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ABSTRACT

This study is directed towards the development of heuristic
algorithms for the solution to the quadratic assignment problem. This
is the problem of minimizing the 'cost' of assigning n 'facilities’
to n given 'sites', when there is an interflow. The combinatorial
nature of the problem indicates that for a problem of size n, there
are n! possible assignment vectors. Since it is computationally
infeasible to generate all the possible assignment vectors for n > 12,
heuristic procedures are developed which generate only a subset of
them.

The algorithm developed in this study is an iterative
optimization procedure which begins by constructing the matrix of
lower bounds on the 'costs' of locating facilities at different sites.
Any feasible assignment vector may or may not have optimum values
agsociated with its components in this matrix. Thus, the algorithm
seeks to remove the deviations from the optimum values in the elements of
the lower bound matrix. After all the elements in the matrix have been
adjusted, a linear assignment problem is solved, which results
in a feasible assignment vector as well as an improved objective function
value for the quadratic assignment problem. The procedure is repeated
until the desired accuracy in the value of the objective function is

obtained.

iii
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not more than 10, even for large size problems. Maximum improvement
in the value of the objective function is observed to be in the first
few iterations. It then decreases in subsequent iterations. Further,
the proposed algorithm.is independent of starting solution.

Finally, sensitivity analysis is carried out to study the
effect of varying the parameters in the distance or flow matrix on
the layout. No obvious pattern is observed. However, it is concluded
that , to reduce the computational efforts, the information contained
in the final iteration of the original problem could be used to study
the effects of the changed parameter on the layout. Reapplying the

algorithm is computationally inefficient.
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CHAPTER I

INTRODUCTION

Facilities location problems have been the subject of analysis
for many years. However, it was not until the emergence of interest
in operations research fhat the subject received renewed attention
in a number of disciplines. During the recent years, economists,
operations researchers, urban planners, management scientists, home
economists, and engineers from several disciplines, have discovered
a common interest in their concern for the location and layout of
facilities. Each group has attempted to bring to the subject
different interpretations of the problem and different approaches to
its solution. The industrial engineers find it useful in laying out
activities, offices, or departments in a building, etc.

There is a multitude of problems within facilities location. Of
these we shall restrict our attention to those problems which are of
a general nature. '"Facilities location'" shall now be designated as
problems involving the assignment of n distinct facilities to ny
distinct locations (n_inl),when there is a cost function to be
minimized. The facilities location problems which are of special

interest in this study, are classified in the following section.
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1.1 Classification of Facilities Location Problems

(i) Quadratic Assignment Problem (QAP)
The general QAP can be stated as follows. Given n4 coefficients

c.. .. the problem is to find an nxn permutation matrix
13jpq  13Pq

X = [xij] so as to minimize

Z‘ z C.. X, X
i5 pq 1Pa Tii Tpq

(1.1)

This was first formulated in location context by Koopmans and
Beckmann [1957]. It can also be stated as the determination of nxn

permutation matrix X = [xij] so as to minimize

£(x) = } as Xgq* ) £.0 Y5 %15 %o (1.2)
ij ij pq
where A = [a..], F = [f. ] and D = [d. ] are nxn matrices,
1] jq 1p
representing the following parameters:
a; s = fixed cost associated with the location of facility j at
location i
qu = the number of units of commodity to be transported from
facility j to facility q
dip = the cost of transporting one unit of commodity from location

i to location p

Each assignment of facilities to locations is given by a permutation
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matrix X = [xij] where

X,.
13

1 if facility j is assigned to location i

0 otherwise

This formulation is of great interest and provides the basic
framework for a wide class of problems.

It is interesting to note that if qu = 0, for all (j,q),
Equation (1.2) represents a linear assignment problem, which is
employed in various algorithms for QAP, and which is formulated

in the following section.

(ii) Linear Assignment Problem (LAP)
Consider n facilities to be located, one at each location and

assume that there are exactly n locations available. Let xij be the

variable defined in 1.1(i). Thus

- 00r1f0ri=1,..,n andj=1’-0,n

n
Z X.. =1 fori=1,..,n

The last condition states that exactly one facility is located
at each location i. Likewise, each facility j must be located at

exactly one location, which leads to the condition:

n
Z X.. = 1 for j=1,..,n
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If €53 is the cost of locating facility j at location i, the linear

assignment problem is defined as:

n n
Minimize £(X) = )} § e,. x, (1.3)
i=1 j=1 *J M
Subject to
)
.. = 1, j=1l,..,n
i=1 *J
)
Xx.. =1, i=1,..,n (1.4)
=1 M
xij = 0 or 1 for all i and j

1.2 Applications

(i) Plant Layout Problem [Koopmans & Beckmann, 1957]

This is the problem of locating n plants uniquely at n locations
in such a way that the total interplant transportation cost is
minimized. In the context of the formulation given in (1.2), the

variables can be defined as:

aij = fixed cost associated with the location of plant j at locatiom i
qu = the number of units of commodity to be transported from plant

q to plant j
dip = the cost of transporting one unit of commodity from location p

to location i
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Each assignment of plants to locations is given by a permutation

matrix X = [xij]’ where

xij 1 if location i is assigned to plant j

0 otherwise

This formulation is often employed in (i) placement of
electronic modules on a computer backplane so as to minimize wire
length, number of crossings, etc. [Hanan and Kurtzberg, 19727 ;

(ii) locating machines, departments, or offices within a plant so
as to minimize transportation efforts [ Armour and Buffa, 19631 ;
(iii) arranging indicators and controls in a control room so as to
minimize eye fatigue [ McCormick, 1970 ); (iv) laying out offices in
building, or operating rooms in hospitals with the monetary
objective of reducing the cost of office accomodation [ Whitehead and
Elders, 19641, and relocating civil service departments with the
social objective of providing employment in developing areas [ Beale
and Tomline, 19721 ; (v) locating hospital departments so as to
minimize the total distance travelled by the patients [ Elshafei,
1977 ); and (vi) assigning n people to serve on m committees,
(committee/coworker performance problem) [ Maybee, 19781 .

As a generalization to this formulation, Lawler [ 1963 ] discussed
the multicommodity version, in which there is a flow fgq for each

commodity t and a cost per unit flow between location j and q of
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d? . As another generalization Graves and Whinston [1970] point out

Jq
the possibility of a cost compomnent wiqu that depends on a pair of
assignments. Combining these two, Pierce and Crowston [l1971]gave a

more general cost function as

Minimize £(x) = ) 255 %55 ) Wiipq %i3 ¥ ) Xf;q dgp *:3 *pq
ij ij pq P1 ijpqt
where
t . L3 13
w.. + £f. d. if 1 #p or j #
. _ § " iipa L F5q 41 174
13pq c:, + £., d,, if 1 =P and j = q

ij jj ii

(ii) Travelling Salesman Problem

The'Travelling 8alesman Problem' is a special case of the Koopmans
and Beckmann formulation in which dip represents the distance between
the pairs of cities and qu represents the cyclic permutation matrix

of the form:

1 0 0 oJ

This formulation is used in solving the 'Candidates Problem'.
This is the problem of finding optimum tours for the candidates in such

a way that the total transportation costs are minimized [Lawler, 1963 ].
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(iii) Rotor Balancing Problem [ Murty, 1976]

This is the problem of mounting n blades on a horizontal rotor
in such a way that the static balance is achieved relative to two
orthogonal axes. It is assumed that n mounting positions are equidistant
around the circumference of a circular rim of radius r. Let m, designate
the distance from the centre of gravity to the mounting end of blade i,
and Wi designate the blade's weight. If the mounting positions are
numbered counter-clockwise from one of the axes, the orthogonal components

of the moment arm Wi(r + mi) produced by mounting blade i in position

j can be expressed as:

h

i3 W, (r + mi) cos (2%j/n)
and,
Vij =W, (r + mi) sin (2mj/n).

If it is desired to assign blades to positions in such a way that
the sum of the moment components are both as close to zero as possible,
the equivalent QAP as formulated by Maybee [1978] can be expressed as

the determination of the permutation matrix X = [x..] so as to

ij

minimize f(x) = (h.. h + V..V ) x..
Ej gq ij "pq ~ 'ij 'pa’ "ii *pq

which is of the form of general QAP if

[
e
e
Qo
e
e
g
i

c.. = h
13pq
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CHAPTER 1II

SURVEY OF EXISTING METHODS OF SOLUTION

Over the years a number of solution procedures have been
developed. In asmuch as a systematic evaluation of these procedures
is not available, it is the purpose of this chapter to provide a
general classification scheme, and to present a brief survey of the

important exact and heuristic algorithms that exist to date.

2.1 Exact Solution Procedures

Exact solutions can be sought in several ways. One wayvy is to
enumerate all the assignments, and choose the one with the minimum
cost. Since the number of assignments is n!, it is practical to do
so for small size problems. However, difficulties arise for
moderate and large ‘wvalues of n. The first mathematical
approach in the direction of developing an exact solution is given
by Wimmert [1958). He presented a method based on ranking the cost
matrix and choosing coordinates close to the diagonal. However,
Conway and Maxwell [1961] gave a counter example to invalidate Wimmert's
model. The exact solution procedures developed so far can be grouped

as follows.
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(i) Solutions Based on Integer Programming
An equivalent integer linear program to the general QAP was
formulated by Lawler ([1963}. 1If n2 variables xij are linearized

by defining n4 variables as

V.. = X.. X
13pq 1] Pq

The equivalent linear program can be stated as

Minimize z
ijpq

c.. .
1]1pq lePq

Subject to ) X5 = 1 (i=1,2,..,n)
h|

) x,. =1 (j =1,2,..,n)

i

Doy = o’

o, ij

iipq ~ iiPd

X35 ¥ Xpq T Wijpq 2 0 hispias = 1,2,000m)
x;5 = 0 or 1 (i,j = 1,2,..,n)
yiqu =0orl (i,jspsq = 1,2,..,n)

The proof of the equivalence of the two problems can be referred
to in Lawler [1963]. No computational experience is known to be
available for this approach.

Love and Wong [1976] gave the binary mixed integer programming

formulation for solving the QAP with rectilinear distances as follows:
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n-1 n
Minimize ) L W (R + L.+ A .+ B, .)
i=1 j=i+1 Y Y] oy I
Subject to R,. - L.. = x, - x 1 =1,..,n~1
1] 1] 1 )
-B,. =y, - j o= i+
AlJ BJ.J v yJ 3 i+l
)
X, + V. = s, o, i=1,..,n
1 k=1 k ik
)

X: = V. = Py O. i=1,..,n
i 1 k=1 k ik

)

o. =1 1=1,..,n

k=1 K

n

Z aik = 1 k=1,..,n
i=1
Gy =0orl i,k = 1,..,n

xlgoo,xn, yl,oo,yn z_ 0

number of facilities and number of locations
non-negative flow between facility i and facility j
horizontal distance between facility i and facility j if
facility i is to the right of facility j; otherwise hij =
horizontal distance between facility i and facility j if
facility i is to the left of facility j; otherwise Lij = 0
vertical distance between facility i and facility j if

facility i is above facility j; otherwise Aij =0
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Bij = vertical distance between facility i and facility j if
facility i is below facility j; otherwise Bij =0
(xi,yi)= location of faeility i, i = 1,..,n
8, = sum of coordinates of location k, k = 1,..,n

P = difference of coordinates of location k, value of the

first coordinate minus value of the second coordinate.

The computational results based on this approach reveal that
only small size problems involving up to 8 or 9 facilities can be
solved. It is concluded that the prospects of integer programming
approach are not very promising until efficient integer programming
codes are developed.

Bazarra and Sherali [1980] formulated the MAP as a mixed integer
linear program by introducing a number of new variables and constraints.
The problem is defined as the minimiZation of the function

m=-1 m m m

) YL e ves
i=1 j:zz]_ k=i+1 1=1 lel 1Jk1

Subject to
m m . i=1l,..,m-1
k=1+1 IZI yijkl T ) xij -0 j=l,..,m
k=1 m k=2,..,m
izl jzl Vigr T (T X 70 1=1,..,m
j#l
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m

Z X;: = 1 i=l,..,m
=t M

m

Y ox,. =1 §=1,..,m

i=1

xij binary i,j=1’ .0 |m

Yoy 21 i1, .,mel; k=itl,.o,m

1] i,1=1,..,m; j#1

The above problem has m2 integer and mz(m-1)2/2 continuous
variagbles, and 2m2 linear constraints, as opposed to (m2+m4) integer
variables and m4+2m+1 constraints in Lawler's formulation. This
problem can further be decomposed into a linear integer master problem
in m2 zero-one variables, and a linear subproblem and iterated between
these two problems until a suitable termination criterion is met in a
finite number of steps.

Their computational experience reveals that the procedure required
close tom! cuts in order to verify optimality, even when the starting
solution was optimal. It was therefore suggested to operate the
procedure as a heuristic by terminating it prematurely. Its
applicability as a heuristic procedure was demonstrated with the help

of test problems given by Nugent, et al. [1968].

(ii) Solutions Based on Branch and Bound
The idea of branch and bound dates back to the algorithm of Little,

et al. [1963] employed for solving the travelling salesman problem.
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The "branch" term represents that the procedure is continually
concerned with choosing the next feasible branch of the tree to
elaborate and evaluate, while the '"bound" term indicates their
emphasis on the effective use of bounding the value of the objective
function at each node in the tree, both for eliminating dominated
paths and for selecting a next branch for evaluation and elaboration.
These procedures possess the following three important attributes
according to Pierce & Crowston [1971]:

1) Termination at any usable solution prior to the ultimate
completion of the problem solving process.

2) Exploiting in an efficient manner the information that is
available beforehand pertaining to the value of an optimal
solution. For instance, when feasible solution is known from
past experience or has been derived with the aid of a heuristic
procedure, it is used to discard the solutions having higher
costs. Thus, prior knowledge of upper or lower bounds reduces
the region that need to be searched.

3) wWith slight modifications, these algorithms can be employed to
find all the optimal or most preferred solutions.

The branch and bound methods developed for solving the QAP have
been classified as follows:

a) Single Assignment Algorithm. This approach was first used by

Gilmore [1962]and Lawler [1963]. Both presented essentially the same
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algorithm for solving a Koopmans and Beckmann type QAP. Their
approach employed a search strategy which elaborates the tree shown
in Figure 2.1 from left to right. The ordering of the location is
taken arbitrarily or with some heuristic ordering rule such as
decreasing sums ;. (dij+d' ). At each level the node is chosen,
for elaboration tg Jthe next level, based on the least lower bound
among the nodes not yet elaborated. These lower bounds are obtained
by solving linear assignment problems. The process of selecting a
node in a tree continues level by level, or until a node is reached
at the level n or else lower bound exceeds the current upper bound,
and the tree evaluation process backtracks to the lowest node on the
path for which all branches have not been elaborated. The process
then selects the next node and the procedure is repeated; when all
the branches have been enumerated, the problem solving is complete.

Thus, it is seen that the bounding operation at each node is the
key to the algorithm. Mathematically, this can be described by

considering the objective function of the QAP:

i ) ijpq “pq
ij pq P

Since X is a permutation matrix, we have

»
[

0 if j # q

o]
3
o
"
He
b
]

0 if i # p
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The above objective function may now be written as

£(x) = ) x.. (copss * ) €., X
ij 1] 1]1] Pq 13pq Pq

) p# i, q# ]

Now, define an nxn matrix [bij] in which each element represents

the optimal value of LAP whose objective function is

minimize b,. = c,,.. + ) c.. X
1] 131) Pq 11Pq9 Pq

p#i:Q#j

Thus for given values of i and j, bij represents a lower bound on
the sum of n cost terms from the cost matrix. Now, if we solve the
LAP:

minimize f(x) = Z_ bij X 1s

1]
the solution to this problem would represent a lower bound on the
sum of n2 cost terms and therefore a lower bound for any feasible
solution to the QAP.

If the lower bound is the same as the objective function value of
the QAP, the optimal solution is the solution to the LAP. Otherwise
the branch and bound procedure starts by finding lower bounds at each
node. The method of finding the lower bound is essentially the
same as discussed above. The only difference is that the elements of
the lower bound cost matrix are composed of the linear cost contributions
of the fixed variables of the node in addition to the lower bound

costs associated with solving the LAP's., For further details of this
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procedure the reader is referred to Cabot and Francis [1978].

Pierce and Crowston have also suggested several alternative ways
of branching and bounding. For example, in Fig. 2.1 the plants and
locations may be interchanged to obtain the tree as shown in Fig.
2.2. This arrangement would give rise to the elaboration of
different partial trees of solutions with quite differing number of
nodes. Thus the time required to elaborate and evaluate a single
node in a tree can differ markedly. They further suggest that the
lower bound for the Koopmans and Beckmann formulation can be obtained
by simply sequencing the relevant flow and distance values and forming
the inner product. For finding bounds at intermediate nodes several
methods are similarly suggested. Each of them would lead to the
elaboration and evaluation of different branches of the tree. It is
therefore stated that the relative efficiency may be highly dependent
on the particular form of the QAP being solved.

Burkard (1973] presented a branch and bound algorithm for the
general QAP., The lower bound cost matrix is first formed. As in
Lawler's approach, an LAP is then solved on this matrix to establish
an initial lower bound. The lower bounds at intermediate nodes are
obtained by augmenting the lower bound matrix to include the linear
cost contributions of the fixed variablesof a node. Only one LAP is
solved to develop a lower bound for an intermediate node. This

results in larger search trees because of weaker lower bounds developed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

uotiedom anbrup y Jutjuasaadey 9497 yoey YiTM 291y Yoieag z'z aindig

u JuBld :u [2A3]

01LVOO01

/

/

NOILVOOT

’ - 1 Jueld :1 19497
\ NOILVOOT :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

at intermediate nodes. The superiority of this procedure over
Lawler's may be due to significant differences in computational
requirements for finding the lower bounds at each node.

Maybee [1978] developed an efficient branch and bound technique
based on the iterative process of matrix reduction. It is derived
from the idea of adding a skew symmetric matrix to a quadratic cost
matrix ciqu. This was first suggested by Murty [1970] in conjunction
with assignment ranking algorithms., The skew symmetric matrix selected
for addition was such as to produce an upper triangular matrix. All
the entries in the lower triangular portion were zero. The advantage
of triangularization was to capture in one element, the two quadratic
costs associated with pairs of allocations. This reduces the sub-
sequent cost manipulation by a factor of 2. It is estimated that the
computational superiority of this procedure over Lawler's algorithm
is two orders of magnitude for 12 x 12 problems. But still its
applicability is limited to n < 15.

Bazaraa and Elshafei [1979] developed an exact branch and bound
scheme similar to the algorithm of Gilmore ([1962]., They incorporated
the concept of "stepped fathoming'" given by Bazaraa and Elshafei [1977].
It is shown that the algorithm speeds up the search of the decision tree.
However, it failed to solve problems of size n > 15.

b) Pair-Assignment Algorithms. Gavett and Plyter [1966] and Land

[1963] described such a branch and bound technique. Like a single-
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assignment algorithm, this is viewed as a LAP where pairs of plants

j and q are located at locations i and p. Algorithms are

1}

developed for symmetric Koopmans and Beckmann problem with cij

“iqp; iq “ip

The algorithm in general considers a cost matrix of size
n(n-1)/2 where every distinct pair of locations and every distinct
pair of facilities have an appropriate cost entry, which is the

product of the distance between the location pair and total flow

between the facility pairs in both directions. Operationally both the

algorithm of Land and that of Gavett and Plyter commence by determining

an optimal linear assignment solution to the initial cost matrix, A

Thereafter Gavett and Plyter employ a specified method of successive

reduction method, whereas Land employs a column-reduced matrix at each
node. Both algorithms proceed level by level in the tree, adding one

new pair to the solution at each level, and backtracking to the lowest

00

20

level in the tree having an unevaluated branch. 1In selecting the pair to

be added at a given level in the tree, Gavett and Plyter use the

alternate cost method of Little et al. [1963], while Land always

selects from the column having the fewest number of feasible elements

in the column-reduced matrix Av'

As an extension to this procedure, Pierce and Crowston [1971]

formulated a linear problem for non-symmetric QAP as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



inimi . + ¢, . t. )
minimize (ip)- Ga) (ciipq Fijpa © Siqpi “iapj
]
n(n-1)/2 1 (5o
subject to Eq (tiqu + tiqu) =1 a i.,p
n(n-1)/2 n(n-1)/2 .
b, + ) t. .. =1 all (j,q) (2.1)
(ip? 1Jpq (ix) 1qJP

t.. , t. . =0,1 for all i,j,p,q.
1]pq 1q1p

Further feasibility constraints which must be satisfied, are

i .. =X,. X__ =
1f tlJpq le Pq
= = = . = 0
then  t; 9 = 0s toipg = 00 Eusa = 00 Bivkl
= = = =0
Cuvpl o, tuvlp 0, Euvkq s Cuvkq (2,2)

where i#u#j i#v#j pEk#fq&p#tl#aq

It is reported that the Gavett and Plyter algorithms require a
great deal of computational time; an eight-plant location problem,

which would be computationally equivalent to §é11 = 28 city travelling
salesman problem, takes 42 minutes on IBM 7074.

c) Pair-Exclusion Algorithms. Pierce and Crowston [1971] describe

such an algorithm, which is similar to the solution procedure discussed
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in the preceding section. The algorithm starts with an optimal
solution for the linear assignment portion of the problem. If the
feasibility constraints given by Equations (2.2) are satisfied for
all tiqu’ the solution obtained is an optimal solution to the QAP.
Otherwise, there are one or more conflicting assignments in the solution
rendering infeasibility to the QAP, The procedure therefore subdivides
the total set of feasible quadratic assignments into those that do
not include the partial assignments indicated by the optimal solution
to linear assignment problem. For example, if the optimal assignment
is (AB,14), (AC,24), (AD,13), (BC,34), (BD,23), (CD,13) this does
not satisfy the feasibility condition. It means, at least one of
the assignments will not be present in the solution. This results
in a tree of nodes as shown in Fig. 2.3. Each node is then evaluated
and the one which has the least lower bound is chosen for further
elaboration. The resulting assignment at this node is checked for its
feasibility. If the solution is not feasible, the result is another
tree with a new level of nodes. This is continued until a node is
reached for which the optimal linear assignment is a feasible quadratic
assignment. The process is complete when no node is available whose
lower bound is less than the value of the quadratic assignment solution.
From the survey of above exact solution procedures, it can be
concluded that the QAP is an extremely difficult combinatorial problem.

Undoubtedly, the branch and bound integer programming approach preclude
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several classes of assignments from consideration. But still these
procedures become computationally infeasible if n, the number of
facilities to be located, is greater than 12, in which case it
might be no better than an exhaustive search. The question of what
is theoretically possible is yet to be proven.

Because of the obvious difficulties experienced in the
development of exact solution procedures, several researchers have
considered this problem from the point of view of developing

heuristic procedures. These are described in the next section.

2.2 Heuristic Solution Procedures

A heuristic technique, as defined by Nicholson [1971] may be
stated as a method for solving problems by an intuitive approach, in
which the structure of the problem can be interpreted and exploited
intelligently to obtain a reasonable solution.  Heuristic methods lend
themselves ideally to fast computing methods, which usually involve
the scanning of many alternative solution attempts, and selecting the
better or best of these solutions according to specified criteria
[Hitchings and Cottam,1976]. The heuristic procedures which have been
developed in the past, to solve the QAP may be classified under the
following groups.

(i) Construction Methods.
These methods start with a null solution and proceed to build a

complete permutation. For a problem involving n facilities, the
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method terminates in (n-1) steps by making successive assignment of
facilities to locations and adding them to the null solution.

There are several computerized layout programs based on construction
.methods, such as PLANET by Apple and Deisenroth [1972], "RMA comp I" by
Muther and McPherson [1970], CORELAP by Lee and Moore [1967], ALDEP by
Seehof and Evans [1967], LSP by Zoller and Adendorf [1972] and LAYOPT
by Matto [1969]. However, as Francis and White [1974] pointed out,
ALDEP and CORELAP are the most representative of the construction methods.
CORELAP chooses facilities in terms of their relatedness to those which
have already been assigned, First, it assigns the facility with the
most interaction to a central location. It then chooses the ‘most
related' facility, that is, the facility which has the most interaction
with the assigned facility, and assigns it as nearby as possible. 1In a
similar way, it successively chooses the most related facility, among
those unassigned, and assigns it nearby the assigned facilities. ALDEP
is similar to CORELAP, since it also chooses the facilities in terms of
their relatedness to those already assigned. However, its first choice
is made randomly, as well as subsenuent choices when there is little
relatedness.

Gilmore [1962] presented two construction algorithims, one
requiring on the order of n4 elementary operations, and the other on the
order of n5 operations. These are based on the stage decision process,

where each stage facility assignment not chosen earlier is added.
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The process 1is repeated until all the facilities are located. The
first algorithm chooses the facility assignment according to some
criteria based on the cost in the lower bound cost matrix. The
second algorithm, in addition, solves one linear assignment problem
at each stage. The facility assignments are chosen according to some
criteria on the basis of cost elements appearing in the assignment
problem solution.
Graves and Whinston [1970] presented an algorithm based on the
mean value consideration. At each stage, it chooses that facility
assignment which minimizes some mean value function of all remaining
assignments. Thus, if k facilities have been located, at (k+1)th stage,
it calculates the expected final influence of the remaining n-k facilities.
This procedure compares favourably to Gilmore's n4 and n5 algorithms.,
Edward,et al.[1970] proposed the Modular Allocation Technique
(MAT). This is based on the theorem that the sum of pairwise products
of two sequences of real numbers is minimized if one sequence is arranged
in increasing order and the other in decreasing order. Given the
matrix of flows among the facilities and the matrix of distances between
locations, MAT arranges all pairwise flows and distances in descending
and ascending orders, respectively. It then selects the pair of facilities
which has the highest interaction and locates them to the pair of locatioms
which have the lowest distance between them. Next it selects the pair

of facilities which has one of the assigned facilities. The pair of
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locations are also selected in such a way that one of the locations

is already occupied. These selected pairs give rise to the location
of a new facility. Suppose facilities i and j are selected initially
and facilities m and j are selected next. And suppose locations p and
q are selected initially and locations q and r selected next. The

assignment 1is then made as follows:

Facilities Locations
i. P
j q
m r

This procedure is repeated until all the facilities are assigned.
Weingarten [1972) developed a construction procedure termed as p
algorithm. It is based on ranking the facilities and locations. Each
facility is ranked according to the total number of interactions between
itself and other facilities. Each location is ranked according to
sum of the distances from itself to the rest of the locations. The
complete solution is then obtained by assigning the facilities, ranked
in a descending order, to locations, ranked in an ascending order.
Weingarten further discusses the optimality and non optimality of the p
algorithm,
Neghabat [1974] presented an algorithm in which two facilities
having the greatest amount of interaction are first arranged arbitrarily

at their minimum allowable distance. Next the facility having the largest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interaction with the first two facilities is located as close as
possible. Once the relative distances are established, the overall
cost of each partial arrangement can be computed. The arrangement
that corresponds to the minimum cost is selected for the next
iteration. 1In general, at each stage of the process, the oncoming
facility having the largest overall interaction with previously
selected facilities is located relative to the already established
configuration (i.e., previous ordering remains the same) such that
the objective function up to the present stage is minimized. The
process terminates when all n facilities have been considered
individually.

Parker [1976] in his comparative study discusses RAND and BEST
MATCH in addition to above construction procedures. RAND generates
random assignments. BEST MATCH is similar to the P-algorithm
developed by Weingarten [1972].

(ii) Improvement Methods.

These methods start with an arbitrary assignment and iterate from
one assignment to the next, changing pairs or triples of facilities
until no more improvement is possible. Several heuristics have been
developed using this concept.

Hillier [1963] developed an improvement method, based on a Move
Desirability Table (MDT). 1In the literature it is referred to as H63.

The MDT calculations are based upon the cost benefits accrued by

unilaterally moving a facility to an adjacent location (left, right,
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up or down). In this procedure an initial assignment is chosen
randomly, then the facility with the highest MDT value is investigated
for adjacent interchanges. If it improves the cost, the exchange 1is
executed. Otherwise, the facility having the next highest MDT value
is examined for the exchange. The process is continued till no
further improvement is possible.

Hillier and Connors [1966] later revised the H63 procedure by
permitting exchanges among non—adjacent facilities, and thus allowing
a large number of facilities to be investigated. 1In the literature,
the revised procedure is termed as Hc63-66,

Armour and Buffa [1963], and Armour and Buffa [1964] developed
the computerized relative allocations of facilities technique (CRAFT).
This technique starts with an arbitrary assignment and interchanges all

n(n-1)/2 pairs (or else all n(n-é?(n-Z) triples), choosing the

assignment which has the lowest cost. In this manner, it goes from
assignment to assignment, until no improvement is possible. Thus, the
process explores all the solutions in the neighbourhood of a given
solution, and chooses the best one as the next starting point.

In order to reduce the computational effort required by CRAFT,
Vollmann et al. [1968] have devised an alternative procedure, which is
sometimes referred to as COL dr VNZ procedure. This procedure consists
of two phases. Phase 1 identifies two facilities, say M

: 1 2

have the highest and second highest total costs. Then a prescribed

and M, that
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interchange procedure is followed to improve the assignment. The
choice of facilities is motivated by the fact that interchanging these
two facilities with others will lead to a greater reduction in total
cost than that obtained by most other choices of two facilities. 1In
phase 2 all pairwise interchanges of facilities are checked twice, and
interchanges are made when the total cost is reduced.

Khalil 1973 proposed the method of Facilities Relative Allocation
Technique (FRAT) which combinees the basic ideas of several heuristic
techniques, mainly, those of Hillier and Connors [1966], Vollmann, et
al. (19681, Armour and Buffa [1963], Buffa and Armour [1964].

Hitchings and Cottam [1976 ] presented the Terminal Sampling
Procedure. Like Khalil [1973], they also embrace many of the desirable
elements from previous heuristics which would tend to contribute
towards the efficiency and quality of the solution. In this procedure,
the pairwise exchange is carried out on a selective basis, similar to
COL. 1In case of ties, the iteration is continued for all the tied
assignments.

Parker [1976] proposed nine improvement algorithms based on

pairwise interchange methods for his comparative study. Except for

CRAFT, all methods considered select as the new basis, on any given

cycle through the facility interchanges, the first interchange rerulting
in a decrement of the objective function value. These procedures differ

from each other with respect to three parameters: restart, ordering of
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component pairs, and update of component ordering. The nine
procedures thus developed having the above characteristics, can be
described as in Fig. 2.4,

Elshafei [1977) developed a heuristic technique, which is a
combination of construction and improvement procedures. After
developing an initial solution, the pairwise interchange procedure
is used to improve the solution. To obtain an initial solution, two
methods are proposed. One is similar to Weingarten's [1972] except
that the ranking of a facility is based on the number of facilities
having interaction with this facility. The second method constructs
the initial solution, at any stage k, by choosing the facility which
has the maximum interaction with the most recently located facility,
and locating it at a location which causes minimum increase in the
total cost. This procedure is continued until all facilities
are located. 1In the development of his algorithm, Elshafei combines
both methods to develop the initial solution.

(iii) Algebraic Methods.

These methods generally seek the solution in some simultaneous
fashion. In most cases, a relaxation is first emploved which gives
lower bound on the optimal solution. Then subsequent
operations seek to perturb this solution in the least damaging manner
to the objective function value so that the initial restrictions to the

problem are met.

One such approach is due to Gaschutz and Ahrens [1968]. The
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method, which is based on the procedure proposed by Kodres [1959],
relaxes the indivisibility constraint so that facilities are assigned
on a continuous grid. A linear assignment algorithm is then used to
locate the facilities at appropriate discrete positions,

The procedure assumes that the distances are specified monotonic
functions, and that the set of possible locations is a set of points
which can be embedded into a rectangular array of locations in the
plane. 1Initially the facilities are placed randomly or according to
a prescribed procedure. The coordinates are then transformed linearly
such that the sums Z x, and Z v; become zero and the sums Z xi2 and

2 1 1 i
Z Y become equal to the corresponding sums for the coordinates of
;iven locations to which facilities would be finally assigned., This
ensures that the initial random collection of points in the plane
covers approximately the same area that is occupied by the given
rectangular array of locations, centered at (0,0). The following
transformation is then applied to all initial placements simultaneously.

Z.% = - ) ) )
: (1 tgflp)zl+tgflpzp

where Zi* and Zi are new and old coordinates, and t is a constant
factor, chosen freely.

The above transformation is repeated a given number of times
with linearly decreasing factors t until f reaches zero.

This procedure leaves the placement of facilities into the

positions that correspond only approximately to given locations. It
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is then discretized to definite locations by the Hungarian method
developed by Kuhn [1957].
(iv) Stochastic Methods.

These methods employ some random methods as an adjunct to other
major solution procedures. This usually occurs when a random solution
is generated as a starting point for some improvement algorithms, or
when ties are broken randomly.

CRAFT, proposed by Armour and Buffa [ 1962] begins with a random
assignment, but derives each successive assignment deterministically.
Nugent, et al. [1968] developed a biased sampling technique, which
modifies CRAFT by choosing interchanges on a probabilistic basis. If
Si is the amount by which the cost of an assignment has been reduced,
by the ith interchange which has a cost reduction, the probability of

choosing Sj is then given by

where Pj = probability of selecting jth pairwise exchange

(o]
]

a parameter to vary the effect of cost reduction

=
]

number of pairwise interchanges with cost reduction.
The procedure is to associate high probabilities to interchanges in
relation to their cost reduction. This, in effect, explores the

neighbourhood of the CRAFT solution, the size of the neighbourhood
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being determined by c.

2.3 Computational Experiences and the Comparative Studies

In the preceding section,.the basic concepts of different
algorithms, developed in the past, were summarized. No mention was
made of their applications and relative superiority. The purpose of
this section is to summarize the available experiences on different
algorithms and their comparative performance.

The exact solution procedures are reported to be feasible for
solving only small size problems (n < 15). Obviously, such procedures
consume a graat amount of time; it may therefore not be surprising
that comparative studies are not available in the literature. However,
Maybee [1978] reported his algorithm to be efficient as compared to
Lawler's [1963] algorithm; for a problem of size 12 x 12, he showed his
algorithm to be superior by two orders of magnitude. Pierce and
Crowston [1971] have given the experiences on branch and bound procedures.
They state that it is difficult to assess the relative efficiency of the
different algorithms, because it is highly dependent on the particular
form of the QAP being solved.

Heuristic solution procedures have been developed from the point
of view of solving moderate and large size problems in the light of
(i) solution efficiency; (ii) solution quality; (iii) solution
diversity. Solution efficiency means the time it takes to apply a

specific approach to obtain a solution to a specific problem.
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Solution quality is defined as the proximity to the optimal solution.
Solution diversity indicates the capability of generating different
solutions. If the algorithm always produces the same solution (which
need not be optimal) to a problem, it is much less valuable than a
second one producing many solutions.

The first comparative study of heuristic procedures is given
by Nugent, et al. [1968]. They compared H63, HC63-66, and biased
sampling in the light of the first two solution standards. Eight test
problems were used for this study. It was concluded that H63 is inferior
to HC63-66 on both counts. They also reported that CRAFT produces
somewhat higher quality solutions than HC63-66, but the'computation
time was found to increase by a factor of n3, whereas HC63-66's
computational time increases by a factor of n2. Biased sampling produces
better quality solutions over CRAFT but its computational time increases
by a factor of na.

Edward, et al. [1970) summarized the results of CRAFTand MAT.
They discussed the superiority of MAT over CRAFT from the point of
view of computational time but at the expense of the solution quality.
It was further suggested that MAT could be used to construct the
starting solution for the improvement methods.

Ritzman [1972] made a comparative study on CRAFT, HC63-66, ALDEP,
and Wimmert's procedure. It was concluded that the best performer,

in terms of solution quality, solution efficiency and solution diversity,
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was CRAFT. The HC63-66 method was found to be competitive with
CRAFT, the differences being small.

Neghabat [1974] compared his construction procedure with other
existing heuristics and concluded tﬁat his procedure was capable of
solving large size problems that were interactable from the computational
view point. However, no emphasis was given to the solution quality. Thus,
the solution may not be better than a randomly, chosen assignment.

Francis and White [1974] reported that no construction procedures
developed to date such as ALDEP, CORELAP, PLANET, etc., have been shown to
be clearly superior to the best improvement procedures, given by Nugent,
et al. [1968].

Khalil [1973] compared FRAT with HC63, HC63-66 CRAFT, COL and Biased
Sampling, and concluded that Biased Sampling method provides favourable
results from the point of vie of solution quality. But with respect
to the solution efficiency, COL was found to produce the solution, using
the least amount of computational time. If Biased Sampling is discarded
(because of excessive computational time) FRAT becomes next on the list
for higher quality solutions (FRAT was reported to take slightly more
computational time than COL). This indicates the.difficulties involved
in comparing the procedures on time basis of a single criterion.

Parker [1976] tested four construction and nine improvement

procedures. The constyruction procedures tested were RAND, BEST MATCH,

MAT, GW (Graves and Whinston). It was concluded that, among the
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construction procedures, the GW procedure produced high quality solutions,
but the computational times for these heuristics varied inversely with
solution quality. Among the improvement procedures, CRAFT produced higher
quality solutions, on the average, than other improvement procedures.
However, this superiority was attained at the expense of additional
computation .time, as all greedy interchange methods tested yielded solutions
more quickly than CRAFT. It was further concluded that the GW procedure,
when used for constructing the starting solution for improvement procedures,
produced higher quality solutions as compared to the different starting
solutions obtained by other construction procedures such as RAND, BEST MATCH |
and MAT. It was thus concluded that the GW procedure may be used to generate
the starting solution for improvement procedures. GW method though restricts
the algorithm to explore the vicinity of only one particular assignment.
It doesnot have the capability to generate more solutions unless it is
modified.

Elshafei [1977] compared his method with HC63, HC63-66, CRAFT, Biased
Sampling and Neghabat's, and showed its superiority over other algorithms.
He demonstrated the capability of the algorithm to construct different
starting solutions and generate improved solutions. He further applied the
algorithm to a practical problem and showed the superiority of the algorithm
by achieving 19.2% improvement in the result as compared to Khorshid and
Hassan [1974].

Hitchings and Cottam [1976] gave some computational experiences on
their sampling method over H63, HC63-66, MAT, FRAT, CRAFT, COL and Blased
Sampling. They showed that terminal sampling procedure produces equivalent

or higher quality solutions in less computational time as compared to Biased
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Sampling (which is known to produce the higher quality solution). They
emphasized on embracing several elements from different heuristics so as
to generate better starting solutions for further improvement.

Bazaraa and Sherali [1980] demonstrated the use of their exact
solution procedure as a heuristic. It produces high quality solutions;
however, it consumes a great deal of computational time as compared to
the other heuristics.

For ease of reference the results of various heuristics which produce
reasonably good solutions, such as HC63-66, MAT, CRAFT, Biased Sampling,
Terminal Sampling, COL, FRAT,.Elshafei and Bazaraa and Sherali, are summarized
in the Tables 2.1 and 2.2. The quality of solution here is not a well defined
term. These are the solutions which are produced by several heuristics which
do not guarantee the closeness of the solution to the optimal solution.
However, the heuristics which produce closer solutions to optimal solutions
are referred to as high quality solution producing methods. Since the aim
of this study is to develop high quality solutions in an efficlent manner the
comparative timings given here are only for those methods which produce high
quality solutions. Other methods are either found to be inferior or so not
emphasize the quality of the solution.

2.4 Motivation

The previous discussion indicates that each procedure has its own
advantages as well as limitations, thus making it difficult to select the
"best'" procedure. However, using three main criteria, namely (1) solution
quality (2) solution efficiency and (3) solution diversity, it appears

appears that the best solution procedures are those of Bazaraa and
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Sherali ([1980], Hitchings and Cottam [1976], and Elshafei [1977].
Bazaraa and Sherali's procedure is based on the exact solution
procedure, while Hitchings and Cottam's, and Elshafei's procedures
are based on the improvement method. Comparative studies of these
procedures are not available in the literature. However, considering
the three criteria mentioned above, all three procedures have the
capability to generate improved starting solutions for further
improvement. The solution efficiencies can not be compared, as
exact time comparisons are not easy to make due to differences in
computing systems and programming techniques. From the point of
view of quality of solution Bazaraa and Sherali demonstrated the
ability of their procedure in producing high quality solutions but
at the expense of computational time. On the other hand, Elshafei's
and Hitchings and Cottam's procedures produce solutions with
reasonable quality in a comparatively efficient manner. Thus,
although improvement methods are the best solution procedures
developed so far, they are dependent on the starting solution. The
neighbourhood surrounding this assignment is questionable and may not
contain any improved solutions. Moreover, this neighbourhood may be
just a collection of random assignments with no structure. In such
cases it can not be said that these procedures are more effective
than an arbitrary choice of assignments [Weingarten, 1972]. Also,

from the viewpoint of efficiency, various starting solutions need
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to be investigated before reaching a ''good" solution. As

problem size increases, the solution space increases drastically,
with the result that an unproportionally large number of starting
solutions would need to be investigated.

Despite these difficulties in developing both heuristic and
exact solution procedures, there is continuing interest in both
directions, that is, the development of exact as well as heuristic
methods. In many instances, such as layout of . plants, offices
or departments in a building, the decisions are of a permanent
nature. Therefore, it is desirable to have exact or high quality
solutions available; otherwise, under the adopted configuration,
the system would be operating inefficiently, and as a result, there
would be cumulative losses overtime. The interest in high gquality
solutions, even for moderate size problems (12 < n £ 30), is
evident from the fact that the test problems reported by Nugent, et
al. [1968] have become a challenge to the researchers.

On the other hand, heuristic procedures have been developed so
as to provide practical methods of analyzing and solving many
problems encountered in manufacturing industry, such as line balancing,
site location, scheduling, routing, design problems, etc. However,
as Hitchings and Cottam [1976] point out, the heuristic methods
developed in the past are being criticized because of the excessive

computational times entailed in their applications. They further
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suggest that these procedures be re—examined and suitably
modified in the light of previous findings so as to improve their
efficiency and solution quality.

Having recognized the necessity and importance of the solution
to the QAP, it is the purpose of this study to develop efficient
heuristic procedures so as to obtain high quality solutions for the

QAP.
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CHAPTER III

DEFINITION OF PROBLEM

AND OUTLINE OF SOLUTION METHODOLOGY

3.1 Introduction

In this Chapter, the quadratic assignment problem is defined,
and the outlines of the solution methodology proposed are described.
The problem studied here is the Koopmans-Beckmann problem, which is
formulated in section 3.2, In the next section, the iterative
solution procedure is identified and the solution methodology is
proposed, followed by a summary of the steps necessary for the

development of the algorithm.

3.2 Formulation of the Problem

Consider the objective function of the QAP written as

B = )L oeiipg %i5 %pq
ij pq ‘
= ) X; 5 ) ®iipq *pq (3.1)
ij pq P

where ciqu ig defined as the '"cost'" per unit time of having facility
j located at site i and facility q located at site p, and where the

permutation matrix X = [xij] satisfies the following constraints:

45
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n
2 X.. =1 for i=1,..,n
=1 Y
n
Z x.., =1 for j=1,..,n
i=1 4
x.. =0o0r 1l
1]

xij . xiq =0 if § # q
.. o x, =0 if i #
*ij " B3 P

£(X) = gj X, 5 [cijij (xiij =1i, q=j) + gq ¢4 ipq
P#i,qa‘j
= Z X, [ci'ij + Z ciqu qu]
ig M pq
p#i,q%]
= z b.., x
i3 ij 7ij
where
= + (o] X
byy = Ciysg* L Cispq Fpg
Pq
p#i,q#]
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The term bij may be defined as the "cost" of locating facility j at

site i, The equivalent Koopmans and Beckmann problem can be formulated

by defining the coefficients as

aij +W'ij dii if i=p, j=q
c.. =
1]pq
w. . d, otherwise
jq ip

Hence the problem reduces to the determination of the permutation matrix

X so as to

Minimize £(X) = )] b.. x,. (3.4)
2. 13 1]
ij
where
bi' = aij + w.q di X
] pq 19 1P Pq
p#i,q#]

The new matrices, A = [a,.], W= [w. ] and D = [d. ] are defined in
ij jq ip

Chapter 2,

In many practical formulations, including the present

study, aij is assumed to be zero for Vlj.
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3.3 Outlines of the Solution Methodology

The combinatorial nature of the problem indicates that for a
case involving n facilities, there are n! possible permutation matrices
X = [xij]’ that is, there are n! possible assignments of facilities
to locations. It is computationally infeasible to generate all
possible permutation matrices for Woderate to large values of n.
Therefore, the procedure proposed in this study generates certain
sets of permutation matrices for further investigation. The methodology
behind this procedure may be explained as follows.

In Equation (3.4), it is noted that if b i.e., w, are zero for

137%13° ja

all (j,q), the problem reduces to that of linear assignment, and any of
the existing techniques could be used to solve it. In QAP, however, the
bij‘s are dependent on the relative locations of facilities. This
implies that, depending on the configuration of facilities, each

b may assume (n-1)! values. The prohlem is how to compute the

1j

values of bij"s so that the solution of a linear assignment problem
would minimize the function given by Equation (3.4).

The solution method proposed in this study is based on the following
approach. As a preliminary trial, we may set the values of b..'s at
their lowest level, and solve the resulting LAP. If the optimal
objective function value of the LAP equals the objective function value

of the QAP, the optimal solution is obtained. However, in most of

the cases this is not realized because of the fact that the
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permutation matrix may not have actual (optimal) values of bij's

associated with its assignment. The next step therefore is to determine the
values of bij's which are optimal. The amount by which the current

value of bij (set at its lowest level) deviates from its actual value,

derived from the solution to LAP, is defined as the "discrepancies'.

For example, consider the cost of locating facility j at site 1

given by
b,, =) w. d. x (3.5)
i Ja i
] pq P P4
p#i,q#]
Let the values of bij's computed such that the function given

by Equation (3.5) is minimized. These values of bij may or may not

be the results of the assignments, which minimize Equation (3.4) and

have the allocation of facilities j at sites 1 for all values

of ; and j respectively. The deviations in the values of bii's thus

obtained are referred to as discrepancies. The values of bij's

must therefore be adjusted such that

-1

Pa
P#iaq#j

w, d. x (3.6)
JjqQ 1p pPq

b. .
ij

where [xéq]is the permutation matrix which minimizes the function
L]

£,.(X>=] b
ij
Pq

pq qu (3.7)
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The solution methodology thus seeks to remove the discrepancy
in the values of bij's in a number of iterations. Once all the values
of bij's have been adjusted, a permutation matrix X is obtained
which minimizes Equation (3.4). The objective function value
corresponding to this permutation matrix represents a new, improved
value for the solution to the QAP. The procedure is then repeated
until a desired accuracy in the solution to the QAP is obtained. The
basic steps used in the development of this procedure can be summarized
as follows:

Step_l: construction of matrix B of lower bounds on bii's, the costs of

locating facilities at different sites.

the LAP which minimizes the function given by Equation (3.4)

with respect to current values of bij's as obtained in matrix

50

B. If the actual objective function value corresponding to this

permutation matrix is equal to the lower bound, stop; otherwise

proceed further.

Step_3:

Improving the elements of matrix B.
3.1 Fix facility q at site p such that

B = [b,,1] i#p, q#k

Pq ik

3.2 Determine the permutation matrix by solving the LAP which

minimizes the function given by Equation (3.4), and which
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includes the allocation of faclility q at site

!
p. Let the reduced matrix be qu and the resulting

permutation matrix be xt = [xzi]. Adjust the value

in the cell (p,q) of matrix B such that

t

b = w d, . .

Pq Ej ja “ip Fij
i#p, dtq

3.3 Repeat steps 3.1 and 3.2 for p=1,..,n; @ = 1,..,n.

to current values of bij'

Repeat the whole procedure as long as the objective function value

is improving.
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CHAPTER 1V

FACTORS INFLUENCING THE SOLUTION OUALITY

4.1 Introduction

In general, in step 3.2 of Section 3.3, there may result
different permutation matrices XY, In such cases evaluation of
partial cost bpq needs further investigation, due to the fact that
different values of bpq’ obtained by using different permutation
matrices, might affect the objective function value as well as the
total number of iterations. 1In this respect, three criteria for the
selection of the permutation matrix are proposed for further

investigation in conjunction with the algorithm.

4.2 The Best Assignment Criterion

The partial cost bpq is improved according to permutation matrix
Xt*, which minimizes the objective function given by Equation (3.4).
The matrix consists of the admissible cells in the reduced matrix
B'pq obtained in step 3.2 of Section 3.3,

The idea of improving bpq with respect to the best assignment
is to compute all the bij's from the least costly assignments. It

is, therefore, expected that the final permutation matrix comprising

these bij's would result in a solution of high quality.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The investigation of this criterion is, thus, based on the
evaluation of the best assignment obtained from the permutation
matrices in step 3.2 of Section 3.3. This réﬁuires a systematic
procedure for identification and evaluation of these assignments.

In this regard, Murty [1968] has described a procedure which ranks

all the assignments in the order of increasing cost. The method
requires the solution of at most (n-1) different assignrents to

obtain just one additional assignment having the same or higher cost.
Since in the course of investigating the present criterion, we only
need to generate assignments which have the same costs, it would be
computationally infeasible to use Murty's algorithm without the
necessary modifications., It is the purpose ¢{ this section to develop
a systematic and efficient procedure for generating iSO cost
assignments, based on Murty's algorithm.

The basic steps used by Murty in ranking the assignments can
be summarized as follows [Murty, 1968]:

(1) Find the permutation matrix X% which minimizes the given objective

function for the LAP. Assume this matrix is:

where i and j are site and facility indices, respectively.

Place the optimal solution in the list. Initialize the parameters

t =1and d = 0.
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(2) Remove the least costly solution from the list and output
this solution as X©.

(3) 1f X% is obtained by fixing facilities jl,..,id at sites
il,...,id, respectively, then leave these facilities fixed
as they are, and create (n-d) new nodes or problems by fixing

the rest of the facilities as follows:

M ={X, . =1,...,X. . =1,%X . =0}
d+1 Lh igdg 1441741

M ={X., . =1,...,X. . =1, X. . =1, X, . = 0}
d+2 14 1434 la+17g+1 LTa+27d+2

M — = {x. L] = 1,.."x. L3 = l’ X. > = 0}
n—d 10 1h-d-19n-d-1 1h-ddn-d

Compute the optimal solutions to each of these (n-d) nodes and
place each solution in the list together with the record of
facilities which were fixed for each of them, Set t=t+l and

go to step 2.

When this basic algorithm is applied to find several solutions
having the same cost, it requires solving (n-d) different assignment
problems, one each of size 2,3,..,(n-d), with respect to the
corresponding nodes, just to obtain one additional assignment. If

there are K solutions having the same cost, it requires solving
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K(n-d) assignment problems. Here d is a variable which depends

upon the number of facilities fixed for a particular node.

Modification to Murty's Method

Several assignments having the same cost can be obtained by just
solving one assignment problem using Hungarian or any other improved
methods. Other assignments follow by branching the first assignment
into different nodes exactly as in Murty's method. But all these
nodes are not solved in the assignment; instead they are checked for
feasibility to qualify for an assignment having the same cost. If
the node is feasible, the assignment is made and recorded in the
list together with facilities which were fixed for that node.
Infeasible nodes are mnot recorded.It is further noted that in this
procedure, to determine the assignments, which are made with respect
to feasible nodes, it is not required to carry out all the
computations; some steps, such as the reduction of the cost matrix
may be saved.

The modified procedure for generating the permutation matrices in
connection with the proposed procedure in Chapter 3 can be outlined
as follows:

(1) Store the permutation matrix xt identified by the LAP algorithm
in step 3.2 of Section 3.3. Place the permutation matrix
x* = b{Ej] in the list. Find the QAP's'objective function value

hd » . . [ *
C1 according to this permutation matrix, and store 1t in Xt .
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Output the solution Xt, t=1, and initialize parameter d=0.
(2) 1f X" is obtained by fixing facility j, j=ij,..,ij, at site

i, i=i1,...,id, respectively, then leaving these facilities

as they are, find another permutation matrix which satisfies

the following:

X, o =1, X . =1,...,X . =1, X = g,
191 1939 dJd d+13d+1

(3) If permutation matrix in (2) consists of only the admissible
cells of the matrix B;q, go to step (4), otherwise go to
step (5).

(4) Find the QAP's objective function value,C, according to the x
permutation matrix obtained in step (3).C2 is less than or
equal to the minimum cost cost found so far; store the permutation
matrix in X* 3 add this solution to the list, i.e., t=t+1 and then
.go step (2), otherwise go to step (5).

(5) sSet d = d+l. If d < (n-1), go to (2); otherwise set d = O,
Delete the permutation matrix just considered from the list,

and pick the next permutation matrix. If list is empty, stop,

otherwise go to step (2).

At the end of the application of above steps we have a

oda

. . t~ . . .
pPermutation matrix X~ . This matrix is then used to evaluate b

in step 3.2 of Section 3.3.

A computer code, developed by Metrick and Maybee, with a number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



modifications, listed above, has been used for generating best
assignment in this study. A listing of this computer code is given

in the Appendix 1V,

4.3 The. least-Allocation-Cost Criterion

The cost bpq is improved according to the
permutation matrix Xt* which minimizes bpq and consists of
admissible cells in the reduced matrix Béq obtained in
step 3.2 of Section 3.3

The idea of improving bpq with respect to the least-allocation
cost is to compute all the bij's such that they assume
their smallest values. It is therefore expected that the final
permutation matrix comprising these bij's would result in a lower
value of the objective function.

The investigation of this criterion requires the evaluation of least
allocation <cost assignment in the reduced matrix resulting from
step 3.2 of Section 3.3. This idg done by formulating an LAP, which

is discussed below.

Formulation of LAP to Find the least-Allocation-Cost Assignment

1
The new LAP is formulated based on the reduced matrix [bii] in

step 3.2 of Section 3.3. The formulation is:

Minimize b,, = )
i

Yiq dip %p
o p “pq

pa‘i,q#j
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n
s.t. ) x,. =1 (j=1,..,n)

ji=p 4

n

2 X,: = 1 (i =1,..,n)
j=1

xij = 0 or 1 for all i and j

b' = oo for all b' # 0
Pq Pq

The solution to this LAP results in the permutation matrix
v

X~ which gives the least-allocation cost assignment. This is then

used to find the value of bpq in step 3.2 of Section 3.3.

4.4 The Psuedo-Random-Assignment Criterion

The cost bpq is improved according to the permutation matrix Xt*
identified by the LAP algorithm within the admissible cells in the reduced
matrix obtained in step 3.2 of Section 3.3. The investigation of
this criterion does not need any extra manipulation other than
that described in Section 3.3.

It 1s noted that the criteria presented here are in the order
of increasing computational efficlency. But the first two criteria
are expected to contribute to the solution quality more than the last
one. However, if there are no alternative solutions at each stage
for the evaluation of partial costs bpq’ all three criteria are

performed equally well.
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CHAPTER V

FACTORS IHFLUENCING THE SOLUTION EFFICIENCY

5.1 Introduction

In developing a solution procedure to 0OAP, computational
efficiency and quality of the solution are equally important. However,
most of the methods developed in the past, emphasize one criterion at
the expense of the other. That is, they produce either good quality
solutions in inordinate amounts of computer times, or inferior
solutions in relatively short times.

As mentioned earlier, the aim of this study is to develop a
solution procedure which takes into consideration both the quality and
efficiency criteria. The factors that influence the solution quality
were discussed in Chapter 4. The effects of these various factors on
computational time are different, depending upon the choice of the
criterion. The purpose of this Chapter is to study the factors that
affect the efficiency of the solution procedure in such a way that
the basic steps of the algorithm are unaffected. These factors are

explained in the following sections.

59
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5.2 Linear Assignment Problem (LAP)

The necessity of the study of LAP is obvious. There is a multi-
tude of LAPs which need to be solved at various steps of the algorithm.
The efficiency of the algorithm, therefore, depends to a great extent
on the efficiency of the LAP code used. There are several solution
techniques which have been developed in the past. Kuhn [1955] developed
the Hungarian algorithm. Munkers [1957] presented an algorithm which
is a variant of Kuhn's Hungarian algorithm. Branch and bound, and
linear programming approaches have also been used to solve the LAP
[Hillier and Liebermann, 1967].

Kuhn's Hungarian algorithm, which is used in this study, is known
to be the most efficient. But computer codes are not easily accessible.
The LAP computer code used in this study was developed by Metrick and
Maybee [1973], and is essentially based on the Hungarian method. It
contains a number of modifications to the Hungarian method in order to
make the computer code more efficient., A listing of the computer code

is given in Appendix V.

5.3 Determination of Several Solutions to LAP Simultaneously

It is seen that for a problem of size nxn, the algorithm, in
step 3 of Section 3.3, solves n linear assignment problems in
order to improve n elements (B(i k), k=1,..,n) of a given row i of
matrix B. The cost matrices corresponding to these n linear

assignment problems differ only in one column from one another, which
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points out the need for an efficient procedure to find the n
solutions in a more efficient way. The following description outlines
a procedure to find n solutions simultaneously with less computational

effort.

The method of finding simultaneous solutions which contain

one of the assignments xij(O) =1, j=1,2,..,n, is based upon the
reduced coefficient matrix. This is a matrix of non—negative elements
which 1s obtained at the end of the reduction procedure in solving
linear assignment problems (LAP). Suppose B(O) = bé?)

is the matrix of reduced coefficients; then the elements satisfy

the following conditions:

bi?’ > 0 for i = 1,2,..,n
i =1,2,..,n
) _ =
byy = 0 if x;; = 1

For any assignment problem, there is a reduced coefficient

5 (M) (0)

matrix , obtained from B in N steps, which has the following

properties [Kreuzberger and Weiterstadf, 1971]:

¢ 0

17 > i=1,2,..,n; j=1,2,..yn (5.1)
pM if x,, 9 = (5.2)
13 1]
w
ij = ALNj ﬁen (5.3)
j=1,2,..yn
where
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ALNj = LNj - L(O); ALNj >0 (5.4)

and

Iy

the minimum value of the objective function sought

in the assignment of facility j to site N.

(0)

(o
n

the optimal value of the objective function sought.

From (5.3) and (5.4) it results that

© _ .,
Lyy - F Pyj
Thus the elements bgsf of row N of the reduced coefficients

matrix specify the amount bv which the minimum objective function

value sought in an assignment containing N3 = 1 exceeds the value
L(O).
(N)

The method of finding the reduced coefficients matrix B,

which satisfies the conditions of (5.1) through (5.3) is described

below. This matrix would then be used to determine all the assignment

vectors which contain one of the assignments x ) _ 1, 3 =1,2,..,n

kj
for row k of the matrix.

(1) Find the reduced coefficients matrix B(O) = [big)] and
(0)

the permutation matrix X of the assignment problem.
(2) Add a constant MO > 0 to all the elements qi?), jen, of
row k of matrix B(O).

(3) Substract MO from all the elements of column 2. The index £

is obtained such that xkz(O) = 1. The results of steps 2 and 3
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are the following matrix:

bﬁ?) for i=k, j=2
(1) b0 4 M for i=k, j#%
) - M for itk, j=t
(0) .
bij otherwise

(4) Compute the parameter M, for the mext iteration:

- (1) (1) _
My = max { -by | by < 0} = -b
jen

ien
(5) Add Ml to all the elements of row r of B(l), and substract Ml
(1)

from all the elements of column t of B

(0) _
¢ =L

. The index t

is determined such that xr

(6) The results are the following matrix of reduced coefficients:

{ big). for i=r, j=t
b(l) +M o __ .
B(2) 13 1 for i=r, j#t
bi;) - M for i#r, j=t
S (1 .
15 otherwise

(7) The procedure is repeated until matrix B(n) is obtained. This

matrix contains n new permutation matrices which corresponds to
the assignments xki =1, j=1,2,..,n. The identification of

- these assignment vectors may be carried out using any labelling
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scheme.

The mathematical proof of this procedure is given in Kruezberger
and.Weiterstadf [1971], A summary of this paper is prepared in English

and appears in Appendix I,
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CHAPTER VI

SUMMARY OF SOLUTION PROCEDURE

6.1 Introduction

It 1s well known that the QAP is combinatorial in nature.
There are n! possible assignment vectors in its solution space. As
noted in the literature, it is computationally infeasible to generate
all the assignment vectors even for moderate values of n(10 < n < 30).
The algorithm summarized here, therefore, generates only improved
assignment vectors using sequential search procedure. The motivation
behind the solution procedure is given in Chapter 3. The solution
procedure starts by constructing a matrix of lower bounds on the
costs of locating facilities at different sites. It then seeks to
remove the discrepencies 1in the elements of this matrix by solving
a succession of linear assignment problems. Different criteria could be
used for removing the discrepencies in the elements of this matrix,
depending upon the quality of solution desired as discussed in Chapter
4. The efficiency of the solution using each criterion is dependent
on the computer code used for solving the LAP, The efficiency is
further improved by attaining n solutions to LAP simultaneously, hence

removing the discrepencies in n elements of this matrix in less

65
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computational time. This idea was discussed in Chapter 5.

The various criteria for improving the quality of the solution
require varying amounts of computational effort. The purﬁose of each
criteria is to determine an assignment to be used in Step 3.2 of
Chapter 3. If each criteria select the same assignment for improving
bpq in Step 3.2 of Chapter 3, the quality of the solution obtained
would be the same for each criteria. The algorithm summarized in
this Chapter, therefore incorporates only Pseudo-Random assignment criterion,
which obviously is the most efficient criterion from the view point
of efficiency. This algorithm would need to be modified, if other
criteria are used., If the Best assignment or least-allocation cost
criterion is used, the computer program given in Appendix
IV for generating best assignment or least-allocation cost assignment

must be incorporated in the algorithm.

6.2 The Algorithm

facilities at different sites [Francis and White, 1974].
1.1 Let w(k) be the row vector obtained from row k of matrix
W= [wij] by deleting the element in column k of row k
of w. Then, let w(k) be the row vector obtained by ordering

the elements of w(k) so that they are non-decreasing.
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1.2 Let d(i) be the row vector obtained from row i of the

distance matrix D = [di ] by deleting the element in

e

column i of row i of matrix D. Then, let d(i) be the
row vector obtained by ordering the elements of d(i)

so that they are non-increasing.

1.3 Fori=1,..,nand k =1,..,n, find the lower bound
matrix B whose elements are calculated as
= (w a1 '
bik fw(k)) [d(1i)]

where bik is a lower bound on the "cost" of locating

facility k at site i, as given by equation (4).

1.4 Solve the linear assignment problem (LAP) having the cost
matrix B = [bik]' Let the resulting permutation matrix
be X(O) = [fo)l. If the lower bound corresponding to

the assignment represented by this permutation matrix is

equal to its actual cost, stop; otherwise set the

parameter p=0, and go to step 2.

would normally solve n linear assignment problems in order to
improve the n elements (bik’ k=1l,..,n) of a given row i of matrix
B [Lashkari and Jaisingh, 1980 1. The cost matrices corresponding
to these n assignment problems differ in only one column with one

another, which points out the possibility of obtaining the n’
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solutions in a more efficient way. The procedure to find n
solutions simultaneously with less computational efforts has been
discussed in Section 5.3 of Chapter 5. The following steps outline '

the method of generating n solutions simultaneously. Let the

(0) = [b (0) 1

resulting matrix after solving the LAP in step 1.4 be B 13

and the permutation matrix be represented by X(O)=[x£g)]. The

(0)

matrix B , known as the reduced coefficients matrix, consists

of non-negative elements having specified properties; it is possible
)]

to reduce this matrix further in N steps, to a matrix B such that

it contains all the solutions which have one of the following

fox(])_) = 1, X(O) = 1,--,x(0) = 1 corresponding to a given
0)

m2 mn
row m of matrix X (see Section 5.3, Chapter 5). This matrix

allocations

can be determined as follows:

2.1 Set the parameters p = p+lL, k = p, N = 0, q = 1 and select £

such that xé3)= 1.

2.2 Increment parameter N by 1. For current value of N find B(N)
such that
0
bgj) for i=k, j=%
(N-1)
b.. -+ { = 1
g (M) _ [b(N)] - ij My-1 for i=k, j#2
ij N-1
bij‘ ) = M-N_l for i#k' j=2,
(N-1) .
bij otherwise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where M0 >> 0,

2,3 Find the parameter
M, = Max { —b?.’) | bi‘?) <0 =},—b£§)
ien ] ]

jen

2.4 Set the parameters k=r and 2=t, where t is such that

L(0) _

ot 1.

2.5 Repeat steps 2.2, 2.3 and 2.4 for N=1,2,..,n. The
final matrix B(n) thus obtained contains n solutions

which have one of the following assignments

XPl = 1, XPZ = 1,..,xpn = 1.

Step_3: Improving the elements of matrix B.

3.1 For improving the element corresponding to any cell (p,q)

of matrix B, delete row p and column q in the current

(n)

[bgz)], i#p, k#q. This step amounts to assigning

matrix B and denote the resulting matrix by qu. Thus

pq
facility q to site p.
3.2 1Identify the assignment of the rest of the facilities,
without further reduction of the matrix qu, using ahy
labelling scheme. Let the resulting permutation matrix

(¢) _ . (&)
= [x..71.

be X [
1

3.3 Replace the elements in cell (p,q) of matrices B(n) and B by

the new elements computed as follows: =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69



3.4

3.5

3.6

3.7

70

n
b= § w.d_ -b_ o+ b
.2, 43 pv pa pq
J
n
and b =) w.d where v is obtained such that
Pq 3=1 q] pv
() =,
V3
Repeat steps 3.1, 3.2 and 3.3 for q=1,..,n. This updates
the elements of the row p in the matrices B(n) and B.
Replace the elements in row p of matrix B(n) such that

b;2)= b;g%U) - M*., M* = minimum number of row p of matrix 3™,
This is done to achieve at least one admissible cell in row p.

Repeat steps 2.1 through 3.4 for p = 1,2,..,n.

Solve the linear assignment problem having the updated

(n)

cost matrix B = The cost of the resulting

b.. .
[ 1J]'
assignment is an improved objective function value of the

QAP.

Steps 2 and 3 are repeated as long as the objective function value of

the QAP in step 3.7 is improving.

6.3 Stopping Criteria

The solution procedure summarized above seeks to remove

infeasibilities in the elements of matrix B =

improved by finding a permutation matrix.

[b..]. Each b,. is
1) 1)

If the element b is
Pq

improved corresponding to the assignment vector defined by permutation

* t L4 *
matrix X~ , and the element brs corresponding to assignment vector

defined by permutation matrix xt , both assignment vectors may
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have one or more common elements (say (u,v) . But this element

(u,v) may be improved according to a completely different assignment
obtained from the solution to LAP in step 3. These situations may change
the direction of search and in some cases the procedure may tend to
oscillate with steadily decreasing rate of improvement in the solution.
It is therefore essential to stop the computation at some point where

|TCi - 1¢, _,|

2 €
i1

where TCi is the objective function value of the assignment obtained
at iteration i, If this criterion is not satisfied within a reasonable

number of iterations, the procedure could be stopped after a pre-

specified number of iteratioms.
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CHAPTER VII

DISCUSSION OF RESULTS

7.1 Introduction

The purpose of this Chapter 1is to discuss the performance of the
proposed algorithm from the view point of the efficiency and quality
of the solution. In this context, the algorithm is applied to
various test problems given by Nugent, et al. [1968], Elshafei [1977]
and randomly generated préblems of sizes ranging from 5x5 to 60x60.
The superiority of the algorithm is demonstrated and results are
discussed in section 7.2. Further, the sensitivity of the algorithm
to variations in the parameters of the distance or the flow matrix are

discussed in section 7.3.

7.2 Application of Algorithm to Test Problems

(i) Test Problems Suggested by Nugent, et al. [1968). 1In recent
years the eight test problems given by Nugent, et al. [1968] have
become a challenge to researchers. These problems have been solved
several times in the past using different approaches — and every year
some improvements are being reported. The proposed algorithm is

applied to these problems, and the computational results of the present

72
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algorithm, as well as those of Hillier [1963], Hillier and Connors
[1966], Armour and Buffa [1963], Nugent, et al. [1968], Khalil [1973],
Hitchings and Cottam [1976], Elshafei [1977], and Bazaraa and Sherali
[1979] are summarized in Tables 7.1 and 7.2. The data for these
problems are given in Appendix II.

From Table 7.1 it is seen that the proposed algorithm produces
high quality solutions for the problems under consideration. The
results are reasonably close to the best solutions known so far.
The''best cost assignment" criterion, as expected, is found to be
the most time consuming. The efficiency of this criterion is
dependent upon the number of alternate solutions resulting in step
3.2 of the algorithm. It is further observed that these 8 test problems
have numerous alternate solutions. The investigation of this criterion
for large size problems is therefore dropped. The "least-allocation
Cost" criterion was found to produce slighly‘higher quality solutions
as compared to 'pseudo-random-assignment' criterion, although this
ig at the expense of compuational time. But the differences in the
quality are not significant. In contrast to the improvement methods,
the proposed procedures is independent of the starting solution and
also converges rapidly. 1In all cases, the number of iterations required
to satisfy the stopping criterion at €= 0.05 is not more than 10,

The computational efficiency of the proposed algorithm, as

compared with other heuristic procedures, is shown in Table 7.2.
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Under each procedure, the left column shows the amount of time

spent to obtain the solution on the respective computer system, and
the right column indicates the equivalent time (wherever obtainable)
on IBM 370/3031 computer, the system we have used. The last column
shows the computational times of the proposed algorithm. In comparing
these times it should be noted that:

1. the conversion times are approximate.

2. the time reported for other heuristic procedures is only the
average time per solution. We recall that these procedures try
various starting solutions until a reasonable, final solution is
obtained. Thus the total computer time spent to obtain the final
results is many times larger than the reported time. Since these total
times are not available, it is indeed very difficult to compare the

computational time of our procedure with that of others.

(ii) Practical Problem Suggested by Elshafei [1977]. This is the
problem of relative location of clinics within a hospital department.
The objective is to decide upon the location of the various clinics

so as to reduce the total effort spent by the patients while moving
from one clinic to another. Thus the objective is to locate the
clinics within the given building, so as to minimize the total distance
travelled per year. The estimates of the patient flows among the 19
clinics and the distances among their locations are given in Appendix

III.
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This problem has been solved in the past, using three different
approaches. The original layout, with an objective function value of
13,973,298, is given by Khorshid and Hassan [1974]. Elshafei [1977]
solved this problem using his algorithm and achieved an objective
function value of 11,281,887, a 19.2% improvement over the original
layout. Bazaraa dn Sherali [1979] used their exact solution procedure
with premature termination to solve this problem, and achieved further
improvement in the layout, resulting in an objective function value of
8,606,274,

In this study, this problem is solved using the proposed algorithm,
with the pseudo random assignment criterion. The objective function value of
the best layout is found to be 8,683,664, which represents a 37.85%
improvement over the original layout and a 23.03% improvement over
the revised layout given by Elshafei. The difference in the quality of
the solution between Bazaraa & Sherali and the proposed procedure is
less than 1%.

The detailed results of computational time using the proposed
algorithm are summarized in Table 7.3. It is seen from the Table
that the algorithm is terminated after iteration #3 using a stopping
criterion of € < .0005. The total time required to solve the problem
completely is 6.497 seconds of CPU time. Elshafei reported that his
procedure took 136 seconds of CPU time on IBM 360/40 to obtain full

solution. Using a conservative conversion factor of 16 between
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TABLE ‘7.3

Summary of Results for Practical Problem.

Iteration

Number

[A]

Objective
Function

Value

[B]

12,178,865

8,712,748

8,687,067

8,683,664

Operations

Performed

[C]

Construction
of the lower
bound matrix

Updating the
lower bound
matrix

Time for the
Operations in
[C 1(sec)

[D]

0.936

1.846

1.849

1.866

Cumulative

Time (sec)

[E]

0.936

2.782

4,631

6.497
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IBM 360/40 and IBM 370/3031, the equivalent IBM 370/3031 time for
Elshafei's procedure would be 8.5 seconds. It means that the prOpoged
procedure reduces the computational time by 25%. Although Bazaraa and
Sherali's procedure produced higher quality solution, it did so at the
expense- of the computational time; it took about 96 seconds on a CDC
Cyber 70 model 74-28/CDC 64W computer. Thus in comparison, the
proposed algorithm produces reasonablv high quality solutions in

considerably less computational time.

(iii) Randomly Generated Large Problems. 1In the preceding sections
the results of various test problems were summarized. Although the
relative performance of the proposed algorithm is evidence from these
results, it is not possible to judge the efficiency of the algorithm
for large size problems, since the results are limited to problem sizes up
to 30x30. To alleviate this shortcoming, and in order to examine the
efficiency of the algorithm for large problems, a number of problems
varying in size from 30x30 to 60x60 were randomly generated and solved using
pseudo random assignment criterion. The average computational time per
iteratiog and the number of iterations required to solve these problems
completely are summarized in Table 7.4.

From Table 7.4 it is seen that the proposed algorithm can handle
large size problems efficiently. In most cases the number of iterations
required is not more than 10 to satisfy the stopping criterion at

€ = .002. For example, consider the problem of size 60x60; it takes
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7.4

TABLE 7.4

Summary of Computational Experiences on Large Problems.

' Problem

Size

Average Time per

Iteration (sec)

Number of Iterations

Required for < 0.002

30%x30
35x35
40x40
45x45
50x50
55x%55
60x60

9.8659
18.6460
29.3430
43.7560
65.8180
93.6120

131.0840

NOW Ny
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131.08 secs of CPU time per iteration and a total of 9 iterations to
obtain the final:solution. In contrast to this, the heuristic
procedures based on improvement method would need to investigate several
hundred starting solutions before achieving a reasonably good solution.
This is because of the fact that the solution space for QAP increases
tremendously with the increase in problem size. The plot of average
time per iteration for various problem sizes ranging from 5x5 to 60x60
is given in Fig. 7.1, which indicates the exponential nature of the
solution times as the problem size increases.

As for the improvement in the solution quality of large size
problems, it is observed that the rate of improvement in the objective
function value is very rapid in the first few iterations, but it
slows down in the subsequent iterations. This is shown in Fig. 7.2
which demonstrates the improvement rate for a problem of size 40x40.

Further, in order to obtain an indication of the optimality of
the solution, the algorithm was applied to a number of small size
problems whose optimal solution could be obtained by the branch and
bound or total enumeration method. The problems of size 4,5 and 6
were considered for this purpose. Fifty problems each of the three
different sizes were randomly generated and then solved. The results
are summarized in Tables 7.5, 7.6 and 7.7. Out of these 150 problems,
the proposed algorithm resulted in optimal solution for 109 problems.
For the rest, the results are very close to the optimal solutions.

This amounts to a probability of almost 73% of obtaining optimal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o o ' o o o o

A & 2 b=t K 8 = 3 A F

— i i ~

(4] ' T 1 T | T T T i )
. COLECOUW ML LWE mMEeWECECRE~OX | 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

60

Problem Size

.

per Iteration vs.

in Average Time

in

7.1 1Increase

Fig.



83

19qunN UOT3IBI93I] °*SA UOTIN[OS JO AJT[eny ayj Ul Juswsaolduy gz°*/ *314

¥3aUNN NOILWYILI .
8 m m ~. m m v n m a

O BRf n  Bv SN 2D AL S an on an 4 v v - -y v ~—v v Ty vrv-r YT vy -k.j

cof
eed
eet
eor
005
ea3

ees

€96

2031

80T1

eect

8oLl

eert

eesy

28091

1A

[erxer *80dd ¥04 3¥N0320dd 4350d0dd |

t T T T T T T T T T T T T T T
NOWID= O ODCHIMME=I> + O OO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

920" 0 sak 0s ze0° 0 sak (94
620" 0 sak 6% 620° 0 sak 4T
970" i) FETS 8% AN 0 .sak €2
620° 0 sak Ly 6£0° €68°2 ou 4
620° 0 sak 9y 9Z0° 0 sak 12
0’ 0 sak ) 620° 0 sak 0t
720° 0 sak Y 920° 0 sak 6l
9Z0° 0 sak £y se0° 0 sak 81
920" 0 sak Iy 620" $62°0 ou L1
920" 0 sak 1% 620° 0 sak 91
970" 0 83k 0y 9z0* L1z-o ou 44
620" 0 gak 6¢ zeo* ] sak y1
750" ) sadk 8¢ 150° 0 83k €l
620" 286°0 ou L 620" 0 sak zt
620° 0 sak 9¢ 620° 0 sak 1t
920" 0 sak Sg 620° 855°0 ou o1
620° 0 sak vE z€o° 0 sak 6
620° 0 gak te z90° ] sak 8
620° 0 59k A3 620" ] sak 3
6€0° et ou 1{3 620" 0 sak 9
620° 0 83k 0t 6%0° 0 sak S
620° 0 8ok 6Z 9z0° 0 sak Y
920° T4 AR ou 8z 620° 0 sak £
620* 0 sak Lz ze0° 0 sak z
920" 0 33k 9z sz0° 0 gok 1
wayqoad wajqoxd
ay) aajos uotjnjos unmildg 0N 3y3 aayos uoyrjnjos wnuiidg J0N
03 paunsuo) 943 woajy 30 pIAIIYIY Xaqunpy 0] paunsuo) a3 woij 30 pPaAlITYIY Jaquny
asut] TEIOL uoryeIASq Y 3soj 1ewridg wagqoxg Quyyl [e3I0L uot IR IAI(Q N. 3s0) [ewridg woayqot

4Xy 921§ WA[qO1J JO UOIJLIIUIH WOpUBY JO SI[NS3Y

6L dlqElL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

6%0° 00S°Yy ou 05 9%0° 80£°9 om MN
640" £L0°2 ou 6% 790° 0 mu» T4
9%0° £01°1 ou 8y z50° 0 uu» 154
180° 0 82k Ly z50° 0 mu» 24
8L0° 0 sak 9y 790° 0 83 1z
760" 0 sak Sy 6%0° ££9°0 ou ]
9%0° 0 , 8% Yy 6%0° s1z°1 ou 61
z50° ] sak £y $50° 9¢1°1 om g1
6%0° 0 83k 4] otl” 0 mu» Lt
9%0° ] sak 1y 6%0° 0 uu» 91
sLo’ 0 sak oY 650" 0 53 st
640" 0 sak 6¢ 650° L0 ou 1
6%0" ] 82k 8¢ 180" vt om £1
940" Lis°e ou Lg z50° 0 mu» z1
6Y°0 0 sak 9¢ 250" 0 59 1
250" 0 sa4 St 860° Lzl om ol
690° 0 s34 yE 6%0" 0 mu» 6
6%0° L06°1 ou £ $S0° 0 83 8
8L0° 166 Y ou 43 550° 08Z°¢ om t
9%0° 0 83k {3 $S0° ] mu» 9
o1° 0 sak ot $S0° 0 83 S
640" £56°2 ou 6C © o 8s0° 40L°0 om Y
9%0° 0 sak 8z 960° 0 mu» £
8L0° 868°0 ou Lz 401° 0 mo» z
SLo* 0 sak 92 6%0° 0 83 1
waf{qoxd wayqoid
Yyl 3Ayo uotinjog wnuyjdg 0} ay3 3afos uor3njos wnuiidg IoN
(o ] ”w:.—:mwonmv ’ .n woﬁu n-uo..-w 0 vu>0m£u< Hmﬁﬁzz 03 —-Unsmcoo USU EOH.« 0 —UQDHmn—M< E“un”w.:
sury 1e3ol uworjerAdq ¢ 150 1ewiidp wajqoag w1l 1P3I0L uotieIADg Y 1sog jruiidg apqoag

¢XG 221§ wWA[YOld JO UOIIR1I5U3) Wopuey JO SI[NSIY

:97L d19eL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

yie” 0 sak 0S5 1w 0 sak %4
$g0° 7e6°1 ou mQ/ wuio. 0£y°2 ou 74
8L0° 0 sak 8y uv 8L6°0 om €
ue: 0 sak LYy 121 0 89 T4
VIAN 0 52k 9y 980* %181 om 12
840" 0 534 Sy 880° ] m»» 0z
8L0" VA ou vy TA N 0 mu» 61
8L0" (] sak £y 980" 0 82 81
14N 0 sak 4] 0z’ gI1°1 om tt
980" 0 sak 1y $80° 0 89 91
gil- 0 sak oY 280° 056°0 om 41
gzl” 9¢6°¢ ou 6€ yI1° 0 »u» 1
6L0° 0 824 8¢ 991" 0 mu» £1
$80° 6ELY ou L 1z 0 m@» A
8L0° 0 sak 9t 181° 0 83 11
94N 168° ou SE 0ze” 60L°¢ om o1
12t 0 sak g 680" 0 wu» 6
o1z’ 0 sak £c 780° 0 moa 8
T4 N 060 ou 4 980" 0 mah L
z80° ] saf 1€ 880" 0 89 9
980° 0 sak ot Z80° 9£L°0 ou S
80" 0 s24 62 980" 1982 ou Y
8L0° 0 sak 82 960° 996°0 o“ £
091" 0 sak e £9z° 19671 o> Z
62’ 0 ou 92, ser” 0 59 1
waqoad - D wajqoagd
3yj aajos uotIniog wnuiidg I0N 8y3 aAlos uorjnjog wnuiidg 0N
03] paunsuo) |8yj woajy 10 pananypy Jaquny 03 paumsuo) ay3 woay 10 PAAITIYOY aaquny
auyy, 1e30] uorirIAlg g 3509 1ruiidp waiqoad swi] 1eIOL uoryelAeq ¢ 1soy jeuwiidg wapqoag

9XQ 2215 WA[qo1d JO UOTIEIUIY WOpPuUBY JO SINSIAY

L d1qelL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



solution when the algorithm is applied to a similar problem. However,
it should be noted that this observation is based on the results
obtained from problems which are small enough as to lend themselves

to exact solution. The results may not be extended to large problems

whose exact solutions are not readily available.

7.3 Sensitivity Analvsis

The preceding sections were devoted to a discussion of the
applicability of the algorithm to various problems. No mention
was made of the effects of varying the parameters of the distance
or flow matrix. A change in the parameters might result in a
completely new layout. For this reason, it is important to perform a
sensitivity analyses to investigate the effect on the layout,
provided by the proposed algorithm, if the parameters assume
other possible values. In some cases there may be parameters that can
assume any value without affecting the lavout. For instance, two
facilities can be located independent of each other if there is no
flow between them. However, when there are interflows among facilities,
a change in distance and/or flow parameters would result in a change
in the value of the objective function, but the layout may or may not
remain the same. It is noted that sensitivity analysis would be
expensive computationally, if it is necessary to reapply the proposed
algorithm to investigate the effects 6f a changed parameter on the

layout. Moreover, it is difficult to state, a priori, if the
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information derived by the algorithm at the final iteration could
be useful in any way to the process of sensitivitv analysis.
Therefore, investigation is carried out on several randomly generated
problems of varying sizes. The original problems are solved using
the proposed algorithm with the ''random assignment' criterion.
The effect of a parameter change in the distance or flow matrix,
on the original layout, is studied in two ways:
(i) By reapplying the proposed algorithm; and
(ii) By using the information derived by the algorithm at the final
iteration of the original problem. To elaborate, suppose matrix
BN is obtained at the end of the problem solving process in step
3.7 of the algorithm. The information contained in this matrix is
then used to perform the sensitivity analysis. This is achieved
by reapplying the algorithm to matrix BN starting from step 2. The
effect of the change in the parameter is taken into account in step
3.3 of the algorithm.

It is shown in the previous section, that the quality of the
solution improves rapidly in the first few iterations, but the
rate of improvement decreases subsequently. It is, therefore, expected
that if sensitivity analysis is carried out as explained above,
the number of iterations required to solve the problem completely,

and thus the computational efforts, would be reduced.

As an example, consider the effect of varying parameter w for

18

a problem of size 10x10. The data for this problem are given in
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Table 7.8. The problem is first solved using the random

assignment criterion. The layout thus obtained and the corresponding
objective function value are listed in Table 7.9. The parameter

Vg is then varied from 0 to 205 in steps of 5. The investigation

is then carried out by reapplying the algorithm as well as using the
information available in the last iteration of the original problem
solving process. The results are depicted in Figures 7.3 and 7.4

and Table 7.9. It is found that when the algorithm is reapplied,

the value of objective function increases with an increase in

the value of Vg However, the increase in the objective function

value does not necessarily mean that the layout would be different.

For example, from Table 7.9 it 1is observed that a change in the

value of wig from 0 to 25 results in different layouts. This is
represented by points A through G1 in Figure 7.3. As Vig increases

from 25 to 30, the layout remains the same, but the objective function
value increases. This is shown by joining points G1 and G, on the graph.
At Wig = 35, the layout changes again; point I on the graph shows this
new objective function value. However, as Vg increases from 35 to 40,
a new layout results, which remains the same for values of w,g greater

than 40. The objective function value, however, increases correspondingly.

This fact is depicted by the straight line joining points Jl,J «v. OD

2
the graph.

On the other hand when the sensitivity analysis is carried out

using the information. available in the final iteration of the original
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Fig. 7.3 Effect of varying parameter Vg on layout
when reapplying the algorithm.

9]



[
o
™ -
n\ -
(3]
=\ .
o~
= —
[~
o~
(ol .
o\
-t i o
-
o '\ =
o
4
"o\ ]
o
© ‘\ S
0 4
o
~\ ]
© c
\ &
-
[3) X;
[¥a)
%) ‘\ b=
-
o7\
=3
™ -
3 ‘\ ™~
o~ 7
<\ o
4 -
[ L¥o]
[T 1 .
m\
o
uf’"\\\\ n
L . -
m “\\\
o
~ 3
m
i
i ™~
=)
‘C\O [a]
b 4 2 ) 4 -
@ g ﬁ = Ao - - b @
Le L =4 L 1 4 L]
1) ~ o
<H—'\\ ™~
]
<\ R
o
) —
<
~ .
< o

Reproduced with permission of the copyright owner.

0067 + °nTEA uof3IdUNy 2A330ofq0

Further reproduction prohibited without permission.

change in wig

on layout

Fig.

7.4 Effect of varying parameter W,g
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problem solving process, the results obtained are summarized in

Figure 7.4. When the parameter w.., is changed from 0 to 30, the

18
layout remains the same. This is repeated by a line joining points

A1 to A7. There is a change in the layout when Vig is changed to

35. This layout is represented by By This layout then remains

the same until the parameter Vig reaches a value of 60, at which point
the layout changes, and the objective function value decreases. This
is represented by point Cl' The next change in the layout occurs

at point D1 which corresponds to a w,g value of 115.

1

Similar results are obtained when a parameter in the distance
matrix is changed. Figures 7.5 and 7.6 and Table 7.10, summarize
the results of a change in parameter dig in the distance matrix.

From these graphs and the Table, it is obvious that the nature of the
results are similar to those discussed above and can therefore, be
interpretted likewise.

As a further example, a problem of size 20x20 is considered, in
which the spread between the parameter values of the flow and distance
matrices is large. The problem data are given in Table 7.11. It is
assumed that parameter d12 varies. The results, which are depicted
in Figures 7.7 and 7.8 and summarized in Table 7.12, are similar to
those for the problem of size 10x10 and may, therefore, be interpreted
similarly.

As the above results indicate, no obvious pattern governing the

changes in the layout or in the objective function value is observed.
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The changes are dependent on the structure of the problem data.

However, in most cases, when sensitivity analysis is carried out

using previous information, it is observed that the value of

objective function increases but as the layout changes, the rate

of increase in the objective function value decreases. It is
interesting to note that the average deviation in the objective

function value obtained by the two methods (that is, reapplying the
algorithm, and using the previous information) is within * 5%.

This suggests that the effects of varying the parameters in the distance
or flow matrix can be studied in a much more efficient manner and without
significant loss in the quality of the solution, if information
available in the last iteration of the problem solving process is

utilized. However the layouts would be different in each case.

7.4 Effect of Using Pairwise Interchange Procedure in Conjunction

With the Algorithm

In preceding sections, the algorithm was applied independently
to various problems given in the literature as well as some randomly
generated problems. It was observed that the algorithm produced high
quality solutions for almost all the problems in a reasonable amount
of computer time. Because of the computational efficiency of the
algorithm, it was felt that 1f extra computer time is available, other
heuristic procedures could be used in conjunction with the algorithm

to further improve the quality of the solution. In this study, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

investigation is carried out to study the effect of palirwise interchange

procedure at various stages of the algorithm.

In general, there are N.n2+N assignments which are generated by
the algorithm, N being the number of iterations. Some of these assignments
could be generated several times :at various stages of the algorithm;
therefore, the actual number of new assignments generated by the
algorithm would be less than N.n2+N. No attempt was made to sort these
assignments, and the main emphasis was on improving the quality of the
solution using some or all the assignments generated. Therefore, the
following alternative investigations were carried out:

1) Application of pairwise interchange procedure to the final solution
produced by the algorithm, A(1l).

2) Application of pairwise interchange procedure to the intermediate
solutions generated at the end of each iteration, A(N).

3) Application of pairwise interchange procedure to the n2 assignments
generated in the first iteration of the algorithm, A(nz); the
algorithm is terminated at the end of the first iteration.

4) Application of pairwise interchange procedure to the N.n2 assignments
generated during the N iterations of the problem solving process,
A(N.nz).

It is obvious that the steps listed above are in the order of
decreasing efficiency. The comparative study of the results, from the
view point of quality and efficiency of the solution, is given in Tables
7.14 and 7.15. It is seen that the quality of the solution can be

improved and the best known solutions are obtainable in almost all cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

It is therefore concluded that high quality solutions can be achieved

by using other heuristics in conjunction with the proposed algorithm.
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Table 7.13 Effect of usirg palrwise interchange procedure
on the quality of the solution (objective function
value in unit costs).

Problem 9 2 Pseudo Best Known

Size. n A(1) A(Y) AT A(N.n")|Random | Objective

? Cost Function Value
5 26 26 25 25 26 25
6 43 43 43 43 43 43
7 76 76 74 74 76 74
8 118 107 107 107 118 107
12 296 296 289 289 296 289
15 585 584 576 576 585 575
20 1320 1320] 1301 1285 1320 1285
30 3088 3105| 3105 3077 3088 3077
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Table 7.14 Average Increase in Computation Time Per
Iteration (secs) When Using Pairwise Inter-
Change Procedure

Average Increase in |
Computation time/iteration

Problem Number of Time*/
Size, n | Iterations, N | Iteration [A(L)**| A(N) A(nz) A(N.nz)
5 2 .026 . .003 .003 .01 .01
6 2 .04 .001 ..005 .06 .05
7 3 .06 .003 .005 .16 . .075
8 5 .10 .003 .009 .33 .15
12 4 .36 .009 .020 1.65 .94
15 8 .77 .019 .067 6.94 4.19
20 8 2.11 .093 .151 25.68 13.79
30 8 1.523 1.523 1.799 291.00 }j141.63

* These times are for Pseudo-Random Criterion (see Tabld 7.2)

%% Times listed are per solution (only one solution is considered

for improvement)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

This research was carried out from the point of view of developing
a heuristic pracedure for solving the QAP, which could handle large size
problems efficiently and produce high quality solutions. The algorithm
developed in this study is an iterative scheme, which removes the
discrepancies in the cost of locating facilities at different sites in
a number of iterations. Unlike the improvement procedures, the
proposed algorithm is independent of the starting solution and
converges in a finite number of iterationms.

The algorithm was applied to various test problems given in the
literature. The superiority of the algorithm was demonstrated by
comparing the results with those of wvarious heuristics given in the
literature. It was concluded that the proposed algorithm produces high
quality solutions in reasonable amounts of computational time. The
applicability of the algorithm for large size problems was demonstrated
by solving randomly generated problems ranging in size from 30 to 60. It
was shown that the rate of improvement in the value of objectivg function
is very rapid in the first few iterations, but it slows down in subsequent
iterations. The study of the performance of the algorithm concerning
the quality of the solution showed that, for small size problems, the
results are optimal approximately 65% of the time. These results may

not be extended to large size problems due to unavailability of optimal
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solutions. But' the experience with problems given in the literature
indicates that high quality solutions are obtainable by the proposed
algorithm.

Different methods of removing the discrepancies in the costs of
locating facilities at different sites were used, and their effect on
the quality of the solution was investigated. However, the applicability
of these methods is dependent on the availability of extra computational
time.

In order to investigate the possibility of improving the solution
quality by using other heuristics in conjunction with the algorithm,
the pairwise interchange procedure was employed to improve on the
solutions generated by the algorithm in a number of iterations. The
results seem to be encouraging as better solutions are obtained in some
cases, However, a criterion must be developed to investigate only
selected solutions generated by the algorithm which would lead to the
most improvement in the quality of the solutiom.

It was further noted that the algorithm solves several linear
assignment problems in order to improve the elements in the lower
bound matrix. The efficiency of the algorithm is therefore dependent on
the efficiency of the computer code used for solving the linear assignment
problem. It Is therefore suggested that the development of efficient

codes for solving linear assignment problems be considered.
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A METHOD FOR FINDING SEVERAL SOLUTIONS

TO THE ASSIGNMENT PROBLEM SIMULTANEOUSLY

This paper describes an efficient method for finding several

solutions for the assignment problem simultaneously. Given a

problem of size nxn the algorithm finds all solutions which have
one of the following allocations (X,1), (X,2),...(K,n).
Because of the obvious difficulties in understanding the

paper and its applicability, the important sections of the paper

were translated into English. For the east of reference these

sections are summarized below:

1. Problem Statement:

Congider the problem of Linear Assignment Problem, which is

defined as the minimization of the Ffunction:

)
L = d. . (1)
i=1 j=1 *3
Subject to:
n
} X,.=1, ¥ ieM, M = {1,2,...,n} (2)
L 1j
ji=1
n
] X,. =1, ¥ jeN, N = {1,2,...,n} (3)
i=1

119
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xij e (0,1) ¥ ieM, jeN (4)

The problem is to determine all solutions which have one of the

following allocations (K,1), (K,2), ..., (X,n).

2. Method of Solution:
(0) _
x t—4

Let (xgg)) be the optimal solution of the assignment

problem given by relations (1) to (4) and let L(O)

be the optimum
value of objective function. If Lii is the minimum value of the
objective function, assuming that the assignment (i,j) is in the
golution, ALij’ the difference, would then be

ALij = Lij-L(O) (5)
It is easy to see that ALij > 0. The basis of an assignment problem
is defined by the variables for which X5 = 1. The method for
finding simultaneous solutions which contain one of the assignments
(k,1),(X,2),...,(K,n) KeM, is based upon the reduced coefficient

(0) _

matrix. Let a matrix D = (dii(O)) describe a reduced coefficient

matrix of an assignment problem. Then for the elements of this matrix

dij(O)’ the following is true:
di?) >0 ¥ ieM, ¥ jeN
(6)
a{ =0 if X9 -
i ij
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The Hungarian method and the Marking algorithmsoof FORD and

FULKERSON {1] are systematic methods for developing the reduced
coefficient matrices with the property formulated in (6). In general,
there are always several thatrices with the property of D(O) for every

assignment proBlem of the type in (1) to (4).

In particular, for every assignment problem there is a reduced

coefficient matrix D(K) with the property:
dﬁ) >0 ¥ ieM, ¥ jeN, (7)
a®) =0, 1f x(P= 1 (8)
1] 1]
(K) — .
dKj ALKj KeM, % jeN (9)
. . . _ .0 _ (x)
From (9) and (5) it follows immediately that L, - L =d_,
K) Kj
KeM, V jeN. The coefficients dé§) of row K in the reduced matrix D(K),
thus specify the amount by which the minimum value of the objective

(0)

function of an assignment problem, is greater than the value L s

when assignment (K,j) is in the solution. The method of achieving a

(x)

reduced matrix D with the properties of (7), (8) and (9) is
described below:

it can be shown that the solution of an assignment problem will remain
unchanged if constants are added along row(s) or column(s) to the co-
efficient matrix D(O) (Réfer to [4]1,p.12). The addition of constants

is carried out in such a way that the properties (6)
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dfq) >0 V ieM, % jeN,
ij =
and
a{? =0, if x(9 =
1] 1]
of the matrix D(O) are preserved. Let MO be constant such that
M, >> 0. (10)
We add MO to all elements dé?), V jeN, a fixed row K of the matrix
D(O). In order to preserve property (6), Mo must be subtracted from
all elements of the column 2 of the matrix D(O). The index £ is

determined by the fact that in the optimal solution of the assignment

2 has the value x(o) = 1. Because of (6),

problem the variable x oy

K

dég) = 0. The result of these operations are retained in a matrix
Dlz
(0) . .
dij , for 1 = K, 3 =2
(0) . .
dij + MO’ for 1 =K, j # 2
1 =
d,. = an
ij (0) . .
dij - My, for j =2, i # K
d59) otherwise
1]

Because of (6) it is in particular true that

1 40

dgs = gy

=0

Certainly the matrix D1 has negative elements in column %, since
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MO >> 0. We determine the constants

M. = max {-d}. | d}. <0} = ~d (12)
1 i3 1] rs
ieM
jeN

which we add to all elements of row r of Dl, and subtract from all

elements of column t of Dl. The index t is again determined by the

fact that in the optimal solution of the assignment problem the variable

(0)_
e

t ll

Xt has the value x

From D1 can be achieved a matrix D2 with elements

(O) - .
dij for 1 =r, 3 =¢t,
1 . .
d.. + M, fori=1r, j#¢t
2 1] 1
d,. = (13)
] 1 . .
dij - M, for i #r, j=t
1 .
d,. otherwise
1)

L3 + 3 L .
In general the matrix p 1 is derived from the Dq, which precedes

it, as shown. If

= -q9 q = -49
M, = max { dss l dss < 0} duw (14)
ieM
jeN
(0)_
and Xo = b (15)

then for the elements of the matrix Dq+1
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dgg) for i = u, j = v,

d9. + M for i = u, j#v
ij q

WL = (16)
1]
dd. - M fori#u, j=v
1] q
a9, otherwise
1]
After a total of n iterations we have the matrix D". We define
p®) D", (17)
because D" proceeds out of D(O),since first a constant was added
to the elements of row K of D(O).
It remains to be shown that the reduced coefficient matrix D(K) has

the properties (7), (8), and (9) formulated above. It is easily

seen that from (6) in relation to (11) to (14) it is always true that

Mg 2 My > o0 2 M (183
In general it is true for an element d§§)that
(x) _ ,(0) _

where v e {0,1,..,n-1} and u > 0, u e {1,2,..,v+ n-1}.

From dgq) >0 and M - M > 0 it follows that dgg) > 0.
13 - v V+E— ij -

In particular, it is true that
a0
1]

0, if 9 =1, (20)
1]

whicq follows immediately from (11), (13), and (16).
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Somewhat more difficult to prove is propertvy (9), from which

LB

. A
%] L

. ¥*jeN
Kj KeM, JE

First there would be a modified assignment problem to define, through

(0) . .
) the wvariable ij with

ij = 1 must be in the solution. ALKj then describes the amount which

the optimal solution of the modified problem deviates from the optimal

the fact that instead of the wvariables x

solution of the original problem. The optimal solution of the original
assignment problem which was defined through the relations (1) to (4)
would have the assignment (K,2). Since from (20)

4K

ke = 9

then (9) is trivially true for j = %
Since

d§§) >0 V ieM, V jeN

1t is true that

, 4

A-LKj - "Kj

Assume that

(K)
ALKj > dKj (21)

In the optimal solution of the modified problem there must be,

)

besides the variables ij with dé? > 0, at least a further basis
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()

variable x with d > 0.
uv uv -

Without limiting generality it 1is in the following assumed that

in the solution matrix of the modified problem only to the variables

(K). 4K

. and Ltiv nt d.
xKJ xuv a positive amount Kj uv

> 0 is assigned. It is

also true that

_ LK) (x)
ALKj dKj + duv (22)
We set
_ L(KR) _
To = duv %0 (23)

By a reordering of the matrix D(K) it can always be arranged
that the reduced coefficients of the optimal assignment éf the
original assignment problem stand on the major diagonal. For example,
ghe following arrangement can be effected:

Spalte :
Zeile ! J t ces]| ¥ w

x Q@ €§)
u © @

. Q]
q (@
(K)

Fig. 1. Matrix D after reordering of rows and columns.
In the above diagram the optimal solution of the original problem
is marked with little boxes. The optimal solution of the modified

problem is differentiated, among other elements, through the
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assignments marked with circles. We add the constants

_ L
T0 - duv

to all elements of row K and subtract TO from all elements of column

2. It is easy to verify that thus the solution of the original
assignment is not affected. In the field (K,j) now stands the co-
efficient .

(R) , 4K L s

at, =
Kj Kj uv Kj

In the field (u,2) in particular there can be no negative value. TIf
it were true that

2 _ (K) _
dog = dup Ty < 0y

then the optimal solution of the modified problem would appear as

follows:

instead of xKR(_) there would be xKJ(+) in the basis, instead of
(x)

. _‘ . » . (K)
qu( ) there would be xu2(+) in the basis, with ALKi < dKj + duv ,

which would contradict the assumptions formulated above. From the

elements of column was substracted the consgtant TO' The smallest

127

negative element of column 2 is simultaneously the smallest element in

the matrix. Let

T, = max {-diu | di < 0} = -diz
ieM ieM\(K,u} P
peN
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We add Tl to the elements of row r and subtract ‘I‘1 from the

elements of column t. Now

2 _ (R _
drg = 9pg To* T =0
LJ (K) » 3 »
Since dip >0 % ieM, # peN, it is true that T1 < To;

it follows from this that

2 _ (K)
th = th + T0 T1 > 0
Furthermore d2 = d(K) -T, >0
* Tut ut 1 -

2 . .
If dut < 0 were true, then the assignment (u,v) could not be contained

in the optimal solution of the modified problem, since the sequence

ij(+), xui(-)’ xut(+), xrt(-), xr2(+) xKR(—) would be assigned a
(x) (K)
value LKj < dK' + duv

We determine that

2
T, = max {-d;_ | d;_ <0} = -d (25)
. t
2 ieM\{K,u,r} 1 L 1
peN
By the respective addition or subtraction of T2 to the elements of
row q, or from the elements of column w, the original optimal solution
is not affected. In particular the equation d:t = d(i)— T1 + T2 =0

is preserved.

Furthermore, the elements d3 s d3 y» and d3 remain non-negative.
Kw rw qw

3 . . . .
Thus the element duw must also remaln non-negative, since otherwise
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there would occur a more conducive result to a solution for the basis

of the modified problem, as is seen in Figure 2.

column

Spals
TOW | 5. ! ) 1 e oo | ¥ w
k @—-—(}S" +T,
I e e
B 0 R +T,
’ @
x)
q dql @] +Ty
-Teo =T -Ty

Fig. 2. Determining the path of exchanges

In general, it can be said that by the column-wise subtraction of

constants
T, = max { -d, | 4. <0} (26)
H ieM p 1p
peN

in the described manner in row u a negative element can never appear,
since otherwise there would immediately exist a better solution for

the modified problem. The several indices M or N should contain those
indices which are assigned to rows or columns with negative elements.

It can easily be seen that in row to which Tu is added, at least one
distinguishable element will be exactly 0, and in fact this element can
be found in one of qu columns from which a constant T, 0 € {0,1,..,u=1}
is subtracted. Since to every row or column at most one constant is

added once, these distinguishable zero elements cannot be further
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altered by subsequent operations. So from every element of row u,
from which a constant Ty is substracted, it is possible to arrive at

a solution of the modified assignment problem through the
distinguishable zero elements. Since by the above assumption, the
optimal solution of the modified problem contains the assignment (u,v)
all the coefficients dup’ ueM, V peN, remain non-negative. That is,
a constant can be subtracted from the elements of column j. 1In this

=(K) (K)

manner we find a matrix D with d > 0V ieM, V pelN

In particular,

-(K) _ (K) (K)

KJ = KJ duv 27)
and
K)o g,
uv
E(K) could also have been determined by beginning with the development

0)

of the matrix D(K) from the matrix D( with the addition of a constant
(0) M + TO. Thus we have contradicted the above assumptions. By
(10), MO >> 0, that is, in the solution of the modified assignment

(K)

problem there can be no variable X v with d 0.

So it is shown that the matrix D(K) has the above formulated property

. _ ,® .
(9), by which ALKj = dKj KeM, V jeN.

Thus, with the help of the reduced coefficient matrix, all the
optimal solutions of an assignment problem can be determined, which

have the alternative assignment (K,1),(K,2),..,(K,n).
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3. Example

The above described method for the simultaneous determination of
several solutions of an assignment problem will be demonstrated with
an example using numbers. In Figure 3, the coefficient matrix
D = (dij) of the assignment ﬁroblem to be solved is repeated (see
(4], page 17, slightly modified). The assignments (i,i) V ieM are

not permissible.

20 33212 1971 16
19 X| 24 [ 32] 20 141 20
35| 25 Xl 26 23| 22| 18
24| 28| 28| X[ 16| 15
13| 23| 2] 17 X| ‘6.
200 13| 22| 18,
200 19| 17| 13 6| ¢

—

-~
X|lonjw] -

~N i jw | o] e

Fig. 3. Coefficient matrix

(0)

Figure 4 shows the reduced coefficient matrix D = (dg?)) after
the solving of the ass{gnment problem., The optimal basis solution

of the problem is denoted by the little boxes, and the value of the

solution sought is L{O) = 104,

) 2 ) 4 5 € 1

T 1 X 1 &8 3 [ 6 4

2 |@ X o 13 9% 2 9
1il9 o x @ s 3 or

dals 10 « x s 3 @

slo n 4 4« xX @ o

dle @ 3 4+ 1 x o

1 8 s @ 1 2 1 X

Fig. 4. Reduced coefficient matrix D(O) = (dgq))
]
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2 s 4 s 6 1 step
t{ X v 8 3 @ ¢ 4. 2 s
2@ X o 13 9 2 9 w4 3
3 9 o. X [0 s 3 0| ¢S 1
4| s 10 4 X s 3y @] «1 7
s 0 N 4 4 X [@ o 4 4
6 {6 ([@ 3 4 it X o <! 6
1 ] 8 [@ 2 1 X | +4 2

S BT B S T
f[step. ] 3 6 2 1 s 4+ 1]
Fig. 5. Development of matrix D(3) from D(O)

(0)

Proceedings from the reduced coefficient matrix D , for example,

(3)

the matrix D can now be determined. It gives information as to how

great an amount AL.., the value of the function sought increases, if

3

3
some variable x V jeN, is taken into the basis solution. We add a

33’
constant MO’ and for simplicity's sake we set MO = 5, to the elements

of the third row of the matrix D(O). We expect that the optimal

v (3D 0)

assignment in the matrix D would be

just as in the matrix D(
assigned the value O. This condition will be filled if we add MO to
the elements of row 3 (Fig. 4) and substract it from the elements of
column 4, Figure 5 gives information about the further mechanical

operations. By substracting My, the fields (1,4), (5,4), (6,4), and

(7,4) become negative assigned reduced coefficients. By (12), the

constant M1 is thus Jétermined:
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.| k.
i ij

_ _l _1 _1 _1
p = max {=d],, ~dg,, —dg,, ~dy,}

=
1l

| = max {-di < 0}

=
I

1
74

max {2, 1, 1, 4} =4 = —d

7

M1 4 is to be added to the elements of row 7 and subtracted from

]

the elements of column 3. By (14) we find

M. = max {-42 2

2 x{dijldij<0}

_ 2 2 _2 2 _2
My = max {=djq, =dgq, =dy,s =dg;, =dg,}
Y

--d23 4

M2 is added to the reduced distances dij of row 2, and subtracted

from the elements of column 1., 1In step 4, M3 is to be determined:

M, = max (-3, | a3, < 0}
ij ij
= g3 =
My = =dg, = 4

and to be added to the elements of row 5, as to be subtracted from

column 6., The further arithmetric operations proceed in a similar

(3)

manner., Matrix D is repeated in Figure 6.

1 2 3 4 5 6 7
1 X 2 6 o [@ « s
2 | (@] x__i 012 1 2 1
p|w @ X @ 8 4 4
42 Y1 X « o [g
s 0 ,u>'_4 (3 X @ 3
6]y ‘@ o \(5 o X o
718 n @ o 4 1 X

(3)

Fig; 6. Reduced coefficient matrix D
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(3)

Matrix D delivers 5 new solutions to the assignment problem,

which can be determined with the aid of a simple marking process.

The coefficients of row 3 of this matrix give the amounts

AL,. = d

33 3j ¥ jeN

For example, the best solution of the assignment problem, which

contains the assignment (3,2), has for its solution sought the value

_ . 0) (3)
Lyp = L7 + ALy,

]

104 + 4 = 108,

Instead of (3,4)(-) there is substituted (3,2)(+) in the basis, so

that (6,2)(-) disappears from the solution and (6,4)(+) is brought

into the solution. The path of substitution is marked by arrows in
Figure 6. In the same manner the remaining solutions can be determined,

and they alternatively have an assignment (3,j) % jeN.
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Computer Code for Finding Least-Allocation Cost Assignment

The listing of this code is given in the succeeding pages as
subroutine 'BP-COST'., Consider the reduced matrix named as "MATRIX'
obtained at the end of step 3.1 of Chapter 6. This matrix is then
transformed to another matrix named 'MAT'. This is obtained by
replacing the inadmissible cells by = and ddmissible cells by the
corresponding linear components of the costs when facility J is
located at site I. Finally, the matrix 'MAT' is solved for all LAP
which results in least-allocation cost assignment represented by
TIASP.

Thus, whenever, least-allocation cost assignment criterion is
to be used, lines 185, 186, 187 and 188 in the main program are
deleted and lines 190-193 are replaced by the statement which calls
the subroutine 'BP-COST'. Further subroutine, 'BP-COST' defined by

lines 1-31 in succeeding pages i1s added.
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Computer Code for Finding the Best Assignment

One of the computer code for determining the assignments in the
order of increasing cost is developed by Metrick and Maybee
[1973]1. This is based on the ranking algorithm of Murty [1968]. This
computer code would be quite inefficient if used for generating the
assignments having the same cost. This is discussed in detail in
section 4.2 of Chapter 4. Several modifications have therefore been
made to use this code efficiently. A listing is given in the succeding
pages.

Two parameters KODE and CC have been added. The purpose of these
two parameters is to identify the nature of solution to LAP. 1In some
cases we need a complete solution of a node and in other cases we need
to utilize the previous information and SkiP.thg unneccessary or repeat-
ed computations. For example, consider the generation of permutation
matrices which are within the admissible cells of the reduced matrix. In case
the reduced matrix needs further reduction the generation of the
permutation matrices must be seized instead of storing high cost permuation
matrices and sorting the list for their cost for further generation of
the matrices.

The listing of the computer code given in the succeding pages
generates the alternate solutions one by one. These are then evaluated

for best cost assignment using the distance and flow data for QAP. Thus
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when best cost assignment criterion is to be used, lines 32, 33 and

34 from control program for finding best cost assignment are added in
the main program after the line 59. Lines 185, 186, 187 and 188 of the
main program are deleted and lines 190-193 are replaced by lines 53

to 83 of the control progrém for finding the best cost assignment.

Further the subroutine RNKINT, listed in lines 89 to 343, 1is

included.
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ENTRY FRESPC(PTR)
FUORD(PTR)=FRELIS

FRELIS=PTR

RETURN

END

3460.
341.
342.
343,

337.
338
339.
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DATA CARDS: These are described in the order in which the main program

reads them.

Problem size = A single card with a single number in I5 format

specifying problem size.

Distance Matrix = N number of cards with max. of 20 values on each

card in I4 format specifying distance between the

sites.

Flow Matrix = N number of cards with 20 values on each card in

I4 format specifying the flow between the facilities.

It should be noted that the data for distance and flow matrix are
read in integer numbers. If the data is available as real number, it must
be changed to integer number before using the algorithm. Further, if

necessary the read format I4 can be changed accordingly.
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