8-13-1965

An experimental investigation of the flow in a plane wall jet with an initial gap.

Peter K. C. Tu
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Electronic Theses and Dissertations. 6407.
https://scholar.uwindsor.ca/etd/6407
AN EXPERIMENTAL INVESTIGATION OF THE FLOW IN
A PLANE WALL JET WITH AN INITIAL GAP

A THESIS
Submitted to the Faculty of Graduate Studies through
the Department of Mechanical Engineering in Partial
Fulfillment of the Requirements for the Degree
of Master of Applied Science at the
University of Windsor

by

Peter K.C. Tu
B.S.Eng., The National Taiwan University, Taiwan, China, 1959

Windsor, Ontario, Canada
1965
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
SUMMARY

The flow in a two dimensional plane wall jet with different initial gaps between the nozzle exit and the leading edge of the wall was probed at various stations along the jet. The jet slot thickness and the velocity were kept constant. It was found that the region close to the leading edge of the wall behaved like a transition zone. In this zone, the type of flow changed from a free jet to a wall jet. The length required for transition, which depended directly on the gap size, was so short for small gaps, that the gap effects were found to be negligible. In addition it was found that the inner layer velocity distribution of a wall jet did not follow the classic one-seventh power law.
ACKNOWLEDGEMENTS

The author is very grateful to Professor W. Colborne, Head of the Department of Mechanical Engineering for having offered him the opportunity to pursue this investigation and for his continued support.

The author wishes to express his gratitude to Dr. K. Sridhar for his supervision, generous aid and encouragement throughout this work.

Thanks are also due to Professor R. Griffiths for his most helpful advice. Help received from Messrs. L. Thomas, O. Brudy and R. Myers is gratefully acknowledged.

Work was made possible by the financial support of the National Research Council and the Defense Research Board of Canada.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II LITERATURE SURVEY</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Free Jet</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Wall Jet</td>
<td>4</td>
</tr>
<tr>
<td>III TEST FACILITIES</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Air Supply and Guiding Duct</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Contraction Duct and Nozzle</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Wall and Traversing Mechanism</td>
<td>7</td>
</tr>
<tr>
<td>3.4 Probing Equipment</td>
<td>8</td>
</tr>
<tr>
<td>IV EXPERIMENTS</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Calibration</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Test Procedure</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1 Free Jet</td>
<td>10</td>
</tr>
<tr>
<td>4.2.2 Wall Jet</td>
<td>10</td>
</tr>
<tr>
<td>V EXPERIMENTAL RESULTS</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Data Reduction</td>
<td>12</td>
</tr>
<tr>
<td>5.2 Presentation and Discussion of Results</td>
<td>12</td>
</tr>
<tr>
<td>5.2.1 Free Jet</td>
<td>12</td>
</tr>
<tr>
<td>5.2.2 Wall Jet Without a Gap</td>
<td>13</td>
</tr>
<tr>
<td>5.2.3 Wall Jet With a Gap</td>
<td>15</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3.1 Gaps Obtained by the First Method</td>
<td>15</td>
</tr>
<tr>
<td>5.2.3.2 Gaps Obtained by the Second Method</td>
<td>16</td>
</tr>
<tr>
<td>VI CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>6.1 Wall Jet Without a Gap</td>
<td>19</td>
</tr>
<tr>
<td>6.2 Wall Jet With a Gap</td>
<td>19</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>FIGURES</td>
<td>22</td>
</tr>
<tr>
<td>VITA AUCTORIS</td>
<td>47</td>
</tr>
</tbody>
</table>
NOTATION

x coordinate along the jet from the nozzle exit.

\(x_0 \) value of \(x \) where maximum velocity begins to decay.

\(x' \) non-dimensional distance, i.e., \(\frac{X}{t} \)

\(y \) coordinate normal to the center line of the free jet or normal to the wall of the wall jet.

\(y_m \) value of \(y \) at maximum velocity point

\(y_{m/2} \) value (larger one for the wall jet) of \(y \) at one half of maximum velocity point.

\(t \) thickness of the nozzle exit

\(a \) constant defined by Eq. (2.6)

\(b \) constant defined by Eq. (2.6)

\(u \) velocity component in the \(x \)-direction

\(u_m \) maximum velocity along the jet.

\(u_0 \) initial jet velocity (at nozzle exit).

\(v \) velocity component in the \(y \)-direction

\(\sigma \) constant defined by Eq. (2.3)

\(\Omega \) disposable constant in Glauert's theory (Ref. 5)

\(\tau_0 \) Shear stress along the wall of the wall jet.

\(\rho \) density of the air.

\(\nu \) kinematic viscosity.

\(R \) Reynolds number

\(\epsilon \) eddy viscosity
LIST OF FIGURES

Fig. 1 FREE JET NOMENCLATURE 22
Fig. 2 WALL JET NOMENCLATURE 23
Fig. 3 POSITIONS OF GAPS BETWEEN THE NOZZLE EXIT AND THE WALL 24
Fig. 4 SCHEMATIC DIAGRAM OF TEST FACILITIES 25
Fig. 5 VELOCITY DISTRIBUTION AT THE MID-SPAN OF THE NOZZLE EXIT 26
Fig. 6 NON-DIMENSIONAL VELOCITY PROFILES OF THE FREE JET 27
Fig. 7a GROWTH OF FREE JET AND WALL JET WITHOUT A GAP AND WITH GAPS OF G₁, G₂, G₃ and G₄ 28
Fig. 7b GROWTH OF FREE JET AND WALL JET WITHOUT A GAP AND WITH GAPS OF G₅, G₆, G₇, G₈ and G₉ 29
Fig. 8 MAXIMUM VELOCITY DECAY OF FREE JET AND WALL JET WITH AND WITHOUT A GAP 30
Fig. 9 LOGARITHMIC PLOT OF MAXIMUM VELOCITY DECAY OF FREE JET AND WALL JET WITH AND WITHOUT A GAP 31
Fig. 10 DIMENSIONAL VELOCITY PROFILE OF A WALL JET WITH ZERO GAP 32
Fig. 11 NON-DIMENSIONAL VELOCITY PROFILE OF WALL JET WITHOUT A GAP 33
Fig. 12 GROWTH OF FREE JET AND WALL JET WITHOUT A GAP 34
Fig. 13 NON-DIMENSIONAL WALL JET INNER LAYER VELOCITY PROFILES 35
Fig. 14a NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_1

Fig. 14b NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_2

Fig. 14c NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_3

Fig. 14d NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_4

Fig. 15a NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_a

Fig. 15b NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_b

Fig. 15c NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_c

Fig. 15d NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_d

Fig. 15e NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_e

Fig. 16 NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITHOUT A GAP AND WITH VARIOUS GAPS AT $x' = 22$

Fig. 17 INNER LAYER GROWTH FOR WALL JET WITH AND WITHOUT A GAP
CHAPTER I

INTRODUCTION

Information obtained from the study of a wall jet would be useful in the field of blown-flaps in which a thin jet is blown over the top surface of a flap to prevent flow separation. In such a high-lift device there is usually a gap between the lip of the jet nozzle and the leading edge of the flap.

In all of the experimental and theoretical investigations of wall jet flow (Refs. 3 to 9) the flow surfaces considered were attached to the nozzle with no intervening gap. A possible exception to the above statement is the work reported in Ref. 12, in which the Coanda effect at deflection surfaces detached from the jet nozzle was studied by force measurements. However, no results of flow measurement in a wall jet with an initial gap have been found.

The present investigation aims to provide information on the flow in a plane wall jet in still air with an initial gap. Since this is a preliminary study of the gap effect, curvature of the wall surface and the speed of the surrounding air are not considered.
CHAPTER II
LITERATURE SURVEY

The material covered in this section summarizes briefly the existing literature and is included in the report for the sake of completeness and ease of reference. The present investigation of the gap effect on the wall jet requires not only a knowledge of the wall jet itself, but also information on the "free-jet" bridging the gap between the nozzle exit and the leading edge of the wall. A literature survey on the free jet was initiated to obtain this information. This information is especially important when the gap is very large and allows a free jet to exist in the region of the gap.

2. 1 FREE JET

A two dimensional free jet is obtained by a flow emerging from a smooth nozzle with a large contraction ratio and spreading into still air between two end plates. Due to the mixing effect with the surrounding air, the central core of uniform velocity gradually diminishes downstream from the nozzle exit, the jet width growing and the maximum velocity along the center-line of the jet decreasing. (See Fig.1).

Prandtl (Ref.1) first gave a dimensional analysis of the free jet. He assumed that the static pressure throughout the jet was substantially equal to that of the surroundings and the jet momentum remained constant downstream. He proved that the velocity
at the centre of the jet was proportional to \(x^{-1/2} \), that the jet width was proportional to \(x \) and that the mean velocity profiles were similar along the jet.

Gortler used Prandtl's mixing length theory (Ref.2), i.e., the eddy viscosity is constant across the jet at each distance from the nozzle exit and is proportional to the product of the maximum velocity and the width of the jet.

He started with the basic boundary layer equation,

\[
\frac{\partial u}{\partial x} + \frac{v}{\partial y} = \frac{\partial^2 u}{\partial y^2}
\]

and the boundary condition:

\[
y=0: \ u=v=0; \ y=\infty: \ u=v=0
\]

\[
y=y_m: \ \frac{\partial u}{\partial y} = 0
\]

With the application of Prandtl's mixing length theory (Ref.2) for the eddy viscosity, \(\epsilon \), and proper integration of equation (2.1), his final equation for the velocity distribution is:

\[
u = u_m \, \text{sech}^2 \left(\frac{0.88y}{y_m/2} \right) = u_m \, \text{sech}^2 \left(\frac{\sigma y}{x} \right)
\]

Where \(\sigma \) is a constant determined by experiment.

Borque (Ref.3) gave his measurements of \(\sigma = 1.2 \) near the nozzle exit and decreasing to about 7.5 for large \(x' \) values. Reichardt (Ref.3) and Forthmann (Ref.4) found from their measurements that \(\sigma = 7.67 \) for large \(x' \) values.
2.2. WALL JET

A jet flowing over a solid surface is called a wall jet. (see Fig. 2). In 1934, Forthmann (Ref. 4) first presented the results of his measurements made on a wall jet. He found that:

\[u_m \propto x^{-1/2} \quad \text{and} \quad y_{m/2} \propto x^{0.997} \]

His logarithmic plot of the velocity versus the distance normal to the wall in a region close to the wall (inner layer, see Fig. 2) indicated that \(u \propto y^{1/7} \). Further, he found that the form of the velocity distribution across the jet remained unchanged, i.e., the velocity profiles were similar.

Nearly twenty years after Forthmann's experiments, in 1956, Glauert (Ref. 5) presented a theoretical analysis of the wall jet problem. He used Prandtl's hypothesis (Ref. 2) for the outer layer (see Fig. 2) of the wall jet and Blasius' shear stress formula (Ref. 2) in the inner layer:

\[\frac{\tau_e}{\rho} = 0.0225 u^2 \left(\frac{y}{u y} \right)^{1/4} \]

This equation gave a 1/7th power law for the velocity in the inner layer.

For the wall jet, Glauert determined that \(u_m \propto x^a \) and \(y_{m/2} \propto x^b \) where:

\[a = \frac{-\alpha(9+8\alpha)}{2(5+9\alpha+\alpha^2)} \]

\[b = \frac{(9+8\alpha)}{2(5+4\alpha)} \]

The constant \(\alpha \) in the above equation is to be determined experimentally.
He also stated that since the layer of the wall jet was governed by Blasius' formula (Ref.2) and the outer layer by Prandtl's hypothesis (Ref.2), complete similarity was no longer possible.

In 1958, Sigalla (Ref.6) obtained $\alpha = 1.2$ from his measurements made on the velocity profiles for a Reynolds number of 6.2×10^4. By evaluating Glauert's expression - see equation (2.6) - for $\alpha = 1.2$ the following results were obtained:

$$a = -0.517 \quad \text{and} \quad b = 0.95$$

(2.7)

These were in slight disagreement with his experimental results which were $a = -0.500 \quad \text{and} \quad b = 1.00$

(2.8)

He also found that the numerical constant in Blasius' formula, equation (2.5), was 0.0283 instead of 0.0225 for Reynolds numbers up to 10^5. The central core velocity was observed to remain constant for about 10 nozzle widths from exit.

In reference 7, published in 1961, Schwarz and Cosart presented their results from hot wire anemometer measurements for Reynolds numbers ranging from 2.2×10^4 to 10.6×10^4:

$$a = -0.555 \quad \text{and} \quad b = 1.00$$

(2.9)

The most important finding of their experiments was that the velocity in the inner layer varied approximately as the $1/14$ th power of the normal distance from the wall. This result entirely disagreed with the power-law of $1/7$ which was found by Forthmann (Ref.4) and used as an assumption by Glauert (Ref. 5) in his theoretical analysis.
This disagreement is due to the modification of the structure of the inner layer of the wall jet by the turbulence in the outer layer. As a result of the difference in the power-law, the skin-friction coefficient of a wall jet varies in a manner different from that of a turbulent boundary layer.

Myers, Schauer and Eustis (Ref. 8) substantiated the results of Schwarz and Cosart that the inner layer velocity profile had a power-law close to $1/14$. They also stated that the constants were:

$$a = -0.49 \pm 0.03 \quad \text{and} \quad b = 0.95 \pm 0.03$$ \hspace{1cm} (2.10)

In addition, the length of the central core of uniform velocity ranged from 4 to 14 nozzle widths.

Recently, Gartshore and Hawaleshka (Ref. 9) found the inner layer velocity of a wall jet to follow a power law of $1/11.4$ for values of $x' > 18$ and the constants were:

$$\alpha = 1.2, \quad a = 0.53 \quad \text{and} \quad b = 1$$ \hspace{1cm} (2.11)

for a value of $x' > 38$ downstream of the jet.
CHAPTER III

TEST FACILITIES

A schematic diagram of the test facilities is shown in Fig. 4. References to the letter code used in Fig. 4 are made in the description of the test facilities.

3.1 AIR SUPPLY AND GUIDING DUCT

Air was supplied by a type HS, size 200 American Standard centrifugal fan (A) with static pressure of 5 inches water. This fan was driven by a 5 hp, 1745 rpm General Electric induction motor. A 30 inch long, wooden guiding duct (B) with a rectangular cross section was attached to the fan exit. A honeycomb flow straightener was placed in the guiding duct to reduce the turbulence level induced by the fan.

3.2 CONTRACTION DUCT AND NOZZLE

A wooden contraction duct (C) 30 inches long was placed after the guiding duct. A converging nozzle (D) made of brass with a 0.25" x 9" exit was attached to the contraction duct. The contraction ratios for the nozzle together with the duct were 62:1 in the direction of 0.25" width and 2.5:1 in the perpendicular direction. A Kiel probe with a 0.125"-diameter shroud was placed in the contraction duct to measure air supply pressure.

3.3 WALL AND TRAVERSING MECHANISM

The wall (E) consisted of a piece of 18" x 9" x 0.25" acryllic plastic sheet and was mounted perpendicular to the end-plates with the 9" direction being parallel to the spanwise (9" length) direction.
of the jet slot.

A piece of 30" x 9" x 0.25" acrylic plastic plate was mounted on the top of the wall. This plastic plate and a piece of cold rolled steel plate of the same size, which was placed at the bottom of the wall, were used as end-plates to obtain a two-dimensional flow condition. The traversing mechanism (F), used for moving the wall to the required gap position, was capable of moving the wall both parallel and perpendicular to the jet. In both the directions, distances could be measured to an accuracy of 0.005" with a full range up to 8 inches. The traversing mechanism was provided with leveling screws to ensure correct alignment with the nozzle exit.

3.4 PROBING EQUIPMENT

A flattened stainless steel hypodermic tube with an opening of 0.005" x 0.060" was used to measure the total pressure in the jet. This probe was mounted on a specially designed apparatus which enabled the probe to have three dimensional movement with an accuracy of ±0.001 inch. A multtube inclined manometer with an accuracy of ± 0.025 inch of water was utilized in making all pressure measurements.
CHAPTER IV
EXPERIMENTS

The principal objective of the experiments was to determine the effect of an initial gap on the flow in a plane wall jet. Studies were made of the similarity of the velocity profiles, the jet growth and the maximum velocity decay. Probing of the jet sheet at various stations along its length was, therefore, the first experiments undertaken. Such probings at mid-span position were carried out for the free jet and the wall jet with and without a gap. The nozzle width and the jet velocity at the nozzle exit were kept constant during the test program. The size of the gap was the important variable.

4.1 CALIBRATION

The flattened hypodermic tube used for measuring the total pressure was compared with a small Kiel probe under actual test conditions. The results indicated a very good agreement.

Velocity distributions across the width of the nozzle exit at different positions along the span of the nozzle were determined. No significant changes in these distributions were noted. The velocity distribution was found to be effectively uniform over 85% of the 0.25" width varying only ±1% from the central core velocity of 140 ft/sec. A velocity profile taken at mid-span is shown in Fig. 5. Frequent repeatability checks were also carried out during the experimentation.
4.2 TEST PROCEDURE

4.2.1 FREE JET

The two end plates were attached to the nozzle exit. The two-dimensional free jet was probed at nine different stations (10 < x' < 46) downstream from the nozzle exit. The total pressure probe was traversed across the jet in steps of 0.050" except near the maximum velocity point where steps of 0.025" were used.

The probings were also useful in determining the jet efflux angle. It was found that the jet direction was along the centre line of the nozzle.

4.2.2 WALL JET

The wall was installed between the two end plates and the leading edge was sealed against the nozzle exit. The two-dimensional plane wall jet was then probed at six different stations along the wall (10 < x' < 70). In the inner layer (see Fig. 2) the probe was traversed across the jet in steps of 0.001" while in the outer layer the step distance was 0.005". A correction for the effective center (Ref. 10) was applied to the readings taken close to the wall.

By means of the traversing mechanism the wall was moved away from the nozzle exit. The different gaps were obtained by moving the wall in the following ways:

1. directly outward from the zero gap position parallel to the axis of the free jet (gaps indicated by G1, G2, G3, and G4 in Fig. 3).
2. along the approximate boundary of the free jet (determined by the point where the velocity was 5% of the maximum velocity)
but still keeping the wall parallel to the centre line of the free jet (gaps shown as G_a, G_b, G_c, G_d and G_e in Fig. 3).

The jet sheet flow over the wall was then probed at three locations ($x' = 22, 46$ and 70) in the same way as the wall jet with no gap. For gaps G_d and G_e, jet probing was done at four stations.
CHAPTER V

EXPERIMENTAL RESULTS

5.1 DATA REDUCTION

The fluid was treated as incompressible because the maximum velocity of the jet was only 140 ft/sec. From barometric pressure and room temperature the density of air was determined. It was also assumed that the static pressure remained constant throughout the jet and was equal to the ambient pressure. The experimental data was reduced with the help of an IBM 1620 computer. Input data were room temperature, barometric pressure, manometer reading, \(x \), \(y \), and \(u_0 \). The values of \(u \), \(u_m \), \(y_m \), \(y_m/2 \), \(u_m \), \(y_m \), and \((y_m/2 - y_m)/t \) were obtained as output information.

5.2 PRESENTATION AND DISCUSSION OF RESULTS

5.2.1 FREE JET

A non-dimensional velocity profile plotted in Fig. 6 shows that the experimental results agree very well with Gortler's theory over the central region - Eq. (2.3). These results confirm the experimental results of Forthmann (see Fig. 23.7 of Ref. 2). The free jet growth is shown in Fig. 7. It is seen that \(y_m/2 \) increases linearly with \(x \). The statistical method of linear regression (Ref. 11) was used to fit the best line to the free jet experimental data. The slope of the line is:

\[
\frac{d}{dx} \left(\frac{y_m/2}{t} \right) = 0.10
\]

(5.1)
This indicates that the line joining all the 0.5 u_m points has an inclination of 5.7° to the centre line of the free jet.

The constant δ in the Gortler's relation is found to be 8.8 by substituting Eq.(5.1)in Eq.(2.3). This value is slightly different from the values ($\delta = 7.7$) obtained by earlier experiments. However, the results, in general, are in good agreement with that of the references cited.

Figures 8 and 9 show the maximum velocity decay. From the best line to fit the free jet data, drawn in Fig. 9, the following relation is obtained for $x > x_0$:

$$\frac{u_m}{u_0} = 2.665 (x')^{0.536}$$

These results will be useful for studying the effect of an initial gap in a wall jet.

5.2.2 WALL JET WITHOUT A GAP

The dimensional velocity profiles at three of the six positions probed are shown in Fig.10. The non-dimensional velocity profile is given in Fig. 11, which shows a good agreement with the results given by Schwarz and Cosart (Ref.7) and Myers, Schauer and Eustis (Ref.8). Glauert's theoretical velocity profile with $\alpha = 1.2$ agrees approximately with the experimental data. However, the theoretical values for $y/y_m/2$ are a little higher in the outer layer and lower in the inner layer than the experimental values (see Fig. 11).

The maximum velocity variation along the jet is shown in Figures 8 and 9. From the best line to fit the wall jet data, drawn in Fig. 9, the following relation is obtained for $x > x_0$:
This equation gives the empirical constant \(a = -0.49 \). The above relation is practically the same as that given in Refs. 6 and 8.

The growth of the wall jet is shown in Fig. 12 with a plot of \(\frac{y_{m/2}}{t} \) vs \(x' \). The best line to fit the experimental points has the slope of

\[
\frac{d}{dx'} \left(\frac{y_{m/2}}{t} \right) = 0.089
\]

The inner layer thickness, \(y_m \), is also found to be practically a linear function of \(x' \) (see Fig. 17). The average value of the ratio of \(\frac{y_m}{y_{m/2}} \) is determined to be 0.165.

In the case of a free jet, the distance \(y_{m/2} \) is measured from the point of maximum velocity. But in the wall jet, it is measured from the wall. Therefore, any growth comparison of the two types of jet should take the difference between the two definitions for \(y_{m/2} \) into account. In other words, it is more reasonable to compare one half of a free jet with the outer layer of a wall jet than with the wall jet as a whole. So the variation of \(\frac{y_{m/2} - y_m}{t} \) along the length of the wall jet is plotted in Figures 7 and 12 and compared with that of the free jet in Fig. 7 (for free jet, \(y_m = 0 \)). The rate of growths of the outer layer is given by:

\[
\frac{d}{dx'} \left(\frac{y_{m/2} - y_m}{t} \right) = 0.065
\]

This gives \(\sigma = 13.5 \). Further, these figures show that the rate of growth of a free jet is higher than that of the wall jet as a whole.
A log - log plot of the variation of the velocity in the inner layer of the wall jet is shown in Fig. 13. From the regression line with a correlation coefficient of 0.95, it is found that for $0.02 \leq \frac{y}{y_m/2} \leq 0.2$, $\frac{u}{u_m}$ varies approximately as $(\frac{y}{y_m/2})^{1/12}$.

The fact that the lower limit, 0.02, is larger than the values presented in Refs. 7 and 8 is not due to the size of the probe but mainly due to the dimensions of the wall and the slot. This result substantiates the earlier findings (Refs. 7, 8, and 9) that the inner layer velocity profile has a lower power-law than the classic value of $1/7$.

5.2.3 WALL JET WITH A GAP

5.2.3.1 GAPS OBTAINED BY THE FIRST METHOD

The gaps are so small that the leading edge of the wall is within the central core of a free jet. These small gaps do not affect the wall jet significantly. In other words, wall jet with such gaps have the same non-dimensional velocity profile (see Fig. 14) and practically the same rate of jet growth and maximum velocity decay (see Figs. 7, 8, and 9) as the wall jet without a gap.

However, it is worth noting that at any given distance from the nozzle exit, the value of $\frac{y_m/2 - y_m}{t}$ is higher than, and the value of $\frac{u_m}{u_o}$ is less than, that of the wall jet with zero gap. This is because of the change in the initial condition of the wall jet caused by the increased jet thickness and decreased (average) jet velocity. The change in this initial condition depends on the gap size. Further, in the region close to the leading edge of the
wall, the rates of jet growth and maximum velocity decay are slightly different from those values for no gap. These differences diminish rapidly downstream from the leading edge.

5.2.3.2 GAPS OBTAINED BY THE SECOND METHOD

The plots in Fig. 15 show dimensionless velocity distributions across the jet at three or more stations along the length of the wall for five different gap positions. The dotted curve gives the non-dimensional velocity profile for the wall jet without a gap.

These gaps, unlike the previous type, introduce dissimilarity of the velocity profiles which is explained as follows: In the first type of gap, the leading edge of the wall is kept in the central core and hence there is practically no velocity gradient just ahead of the wall. For the second type of gap, the leading edge is at the jet boundary and a velocity gradient just upstream of the wall is introduced.

It is interesting to note that the value of \(\frac{Y_m}{t} \) is higher than the value for the wall jet without a gap, the difference increasing with increasing gap size (see Fig. 17). However, for any given gap size, the difference decreases rapidly downstream from the leading edge (also shown in Fig. 17) and finally tends towards a constant value, i.e., the rate of change of \(\frac{Y_m}{t} \) with \(x' \) approximately equals the zero gap rate. The shift of the maximum velocity point is due to the effect of the wall drawing the jet closer, which is caused by the difference in shear stresses acting in the inner and in the outer layer.
As the gap size increases, the velocity profile in the region of the wall close to the leading edge resembles the free jet profile more than the wall jet profile (see Figs. 15d and 15e). The above point is better indicated in Fig. 16 in which the velocity profiles for different gaps at fixed position \(x' = 22 \) from the nozzle exit are plotted.

Maximum velocity decay for wall jets with different gaps are shown and compared with the free jet in Fig. 8. As one can intuitively expect, the decay plots for all gaps lie in between the curves for free jet and wall jet without a gap. An important point is that even though the values of \(\frac{u_m}{u_0} \) for any gap size is less than the no gap value, the rate of decay eventually tends towards that of a wall jet without a gap. For gaps \(G_c, G_d, \) and \(G_e \), \(\frac{u_m}{u_0} \) at \(x' = 22 \) is closer to the free jet value than that of the wall jet with zero gap because the gap sizes are large. This figure clearly indicates that the region close to the leading edge of the wall is a transition region, where the jet changes from a free jet to a wall jet. Qualitatively stating, the length of the transition region depends directly on the size of the gap.

Plots of jet growth \(\left(\frac{y_m}{2} \text{ vs } x' \right) \) for various gaps are shown and compared with free jet growth in Fig. 7b. The rate of growth of the jet changes from that of the free jet and approaches the rate of the wall jet without a gap. Unlike the decay curves (Fig. 8), the growth plots of Fig. 7b for large gaps, namely, \(G_c, G_d, \) and \(G_e \), do not lie in between the lines for the free jet and wall jet with zero gap. This is because of the rapid shift.
of the maximum velocity point in the transition region as shown in Fig. 17.
CHAPTER VI

CONCLUSIONS

6.1 WALL JET WITHOUT A GAP

(1) Velocity profiles are similar.

(2) Non-dimensional velocity profile agrees only approximately with Glauert's theoretical profile for $\alpha = 1.2$.

(3) The maximum velocity decay could be described by the following expression for $x > x_0$:

$$\frac{u_m}{u_o} = 3.42 \left(x' \right)^{-0.49}$$

(4) Both layers of the jet are found to grow linearly with x' but with different slopes.

(5) σ for the outer layer is 13.5.

(6) The velocity profile in the inner layer does not follow the classic one-seventh power law.

6.2 WALL JET WITH A GAP

(1) For gaps within the central core (G_1 to G_4), the effects on the wall jet flow are negligible, i.e., the dimensionless velocity profile, the rates of jet growth and maximum velocity decay and the power law of the inner layer velocity profile are all practically unchanged.

(2) The wall jet flow in a region close to the leading edge of the wall is affected by the gaps for which the wall edge is kept at the jet boundary (G_a to G_e). In this region, velocity profiles
are not similar and the rates of the jet growth and the maximum velocity decay change from point to point along the length of the jet. Specifically, the type of flow changes from a free jet to a wall jet.

(3) The region affected by the gap could be described as a transition region, the length of which is increased by an increase of gap size.
REFERENCES

10. Young, A.D. The Behavior of A Pitot-Tube in A Transverse Pressure Gradient, A.R.C. R and M 1770

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
region of still air
approximate boundary of wall jet

Fig. 2 WALL JET NOMENCLATURE
Fig. 3 POSITIONS OF GAPS BETWEEN THE NOZZLE EXIT AND THE WALL
Fig. 4
SCHEMATIC DIAGRAM OF TEST FACILITIES

A --- FAN GUIDING DUCT
B --- TOTAL HEAD PROBE
C --- WALL TRAVERSING MECHANISM
D --- END PLATES
E --- NOZZLE
F --- HONEY COMB FLOW STRIGTHER
G --- WALL PROBE
H --- END PLATE
J --- MANOMETER

TO MANOMETER

TO MANOMETER
Fig. 6 NON-DIMENSIONAL VELOCITY PROFILES OF THE FREE JET

\[
\frac{\dot{y}}{y_{m/2}} = \frac{u}{u_m} = \text{sech}(0.88 - \frac{y}{y_{m/2}})
\]
Fig. 7a GROWTH OF FREE JET AND WALL JET WITHOUT A GAP AND WITH GAPS OF G_1, G_2, G_3 AND G_4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 7b GROWTH OF FREE JET AND WALL JET WITHOUT A GAP AND WITH GAPS OF \(G_a, G_b, G_c, G_d \) AND \(G_e \). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 8 MAXIMUM VELOCITY DECAY OF FREE JET AND WALL JET WITH AND WITHOUT A GAP
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 9 LOGARITHMIC PLOT OF MAXIMUM VELOCITY DECAY OF FREE JET AND WALL JET WITH AND WITHOUT A GAP

\[\frac{u_m}{u_o} \approx 3.42 (X')^{0.49} \]

\[\frac{u_m}{u_o} \approx 2.665 (X')^{0.536} \]
Fig. 10 DIMENSIONAL VELOCITY PROFILE OF A WALL JET WITH ZERO GAP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 11 NON-DIMENSIONAL VELOCITY PROFILE OF WALL JET WITHOUT A GAP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 13 NON-DIMENSIONAL WALL JET INNER LAYER VELOCITY PROFILE
Fig. 14a NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF C_g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 14b NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_2
Fig. 14c NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_3
Fig. 14d NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_4
Fig. 15a NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_a
Fig. 15b NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP G_b
Fig. 15c NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 15d NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_b
Fig. 15e NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITH GAP OF G_0
Fig. 16 NON-DIMENSIONAL VELOCITY PROFILES OF WALL JET WITHOUT A GAP AND WITH VARIOUS GAPS AT X' = 22
Fig. 17 INNER LAYER GROWTH FOR WALL JET WITH AND WITHOUT A GAP
VITA AUCTORIS

1937 Born in Nanking, China, on April 11.
1955 Completed high school from the Chien-Kuo High School, Taipei, Taiwan, China, in July.
1959 Received the Degree of Bachelor of Science in Mechanical Engineering from the National Taiwan University, Taipei, Taiwan, China, in July, and entered the R.O.T.C. in Chinese Navy in September.
1960 Served in Chinese Navy as an Ensign in April.
1962 Employed as a designer in the National Taiwan Science Hall, Taipei, Taiwan, China, in January.
1965 Currently a candidate for the Degree of Master of Applied Science in Mechanical Engineering at the University of Windsor.