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ABSTRACT
A systematic method of analyzing the elastic 

stability of frames against ’cackling is presented.
Two possible means of attack are developed: (1) a 
flexibility method based on campatibility considerations 
and (2) a stiffness method based on equilibrium 
considerations. In both cases primary bending moments 
occur before buckling takes place.

In the special case of sidesway buckling 
it is possible to use the principle of superposition 
because of the presence of bifurcation of deflected 
shapes. The sidesway mode is assumed to consist of 
two parts; (1) a symmetrically deformed frame, and 
(2) an infinitesimally small antisymmetrical configura­
tion. The superposition principle can be employed 
automatically by differentiating the equations set up 
from the original sideways deflected frame. The advan­
tage to this method lies in the fact that the original 
equations are very difficult to solve explicitly.
On the other hand the differentiated equations can be 
simplified to a determinant wh^ch defines the criterion 
of stability when it vanishes.

iii
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NOTATION

A c
C
A C
D
A D
E
P
H
A H

r
k.

Z

L
M
A M
H
P

stability factor (carry-over factor of a member)
change in carry-over factor
stability factor
change in stability factor
displacement
infinitesimal sidesway displacement 
I.oxmgts modulus of elasticity

Tflexibility of a member (P = |tj) 
transverse shear force 
change of transverse shear force 
subscripts indicating the ends of a member 
moment of inertia of a member

stiffness of a member (K= L"“)
length of a member
bending moment
change of bending moment
loading parameter
axial forces at ends of a member

vii
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A p 
P

AP
P

R
A R 
s
A s 
S
A S 
v

V
A V
w
x,y

9i, 0j
Qab
go

0

change of axial force at ends of a member
external force acting at a joint (P = (1+R) wL2

~2~
change of external force acting at a joint 
external force acting at a joint (F = R wLp^

bar rotation
change in bar rotation
stability factor Cnon-dimensional stiffness)
change in non-dimensional stiffness
staoility factor
change in stability factor
subscript indicating member with variable 
flexibility
vertical reaction
change in vertical reaction
intensity of uniformly distributed load
displacements at ends of a member in the x 
and y directions
angular rotation of member at joints i and j; 
angular rotation of joint a of member ab 
angular rotation due to span load w.

VI11
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CHAPTER I
INTRODUCTION

The importance, in the design of frameworks,
whether pin connected trusses or rigidly jointed frames,
of the action of compressive members is well known.
In trusses each member is divorced from its neighbour
except with regard to axial forces. However, because
of the rigidly connected joints of frames, deflection
of one member causes distortion of every other member
in the framework. Thus, in rigid frames stability
depends on the buckling strength of the whole structure.

The theory of buckling strength of framework
subject to axial forces only, has been well established
for several decades. Until the advent of electronic
computers, faciliitating numerical calculations, little
work had been done on frames subject to primary and
secondary moments at tne instance of buckling. A
notable exception to this statement is the work of3
Chwalla and Jokisch who in 1941 applied a slope deflec­
tion method of analysis to an example frame including
the effect of primary bending moment. More recently

12 10Easur, Donnell, Chang and Lu have also contributed to 
the study of buckling in the presence of primary bending.

1
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The work of this thesis is intended to present
a direct analytical solution of elastic instability by
setting up in matrix form a system of linear homogeneous
equations, expressing the interrelations between forces
and displacements. A determinant can then be developed
expressing the criterion of stability. These equations
include terms allowing variation of the end fixity of
supports by the addition of a member ab with variable10
stiffness as illustrated in Fig. 1. Lu introduced a 
similar framework, but used a convergence method to 
arrive at the final solution. In this writer's opinion . 
the direct solution seems more straightforward•

A consistent sign convention is used through­
out, although two modes of analysis are presented.
These are: (1) flexibility.method - a compatibility
analysis arranged in tabular form which leads to a set 
of "equations of compatibility", and (2) stiffness method- 
an equilibrium analysis leading to a set of "slope- 
deflection equations" employing stability functions.
In both avenues of approach the equations that result 
are differentiated to simulate a condition of super­
position and the matrices are then simplified to the 
well-known determinant criterion.

2
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Pig. 1 PRAME DIMENSIONS AND LOADING
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CHAPTER II 
HISTORICAL DISCUSSION

When an investigation of elastic buckling is 
undertaken-especially from a chronological point of view- 
the work of Euler must always be placed in a position 
of primary importance. His classic formula for the 
critical load of a pinned end strut

POT. s-n-2 IIor 1T — <7 
L

is still a basic guide for any work connected with 
slender compression members.

In 1919 BLEICH presented the method of four 
moment equations in which a systematic analysis of the 
stability of plane frameworks with rigid joints is 
derived. His method depends on the condition of 
continuity at a point where two or more members are 
rigidly joined. Each equation expresses a relation 
between the four terminal moments of two adjacent connected 
members and the bar rotation.

3
As mentioned before^Chwalla and Lokisch 

first derived the slope-deflection equations for sta­
bility. In this method the angular rotation of the joints

4
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and the bar rotation are considered as variables in the 
stability equations.

Both of these methods may be termed analytical 
solutions to the stability problem in which, the vanishing 
determinant of the coefficients of the equations defines 
the buckling load of the frame.

Various convergence methods have also been
6applied to the problem of elastic instability. James in

1935 converted the moment distribution method as developed
by Hardy Cross to a form including the effect of axial

6load in thenEmbers. Shortly after, Lundquist also 
presented stability criteria based on the Hardy Cross 
method. However, these criteria require the use of trial 
and error procedures to solve, instead of leading to a 
direct solution.

3Until the mid 1950’s Chwalla was the only
author known to this writer who considered the effect
of bending of a frame before buckling occurred. In 1952 

3Bleich reviewed Chwalla’s work and suggested that 
future work be carried out. Subsequently with the
introduction of competent electronic computers the problem8 12 
was attacked by Livesley , Masur, Chang and Donnell ,
and LulO. By introducing stability factors Masur, et al.,

5
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presented a systematic approach using tiie slope-deflection 
and the moment distribution metdod. Tiie structure analy­
zed was a pin connected frame under the action of two 
concentrated vertical loads placed symmetrically on the
horizontal beam so that they produced primary bending

10moments. Then, in 19o3 Lu extended the slope-defection 
analysis to include the effects of a uniformly distributed 
span load.

6
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CHAPTER III 
FLEXIBILITY IvETEOD

Actual collapse of a frame sucii as that shown 
in Fig. 1 is caused by a number of factors although 
there are two primary ones, namely inelasticity and the 
second order effects of "buckling" instability. This 
thesis considers only the effects of elastic instability 
and as a result the usual assumptions made in a study 
of elasticity are adhered to.

In Fig. 1 the interrelation of axial load F10
to uniform load w as developed by Lu is adopted.

F = N WL2 (3-1)
2

in which N is a numerical parameter. Therefore the total 
axial force in the columns is

P : (1*N) wL^ (3-2)
2

The beam-column shown in Fig. 3 represents a 
typical member connecting joints i and j. and are 
moments applied at joints i and j respectively, and the 
axial force is signified by p. The angles of rotation 
at the joints i and j are ©j_ and ©j respectively, and the 
bar rotation is R. Y^ and Yj are the support reactions

7
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SIGN CONVENTION

Pig. 3 TYPICAL MEMBER
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at i and j respectively.
By means of tne general differential equation

for beams under axial load
u

+ P y 
dx2 ^

0 (3-3)

the following interrelations between rorces and displace­
ments can be found as derived in Appendix A:
ij = Mi P(C-i_) - M-j P(S+1_) + Y±L F_

2 2 2 VT ifi 0

(3-4a)

©j =-M:iP(,S +. 1_) + M jF( C-l ) + % L  P
0< 0‘ 0‘

(3-4b)

& & 2
(3-4c )

in which
p =•■ L_ 

El

02= £l2 EX

C3-5J

0 - 5 b )

0 and S are stability factors denoted by the following 
expressions:

C = 1 (l-0 cot 0)
W

(3-Sa )

S - 1 ( 0 - 1)
0* sin 0 (3-6b>
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Tiie angle of rotation caused, by a uniform load w on a
16beam column is, from TimosJaenko

Go e (C + 0 (1 + cos 0) | wL
|_ 2 sin _| P

By tiie law of superposition, G0 can be algebraically 
added to tiie joint rotations, Of and Oj .

Equations (3-4), expressed in matrix form,
become

©i

©J -

R

F (C - 1} 
0Z-

- F (S + 1 ) 
¥

JL
pL

■F (S + 1 ) 
¥

F (0 - 1 )¥
1_
pL

1_
pL

_1
pL

_1
pL

M.

I l l  A

Y<Li-1'!

(3-

If joints i and j are considered to be on tiie x axis, 
i.e. D m R - 0 tiien tiie matrix equation becomes

(3-9)
®i PC -PS Mi

V -PS PC Mj

Symmetrical Deformation 
Tiie frame in Pig. 1 is now analyzed for its 

symmetrical mode of instability. Tiie deflected siiape at 
tiie point of buckling is as siiown in Pig. 4* By applying

' 10
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TABLE 3 - 1

TABULAR PRESENTATION OF INTERRELATIONS BETWEEN FORCES AND DISPLACEMENTS

0 Kab 0wba d ube 0cb 0 -Acd 9 adc 9 Ada 0  ̂ad

APPLY 
MOMENT 
AT a

M F C ab 1 1 -\b Fisi 0 0 0 0 -M F S ad v v M , F C ad v v

APPLY 
MOMENT 
AT b

-m k f ,sba 1 1 Mba F1C1 Mbc F2°2 "Mbc F2S2 0 0 0 0

APPLY 
MOMENT 
AT c

0 0 -Mcb F2S2 Mcb F2C2 M  ̂F1C! cd 1 1 -M F S cd 1 1 0 0

APPLY 
MOMENT 
AT d

0 0 0 0 Fisidc 1 1 FiCidc 1 1 +M, F C da v v -M F S da v v

INITIAL 
ROTATION 
FROM SPAN 
LOAD

0 0 0o -0o 0 0 0 0



L

(a) (b)

Pig. 4 SYMMETRICALLY DEFORMED FRAME

12
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tiie matrix equation (3-9) to eacii member in tarn and 
arranging in tabular form tbe analysis can be very easily 
presented*

Continuity of tiie structure requires tdat at
joint a

©ad " ®ab = 9 (3-10)
Similarly at joint b

©ba “ ©be = 0 (3-11)
From Table 3-1, equations (3-10) and (3-11) become
Mad *Vcv“ % a  *Vsv - Mab ?lcl + ^ba = 0 (3-12)

-Mab PiSi + Mba FjC! - Mbc F2C2 + Mcb F2S2 - ©0 = o (3-13)

Now remove column ab from tiie structure and
consider tiie forces acting on it. By summing moments
about point a tiie following equation results:

Mab + Mba - HbLi = 0 (3-14)
The frame is tiien disengaged as illustrated in

Fig. 5* Only tiie moments wiiicii produce tiie assumed 
deflection of tiie members in Fig. 4 are indicated. Since, 
in tdis method, equilibrium is everywhere assumed to be 
satisfied the moments on the members can be related through 
the use of equilibrium at the joints, 

let Mba — 
and Mab = M2

13
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,v,ab>r-N ^ ,T,dc

o L ) ( — -----------— ) ( J
^ a d  ^da

Pig. 5 DISENGAGED SYMMETRICAL FRAME

14
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By following tiie above procedure
* ~ l*bc - MqJ) — — lied

and M2 = Mab = Mad =-2̂ da = - Mdc
(3-15)

By using equations (3-12), (3-13), (3-14), and (3-1$) 
tiie following matrix equation results.

Ft S1D1 ?v(0v + sv) - ^l0!

rqCi + f 2(c2+ S2) - F ^
1 1

However, tiie column matrix

0 Mx

- eo M2
-HftLi 1

= 0 (3-16)

Mi

M2
is not equal to zero.

Tiierefore tiie determinant of tiie coefficients must be zero 
and tne criterion of stability Has been obtained.

0FjSi F (C + S ) - F-,0-, v V V 1 1

-F1S1

1 - H bLi

= 0 (3-17)

By varying tiie values of Fv (the flexibility of member 
ad) from zero to infinity tne end conditions of a three 
member frame abed can be modified from entirely fixed 
to completely free to rotate.

15
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For example, tiie result for a frame witii pinned 
ends, ig., Fv is infinity, is

Similarly the equation for a frame with fixed ends, ie,, 
Fv is zero, is

sidesway, it will always buckle in an antisymmetrical 
or sidesway mode before the value of the critical load 
for symmetrical deformation is reached* This means that 
for some loading stage there exists two possible stable 
modes of deformation and the point at which this phenomenon 
occurs on a load-deformation diagram is called the bifur­
cation point* A proof of the existence of such a pheno-

3menon was given by Chwalla for a simple portal frame*

sidesway mode of deformation, the frame must be allowed 
to deflect an infinitesimal amount into the mo de of 
failure as illustrated in Fig. 6 (a).

Using equation (3-Sj a table similar to table 
(3-1) is constructed which includes the effect of sidesway.

16

Fl(°l2 " sl2) + F2 (62 + S2> - ©o = 0 (3-19)

Sidesway Deformation 
Unless the frame of Fig. 1 is braced against

In order to obtain a stability criterion for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



D + AD

R+AR^p

I ©bc+A0bc
0 cb+ A 0 cb

X -

(a)

I I ± J  I L I

AO

A©

(b) (c)

•Vig. 6 ERAME UNDER SIDESWAY DEFORMATION

17
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The same conditions of continuity still apply, ie, 
®ad - eab = 0 (3-10)

®ba - Sfco = 0 (3-11)

However another condition of compatibility is evident from 
Fig. 6, i.e.,

RbLx - D s 0 (3-201

Prom Table 3-2, equations (3-10), (3-11) and (3-20) 
become

- «ab rl<sl + h  > + Mba *1 (°1 - i _ )  + - Mb0 r202
i !  “ l

+ lvlcd 5-2S2 - 0Q = © (3-21)

^ad ^V'v “ *“%a v^v “ ^ab -^l^l “  ̂  ̂ivlba a11
1

(S1 + " HbLi = 0 (3-22)
^1 " PLl

P m . i - Mh„ i H hL,n
ab p lT ba pIT +L 1 *^1 PLi J

L t - D = 0 (3-23)
PLi"

These equations alone represent the solution 
to the sidesway problem, but it is very difficult to obtain 
an explicit solution from them. However, by means ofthe 
principle of superposition the frame can be segregated

1 8
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TABLE 3 - 2
TABULAR PRESENTATION OF INTERRELATIONS BETWEEN FORCES AND DISPLACEMENTS

0 Uab ba 0Kbe 0cb 0  ̂cd 6 adc eda 0 Aad Rb Rc
APPLY 
MOMENT 
AT a

Mab F1C1 -Mab F1S1 0 0 0 0 -M . F S ad v v M . F Cad v v 0 0

APPLY 
MOMENT 
AT b

- V  V l "ba F1C1 "ba F2°2 - W s 0 0 0 0 0 0

APPLY 
MOMENT 
AT c

0 0 -Mcb F2S2 McbF2C2 ed 1 1 ^ Fisicd 1 1 0 0 0 0

APPLY 
MOMENT 
AT d

0 0 0 0 -M. F S dc 1 1 Mdc Fl°l MJ F C da v v -M F S da v v 0 0

APPLY
LATERAL
FORCE

v / i

« b V PLi

-Ma b V * ?

+Hb V ?Ll

0 0
-McdFX

+Hc V FI-l

-MadFX

+H L./PL. cl' 1

0 0
M .+M.ab Da

PL1
,HbLl

Mcd + Mdc 
PL1

H L.
+ C \

INITIAL
SPAN LOA 
ROTATION

?L1 PL1
D 0 0 eo -0o 0 0 0 0 0 0



into two parts consisting of; (1) a symmetrically 
deformed frame and (2) a frame witb. an infinitesimal 
sidesway* Tbis can be performed automatically by 
differentiating equations (3-21), (3-22) and (3-23)*

- AMab I!(Si + 1 ) - Mat l’l A Si + . (1 )'
*1 J

AlSba FitOi - 1 ) + M ba ?!
*1

’AC, - . (1 )
0

AHbLi + KbLi A (1_) - A M bc - Mbc .fy A02
PLi PL-

+ A M ^  P2s2 + ^cb ?22^s2 “ A0o -■ o (3-24)

A Mad •̂ v̂ 'v t ĵ ad A “ A ̂ *da -^v^v ” %̂.a ^

A Mab rl l°l - W  - “ab *1 'AO, -

+ A M ba ?i(Si I 1 ) + M ba l’i
J ?

rA Si + (1 1
i

1 )] - A H bl!
S f

Hbl-! 4 (i_) = o
PLi

(3-25)

- AMab - Mab ^ (1__) A M ba.- M ba ^ (1__) +
PLi PLi ,PL1 PL,

20
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AHfcLi + H bLl A } L1 " AD = 0
PLi J

(3-26)

In eaeb. of equations (3-24), (3-2$) and (3-26) there are 
two basic groups of terms. One group consists of terms 
in which the moment and lateral force H are differentiated; 
the other group consists of terms in which the moment and 
lateral force are not differentiated. These groups 
represent respectively the infinitesimal sidesway and 
the symmetrical modes of deformation. The following 
expressions apply to equation (3-24), (3-2 5), and (3-26):
A S ? r d S? A H, - AH?* a u 6 * ' *

a c 2 = c 2 ! a h 2
I (3-27)A 9 0 : G0 A H 2

ASV = Sv A H V

A S v r'Ov AHV (3-28)

I (3-29)A C — C>! Apj_

■2

21
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and C» = - C |~C - 3S + S? „ 1 (3-30)
Zp I C * S “ C(G'2-S& J

For the derivation of S ’ and C* see Appendix C#
However in the perfectly antisyiametrical infinitesimal 
sidesway deformation, it is evident that the axial force 
in both horizontal members is zero, i,e,, A H 2 r i H T r 0. 
Therefore

A S 2 - AC2 r A©0 S ASV = ACV = 0 (3-31)

For the symmetrically deflected frame the relation bet© 
ween shear force, H b and moments, Mab and M^a is' the same 
as in eg.nation (3-14).

Mab 41 Mb a - HblOl = 0 (3-14)
Both of the frames of Fig. 6 can be disengaged 

at the joints as was done in the previous section concerned 
with symmetrical buckling only. In fact the symmetri­
cally deformed portion of this section has the same result 
as that of equations (3-15)

M-i a Mb a ■ - Mbc = M<jb = -Med
(3-15)

and M2 = Mab = Mad »“McLa = ~ ^ 0
Vi/hen the antisymmetrical frame is disengaged as shown in
Fig. 7» the following equations result:

A Mi = 4 M ba ■ -AMbo * - A M ^  =
and A M2 « A M ^  - - A M ad « - A M ^  = Al%0 (3-32)

22
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AM

AM,alv-\

Lx
AM,

^ s “ 'v'cdAMf

V-y
A M *

) ( J d
AM.da

Fig. 7 DISENGAGED ANTISIM/IEIRICAl FRAME
23
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in which AM^ and A M 2 are assumed arbitrarily to be
equal to A Mba and A M ab respectively.
By employing tile relations (3-14), (3-15), (3-29), (3-31), 
and (3-32) equations (3-24), (3-25) and (3-26) simplify to:
AMx [Yl(Ci- 1_J + I’2(02- S2)l - A M 2F1 (S1+ 1_J

L 0X2 J 0!2
+ [MiI'iCi1 - AP1 r 0 (3-33)

A M ^ S i  + 1 ) + A2^ fl’v(Cv - S ) + P^Cj- 1_J'
01 L 0!2 .
- M2Fi0i * J a Pi - 0 ... (3-34)

AMjJl) + A M 2(1) + A D  r 0 (3-35)
P P

fpv(C + sv) - PjCj
in which Mx = - _______________I J__________  90

* i 3i + tv^v+Sv) - i’1o1][?1o1 + i'2(02ts2)]

and M2 — 9 r

^ + k  d ?t <°t ■ sv H ci*i°i+i,2 to2+ yJ* X

Tiie relations for and are derived directly from
equation (3-21)and (3-22). Now consider tiie equilibrium of 
tiie structure shown'in Pig. 8 (a). If the summation of 
moments about d equals zero, then

o = (Vq + A VX) L2 - p (L2 - ad) 4 P a d  f Mab 4 Mcd f 

AMab ^ M cd
24
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-------1

R+AR

(a)

Mab + AMab^aj^___
Mdc +AMdc

V 3 + A V 3

M +AV, v3 +av3

(b)

Pig. 8 FORCE EQUILIBRIUM AFTER SIDESWAY

25
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But from tJae symmetrical configuration it is obvious that
?! = P.
Then after employing equations (3-1$) and (3-32),

AD r " APj_L2 — AM2 
2P P

(3-36)

Substitute equation (3-36) into equation (3-35) and 
arrange in matrix form.

Pi (Cl ~ I . J  + )
h z 0i2

C r - P <0 -X
01 0

2

Pl(Ml°l,“ M 2S1 ^

r~
..■=r*
<J

1

Fl(M±3l~  M 2C1 ^ m 2

-L2 1—1 
P< <1

_ __

V V V

0

But the column matrix is not eq.ua! toam2 

AP,
zero; hence the determinant of its coefficients must be zero,

26
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M2S1 * ) 

Fl(Mlsl*" ^ l ' )

-L,

r 0 (3-37)

This determinant represents the criterion of 
stability for a frame which buckles in a sidesway mode. 
By expanding the determinant a theoretical solution can 
be found for the critical load at which the frame will 
become unstable if sidesway is allowed to occur.

27
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ChArifJSJi IV 
Sl'IFF-NhSS MJSTJtLUU

The stiffness or slope-deflection method of
10

analysis nas been fully treated by Lu except with, regard 
to the automatic development or the superposition

10principle as mentioned before in Chapter ill. Also Lu 
does not introduce the variation or support fixity 
directly into his analysis. For these reasons the author 
reels that it is or interest to analyze tne sidesway 
mode or deformation by the stiffness method.

This method of analysis differs from tne 
flexibility metnod in that the conditions of compatibi­
lity are replaced by equations of equilibrium as the 
requirements or analysis^ le, compatibility of the 
structure is everywhere assumed to be satisfied in 
the stiffness method while equilibrium is assumed satis­
fied in the flexibility method. Tnus summation of 

moments at joints a and b, and the equilibrium of column 
ab are the conditions which must be fulfilled for a 
proper analysis. Wow consider the frame shown in Fig. 6.
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H|3q = — K^s^l + c^) — “̂Pbc

Mba = KlSl«e + K1s101«a - KlSi(l + ox) Rj_

Mab = Kj.Sj9a + % s lCl9b - K1s1(I + c±) R±

M a(1 — KySy9 a + KySyCy9 d — KySy(l + Cy) Ry

Mda = KySyCy9a + KySy9 d ~ K y S y U  + Cy) Ry

Mac “ Kisied + Klslcl9c " ^lsl ^  + °1) K1

in which K = El / L

Also rrom Lu 

Mpbc = ^2 ± - (I + COS 0 J WL2 
* sin 0 jj-

(4-1)

s = 0 (sin 0 - 0  cos 0) (4-2)
2 - 2  cos 0 - 0  sin 0

c as 0 - sin 0______
sin 0 - 0  cos 0

(4-3)

wnicn is The fixed end moment for a uniformly distributed 

load Wo Also in equations (4-1) both Ry and R2 and 

any change in Ry and R2 are considered to be zeroo1

29
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In. matrix form the equations of equilibrium'
are

+ Kvsv K1s1c1 Q

KIS1C1 Klsl+ K2s2 K2s2c2

Kx s i (I+c i ) K]isx(l+ci) 0

KySyCy -KxSjCl+Cx)

0

-KxSjCl+Cx)

PLl-2Kisi(l+ci),

®a

9b

9c

©d

Rl
o
“MPbc
-HLj

= O' (.4-4)

How equation (4-4) is differentiated.

30
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After equation (4*4) is differentiated it can 
be seen from Fig. 6 (b/ and 6 (c) that 

©« = - ©v

and
°d - “ Ga

a o c « A 0 b

A©a — A©?

Also in equation (4-5)
t

A s2 - iS2 A H2 = s2 . ^ S 2
dH2

A c2 - c2 * AH,

Asv = sT’, A H y

A°v = V  AHV

iSi : Sl’ A Pl

iol = °i' APi

(4-6a)

(4-6b)

(4-7)

(4-8)

(4-9)

However for the perfectly antisymmetrically deflected 
frame in Fig. 6 (c) it is obvious that A H 2 & A H V - o
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Therefore
As0 = Ac9 = Asy r Ac^ - 0

Then equation (4-5) becomes after substituting and simpli­
fying

Elsl ®a t % ( slcl + sl ,<3l) eb

Kl(siOi* t Si*ci) 6a + K1s1 T©b

^ ' ( 1  + Cl) - Sj_ci1 (©a + ©bJ

w

K±3±+ * °V* Klslcl

% slcl IC1S1 + ~K2s2{

X^s^l + cx) K^s-j^l + Cjv

- E^S^l + Cq)

1 
«CP 

1 
*

- K ^ d  f c^. A © b

PL! - 2K1s1(l.+ cx) ARX

= 0 (4-10)

in which Ga and ©b can be found from equations (4-1)

r
(Klslcl) % b c

(KiSici) - [Xisi K2s2{,l-o2)J [k1s1 + Evsv(l-cv )|
(4-Ha)
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and

©b = “

(4-Hb)

Tiie factors s ’ and c1 were found by Masur, Ciiang and Donnell'
s’ = s_ (l-c2s) (4-12a)

2p

c‘ - l + o £l - o s (l-c)J (4-12b)
2p

To simplify equation (4-10) furtiier it is 
necessary to consider Fig. 8 (a). Summation of moments 
about pointed is zero.
Tiieref ore

0 = (V1 i AV-l) L2 - P [ L 2 - (Dt AD)] I P (D f AD)

t Mab + A M ab + ]%c + A]%c (4-13)

By noting tiiat D = 0 and substituting appropriate values 
for 3^b , I%c , AMab and^ A % c it is found-that

u

0 = AYXL2 + 2 P A D  + 2K1S1 [A&a + C;l A©b “ U+°l) ARjl]

Since , AD = AR-jL i

34
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A^i r Api r “ 2K2_S]_ A 0 a - 2Z j_S2_cj_ AQ^ - 2 j^PL^-K^s^O+C^jj
l2 ^2 *-2

ARj. (4-14)

By substituting equation (4-14) into equation (4*10) 
an equation will be found, such, that

*11 *12 *13 A ©a

*21 *22 *23 A0b

t31 *32 t33 AR]_

the column matrix ~A®a" can not I

AGb
A %

zero; so the determinant of its coefficients must be zero, 
ie,

i—1
Eh *12 m13

*21 *22 * 23 - 0 (4-16)

<—ir̂v
E h *32 t33

in which
*11 = Klsl + V ? U + C7) - 2K!2si [s1 '0a t (s!czL+si cx ) 0̂ ]

12
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t12 = Klslcl - 2K12slc1 [Vj/Oa flsici’f s£ci) 6^]
l2

T13 = - KlSl(l + ci) - ZK-i £PLj_-
L2

T2i - K ^ C !  - 2IC12s1 C (sl°l1',r sl'cl) ea+ sl’©J
L2

T22 = Klsl t iC2s2^1 + c2̂  “ 2K12s1°1 [( slcl'* sl ’cl ) ®a+sl ,0b]
12

T22 r - K̂ s-jJI+ĉ ) - 2K^ £pL^- Kj_s-|_(1+Cj_)J £(Sj_Cj_ +Sj_ cl)®a+sl ®b]
. L2

T 31 = ^l25]^1 +cl̂  “ 2Zi2si j^si’Ci+c^) + s1c1’](©a4ob)
~^2

O  f» | \

T32 = Klsl^1+Cl̂  " 2K1 SiCi[si'(l+ci) + J(6a + 9b)

T33 r PLjl - 2K1s1 (l +Cl) - 2Ki [PLi - [s^ (1^ )
12 - '

+ ©a 4 ©b)
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CHAPTER V 
CONCLUSIONS 

Two orderly, systematic methods of analyzing 
the buckling stability of frames were presented* In 
both methods the phenomenon of bifurcation was employed to 
aid in simplifying the analysis of the sidesway mode 
of instability. Since bifurcation occurs only for 
a frame which is symmetrical with regard to geometry, 
physical properties and loading, this would appear 
to be a very restricted case for analysis. However in 
actual construction this situation is often encountered.
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APPENDIX A
If equation (3-3) is integrated twice it becomes

d2y » - M_ 
d x2 El

in wAicA
M = Mj_ + py - Ylx

TAus

Let k = P/EI

d2v + k y r I [liX - MjJ 
IxT El

TAe well-known solution for tAis linear differen­
tial equation is

y ss A sin k x +B cos k x + Yj_x - 3%
~  ~P

TAe following boundary conditions are evident:
1) at x s 0 2) at x s.' L

a) y = 0 a) y r D
b) y* r Qj_ b) y* = Gj

Substituting boundary condition 1 (a) it is found tAat
B - %

P
38
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Now using boundary condition 2 (a) it is noted that 
A = 1 pD + ivl̂ - YjJL - cos kL~J

L v p p Jsin kL *- p p p 
But from consideration of the equilibrium of the beam 
column of Big* 3

p p p
Then

A s - 1 M. cos kL + IvL.i —±sin kL

Hence
y* = - 1_____  fldp cos kL + k cos k x - Mj_ k sin kx + Yj_

sin kL [p” p P P

At x = 0 the angular rotation is
©. = - k______f " c o s  kL + ̂ -TH

sin kL I—  p - p ]  F"

e. = - M. L_ k El cot kL - M i L k El 1_____  + Y±
El P L 'El P L  sin kL —

= L_ fel, - cot kL - ET 1 - M 1 L_ fl___
El [PL2- kL ■ PL*J J El [_kL sisin kL

El 
PL2

But kL = 0 = /pL2V
and P - p

El
39
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Therefore 

®i = Mi

Similarly if x = L then
©, s - M3? J fs +1 "1 + fO - 1 “I + Y

L L n "

40
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ii±'±'£ii'JL»XJL J3
3'rAttxid.xi Js'jiC'iOfia

v i ) BitiSiOn

g = 1 4 1 -0  c o t 0 )

e2
s = i_ t g - 1)

p2 sln *>

in wnicn 0 = A /±* l
E i= ̂ / k

(.2 ) JjlV.ES.bEi

c —  0 - sin 0_____
sin 0 - 0  cos 0

s = 0 (sin 0 - 0  cos 0)
2 - 2  cos 0 - 0  sin 0

mi =
1 -

s u+c; 
in wiiich. 0 = 1 A /¥_

(3J TiMUSEEMO
$  u ;  = i c i - j,;

u s m  2U.' 2u

Cu; = ±__ (Ĵ _ - i _____;
2u- • 2u ta n  2u

in wnicn U = /*" ‘
- / Ei
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j m ’ajtat&jjAx-LuiMD
a) and SlvJisLiSx.

G = 1
s u-c2;

s u-c2;
b ) xlMwoxj-ciniJiu and iibJixGii

§ Cu) = b S 
-'frtu) = 3  C

(c) TiMoSHJSIslKO and iilv̂ s-L-c,*.
§  (u) = 3 c m :

1 + c
-\Ir Cu) = 3m: ...

2 U+c)
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APPENDIX C 
DERIVATION OF S ’ AND 0*

12From tiie worM of Mas or, Ciiang and Donnell, 
tiie egressions for s’, s’1 and o ’ are

a 1 s s (l-e2s)
2p

[l-3c + c2sl1-0 j
s’ r s Il-3c * c2sJ (a)

2p

and c’ - I '*■ o fl - o s  (1 - c)|
• " 2p L J

From Appendix B
S = o 

s
Now

£
S ’ = dS S dSQx d(?) 

dp d(s) dp

BUt dS 'as, 1
d(s)o _ dc ds

and d(Z\ = s dp - c dp s' _ 2
dp (s)
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Then after substituting

dS
dp

s (lJt_c) c s
2P l-os(l-o) - 2P

3C + c s 
c '

which simplifies to

dS = ___1_ F 1 V 2c2 - os 1
dp _ L l-o J

Again from appendix E

s = 1 ; c = S and s =___
C C 2

C - S
(b)

After substituting and simplifying

S ’ - S__ fc + 2S
2p [S C-,

- C______
S 2 2]c - s

By employing the same method as above along with
the relation C-l it can be noted that 

¥

C* = dC = dC x ds 
dp d- dp

in which dC - 
d¥

- 1
(7>*
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Now
C»= - 1

( s ) 2
s
2o

2 ll-3c + c s 
1-c

wiiicli simplifies to

C* = - 1
2Ps

l-3c V c s 
1-c 1

By substituting equations (b) into tiie expression for 
C ’ and simplifying the following equation can be obtained:

a - c__
2p

[ c ^  t S2 ]
L° -s
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