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ABSTRACT
A systematic method of analyzing the elastic

stability of frames against buckling is presented.

Two possible means of attack are developed: (1) a

flexibility method based on campatibility considerations;

and (2) a stiffness method based on equilibrium

considerationé. In‘both cases primary bending moments

occur before buckling takes place.

In the special case of sidesway buckling

it is possible to use the priaciple of superposition

because of the preseince of bifurcation of deflected

shapes. The sidesway mode is assumed to consist of

two'parts; (1) a symmetrically deformed frame, and

(2) an infinitesimally small antisymmetrical coafigura-
" tion., The superposition principle can be employed

automatically by differentiating the equations set up

from the original sideways deflected frame. The advan-

tage to this method lies in the fact that the original

equations are very difficult.tp solve explicitly.

On the other hand the differentiated equations can be

simplified to a determinant wh;;h defines the criterion

of stability when it vanishes. |

iii
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NOTATION

c gstability factor (carry-over factor of a member)
Ac changelin carry-over factor
C stability factor
AC change in stability factor
D dispiacement
AD infinitesimal sidesway displacement
E Youngts modulus of elasticity
P flexibility of a member (F = Bp)
H transverse shear force
AH change of transverse shear force
i,J subscripts indicating the ends of a member
I ‘moment of inertia of a member
k. =' K1
‘ | EI
K stiffness of a member (K= L )
L .length of a member
M bending moment
A M change of bending moment
N loading parameter
p axial forces at ends of a member

vii
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Ap change of axial force at ends of a member

external force acting at a joint (P = (1+N) wlp

2

Ar change of external force acting at a joint
P 'external force acting at a joint (P = N sz)
R bar rotation

AR change in bar rotation

s stability factor (non-dimensional-stiffness)
As change in non-dimensional stiffness

S stapility factor

AS - change in stability factor

v subscript indicating member w1tn variable

: flexibility

v vertical reaction

Av change in vertical reaction

w | intensity of uniformly distributed load

X,¥ displacements at ends of a member in the x

and y directions

ei, o) angular rotation of member at joints‘i and §
8ab angular rotation of joint a of member ab

o . angular rotation due to span load w.

=

viii
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CHAPYER I
INTRODUCTION

The importance, in the design of frameworks,
whether pin connécted trusses or rigidly jointed frames,
of the action of compressive members is well known.
In trusses each member is divorced from its neighbour
except with regard to axial forces. However, because
of the rigidly connected joints of frames, deflection
of one member causes distortion of every other member
in the framework. Thus, in rigid frames stability
depends on the buckling strength of the whole strﬁcture.

The theory of buckling strength of framework
subject to axial forces only, has been well established
for several decades. Until the advent of electronic
computers, facillitating numerical calculations, little
work had been done}on frames subject to primary and
secondary moments at the instance of buckling. A
notable exception Ef this statement is the work of
Chwalla and Jokisch who in 1941 applied a slope deflec-
tion method of analysis to an example frame including
the effect of primary bending moment. More recently
vMasur, Donnell, Chanéiind L&Qhave also contributed to
the study of buckling in the presence of primary bending.

1
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The work of this thesis is intended to present
a direct analytical soclution of elastic instability by.v
setting upbin matrix form a‘system of linéar homogeneous
equations, expressing the interrelations between forces
and displacemenps. & determinant can fhen be developed
expressing the\criterion of sfaﬁilitj.’ These equations
include ferms allowing ﬁariation of the end fixity of‘
supports by the addition of a member ab with variable
stiffness as illustrated in Fig. 1. Lulo introduced a
similér framework; but used a convergence méthod to
arrive at the final solution. In this'writer's opinion .
the direct solution seems more streightforwerd. |

A consisfent sign'convention is used through-
out, although'fwo modes of‘anaiysis ére presented.
These are: (1) .fléxibility;method - a compafibility
analysis arranggd in tebular form which leads to a set
of‘"equationsnof compatibility", and (2) stiffness method-
an equilibrium enalysis leading to a set of "slope-

| déflection equations" employihg stability functions.

In both aﬁenues of’approach the equations that reéult
are differentiated to simulate a condition of super-
position and the matrices are then simplified to the

well-knbwn'determinant criterion.'

P
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Fig. 1 FRAME DIMENSIONS AND LOADING
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CHAPTER II
HISTORICAL DISCUSSION

When an.investigétion of elastic buckling is
undertaken-especially from a chronological point of view-
the work of Euler must always be placed in a position
of primary importance. His classic formula for the
critical load of a pianned end strut
| 2 11

cr =T
12

is still a basic guide for any work connected with

P

slender compression members.

In 1919 BLEICH presented thg method of four
noment eqdations in which a systematic analysis of the
stability of plane frameworks with rigid joints 1is
derived. His method depends on the condition of
continuity at a point where two or more members are
rigidly joined. Each eguation expresses a relation
between the four terminal moments of two adjacent connected
memhers and the bar rotation.

As mentioned before,Chwalla and Jokisch
first derived the slope-~deflection equations for sta-

bility. In this method the angular rotation of the jolints

L
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and the bar rotation are coansidered as variables in the
stability equations.

Both of these methods may be termed analytical
solutions to the stability problem in which the vanishing
determinant of the coefficients of the equations defines
the buckling load of the frame.

Various coavergence methods have also been
applied to the problem of elastic instability. Jamegsin
1935 converted the moment distribution method as developed
by Hardy Cross to a form including the effect of axial
load in thenmembers. Shortly after, Lundquist6also
pfesented stability criteria based on the Hardy Cross
method. However, these criteria require ﬂne use of trial
and error procedurss to solve, instead of leading to a
direct solution.

Until the mid 1950's Chwalla?was the only.
author known to this Writer‘who considered the effect
of bending of a frame before buckling occurred. Ia 1952

Bleich reviewed Chwalla's work and suggested that

future work be carried out. Subsequently with the

12

introduction of competeng electronic computers the problem
was attacked by Livesley , lMasur, Chang,and Donnell ,

and LulO, By introducing stability factors Masur, et al.,
5
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presented a systematic approacin using the slope-deflection
and the moment distribution method. The structure analy-
zed was a pin coannected frame under the action of two
concentrated vertical loads placed symmetrically on the
horizontal beam éo that they produced primary bending
moments. Then, in 1963 L&iéxtended the slope-defection

analysis to include the effects of a uniformly distributed

span load.
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CHAPTER III
FLEXIBILITY METHOD

Actual collapsé of a frame such as that shown
in Fig. 1 is caused by a number of factors although
there are two primary ones, namely inelasticity and the
second order effects of "buckling" ianstability. This
thesis coasiders oaly thé effects of elastic instability
and as a result the usual assuaptions made in a study
of elasticity are adhered to.

In Fig. 1 the interrelation of axial load P
to uniform load w as developed by Lulo is adopted.

P = N wly (3-1)

""é— .
in which N is a anumerical parameter. Therefore the total
axial force in the columns 1is

P = (1$N) wlp (3-2)

—E— ,

The beam-column shown in Fig. 3 represeants a
typical member coanecting joiﬁts i and j. Mi and Mj are
moments applied at joints i and j respectively, and the
axial force is signified by p. The angles of rotation
at the joints i and J are ©f and Oj respectively, and the

bar rotation is Re Yj and Yj are the support reactions

7
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.2 SIGN CONVENTION

o o

Pig. 3 TYPICAL MEMBER

.
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at i and J respectively.

By means ot the general differential equation

for beams under axial load

H
2 .
.@_X.TP.ﬂ
o2 I

(3-3)

i
O

the following interrelations between rorces and displace-

ments can be found as derived in Appendix A:s

Qg = My P(C-1_) - My F(S+l.) + Y3L E_ (3-42)
p? T p?
65 =-MiF(S + 1) + MsF(C-L) + YL F_ o (3-4p)
_¢2 | ¢2 ¢2
R=-Mg P -M3F +¥ LF_ (3-4¢)
in which
F=] 3
o (3-54)
2 2 ' :
¢ = lL_ 2
BT (3-5p)
C and S are stgbility factors denoted by the following
exXpressions:
C=41_ (L=P cot @) -
P ) (3-65)
S =1 ( Q = 1) (3-6b)
BZ-.sin 2
9
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The angle of rotation caused by a uniform load w on a

beam column is, from Timoshenko

G§=(C+S)'El-¢(l-}cos¢)]1@_
2 sin P

By the law of superposition, 6,5 can be algepraically

added to the joint rotations, ©ji and 8j .

Equations (3-4), expressed in matrix form,

become
03 F (C -_1) “F (S 4+ 1) 1 1
g 2 B (3-8)
6j | =|-F (5 + 1) F(C-21) 1 u;
R - 1 - 1 1 Y:L
i i i T ol

If joints i and j are coansidered to be on the x axis,
i.e. D= R = O then the matrix equation becomes

o FC -FS— er_—
(3-9)

6: -FS FC | | My

b J v — el -

Symmetrical Deformation
The frame in Fig. 1 is now analyzed for its
symmetfical mode of instability. The deflected shape at
the point of buckling is as sihown in Fig;(h. By applying
10
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TABLE 3 - 1

TABULAR PRESENTATION OF INTERRELATIONS BETWEEN FORCES AND DISPLACEMENTS

ab

ba

be

cb

cd

dq

da

ad

APPLY
MOMENT
AT a

Mab Flcl

'Mab Flsl

F S

-M
ad v v

ad Fva

APPLY
MOMENT
AT b

-Mba Flsl

ba 11

bc 22

'Mbc Fzsa

APPLY
MOMENT

AT ¢

’Mcb Fzsz

Mcb F2C2

Mcd

FIC

1

-M S

cd Fl

1

APPLY
MOMENT
AT d

_Mdc

171

dec 11

+Mda Fvcv

~Mda FvSv

INITIAL
ROTATION
FROM SPAN
LOAD

-0




= P

P |
|
= Mba
|
|
[
l
|
Mas \a | H,
P

(a) - (b)

Fig. 4 SYMMETRICALLY DEFORMED FRAME

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the mat:ix equation (3-9) to each member in tura aad
arranging in tabular rform the analysis can be very easily
presented. |

Coatinuity of the structure requires that at
joint a ”

O3 = ©ap = 0 (3-10)
Similarly at joint b

Opa = Opg = O (3-11)
From Tablg 3-1, equations (3-10) and (3-1l) become
Magq FyOy~ Maaq FySy - Mgy F101 + Mg §151 = 0 (3-12)

-lgy F181 + lpg F1C) = Mpe FoCp + Mep FpSz = 65 = o (3-13)

Now remove column ab from the structure and
consider the forces acting on it. By summning moments
about point a the following equation results:

Mgy + Mpg = Hply =0 (3-14)

The frame is then disengaged as illustrated in
Fig. 5. Only the moments which produce the assumed

‘deflection of the members in Fig. 4 are indicated. Since,

| in this method, equilibfium is everywhere assumed to be
satisfied the moments on the members can be related through
the use of equilibrium at the joints.

Let pg = I

and My = I,

13
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b~ (e
Mba>< ,\Mcd
Mabx \/{;Mdc

al—)(" - ‘)(—Jd

Mad | : Mda

Fig. 5 DISENGAGED SYMMETRICAL FRAME

1L
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By following the above procedure

M) = Mpa = ~1lpe =Mep = - licq
: (3-15
end My = Mgy = lpg ==l = = Mg

By using equations

(3-12), (3-13), (3-14), and (3-15)

the following matrix eguation results.

F15;

F101 + Fy(Cpo+ Sp)
1

However, the column matrix

Fe(Cy + Sy) - F0; 0 1y
-F181 -6y | |15
1 ~Hplq 1 J

is not equal to zero.

)

=‘O (3-16)

Therefore the determinant of the coefficients must be zero

"and the criterion o

Fi5)
FlCl +i Fz(CZ + S2)

1l

T stability has been obtained.

FV‘CV * 5, - FC O
~Fy 8, -6, |=o0

By varying the values of F, (the flexibility of member

(3-17)

ad) from zero to infinity the end conditions of a three

member frame abed can be modified from entirely fixed

to completely free

Reproduced with permission of the copyright owner.
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For example, the result for a frame with pinned

ends, le, ¥y 1is infinity, is

H I’l Elcl + Ty (Cz + Sz] -85 .=0 (3-18)

Similarly the equation for a frame with fixed ends, ie,

Fy is zero, is

C o
1 2
HLy | F1(C," - 51%) + F, (6, +8y)| -05=0 (3-19)
Cl + Sl —_— '
C
1

Sidesway Deformation

Unless the frame of Fig. 1 is braced against
sidesway, 1t will always buckle in an antisymmetrical
or sidesway mode before the value of the critical load
Tfor symmetrical deformation is reached. This means that
for some loading stage there exists two possible stable
modes of deformation and the point at which this phenomenon
occurs on a load-deformation diagram is called the bifur-~
cation point. A proof of the existence of such a pheno-

3

mehon was given by Chwalla” for a simple portal frame.
Ih order to0 obtain a stability criterion for the
sidesway mode of deformation, the frame must be allowed
to deflect an infinitesimal amount into the mo de of
failure as illustrated in Fig. 6 (a).
Using equation (3-8} a table similar to table

(3-1) is constructed which includes the effect of sidesway.

16
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D+AD B B

(b) - (c)

‘7ig, 6 FRAUE UNDER SIDESWAY DEFORMATION

17
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The same conditions of continuity still apply, ie,

9aq = €ap = O (3=10)

1
O

Opa = Cbe (3-11)

However another condition of compatibility is evident from
Fig. 6, ie.,

Rply - D=0 (3-20]

From Table 3-2, equations (3-10), (3-11) and (3-20)
become |

1 s EL

+ Mgg FoS5, - 6, = 0 (3-21)

Mgy FyCy = Mgg FySy = Mgy F1(Cp = 1 ) + Mg ¥y

z
B
gsl + ;__7) - Hd,L; =0 - (3=-22)
fr o
- ' - M -D = -
[Mab P_:IL,— My o .%51—"" HbLl] Ly =D=0  (3-23)
1 1 Pl

_ These equaticns alone represent the solution
to the sidesway problem, but it is very difficult to obtain
an explicit solution from them. However, by means ofthe

principle of superposition the frame can be segregated

18
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TABLE 3 - 2

TABULAR PRESENTATION OF INTERRELATIONS BETWEEN FORCES AND DISPLACEMENTS

eab eba 9bc . ecb ecd 6dc: eda 9ad Rb Rc
APPLY
MOMENT | M__ Flcl, -Map FS 1 0 4] 0 0 M FS | M, FVCV 0 0
AT a .‘
APPLY . .
MOMENT | -M, Fls1 M Flc1 M, F2C2 -MbCF282 0 0 0 0 0 0
AT b
APPLY
Momm'r 0 0 M F282 Mch202 M dFlc1 M Flsl 0 0 0 0
AT c . i
APPLY
MOMENT 0 o 0 0 M, FS |M FC M Fva -M daFvSv 0 o
AT d
R NN AR RN, 4 ™ F /g2 | F /R MosM | M e M
P17 Tab VT cd V71 cd 1771 _abea cd _dc
LATERAL -MMFI/¢1 M F /¢2 0 o | M, F./ ¢2 M FJ ¢2 0 0 PL, 1?1,1
al’™l de' /71 | "dc 171
FORCE . o /PL H L H L
b1/ "1 +HbL1/PL1 +H LI/PL1 +H L. /PL 57 T
INITIAL e ¢l 1 ' 1
SPAN LOAD 0 0 2] -9 0 0 0 0 0 0
| ROTATION ° o




into two parts consisting of; (1) a symmetrically
deformed frame and (2) a frame with an infinitesimal
sidesway. This can be performed automatically by

differentiating equations (3-21), (3-22) and (3-23).

- AMgy F1(S; + _;.57) - Mgp F1 [AS_]_ + A(lj)] +
1

Dl F1(Cy = L )+ Mgy By [ACJ. ol (é.._)] +

2
¢l ¢l
Aply + Hplg A (.l__) - AMbC F202 - Mye ,FQ ACZ
PLy PLy
+ AMoy F2S2 4 Mep Fop A8y - A0y = 0 (3-24)

Algg KeCy + Mag Ky ACy - Alige KySy = Mgy Xy ASy

- AMab Fl (Cl - ;7) - Mab Fl [Acl - A (j_z)]
1 1l

+Allpg F1(Sy 1 L) + Mg ) [A Sy + A(1_2_)-] - A Hply
1

g

L FL;

- Hplp ,ll ) =0 (3-25)
PLy

[— AMgp - Mgp p (L) = Aiipa- Upg A (L) 4
_ - "PL PL
PLy Ly e 1

20
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AH Ly + HyL; , (2 )] L, - 4D = 0 (3-26)
PLl PLl

In each of equations (3-24), (3-25) and (3-R26) there are

two basic groups of terms. One group consists of teras

in which the moment and lateral force H are differentiated;

the other gvbup consists of terms in which the moment and

lateral force are not differeatiated. These groups

represent respectively the infinitesimal sidesway and

the symmetrical modes of deformation. The following

expressions apply to equation (3-24), (3-25), and (3-26):
AS; = 4 S, LH, =S, AH,

d H
!
A6, = 6, AH, (3-27)
-
A0Sy = 8y  AH,
, '
ABy = Cg  AHy (3-28)
. 1 A
1
in which s' =S5 |C S - %
- 2p [S * ¢S c_s]
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c=s C({C~-5*

and C' = - C [c-gs + g° :, (3-30)
- P

For the derivation of S! and C' see Appendix Co,

Lowever in the perfectl;} antisjmmetrical infinitesimal
sidesway deformation, it is evident that the axial force
in both horizontal members is zero, ig, AHz = AH; = 0.
Therefore

AS, = AC, = A8y = AS, = ACy, = O (3-31)

For the symmetrically deflected frame the relation beto
ween shear force, Hy and moments, Mgy and Myg is the same
as in equation (3-14).
Map + Mpa = Eply = O (3-14)
Bota of the frames of Fig. 6 can be disengaged
at the joints as was done in the previous section concerned
with symmetrical buckling only. In fact the symmetri-
cally deformed portion of tihis seCtion has the same result
as that of equations (3-15)
My = Mpg = = lpe = Mep = flﬂgd (3-15)
and My = Mgp = Mag =TMda = - Mo R
When the antisyrnme’grical frame is disengaged as shown in
Fige 7, the following equations result:
AM1 = DMy, = -OMpe = =Alpy = Allg |
and Al - DBligy = =8Mgg = =85y = BMge (3-32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AM, | AM,,
b,—)(\_._./‘*\)(—lc

AMba;d\ XAMcd
AMabx ::\/AMdc
oy () (Ha
AM, AM,,

Fig. 7  DISENGAGED ANTISYMMETRICAL FRANE
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in which AIyIl and Ay are assumed apbitrarily to be
equal to AIf, gnd AMab respectively.

By employing the relations (3-14), (3-15), (3-29), (3-31),
and (3-32) equations (3-24), (3-25) and (3-26) simplify to:

Alfy [Fl(cl- 1) 4 Fy(Cpm 32)] - ALF (Sy+ 1)

¢12 ¢12
. L ) 1
+ |igF - - MﬁFlsl—_J AP, = 0 (3-33)
AIEI(S) + 1) + A1 [FV(CV ~8.) + Fl(cl-;_z_)]
¢l ’ ¢l '
- [MlFlSl’ - Mz]?lCl?J AP = 0 . (3-34)
AMJ_(%;_) 4 ANp(l) +AD = 0 (3-35)

L
P

in which My ©5

"
I

[FV(CV +5,) - Flcl]
2

2 . .
Fl Sl + [FV(CV-}SV) - Flcl] [Flcl + Fz(Cz-}-Sz)]
and My = = | €n 4
F1S; + 1 [Fv(cv - sv)-ﬁq[ﬂ‘lcl+F2(02+ szﬂ
Flsl v

The relations for Ml and Mz are derived directly from
equation (3-21)and (3-22). Now consider the equilibrium of
the structure shown in Fig. 8 (a). If the summation of
moments about 4 equals zero, tihen

- v 1 ‘» e
0=V awy L, = P (Lp - AD) + P AD 4 Mgp + Mgg #

ALy yAM, 4
2l
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D+AD . L, ’1P
T T T T T N
// /
R+AR / //
/ |
/ /
| |

(a)
v,y V,+V,
Mgp +AM :/i\ My +AM, d
ab ab ON ————————————— 7\
IV. AV, [v3+Av3
(b)
Fig. 8  FORCE EQUILLBRIUM AFTER SIDESWAY |
96367
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But from the symmetrical configuration it is obvious that
Vl:Po
Then after employing eqguations (3-15) and (3-32),

AD = - AP:LI"Z - AIVIz
) — (3-36)
2P
Substitute equation (3-36) into equation (3-35) and

arrange in matrix form.

—
¢l 1
C = |F (54l 2) | -F (C -1 2) + F_(C_-S_)
¢.']. ¢l
2 0
-r L 1 ] r ALl ]
T 1 '
-L2 | APl
— . -

But the column matrix Aﬁh is not equal to
:AP;J
zero; hence the determinant of its coefficients must be zero,

26
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g 2 2

1 8,

Fy(S)+L 2) " (0= 1) ¢ F(0p- 5 )
2 0

‘ LR
Fl(MlCl - Mzsl~ )

it
(o

| i
Fp(38) "= 50) )

(3-37)

This determinant represents the criterion of
stability for a frame which buckles in a sidesway mode.
By expanding the determinant a theoretical solution can
be found for the critical load at which the frame will

become unstable if sidesway is allowed to occur.

27
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CHAriBR LV
SLIFFPNESD MELHOD

The stifrness or slope-deflection mevhod of _
analysis has beeﬁ fully treated by L%Oexcept with regard
to the automatic development oi the superposition
principlie as mentioned before in Chapter lll. ALlsSO Lgi)
does not introduce the variation or support fixity
directly into his analysis., For these reasons the author
teels that it is ot 1inverest To analyze the sidesway
mode or deformation by the stitiness method.

This method of analysis differs from the
rlexibility metaod in that the conditions of‘compatibi-
lity are replaced by equations of equilibrium as the
requirements o1 analysis, ie, compatibility of the
structure 1s everywhere assumed to be satisfied in
the stiffness method while equiliprium is assumed satis-
fied in the flexibility method. Thus summation of

moments at joints a and b, and the equilibrium or column

ab are the conditions which must be fulfiltied tor a

proper analysis. Now consider the frame sihown in Fig. 6.

28
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Upe = KpspBp + Kpspepbe = Kypspll + ¢p) Ky = Mppe
Mpg = Klsleb + K;s,¢,0, - Klsl(l + CL) RL
Mgp = Ky8,04 + Ky87¢70p = K;8,(L + ¢;) R,
. (4-1)
ligg = Kysy9g + KySyCyY9yq = Kysy(l + cy) Ry
Mda = Kvsvcvga + KySyBg = Kvsv(l + Cy) Ry
in which K = E1 / L
s =0 (sin @ - P cos ¥) (4=-2)
& ~2cos P~ pPsind
c =0 - sin @
sin ® - © cos O
Also from Lu
lippe = Ko |L - @ (L_+ cos P) wbo (4-3)
2 sin 9 H; _

which 18 the fixed end moment for a unitormly distributed
load w. Also in equations (4-1) both Ry and Rp and

- any change in Ry and Rz are considered to be zerog

29
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In matrix form the equations of equilibrium:

are .
— .

Kys71 + Kysy Kysjey Q KySycy  ~Kis3(l+cy)
Kisjcy Kys3+ Kpso Kosaco 0 -Ky87(1+cq)
Kis1(I+cy) Kiysi(l+cy) 0 0 P1y-2K3ysy(+cy).
Oa

°p

Cc

9

R1

o+ _MFbC = 0O (4-4)
-HLy .

Now equation (4-4) is ditrerentiated.

30
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x
As, + K As K
1851 s, _.Hmwbn_. + As o: 0 N<H>m<n + m<Dn<“_ LAH.HD,J.: + nwv + 8)4c] J

v
xt.{ap + Bs)c) KjAs, + KAs, wmgmmnm + s8] 0 ..xm%_.ﬁ + Jv + 5,40 ]
NHﬁDmHAH + nu.v + mHDoH”_ N_.mbmu.:. + ou.v + MHDOH.H , 0] . 0 4P L, ..m_AHMDmHA H+ou.v+ m_.Dow_

wm ~ , ~ B DQM

Q_u NHmH + N<m< Nwmwow 0 N<m<n< ...N s :. + c v ..u./,mvmv B 0 i

O * Kiso Kis, + Kys, Nmmmnm 0 -K;s :. + c v 8 + - oM = 0

be
64 51+ c) K CfL 0 J PL, -2k s (1 + c ) 294 - ALl
mwu. B DWH i |
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After equation (4el) is differentiated it can

be seen from Fig. 6 (b} and 6 (c) that

(4-6a)
0g = - g
and
AQC‘, = Agb
(4=6b)
Agd - AGa | “
Also in equation (4-5)
Dsp, = ds;  AHp = 825 AH2
i,
, (4-7)
Acz - 02. AHZ
ASV = Sv: AHV
' (4-8)
ACV = Cv AHV
1
bs) = 8 Apy
(4-9)
ACl = Cl Apl

However for the perfectly antisymmetrically deflected

frame in Fig. 6 (c¢) it is obvious that AHp g AHy - o

32
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Therefore

= Ac = 0

Asy = Acy = A8 v

v

Then equation (4-5) becomes after substituting and simpli-
fying p
[ ' T
Kys) O #+ Kilsiep + sy'ey) 6y |:AP1]
.

Kl(slcl‘" + Sl?Cl) Ga -j- Klsl'gb

Kpsp' (14 e1) - spe1’ (85 + )

r%islf Kysy(l + cy) Kisldl

KlSlCl Klsl + KZSZ(l '0" 02 )
Klsl(l "C Cl) Klsl(l + Cl_‘
— r—- —
- Ky87(1 + c¢3) Ao, -
= 0 (4=10)
- Kps3(1 + ¢y) Agy
PL) - 2K38;(1 + c3) ARy

in which 6, and Oy can be found from equations (4-1)
(Kysyey)  Ippe :
ga - —
2 .
(Kysyer) - [Kusi 4 Bpsp(i-cp)] [Eysy + Kysgll-og)]
' (4=1la)
33 . :
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and )
(514 Kysgll-og]] Mo

oy = -
2 _
(Kpsy09) %= [Kysy+ Kpsp(i-cp)] [ Kysy+Kysy(i-og)]
(4=11b)
The factors s' and c' were found by Masur, Chang and Donnell12
s' = s (1-c%s) (4-12a)
. <p )
¢t =1+ ¢ .[l - C S (l-cﬂ (L-12b)
- 2P , .

To simplify equation (4-10) further it is
necessary to coasider Fig. 8 (a). Summation of moments
about pointid ié'zero. |
Therefore

0 = (V) +47;) Ly - 2[L, - (D +4D)] + 2 (DyAD)
#Ugp + Dlgp + Mgo + Blige (4-13)

ByAnoting that D = 0 and substituting appropriate values

for My , Mge » Alfgp andg Alge it is found that
\ S
0 = AViLp + 2PAD + 2K35) [A6g + o1 A0y - (Ltcy) ARy

Since. AD = AE&; 1

3k
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AV = Apy = - 2Kjs) A6, - 2Kjsjcy 86y - 2 [PLl-Klsl(l-l-Gl)]
Lz Iz Lz '

ARy (4-14)

By substituting equation (4-14) into equation (4w10)

an equation will be found such that

- | , — —~ -
T11 T12 T13 ASg
To1 T2z T23 A6y =0 (4-15)
- — I —
= -
But the column matrix Aga can not be
AGb
ARy
zerod; so the determinant of its coefficients must be Zero,
ie,
T12 712 T13
T21 T22 T 23 =0 (4=16)
T31 32 T33
in which

T11 = K383 + Kysy(lecy) - 2K;1%s) Esl'ga +,(§1clf+sl cy) 9*[_,]
f “ EZ_——— e .
35
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]
Ti2 = ¥13301 - 2K1?Sl°1 [Sl'_ga +(sie1 + sic1) Oy

L2
T13 = - K3s3(1 + ¢3) - 2K [PL_‘L— Klsl(hcl)][slfgal‘l-(slcl'.ig»sl'cl)eb]
T2l = KlSlCl - 21(1281 E(Slcllf Slicl) ‘Ga-h Sl'GtJ
L2

- o ' v 2 v ' .t

Top = K387 4 Kpsp(l + op) = 2Kp%s;c; [(slcl‘-t Sy €1 ) 6a+sy Ob]
L2
. g T e
To3 = - Kysplive;) - 2K [PL_-L- Klsl(l'a-cl)] [(Slclt*sl C1)0g+5] Gtﬂ
L2
2 LI | ‘

T5p = Kys3(1 #cp) - 2Ky7s) [Sl (lecy) + slcl'](gai\,—@b)

. 2 Lot |
Tgp = Kysq(l+cqy) - 2Ky slcl[sl"(lwl) + S;¢q J(Qa + 0y)

. —I,

. - | N - ' v,

T3 = Fy - syl vey) - 2 [pL1- Klsl(lt@] [s1 (L4oy)

p

q
+ 5101 k6s + Op)

36
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CHAPTER V
CONCLUSION
Two orderly, systenatic methods of analyzing
the buckling stability of frames were presented, In
both methods the phenomenon of bifurcation was employed to
aid in simplifying the analysis of the sidesway mode
of instébility. Since bifurcation occurs only for
a frame which is symmetrical with regard to geometry,
physical properties and loading, this would appear
to be a very restricted case for analysis., However in

actual construction this situation is often encountered.
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APPENDIX A

If eguation (3-3) is integrated twice it becomes

&y = -
4 %2

ET
in which
M= 1\'Il -l- Py - Y.'LX
Thus
2
iy = - 1 [m& + oy - Y ?]
dx2 E
Let kK = P?/EI
d2 ) N F.
‘__§ + ky=-21 [le - hﬂJ
dx EI
The well-known solution for this linear differen-

tial eguation is

Yy =4As8in kKX +B ¢0s k X  Yix - Nj

P P

The following boundary conditions are evident:

1) et x =0 2) at x 2L
a) y =0 a) y =D
b) y' = 6y o) ¥' = 6

Substituting boundary condition 1 (a) it is found that

"

WL

B =

38
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Now using boundary conditibn 2 (a) it is noted that
Azl [D-bivl’i—YL ﬁcosﬂ]

sin kL P P
But from consideration of the equilibrium of the beam
column of Fig. 3

D = YiL - A

e Mot
P P P

Then
A= =1 M- cos kL + 14,
== _1 i

kL

sin 5 -

Hence

y' o= - i cos kL + g#]h cos k x - My k sin kx * Yl

sin kL 1?- P P P

At x = 0 the angular rotation is

8. = - k M. cos kKL + M. ]+ Y.
i —— | i i N
sin kl.[ P E’] T
O; = =My L_k BI cot XL - My L kEI] iYi
EIP L ~ I PL sin kL &

- M: L [ET - cot XL - BI. | -5 L [1 - EL. +
l'ﬁfl_-P'L'? KL PL“] 5T |k sin kL BLf
EL J+¥; | |
PL] P

But kL = § = /PL®

ET

and F:L

ET

39
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Therefore _
91=MiF[c-;§]-MjF[s\+l_2J}Yi
g g T

Similarly if x = L then

oj;-mjf[sgz]fmj?[c-% + Y
g g P

40
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APPENULX b

STABLLITY FaCRORS

(1) Bugicd

in wnich 9 =, /¢ ' L
' EL

(2) LLIVESLEY

C = P - sin P
sin ¥ - ¥ cos P

8 = ¢ (sin @ - D cos @)
2 - 2cos P - P sin

m = I
H 1 - 2? ,a
8 (Li+C)

in waich @ = L, /P _
EL

(3) TLiIMOSHENKO

g =31 _ ~-_1)
u Ssin 2w 2u

Ylw) =2 QA -1____)

2u . 2u w@wn 2u
in which u = ¢, P
- 4 BL

L1
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JNLUBHKELLAL LOND

a) obputicn and BIVESLEY

C = I
s (1-02)
S = -~ C
s (1-02)

b) Lalivooounkv and BLBLoH
& (u)
P(u)

6 S
3¢

i

(
¢c) CLLMOSHENKOQO and LiviESLox

L + C

(u) = 3m _
v 2 (l+c)

L2
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APPENDIX C
DERTVATION OF S' AND C!
A : 12
From the work of Masur, Chang and Donnell,

the expressions for s', s' and c¢' are

s' = s (l-czs)

2p
B! = 5_[1-3c % c®s (a)
: 2p | 1-c '
and et =1 +c [l - cvs (1 - cﬂ

2p .

From Appendix B

S:_C_
s
Now
c
S':dS=g§cxd§S'2
dp a(3) ap
But s = 1
—_Efy
a(zg -
s _do &
and d(:) = g8 dp - ¢ dp
5 2
dp (s)
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Then after substituting

s (L+c) c 5 [i-gc + czs]
as = 2P l-cs(l-c) - 2P |1 - ¢ ;
- 2
% B

which simplifies to

as = 1 [l ¥ 2¢° - cé]
ap _ -C
?Ps

Again from appendix B

-s--_-;._;c: and s = C (b)
C .

oln

After substituting and simplifying

S' =S _|C+28 -C
: 2p |S C=5 2 2
cC -8

By employing the same method as above alogg with

the relation C-l it can be noted that

in which d4C = = 1

ds (s)

Ll
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3 |l

1-3¢ + 02s
(5)2 l-c »

which siwplifies to

.2
C' = = 1 [l-gc ¥ C s]
i 2ps Li-¢

By substituting equations (b) into the expression for

C' and simplifying the following equation can be obtained:

€ w -G [c-zs + _s? ]
| c )

b5
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