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ABSTRACT

In this thesis frames with semi-rigid connections are in

vestigated by employing matrix algebra which is especially suited to 

operations by high speed digital computers. The displacement method 

is the basis for the proposed analysis. Stiffness matrices for 

members with semi-rigid connections are presented in the form of the 

stiffness matrices for members with rigid connections modified by a 

correction matrix whose elements are functions of two parameters de

signated as "fixity factors" of the member. A formula,

P = p - S C U ( UT S C U )_1 ( UTp + po ) 

is established for determining the force components on the members of 

a frame.
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CHAPTER I 

INTRODUCTION

In the conventional analysis of steel structures the beam 

to column connections are considered as either perfectly hinged or 

rigidly fixed. These assumptions are not entirely consistent with 

conditions often encountered in practice} however they have been 

adopted because of the simplicity in analysis and design. Beam or 

girder to column connections have partial restraint depending upon 

the type of connection used. Although by including the effect of 

this restraint in analysing frames a more economical design would 

result, it has been almost entirely neglected because of the more time 

required and because of a lack of a systematic method of performing 

the analysis on more complex types of structures.

The slope deflection and moment distribution methods, mo

dified for members with partial end restraint, have been proposed by 

J. Charles Rathburn (12), John F. Baker (2) and Bruce Johnston and 

Edward H. Mount (9). These methods are sufficient for simple frames; 

however they are too cumbersome to be used directly in the investiga

tion of highly redundaht frames.

The advent of high speed electronic computers has stimulated 

the analysis of complex frames by matrix methods. The force and dis

placement methods were developed by J. H. Argyris (1) in order to solve 

structural problems using matrix algebra. The displacement method, a

1
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2

matrix formulation of the joint equilibrium equations in which linear 

and angular displacements are chosen as redundants, is ideally suited 

to electronic digital computers and it is particularly systematic for 

the analysis of frameworks, however complex.

The work embodied in this thesis consisted of developing a 

method of analysis which is readily applicable to digital computation 

for frames with semi-rigid connections. Relationships between forces 

and displacements at the ends of a member with partial restraint were 

found by using the conjugate beam method. The force components, in 

terms of the end displacements, were arranged in matrix form. The 

modified stiffness were then expressed as the stiffness matrices for 

rigid joints multiplied by a correction matrix whose elements are func

tions of the "fixity factors" of the members. When the connections of 

the structure are defined, these factors can be evaluated by formulae 

or determined by experimental investigation.

A formula for the force components at the ends of the members 

of the frame was established, based on the joint equilibrium equations. 

The evaluation of the force components involves multiplication, inver

sion and subtraction of known matrices. These matrix operations are 

conveniently performed by any digital computer.

The adaptibility of digital computers to solve problems by 

the derived method was demonstrated. The general procedure is illus

trated by a flow chart and several numerical examples are worked out 

by employing the LGP-30 digital computer.

A consistent sign convention is used throughout the thesis.
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CHAPTER II 

HISTORICAL DISCUSSION 

In 1915 Wilbur M. Wilson and George A. Maney (16) first 

applied the slope deflection equation to frames with rigid joints.

This was followed by Hardy Cross's (5) developments of the moment 

distribution method in 1926 and the column analogy in 1930. These 

original methods remain as the outstanding systems for analyzing rigid 

frames, but in recent years electronic digital computers have motivated 

the analysis of structures by matrix methods. These methods have been 

advocated by Stanley U. Benscoter (t+), J. H. Argyris (1), Fernando 

Vonancio Filho (6) and others, and they are now accepted as significant 

advancements in structural analysis.

The slope deflection and moment distribution methods were 

both applied to frames with semi-rigid connections in the 1930* s by 

John F. Baker (2) in England and J. Charles Rathbrun (12) in the United 

States. In 19^2 Bruce Johnston and Edward H. Mount (9) refined Baker's 

analysis by considering the effect due to the width of the members.

From 1950 to 1955 research projects dealing with semi-rigid connections 

were carried out at Oklahoma State University (10).

Extensive experimental research has been sponsored, especially 

in Great Britain and the United States, to enhance the possibility of 

including the partial restraint of connections in the design of structu

ral frameworks. In 1931 to 193&, a 8rouP men, headed by Cyril Batho (3)

3
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k

conducted tests at the University o£ Birmingham to find a relationship 

between the moment applied at a riveted connection and the corresponding 

rotation. Their findings were in close agreement with those of Rath- 

burn (12) of the College of the City of New York. A series of tests 

to compare the rigidity of welded and riveted connections were conducted 

at the University of Toronto by C.R.Young and K.B.Jackson (17) in 193^*

The most recent report was published in 19^7 by the American Institute 

of Steel Construction Committee on Steel Structures Research (8). This 

body recommended a dependable percentage of restraint for various types 

of semi-rigid connections.

The findings of the above research groups indicate that for 

practical purposes a linear relationship exists between the applied 

moment and the relative rotation of the beam and column. This linear 

relationship, shown in Fig. 1, is valid only for a specific design region^ 

but for practical purposes, it may be considered the acceptable relation

ship in the design of frames with semi-rigid joints.

A possible tests setup for determining the moment-rotation 

curve of the interior joint of a frame with beam to column flange 

connections is shown in Fig. 2. An applied load induces a moment M 

and a rotation 0 at the joint. The relative rotation for various values 

of moment is measured by means of sensitive level bars, and a moment- 

rotation curve is plotted as in Fig. 1. The inverse slope of the

straight line portion of the graph is calculated and is called the

"semi-rigid connection factor" for that connection. Thus,

Z = 0/M (2-1)
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Test Behavior of 

Semi Rigid-Conn.

Permissible Variation

l / Z =  0

Relative Angle Change, <|>

FIG. 1. MOMENT-ROTATION CURVE FOR SEMI-RIGID CONNECTION
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ROTATION BARS
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ROTATION
BARS
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TE S TIN G  MACHINE BASE

FIG. 2 TEST SETUP FOR M-0 CURVE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

The semi-rigid connection factor may be defined as an angle 

change per unit moment and its magnitude depends upon the rigidity of 

the connection. The extreme values of Z are infinity for a frictionless 

pin connection and zero for a perfectly rigid connection. The Z factor 

for most standard connections has been found by experimental and theore

tical investigations, and the results of both methods are in close 

agreement. Appendix A contains Z factors which have been collected 

from published tables.
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CHAPTER III 

STIFFNESS MATRIX 

Modified Slope Deflection Equations

The moments at the restrained ends of a loaded member consist 

of three contributing sources;

(1) that due to the fixed end moments

(2) that due to the rotation of the ends of the member

(3) that due to the relative displacement of the ends of

the member

An additional element, namely the semi-rigid connection factor 

contributes to the moments of members with semi-rigid connections; this 

element is interdependent on the above three sources. For this reason 

it is not possible to separate the derivation of the slope deflection 

equation into three parts, which is the customary procedure for rigid 

connections (1̂ ).

The following derivation of the relationship between the forces 

and displacements at the ends of a member with semi-rigid connections is 

based upon the conjugate beam method. The adopted sign convention is 

shown in Fig. 3(a ) ancl i® referred to the longitudinal axis of the member.

Fig. 3(b) represents a typical member of a frame with any ex

ternal loading q. M^ and Mj are the final moments acting on the ends of 

the beam (and through the semi-rigid connection, on the column) at i and 

j respectively. 0. and 0 , are the rotation of the column axes at their
X J

8
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(a) Sign Convention

axiscol-

(b) Member Under Loading

€

Vi
Conjugate Beam and Loading

FIG. 3 CONJUGATE BEAM FOR SEMI-RIGID CONNECTIONS
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Intersection with the beam axis. and are the shearing forces at

i and j respectively. 0. and 0. represent the angle change at the ends ̂ J
of the loaded member and they are due to the flexibility of the connec

tions j as previously described experimental tests indicate that for

practical purposes 0 = MZ. The net rotation of the ends of the member

itself are CL - 0^ - R for end i and Qj - 0j - R for end j, where R is

the angle of rotation of the member due to the relative displacements

of the two ends. All directions shown in Fig. 3(b) are positive.

Fig. 3(c.) shows the loading on the conjugate beam. A repre

sents the area under the simple beam moment diagram due to the external 

loading only, and it is easily calculated for various loading conditions. 

Since the shear forces, and V^, at the ends of the conjugate beam

equal the net angle change at the ends of the actual beam, then we have
M.L M.L Ab i,

V. = 0 .  _ 0 _ R = — -JL +----  (3-1)i i p± 3EI. bEI EIL
M.L M L  Aa

v. = e. - 0 - R = =!=• - J L . - =rr (3-2)j J 3EI bEI EIL w  '

Substituting 0. = M, Z. and 0.= M.Z. into equations (3-1) an<i  ̂ 1 1  J J J
(3-2) gives

M.L M.L Ab
- R = 55T - 5ET + H E  + Mizi 

M.L M.L Aa
a _  R  =  -J—  _ -J:- - - - -  -I- M  z. ( 3- 1!)f j 3EI BEI EIL j j w  ;

Rearranging the terms, we have 
L + 3EIZ, xrT MMj (------------- (9i _ R) . J _ 2*

C- L
L + 3ETZ. M.Mj (-- -- i) „ 21 + _i _ 5*1 (5-6)
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Introducing the dtmensionless parameters,

7 t ~ L + 5EI21

rj “ L + 3EIZj (3 -Q)

into equations (5-5) and (3“6) an<  ̂solving for and Mj, we have

„ bEI i i j  j j. j ( -z n\
—   T r y - ? --------------------------------------(5'9)

20 t + y l o j  -  (2 + r , ) *  M  r t ( »  - r,a)

_ «  + gA / j (a« - ^ib > (>l0)
•* - 7t  7S 1 *» - 7i r 3

Equations (3-9) and (3-10) are the slope deflection equations 

for members with sCmi-rigid connections. The last term on the right 

hand side of both equations is defined as the "modified" fixed end moments. 

The sign proceeding these terms follows the adopted sign convention; 

formulae have been worked out for the modified fixed end moments for 

various loading conditions and appear in Appendix B.

The dimensionless parameters,y^ and , depend upon the Z- 

factor of the connections and the geometry of the member and are desig

nated as "fixity factors" of the member. The value of y varies between 

zero for a frictlonless pin connection and unity for a perfectly rigid 

connection. From equations (3-9) and (3-10), if the fixity factor is 

unity for both ends of a member, the equations reduce to the standard 

form of the slope deflection equations.
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Modified Stiffness Matrices 

The equations derived in the preceeding section can be used 

to solve frames with semi-rigid connections. However, the operations 

involved for complex structures would be excessive for hand computation, 

and the form of the equations is not well suited for computer operations. 

Relationships for the internal forces acting at the ends of a member, in 

terms of the end displacements, can be found by applying equations (3-9) 

and (3-10).

Planar Frames

Equations (3-9) and (3-10) in expanded form give 
jtEI % ___ bEI 2EI 3 V j
L ' “- V j  1 L2 ‘ “- V j  1 1 !r- V j

6EI 7i(2+7j)
7 , (3-U)2 ‘ k -7 t y^ yj

3V j  „ bei 7j<2+7i) .. , k m  37)_ 01 + -------- v. 1 -^-.—

74(2+74 )

2EI

6E1 7 jv&' 7i.

- -  - t v j ei y i * ~

L2 ' 5 ^ 7 ” yj (5"l?)

The shearing forces at the ends are 
bEI 71<2+7J> „ , 12EI 7 i*7 i*7 l7 J .. , bEI •7j<!* 7l> „

T l " ?  ' ,pv r ' 1 +

- ̂  7j (3-13)

„ _ bEI . 7l(2+7j> „ 12EI 7l+7j+7l7J _ 6EI . 7j<2+7t> _x rb» j ±r ), _ "4 x i«-~ ^ y4 ~ ~b nrr~zr~i7~ “
J 1 ?  *‘-7l7j 1 ' I3 “-7i7J 1 " ?  “'717J 1

12EI W 7t7J
7l7i* T T  ' I '-rT r y ) (3‘1‘t)
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The semi-rigidity of the connections does not affect the axial 

deformation of the member and therefore the axial loads, in terms of the 

axial displacements, are given by

where the components of these equations are shown in Fig. Equations 

(3-17) ant* (3-18) represent the internal forces due to the end displace

ments of a member in a planar frame. The K matrices of equations (3-I7) 

and (3-18) ar® called modified stiffness matrices for planar frames. 

Space Frames

eering operations the study of more complex framed structures was of 

academic interest only, since the arithmetic work involved was excessive. 

Now, however, frames of a three dimensional nature, even with partial 

restraint, can be analyzed readily by the extension of the ideas previous

ly illustrated for simpler planar frames.

illustrated in Fig. 5. In the stiffness matrices shown in Fig. b, a , 

p and y represent the fixity factors for rotation about the x, y and 

z axes respectively. The value of y is defined by equations (3-7 )

(3-15)

(3-16)

Equations to (3-lk) may be written in matrix form as

(3-17)

and F, = K.t D, + K. , D, J Ji i JJ jD, + K (3-18)

Before electronic computers were available for general engin-

The sign convention adopted is that of the right hand rule
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X.1 J i
F1 • Yi FJ - Y.

J Dt - yi

1
•H
X

1 A 6i

D,

EA
L
0 12EI

0

7i+7j47i7j bEI

0

71(2+7j )

Kii " I? k- V j L2 * - V j

0 bEI rt(2'7j) U ei 57L
L2 h~y.y . 1 J L >i-717J

"~"-EA
L
0 -12EI

0

6EI

0
7j(2+7t)

Kij = L5 U'7i7j L2 ^"7i7j

0 -6EI
L2

74(2+7 .)

^ v T
2EI
L

57:L7j
^ i7j

KJ i "

-EA
L
0 -12EI

0

71+7J+717J

“- V l
-6EI
T

0

71(8+71)
1*-717j

0 6EI
-?■

I'jtsnp 2EI
I T

37i7,

k- V j

KJ J “

~ E A
L
0 12EI

I?

0

71+7j+717j
'*-7l7j

-6EI
T 5

0 “ “

7j(2+71)
‘•-717j

0 -6EI 7j(e.7t) Uei
L2 t-7i7j L ^  7j

FIG. k COMPONENTS OF EQUATIONS (3-17) and (3-18)
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Y y

(a) Sign Convention

X

(b) Forces Acting at Ends of Member in a Space Frame

FIG. 5. SIGN CONVENTION FOR SPACE FRAMES
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and (3-8)- However, to the writer's knowledge the Z factors for the x 

and y axes have not been determined experimentally or theoretically, 

and therefore the fixity factors, a and 3 , cannot be explicitly de

fined at this time. Once the Z factors for these two axes are determined 

it will be possible to find the values of a and 3 within the same limits 

as 7 . Standard connections have little resisting capacity about the

y-axis and thus 3 will approach zero. For other than standard connec

tions, both 6 and 7 must be determined by experimental Investigations. 

Twisting about the x-axis of a member will be very slight in most connec

tions and therefore the value of a will be close to unity.

Applying equations (3-9) ar*d (5—10) f°r bending about the y 

and z axes and considering torsion about the x-axis yields

Fi ‘ Kii Di + Kij Dj (3-19)

and F. = K.. D, + K,, D, (3-20)J ji i jj J
Equations (3-19) anc* (3~20) represent the internal force compo

nents due to the end displacements of a member in a space frame, and the 

elements of these equations are shown in Fig. 6. The K matrices are de

signated as modified stiffness matrices for space frames.

Correction Matrices

The similarity between the modified stiffness matrices K of 

Figs. 4 and 6 and the stiffness matrices S for rigid joints, Figs. J(a) 

and 8(a) for planar and space frames respectively, is readily apparent: 

each element of the K matrices is equal to the corresponding element of

the S matrix multiplied by a term which is a function of the fixity factors
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FIG, 6 COMPONENTS OF EQUATIONS (3-I9) AND (3-20)
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of the member. Therefore, a correction matrix, C, by which the S matrix 

can be post-multiplied to produce the corresponding K matrix can be found. 

Let
K = SC (3-21)

from which
C = S_1K (3-22)

The resulting C matrices are defined as correction matrices 

and are shown in Fig. 7(b) for planar frames and in Fig. 8(b) for space 

frames.

Substituting into equations (3-f7) to (3-20) we have;

F, = S.. C. . D. + S. . C. . D. (3-23)i xi xi l xj xj j

F. = S .. C.. D, + S. . C.. D. (3-2i0
j  j i  n  i  j j  j j  j

Equations (3-23) an<* (-24-) represent the internal forces on a 

member due to its end displacements.
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CHAPTER XV

METHOD OF ANALYSIS

Problems in structural analysis can be solved using matrix

algebra by two methods. The force, or flexibility method takes forces 

and moments as unknowns. It is generally better suited for investiga

tion of complex aircraft and shell structures. The strain energy method 

is an example of the force method. The displacement, or stiffness method 

considers linear and angular displacements as unknowns. This method is 

especially suited for the analysis of structural frameworks. An example 

is the slope deflection method.

disadvantages and therefore the choice of one method over the other is 

not necessarily obvious. In structural frameworks the member displace

ments coincide with the joint displacements and therefore the unknown 

displacements of the ends of all the members meeting at a joint can be 

found in terms of the joint displacements. Invariably the number of 

unknowns in the displacement method is smaller than the corresponding

number in the force method.

The total internal forces at the ends of a member consist of 

those due to the end displacement and those due to the external span 

loading. Thus

Both the force and displacement methods have advantages and

(k-1)

<*-2)
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Substituting equations (3-21) and (3-22) for and F^, we have

Pi = Sii Cii Di + Sij Cij Dj + pi

P. = S.. C,, D. + S.. C.. D. + p. (4-4)
J J1 Ji 1 JJ JJ J J

Equations (4-3) and (4-4) may be written in matrix form:

Sfi °

0 s.,jj

cii 0

'jj D.J

0 s ij
Jji

c Jt 0

ijj

V "pi_
4* (4-5)

D,
_ J. _pi

Since and (Figs, J and 8), equation (4-3)

may be written;

LPjJ

s  . s  
ii tj

fji Sjj

C, . 0i i

'Jj

Di Pi4-

,d j. .PJ.

(4-6)

or
P - S G D 4 pm m m m m (4-7)

Equation (4-7) represents the total internal forces at ends i 

and J of any member m.

If we consider a frame consisting of n members, the forces at 

the ends of all the members referred to their own axis may be written as*

1
i—»

j

"S1 0 . . o .

1o

'C1 0 . . 0 . o
1

" ° r

1..

P2 0 s2 . . 0 . . 0 0 C2 • . o . . o D2 P2

• _
* <* • • • • * • • • •

+
•

• * • • • • • « e s • s e

Pm 0 0 . • Sm •tn . o 0 0 . • Cm •m . 0 Dm Pm

• • • • • • • • • • « • e

• « • * « • • • • ♦ • • •

P
n.

0 0 . . o . • sn_ 0 0 . . 0 . . cn _ Dn _Pn_

(4-8)
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or

P = SCD + p (4-9)

for the whole frame.
t

Let D represent k unknown joint displacements referred to 

the fixed co-ordinate system shown in Fig. 9(a)- The k components of
f

D may easily be determined by inspection of the frame, and the member
»

displacements D may be expressed in terms of D .

Let U be a 6n.k matrix composed of the transformation matrices 

T , Fig. 9 ( b ) } of each member such that

D = UD* (4-10)

Substituting equation (4-10) into equation (4-9) we have

P = SCUD* + p (^-H)

Pre-multiplying both sides by the transpose of U we have

uTp = u t s c u d ' + UTp (4-12)
TU P represents k sets of the sum of the internal force compo-

I I
nents at the joints where D is induced, in the direction of D . Since

the structure is in equilibrium, the sum of these force components and the

external force components acting on these joints must be equal to zero. 

Thus
IJTP + po = 0 (4-13)

or
utscud' + UTp + p = 0  (4-14)O

Equation (4-14) represents, in fact, k equilibrium equations 

in terms of k unknowns.
1

Solving for D , we have

d' = - ( u T s c u ) - 1  (UTp + p ) (^-15)
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(a) Fixed Co-ordinate Systems
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m
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n
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0 0 0 1X mX n
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0 0 0 lz mz n

(b) Transformation Matrices

FIG. 9. FIXED CO-ORDINATE SYSTEMS AND TRANSFORMATION
MATRICES
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Equation (4-15) is a formula for the k unknown joint displace

ments referred to the fixed co-ordinate system.

Replacing D in equation (4-11) by equation (4-15) we have 

P = p - SCU (l^SCU)"1 (UTp + po) (4-16)

Equation (4-lb) is a formula for the internal forces on the 

members of a frame referred to their own longitudinal axis.

From equation (4-16), the following remarks can be made:

1. The 6n.l matrix, P, is the solution of the problem and is obtained
by multiplication, inversion, addition and subtraction of
matrices S, C, U, UT , p and p

2. The 6n.1 matrix, S, depends only upon the geometric and elastic pro
perties of the members.

3. The 6n.l matrix, C, depends only upon the fixity factors and length
of the members.

T4. The 6n.k matrix U and k.6n matrix U depend only upon the orientation
of the members,

5. The 6n.1 matrix p depends upon the external loads on the span of the
members and upon their fixity factors,

6. The k.1 matrix p depends only upon the external loads on the joints
of the frame.

T7. The order of the matrix to be inverted, (U SCU), is k.Ic.

8. All the matrix operations mentioned are easily performed by any digital
computer.

The order of the matrices included in equation (4-16) can easily 

be decreased by neglecting the effect due to the axial deformation of the 

members. In arranging the stiffness matrix it is not necessary to in

clude the forces of all the members of the structure; by considering only 

the forces necessary to establish the equilibrium equations, the order of 

the matrices can be further reduced.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Because the correction matrices were derived based upon the 

presence of both shear and moment at the ends of a member, if the 

moment at the end of a member is desired, the shearing force at that 

end must also be included, and vice versa.
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CHAPTER V 

SAMPLE CALCULATIONS 

General Calculations 

The matrix operations involved in the formula, given by equa

tion (If-16), for the total internal forces at the ends of the members of 

a frame can be performed by using various techniques. As previously men

tioned, hand computation is possible but would prove to be tedious and

time consuming for all but the simplest problems. The use of a desk cal-
Tculator would hasten the calculations, but the inversion of U SCU would 

require considerable time. An electronic computer can handle large order 

matrices with phenomenal speed and accuracy and it is, therefore, the 

most effective tool available^. The problems that can be solved using 

the derived expressions are limitlessj the storage capacity of the avail

able computer is the only restriction that limits the size of the problem.

When a problem is first presented, it is necessary to study it 

and break it down into a number of smaller problems. Whether or not an 

electronic computer is at one's disposal, it is helpful to specify the 

sequence in which the matrix operations are to be performed. In this 

respect a flow chart, which outlines the optimum number of steps which 

will lead to the desired solutions, can be prepared. Fig. 10 shows the 

flow chart for the solution of the internal forces and displacements given 

by equations (1+-15) and (4-l6).

30
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It Is debatable whether the S and C matrices should be computed 

by the computer or if they should be computed using a desk calculator and 

then entered directly into the machine as data. This choice will ordinari

ly depend upon the analyst's judgement and the complexity of the problem.

Numerical Examples 

Example 1 - Single Bay, One Story Frame (10)

In Fig. 11 is shown a portal frame in which the beam is connect

ed to the columns by means of standard beam connections. The feet of the

columns are perfectly fixed.
15' 20000#

A3 Conn.

5 0 0 0
B

A

2 7 #/ f t  
I i, , i l » i t - t - t

12 WF 27

<fr
CM
u.
5
00

inpo
Ll
$
00

VY 20'

/H6 Conn.

D
YV

16'

FIG. 11. SINGLE BAY, ONE STORY PORTAL FRAME

From Table A-l, Appendix A, l/ZgC = .319 x 10 an<* 1/Zc b "

5.^99 x 10®. From Steel Construction (13), IA0 = 82.5 *BC “ 20U. 1 in^,

I «= 126.5 in^ and E = 29 x 10® p.s.i. The fixity factors are found-toCD

be 7AB = 7BA “ ’'CD = 7DC = ^  7BC = *501 and 7CB = -882‘ The S 3nd C
matrices for the frame, neglecting axial deformation are;
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The unknown joint displacements D' are Xg = xc , 6B and 6c>
Thus,

~yBA_ 1 0 0“

0BA 0 1 0

yBC 0 0 0

0BC 0 1 0

yCB 0 0 0

0CB 0 0 1

yCD -1 0 0

_0CD_ 0 0 1

The internal force components at the ends of the members due to

the external span loading, p, and the external forces acting on the joints,

p , are; o ’

y b a 0 "

“bA 0

y b c -5270

-72448 *b -5000"

y c b
* -15270 , p =j ro “b w 0

m c b 676151 «* Ml 0

y c d 0

m c d 0

TSubstituting S, C, U, U , p and pQ into equations (4-15) and 

(4-16), and performing the necessary matrix operations, we obtain;
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y b a 357.2 "

" bA 15^52.3

y b c -5^71.6

"bc -13^52.3 "XB ".J+5I+8

y c b = -14328.4 , and D* = 0B = .003823

MCB 503761.8
.. 9q.

-.003039

YCD -+4-614-2.8

f 
--

i -50376I.8

Table 5-1 compares the end moments and maximum positive moments 
of the frame with semi-rigid connections and those for the same frame 
with perfectly rigid joints.

Table 5-1

Maximum Positive and Negative Moments for 
________________ Rigid and Semi-Rigid Cases, Example 1.___________________
MEMBER MOMENTS (ft-k)

SEMI-RIGID RIGID
Mi MJ M M, M. M e s i j s

AB -82035.0 13^52.3 -6961+2.3 271+98.3

BC -I3fc52.3 503761.8 97114-75.8 -271+98.3 526814-9.1+ 835I+7I.2

CD 503761.8 -38765b.0 -52681+9.1+ -391006.8

Example 2 - Two Bay Frame

Fig.12 illustrates a frame of two bays having different heights.
The fixity factors for the members are indicated in the diagram and El

2is taken as 100 k-ft. for purposes of computation.
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I K / f t

5 1
K/ f t

I2 .5 1 12.5

7 K
2 I2 I

Y= 75
25 30

FIG. 12. TWO BAY FRAME

y r a 1 0 0 0 0 0
0BA 0 1 0 0 0 0
y b d 0 0 0 0 0 0
0BD 0 1 0 0 0 0
y d b 0 0 0 0 0 0
0DB 0 0 1 0 0 0
y d c -1 0 0 0 0 0
0DC 0 0 1 0 0 0
y d e 1 0 0 0 0 0
0DE 0 0 1 0 0 0
y ed 0 0 0 1 0 0
0ED 0 0 0 0 1 0
y ef 0 0 0 0 0 0
V 0 0 0 0 1 0
y f e 0 0 0 0 0 0

0 0 0 0 0 1
y f g 0 0 0 -1 0 0

0FG_ 0 0 0 0 0 1

e.B

7L
or D UD'

■465

10
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The p and p matrices are shown below along with the finalo
results for P.

0 -1.960

0 19.58

-16.00 -15.82
-29.11 -19,58

-16.00 -16.18
+29.11 2k. 06

0 0 ' -0.260
0 0 - 6 . k k z

0 Po = 0 and P = 1.700
0 0 -17.62
0 0 -1.700
0 0 54.62

-21.67 -21.90
-69.05 -3^.62

-23.33 -25.10
+72.42 51.02

0 -1.700
0 -51.02

Table 5-2 compares the moments for the rigid and semi-rigid cases. 
The beams of a frame as that of Fig. 12 would ordinarily be designed as 
beams with simple supports. For these end conditions the maximum span 
moments, M , for BD and EF are 121.9 ft-k and 188.9 ft-k respectively. 
Comparing these values of Mg with those in Table 5-2 it can be seen that 
a significant saving in steel is possible by considering the semi-rigidity 
of connections.
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TABLE 5-2

Maximum Positive and Negative Moments for Rigid and Semi-Rigid Cases

Example 2

MEMBER MOMENTS (ft-K)
SEMI-RIGID RIGID

Mi M i Ms Mi M i Ms
AB 9.82 19.58 21.26 33.09
BD -19.58 2U .06 100.01* -33.09 1*9.22 80.72
DC -6.1*1* 2.51* -21.31 -1.25
DE -17.62 3l*.62 -27.9I 1*9.11
EF -3^.62 31.02 158.19 -1*9.11 36.82 153.11*
FG -31.02 -11.1*8 -36.82 -16.19

Example J - Two Bay Frame with Gable Roof

Fig. 13 shows a two bay frame with a gable roof on one of the 

bays. All of the joints are assumed to be rigidly fixed except that at

E. The value of the fixity factor at E is varied between 0 and 1 and
2the resulting moennts are compared. El is taken as 1000 K-ft .

5K20' 0.10 K/ft

30' OJ

60 ■r

FIG. 13 TWO BAY FRAME WITH GABLE ROOF
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From Fig. 15(b), *c = 1/2 (*D + *B ) 

yC • ^  (xn - *C )

1

> 
1

1 0 0 0 0 0~

0BA 0 1 0 0 0 0

yBC • 555 0 0 0 0 0

0BC 0 1 0 0 0 0

yCB -.&7 0 0 .901 0 0

0CB 0 0 1 0 0 0

yCD -.901 0 0 .5*17 0 0

0CD 0 0 1 0 0 0

yDC 0 0 0 -.555 0 0

0DC 0 0 0 0 1 0

yDE 0 0 0 -1 0 0

0DE 0 0 0 0 1 0

yDF 0 0 0 0 0 0

0DF 0 0 0 0 1 0

yFD 0 0 0 0 0 0

0 F D 0 0 0 0 0 1

yFG 0 0 0 -1 0 0

0FG 0 0 0 0 0 1

or D = UD’
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Table 5-3 gives the values of c^g ^  and
c . t (shown in the C matrix) for various values of y .le:»lc Ci

TABLE 3-3
Values of cn _u , cu _lg> clg_n , and clg__12

rE cll-ll Cll-12 C12-ll °12-12
0 -.5000 -15.00 .0500 1.500

.25 -.2000 -12.00 . 0400 1.400

.50 .11*29 -8.571 .0286 1.286

.75 .5385 -i+.615 , 0154 1.154
1.00 1. 000 0 0 1.000

The resulting moments at the ends of the members are given in Table 5-4.

Moments
TABLE 5-h 

at Ends of Members for Various Values of 7E, Example 3
Member

7E=0 7E= .25
Moments (ft-k)
7e=.5° 7e=*75 7E-1.0

AB -34.94 -33.74 -32.66 -31.69 -29.20
BA -8.35 -7.96 -7.60 -7.28 -6.99
BC +8.35 +7.95 +7.60 +7.28 +6.99
CB +9.23 +10.31 + 11.27 +12.13 +12.92
CD -9.23 -10.31 -11.27 -12.13 -12.92
DC -2.2ft -2.62 -2.97 -3.27 -3.55
DE -10.02 -18.66 -19.22 -19.73 -20.18
ED 0 -6.1+8 -12.28 -17.48 -22.21
DF +20.25 +21.28 +22.18 +23.00 +23.73
FD +9+7.59 +1+5.16 +42.99 +41.03 +39.27
FG -22.59 -20.16 -17.99 -16.03 -14.27
GF -29.79 -26.70 -24.01 -21.47 -19.24

assumption university library
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Example k - Grid Framework
In Fig. Ik is shown a grid frame which is part of a floor system. 

It is assumed that sideway is prevented and that hi = 100 and GJ = .2 El,
E = constant for all members. The fixity factors are given in the figure.

1. 0 0 0 0 o ~
0 0 1 0 0 0

0 -1 0 0 0 0

y 1)C 1 0 0 0 0 0

0 0 1 0 0 0

Z
0BC 0 -1 0 0 0 0

yBh 1 0 0 0 0 0

X
BE 0 1 0 0 0 0

BE =s 0 0 1 0 0 0

yEB 0 0 0 1 0 0

-X
EB 0 0 0 0 1 0

ffC 
es &3 
CD 0 0 0 0 0 1

yED 0 0 0 1 0 0

'A 0 0 0 0 0 1

ozED 0 0 0 0 -1 0

yFE 0 0 0 1 0 0

0 0 0 0 0 1

A 0 0 0 0 -1 0
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*=240
L.LLL

/ 9 K I5K
A  =10
B y= 387 2 K

20

ALL *  =10
*=298

FIG. Ik. GRID FRAMEWORK

The p and p matrices are shown below along with the resulting 
P matrix which is tRe solution to the problem.

0 7.102-
0 4.15*1
0 -80.56
0 7.109
0 4.154
0 80.65

I VJ o O -9.00 -5.211
0 0 .0988

-20.32 0 p *= -8.308
-10.00 0 0 -9.789

0 4,00 9.983
28.32 0 5.119

0 -4.992
0 57.17
0 4.670
0 -4.992
0 -35.27
0 .4944
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Table 5-5 compares the moments on the ends of the members for 
the semi-rigid and rigid cases.

TABLE 5-5
Moments on Ends of Members for Rigid and Semi-Rigid Cases

Example 4__________________________ _
Mem. , Moments (ft-k)

Semi-Rigid Rigid

MX1 "S M?1 Mj MX1 MXj
AB -4.15 it. 15 -25.97 -80.5b -6. 00 b. 00 -50.78 •-56.70
BC 4.15 -4.15 80. t>5 25.98 b. 00 -b.00 56.78 56.82
BE .0988 -.0988 -8.51 9.98 .■0806 -.080b -12.01 11.22
ED -it. 99 4.99 37.17 Ik. 02 -5.61 5.0I 2*1,12 23.13
EF it. 99 -4.99 -33.27 -13.^3 5.61 -5.61 -2I.I7 •-20.20

The values of m | for the simply supported case are 105
ft-k for AC and 50 ft-k for DF. The values of M| for the semi
rigid case are 80.65 ft-k and 57.17 ft-k, respectively.
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CHAPTER V I

CONCLUSIONS

A method of investigating planar and space frames with semi
rigid connections was derived using the displacement method of 
matrix analysis. Correction matrices were found which depend upon 
the "fixity factors" of the members. These factors are defined 
such that the analyst is able to solve frames having joints which 
vary from hinged to rigid connections. Formulae, given by equations 
(4-15) and (4-16) were established for the displacements of the 
joints of a frame and for the forces acting at the ends of the mem
bers. These formulae are composed of known matrices and their 
solutions were shown to be readily adaptible to electronic digital 
computers. The method derived is limitless; the capacity of the 
available computer is the only restriction which limits the size of 
the problem that can be solved.
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APPENDIX A 

SEMI-RIGID CONNECTION FACTOR 

Table A-l

Z-Factors for Standard AISC Beam Connections (10)
Web
Thickness
(In.)

Connection
Number

Series A-B-H-K 
1

..7 3z x 10

Series HH-KK 
1

z x 10̂

5/8 3 0.402 0.411
1/2 3 0.371 0.379
3/8 3 0.343 0.351
1/4 3 0.519 0.32b

5/4
5/8
1/2
3/8
1/4

1+
4
4
b

1.079
0 .99b

0.917
0.850
0.789

1.105 
1.018 
0.88ii 
0.870 
0.808

3/4 5 3.692 3.798
5/8 5 3.392 3.489
1/2 5 3.128 3.215
3/6 5 2.888 2.970

3/4 b b.490 8.676
5/8 6 5.961 6.131
1/2 b 5.499 5.650
3/0 6 5.071 5.216

Table continued on next page 
52
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Table A-l (continued)
Web Connection Series A-B-H-K Series HH-KK
Thickness Number 1 1
(in.) z x 108 z x 108

3/* 7 10.433 10.733
5/8 7 9.590 9.854
1/2 7 8.835 9.088

3/4 8 15.7^5 16.168

5/8 8 14.455 14.843
1/2 8 13.316 13.686

7/8 9 24.80 25.236

5 A 9 24.82 23.184
5/8 9 24.83 21.283
1/2 9 24.86 19.635

1 10 37.058 38.129
7/8 10 33.793 34.784
3/4 10 J1.042 31.984
5/8 10 28.535 29.358

839

Dependable percentages of rigidity for semi-rigid connections are tabu 

lated in Reference (8) and a formula is given relating this percentage 

of rigidity to Z.
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APPENDIX B

MODIFIED FIXED END MOMENTS 

Uniformly Distributed Load

w
\  ■ 
v

i i  ~ i  \ t e
s

M. 12 7 , 7

„j “ 12

Concentrated Load at Mid~Span

L _  ..U Z ____ ___ ...* .L / Z  .......

PL
M i " r

5ri(S"rj) _1_ _

M p l 37 j(2--71)

~k - y J r

5>+
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Concentrated Load at Any Point
P

'V> - V,: j

M Pab
i .2

Ij

- ria(2+r1)

M. « Pa2b
* L2

2 7 ^ ( 1 * ^ )  + 7jtt(2+rt)

Moment on Span

K
*

Mi “ j2a5(l*rj)+5ab(2a-7jb)+b3(Ji-7J)j

Mj = [pb3(l-7i)+3ab(2b-7ia)+a5(l<.-71)j
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Triangular Distributed Load

M _ wl n * 7 -1̂ 1
i ~ X5 '

w

i
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APPENDIX C 

LGP-30 COMPUTATION OF EXAMPLE 1 

The problems contained in Chapter V were all solved using the 

LGP-30 (Royal McBee) digital computer. The floating point interpretive 

system (P.k.k) was employed throughout. In addition, matrix inversion 

(DI-P30.0) and matrix multiplication (Dl-P-30.2) subroutines, compiled 

by Purdue University School of Electrical Engineering, were stored in 

the computer. The following is the detailed program for Example 1; it 

follows exactly the flow chart outlined in Chapter V,

Storage

Subroutine Storage;

Matrix inversion (D1-P30.0) stored at <4-000 

Matrix multiplication (DI-P30.2) stored at 14-300 

Data Storage

Stiffness matrix, S(8x8), stored at <4b00 

Correction matrix, C(8x8) stored at <t800 

Transformation matrix, U(8x3), stored at 5000 

Transpose of U(3x8), stored at 5100 

p(8xl) matrix stored at 5200 

p (5x1) matrix shored at 5220 

Program Storage

Program stored at 5300

57
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Program

Program Input codes;

;0003300 start fill

/OOOOOOO set modifier

acation Instruction Contents of Address Notes

5300 r6300 Floating point 2*K2
01 uOifOO
02 10000 data input
03 eOOOO matrix mult.
04 rl*3l5 calling sequence
05 ult-300
06 zit600 S (8x8)
or Z0808
08 zW300 C (8x8)
09 z0808
10 Z5500 SC (8x8)
11 rlt-315
12 ulf300
15 Z5500 s c (8x8)
i k z0808
15 Z5000 u (8x3)
16 Z0803
17 z5700 s c u (8x3)
18 r ^ 3 1 5
19 utt300
20 z5100 TU (3x8)
21 z0308
22 z5700 s c u (8x3)
23 z0803
2k z5800 u T s c u ( 5 x3 )
25 r<f003 matrix inv.
26 ulfOOO calling sequence
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Location Instruction Contents of Address

27 35800 (U^CII)"1
28 r4315
29 u4300
50 z5100 UT
31 20308
32 Z5200 P
33 z080l
34 Z5900 Tu  p
35 r6300
36 u0400
37 lc0003 set Ind. reg.
38 leOOOO no. 1
39 110002
40 lb5900 TU p
41 la5220 Po
42 lh5240 TU  P+ PG
43 1z 534o

44 eOOOO
^5 r43l5
46 u4300
47 Z58O O ( t ^ s c u)"1
48 Z O5O3
49 z 5240 (0Tp+Po)
50 z030l
51 z5250 (UT SCU)"1(UTP+P0) =
52 r6300
53 u0400
54 2c0003 set Index reg.
55 2e0000 no. 2
56 210002
57 2b5250 -D*
58 yOOOO D'

Notes

(5*3)

(5x8)

(8x1)

(3x1)

(3x1)
(3x1)
(3x1)

(3x3)

(3x1)

(3x1)

(3x1)
(3x1)
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>catlon Instruction Contents of Address Notes

59 pOOOO print D*
60 mOOOO car.ret.
61 2*5357
62 eOOOO
63 rk3l5

5k00 uk300
01 z5700 SCU (8x3)
02 z0803
03 z5250 (UTSCU)'l(UTP+P0) (3*1)
Ok z0301
05 z5900 SCU(UTSCU)“1(UTp+p0) (8x1)
06 r6300
07 uOkOO
08 3c0008 set ind, reg. no. 3
09 3e0000
10 310002
11 3b5200 P (8x1)
12 3»5900 scu(uTscu)"1(uTp+po) (8x1)
13 pOOOO P print P
lk mOOOO car.ret.
15 3z5kll
16 zOOOO stop
17 .0005300
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NOMENCLATURE

A area under the simple beam moment diagram due to external lateral
loads.

C correction matrix

D displacements at ends of members, in matrix form, referred to
their longitudinal axis

D* unknown joint displacements, in matrix form, referred to a fixed
set of axes

E Young* s modulus

F internal forces at the ends of a member, due to its end displace
ments, in matrix form

G shear modulus

i, j subscripts indicating the ends of a member

1^, IZ moment of inertia about the y and z axes of a member

J polar moment of inertia of a member

K modified stiffness matrix

l,m,n direction cosines of the axis of a member, relative to a fixed 
axis

L length of a member
X  V  2M ,M ,M bending moments about the x, y and z axes of a member

M_ maximum positive moment in the span of a memberO
p forces at the ends of a member due to the external span loads,

in matrix form

Po external forces acting on the joints of a frame, in matrix form

p total internal forces at the ends of the members of a frame, in
matrix form

R angle of rotation of a member, due to the relative displacements
of its ends

S stiffness matrix g*
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Tm
U

x,y,z

Z,Y,Z

Z

<*,0,7

ex ,ey,e

0

6U

transformation matrix for a single member 

transformation matrix for the whole frame

displacements at the ends of a member in the x, y and z directions 

forces at the ends of a member, in the x, y and z directions 

semi-rigid connection factor

fixity factors for rotation about the x, y and z axes of a member

rotation of the column axes at their interesection with the beam 
axes, about the x, y and z axes

relative rotation of the beam and column axis

angle of rotation of a member, measured clockwise from the x-axis 
of the fixed co-ordinate system to the x-axis of the member
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