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ABSTRACT

Correlation analysis of a second order phase locked loop is
presented. Under stable conditions amplitudes of the fundamental
and the third harmonic component of phase, ¢ (radians) are derived
for different sinusoidal frequency deviations for which continuous
locking is maintained. Verification of these results with theore-

tical predictions by Dr. S.N. Kalra and P.H. Alexander is carried out.

~iii-
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CHAPTER I.

INTRODUCTION

Correlation functions are related in a quite natural way to time
functions which carry information. If a time function carries infor-
mation and the flow of information is uninterrupted, it is essential
that the function be of such a nature that its variations from instant
to instant are at least incompletely predictable as far as the receiver

1s concerned.

One assumption we make is that the time functions are physically
of considerable duration so that theoretically they extend from the
infinite past to the infinite future. Another assumption is that the
statistical properties of these functions are invariant under a shift
in the time o?igin, i.e. the functions are stationary in time. Messages
and noise are regarded as stationary random processes and are described

and characterised in terms of statistics and probability.

AUTOCORRELATION

For a large number of physical applications, the most useful
characteristics of a stationary random process is its autocorrelation
function. If fl(t) represents a member function of an ensemble,
which represents the random process, the autocorrelation function is

defined as

91,(

T -

- 1 4T
o= P Sp ) £ (0) £(c+ D (1)
~-T
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CROSSCORRELATION

The crosscorrelation between two functions fl(t) and fz(t)

is defined as

“Foo
11 1 :
@ ,(T) = T«imm 77 £(0)E, (£ + 1) dt (2)

The crosscorrelation function for two incoherent functions, for

example speech and resistor noise, is a constant or zero.

PERIODIC FUNCTIONS

For periodic functions we need not consider the ensemble average
and the duration over which the function is considered need be only
one complete cycle of the functions. Also we know from geometric con-
siderations that ®11(T) = ¢ll(-T) [5], hence for periodic functions

1 T

.
¢,,(D =—T-; fo £.(t) £,(c+ 1) dt (3)

and for periodic functions fl(t)’ fz(t) of the same fundamental

frequency crosscorrelation is defined as

1 1
By,(T) = EI fo £,(£) £,(t + T) dt (&)

where Tl is the complete period of fl<t) and fZ(t)'
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Phase Locked Oscillator

A phase locked oscillator is a tuneable electronic power source
incorporated into a feedback loop. One such oscillator has been
developed at the University of Windsor and is used to detect a FM
signal in the presence of an appreciable amount of noise power. Phase
locking is accomplished by sensing the differenée in phase between the
signal and the variable frequency local oscillator output and this
difference is used to synchronize the controlled phase with the signal
phase. A measure of the phase difference is dbtained by means of a
phase comparator or phase discriminator which produces an output voltage

(error function) dependent on the phase difference between the inputs.

It is the purpose of this paper to present correlation data of
signal and error functions using the correlation computer. The data
is used to analyse the non~-linear characteristics of the phase locked

oscillator.
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CHAPTER I7I.

CORRELATOR COMPUTER

The correlator computer performs three operations, namely dis-
placement, multiplication and integration. TFig. 2 1is a block diagram
of the correlator computer. It consists of a lumped constant delay
line with a delay range of 0-400 microseconds in one microsecond steps.
This pertains to displacement. Balanced modulators (Fig. 3) in con-
junction with the amplifiers (Fig.4) are used in the translation of
the inforﬁation from the sighal to the intermediate frequency necessary
for multiplier circuit input. The multiplier (Fig. 5) makes use of
the properties of 6SA7 pentagrid converter as described by Synder (1l
and his colleagues. The integrator and filter unit (Fig. 5) performs
integration and eliminates undesired signal in the output. The out-

put of this unit is compared with a d.c. voltage and the desired cor-

relation function can be computed for different delay times.

BALANCED MODULATORS

A normal AM output has.the form
Fc(t) = R(1 + mf(t)) cos wct
where wc is the carrier frequency and £(t) is the modulating signal.

The corresponding mathematical expression for a DSB output is

Fd(t) = Kf(t) cos wct
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The DSB system differes from mormal AM simply by suppressing
the carrier term. This means that with no modulating signal applied

the output should be zero.

Oné possible scheme for suppressing or balancing out the carrier
term is shown in Fig. 3. This circuit uses 6SA7 pentodes. The
carrier is applied in phase to grid 1 while the modulating signal is

applied in opposite phase to grid 3 of the 6SA7 pentodes.

The two currents il and 12 may be written in the form

[N
I}

K(1 + mf(t)) cos wct

and . :
K(1 - mf(t)) cos wct

|
]

(The other terms generated in the non-linear process are assumed

filtered out).

The effective output current is

i, =i, -1, = Rf(t) cos wct

Notice that the carrier has been suppressed in the output.

MULTIPLIER

The application of the multigrid vacuum tube in multipliers and

(6]

squarers has been described in the literature . However, we have
(1]

employed a multigrid modulator as described by Synder and 0'Meara

The operation is dependent on linear characteristic curves, as a
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square law device must be inherently non-linear in its operation.
It is basically a four quadrant device in the sense that algebraic
sign information is preserved in the output. It is a phasor multi-

plier in that, given two inputs expressible by e and e,

e = A, eJ( ot + 91)
1 i

jlot + 92)
g =48y @

The output is ideally expressible as e,

e = KA A ej(zmt + 91 + 92) (5)
o L2

It is seen that the phase information is preserved in the output.

INTEGRATOR AND FILTER

This unit serves two purposes.

1. The undesired frequencies i.e. frequencies involving carrier
frequency, are eliminated. Hence we require a low pass filter.

2. The output of the multiplier is of the form fl(t) fz(t) cos2 wﬁt
where Wy is the modulating angular frequency. The second opera-

tion that the unit performs is that of an integrator.

Integrating action can be understood from Fig. 1.

R
AVAVAVAVA V. A
i

o <
11
i1
0
&

Fig. 1.
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VO(S) 1/cs 1
H(s) - =

Vi(s) R+ 1/cs Res + 1

Hence for R >> 1l/cs, the circuit acts as an integrator.

A simpie RC n network as in Fig. 5 performs both these operations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INd1ng
TUIING -
H3I441q

Alddns
) -q

e

&F17/4
any

Y7174 1170}

I T4 WY

X1

dAINVTYY

-

4214174 Y

REAI,

aDNYTYG

|

12

70Q0L

. \NQ\)\,»wq m
Mm:QM\Qu

"YALNdROD YOLVTHIY0D THLI Y04 WVIDVIA A0J'1d ' Told

—’ \:.\\CNQ\M
— .Q\<\.N<

F_w

aNIT

AVIIa

iy

NI &
Youyy3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



JINY 0L

% po—

<

]

a;:\mMJ

SYAXIW TADNVIVY

308

VHF

‘¢ 'oI4d

VIWT

_

— ANV

: \N\JV\\

-

VYLE = V¥ik

Muu.. / 1ysp

L

AYAY\A%

WL §

olapy 1

\i.l? -

me!l..!s DO ——

/e

TYYYTY\
¢

b

N

\( _I ?..:i,../rsf_ -

- N3
“dyu?

VYwT

Pi10-Q

SYAXTRH TUONVIVd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-']_Q-

< 7O MULTIP.
v St
o

L

<
U,
{
sT— >
S -
<
N AA,\.
< R
3
MAVAYAV AN 1
Ms$i R
<
X
: $
S
o1
I e
et
oy
|
o =, &
) 3L 2
T .?.'|I
W | <
5 la; : .
r:‘ I|| 8
[ l. 9
e . ——ee A NNNS el
% e VLY .
w3

CED
Mixer

FROM
BALAN-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-11-

Y ILIWOINVA

SLT0A 057

.mm ddL1I4 NV YEITdILIAN ¢ "91d -
— e

or2olel
P T P T 93 SRR
700 10-0 01 x V V

Alddns| s

2'a
P

5000 inding

VY ohL

[

Tl.l\shtao
. - Y8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III.

Application of Generalized Harmonic Analysis to Phase Locked Oscillator

Consider the loop initially in lock with zero phase and zero frequency
error as measured at the phase comparator output. If the frequency of
the input signal is increased, the increase in frequency at the input
is detected as an increase in phase difference between the IF signal
and IF reference. The error function is a voltage and its magnitude

depends upon the deviation from the reference frequency.

A meaningful correlation analysis of the phase locked loop involves
Fourier representation of the input namely the modulating and erroc

signais. We consider the expansions

a o0
£.(t) = —19 + 2 (a cos n t + b sin n t) (6)
1 2 In s ®1° 7 "1n ; w1
n=1
420 “
£.(t) = —2 .
2( ) 5 + nil (a2 cos n wlt ! bln sin n wlt) (7)

Another representation of these functions using elementary Fourier

analysis is

= . £
fi(t) = 7 Fl(n) eI (8)
n=w
n=co indq €
£,(6) = I Fn(n) eI (9
n=co
where 1
Fln -2 (a n 4 bln) (10)
~12-
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1
- = 11
Fon =32 (3 iby) (11)
and
) +T1/2 - jow; & at el
Fi =-EI £.(t) e (12)
“Ty/2
+T
1/2 . :
1 -4 €
Fon = Eq-[ £,(e)e LT dt (13)
T1/2
where n =0, + 1, +2 ....
we have theref'ore the cfosscorrelation function as
L +T1/2 £f.(t) £, (t+T) dt
912D =7 & B
-Tyy2
T
= . . +71/2
= e anlT 1 joo t
= I F,(n)e =1 £ (r)ed™1" dt
.y T ), 1
-"1/2

where Fl(n) and Fz(n) are given by (10) and (1l), if for either

and f2(t), we let

R ~ (15)

n . n n _
-1 bn (16)

o =tan " (-=")
n

C . .

= I joe :
Fn — en . (17)
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We can show © =9 _ by first proving a =a_ and b ==-Db ,
-n n -n n -n n

Making use of these details in reduction of (14) to the required

form, we have

_ ¢, C j(npy + 824 = ©O1p)
62(D = 2 In_2n_ e " " (18)
n2 00
or a a
o Z%0%0 1 0®
@,,(T) = A + 32 nil Cin Cgn 08 (ny T+ 6, - 6, ))
- (19)

Two comments concerning this result would be useful for our purpose.
First, the constant and harmonic coefficients in the cross-correlation
function appear as products of the corresponding quantities in the
given functions fl(t) and fz(t). Consequently, if the constant or any
harmonic is absent in either fl(t) or fz(t), the constant term of the
corresponding harmonic term will be absent in the cross-correlation
functions. Second a notable difference between autocorrelation and
cross-correlation is that, whereas autocorrelation discards all phase
information in the given function, cross-correlation retains all the
phase differences of the harmonics which are present in both periodic

functions.

An expression for the autocorrelation function in terms of the
coefficients of the Fourier expansion of a given periodic function

follows from (19) and is given by
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2
a 00
10 1 2 2
T) = _ T 20
¢11( ) 7 + 7 z (aln + b1n Jcos nwy (20)
n=1
(o]
= ? Cln cos nolT
n=0
2 2 2
where C 2 alo and C 2 = aln i bln
et 10 4 in 2

Correlation Analysis

The general block diagram of a phase locked looped as considered by

S.N. Kalra and P.H. Alexander [4] is reproduced below,

Cysin s Punse eq = Ko s FILTER
» COMPARATOR B K, F(D)
< Veo <
c‘,cos[u‘r;x.x,x‘eb(e/;m” Ko K, F(D) SiNg

Fig. 6. BLOCK DIAGRAM OF THE PHASE LOCKED LOOP
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A simple case of a sinusoidally varying reference or input fre-

quency with an integrator in the loop is considered. An R-C loop

filter which has the transfer function of the type is used,
hence a second order system is obtained.
The following nomenclature is used
NOMENCLATURE
A1 = Amplitude of the fundamental component of phase (radians)
A3 = Amplitude of the third harmonic component of'phase (radians)
C1 = Reference signal amplitude (volts)
¢, =. VCO output amplitude
¥ = Phase comparator output (errér signal) in volts
F(p) = Filter transfer function
Ky = KpC C (volts/rad)
Kl‘ = Filter D.C. Gain
K, = VCO gain (rad./volt)
K = Loop gain (rad./sec)
P = Laplace operator
¢c =  VCO phase
¢s = Reference signal phase
@ = Phase difference between reference signal and VCO
W = VCO center frequency
o, = Modulation frequency
wg = Reference signal frequency

(4]

The system equation for Fig., 5 may be written as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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c,C KoK K, F(p)

K, sin = ;. - - —_ :
@ sin ¢S(t) w,t > sin ¢

e

(4]

It has been shown by S.N. Kalra and P.H. Alexander that the
solution for the phase ¢ of the error signal is given by
@(t) = A1 cos oy t - A, cos 3wht (21)

A very simplified case of interest under conditions when A3"v 0
offers a simple solution for the spectrum of the error signal and is

given by equation (22) below.

e, = ZKO[Jl(Al)cos wmt-J3(A3)cos 3mmt+J5(A1)cos 5mmt (22)

d

Only odd harmonics are contained in equation (22). The correlation

of error and modulating signals is of interest,

We note that if the fundamental frequency of our modulating signal
and the error signal is the same, then the cross-correlation contains

only the fundamental terms, the other terms being absent,

The amplitudes of the harmonic components Aj, A3, Az etc. are a

function of deviation from the centre frequency o6 voltage controlled

oscillator and tend to increase in amplitude as the deviation increases.

+T

lim 1

06D = ran 53 5 £,(t) £,(t + T) dt (23)
-T
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Since the system is non-linear, we write

fo(t + T) = linear terms + non-linear terms

In the measured cross-correlation the non-linear terms do not
appear, but the amplitude of the output function is dependent upon

the deviation from the center frequency (AWwW), hence
6. (T) = lim 1 +T oo
10D = 15w 37 £,(t)dt A(Aw)g h() £, (6+T-V)dt  (24)
..T - o0
where h(y) 1is the unit impulse response.

We have introduced the superposition integral for fo(t + T) above,

By inverting the order of integration in (24) above, we have

+oo +T
. 1i
@, (T =A(Aw)£ h(/)d ;"w %E* S £, (), (£+T-V )dt (25)
oo - ,
But +T
9. ,(T-V) = tim 1 £ £.(t+T-2 )d 26
11 T-+w 27 1 (0, ( )de (26)
-T
“+oo , ]
e Bo(D) = AGW )S h@) @, (T -v)dY (27)

- oo

We have shown thét the input-output cross-correlation of our system
is the convolution of the unit impulse response h(t) and the input
autocorrelation. Its value changeé with the change in deviation from
centervfrequency. When we take into consideration the effect of the

(3]

noise, the problem becomes very complex . A simplified approach is
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presented below.
Phase ¢ of the error signal is given by equation (21)

g(t) = A1 cos o t - A3 cos 3(Dmt .

The error signal can be approximated by the first two terms of

the sine series, i.e.,

ed = KO sin ¢

3

~ . @
K @ 37

This is justified due to the limitation that the phase difference
between the reference signal and the VCO signals must be less than
/2 radians. Experimentally this is a good approximation and creates

no problems.

Hence
= K. (A o-A 30) - EQ (A, cos ©-A,cos 3(-))3 (28)
ey = Ko(A, cos 3 €OS 5 L cos 3
where © = ot
3 1
cos O = A (3cos 8 + cos 38)
3 1 ‘ ‘
cos 30 = A (3cos 38 + cos 99)
c0529 cos 30 = 225—29 + % cos O + cos 50 (29)
.2 cos O cos 56 cos 76
cos © cos 30 = ) + L + %
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using.the relations above it follows that

oA AN
sin ¢ = cos 8 Ay - =+t - ’ ]
28 R |
+ cos 30 [ - Ay - ol A ] (30)
AT Ay AAy
+ cos 50 [——5——— - —=]
8
AL
+ cos 79[ - 3 ]+ 54 Cos 96

If the modulating signal is given by f2 = A cos (gt + ©), then the

error signal and modulating signal cress-correlation is

3 2 2
@, (T) = 1ax A, - 1 + %1% - fj;ﬁé— cos(w_T - ©) 31)
12 =2 0 1 8 8 Z o - (

where only the terms of fundamental frequency contribute.

The amplitude is given by the product ofqthe amplitude of the
modulating signal and one half the amplitude of the error voltage. Note
éhat we have not considered the phase of the error signal. 1In general
the phase differeqce between the médulating signal and the error is 1w -

radians.

The expression for the autocorrelation of error functions is

given by
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B ] . 2
i (a1n + bln)cos By mT (32)

where the coefficients of the error signal are given by (30), S.N. Kalra

and P.H. Alexander have calculated the'values of Al’ A3, A5 etc. From
theirkpredicted valués a good approximation of the autocorrelation function

is defived below

a9 = 0 3 )
a.. = A, - A + Ay Ay ) Ay Ay
11 1 8 8 4
a3 A A% A
a —.pa - L o, 3 173
13 3 24 8 4

o e ﬁsing (32) the autocorrelation is given by (33)

1 Ai Ai Ay Ay A§ 2
¢11(T) =§[ Al - 8 + 8 - A ] cos wT
' (33)
. 3 3 2
+ 1 t_ A - Ay + A3 _ Ay Ay ] cos 3w T
2 3 24 8 4
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CHAPTER 1IV.

RELATED DATA

S.N. Kalra and P.H. Alexander solved the non-linear loop equation
by reducing it to 5uffing's equation. Under conditions that the phase
difference between the reference signal and the VCO signal must be
less than /2 radians, they derived the value of the amplitudes of
the fundamental and the third harmonic component of phase, @(radians).

Their theoretical values are listed below under specified conditions.

Modulating frequency = 5KC/s

SIGNAL POWER FREQUENCY | AMPLITUDE AMPLITUDE |

65 | 8 . 5.0 | 1.3247 , 0.00354 g

i . L0OP GAIN | |
NOISE POWER 3 ¢ DEVIATION Al ‘ A3 j

| I ! - s . | s

db | KC/e : KC/s ' radians radians .

40 : 16 2.0 0.8955 . 0.00219 3

40 : 16 3.0 1.21157 | 0.00542

40 | 16 ; 4.0 . 1.4657 | 0.0096 {

40 5 16 5.0 1.6775 | 0.0155 !

65 E 8 2.0 L 0.5718 0.00028

: 65 | 8 i 3.0 ' 0.8401 . 0.0009 J

Results of correlation measurements

B (a) A phase locked loop is basically very unstable for high frequency

deviation and low loop gain. In general when the .requency deviation

is larger than modulating frequency the lock becomes very unstable.

PP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-23-

(b) Since a phase locked loop is inherently a non-linear device,
correlation analysis of noise is very complex. This work is, there-

fore, restricted to the case of high signal to noise ratio.

(c) Due to the fact that we employ a lumped constant delay line with
a delay range of 0 to 400 microseconds in one microsecond step, we are
restricted in the range of practical modulation frequencies. Data is

presented at 5KC only.

(d) Experimentally the output of the filter for different delay times
was measured. The autocorrelation data in arbitrary units has been

normalized and Fourier series coefficients found in order to cowmpare

with theoretical results.
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TABLE I

Autocorrelation of Error Signal

Observed output data of error signal in arbitrary units

]

Modulation frequency f 5KC/s

Loop gain K = 16KC/s
S/N Signal Power/Noise Power = 40db

Frequency deviation :4 £

Differential output of filter in arbitrary units:a E

Delay Af = 2kc/s | Af = 3Kc/s As - 4RC/s bf = 5KC/s
Hsecs. AE (a.u)‘ AE (a.u) O E (a.u) AE (a.u)
0 » 1.8 2.4 1.8 1.2
20 1.1 1.8 1.2 0.7
T -1.0 -0.6 -0.6 -1.2
60 -3.4 -3.4 -2.8 ‘ -3.3
80 4.6 5.8 | =407 46
100 -5.0 ~6.5 -5.6 -4.8
120 -4.,2 ~5.6 -4.8 -3.4
140 -2.5 -3.2 -2.85 -.24
160 -0.6 -0.5 -0.7 -1.0
180 1.0 1.6 1.1 0.4
200 1.8 2.4 1.8 1.2
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TABLE 1II

Autocorrelation of Error Signal

Observed output data of error signal in arbitrary units

Modulation frequency fm = 5KC

8KC/s

Loop gain K =
Signal to noise ratio: S/N = 65db
Delay Diff.Output of Diff.Output of Diff.Output of
filter (arb.units) filter (arb.units) filter (arb.units)
| secs. Freq.Dev. = 2KC/s Freq.Dev. = 3KC/s Freq.Dev. = S5KC/s
0 1.0 | 1.0 1.0
20 6.6363 10.5128 0.5833
40 -0.2727 -0.5128 -1.0
60 -1.4090 -1.6666 -2.75
80 -2.409 -2.6666 -3.8333
100 -2.7727 -2.9743 -4.0
120 -2.3636 -2.6666 -2.8333
140 -1.3636 -1.6666 -2.0
160 -0.2727 -0.4615 -1.16666
180 0.6363 0.6486 <0.3333
200 1.0 1.0 1.0

1681290
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TABLE III1

Modulation frequency £ = 5KC/s

Loop gain

Signal to Noise ratio

K = 16KC/s

Frequency deviation : & f

= 40db

Crosscorrelation of Error and Modulation Signals

Arbitrary units: (a.u)
Delay | Diff.OQutput of Diff.Output of | Diff.Qutput of| Diff.Output
K secs. filter (a.u) filter (a.u) filter (a.u) filter (a.u)
af = 2KC/s sf =3KC/s sf = 4KC/s af = 5KC/s
0 -5.9 . =5.8 -6.2 -6.6
33 -3.2 -3.2 -3.2 -3.2
66 0.0 -0.1 0.8 .1.0
100 0.8 1.2 1.4 1.6
133 -2.0 -1.8 -1.8 -1.8
166 =544 -5.2 -5.6 -5.8
200 -5.9 -5.8 -6.2 -6.6
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TABLE IV

Crosscorrelation of Error and Modulation Signals

Modulation frequeﬁcy £ = 5KC/s
Loop gain ' K = 8KC/s
Frequeﬁcy deviation: Af
Arbitrary units : (a.,u)
Delay Diff.Qutput of Diff.Output of Diff.Qutput of
filter (a.u) filter (a.u) filter (a.u)
| secs. af = 2KC/s of = 3KC/s A f = 5KC/s
0 . ,-2.8 -2.8 -2.6
33 | -l.2 -9.8 -0.8
66 +1.2 ]" +2.2 - ‘ +2.4
100 +1.8 +3.0 | +1.4
133 -2.0 -1.45 -1.6
200 -2.8 -2.8 -2,6
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Fourier series coefficients.

Tables V and VI give the Fourier series coefficients determined

from data in Tables I and II respectively.

written for this purpose specifically. The

{73

a standard IMB program .

A computer program was

results were confirmed using

TABLE V
Modulation frequency £ = 5KC/s
Loop gain K = 16KC/s
Fourier - Frequency Frequency Frequency Frequency
Series Co-| Deviation Deviation Deviation Deviation
- efficients | &f = 2KC/s of = 3KC/s Af = 4KC/s Af = 5KC/s
a, -3.98 -3.96 -3.59 -3.76
a, 3.387 4,5196 3.658 2.864
-1 -2 -2 -1
a, 1.54 x 10 -6.854 x 10 -8.04 x 10 1.965 x 10
a, 20,4116 x 1073 -2.46 x 1072 4.687 x 1072 | 1.3599 x 107
a, -1.944 x 1072 | -1.459 x 107 -2.454 x 1072 | -1.165 x 10"
a, 4.0002 x 107%-7.999 x 1072 -2.454 x 1072 | 1.86 x 107°
b, -2.8254 x 10"}|-5.70616 x 107% | 5.204 x 1071 | 4.146 x 107"
-4 -2 - -3 -1
b, 1.538 x 10 8.784 x 10 555877 x 10 4.146 x 10
by 9.576 x 1072 | 3.5267 x 107> | 2.04 x 102 | -8.89 x 1072
b, -3.632 x 1072 | 2.8 x 1072 -9.51 x 107> | -3.289 x 1072
-8 ' -7 -8 -8
by -6.239 x 10 = |-1.047 x 10 -7.319 x 10 ~4.799 x 10
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TABLE VI

Fourier Series Coefficients

‘Modulation frequency ~f_ = 5KC/s
Loop gain K = 8KC/s
Fourier Frequency Frequency Frequency
Series Co- Deviation Deviation Deviation
efficients Af = 2KC/s of = 3KC/s Af = 5KC/s
a, -1.718 -2.0907 -3.266
a 1.87 1.9914 2.278
' -2 -2 -1
a, -3.398 x 10 4.4276 x 10 1.225 x 10
a, 2.055 x 102 1.179 x 10”2 1.545 x 10° 1}
a, 6.708 x 107> 1.3933 x 10”2 1.0758 x 102
a -0.058 x 1073 -3.2278 x 102 1.3335 x 102
b, -1.397 x 10”2 2.5721 x 1072 -1.2077 x 107}
b, 1.397 x 1072 -3.1861 x 1072 4.72311 x 107"
b 3,298 x 1073 1.98 x 10”2 5.2719 x 10”2
3 .
b, -3.298 x 1073 -6.206 x 1072 5.0962 x 10”2
b, -4.2185 x 10°° -9.957 x 1078 8.0047 x 1072
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CHAPTER V

COMPARISON OF RESULTS

We have shown earlier that correlation results are given by
equations{31) an% (33), theoretically Al has been found to be roughly
100 times greater than A3. We follow the scheme cnunciated below

to compare experimental autocorrelation results with those obtained

on the basis of theoretical findings.

The autocorrelation obtained in equation (33) is reproduced for

convenience.
1 2 1 2
@ll(T) = (coeff 1)° cos T + 5 (coeff 3)7 cos 3pT + ...
A A A2
A A
where coeff 1= A, - 1 + 13 - 13
1 8 8 4
3 A3 A2 A
coeff 3= A, - _L & 3 - 13
3 A 8 A
(coeff 1)° (coeff 3)°
. _ N coeff 3) a
Let B, — , By = —5 (34)

Bl and 63 obtained from theoretical results are listed in Table VIII.
Experimental results must be normalized for a fruitful comparison. The

normalization process is indicated below.

5
(t) = 5 + 7 aln cos 1wt bln sin nopt

-30-
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a 5
g(t) = f(t) - =2 - z a cos npt + b sin oyt
: 2 In In
n=1
5
0y = B8 - 5 .
m = = . .
g(0) n=1 P1n cos nopt + q, sin npt (35)

Example
The results in Table I for frequency deviation of 2KC/s are used

to explain the normalization process above.

TABLE VII

Normalized Fourier Series Coefficients

Frequency deviation = 2KC/s
Loop gain K = 16KC/s
2o - -1.74 .
2
£(t) g(t) = s m(t) = B(E) | Fourier Normglized..
f£(t) - 2o g(0) Series Co- Fourier Series
2 efficients Coefficients
1.8 3.54 1.0 a; = ~3.38 P, = ‘0.055
1.1 2.84 0.803 a, = 0.159 P, = 0.045
-1.0- -0.74 ~0.262 ag = -0.0094 Py = -0.0026
-354% -1.66 ~-0.469 a, = -0.0194 Py = -0.00548
-4.6 -2.80 --0.79 ag = 0.004 Py = 0.00113
-5.0 -3.26 -0.92 b1 = ~(0.2825 9; = -0.0807
-4.2 -2.46 -0.695 b2 = -9.153 q, = -0.045
=2.5 -0.76 -0.215 b3 = -0,0957 95 = -0.0271
-0.6 1.14 +0.322 b4 = -0.0363 q, = -0.01
1.0 2.74 +0.775 b5 = 0.0000 95 = 0. 0000
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Following the normalization scheme mentioned above, the results

from our.data and theoretical values obtained earlier are listed -

P
below in Tables VIII (a) and (b). We observe that l 3/p1 l is in

general of the order of '63/51 . We do not expect Bl and \pll and

B, and \p3\ to be comparable, since these have been obtained in an’

TABLE VIII (a)

Loop gain K = 16KC/s
S/N = 404db p
Frequency THEORETICAL RESULTS EXPERIMENTAL RESULTS
Deviation - _ . -
KC/S‘, Bl . 33 53/B lpl‘ {P3\ \ p3/p1\
o arb.units| arb.units 1 arb.unit’s arb.units
2 0.32 0.5 E-03|1.56 E-03] 0.955 2.06 E-03 {2.78 E-Q3
3 0.5 . 0.27 E-02]|0.54 E-02{ 1.02 0.97 E-02 {0.96 E-02
4 0.57 . 0.9 E-02{1.58 E-02{ 1.03 1.42 £E-02 {1.4 E-02
5 0.59 0.2 E-01{3.4 E-02] 1.05 0.53 E-01 |5.0 E-02
14
TABLE VIII (b)
Loop gain K = 8KC/s
' $/N = 65db
Frequency THEORETICAL RESULTS EXPERIMENTAL RESULTS
Deviation
KC/s
P1 P3 P3/p, |, EN lP3/ (
arb.units arb.units arb.units arb.unitg Py
2 0.15 0.32 E-04 2._13x].0“4 0.99 1.07 E-03(1.098 E-03
3 0.293 3.225xE-04 1.1 E-03 0.97 5.75 E-03{5.92 E-03
5 0.555 4.9 E-02 |9.15 E-02| 0.86 5.87 E-02(6.78 E-02
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N

altogether different manner, only the ratios of these can be compared.
Note that the normalization process in no way effects these ratios.

A certain amount of divergence in results is expected and occurs because

of the following reasons.

(a) The divergence is higher for lower loop gain due to greater in-

stability of the system.

(b) The experimental correlation results are observed to two decimal

places due to practical limitations. This produces an error in
the determination of Fourier coefficients and the error is more

relevant for higher Fourier coefficients which are small in our
case. In order to clarify this point further, consider the problem

of fitting a finite trigonometric sum to a set of observed values
(Xi’yi)' Let the set of observed values

(xo’yo)’ (xliyl) L (in'l’yzn'l)’ (xzn’yZn)’ L

be such that the values of y start repeating with Yon (i.e. Yon = yo).

Assume x, are equally spaced and X, = 0 and that Xy, = 25,

The trigonometric polynomial

n-1 n
y = Po + 3 Pk cos kx + 2 Qk sin kx (36)
k=1 k=1
Contains the 2n unknown constants
Po, Pl’P2’ cee Pn-l’ 91, 62, e s ,ren s

which can be determinéd so that equation (36) will pass through the

2n given points (Xi’yi) by solving the 2n simultaneous equations

n~1 n
y; = Po + kil Pk cos k xi‘+ kil Gk sin k X (37)

i=20,1,..., 2n~-1
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(8]

It can be shown that Fourier coefficients are given by

2n-~1 i3
np. = y. cos =& j=1,2,...,n-1 (38)
J i=0 i n -
and
2n-1
ne, = I vy, sin Llix j=12,...,n-1 (39)
J i= 1 n

From equation (38) and (39), we observe that when Pj~and ej are

small, an accurate determination of these coefficients depends heavily
on the degree of accuracy to which y; are known. A rough estimate

of error can be obtained by introducing a random error function €

such that
2n-1

P,+5P,) = I ijn . _ | i
,n( J J) 1=0 (Yi + €;) cos —ﬁ— i=1,2,...,0-1 (40)

) 2n-1 ’
n(@, +56,) = 3 g LT 5 .. .snm
( i J) i=0(y1 + ei) sin == ] 1,2, ,n-1 (41)

where - 6Pj and aej are the error Fourier coefficients. Since in
our case 2n = 10 and we are interested in 3rd Fourier coefficient,

the maximum error in terms of average error € is given by

o

J

It
vl
i ™M O

. cos Lix av, 1 €
. i 5 5

i=0

e ~ 0.005 (Follows from the output accuracy considerations)

hence &P, 0,001 ~ 10-3 T

3

This puts an upper limit to the degree to which the coefficients

can be co?pared.
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The crosscorrelation results are used to obtain a rough estimate of the
amplitude of the fundamental and the third harmonic component of phase.

@ (radians). We assume the following

(a) Noise has insignificant effect on the differential output

(b) the differential output of the filter is directly proportional to

the crosscorrelation when the two inputs are the modulation and
the error signals.

These assumptions are true under balanced conditions, i.e. when
signal to noise ratio is high and on interchanging the two inputs the

output shows no appreciablq change.

The autocorrelation of a sinusiodal signal is given by

A2
¢11(T) = 'R cos wT _ (42)

where A is the amplitude of frequency @y and T is the delay.

If f =5KC/s and T = 100 AL secs, then it follows that

2
¢ii(0) - ¢ii(100) = GA . (43)

where G is a constant of proportionality.,

With a known signal amplitude we have observed autocorrelation

results of a 5KC/s sinusoid and found G "to be 25,

From equation (31) the crosscorrelation results follow.

0, (1) = 1/2 &K I coeff 1' cos T (44)
‘ . 3 2 2
where coeff 1 =A, - Al 4 Br By AL A
8 8 4
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A ¢ie(0) - ¢ie(100) = GA (coeff 1) (45)

T

x when T = 100 /% secs.

The awmplitude A has been maintained constant and is 0.3, Ko
was of order unit, hence it does not appear in (45). From Tables III
and IV, we can easily obtain coeff 1 as follows.
¢, (0 _ 9, (100)

(G x A) -

coeff 1

9,0 _ 8, (100)

7.5

Considering A1 >> A3, a rough estimate of A, is obtained from experi-

1
mentally obtained coeff 1. Since
e

coeff 1rv A, - L
1 8

we can easily find A,. Results appear in Table IX.

1

TABLE IX .

Comparison of Results

Loop '| Frequency THEORETICAL EXPERIMENTAL

gain | Deviation [™

K w Ay a, coeff 1 A coeff 1

KC/s KC/s rad rad rad

16 2 0.8955 0.00219 0.893 0.89 0.8058
16 3 1.21157 0.00542 0.9333{ 1.2 0.99024
16 4 1.4657 0.00960 | 0.986 1.45 1.07484
16 5 1.67767 0.0144 1.095 1.62 | 1.09241
8 2 0.5718 0.00028 | 0.619 0.55 0.54844

3 0.84011 0.0009 0.772 | 0.845 0.76607

8 5 1.3247 0.000354 | 0.8 } 1.3 1.03489
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A rough estimate of A3 can be obtained by using the values

of coeff 1 determined experimentally and values of A1 ‘obtained from

. theory. We know

N
W

A
coeff 11 V] Al - 8 )

By choosing trial values we can easily obtain a rough estimate

of A3. Results using this technique appear in Table X.

TABLE X

Comparison of Results

Loop Frequency THEORETICAL EXPERIMENTAL
Gain Deviation
K A A3 ‘ A coeff 1
KC/S KC/S rac]i rad rad3
16 2 0.8955 | 0.00219 0.0021 0.8059
16 3 1.21157| 0.00542 0.0052 0.99024
16 4 1.4657 | 0.0096 0.011 1.07484
16 5 1.67767| 0.0144 0.015 . 1.09241
2 10,5718 | 0.00028 | 0.0002 0.5844
3 0.84011| 0.0009 0.001 0.76607
8 5 1.3247 | 0,00035 0.0003 1.03489

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VI

CONCLUSIONS

It has been found that the correlation analysis gives results
which compare favourably with those derived from the theoretically
predicted values by Dr. S.N. Kalra and P.H. Alexander.

%

[O¥]

irom oury auto-

I

In Tables VIII (a) and (b) we have obtained E
. |
i

gl
—

O

orrelation results and these are reasonably close to 3/51 obtained
from theory we have chosen to compare the ratios of normalized Fourier
series coefficients due to the fact that experimentally correlation

results are in the form of a differential output.

We have derived coeff 1 and Al from crosscorrelation cutput which
is in agreement with coeff 1 and Al calculated from theoretical

results. The results are listed in Table IX.

In general we have found that under stable conditions, i.e. high
loop gain, high signal to noise ratio and frequency deviation less than
the modulating frequency the results obtained are in close agreement

with theory.

When these conditions are not met, the loop remains stable for
short durations, also a certain amount of drift ensues, the data

observed shows a considerable change if repeated.
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