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ABSTRACT

The flow in a two dimensional curved wall jet 
with different initial gaps between the nozzle exit and 
the leading edge of the wall was probed at various 
stations along the jet. The jet slot thickness, jet 
exit velocity, and radius of the wall were kept constant. 
It was found that the region close to the leading edge 
of the wall behaved like a settling zone. In this zone, 
the type of flow changed from free jet to a curved wall 
jet. The length required for settling depended on gap 
size and was less than that of the plane wall jet. Gap 
effects on surface pressure distribution and angular 
position of separation were examined. The hysteresis 
phenomenon associated with gaps was investigated.
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NOTATION

Distance between nozzle lip and leading 
edge of deflection surface, perpendicular 
to the axis of the nozzle (ft.). See 
Fig. 1.

b' Non-dimensional b (b1 = b).
t

Cp Pressure coefficient = (Pa - Ps) Ro.
(PT - Pa) t

I Distance between nozzle lip and leading
edge of deflection surface, parallel to 
the axis of the nozzle (ft.). See Fig. 1,

L Non-dimensional ( I  = L ).
t

m' Difference between the b' values of
"attached" and "detached" positions for a 
given

n Constant in Eqn. 2.12.

2p Static pressure ( lbs./ft. ).

2Pa Atmospheric pressure ( lbs./ft. ).
2Ps Static pressure on the wall ( lbs./ft. )

P Total pressure in the jet at the nozzle
T exit (lbs./ft.2)#

1
Re Reynold's number = (PT-Pa)RQt 2 .

Ro Radius of the wall (ft.).
vi
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;m

Distance measured along deflection surface 
from its leading edge (ft.).

Non-dimensional s (s' = s)
t

Jet slot thickness (ft.).

u Mean velocity parallel to the jet axis
(ft./sec.).

Um Maximum value of u at a given station
(ft./sec.).

Uo Mean velocity of jet at the slot ( ft./sec.)

u" Tangential component of velocity fluctuation
(ft./sec.).

Radial component of velocity fluctuation 
(ft./sec.).

Distance from and normal to the wall of the 
wall jet or normal to the centre line of the 
free jet (ft./sec.). See Fig. 2.

Value of y for which u is maximum (ft./sec.)

ym/2 Larger value of y for which u = 1/2 um
(ft./sec.).

Disposable constant in Glauert's theory 
(Ref. 1).

£ Eddy viscosity (Slugs/ft.sec.).

0 Angular position measured from the leading
edge (degrees).

Vll
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0sep Angular position of separation.

^ Kinnematic viscosity (ft^/sec).

 ̂ Density of the fluid (slugs/ft3.).

viii
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CHAPTER I

INTRODUCTION

The phenomenon of a jet emerging tangentially to 
a curved wall and flowing along the surface of the wall 
has long been known as the "Coanda Effect." Recently 
many applications have been found for this phenomenon 
such as: blown flaps and jet flaps for high lift devices,
and improvement of the efficiency of an internal flow 
system.

Because of the dominating turbulent mixing in the 
major outer part of the flow as well as considerable 
viscous effect in a part near the wall surface, the na
ture of the flow is evidently complex. Newman (Ref. 2), 
Nakaguchi (Ref. 3), Sawyer (Ref. 4), Fekete (Ref. 5) 
have done considerable work in this field. But in all 
these investigations, no gap was introduced between the 
curved surface and the nozzle exit.

Obviously, deflection surfaces with initial gaps 
are preferable for practical applications. Korbacher
(Ref. 6) and Benner (Ref. 8) inv e s t i g a t e d  the gap effect

by measuring the force acting on and the surface pressure 
distribution over a quadrant surface. They did no flow 
measurement in the jet. The present investigation pro
poses to find the effect of a gap on the well established

1
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velocity profiles, position of separation, static press
ure distribution and to study the hysteresis phenomenon 
associated with gaps. The surrounding fluid was stat
ionary and flow was in the incompressible range.
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CHAPTER II 

LITERATURE SURVEY

The material covered in this chapter summarizes 
briefly the existing literature and is included in the 
report for the sake of completeness and ease of ref
erence. The present investigation requires a knowledge 
of the jet flow over a curved wall without an initial 
gap to find the effect of the gap. The investigations 
of the jet flow over a curved wall without a gap are 
considered in the following sections.

2.1 NON—VISCOUS THEORY

The bending of a jet sheet with one free and one 
bound surface is produced by a pressure difference act
ing across it. Consider an element (see Fig. 4) in a 
two dimensional flow of a thin jet (t<<R0 ), Assume 
that the velocity and thickness of the jet remain con
stant. Acting on the flow element are the centrifugal 
and the pressure forces which are in radial equilibrium.
T h e r e f o r e ,

f.Ro.dO.t. Uo2 = Ro.d©. (Pa-Ps )
Ro

.’. (Pa-Ps) = ? t UQ 2 
Ro

But from Bernoullis equation,
1 ? U0 2 = (PT -Pa )
2
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4

The pressure coefficient, Cp becomes

Cn * (pa~ps ) • Rq „ 2 (2.1)
(Pip-Pa) t

Experimental results of Korbacher (Ref. 6) for 
small values of 0 agree well with the above equation.
But the values obtained by Newman (Ref. 2) and Fekete 
(Ref. 5) are less than that predicted by the above theory.

2.2 REMARKS ON REAL JET FLOW

The real fluid jet continuously entrains fluid 
from the surroundings. Thus the jet width increases and 
the fluid velocity decreases with increasing 0. In con
sequence, the pressure at the surface which is initially 
lower than Pa due to the flow curvature, tends to app
roach Pa as the jet velocity decreases. Hence the 
entrainment of the surrounding fluid produces the press
ure rise that finally causes the boundary layer to sep
arate from the surface. This emphasises the necessity 
of including the process of entrainment in any theoret
ical analysis.

2.3 NEWMAN'S ANALYSIS

2.3.1 DIMENSIONAL APPROACH

The following parameters are sufficient to define 
an incompressible jet flow over a curved surface:

(pT-Pa ), t, R0 , , y and 0.
The pressure difference across the jet sheet (Pa -Ps )
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at angular position 9, may therefore be related non- 
dimensionally to these parameters as follows:

(Ik -Ps ) = f  
(PT-Pa )

9, t , r (Pm-Pa ) Ro2 ') I
Ro ;------------- • 2t f y2

(2 .2)

At some distance from the slot we might expect
the flow to become independent of the separate parameters
(PT~Pa) and t and depend only on their product (PT~Pa )•t
as long as suitable zero is chosen for 9. Furthermore
for large values of Reynolds number the flow will tend
to become independent of viscosity so that

(Pa -Ps ) Ro = f (9 ) (2.3)
(PT-Pa) t

Similar results can be stated for the angular position 
o'f separation 9sep. as follows:

9sep. =
Ro ’ £

(PT-Pa ) Bo t | i  
_ _

(2.4)

If the position of separation is sufficiently far
from the slot, then 9sep. will depend only on Re.

19sep. = £ C(PT-Pa ) R Qt)
I J (2.5)
}  9 V2

At large Reynolds number ©sep. with suitably 
chosen zero, tends to become constant. In particular,
for small values of t_, ©sep. measured from the slot is

Roconstant. Experimental results (Ref. 2) confirm the
above statement and they show that for t_ values ranging

Rofrom 0.02 to 0.4, 9sep. = 24 0°.
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2.3.2 THEORETICAL TREATMENT

Information from the plane wall jet flow was used 
by Newman (Ref. 2) to get an approximate picture of the 
jet flow over a curved wall. For plane wall jets the 
skin friction can be considered negligible compared to 
the jet momentum at sufficiently high Re. Hence, jet 
momentum is practically conserved. Further, the flows 
having the same jet momentum, but which emerge from the 
slots having various widths, produce the same velocity 
profiles far downstream provided a suitable origin is 
chosen for the streamwise co-ordinate.

Newman therefore assumed that for the curved flow 
the skin friction was also small compared to the jet 
momentum at high Reynolds number. Hence the sum of the 
moment of momentum and the moment of pressure forces 
about the centre of the circular cylinder is constant. 
In applying this concept, it was assumed that stream
lines are circles with the same centre as the cylin
drical wall. Further, the velocity profiles are ass
umed to be similar at all downstream positions and that 
they can be replaced by a uniform velocity profile 
having the same mass flow and the same momentum. On 
the basis of these assumptions, Newman developed the 
expressions for the surface pressure distribution, the 
decay of the maximum velocity and the jet growth.

The relationship for the static pressure on the 
wall is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(Pa-ft )Ro _ 8 0 + 3  e."7’')_____________  (2.6)
(PT-Pa ) ■ t - p*. ^  + ̂ , + 2 ln (l + £

Though the theory correctly predicts an adverse 
pressure gradient at the surface, the actual level of 
pressure is about 30 per cent too low. This is, as 
explained by Fekete (Ref. 5), due to the effect of the 
slot boundary layers on jet momentum.

The ratio of the actual to theoretical momentum, 
K, is always less than one. For Fekete's experiments, 
the value of K is 0.75. The surface pressure coeffic
ient is corrected as follows to account for the bound
ary layers in the slot

Cp (Pa-Ps) R0 (2.7)
(pT-Pa) tK

The correction gives a fairly good agreement
between the theory and experiment.

Newman showed that the growth of the jet can be
expressed as

^/x______ - ( i + (< (2.8a)
Ro (e +-c,-

Where C ( ■ t_ is the correction for hypothetical origin.
RoFor small t_, the equation becomes

^>/x - c ( l + k  ) (2.8b)
K  e

Downstream distance is replaced by ( T?0+k )’e
where k is an experimental constant of the order of unity,
C is a constant for a given value of eddy viscosity. For

yma wall jet, C = 0.085 when r- = 0.14 decreasing to
yC = 0.073 when rr = 0 (i.e. infinite Re). For a free
y°7z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



jet C = 0.114. For curved jet, Newman found the relation 
experimentally as

= 0-11(1 + 1-5 -i£'2 ) (2.9)

Table I gives constants obtained by other investigators.
The jet width therefore, increases more rapidly

y .than a plane wall jet and for > 0.05, the effective
eddy viscosity is similar to that of a free jet. This
is attributed to an increased mixing associated with the 
flow curvature in the outer part of the flow where u x 
(y + Ro) decreases with y.

Reduction of maximum jet velocity um around the 
cylinder at high Re is given by (

fu£f?#e ^ e f (  4  + -h* ( i  + % ^ f l  (2-10)
(PT -PQ )t ' 9 1 3 * 0 3 >J

Where is related to 9 by Equation (2.9). AgreementJ\o xf  ”R Qbetween the measured and theoretical values of --- —— —
CPr -Pa) t

is satisfactory.
Experimental results of Newman (Ref. 2) and Fekete

(Ref. 5) show that the veloaity profiles are similar over
the major portion of the flow except near separation,
and are in good agreement with Glauert's plane wall jet
theory for rr = 0.14. 

y"Vz
2.4 NAKAGUCHI'S METHOD

Nakaguchi (Ref. 3) made a comprehensive theor
etical analysis for incompressible flows by solving the 
Navier-Stokes equations of motion, after making the
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following simplifying assumptions:
(i) that the familiar boundary layer approximat

ion holds, i.e. the radial velocity component is very 
much smaller than the tangential one;

(ii) that the ratio of the width of the flow to 
the radius of the flow curvature is very small

i.e. ~  0 C <5) and ._! -LR0 Ro -*y Ro

(iii) that the pressure changes in the flow dir
ection are negligible in so far as they affect the mom
entum of the flow;

(iv) that the velocity profiles are similar and 
the boundary layer portion of the flow is negligible,
and that the non-dimensional velocity profiles can there
fore be represented by a half free jet profile;

(v) that the rate of spread of the jet is prop
ortional to v*, which in turn is proportional to the 
centrifugal pressure across the flow, the constant of 
proportionality being established experimentally;

(vi) that the turbulant shear stress can be 
simply related to eddy viscosity as was done by Gortler 
for a free jet;

z r(vii) that all self preservation of u and v' 
exists as stipulated by Townsend (Ref. 9).

(viii) that all flows can be reduced to a univ
ersal flow which emanates from hypothetical origin.

Assumptions (i) and (viii) are the same as, (ii) 
and (iii) are simpler than, and (iv), (v), (vi) and (vii)
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are different from Newman's assumptions,
Nakaguchi found that the velocity profile he 

assumed (half a free jet) agreed fairly well with the 
experimental results except in the minor part close to 
the wall surface.

He theoretically developed the relationship for 
jet growth 47* -- o o ^ e ^ o - o t . 6  e (2-11)

which agreed well with his experimental results.
The jet growth law given by Nakaguchi deviates 

rapidly from that given by Newman for 0 values larger 
than about 160°. Nakaguchi also derived the formula 
for the local maximum jet velocity

where (Um) , was the maximum jet velocity at some arb
itrarily chosen point in the fully developed flow. This 
prediction is fairly satisfactory except in the vicinity 
of the jet slot where the potential core remains. The 
value of n is little smaller than -0.5.

The static pressure on the wall is given by

The theoretical values are slightly greater than 
the experimental ones. In a general all the theoretical 
methods predict the surface pressure distribution not as well 
as other quanties.

Uj-Y|
(Wftt)

(2.12)

(2.13)
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2.5 GAP EFFECT

In 1962, Korbacher (Ref. 6) investigated gap 
effect on a curved wall jet by measuring the forces and 
pressure acting on a quadrant. He found that the Coanda 
phenomenon was also effective when the deflection sur
face was separated from the nozzle by a wide gap open 
to the atmospheric pressure. The experiments were 
carried out for nozzle pressure ratios up to and well 
above the critical. Gaps along the nozzle axis of up
to eight times the jet sheet thickness (at Ro * 2.5")
have practically no effect on the component of the force 
in the direction normal to the nozzle axis. Maximum b' 
(at any given /.) for which the jet was able to bridge 
the gap depended on the jet slot thickness. The larger 
the jet sheet thickness, the smaller the b' gaps.
He concluded that the effect of the L gap size on 
the static pressure distribution on the wall was small. 
He also observed the hysteresis phenomenon associated 
with the gap perpendicular to the nozzle axis (explain
ed in section 4.2). These findings were confirmed by 
Benner's (Ref. 8) investigation which was a continuation 
of the work reported by Korbacher.

Tu (Ref. 7) in his experimental study of gap 
effect on a plane wall jet flow found that only the
flow in the region close to the leading edge of the
wall was affected by the gap. The length of this 
region which depended on the gap size, was so small for
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small gaps that the gap effects were negligible.
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CHAPTER III 

TEST FACILITIES

The apparatus is shown in Figures 1,3,4, and 5. 
References to the letter code used in Fig.l are made in 
the description of the test facilities.

3.1 AIR SUPPLY AND GUIDING DUCT

Air was supplied by a type HS, size 200 American 
Standard centrifugal fan (A) with static pressure of 5 
inches water. This fan was driven by a 5 h.p., 1745 r.p.m. 
General Electric induction motor. A 30 inch long, 
wooden guiding duct (B) with a rectangular cross section 
was attached to the fan exit. A honeycomb flow straight- 
ner was placed in the guiding duct to reduce the turb
ulence level induced by the fan.

3.2 CONTRACTION DUCT AND NOZZLE

A wooden contraction duct (C) 3 0 inches long was 
placed after the guiding duct. A converging nozzle (D) 
m ade of brass w i t h  a 0.25" x 9" e xit was a t t a c h e d  to the 

contraction duct. The contraction ratios for the nozzle 
together with the duct were 62:1 in the direction of
0.25" width and 2.5:1 in the perpendicular direction.
A Kiel probe with a 0.125" diameter shroud was placed
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in the contraction duct to measure air supply pressure.

3.3 WALL AND TRAVERSING MECHANISM

The curved wall (E) consisted of a 9" long half 
cylinder made of smooth plexiglass. The outside diam
eter of the cylinder was 12 inches. Twenty-nine static 
pressure taps of 0.040" diameter were drilled 1.5" away 
from the centre line in order to eliminate their effect 
on the jet probing.

A piece of 30" x 40" x 0.25" plexiglass plate on 
the top and a combination of rolled steel plate and 
plexiglass plate at the bottom were used as end plates 
to obtain the two dimensional flow condition. The wall 
(E) was mounted perpendicular to the endplates with the 
9" direction being parallel to the spanwise direction 
of the jet slot.

The mechanism used for moving the wall to the 
required gap position, was capable of moving the wall 
both parallel and perpendicular to the jet. In both 
the directions, distances could be measured to an 
accuracy of 0.005".

The traversing mechanism was provided with level
ing screws to en s u r e  c o r r e c t  a l i g n m e n t  w i t h  the nozzle 

exit.

3.4 PROBING EQUIPMENT

A flattened stainless steel hypodermic tube (Fig.3)
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with an opening of 0.005" x 0.060" was used to measure 
the total pressure in the jet. A similar hypodermic 
tube of the same outer dimensions with slots on the 
narrow sides (Fig.3) was used for static pressure 
probing. These probes were mounted on a specially 
designed apparatus which moved the probes in the radial 
direction with an accuracy of + 0.001 inch. A multi
tube inclined manometer with an accuracy of + 0.01 inch 
of water was utilized in making all pressure measurements.
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CHAPTER IV

EXPERIMENTS

Throughout the experiment, the nozzle width, the 
jet velocity at the nozzle exit and the radius of the 
cylinder were kept constant. The size of the gap was 
the important variable. The flow was two dimensional 
because of the end plates. The Reynolds number for the

4.1 CALIBRATION

The flattened hypodermic tube used for measuring 
the total pressure was compared with a small Kiel probe 
under actual test conditions. The results indicated a 
very good agreement.

The specially designed static pressure tube was 
compared with a standard probe in a wind tunnel. A very 
good relationship was obtained as shown in Fig.6. These 
two flattened tubes were expected to give good results 
in the velocity and pressure gradients because of the 
narrow openings.

The velocity distribution across the width of the 
nozzle exit at different positions along the span of the 
nozzle were determined. No significant changes in these 
distributions were noted. The velocity distribution was

experiment was 6.4 x 104 ( pe = [ T ~ ^ ^
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found to be effectively uniform over 85% of the 0.25" 
width varying only + 1% from the central core velocity 
of 145 ft/sec.

Two dimensionality check was done by investigating 
the velocity profiles at stations 1.5" above the centre 
line, centre line and 1" below the centre line for no 
gap at 0 = 90°. All these velocity profiles overlapped 
(Fig. 7) and therefore the flow was considered to be two 
dimensional.

4.2 HYSTERESIS

For any gap / ,  when the curved surface was moved 
away from the jet (b increased), at a particular value 
of b 1 (say b'^) the jet sheet detached from the surface. 
But when the curved surface was brought back (b1 red
uced) the jet attached to the curved surface at a diff
erent value of b' (say b'A ). Because of the jet inertia, 

b'A < b'D . At different values of I  these "attached" and 
"detached" positions were noted. This information CFig.8) 
was also useful for determining the range of gap sizes 
for other experiments.

4.3 W A L L  P R E S S U R E  M E A S U R E M E N T S

The curved wall was installed between the two end 
plates and the leading edge was sealed against the nozzle 
exit. The static pressure distribution along the curved 
surface was measured with the static taps on the wall 
connected to an inclined tank.
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By means of the traversing mechanism the wall was 
moved away from the nozzle exit to get the desired values 
of I  and b 1.

The different gaps were obtained by keeping the 
leading edge of the curved wall:

1. on the approximate boundary of the free jet

for 1 = 3, 8 and 12.
2. on attached positions (see Fig. 8) for /=0,

1,3,6,9 and 12.

3. on a line defined by I = 8 with values of ,b' =
0.56, 2, 2.64 and 3.56.

The wall pressure distribution was measured for the 
above gap positions.

4.4 MEASUREMENT OF JET VELOCITY

The two-dimensional curved wall jet with and with
out gap was probed at four or more stations along the jet,
i.e., at different values of 9. The static and total 
pressure probes were placed at a distance of 0.5" above 
and below the centre line of the flow surface respectiv
ely. The radial distance between two consecutive prob
ing points was v a r i e d  from 0.003" to 0.1" d e p e n d i n g  upon 

the local jet thickness and the proximity to the wall.
For the jet probing experiments the different gaps

were obtained by keeping the leading edge of the curved 
wall on the approximate boundary of the free jet (see 
Fig.9) for /= 2, 4, 8 and 12.
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4.5 VISUALIZATION OF FLOW SEPARATION

A mixture of lamp black and kerosene was applied 
to the bottom end plate and to the curved surface of the 
wall (Fig.10) to determine the angular position of sep
aration. Both methods gave the values for ©sep. indep
endently and results had a reasonable agreement ( a 
difference of about three degrees).

In the region of the curved surface where the flow

was attached, the motion of lamp black particles were 
influenced by two factors, namely, the jet flow and the 
pull of gravity. In the region after the flow separation, 
the lamp black particles were not affected by the jet flow 
and hence the particle traces were vertical (Fig.11).
The location of the first vertical trace gave the posit
ion of the flow separation.

The values of ©sep. were determined for the curved 
wall jet with different gaps. In the first set of gaps, 
the leading edge was moved along the free jet boundary.
In the second set of gaps b 1 was changed while keeping 
J. constant. This was done for three different values 
of 1= 4, 8 and 12.
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CHAPTER V 

EXPERIMENTAL RESULTS

5.1 DATA REDUCTION

The fluid was treated as incompressible because 
the maximum jet velocity was only 145 ft/sec. From 
barometric pressure and room temperature, the density of 
air was determined. The experimental data was reduced 
with the help of an IBM 1620 computer. Input data were 
room temperature, barometric pressure, surface pressure 
tap locations and readings, radial positions and pressure 
readings from jet probing, Uo, ©, 1, b, Ro and t. The 
values of u, urn, 1m, y ,̂ . ,

/Z Urn *̂ {2.  ̂ t
Qa ~ , g ' , , "̂72. and the force acting on the
(PT-Pa)t
surface were obtained as output information.

5.2 PRESENTATION AND DISCUSSION OF RESULTS

5.2.1 HYSTERESIS

Figure 8 shows the "attached" and "detached" pos-
itions for different values of Z and the approximate free
jet boundary. It is seen that the difference between the
values of b 1 for "detached" and "attached" positions, m',

/
first decreases slowly and then rapidly as Z increases.
It is interesting to note that three lines in Fig. 8
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come close together as L is increased.
Further, it was observed during the experiments

/ /that for large values of / ( V ~ 16) the deflection of 
the jet by means of the curved surface was not very 
stable. This may be explained by the fact that the 
value of m 1 was small.

From the surface pressure measurements the values 
of the component of the force acting on the surface in 
the direction of the nozzle axis were calculated for 
different gaps. It appeared that this force component 
was maximum close to the attached line.

5.2.2 VELOCITY PROFILES

The non-dimensional velocity profiles at different 
stations along the curved wall jet without a gap are 
shown in Fig. 12. It is seen that the experimental 
results closely follow the theoretical velocity profile 
of a plane wall jet given by Glauert (Ref. 1). This 
agreement was also noted previously by Newman (Ref. 2) 
and Fekete (Ref. 5). However, in the present investig
ation it is observed that for the angles 9 = 30° and 
even for 60° the velocity profile is not settled and 
deviates from the Glauert's theoretical velocity profile 
for a plane wall jet. For 9 = 90° and 120° the exper
imental profiles agree very well with the theory. It 
is worth noting that the experimental non-dimensional 
velocity profile of a plane wall jet (Ref. 7) almost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



coincides with that of the curved wall jet for small 
values of © (0 = 30° as seen from Fig. 12). This might 
be because the effect of Coanda deflection is negligible 
for small values of © and therefore the dimensionless 
velocity profile for curved wall jet initially has a 
tendency to attain the plane wall jet velocity profile.
In the case of large © values when the effect of flow 
turning becomes appreciable the profile approaches the 
Glauerts theory for "plane wall" jet.

Plots in Fig. 13 show the non-dimensional velocity 
profiles at different stations along the curved wall jet 
with different gaps obtained by keeping the leading edge 
of the wall on the jet boundary. In the region close to 
the leading edge of the wall, the velocity profiles 
(Fig. 13) are not similar. This is because of the change 
in the initial condition of the jet caused by the gap 
size. It is clearly seen that the velocity profile 
settles down as the jet flows along the curved wall and 
ultimately becomes the same as that for no gap. Similar 
effect on velocity profiles was abserved by Tu (Ref. 7) 
in case of a plane wall jet.
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The non-dimensional velocity distribution in the 
outer layer of the curved wall jet with and without a 
gap could be expressed in the following way:

These plots are shown in Fig. 14. We observe that the 
outer profile for a curved wall jet with and without an 
initial gap is similar to one half of a free jet profile.

Dimensional velocity profiles at 9 = 30° for the 
gaps along the the jet boundary are shown in Fig. 15.
It is seen that the values of maximum velocity as well 
as the shape of the profile at a given © position changes 
with I .

The static pressure distributions in the jet for 
no gap are plotted in Fig. 16. These are in agreement 
with other available experimental results (Refs. 2 and 
3) .

5.2.3 JET GROWTH

The effect of an initial gap on the growth of the
jet flow over the curved wall is obtained from the plots

v vof -  ̂  vs. s' (Fig. 17). The value of ^ ^ i s  higher than
the value for the curved wall jet without a gap, the 
difference increasing with increasing gap size. However, 
for any given gap size, the difference decreases down
stream from the leading edge and finally tends towards 
a constant value, i.e., the rate of change o f w i t h  

s ’ equals the zero gap rate.

U (5.1)
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Figure 18 shows the growth of the outer layer of 
the jet. We see that the initial gap has practically 
no effect on the growth rate of the outer layer the 
curves in Fig. 18 are almost parallel. Further, the 
distance along the s’ axis between the growth lines is 
approximately equal to the difference in L values of the 
curves. In other words, these plots would collapse into 
one line if the distances along the flow were measured 
from the nozzle exit instead of the leading edge of the 
wall.

Tu (Ref. 7) in his investigation of the gap effect 
on a plane wall jet observed that the growth rate of the 
outer layer was influenced by the gap size. The diff
erence between plane and curved wall jets in this aspect 
is worth noting.

For large gaps ( I *  = 4, 8 and 12) the inner layer
thickness decreases rapidly in the beginning and then
increases as the jet flows along the surface (see Fig.
19). The rate of change of ym with s' for any given gap

t
tends towards the zero gap rate. The shift of the max
imum velocity point is due to the effect of the wall 
drawing the jet closer, which is caused by the diff
erence in shear stresses acting in the inner and outer 
layer. Fig. 19 clearly indicates that the region close 
to the leading edge of the wall is a settling region, 
where the jet changes from a free jet to a curved wall 
jet. Qualitatively stating, the length of this settling
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region depends on the size of the gap. It is also noted
that for a given gap size, the settling length required
is smaller in the case of curved wall jet than that of
plane wall jet.

Figure 20 gives the streamwise variation of jLF'/'lR0©
ywith for the gaps along the jet boundary (see“o

equation 2.9). Table I gives the constants of the 
present investigation and also the results of earlier 
investigations. It is seen that the effect of initial 
gap is large near the leading edge and diminishes as © 
increases.

5.2.4 MAXIMUM VELOCITY DECAY

The maximum velocity decay of curved wall jets 
with different gaps are shown in Fig. 21. It is seen 
that the rate of decay is initially less for gaps than 
for no gap but eventually the gap effect on the decay 
rate diminishes.

The decay plots of the type used by Newman and 
Fekete (Refs. 2 and 5) are given in Fig. 22. Agreement 
between Fekete's results and the present investigation 
is good.

5.2.5 SURFACE PRESSURE DISTRIBUTION

The surface pressure coefficient Cp measured on 
the cylinder is plotted against the angular position 9 
in Figure 23. After disregarding the irregular pressure

i34567
UNIVERSITY OF WINDSOR LIBRARY
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distribution near the leading edge of the wall (say 0 <
20°) it is noted that the pressure difference across the 
jet initially increases with the gap size because of the 
larger jet thickness. But after the jet flows through 
some angle, the pressure difference and hence Cp reduces 
more rapidly for larger gaps causing earlier separation. 
The same phenomenon is observed for the gaps along jet 
boundary, gaps along attached line and gaps perpendicualar 
to the axis of the nozzle.

Since the information obtained on separation point 
from the pressure distribution is only qualitative, the 
9sep. is determined from flow visualization studies.

5.2.6 SEPARATION

If the curved surface had been a full cylinder 
(©max. = 360°), then the separation would have occured 
at 240° for no gap (Ref. 2). But half cylindrical 
surface being probably more useful for practical app
lications, was selected. For a half cylinder without a 
gap, the separation would naturally take place close to 
the trailing edge of the surface, i.e., ©sep. =^180°. The 
decrease in ©sep. with gap size for gaps along the jet 
boundary and along the a t t a c h e d  line p l o t t e d  is shown in 

Fig. 24. It is seen that a gap appreciably reduces the 
©sep. Figure 25 gives the plots of ©sep. vs. b* for 
values of -^=4, 8 and 12. It is evident that ©sep. 
depends both on I  and b', larger the value of / and b',
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smaller the angle 9sep.
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CHAPTER VI 

CONCLUSIONS

6.1 CURVED WALL JET WITHOUT A GAP

1. Velocity profiles are similar except near the 
leading and trailing edges.

2. Non-Dimensional velocity profile agrees well 
with Glauert’s theoretical plane wall jet profile for 
**= 1.2.

3. The jet growth could be described by the 
following equation:

*7 * = c + c k
R0e 0

where C = 0.11 and k = 1.67.
4. For a half cylinder, ©sep. is approximately 

equal to 180°.
5. Measured surface pressure coefficient Cp is 

less than the theoretical value of 2 and decreases to 
zero near the trailing edge.

6.2 CURVED WALL JET WITH A GAP

1. The curved wall jet flow in a region close to 
the leading edge of the wall is affected by the gaps.
In this region velocity profiles are not similar and the 
rates of the jet growth and the maximum velocity decay
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change from point to point along the length of the jet 
and eventually tend towards the no gap rates.

2. The region affected by the gap is described 
as the settling region where the type of flow changes 
from a free jet to a wall jet.

3. The settling length increases with the gap 
size. For a given gap size, the settling length of a 
curved wall jet is less than that of the plane wall jet.

4. The flow in the outer layer of the curved wall 
jet is not affected by a gap.

a) The outer layer velocity profile is sim
ilar to that of a free jet profile.

b) The outer layer growth rate is not affected 
by an initial gap.

5. The pressure difference across the jet initially 
increases with the gap size. However, after the jet flows 
through some angle, the pressure difference and hence Cp 
reduces more rapidly for larger gaps causing earlier sep
aration.

6. The value of angular position of separation 
decreases with an increase in gap size.

7. There is hysteresis phenomenon associated with
./gaps. As the value of I increases, the "attached" line, 

"detached" line and jet boundary come closer together 
and the jet deflection by means of the curved surface 
becomes less stable.
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