

0,005
Fieure 4,30 Frpp Re VARIATION

(a=0.5)



110

GENERAL. MODEL

e —— — — SIMPLIFIED MODEL
s [%6]

a= 075

0.02

0.015

0.01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FiGRE 4,31 Fapp RE VARIATION

(a=0./5)



11

NOLLONG HLIM VLV TVANIWINAAX] HLIM NOSTMVAWO)  7¢'f; Funol

/N
9'0 ir'0 ¢'0

v

)

NOILONS HLIM
fq] TSV OVIVA ¢ o o

q00'0=X o
H00'0=X ©
o/ T¢0'0=X ©
. o %/'0=p
v O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

(/) N1

(Q@/A) N1 'SA (fi/m) N1 ¢¢'f; 3914

[T] Mouas

NV THSIDIO 40 VAV
. HonOYHL 3AUND
F11404d ALIOOTIA

NVIW WOdd SINIOd

(9/4) N1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<]

0.7

0.5

Ficure 4,34  Non-DiMENSIONAL VELOCITY PROFILES
(=03 (Re = 7800); X = 3.8D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| l | l

a = 0,344 (Re = 78800)
X =381

GENERAL MODEL
e SIMPLIFIED MODEL —
—— - — WILSON & MEDWELL [24]

o DATA OF OKIISHI & sErowy [1]
I | L I
0 0.2 0.4 0.6 0.8 1

¢

113



<|c

0.7

0.5

GENERAL MODEL

——— —— SIMPLIFIED MODEL —
_ wison & MeoweLL [24]

—— . — GENERAL MODEL (WITH o
DIFFERENT B.C.)

e DATA OF OKIISHI & Serovy [1]
| ] | L

0.2 04 0.6 0.8 1
¢

Ficure 4.35 Non-DiMeEnsionAL VELOCITY PROFILES

( a=0,344 (Re =78300); X = 10.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114



<<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| | l |
a =0.531 (Re = 142000
X=533

GENERAL MODEL

07 b c-eeo SIMPLIFIED MODEL
_ ___ WILSON & MEDvELL [24]

O DATA OF OKIISHI & sErovy [1]

05 | I
0 02 04 06 08

¢

Ficure 4,36  Non-DiMeEnsIonNAL VELOCITY PROFILES

( a=0.531 (Re = 142000))

115



‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

< | <

1.3

0.9

0.8

0.7

GENERAL MODEL
NA AMD LU (40]

e DATA OF BARBIN AND JONES [ 36]

Ficure 4.3/ MNon-DimMensionaL VELocITY PROFILES
(a=0 Re = 383000); R/RO =0 anp 0.499)

52

9Ll




(960 @V 620 = Q41 £o008eE = ) 0=D)

STII404] ALIDOTIA TWHOISNIWI(-NOG 8¢’ N1

117

8¢

Ic

_..wmu SANOr ONV NIFWvd 40 VIV e

(0 =7 ) T300W TWIENI9

oD | >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"uolssiwiad noyum pangiyosd uononpoudal Jayung “Joumo BuAdoo sy} Jo uoissiuad yum paonpoiday

l l [
1.3 |— __ GENERAL MODEL ( a=0 |
_____ NA AND LU [40]
® DATA OF BARBIN AND JoNES [ 36]
Ty
uis
W
T2k Bl
1.1 —
1.0 >
0 3 16 24 32
X

Ficure 139 CoMpARISON WITH PREDICTED SHIEAR STRESS VARIATION

(=0 (pPrpE); Re = 333000)



"uoissiwuad Inoyum payqiyold uononpoudas Jayung “1sumo 1ybuAdos ay; o uolssiuuad yum paonpolday

el B ol

1.00

0.92]

0.34—

0.80}—

GENERAL MODEL

SIMPLIFIED MODEL

@ =0,1005 Re = 320000)

DATA OF PARANJPE [2] , X =04.24
»  DATA OF PARANJPE [2] , X =8.06 A
0.76— »  DATA OF PARANJPE [2] , X =15.07 L
0.72 | | l |
-0 0.8 1.0

0.2 0.4 X 0.6

Ficure 4,40  Mon-DivensioNAL VELOCITY PROFILES
(a=0,1002 (Re = 320000)).

6LL



120

((000TSh = 3) 0T'0 =2 )
ST404] ALIDOT3) TWNOISNINI(-NGY  Tf'lh N9l

01 g'0 0 X 1o 0
_. J0'ST =X “[¢] 3driwdvd 40 vivd =
90'g =X ‘[¢] 3driwivd 40 vva@ v
- v g =X ‘[7] 3drNvevd Ho viva @ \
t TH00W @ITAITMIS T T

JE[CO L —

(000TS = 34) SO0T°0 =70

oI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"uoissiwad noyum payqiyosd uononpoidas Jayung “1sumo JybuAdoo sy} o uoissiuiad yum psonpoiday

= | <

1.0
0.%

0.9

0.88

0.84

0.8

0.76

o =0,0239 (Re = b31000)

———— GENERAL MODEL
SIMPLIFIED MODEL

e  DATA OF PARMNJPE [2], X=3.9
A DATA OF PARANJOPE [2], X=7.4
DATA OF PARANJPE [2] , X = 1.1

| l I I

' l
0.2 0.4. X 0.6 0.8

Fiewre 442  Mon-DivensionaAL VELocIiTy PROFILES
(o =0,02%9 (Re = 531000))

]

a

0

L2l



"uoissiwiad noyum pangiyosd uononpoidas Jayung Jsumo ybuAdoo sy Jo uoissiwad yum paonpoiday

0.24

0.16

0.08

0.0

( [ [

o = 0,344 (Re = 78300)

GEMERAL MODEL

e SIMPLIFIED MODEL
GENERAL MODEL (WITH
DIFFERENT B.C.)
l I
0 Iy 3 12 16
X

Ficure 4,43  PrepicTep MaLL LAYER CROWTH
(=031 (Re = 78300))

¢cl



123

(0003 =) 0=0)
HLHOYY) ¥3AY] TV @ELIaRYY

' N9t

X
& %7 e VA q a 3 !
[ [ _ T _ _
(G20 =YX
— Q00 = I/Q) T3AOW TWINFO T T T T
300N TYHINTO
B 0=1
_ _ 1 _ 1 _ |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

((000AT = ) Te5'0=1)
HLMOMG ¥3AV] TV GALOIRY  G'hy IuN914

X
8 Iy 0
_ _ 0
TAAOW @3I4TIWIS — ——-———
TAAOW THIANGD 1 900
— 90'0
431no /
— '
(0000 = ) T65'0=D

'&olms"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

0¢

HIMONY YAV TV YALN) @ELOIARY Gy’ Tun9ld

- (000TGH = ) S0T'0 =1

(0000¢e = 3 001°0 =»
Q001G = ) 620°0 =1

X
9 a 8
_ _ _
THOON @IHITWIS == — ===
300N TVINED
Z
\\
#
v
7
\.\\
‘4
7
\\\\
%

800

91*0

cS‘cS:

ic'0

&0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

HIMOMG YAV TIV{ ¥INN] QELOIGRY] /i Funold

(000G = ) 6e0'0=n
(0000¢e = ) S00T°0
(000TSh = ) L00T°0

THAOW @I3TIdWIS
THA0W TWY3INI9

~ 1’0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e



127

l l l
a = 0,0653 e = 23000

L | O =034 Re = 78300

1.05 GENERAL MODEL

SIMPLIFIED MODEL

WILSON & MEDweLL [24] (anaL)

v

a  DATA OF OKIISHI & Serovy [1]
o DATA OF LEE & PARK [28]

o DATA OF OKIISHI & sErovy [1]

0 i 3 12
' X

Ficure 4.48 CompArRIsON WITH PreDICTED Core VELOCITY
VARIATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

NOLLVIVA ALIJOT3A 340) @LOI@RY  giy'ly 3914

X
0 a a 8 i 0
_ | ] _
4
/
%
7/
/
e /
T30A0W QITI1dWIS \
/
A0 TVHINTD /4 \\
/4
\\ V4 —
- 7/ A
74 /
il /
4 /
7 /
73 /
\\ 7/
/
\\ 4
7 7
i 4
7/ /
e 4
P 7 —
— (0001<S = 3 g ’ e
ed0'0=2 7 s/
/ 7/
\\
7
V4
7
\\ s
7 \\ ]
g < s (000ISh = &) ¢00T'0= 1
P ” 7
\\ Pl s
o a (000/5T = ) ZI0T"0 = »

[ / g

Q01

= | >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

NOILVIYVA ALIDOTI\ 3¥H0) am_.umcmwi

X
9l 4!

0"ty o1

300N G3T4171dWIS
1300W TTVI3NTD

YV
il ” (000K = ) S0T°0 = D
\\ 7 (000STS = ) 65200 = D
\““\\ \\ (00826 = 3) ZI0T'0 = D
% )
i | \ \

0’1

SI'l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



=3
J

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey
2

=5

1.4

1.3

1.2

1.1

1.00

I l | [ | l

a=0,1012 (Re = 92800) GENERAL MODEL —

a=0.1012 (Re = 15/000) ——~~— SIMPLIFIED MODEL
— —— WILSON & MeEnvELL  [24]
a=0.531 (Re = 142000)

v OKIISHI & serovy [1](a= (0.531,Re = 142000)|
= oLsoN & searron [21]C = 0,5,Re = 29500) |

& paranJPE [2] (0= 0,1012,Re = 157000)
® paranJpE [2] (= 0,1012,Re = 92300)

0,101 .

=U, !l ]_ v v 7
(Re = 15/000)
1 |« ® | B
12 16 20 20

F1eure 4,51 CoMPARISON WITH PREDICTED PRESSURE GRADIENT VARIATION

0€L



"uoissiwiad Jnoyum pangiyoad uononpoudal Jeyung -Jaumo JybuAdoo ayp Jo uoissiwiad yum paonpolday

< | &=

1.0~ .

Ll6 [~ =2

‘*Q—.m_
\

REICHARDT (BER, EQN.)

1.8 )/ )/ REICHARDT (MAC, ENE. BAL.)

/ / — VAN DRIEST (BER., EQN.)

i —— —— VAN DRIEST (MAC. ENE. BAL.)
1.04 // ______ _ REICHARDT (BER. EQN,, A1-=1.01)

i/ e DATA OF BARBIN & Jones [ 30)
1,00 | I | | | | | |
0 4 8 12 16 20 2l 28 3
' X

Ficure 4,52  Comparison wiTH PrepicTeD Core VELOCITY VARIATION
( &=0 (Re = 333000))

LEL



132

l I [ I l
0.3
P
0.2 —
REICHARDT (BER., EQN.)
— — — __ REICHARDT (MAC. ENE. BAL.)
0.1 VAN DRIEST (BER. EQN.)
___ VAN DRIEST (MAC. ENE. BAL.)
,,,,,, REICHARDT (BER. EQN., Al=l.01)
0 | | | | | |
0 4 8 12 16 20 24

_ X
Ficure 4,53 PresSsUrRE VARIATION
(a=0 (Re = 388000))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




133

APPENDIX A
DETAILS OF FORMULATIONS

A.1 Hydrodynamic developing laminar annular flows

(a) Simplified Model:

R
od [ £ 2 u? 2nRdR ] =
i 2 1 3,2 B 3
:
2 R, [g—-- 3B, + 58, - 5+ an1J

2. ¢ U
moVed [ {
v B [1 -8, + 2nB,1°
1 1 1
o B ’
2 1 3 2
"Ry Lg -3yt By - gt wnByl

2

¥

2

_ 2 2
= wpV~d [A]3 {R.|

2
Az - Ry (A12)B]=BZ}]

2

_ 2 2 2 _
= mpV° [Ay3° d {R;" A -_R2 (Ayp)g =g t '+

12 1752

2 2
17 Mz 7 RT (Aplg ag } Ay d (Ay5)]

2{R

2 2 2
Aoy Arp 9By = Ar3™ Ry™ (Agy Ayolp

_ 2 2
= 7pV [A13 R] 178,

de

2 2 2
* 2{Ry" Ay - Ry (A12)31=82} A3 (Ryy dBy + Ayg dBy)]
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2 2 2 2 2 . 2
= pV R2 [{A13 a A24 A12 + 2A13 [ @ A12 - (A12)B]=82] A22}*
dB. + {-A..° (A A.) + 28,2 % (2 A - (AL) )
1 13 (Roa - Pr2lp =8, 13 12 12’5 =8,
Ayy } B, ]
2 2

_ 2 2 2 _ *
= oV Ry Aygt e Agg Ayp + 2[a Aqp - (Ay)g g 1 Azp)

+ 2((12 A

dB.| + { - (A24 . A )

12 = (Aa)g =BZ) Ay 3 dB,l

L3

12)B]=B 1
Also,
Ry 3

aod [ £ 2 (u3 - v3) RaR ]
R
]

R Kk
2 v RdR] - 0

mod [ f
R] ,
3 R (A

- A g =g, ]
13 T 117BymB,

1
=)
°
=
0.
m
>
—
w
w
ommd
=]

Ay - (Agqg

[}
=
pe)
<
5
n
o
™~
p
N |-
w
-
R

n ]
1'82

- 3,2 -
= Ay e Agq Ay BBy - (B Aa1)p. =8, B2}

- (A 3 dB. + A

{Ay, dBy + Ayg dByl]

)g g } A
11/8,=8," "3
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- (Aj7)g =g ) Ajpt*
11/8,=8,’ "22

2
dBy + - (A Ayylg g, * 3 (07 Ayq = (Ayydp g ) Rpg b 0By ]

172
and
R 2 A A
(72 @Y R Tdx=v2 A% 15 - (D ] dx
R A A,” B,=B
1 1 1 1 72
Using the above relations -
Ra 2
) fT]W ZWR]dX - Toy 2nR2dX + pd [ £ u® 27RdR ]

)

R 2 R
= our [ f 2 (%%) RAR T dx + med [ £ 2 (u® - v3) RdR ]

R] R]

may be written as
(81-1) 2mR,dx

U 1
A TR —
R] (1 B.I + 2n81)
(B, - 1)
AT 27R,,dx
3.2, 2 .2 2 .
+ omV R Ay g" [ (a” A Ayp + 2 (7 Ay = (Ayplg g ) pp ¥ 4By

+ { - (A, An)p = 2 _
24 278,28, + 2 (a® A, - (A},)g =82) Ay } By ]

2 1
A A
_ 2, 2 .™M5 _ (715
= 2w VoA [ 7z ( ;f?')s]=82 1 dx
1 1
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2
R

3R 3,2 2 . |
MRl E R LI I (7 Ayq = (Ayy)g p)) Rop T

2
dg, + { (-A1] A + 3 (o A11 - (A A23 } de ] (A.T)

)g. = )y -
21/B4=8, 1178,=8,

Dividing (A.1) by ﬂpV3Dh2 yields
(8,-1) (8,-1)

4§ ——dX - 4

ax {3 fi1-0)2)M3 [ Agg App *

2 -
2 (" Ayp = (Aplg g ) Azl @By * {(-Apq Ayolg g, *

2
2 (a% Ayp = (Aplg o)) Rpg? By

lp 21 [ {a A, A,, +
2 ]3 401 O")2 11 21

1
N
e

15
-7 )B]=Bz] dx +
1

- +
Ay = (Aqdg op,) Az ¥ 4By * LA Andg e,

2
3 (a” Ay - (A11)B]=82) Ayz } 4By

or A A.|5
4 (By-1) 4 (B,-1) Ayg 1 12 - N )B B } ] dx
- A _
A (Aj)n - 1 1 172
] 17B,=B,
I Ay + 3 ( (A..) ) Al
= i 3 (e 1/8.=8.,7 "22
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.2 2
-2 {a" Mgy Ay + 2 (F A, - (A12)B1=Bz) Aynt] B,

- 2
P LAY Ayl ap, * 3 (07 Ay - (Al ap ) Ap3 )

| 2
-2 Uy Ayplg =g, + 2 (0" App - (A12)B1=32) Pag ¥} 1%

de }

or

13 LA

dB, + A

2 -

o5 de }

which may then be written as

8 (1-0)% dX = I, dBy +1, dB,.

(b) General Model:

Using the previous algebraic calculations, Equation (3.22) is:

2
-2 WA (8,-1) R
13 1 ] 1 - 2 2
» (A7) 2nRydx + —y— ( By 1) * {2unV7A; 5
A A
15 15
[ - )y —p Jldx
A2 A2 'By=B,
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2
R
3 "2 3. ,2 2 )
+ mpV — Ayg” [ 1o Ay Ay + 3 (e Ay (A11)B1=Bz) Ayy b
2
dBy + 1 (-Ay A21)B1=32 * 3 (a7 Ay - (A11)B1=32) Ayz 1B, ]
2 2
A (1-B4) A
2 2 13 1 2, 2 ek
=-1TpVA-I3R] d[gfl— {]+—2A]———‘ }]'*'p'n‘VR.l d[B1 *
A
{1+ ——4-2- 1]
A
1
which may be written as
(B,-1) 2 A
1 1 o 2 15
[ -4A + (( = -1) ——5 A {
13 A'l B.| 2(]_a)2 13 KF_
A
15
- (=) p } 1 dX
A B B,
2 3
+ a A
13 (1 4y e A A+ 3 (02 Ary = (Arq)n L ) *
. 4 B. 11/B,=B
32(1_a)4 B1 11 21 11 1782

. 2
Aogh By * LU= Ayy Ay Jg g, + 3 (o5 Mgy = (Ayy)g g ) *

Ap3h dB, |
2 2 2
2 A (1-B,) o A
=-Ago g3 e —1 33 ey d ;3 *
4(1-a)? B 2y e 1

A .
{1+ 1] (A.2)

A
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The R.H.S. of Equation (A.2) can be shown to be

2 2 2
- A A (1-8,)C 1 (1-8,)
13a2 13 [ ¢-05 175 *Cp-—(1+0.5 — 1
2
0.5(1-81)2 (1-8,)
+ (1 + ——~———)A22}d81+{1+0.5——-——— A23}d82]
A A
1 1

2 2

< A 2A.C A 1 A
. o} 2 ]3 [ { 4 52 + 72 - ('l 4+ __%_2) + 2A22 *

4(1-a)" B, By A A B Aq
i ) (1 A ) } dB, ]
1 +—=2) 1} dB, + { 2A + —
( 2 1 23 2 2
1 1
2 2
A, .o a A

S [A, . dB, + A, dB,] +—12 [A, dB, + A,, dB,]
T T T N2 2

Substituting the above expression for the R.H.S. of Equation (A.2) we obtain:

2

4(B.-1) 1 a A A

[-——+(—=-1) R e o PR S I
1
1
2, (=—-1)
1 a A B
2 2 44 1

= {([ -« A + a A - ] dB
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+ [ -a" A, + " A - ] dB

A.3a)’
41 i3 8(1-01)2 ( a)

Simitarly it may be shown that Equation (3.23) reduces to

2uA,V (B,-1) R 1
13 2 21R,, dx + —L— (1 - — )*
R, (A))g

1785

I

2, 2 15 15
2unV A-|3 [ ;—2 - (
1

lamn)

+ mov3 EEE-A [ A, dB, + A, dB,] }
e , 13- 74 T4 45 “°2

dB, + A

2 2
-pmV A 5 Ry™ [ Agg dBy + Agg B, ]

2 2
R2 pTTA]3V L A50 dB] + A5'l de ]

-+

4A13v(82-1) D

O (Ay)g =5, Re Dp B, VD,

A

15 Mis
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- . - 2 13
(1 : ) . Y [ A44 dB1 + A45 de ]
2
- Apg (Ryg By + Ayg dB))
+ Ay (Agg dBy + Ao, dB,) (A.2b)
or
(B,-1) 1 A A
(16 24— (1-a)® v 2 (1 - —) A, (13- (28, o )
(A))g.=p B, A A 102
1785 1 1
(1-0)
4—— JdX
(1+a)
= R.H.S. of Equation (A.2b) (A.3b)
Now from
2 2
R.l R2
§ S2

it may be shown that

=28, d (5./D,)
- 1 1" "h _ 87
dB, 5 5 = Aggd (=)

(
2(1-a) Dh

(A.4a)
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282 d (aZ/Dh)

2
1 62 ) Dh (A.4b)

2(1-a) D,

Substituting Equations (A.4) in Equations (A.3a) and (A.3b) it can be
seen that Equations (A.3a) and (A.3b) may be written, after some

re-arrangement, as

d d
Fy — (84/D,) + F, — (8,/D,) = F
1y VR T T gy M T s

d d
F, — (8,/D.) + Fp — (8,/D) =
b 0V T s Y T e

i
-n

From Equation (3.10), we may write

A A

] 2 15, "8
- AVdp = 2unV A13 [ > ( 5 )B -8 ] dx
A A 1 72
1 1
R 2
3.2 ) A, d3. + A, dB, ] (A.5)
HomeVT == Ay LAy 98yt Ayg OBy '
. ey . 1 3
Dividing Equation (A.5) by ( - 5 V-A)
dp (1-a) A A
_ 15 15
Ve (1+a) aER Al ( Bfﬁ')81=82 1<
§pV 1 1
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1

—_— A.6)
+ Y Az [ Ay dBy + A, dB, ] (A.6)
Defining
P:-P - dp
P = Tl__z. = dP = -]-—-—-2- (A.7)
EpV EpV

using Equations (A.7) and (A.4) in Equation (A.6), Equation (A.6)

can be written as

dX 7 dx 8 ax
_ 2
Ry = 4(1-a) )
R12 = az/(B(]—a) )
Ryz = 16
Rig = 0.5/(1-a%)
R - -2 n (a)
15 (1-a2)
_ 0.5
R]G 1-a
- 0.5
Ri7 = T
C, 2n(B1)
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1
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=3
(ww]

1 1
= = - — . —— - 2
A2 5 B1+2 3 +B1 (B1 nB.I) n By
7 8," 3 2
=L 3pg.24+2p3_ 1. .3
A3 =3 -2y -78 "+ 387 -7+ B3 -38 +B7) B
3 2
+ B, ( - 5By + 2n 81) an” By
2 B
_ 11 3 1
Ac = (-1 + 2)/A
5 B.| 1
2 1 2
- 2 .1
_ 2 2 2
Ag = -(1 - B;)2 + 2(B, - 1) 2n By - an® B
9 1 1 1 1

- 3 2 2
A]o‘ (1 - 81) + 3[(1 - 81) - B] n B1] gn By + (3+2n B]) 2n B]

Ajqp= [-Bq + 3A/Ay + 3A,/AL° + A3/AL71/B,

) 2
12= Ag/(By AT

] 2
Arg™ [2(1-a%) By By Ay (A))g 5, 1/Ag

2

- 1 2 -
Ara= 77 Az A Tz his (dgoes, * @ e (A12)s. =8,

e o2
Ajs= (1- B,°) + 4(By - 1) - 2 an B,
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Ae= [-2 (By = 1) + (A3 Ayg/Ay)1/A,

A17= [2(82 - ]) + A]3 (-A15/A])B1=82]/(A])B1=82

A= 3R L(AJ/Ag) - Agl/Ay

i 2
Ayg= 3A,L(AG/A,) - 2Ac1/A,

_ 3
Aog= Ay [(Aqp/A3) - 3Ag1/A,

20°(1-81)% B,(A; )5 g
A= [o—+ A + 1 2
22 "By 7S Ag(1 - By)

2
B.(1 - B,)° A
. 2 1 {%—+A5}]
Ag 1

2
281(1 - BZ) A]

1
A:[___-}-(A)._ -
23 "B, 5'B,=B, A.(1 - B.,)
8 2
2 2
a“(1 - By)° B, (Ay)s
1 2 1 B-|~B2 1

- {z— + (A)y _p 1]
Aq By 5788,

_ 1
Arg= (Ay/A4) - By " 2Ag

2 2
Rag= To” Apy gy * 30e% Ayq = (Ryylg o} Agpl

2[a? A, A, + 2{c® A

24 A2 12 (A12)B1=82} Aysl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

_ 2 1
Aag™ [- (Ayy Apydg g, + 30" Apy = (Ayylg g b Aosl

, |
-2-(Rpq Apply =g, + 210" Ayp - (Ayplg =g} Az3l

I.= -A + A

1= “Ay3 Ay’ (Agg + Ayy)

Io= rAy3 Ayg/ (A + Agy)

Cy = -2C4 + ——935— Az (Cq - 1)(512 - (51503 -5 )
A A
2 15 15
C. = 4(C.), .o, + —— (1-C,) ( - (—)n =rn )
5 38,78, ¥ (1.5 2 A12 8,=B,
Apy= 1+ 0.5 —p——
Arg™ A3 ™ Gy
A

) 4

A29- 1 + -A—-z
1

2
Agp= " A
A31= Ry2/Cy

Ago= ((-0.5 (1-B1)Cy C3 +1)C3 + (-Cq + Ajp)As5) Agg

A= A,y AL A

41" M27 "23 "o
(2A, C., C, + A,)
_ 4 ~3 1 7
Agp= 1 7 + (=Cq + 2A5,) Ayt Axg

A

Ap3= 2As3 Ayg Aog
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- 2 -
Agg = A3 Agg Ay + 3A (A (A

22 A30 18 =82)}

1

. 2 )
Ags= Ayg- (-Ay A21)B1=82 * 3hy3 (A11)B]=82)}

A46=(-—A + A, - Ry, (Co - 1) A ) A

40 a2 14 *71 44’ 31

Ag7= (-Agq + A3 = Ryy (€4 - 1) Agg) Agy

- - +A, ) (Aoo)y —pn YA74(Cqdp -
Agg= ((-0.5 (1 - B))(Cy Calp g ¥1)(Ca)g g *((-C1)p = *Ro3) (Ro7)p -8 13l Cr)p =5,

>
!

= (A7) g Agp Agg (Cylp .
49" 1727’B,=B, "22 ™13 *1'B;=B,

>
|

50" 2Ao0 (A29)81=32 A3 (Cl)B]=BZ

(-2 (Ay €3 Cy)g. =5 A7)

Ani= {

51 * ((-Cydp =g+ 2Ap3)(A

Jn on 1
(A]Z)B 8 1782 29'84=B,
178

* Ayq (Cy)g -
13 1178, =8,

Aso™ Agy

Ac= A

53 745

54 (;5
Al - R
A o g - Agy - Ry (1 - (Gq)gyap,) Asst Ryg
55 -
5
28
- ]
Age=

(Ry; + (89/0,))
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A
AT 2 2 2 1
Fq = p [ -a® Ry +a® Ayy - a" Ay (g - 1]
4(1-a) 5 1
8(1-a)
e . sy [-o? Ay, + ol Agy-al Ay (& - 1)
2 © 2 @ B T Py3 T 45 B
4(1-a) 2 1
8(1-a)
_=4(By-1) 1 of AMs A5
Ay 1 2(1-a) A, A% B,=B,
A
1, 1 48
F. = A [-A + A '(1’~) g ]
A
1 1 45
Fe = A, [ - Ajg + Apqy - (1 = =
5 = Agy 48 ¥ Ps1 B, (107 °
(B,-1) ) A
Fe = 16(1-2)° : 2) + - %;) 8 M3 21 a; { A1g - (A12)B]=82}
A +a
A
13
Foo=—3 _ A A
P N
e = M3 s Ay
8~ . 2.
(1-a%)

A A
16(1-a) 15 15
Foe =20 A [ =3 - (=) =p ]
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A.2 Hydrodynamic developing turbulent annular flows.

(a) Simplified Model

2
R 2R.% (1-5.) (1-5,)
r2uemdR= —Ly 1 S
— _—+
Ry S, (n] + 1) (n] 2)
2 -
7 71 .
52 (ﬁ"z"" 1) (n2 + 2)
2 2
R R
(- gV -y = w(R22 - R12)V
S S
2 1
U _ (1=
¥
20,2 (1-5;) (1-5,) 2 (S,-1)
| 1 1 1 <3 .
RN P
51 (n n 2 n,
(1-5,) 2
[] - 1 2 ]'*' l'—z—" 9'____2) }
(o * 2) Sy 5
2
_ 2 (A.8)
- (]"a )/EO

Differentiating Equation (A.8)
Uy _  (1-e%) d(E.)
d(V) = - ? 0
Eg

Now, it can be shown that
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)22 g L (5,2) + oyl 1
d(E) = 22 ds -2) + N
0 3 95 L3 1 T T
S, ) i nd+2)
1 1
2dS 2(1-S,)
i (5p-2) *+ +21 .2
s,° (v s
2 2
2
= £, dS; + E, dS,
Uy = Q-a®) (E. dS. + E, dS.)
dly) = - 1 By Y Ed,
Eo
u
- - Y o, +E,ds,)
%2 2.2
;e _
R'l u- 27RdR = UR2 1rE3
20R.% . (1-S.) (1-S,)
1,2 ] 1
I R ST By
S'I n] n1
2 2 2 )
2  Rom Ry R,™ 5 (Sp-1)
Pt () e S U
s,2 s, S, (ﬁ;- 1
(1-s,)
?
*['I_
Z+2) ]
N2
R, 2 2 2 2
dl 7 2 u? 2+RdR] = RS T US dE, + E, 7 R,° 2U dU
! 2 3 ¥ E3 ™Ry
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2 £ds (s.-2) 2(1-S.)
=’j—l 21 +2 1 2 +]]
P (ﬁ—'+ 1) (ﬁ"’* 1)(;"* 2)
1 1 1
2dS (5.-2)  2(1-S.)
* 10%R% - -—%—U2 [ 22 + — 2 £1 ] R22 .
S, (ﬁ;‘* 1) (ﬁ;‘* 1)(ﬁz'+ 2)
E. wR,2 20% [E, dS, + E. dS,]
- B3 ™ 1 % 2 “92
= (E, dS, + E. ds,.) U2 R,% « (A.11)
g 957 * E5 45, 2 -

Introducing Equations (A.10) and (A.11) in Equation (3.37) and dividing

by nvzoth
-0.678H. us.** -0.268 .2 2R
-0.123*10 Vi1 L1 g
v vV Dh Dh
-0.678H. us.** -0.268 2 2R
-0.123*10 . 2 (2 Y —2 4 (%)
v Ve by Oy
' (RZZ-R]Z)U-aZ) ) e s
VT, 2 - () dSq + E, dSy)
h 0
2 R22 (A.12)
= ;‘2' 37 (E4 dS.l + E5 dSZ) .
h

Equation (A.12) may be written as

dS, + T, dS, = T, dX

Ty d5y # 15 d55 = 13
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(b) General Model

Equation (A.1Q0) is

U (1—0:2
d(Yy=- (E, dS. + E. dS.) (A.10)
y - 1 45 + By 45,
0
R(51
dl s Uy 2mRdR] U
R
2
dl 2rU {5 {1 (1-5) 1]
= U T -
5,5 (= + 1) (- + 2)
N "
véy 2nR,Pe? s a-s)
= d — - }
v+ 1) XA (4 2)
n 1 n
1 1
(1-a?) anzzuzvz U (5,-2) 2 (1-5,)
: 1 il S i) 31,
Eq (;‘—+1) v Sy (?‘T+2) S¢7
+ fl:f%l. i (1-51) 1 d( )
S1 (— + 2)
N
(1-0%) 2nR22a2V2
= { Eyq dS; * Eqq dS, ) (A.13)
E, -+ 1)
0 N
R\
d[ 5 & u]2 2 RdR]
R
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v 2nR,a (1-57) U (1-57)
Y dl—= i bl
(=—+ 1) s1 v (=— + 2)
n-l n
2:R. 22V U (s,-2) 2 (1-5.)
= = {7[+d31+2 3 ds,
(2—+ 1) Y s, (2-+1) s,
n1 n.l
(1-5,) -s) L0 8
+ - —_ _—
s]2 (F—z + 2) v v
1
21rR22a2V2 (1-02) { (1-a?) A 2(1-5,) e
Y 3 17 2. o 1
(;1—+ 1) Eq S1” Eq (n1 + 2)
2
(1-54) (1-5,) (1-07)
22— [1- = ] (E; dS; + E, dS,) }
S (== + 2) E
1 n] 0
2 2.2 2
R.SaVE  (1-
I (a){E dS. + E.. dS. } (A.14)
2 12 1 T B3 B
(&—+ 1) E
n1 0
Similarly
Ry
d [ s u, 2rRdR] U
R
K 2 ( )
RS (S,-1) . 1-5,
svd[ 2Ly A {1 -y )]
S (—+ 1) (’n—‘ )
2 n2 2
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21rR22V2 U U (5,-1) (1-5,)
(—+1) Vv v s, (= + 2)
2 2
2.2
2nR. Ve U U (5,-2) 2 (1-S.)
=(‘2 v vt 3 Y bl
_—+ —_—
Ny 2 n2 2
(5,71) . (1-5,) : (1-0%) E s e 65
i T2 c 1 91 T Ep 9
2 n2 0
2.2
21R,°VE U
- 2 = {E;, dS; + Eqg dS,) (A.15)
Q-+ 1) v
N2
Also,
R, o ) 21rR22 (5,-1) 16 (1-5,) :
d[ /% u 2mRdR ] =V d — {1 - }
. R 2 " (2 + 1) 522 ve (F-2 + 2)
62 N, 2
2 2,2 2
1- 2R, 4V -(1-a%) 2(1-S.,)
- - ){—T—[(52'2)+(_2”—‘2'2‘)3d52
£ . 4+1) s.°E L b
0 (n2 2 0 2
2
2(S.,-1 (1-5.,) (1-a%)
- _(_Z._)_ 1 - 2 (E, dSy + E, dS,) )
s,> (£ + 2) E
2 N, 0
2. 2 2
Ve21R (1-
= T2 *) {Ejg dSy + Eqy dS,} (A.16)
. ¢ 16 %1

Dividing Equations (3.45) and (3.46) by pvzth2 and using Equations
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(A.13) to (A.16), we obtain

-0.678H, Us,** -0.268 U 2 R
-0.123%10 L - (=) 2=+ d (%)
v V Dh Dh
2 RZZ(] 1) (1-a2)2(E ds, + E, dS.) }
+ o —_— - { -
0.2 5.2 T2 1T 2 e
ho 1 0
2 2 2
- (1- 2R o
) 2 [E.. dS. + E,. dS.]
- 2 el [ B
0 h n1
2 2 2
R 1-a
y 2 2 (1= ) [E., dS, + E., dS,] (A.17)
0 Tk 12 97 F B3 6
h' n1 0
and
-0.678H, Us,** -0.268 ;2 2R, .
-0.123%10 2 (—2— 7o 4
v v Dh h
2 2
R 1 U U -2R 1 U
2 ) = —2 — [ E., dS, + E,. dS,]
+ —'—(] - )—d ( ) = [ 4 1 15 2J
5 7 s 1
D, S,5 Vv D, (n2 1) v
2 2
2R 1- 1
LR (=) [Ey. dS, + Ey, dS,] (A.18)
2 ey 16 TR S
h 0 n2
Also,
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i} -S1d(S1/Dh)
] (Ry+8;)/D,

= Eg d (61/Dh) (A.19 a)

2 R‘;"— 2 —Rr Ea—- d(52)
2 2 2

_ s2 d (52/Dh)
(Ry=85)/D,

S, d (s,/D,.)
- 21 25 h (A.19 b)
2

( )
2(1-a) Dh !

= Ejg d (8,/0;)
Using Equations (A.10) and (A.19) in Equations (A.17) and (A.18),

Equations (A.17) and (A.18) may be written as
d

d
G, — (5./D,) + G (s.,/D,) =G
1 e 81/0y 2 o %2/% 3
(3.48)
Gy ‘g“'(51/Dh) * Gy g"(ﬁz/nh) = Gg
dx dx
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22 (1-5,) (1-5.) 2 (5.-1)
_ 1 1 2
EO— 52 (L_.;.]) ]-(.1_.+ 2) * 52 (l_+])
1 n1 n2 2 n2
(1-5,) 1 ol )
* 1 - + (— -
2 52 5?2
n2 2 1
20° ] 5.2y 5 205 1
E. = 5.-2) + +
1 3 473 1 1 1
$;7 (= 1) (= + 1) (= + 2)
1 1 1
=2 [ ( 2) 2(1-52) :
E = S - + +
2005, Tt ) R G D=t 2)
2 2 2
2&2(]-3-‘) (1-5,) 1 o2 |
E, = - F(— - —
3 . 7 > 7
+2(52-1) (1-52)
5,7 -
S, (=—+ 1) (=—+ 2)
2 n2 n2
2
2 (5,-2) 2(1-S,)
Ey = 0L3 . t 1 ———t 11 -2E5E
5-, (';..'— +.1) (n—"" 1)(;‘*‘ 2)
1 1 1
-2 (5.-2) 2(1-S..)
By = —g- [ =5 Ty *11 -28E
S5 (&) (D)
2 2 2
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2
.. 1 (1+a)E4 . (1+a) E.|
Ua-e) g 4E,
(1 )2
a +a) E
. 1 (1+a)E, , )
2 a(l-e)  E 4K,
a 1-S ) 1 (1-5,)
2(1-a) $4 (HH+ 1) (E;-+ 2)
1 ] (1-s,) 13
) (Z_.+ 1) (%—-+ 2)
M 1
1 (5,-1) 1 (S,-1)
By © 22 ¢ (- + 1)[ hr (lf-+ 2)
2(1-a) S, n n,
1 ($,-1)
-3 1 + 22 }
(=—+1) (G + 2)
2 2
('I+S-') 1 . (]'31) )
BT, T (- +2)
1 1
| 1 ] (1-54) 1 1 (1-5) 13
{ - - - -
(—+ 1) (i + 2) G-+ 1) (——E] + 2)
1
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(5,41) 1 (5,-1)
E9={ "'I E]+'| ]}
2 (—+ 1) (— + 2)
ny 2
1 (S.-1) 1 (S,-1)
oy e T T
4+ — [ e_
(“2 2 2 Ny
-0.678E, (1-a?) -0.268
T, = -0.123%10 ( Re Eg ) *
E
0
(1-0?) -0.678E, (1-a?) -0.268
- 0.123*10 ( Re E-)
EO 1-a E0
(1-a2) 1
EO (1-a)
(1-a?) oy 2 ZISD Qs 08) (1-%)
| S. - + - -
10° .73 1 T —— T
S;” Eg (E']'+-2) S, (n1+2) Eq
-(1-e?) (1-5)) . (1-5,) .
E11” £ 312 zggfj‘é) 2
(1-02) s 2(1-5;) -2(1-8;) (1-a9)
Ey2” 172) Y 7
12 513 Eq (ET-+ 2) s Eq
(;;1‘*‘2)
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-2(1-5,) 1 (1-5;) } (1-a) -
AEN Pt
1
(S 0 (-5
E1q” 7 T - .
2 Ny
~(1-0%) 2(1-5,,) (5,-1) (1-5,,)
Ei5™ T3 B A ey S I
S2” Ep o 2 -
(1-a) E
2
Eg
2
-2(5,-1) (1-5,) (1-02) i
B o3 Uy T 1
S, (F‘—{ .
-(1-a%) 201-5,) , -2(S,"1) (1-,)
_ _2 25,70
E” ; 3 - {(52 ) + _2_____(_+ ) 523 (§_+ )
2 0 i) 2
(1-0%)
E
- 2
0
(— +—1)
E.= -S./ "
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1 5,
Erg™ S/t -—)
2(1-a) Dh
2 2
. = 20 E'IZ ) 20 E]O
V" 400-a)? (Z+1) 4(1-0)% (= +1)
n-| n1
o 1 ) (1-0%) 1
+ ( -
7 14 Eig
2F 2F 1 (1-0° «°F
_ 13 1 s c 19
G, = [ 3 - (= -1 2 5
(—=+1) (=—+1) S, E 4(1-a)
n 0
1 1
-0.678E, (1-0%) -0.268 a(1+a)
G, = - 0.123*10 ( Re E¢) *
3 E E
0 0
2
. 2 By -2 By, 0 E 2
YU a-a? B a(1-a)? =) gy 400
n2 n2
E
18
* (1 - )]
52 4(1-0&)2
2
o, 2. (1-02) RN g
6g = [ 5 7 * E, (1 7 )] 2
(&=+1) (—+1) E S, 4(1-a)
n2 n, 0
-0.678E, (1-0°) -0.268  (14q)
G. = -0.123*10 ( Re E;) x
6 Eq E,Q
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A,3 Entry-region Pipe Flows

Equations (3.56) and (3.57) are non-dimensionalizing as

follows:
” .
Fo_osu_ +_p U - X
8 v Rg =Ry X =73
+ u + U*
U=Fsy=y'\‘)—
We have
0 * +
dp= 20 doars WPUCR, (-1 ) dyt 2}
Ry e R+ 0 R+ u
0 0 0
0 + + T +
Sdxr, s (-4 M or o) dyt ]
woost st dyt H Ry u
which can be written as
d 2 u*e +3 yt +
_92 = =—d[ —— [ u (1 - —-4) dy ]
oV Re vV R0+ R0
*3 0 + o+ +
.y du Yy +
—adL— [ (V-8 = (0-L) dy ] A.20
v3 st st dy” Ro* (A.20)
Also
RO RO-G RO
S U 2nRdR = s u 27RdR + [ u 27RdR = AV
0 0 ROSG
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= wROZV
2 _ dy = wR.2V
= qU (RO -8)° - é u 2n (RO -y)dy = 7 0
+ 0 * + N
= RZ(1-5922n s ouT U Ry (1 =) dyt Y
0 Rt s+ 0 R u
0 0
= 4Ry (A.21)
0
Dividing Equation (A.21) by = R0 v, we obtain
+
+ + ) 2
Unax RO (1 - R +)
0
+ RV 2RV
1 1
2wt (1 -L) gyt = - 0 cx= 5 Re
S R.F v v
0
or
+
0 +
+ 000 80y -y ayt = - lpe
~u = (1 R+)+£+U( ) dy 7]
0 0
or +
0 * + 1 + R 5t .2
I o (1 - X—;) dy’ = - g Re +u . (1 - —,
S Ry 2 Ry

Equation (3.57) can be written as
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*
S (2-S) 2L odes? WP uTURT R 2w
R R 0 u u
0 0
R+ + T
I I I T e
0 0 dy~ " u
+ + v 6+* ﬁ
+2R, "—;—TszO Yo dx=2pu urdl S uu (1-21%)
u u 0 R0
+v +tv + 8 12 %2 y+ + v
Ry %y xdy 1-2pd[/u”u”(1- ) Ry =
u u 0 R0 u

+
X dy ]
u

which may be written, on rearranging, as Equation (3.58).
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APPENDIX B

COMPUTER PROGRAMS

sJQ8 #ATFIV XXX AXXXXXX ANANO
C THIS PROGRAM PREDICTS FLOw CHARACTERISTS FOR HYJORUDYNAMIC
C DEVELIPING LAA4AINAR FLOw THROUGH A CONCENTRIC ANNULUS
[« SIMPLIFLIED MODEL
< THE RATIO OF waLl LCAYER THICKNESS [S AS3UMED TQ 3E A CONSTANT
c VALJE FOR ALL AXlaL PUSITIONS AND EQuUuAl, TS THE VYALJVE For FulllLYy
c OEVELIRPED F L J«
INB_ICIT REAL®3 (A~rtaU=2Z)
ODIMENSION 388{(20Q)+FFF (2001 4Y(200)+ACL200)+AD(200)+TI(200).TI¢(200)
1+s001200)4eU(200)«YA(203) +ZA(200Q1)
DIMENS ION XAGIAQ ) eFALGIIOA(STIsBA(40) ¢ Z2(200)CA(I)
QIMENS ION P(a0)eTIA(QRO)I«TOA(GO)+DPAISO)4sUA(SD) +PK{ QI UL 3Tsi1)eYA
1G{20)+RAB(AQe 111 +al,C{30) ALD(30) sALX(30)
REAL P1(a0),TIAL{(4d)TUAL{A0)+0ORPAL{A0)UAL{G40)+FAL(A3}).341(48D),DAL
1(40)«CA1LA0) e XAGL IR0 ) +ALLDA(40) dALCALID)sALXALAO
R=0.5
FMz==2,0000¢0L0G(RI/(]l +0000~-R*R)
RII=SDSORTI(Ll +0000=R2R I/ (=-2.0000x0L0G(R) I}
RYB= (RYI=RI/ (1 «=RIFI&] /R

N=199

NN=N+L

AN=N

AKI=(FM=-AM)/AN

[AK1=AK1%10,0%%25.0

[Fa=FMx[Cads 0.0

[AMZ=AME10.0%x¥65.0

K=0

00 7 L=slAM,IFMH,IAK]L

F =L

F=F/1000000, 0000

8 1.0300/(R95+1.QDOO -RYB/F*30 .50002%%x2,0030

Al=1.000073

A2=1 .0D00/F

AQ3=DLAGG{(F

A3=0L0G(8)

Al1l=1.0D000~-3+A3

Al122045D00-0.5000%83+B+33+A3

3=5,0000/5.0000=3+0 +30C0*BxB—3%3x3,0000/3+0000+8x3xA3-3%a3%43
7¢0000/340000=2.0000%8=0.7S000%3%3+2.0000*83%%3,3000/3.,0000-8x%xx
000/4.00u0+atko¢(3.cho-l.5000t5+848J—l-aoootdta&A3¥A3fa¥Aol¥3
=1+.0D00=F +A&

QeS5000~0.500Q%F £F +F a3

54 0000/65 0D00=F +0 ¢ SDCO2F*¥F-F ¥23,0000/3+s0000+F «F sA3~F £A&¥AS
7.0000/3.0000=2.00008F=0,7S000%F ¥F +2,0000%F*x23,00U0/3.00J0~F *x
Q0 /3 .,0D00+F A3 F(340000~15D00«F +FsF)~=1lasn FerrxA4sAas +Fxaasx3
=A1 %&(=-8+3.0000%A12/7A11+3.0000%A13/(A11#a11)+A14/(ALlx%x3))

A2 4 (=F +3 .0000%A16/7A15+3.,C000%A17/(A15%A15)+A13/7(AL5%«%x3))
ll.0000/6»0000—3-0000t5+1.5000:8:8-3“3.0000/4.0300¢A3
A
1

NN N res ey o
?O&NOWD& |
tOt bohott I

PPy rrrEry
Wh—~O

21/7(3%a11%A11)
140030/6.0000-3.0000%F+1+S000%F*F=F%%3,0000/3.00Q0+A4
A2a=A23/(F*A158A15)

A2S=R¥A*(1 00V00~8) %2 ,0D00*F*A1S5

A26=38(F=1 .O0C0)s22.300u44al1

A27=22,0000%(1,0000~R*R) $3sFsA)1*%A15/{A25-726)

A28=-R xR¥ALY®A27/2.0000+ A27%A20/2 +R*R¥A22-A24
A2921.0000~3+#B+3 . 0000 ¢{B=-1.000C)=2,0000%«A3
A30=(=2.0000¢(H=~1 .0003)+A27%A25/A111/7A11
A31=21.0000~F sF+4 ,0000%(F=1+3000)-=2.,32000%A4
A32=+(2,00004&(F=1.00D0J) 27%A31/A15)/A15
A33=(=1.0000+a1)/A11
(
3
=

ftan

A34=3.,0000%al12/A11lx 17

A35=~-1 ,00C0+2.9000¢% *B8+2.0000%x(8=1.,0000)*A3-A3%A3

A36=3.0000%Aa13/7{All 1)#(A35/A13-2.0000%A33)

A37=1.0000~3.0000=+3+ J000*B*B-B2x3,0000+3.0000%A3%(1.,0000-2.0000¢
2B +3%d-B«A3)+¢A3sAIF (I +UDOQ+AZ)

A38=Ala/Aal 1 xs34(a37/7A1+=3.30002433

A3I=SALl 2 {( (=1 .3000+A3a+A36H+AJB8)1/7A19-1.3D000)

AaQ=A25=-A20

AGl=Al +A33+2 .0000%425/((1.,0000-B)%A4J)+A26/7A80%(AL+A33)

A42=(=1,0000¢+A2)/4A1S5

AA3=A2+442=2,.0000%Aa26/7((1+3S000=F 122301 =-a25/7A40%{A2+A32)
AQa=3.0000%A16/A13%(AlS3/a16=-a42)

AGS2=] 40D00+2 00V F=F aF +2 e JOCOX(F =1 Q00001 ®A4=A45AQ

Ada=3.0DA0%A 1 7/(A153A13)(A35/A17=2.0030¢%A32)

Ad7=140000=3 .J00Q¥F +3 0D004F sF~Fu83,0000+3,0000%A3%x(1.0000~2.0000¢%
2F +FEF=Frad )+ A3 2A38(3.3000+A3)

AaB3=A18/A155381A37/A183=3.0000%A432)

AAI= A2 2 ( (=1 ,9D00+AG FAIES+*AR3)/A20-1 3900
AS0==3.0000+3.3000%8~3xB3¢+A1

-

Al Al2-A33)
Al
3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

AS1=2AS5Q0/A21-A1=2.0000%A323
AS2==3.,0000+3.00005F=-F«F+A2
AS3=A52/7A23-A42=-2.300Qa%A42
ASAz=R*ARALI®A272(ATFI+A%1)1/2.J003+A20%xA27%A31 /72,3000 +RsRx5]1 222
ASS=2=RsRXALFG*A27%443/72.0000+A27%2A20%x243/72.J000+A20%A27%a33/2.0D000~-
3A53=%a24
ASH==-R98x(B/F ) =x | ,35000
AS7=A272{(AS4+2.,0000%A232A31158A58+ (AS3+2.,3000xa23%a343) 17 (A30+432)
ASA=AS7/(83.0000%(1,0000-R1*%x22.900Q0)
ASYOS(REN®AS]I ¥A22+2 . 0000 F%R*A*A22%A41=2,3000%A246A4]1)%Aa350
A60=2.0000*R xR vaA22x433-4532A24-2,0000xA2a%x233
AH1=(B=1.0000)/ALL=(F=1.00QQ)174a15
AB2= A2 7xA2T78 ( ASS9+AH0)
AB3=A57
A6a==AB2/A063~2.0000%A27%A051
AE8==A6384A063/7(1.0000-R*R)I=2,.,0000
A6628.0000%( 1} 0000-~R)*A54/(1.0000+R)
K=xX+1
Y{X)=A538
YA(RK }=A0S
OP(KI=ZAGE
3BH(I(K) =8B
FFF(K) =F
ADIKIZ{10000/8Bx2045000-1.0000)/(2.0000*({R~1,0000
ACIKIZ (1 .0000=1.000L0/Fxx(0,5S00014R/(2.,3D000=x(R=1,.,00
uiK)=a27
PRINT 75488BIK)+FFF(K) ADIK) JACIK) oY (K) su(K)
75 FORMAT (1H +6D14 .0
BETL=AZ27%A27 x(RsR2A21/(B*xA11%A11)-A23/7(FsA1S¥A15))/(1.-R¥R)
ALPIZA27s ¥l (RER®AL9=-A20)/ (| e =R=ER)}
BETC=( ALP1+241/3,
7 CONT INVE
A93= ({1l .0000=-888(K) +OL
A94ax= (1 .O000-FFFIKI+OL
0C 80 I=1.K
AG6=1.0000-883811)+0L Q0
AQ7=1.0000~-~FF(1)+OL0O
TI(E)=(BRAB(I )~1.0000)
TO(ILI=(FFF{(Il)1=1.0000)
PRINT Bl.FFF(1).88a(1
an FCRMAT (1r +a4D1d.5)
80 CONTLINUE
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-
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-

102 CCNTINUE
XAGIK31)=aAl
P(KB1)=3814%4a
FA(KBL )=FFF(
BA(K81)=8808
DA(K311=4a0

3.3000

PameaA K
~ARAAPIRAAAR
R 2 T ol o S
o e A
~ -

TERN

200~ m

J8l=0al
101 CONT INUE
00 201 NK2=1o0eNNel1D
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AA2=0,0000
882=0.0000
JA2=9A2+1L
K82=2% Ja2
NK21=3NK2~1
Ziiti=y (1)
Z(NK2)3Y(NK2)
ZAl1)=vaAll)
ZA(NK2)IIYA(NK2)
00 203 J21sS2NK2142
2€J21)=340000«Y(J21)
ZA(J21 )34 emrYAl U214
203 CONTINUE
00 2048 J22=3 «NK21 <2
Z2(422)=2.,0000=Y(J22)
ZA(JI22)=2.8YA(J22)
204 CONTINUE
D0 202 J2=1.NXK2
AA2=2(J42)+AA2
BB2=2A (421} +B8B2
KA2=42
202 CONTINUE
XAG(K32)=AA2¥AK1/3.0000
PIxK82)=8B2%AK1 /3.
FA(KBRQI=FFF(KAZ2)
BAI(K32)=883(KA2)
DAIKB2)=AD(KAZ2)
CAIKB2)I=AC(IKA2)
TIA(KB2)=TI(KAZ2)
TOA(KBR)I=TO(KAZ2)
DPA(KB2I=0P(IKA2)
UA(KB2 )I=UI(KA2)
482=0A2
201 CONT INUE
JC=J81 +uB2
ARIU=64.0000%{1+0000=-R)**2,0000/ (] +0D00+R&R+ (1 .0000-R*R)/DLUG(RY)
00 300 J43=1.JC
PKI43) 2P IU3)~ARLIO®XAG(J3)
ALX{ J3)1=0LESEXAS(J3))
ALD(J33=DLOS(DALJ3))
ALCCJ3)1=0LIG(CA(U3))
YAG( U3 )=XAG(J3)%4.2000
PRINT 310.FALJI3)1eBALJI3)IeDALIZICALI3) s XAGIU3IsPRIU3) s YAS(JI)
10 FORMAT (lH <7014 .6)
Qa CONTINUE
DO 301 J3=1,J4C
PRINT 320«FA{J3)+8ACJ3)ePlU3)«TLALI3)»TOALU3)eIPALJI3) WUALII) «XAGHLI
13)ePK( J3)
20 FORMAT (1H 9014 .456)
Ol CONT INUE
JC=JC-1
00 3801 J=t.JC
D0 B0 1I=5.100+5
Hl=1
RAZR+(1=~R)*H1*¥D .01}
RAA=HM] ®3.01
RAI=R+2.0000%DA(JI=x{ 1 ,0000-R)
RA2=1,0000-2.0000*CA{J)*(1.COCO0-R)
IF(RACGE e oANDes RALE JRAL) UIS({RASRA=RER=2,xRA14RA1$ILCG(RA/R))
12UVA(JI/IRALSRALI=RSER=2 .+ RA1SRAL*DLOGIRAL/R]Y)
IF (RA +GZeRAL ¢ANDs RA JLE . RAZ2) Jl=JAld])
IF (RA «GEs RAZ cANDs RA +LE. 1.0000) w1 =(RAZXRA =1 .uD00~2.0DG0
2xRA2sRA2FDLOGIHAII®UA(JI/(RA2*RA2-140000-2,0000%RAZ*xRA*DLOS(RAZ))
PRINT BOS5«RAACULYAGLJ) «XAGL I
05 FOURMAT (1H +aD1a .61
00 CONTINUE
01 CONTINUE
STOP
=]

ek

SENTRY
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JQ8 WATFIV XXXXXXXXXX
THIS DROGRAM PREDIC
DEVELQPING LAMINAR
GENERAL MODEL
THE ASSUMPTION OF A CONSTANT RATIO QF wALL LAYER THICANESS FOR ALw
AX[AL LIOCATIONS #4A3 RELAXED IN THIS FLOw MODEL

INPLICIT REAL 23 (aA=r J==)
EXTERNAL VECTCR
REAL®8 Y(25) «w(25).,07(2S)
REAL 28 B8A( 3002 FAI(300)+UA(ST0) «XAG(ST0I
COMMUN 3.F .C5.0S
CCMMON ReGlsiG2e33¢G4eFMNaFM2FM2
CCMMUN Al13eml sa2.93
CCMMON Al+BlsAGeBuwsAlledlil
0Q l& K=1.5
GO TO (142:3448.5).K
1 CONT INJUE
R=0.05
wC=0,000050
wF=21 .567
aX=0.830
GG TAa 10
2 CCNT INUE
R=0.3000
#wC=0.000032
«F=23.813

EZR
FLCa CPARACTEIRISTS FOR HYODRUDYNAMIC
w THRCUGH A CONCENTARIC AMNULUS

[sXaYaXaYaX
n
[’ ")

W

O

[e]

z
~NO
(7]
o]

X2 DNOF £ D
MABOOXR TN
"oz o
NOs HH0OND* =
Ne dem Do e
s ONZ Oe OWZ
DO CrmrNLONC ~
O Moo mo
~NO

(1Y)

[}

akK=0.673
GC TO 10

S CONT INUVUE
R=061
wC=0.00004a3
wF=22.343
WK=0.7 384
GG TO 10

10 CONTINUE

G1=a.0000%(1,0000~R1®s2,004Q00
G2=R*R/(2,3000%G1)
G3=1.,0000/G1
Ga=0,5000/(1 +0D0O0-R&R)
FN2=2,0000*%DLGG(R)/(1.0D00=-"=R)
FM220.,5D007(1.0000~-R)
FM3zR¥FM2

Ni=t O
N=3
NN=200
ANN=200Q.
NML=S00Q
BO01=0s3%(] « /FM320 5=R)/{(1le=R)
BO2= e 541 e~=1 e /FM2s0.5)/(1.=R)
J=2800
wi=J
w2=J
wl=J
AB=0.
X=A8
Yi{l1)=a8
Y(2)=a3
Y(3)=a8
Z1=0.30001
00 L1 (=1+.NN1
c START OF RUNGE=-KUTTA INTEGRATICN ROUTINE
CALL RXSES(XeY DY ZTaNJVECTCR)
AYsSY{ti+y(2)
FARL1=Y (3)1/7(3 +%X)
FAP223 ,3a/XB 25+ (ak/ (3 e3X )+ wF =383/ X385.351/7(1 vuC/xx%2,)
3all)=3
Fall)=F
VAl )=A13
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XAGL{1)ax

Tl=al13 sC3S

T2=Al13 xNS

RR=Y(1)1/Y(2)

N2=1

CRITE( 84251) Y11 aY(2)eY(J)eXsRRWALIIFARPLFAPZ2.TLWT2
251 FOARMAT{(lH® «10D1243)

BETIsA133A13x(RxR2A4a/ (SxAl12A))-Ba/ (Fx31s81)13/(1.-RxR)

ALP1=A 135538 (R*R2AL1=-811)1/(1~R=R)
BETC=(ALPL+2 ) /3
aRITE(G+16) BETLlALPL LEETC

16 FORMAT (1H 43013486)
IF (N2 «GE. 10Q) ZI=0.0400Q1
| 9] CONT INUE
1S CONT INUE
12 CONT INUE

D0 22 [1=S5.100.5
00 23 12=1.9

All=11

Al2=al11=%0.01

R2=AI2%(1 +=R)+R

D1=R/8A(12)%=%0,5

D2=1./FAllR2)+%0.,3

IF (R2 JLTs O1) UI=SUA(L12)*BA(1I2)3((R2/R)I*22,~1 ,~2.3DLOGIR2/R)I/3A(1
U2)1)/(1 «=BA(I2)+0LOGI(BA(L12)))

IF{R2 +GE+ D1 JAND. R2 JLE. D2) Ul=JAll2)

IF (R2 +GTa. D2) ULSFA(I2)5JA(I2)%(R2¥%¥2,=1.=2.30LSG(R2)I/FA(I2))/ (1
1.=FA(I21+DLAGIFA(12)))

XAzZ4 .3 ({1e~R)®22,8XAG(12)

ARITE( 524 IR24XAG(12) Ul XA AL2Z

23 CONT INUE
24 FORAMAT (1H +5014.6)

00 230 12=N1sN2JN1

All=1l1

Al2=A11%0.01

R2=AJ2%( 1 +~R)}+R

ODi=R/BA(12)%%x0.5

02=1./FAL12)%%0.,5

IF (R2 «LTe O1) UI=UA(I2)38BA(C12)4((R2/RI*22,:~1.=-2,.30LOGIR2/R)/BA(]
U211)1/711 .~BA(12)1+D0LOG(BA(I2)1))

IF{R2 +GE. D1 +AND. R2 +LE, C2) ul=zuall2)

I1F (R2 6T. D2) ULSFA(I2)®UACI2)S(R2#%2.-14-2,*¥DLOGIR2I/FALLR2))I/{]
1e=FA([2)+DLOG(FA(LIRZ)))

XASG o ¥ {1 o=R) %22, 2XAG(12)

WRITE(64.280) R24XAG(12)sL1sXA0AT2

FORMAT (LH +5014.6)

24¢
230 CCNTINVUE
22 CCNT INUE
PRINT 25
25 FCRMAT (1)
ia CONTINUE
STOP
END

SUBROUTINE VECTOR (XsYsnsN)
IMPLICIT REAL*8 (A=H.0=-»)
REAL*3 X.Y(25)e0(23)

COMMUON d.F .C5.05

COMMON Ra0leG2e33+G3sFMFMZ FM3
CCMMON Al13.al,.424+93

COMMUN Al Bl sA4eBarsAl L8811
BEFM35FM3/(FM3+T (1)) %x2

Fe2FM28 P2/ (FM2-Y (2) ) %22

I[F (X EQe¢ Qo) wi(l)=wl

IF (X +EQs O0) u(2)=a2

1F (X +FEQe Ood) w(3)1=w]

1F (X +€Qe« O} GO TO 1
Ci=1.3000rB

C2=1.0000Q/F

C3=0LQG{B)

Ca=DLOG(F)

Al=l .0D00-83+C3

31=1.0000~-F+(3
A2=5.0000/0.9000-83+8%3/2,00C0=2*%3.3000/3.0000+3*(3~C3)+«C3

A3=27.9000/3.0000=2.3DC3%8-0.75*33B+2,0000%32%3.,0000/3.0000-3%¥%3,00
100/4,30C0+3%( 3.,0000=1,50Q0038+33312C3+3%(~1.500028+C3)=*xC3%C3
33=7.0000/3,3000-2:0000%F=0?5S*F*F +2 ,0000%F5%3,0000/3.0000=F ¥%4.,Q0
100/3 ., 0000+F€({3.00020=1 +3SDCIXF+FaF)sCeerFa(=14e30002F+Ca3)xCasCa
A4=11,0000/5,0C00-3,00G048+1.50005343-3353,303C/3.¢020+C3
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Ba=11,.0000/565.0000=-3.3CO03F+1.SCO0F*F~Fxx3.l00C/3.000Q0+Cs

CS=(={ .,300Q+31) /A

DS=( =1 +3003+F 1 /81

AS=(~-1 ,3000+1.000Qrs8)/74A1

B35=(=1.0000+1 J000/F ) /81

A620.5000=% (] «J0V0=33%83) +3xC3

36=0.5000=( | sQQ000~=F *F ) ++*C3

AB=RERE(1 O0000~-3)%s2 *F 88 1=(F~=1,3000)%%2 s8=Al
All=(=8+3.0000%a6/A1+3.3C0Q%22/ (Al %A 1)+A3/(ALl=x%3)) /8
Bl1l={=F+3.0000486/81+3.0000%82/(31*81)+83/7(31%33))/F

20000 (1 .0000-R*RI)*B3FxA128lJ)/A8
140000~8B%8)+443000%(8-1.0003)-2.0D000%C3

1 ¢OD00=F2F)+3.0000%(F=1.0000)=2.0000%Cs
2.00CO0*CS+R¥R¥A13%x({C1l-1.0000)}=x(A1S/ (A1 *#A1)=-B15/(B1*381)1)/(1.,.3D0
10~RxR)

F 124 ,0000%205+¢2.0000%(1 .0000~-C2)3Al3%{A1S/(ALl®A[}=B1S5/(B1*B1))/(} .2
1000=-R= R}

A72~3.0D00+3.,0Co0x3~-843+C}

B7==3.0000+3.0000%xF=F3F+C2

e g
e
[ ]

-~~~

AG==(] +0000-8) %2 +2.,0000%(B=1.0000)«C3-C3sC3
BOz==(F=1.0000)%%2 +2.00C0% (F=1,0000)%Ca=-CaxCa

Al0=(1l .0000~8)*43 +3.0C0C0#((1.0000~-B)¥x2 -3#C3)=C3+( 3.0D000
1+C3)*xC3%C3

310=2(1 «Q0QQ-F)*x3 +3.00CO®((F=1.200Q)%%x2 -FeC4)*xCAa+(3.9D00

1+Ca) xC4axCa
Al8=3,0000%A6%(A1/7A6~AS)/A1
818=23.0000%36*(31/835-35)/81
AlS9=5.0D00%A2%({A9/A2~-2,.,0C00%A
B19=3.,0000%x82%(3%/32-2.0000+*
A20=A3x{A10/A3-3.,0L003%AS)
B20=83*%(A10/A3~3,0000%«3%
A21={{ =1 +0000+A13+A19+A2
B21=2((~1.00C0+318+313+82
A22=Cl +A5+2,0D00*R«R= (],
A
8

[

We o~ & NN

}

)

2 *F#81/( A3%(1.0000~B))+B%(F=
11.0D000)%x2 *AL®(C1+
A23=C2 +85-2.0000%3%(F~1
100=B)x%2 *sFeBLx(C2+
A27=1. 0000+0,5D00%{1,00¢C
827=1,00C0+0.5000%(F~1,Q
A28=aAl13=C1

828=Al3%C2

A29=2 1. 0000+A¢/ (A1 5A1)
B829=1,.,0000+B4/ (B1s31)
AJO0=RsR=xAl1

Adi1=G2 /F1

831=G3 /F1

AQO= ([ (=0.5SD00*({1.0D000-B)%C1*CS5+1+2000)#CS+(=-Cl+A22)%A27)%A23
Aalz=A27%A23A428
AQ2=((2.000Q00%A48CS52CL+AT7)/7(ALlsALl)+(~C1l+2.0000%x222)222G)2A28
AQ3=2.0000%A23%xA298A238

AQa= AL 3#sAl 35 (A30%a21+2,00008422%(A30-811))

AASzAl 334138 (-(B8112321)+3.0000+a423(A3J3=-a111))
AYB={=Ad0+A42=Go%(C1~1,0C00)%A4a3)%A3]

AA7= (= A1 +A83-Ga*(C1~1,3000)%xA45)%A31

AGA= ( (=05000%(14000Q-F 12C2*%05+1.0000)%D5+(~C2+Aa23)x8271) %823
AAG=327%A22328

ASO=2.,0000%A225329x828

AS12{( 2,0000%33305sC2+B7)/(Bl*E1)+(-C2+2.00004A23)x829)+«B28

®*AL/{A8*%(1.0000~F)1)=R*R*(1.00

-
“
n

/
/
)
)
D
)
8]
)
Q

b OPO~~O>»
“ nW-®EO>—=0D

(
y/ 0
Qs
B 4
000
)/
Qov
€)s
c-3
cao

/AL
/731

LY N

# »

AS2=A4 4

AS3=A4S
AS4={AA9-A80-Gas{1,0D00-C2)*A52)+3831
ASE=2(A48-AS1 =-Ga%(]1.,.0000~-C2)*452)s801
ASH=-~2.000088/7(FM3+Y (1))
BSEZ2, ¥F /(FM2=-Y(21))

AST=A56%A40
AS53=856%xaa7
ASS=zaSbxA54
A63=356%4AS55
AEL=AS72A60~AS8%AS5Y

w(l)=( A60=A33)1/7A861
Wwil2)=2(A57-a59) /A6
Wi3)=SA 133 A0 *xA3H%w{ 1) +AQE30SE$w(2)) /7L e=RERIFTLO,e{1.=R)SA13I*A 1D
L{A1S/(A1€A1)=B15/7(31%B8L)1)/7(1+.+R)
1 CCNTINLE

RETURN
END

SENTRY
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408 sATF 1V XXX XXXXXXX ANANDO
THIS PRAGRAM PREDICTS FLLw CHARACTERISTS FOR HYORGOYNAMIC
ENTRY=REGIUION TURBULENT FLOw THARCUGH A CONCENTRIC ANNULUS
SIMPLIFIED MJDEL
THE RATIO 3F eaAlll LAYER THICKNESS [ISTASSJUMED T3 38 A CONSTANT
VALUE FOR ALL AXLAL PCSITIGCNS anND EQual Ty THE VALUWE FOR FuklY
DEVELJIPED FLIw
IMPLICIT REAL®3 (A-rt,C~2)
DIMENS [ON dBa3(2001) .FFF (200
OIMENS [ON XAS{(aQ)+FA(ad) 3
OIMENS ION uaA(
OLMENS ION w2
OIMENS IGN T1 (
OIMENS IQN HI (
REAL XAG1(40)
00 14 XI=1 42
GO TO (1+2) oK
1 CONT INUE
R=0.06353
RE=23000.
VN1I=0«107
VYN230413
GO TO 110
2 CONT INUE
R=0.531
RE=1432030.
VihI=O, 121
VYN2=0.129
GO TO 110
10 CONT INUE
Cl=16,0000
C2=11.0000
AF1=0.,00352000
FM=DSQRT(~2.0000x0L0G(R)I/(1.0000-R*R})
FM1=2,0000%(1.3000~-R)
=199
Nhz=N+1
AN=N
AM=1.01000
AKlz=(FM=AM)/AN
IAK1=AK1I *10.0x%256.0
LFMSFM210,0%%6,.0
TAMZAMX10.0%86 4,0
K=0
ANI=VNLI+1.Q000
ANZ=VNL+2.0000
AN3=2.,0D000%VYN1I+1,0000
ANS22,3000%xVYNL+2.0200
ANS=VYN2+1.0000
ANEESVYNZ2+2.0D00
ANT=2.,0000&5vN2+1.0000
ANB=2,0000%yN2+2.0000
AMIZ=2 ,0000/ (1003041 .0000/7VN1)
AM22-2.3000/ (1 s3003+1.0000/VMN2)
AVISAMI/VYNL
AV2=AM2/VN2
RSO=(=R+1 c0DC0/FMI/ (1 «30G0~1.CDC3/FM)
BM=F MxR
AL1=20.5000-1 .0000/({ AN1%AN2)
AL2=06 5003=( 143000~ 1e0000/7AN2)/AN]
AL3=1,G000/{ ANLXAN2) -1 +GCO0Q/(ANISANG)
ALA= (] «0D00-1 .OVD00/AN2)/ANL1=-(]140000~1.0D000/7ANA I/ ANS
ALS®043000=1 « 3000/ { ANS3ANG) )
ALSZ U e 5000=( 1 «QUAO=140CAC/ANOI/ZANS
AL7=1, 0000/ (ANSsAND ) =1 0000/ (AN75ANSE)
ALB=(1 «0000=1 .0DUI/ANE)I/ANE=(1.,0000-1.0DQ00/ANB)I/ANT
ALSZ (AL L®BMPAL2)I S (ALZ #FM+AL3)/ ( (AL32EM+ALI ) E(ALSEFM+ALO))
00 ? L=lAMIiFMelAK]
F=L
F=F/103Q0000.3000
22140000/ (RYO0Ox(] .0000=-1.¢C
Al= 2.0000#(1.0000—35/(5 8
A2=2,0000%(F=1.J0000)/ (F=F
A3=(1.0000~-~R)xzaNl
A3=(140000~R *xaN2
AS=Clxwavi
A7=RE¥ £aAM]
A8=C2xxAV2
ALlO=RE axAM2
ALISRSASALZ/ANI=R3Rx(1 «00C0-B)8AL/IAN3FANG)I*1 0003/ (FeF)-R*R/7{(3*3)

[eYatataTaXaX")

o2v] AD(2Q0Q (300)
CA Ol e2(2

DOC/F)I/R+ 140000
)
)
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CO=a)*al/{ANL=AN2)+1 s0QJQ/(FaF )= xR/ (3483)+

y«ﬂiANd)
v
ANSxANG)

i e\
LA/ANS #(F=1,00Q0 )82/ (A
A13=(1.0000=-RxR)/A12
Ad=Al3ssx({amMl+1.0D00)
ASSALI #2(AM2+1 «0000)
ALA==ASXAHXA73 (1 .J000-~3)szAML*s{(R/BIsxaANl
AlS=4.90000%R*¥{1.J0J3=-R)/ (2.,000C*¥=aMl %3}
AL7==A3XA3FA 1 0% F=] ,0000)%xaAM2%(1,3DCQs/F)zxaAM2
Al38324.0000%{ 1 .0000=R)/{2,00Q005% 52524
A20=240000%( 1 +3D00=R*R)/A12
A21=2R*R%(8-2 ,0000)/AN3I+200003R*R« (1 4000 -3)/ (AN AN I +R*R
A222 (2 .0D0Q~F ) /ANT+2.0000% (F=1s0000) /7 (AN7EAN3)I -1 3000
A23=A20%A21/83%2%3,0000
A28z A20%A22/F«x3,3000
A25=22,00002A13%(=2,00C0%A1])+1.000C-RsR)I/AL2
A262R¥R2(B=2 00001 /7AN1+2.,0000*R*xx (1 4JDV0=B)/(ANISANZ)I+R &R
A27=A25%4256/8%%3.3000
A28=(2.0000=FI/7ANS+2 JD00%(F=1.0002)/7(ANSEANS) =] ,0000Q
AP9=A2548A28/F%83.,3000
AJ1=(R$(1.0000~8B)~RO0*BI/(R3F+RIO*(F=~14003001))
A32=(A23+a27 ) %aA31+224+A26
K=K+ 1
A34=2,0000%( 1 .90Q0=R)
ADIR)=R=x(1,000us8=-1.300
AC(&) (120000=1.0000/F)

0)/A24
/A34

A3S5sz1.0Nn00-3

A36=(140000=-A35/7AN2)/7ANI

A37=(1 +0D00-A35/ANG ) /AN3

A38=({{1.0000+8)/72,WD00=~A36)/(A36~A37)

A39zA35%(A36-A37)/3

AJO=SRE ¢A39%R/ (822, 0000%{1.0000=R)}

Aal=F~1.0000

A42=(1 +000Q+ASL/AND)/ZANS

AL3= (1 GDUO+AGLI/ANS )/ ANT

A3z ((F+1.0000)72.0000~-A462)/(A3a2-2a3)

AAS=2A4 1%l A82-A33)/F

AGOLSHRE®AGD/(F¥2,0030%(1.,0000-R))

TIli==A14/(Aa13%A3%2,0000%%xaAM1)

TI2=04123000%10.00006%(=-C.578000¢A38)%xA40%3(=-0.2680007

TOI==A17/({A1 332432 ,30C0%%AM2)
TO2204123D00%10.0LV0%*(=0,673000%A33 ) FA30#5(~D.2580C0)

A16=TIL2%A1354.0000xR*(R~1.0000)

A19=TO2%A13%4.003G%(R=1.000GC)

A30=A] 6+A19

A33=A32/7A30

)
)= Asa
HKEAISE((1 «a0OD0O+B)/2+0D00-A36)/(2.,0000%¥3+82 .3000%(1.uDCI=R))
(F=1.0000 J&((F+1.,00C31/2.0000~ Ahzllla.voou%F¥ta.uDuu*(1 Suse

1=RJ)

TMI=A39%k/(2,000088%(1.0C0C~F))

TMO=Z AAS/({2.0D000%Fx{1,C00G=-R)}
7 CONT [NUE

JA1=0

4A2=0

QC 101 NKI1= 10eNNsL1O

AAl=0,0000

881=0.9000

NKIlaNKL =1
Zil)=sy (1)
ZINK 1) =Y{NKL)
00 103 Jii=2«NK11.2
2(J11)=a,00003%Y(J11)
103 GCONT [NUE
DG 1Ja J12=3«NKl1le2
Z2{J12)=2.0000«Y(J12)
134 CONTINUE
QG 102 Ji=1l.NKL
AAal=Z(Jl)vaal
Kal=ul
102 CONTINJE
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XAG{KBl)=aAls=s
FAIRBL)I=FFF(K
BA(K31)=838¢(
0A(K3L 1=a0(
CA(KBLI=AC(
UAIK31l )=uUl

/3.

CARRAR
PLOWE
Wb
I It

1
1
1
1
i

-

101 CONT INUE
DG 201 NK2=18NN.1Q

882=0.0000
JA2TJA2+]

XKB2=2% JA2
NK21=NK2-1

Zli=yY (1}
ZINK2) =Y (NK2)

00 203 J21=2 NK21.,
24J21)=3.,0D0008Y( U2
CONT INUE

D3O 204 J22=3.NK21.,2
Z(J22)=2.0000«Y(J422
204 CCONTINUE

DQ 202 J2=1.KnNK2
AA2=2(J2)+AaA2
KA2=42

CONT INUE
XAG{K32)=AA2¢aK]1/3,.
FA(KB2)SFFF(XA2)
BAIKB2)=8B88(KA2)

2
}
203

202

IXIAACOC0
O=~0~¥3
-G~ -
AXA~~

201
JC=481 +482
Flo=sualJC) =uAa(JC )T
FRO0RJA(JC )Y sUA L JC )T
F30=F1Q&R+F20

DO 300 J43=1.J4C
Fl=UA( J3)I*sUA (43 =
F2SUA( J3)rUA(J3) x
TIF=(UA(JI)/uatdC
TOF=(JA(J3II/ UALlJIC
F1S=(FL1sR+F2)/F30
PRINT 960.uaA(J3) .0
FCRMAT (1H +8014.0
CONT INUE :
OGC 500 J=1.JC
XAGL(JI=XAGLI)
DAl{J)=0Aa(J)
VAL{JI=JUAL D)

oy

- )

960
300

500

P4
z
[
m

12=22.0C.2
{125,955

bl 7 Vo]

n

(TRl A i VY VR
-

(SRl N R

1

e VA N Do
-~ PN e
QUOONNC -,
-0 DOD~~

"
[Ny g
-~ &
.
crcLn
-

aov o j ) Mheew

C~~—~d
KRNV~ \ |~
Ie ~HOOMO0O»PLrnO

v
wRITE (&
FOURMAT (1
CONT INUE
CONT INUE
CONT INUE
STgP

END

Cre=mDDOCV»POCN
- MANMRAADDIN—=~000

N—AM X e
e ENe o ¢ mN—~eer D

O~

Dla«d)

—_NNN
PRLS

3000

)

]

Q0QQ

*2.000C0

R2=R)/(Re(1./8A(12)=14)) }e*VNI]
R2 €. OR2) Ul=1.
1e=R21I/7(1e=1/FALL2)))s3yN2

(
(

non

{
-
[§

26XA3{ 124U 4A12R20R21
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sJo8 WATFIV XXXXXXXXXX ANANDG
C THIS PRAGRAM PREJICTS FLIw CHARACTERISITS FOR HYDROOYNAMIC
C ENTRY=-REGIUON TURBULENT FLOW THARASUGH A CONCENTRIC ANNULUS
C GENERAL MUDEL
C THE ASSUMPTICN OF A CONSTANT RATIO OF «AlL LAYER THICKNESS FJIR AL
C AXIAL L3CATIONS #4A3 RELAXED IN THIS FLO« MQUEL

IMPLUICLIT REAL 3 (A~HG~w)

EXTERNAL VECTOR ,

REAL®8 Y{235) .4(25) ,0Y(25)

REAL*8 3A(1000).FA{1000) +JAL100C).XAG(1000)

COMMON ReRLeRIANL  ANZ ANIT e ANIcANS cANBsANT JANS

CCMMON BeF QL +BEL1 L+3E2LsREcalanlewl

DO 1a K=1.2

NN=1000

220344 eD5eBe7 814K

O™ Cores e rrmwmeDpPpCrees
C MOCO =0 e
N
)
[N

o
.

YNI=0. 121

3 CONT INUE
R=0.1003
RE=320000.
YN1=20,.089
VN2=0a. 138
X20.6752
Y{1)=0.00992
Y(21=20 .009%2
GO 7O L9

a CONT INUE
R=041012
RE=137000,
VYN1=0, 049
VYN2=0. 145

[
DODNO <X
PTHOO~~1

-
NN
LX)

OZ Ne~
wmo oo

L Y]

U
Lo=~O i ho
~nZ OO0
CGliC ree o »~
O
o
.

VN1=0,2147
VN2=Q.,2477
GO TO 9

7 CONT INVWE
R=0.1003
RE=451300.
VYN1=J.0Q066
VN2=04 139
X=2Q.6752
Y(1)=0.2083>
Y{(21=0.Q003835
GC TO 19

3 CONTINUE
R=Q.36S3
RE=23J00 .
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VNLI=Q0.121
VN2=0,137
G0 TI 19

10 CCNT INUE
RISR/{2.2{(1 .~
R3I=1./7(2.%x(1 s
ANL=la/IVNL+ L
ANZ=1.,/tVYNL+2
AN3=14/7(203YN
ANA=la/(248VNL
ANS= Lo Z7(VYN2+1 W)
ANE=1 4/ (VN2+2.)
AN7=14./7(2xVN2+1.)
ANB= 1. /{2.5VN24+2,)

«=R
1 -
+1le.
.
1

N=2
AB=0.
X=AB
Y(1i=A3
Y(2)=a8
Ni=12Q
Z21=0.00001
00 11l I=1..NN
C START GF RUNGE=RUTTA [INTEGRATICN ROUTINE

CALL RXSES(XeYsDYeZleNiVECTGCR)
8Aa(l)=8
FA{L)=F
valCr)=Cl
AY=UA( 1 )1%x%x2=1,
AZ=Y (1 )+Y(2)
XAG(1)=x
T1=8cEll
T2=3€e21
RR=Y(1)/7Y(2)
N2=1
aRITE (64251 ) YL1)4Y(2)eY{I)eXeRAsUA(L) Tl +sT24AY

251 FORMAT (1H +,5014.8)
IF (A2 .GE. 0.3) GO TO 12
IF (21 «GF. 0.03) (£1=21
IF (2] +GEs 0.03) GO TC 11
IF (N2 «FQe J1) Z1I=21%20
IFIN2 +EOQ. J1) J1=01+J2

11 CONT INUE

12 CONTINUE
DO 22 12=N1sN2+N1
DO 23 I1=25495+8
All=11
Al2=A11%0,01
R2=1.~Al2%(1] «=R)
DRI1=R/ (BA(121))
DR2=1e/FAL 12
R20=(1 +-DR2)1/(1e=R)
R2I=2{(1 4-0RL1)/Z7(14-=R)
IF(R2 4LTe DR1) UIS(IR2=RI/Z/(R*(]./7BA(12)=14)))ssV¥yN]
IF (R2 .GE. OR1! «ANDs R2 «LE. DRZ2) Ul=l.
IF (R2 «GTs OR2) ULIS{(14a=REI/(1s=1e/FALI2)1) )8 WN2
WRITE (0+238) R24XAG(L2)eUlsAlI2.R20+R21

24 FORMAT (1M +6D14 56)
23 CONT INUE
22 CONT INUVE
14 CCNT INLE
STQOP
END

SUBROUTINE VECTIUR(X .Y sneN)

IMPLICIT REAL¥8 (A-rHl=~w)

REAL*¥3 X.Y{25) .w(25)

COMMON ReRLVRI‘ANLILIANZ JANI s ANG JANS s ANG W ANT s ANS
COMMON BeF ¢l 1 BELLIBE21eRE s Wl o240

=RI /(R +Y (1))
FER3/(R3~-Y(21))

IF (Y(1l) +E3e Q0e0) a(l)=wi
IF (Y(2) €2+ Je) w(2)=42
IF (Y(1) «Z2Qe Je) 33 TC 7
ASO=AMLIE({ ]l o=( ] e=B)2aN2)}
ASIZANI® (1 a=(1 s=3)%xaNa)
B8S0=ANSE({ler(F=1s)2ANSD)
B51=AN?8ll or{F=1.)%aN3)
HI1Z{(1l.+*vRB1/2 =253}/ A80-A51)
H2Z( (F+lal/72.-3501/(BE0-251)
OIS=RI #(1.=3)x{a53=A351)/(A=x8)
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RIX(F=1.)1%2(8350~-8511/(FxF)

W2RANE (] o =3} #ASO/ (328 I +2 . 8({F~1.)%BSO/(FsF )+l /(FEF)=-R=xR/(328)
le=RERI/AL

(C12RE*D [S)1*%Q 2568

{

G1=2 s 2 RN (ANL 2(B=2 e +2 4% ({1 +=8)%AN2 )+ 1le)x(~1,/R1)/8
G222 e B (ANS E(F w24 +2 e { 1l e=F)XANEI+ L)% (]l /R3VI/F
G2=-~G32

G20=R1 aR1 = (]l ./ (B83B)~1.)3C1r(=Cl/Aal)

BE12=G20xG1

8E813=G2Q0*G2

Ci10=(1l «~Bi/s(B28)

Cliz(F=1.)/(FaF)

CA=C10x(l.=(1.-B)EAN2)

CAa=Cl0*s{tle~(1l,.,-3d)ixANA )

CS=Cli B(le+(F=1s)®ANS)

CoO=CLlLI*(loer(F=],)i®ANE)

Cl2={=1./R1)/8

Cl13=2(1 «/R3V/F

G3=(8=-2.+2+.%(1.~B)*aAN2)«C12

GA=(B=2.+2.5(1.,~B)sANa)*®(12

GS=(2e =F+2 o5 (F=]ls3%ANEI*C13

GEZ(2e=F+2 ¥ (F~1)xAN8B8I*CLJ

BEL1Z=04123%10es%(=QsE783H1 *¥2 ., #R1sC 1 *xC1/0M1
BE21 2= 0.123%10.5*%(=0.6783%H2 %2 ,3R3I*xC1xC1/0M0
BEla=2 ,sR1sR1*xC1*¥Cl»x{ (~G3*A GAFAN3I=(=~C3®aAN1 +2 . sCuxAN3) *G1 /A1)

BF1S5=2 ,*R1 *R1«Cl=2Cl*s(~-(~C3x
BD22=2-~R32R3x(} e=1e/{F*F))xC
BE22=8022%+G]
BE23=8022%xG2
BE24=2 ¢ #C1 301 3RAERI* (=Gl IX( ~CS2ANS+2 . xCHEANT I/ AL
BE2552 ¢ *C 1 #C L $RISRIF( (~GSHANSH+GOHLANT )=~ ( =CS+tANDS+2 s ¥ CHEANT ) ®G2/ A1)
AL11=8E14-BE1L12
ALI2=3EL1S=-3E13
AL13=8€11l
AL21=8E24=-BE22
AL22=BE25-8523
AL23=BE21
AbO0=aL22%ALl 1=ALl2%AL2
wi{l)=(AL13+#AL22=-AL23%A
wi(2)=( AL13*AL21~-AL23%A
7 CONT INUE
WRITE(S642) W(l)ewl2)8,F
FORMAT(IH +e014.6)
RETURN .
END

)
)
N+

ANL1 ¢2 ., 2Ca*ANS3I2G2/A1)
1*¥C1*)1./7A1 .

rre

SENTRY
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$J08 WATFLV XXXXXXXXXX ANAND
Cc THIS PROGRAM PREDICTS FLIN CHMARACTERISTS FOR TULRBULENT FLCw IN THE
Cc ENTRY-REGIIN QF RPLRES

{wPLICIT REAL %3 (A=mJC~w)

REAL®3 ALLI (279 )4AL2(27S)+AL3(27S1eBX(27S1+UPL275)4AY(275)4AZ2(27S) .

*BY (2751 .82(27S514UL{(275).u2(278)eu3(27%)

REALs3 WC1(27S)«aL3(275) :

REAL®8 Y{({25).a(2S),.,0Y(25)

REAL®8 UPMI(])
EXTERNAL VECTQOR
EXTERN AL IMBRGO
COMMQN D«00+&K
CCOMMON 0D2
CCMMUON VNI
002=2.5
EX=0.36
00=4a2.
vhl=1.
J1=0
RE=338000.
X X=Q .
PD1=0.
PR2=].
K1=0
RK=14000.
D0 1 J=50.100000.50
Ki=Kl+l
AIN=200.
AK=1,
N=1
O=J
NN=200
ANNZNN
AB=0.
Y(1)1=A8
X=A8/0
AX=ad/D
Z21=(1,~-AX)/ANN
00 2 I=1leNN

[ START OF RUNGE=XUTTA [INTEGRATION ROUTINE
CALL RKSES [ XeYsDYs21 «NJVECTCR)
UPMil1)Y=Y(1l)

cx=x
ulktl)=y(1)
8x(l)=x
2 CONT INUE
16 CONTINUE
1=0
) CALL RMBRGD (AX.CX 27« sANS+BFX)
D1=83*0/00
[F (D1 .GE. 173.) DE=C.
IF (D1 +GE. 173.) GQ TO0 11
DE=D0EXP(-D1 ]
11 CONT INUE
IF (DE +EQ. 14) R3=0
IF (D€ +F0., le) GO TO 18
C AN EDDY VISCOSITY MODEL IS ASSUMED :
rR3 =DS(le=B)sxYNL/ (| ++EKFOF(1e~(1l ¢~B)s2x2)5(].+DD28(1.~B)*s2)1&(1l -
1D0E¥1Z6.)
18 CCNTINUE
FISRE/ZQ+=UPN{ | )I®RK/ 2.
Fx==DxB8«(] ~B2D/(2.,xRK))*R3I
IF (1) 7«7 46
7 CONTINUE
F2=ANS /F1
F2=F2«100.
DR=0O/RK
UC=2.¢UPNMI 1) *RX/RE
SRITE (5481 VO sRK FR2.UPN{L) ORUC
3 FCRRAT (1l +6014.6)
IF (F2 «GT. 10Q0s0eQRe F2 LTe $59.9)G30 TO 3
GO0 TO 10
S CCNTINUE
IF  AK 1

Es 24 GJ TG 5
e 100¢0+0R. 72 JLE. G.) 30 TC 51

G0 TQ 59

S1 CONT INVE
tF (F2 .GT. 1
[F (F2 «GT. 1

2 - Qo) RKERK+AIN/(2.2%AK)
2 +LES. Qo) GO TO 32
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S2
SO
10

22

20

23

21

36

37

38

19

N
oun
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IF (F2 oebkTe 99 FIRK=AK=AIN/(2s3xaK }
CONT INUE

AKSAK+ 1.

CONT INUE

GO TO 16

CONT INUE

{F (D 3« RK) GO TO 13

SJiel
1)=Q.
1)=0a

L RMBRGD (AXeCXebel edMNSeCaGX)
C*D /00D

{D3 +GEe 1731 OF=Q.

{03 +GE. 173.1 GO TQO 20
F=DEXP(-03)

mNlY < <—
HEO~~1

3
=C)l% (1l .~CoDR)*RS
1621422

PPrOmONOD=—~N0D~~DN—~0O
[q]
z
-~
Lol
z
C
m

Frowxonetn

2(2.~DRIFBNS/RE+ 1) 52,3RKERK
{RK/RE)*¥3xRANS

UR (NN) 3RK/AL

-1l e/ AL
1

—pmpsrse T ars

OR*(2.-0R)/(REsAL)

nhohnwomen

e e g C

Do

*OR
lEUPL ) eC}
) x3sCl

OBOPFP>=~ND> N~
ONNNNNO <€ €
I\’—A—s.'z"‘h" "
ol 82 U
NC=CPERNDNB=CHh
mcg C x
U~
~ e ey
— .
-

AZ(

" RN C~ S~
Do ~rm o
- ol e
—~ e~
RAe o~

~- )

Nt e N worerrre $ 0L L LN
Me ¢ HDLCP <

L4 I

1

™)

BRA1=381+R2 (M)

CONT INUE
VISUPINNIX(O®(1.-0s52DR)=RK/2.)
UliJl)=RE/S3.+V1

U2{(J1)=DsRKFAALI*Z1/3,
U3(JI)SREKSRKE(UPINNY*$23V1=-0C3EBL*Z21/3,)
UCl {J1)I=uC&ucC

IF (J1 «EQ. 1) GO TO 100

J2=J1-1

Ull=ul (J2+11 -0t J2)
Ul2=u2iJ2z2+rliir=v2(32)

U13su3d (J2+l)-udCJ2)

AlazAL l(Jy2«l)vai 1 (J2)
AlSsAL2(J2+1 ) +ALL2(J2)
AlB=AL3(I2+1 ) +AL3LJ2)
Al?=aL et J2el b+ 3(42)
DPI==UCL(J2+ 1) +uCLl(J2)

POL=PD 1+DP}
OX=2Q.5%(A1SeVULIL+ALSxULI2+AL1T7#ULT)
XXSXX+eDX

OP2z10 . sUl3/(RE*32) x| ,/RE+3I2,2414ax0x
PQ2=202+0P2

MRITE(6425) J1(J2)eu2(J2)eulIZ)eAl(J2)34AL2(J2) sAL3 (42D AL (J2al
FGRMAT (1M +7014.08)

CONT INVE

CAITE (5423) DeRKewCeXXuPM{1)4RCLPD2
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24 FORMAT({IH 7013464/
1 CONT INUE
15 CONT INUE
sSToP
END
SUBRQUTINE VECTOR (XeYeuaN}
IMPLICIT REAL %3 (A=H.C=2)
REAL 8 w(235).Y(25).0Y(25)
CCMMON D.DD.EK
CCMMCN D02
CONMON VN1
D2=x%0 /00
IF (D2 .GE. 173.} DE=C.
LFE (02 .GF. 173.) GO TQ 12
DE=DEXP(=-D2 )
12 CONT INUE
IF (X +EQs Qo) «(1})=0
IF (X +E0s Q4) GO TO 17
Wl1)I=0%(le=X)osaVvNLI/ (Ll +EKEDB{]=(1
1DEV/6.4)
17 CCNT INUE
RETURN
END
SUBROUTINERMBRGD(A+B« ICRD«] vANS X,
BACCoRN oD FII=1+1:iG0TO(1424¢3ca)1
2 FASFXIX=BIRETURNIZITI(ILIS(FA+FX) %0,
AL +LIIF(L «GT« IORDIGUTO7iU=0,000:C=H
L1300+ IR (JeGT.XKIGUTCI:3C=0'
£330 TILRPLI=S(U/ZRN+T (LI )IX®0.S00Q0:F=1.0
14 TUKISTURK+L I+ (TIK*LI)=TIKI)IZ (F=1.000
EHII=0: RETURNIEND
SENTRY

c cAan~

179

e=X)3%2 )18 (1.4002%( 1 e=X)xx2)&(],~

FXIIREAL $3A+BeANSe X osFXsT(21 )R FS0D
S1ICONTINUE iH=8=AIX=AIRETURN] 330
SOQIAN=1.000ILPLI=1112:L=LP1ILPLI=Q00
/1 2.000%AN) iK=2,0008RN=1,030:J==000
S31X3A+0*CIRETURNI G IUSU+FX13CTO1000
O03i001aJ=]l eLIKZLPI~JIF=a,000%F: 000
JIRN=2. OOOCRN:GOTGLZKT:ANS=T(l)‘Ogg

o] .
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