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ABSTRACT

A modified Zeeman scanning method was used to excite
2selectively the magnetic sublevels of the 4 resonance states

in potassium atoms mixed with inert gases and placed in a strong 

magnetic field. The resulting potassium-inert gas atomic collisions 

induced m^ mixing in potassium, which manifested itself by the 

depolarization of the potassium resonance fluorescence. The 

polarization measurements yielded the following disorientation 

cross sections: K - He: 46 K - Ne: 39 K - A: 52 K - Kr:

79 K - Xe: 108

iii
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I. INTRODUCTION

When a mixture of potassium vapour and an inert gas is 

irradiated with one component of the potassium resonance doublet, 

the fluorescent light will consist of the component present in the 

incident light (resonance fluorescence) as well as those components 

which arise as a result of collisional excitation energy transfer 

(sensitized fluorescence). Such studies of inelastic atomic colli­

sions provide information regarding the nature of inter-atomic forces. 

Experiments of this type, conducted at very low alkali vapour pressure 

to minimize the possibility of multiple absorption and re-emission of

resonance radiation (radiation trapping), have been performed using
1 2  3vapours of potassium , rubidium and cesium and their mixtures with

inert gases^’̂ ’̂ . Investigations of collisional excitation transfer

between the ^T^yg resonance states in alkali atoms^ have

led to speculation about the possible existence of selection rules

governing collisional transitions between the Zeeman sublevels within

a fine structure state and also between the Zeeman sublevels of two
7 8fine structure states ’ .

To consider this matter in more detail, a series of

experiments was proposed in which, by exciting selected Zeeman
2 2levels of either the P^yg or P^yg resonance state in alkali atoms 

mixed with an inert gas and placed in a strong magnetic field 

(sufficient to produce complete Paschen-Back Effect of the hfs), and
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monitoring fluorescence arising from both optically and collisionally 

populated Zeeman sublevels, it should be possible to determine the 

cross sections for transitions between m^ states (disorientation 

cross sections) and to reach conclusions about the possible existence 

of selection rules.

The present investigation used a modified Zeeman scanning 

method^ in which, for the first time^^, both the light source and 

fluorescence cell were placed in magnetic fields. The a components 

of the 7699 ^ potassium resonance line were used to excite the fluor­

escence which consisted not only of the expected a resonance component
“f"but also contained a a component arising from collision-induced

mixing. By monitoring the change in the degree of polarization with

inert gas pressure, it was possible to determine the collision cross

section Q-̂ ,̂  or induced by inert gas collisions. While such

cross sections do not directly yield information concerning the

existence of selection rules, further experiments dealing with mj 
2mixing in the level are expected to provide more direct

information on this matter^^.
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II. THE PRINCIPLE OF ZEEMAN SCANNING

The optical excitation of sublevels proceeds as follows.

Light emitted from a potassium spectral lamp located in a constant

magnetic field, , of 5 kG is made incident on potassium vapour at

low pressure, contained in the fluorescence cell placed in a parallel

magnetic field, M^, variable from 0 to 10 kG. Interference filters

in the exciting beam transmit only the 7699 & resonance component.

Light emitted by the lamp in a direction parallel to the magnetic
- +field is selected according to a or a polarization by a circular 

polarizer which also changes the polarization of the linearly polarized 

a and tt components emitted perpendicularly to the field from linear

to circular. In this way, there are two possible excitation methods;

excitation by pure or a components corresponding to An- = + 1 or 

- 1 selection rules, respectively, or by a circularly polarized tt - a  

mixture corresponding to An^ = 0, + 1. In all cases, the exciting 

beam is perpendicular to the magnetic field M^. As the magnetic field 

Mg is increased, with the exciting light emitted perpendicularly to 

the field M^, three coincidences, shown in Fig. 1, arise between the 

Zeeman sublevels in emission and in absorption. The central peak is 

due to resonances between corresponding a and tt components in emission 

and absorption while the other peaks arise from excitation by a and 

TT components of tt and a fluorescence, respectively.

For exciting light emitted parallel to M^, the corresponding
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Fig. 1. The selective excitation of resonance fluorescence in the Zeeman
components of the level in potassium. (a) The experimental
intensity profile of the a component (the tr component appears
identical). (b) The Zeeman splitting of the 7699 & line in the 
lamp (constant at 4 kG) and in the cell (variable), (c) Resonances 
between Zeeman components in the lamp and fluorescence cell.
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fluorescent intensity profiles are shown in Fig. 2. Using a 

excitation and observing the a fluorescent component, the expected 

central peak is observed along with a smaller peak at 2.5 kG which 

is due principally to tt impurity in the exciting beam. The weak a
-f-component present in the fluorescence is due to some a impurity 

in the exciting light and to imperfections in the circular analyzer 

located in the fluorescent beam.
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III. THE RATE PROCESSES GOVERNING COLLISIONAL DISORIENTATION OF 

MAGNETICALLY ORIENTED POTASSIUM ATOMS

Collisions between the excited potassium atoms in their 

Zeeman substates and inert gas atoms, cause mixing of the various 

sublevels according to the following equation:

(1) K(4^Pj.,_, ) + X(^S ) + AE —  K ( 4 V , a )  + X(^S ) ,"X eU O j. ̂  O
2 2 where K(4 Px,-.̂ ) refers to a potassium atom in its 4 P^yg resonance

state and m^ = -1/2 Zeeman substate, X(^S^) is an inert gas atom in 

its ground state, AE is the energy defect between the two substates 

m., = 1/2, m., = -1/2, the magnitude of which is dependent on the 

magnetic field strength. These collisions result in the depolariza­

tion of the resonance fluorescence, which is further increased by
2collisional transitions from the sublevels of the state to

2those of the ^3^2 state as indicated in Fig. 3. A study of such

depolarization should yield values for m^ mixing cross sections.

The vapour-gas mixture is considered to exist in a state

of dynamic equilibrium which can be represented by the following

equations : 
dn,^

(2) - ^ =  n-i- V t " i -  h 2  " ' 1 + 2 ^ 2  + H

dn
(3) _  = -1 - ^12 % +  i^2l”2 ° ’
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Fig. 3. Transitions between the Zeeman levels of the ground and resonance 
states. Broken lines indicate emissions not observed in the 
experiment.
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dN ,
W  =  -7 « 2+212  -  ^ 2i"2 =  °  >

-8 2 where t = 2.7 x 10 sec is the average lifetime of the ^1^2

2 12P3/2 states , and are the densities of the atoms in these 

states, and Z^^ are the previously determined collision numbers

(number of collisions per excited atom per second) corresponding to
2 2 2 2 1 the transitions ^3/2 ^1/2 ^3/2 ’ respectively, n.^

and n-x are the densities of atoms in the m^ = 1/2 and m^ = -1/2

substates, respectively: Z-x,x and Z^,-xare the collision numbers

corresponding to the transitions -1/2 -> 1/2 and 1/2 -+ -1/2 within 
2the P, state and S_x and Sj, are the densities of atoms excited1/2 X a-

per second to the m^ = -1/2 and +1/2 states, respectively. It is 

assumed that the effects of radiation trapping are negligible.

The addition of Equations (2) and (3) yields:

(5 ) +  N j +  -  0 ,

where n.j_+ nx. = N, and S_x+ Sx = S, . Equations (4) and (5)
^  ^  i jU «3̂ 1

represent sensitized fluorescence arising from the collisional

excitation transfer between the two resonance states^.

The m^ = -1/2 sublevel is selectively populated by exciting

the atoms with radiation consisting principally of the a” component.

From Equations (2) and (3), it is possible to calculate the ratio

of the atomic densities n, and n , ,Ï. "Ï

" i  (Z-i.4+ Zjj- + i)(Sx/S.._ ) + I Zjl'lz
(6)
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10

where r]̂ =

The degree of circular polarization is defined in terms of 

the intensities, I^+ and I^-, of the a"̂ and a components present in 

the fluorescence.

I - - I +
(7) P =  9- .

I - + I + 
a a

In the absence of depolarizing collisions.

° S.1+ S*

The transition probabilities for the o and a transitions

are equal:

(9) I - = An.j. , 1 +  = An. ,
V  Z  V  »■

where A is the Einstein coefficient. Thus Equation (7) becomes:

1 - n ^ / n . ^
(10) 1 + n^^/n_xa.

Substitution of Equation (5) into Equation (lO) yields 

1 + T Z - T Z Tig
" = "o - w v  z' + ■

where Z = ♦ Equation (ll) gives P, the degree of polari­

zation of the fluorescence in a mixture of potassium vapour with an 

inert gas which, at low inert gas pressures, reduces to

(12) P = Po 1 + T z
13which is the Stern-Volmer Equation . Using Equation (ll), the
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disorientation (nij mixing) collision numbers can be determined from 

the degree of polarization, P, which is experimentally determined as 

a function of inert gas pressure. By analogy with classical gas 

kinetic theory, the total cross section, Q, for radiationless transfer 

between the two sublevels is given by

(13) N V r

v^ is the average relative velocity of the colliding partners:

_ ISkT 
^r J rrp, 'TTp

where p is the reduced mass of the system.

From the principle of detailed balancing, Zx>-J

because of the small energy defect (AE «  kT) and the equality of 

the statistical weights of the m^ sublevels.
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IV. DESCRIPTION OF THE APPARATUS

The apparatus is shown schematically in Fig. 4. The 

potassium spectral lamp which was placed in a magnetic field, of 

5 kG, emitted a light parallel to the field. An interference filter 

selected the 7699 S potassium resonance line and a X/4 plate and 

polarizer separated the or a components. This light was made 

incident on a vapour-gas mixture contained in a fluorescence cell 

which was situated in a second, parallel, magnetic field, variable 

from zero to 10 kG. Fluorescent light, observed along a direction 

parallel to the field M^, was passed through another interference 

filter, \/4 plate and polarizer and was focused onto the photocathode 

of a cooled photomultiplier. The output of the latter was amplified 

and applied to the Y axis of the X-Y recorder, to whose X axis was 

applied the output of a gaussmeter which monitored the strength of 

the field M .

(i) The Spectral Lamp

The light source has been described elsewhere^^. It 

emitted resonance radiation from a horizontal pyrex tube three cm in 

length and 2.5 cm in diameter, which had plane end-windows and a 

side-arm 2.5 cm in length. The alkali vapour pressure was determined 

by the temperature of 0.5 g of distilled potassium contained in the 

side-arm appendage and the discharge was carried by 0.6 Torr of 

argon. The tube was placed completely in the tank coil of an rf

12
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push-pull oscillator operated at 40 mc/sec. By maintaining a skin 

discharge at the proper temperatures, resonance lines of singular 

sharpness and intensity and with no self-reversal were produced.

(ii) The Electromagnets

Two 12 in. electromagnets, Magnion Model L-128A, mounted 

on wheeled carriages and arranged as shown in Fig. 5, were used in 

the experiment. The weight of each magnet exceeded 2.5 tons and 

required a minimum floor loading capacity of 1120 lbs. per sq. ft.

Each yoke was inclined at 45° to the horizontal to permit easy access 

to the central field region. The coils had low impedance (one Q) 

and were mounted in the yoke by means of three pins which were used 

in the alignment of the pole caps as well^^. The pole caps fitted 

to magnet had central apertures two cm in diameter, which permitted 

fluorescence to be observed in directions parallel to the magnetic 

field. All pole caps were covered with thin teflon sheets as a 

precaution against damage.

The four in.gap which was used in both magnets, corresponded

to a maximum field of 10 kG at 6.5 kW. The degree of homogeneity of

the magnetic fields was quite acceptable. For magnet M^, the radial

homogeneity approached one part in 10^ over one in. Axial homogeneity

was about one part in 3000 over one in, at 2600 gauss. As would be

expected, the field of the magnet was distorted because of the

apertures in the pole pieces. Radial homogeneity was equal to 
3one part in 10 for the central field region over a distance of one 

in. The field homogeneity was investigated with an NMR probe in
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conjunction with a calibrated gaussmeter.

The water cooling system, required for fields in excess 

of three kG, was capable of supplying two gal per min at pressures 

greater than 30 psi. The basic features are shown in Fig. 5: water

taken from the main was passed through two ’’aqua pure’’ water filters 

in parallel which were installed in a 3/4 in. copper line. Two flow 

meters, McDonald and Miller type F34-3T3, were installed in 3/4 in. 

spur lines which immediately preceeded the magnets. The flow meters, 

with minimum actuation of two gal per min, were connected to the 

magnet power supplies which would be turned off if the flow rate 

should fall below the required amount.

The magnet power supplies, which have been previously

described^^, were the dc current regulated type with a maximum rating'
4of 65 A at 130 V stable to one part in 10 . The helipots of both 

power supplies were fitted with slow, two-speed synchronous motor 

drives which permitted smooth scanning of the magnetic fields. When 

necessary, the motor drive could be disengaged by a spring loaded 

clutch to permit manual adjustment of the helipot setting. The 

magnetic fields were measured by an R.F.L. model 1890 gaussmeter 

which employed a hermetically sealed indium arsenide Hall probe.

The gaussmeter was calibrated for zero and for the one kG range by 

using the internal reference magnet, and the probe was taped to the 

pole face of magnet M^, where its position was adjusted for maximum 

signal strength. Magnetic fields from 0.1 G to 20 kG could be 

measured with an accuracy of three per cent using 11 ranges. The

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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ambient temperature variation of the instrument was less than 0.1 per 

cent/°C in the range of from -85°C to +85°C. Because of this operating 

range, the probe could not be placed very close to the centre of the 

field which was to be occupied by the fluorescence cell enclosed in 

an oven. The gaussmeter was used to construct a calibration curve 

of magnetic field as a function of power supply helipot setting 

(range: 0 - 999).

(iii) The Fluorescence Cell

The fluorescence cell which resembled that used previously^^, 

is represented diagrammatically in Fig. 6. The arrangement of three 

mutually perpendicular windows forming a rectangular corner permitted 

observation of fluorescent light emitted in directions either parallel 

or perpendicular to the magnetic field. Portions of the cell, especi­

ally near the actual corner, were coated with Aquadag. This reduced 

the effect of scattered light, limited observation to the region 

immediately adjacent to the corner and resulted in minimum reabsorption 

of both exciting and fluorescent light. The cell had a short side-arm 

which contained about 1.5 g of liquid potassium metal, and was connected 

to the vacuum and gas-filling system by a capillary one mm in diameter, 

attached directly above the side-arm. This arrangement ensured a 

good vacuum with little migration of alkali atoms which, though 

slight, often resulted in capillary occlusions which prevented accurate 

regulation of inert gas pressures in the cell. It was found that this 

situation could be corrected by enlarging the diameter of the capillary 

to two mm and by displacing its position a few mm with respect to that

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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of the side-arm.

The fluorescence cell was enclosed in an oven, as shown in 

Fig. 7, and was mounted between the pole pieces of magnet M^. The 

oven consisted of two parts. The main part was a rectangular panelyte 

box with provisions made for access to the various cell windows and 

side-arm assembly. It was lined with asbestos paper and accommodated 

four heating elements placed along its sides, which were covered with 

one mm thick copper plate. The heating elements consisted of asbestos 

paper wound with No. 28 thermal heating wire and had a total parallel 

resistance of 4.8 Q. A side oven, consisting of a machined brass 

cylinder attached to the bottom of the main oven, was closely fitted 

to the side-arm with good thermal contact provided by an interposed 

layer of thin copper foil. Temperature stability, to within +.25°C 

was provided by a Jena Ultrathermostat which circulated hot water 

through a coil of 1/4 in copper tubing snugly fitted to the side 

oven and thermally insulated by a layer of asbestos tape. Temperatures 

were measured by thermocouples which were affixed near the entrance 

and observation windows and near the side-arm of the cell and were 

connected to a Leeds and Northrup Model 8686 potentiometer, A 

thermistor attached to the base of the cell was connected to the 

temperature controller^^ which was able to provide temperature 

stability of +.5 per cent in the range of from 50°C to 140°C.

(iv) The Optical System

The principal features of the optical system have been
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outlined in Fig. 4. A totally reflecting right-angled prism was 

placed in the field to permit the emission of a light in a direction 

parallel to that of the magnetic field. The interference filter, X/4 

plate and polarizer were placed in the exciting beam which was collimated 

by a double convex lens of 25 cm focal length; an identical lens 

condensed the parallel beam into the fluorescing region of the vapour.

The interference filters (Spectrolab P type) transmitted 68 per cent 

of the 7699 & radiation and less than 0.1 per cent of the 7665 R 

radiation; the \/4 plates used produced polarized light circular to 

within three per cent (based on ellipticity), while the polarizers 

were HNT polaroids with and transmissions of 55 per cent and 

less than one per cent, respectively, in the 7700 S region. In the 

fluorescent light observed parallel to the field M^, the collimating 

lens had a focal length of 4.5 cm and a diameter of 1.8 cm. A brass 

adjustment tube, 50 cm in length, with inside and outside diameters 

of 17 and 19 mm, respectively, was reamed at one end to accept the 

lens which was held in place by a tension spring. The tube could 

slide freely in the pole piece aperture permitting ready adjustment 

of the lens position. All components were mounted on aluminum optical 

benches resting on demountable frames supported by the magnet carriage.

Fluorescent radiation was monitored by an FW118G, 16 dynode

I.T.T. photomultiplier tube with an S-l(Ag-O-Cs) photocathode which 

has a peak sensitivity in the 8000 R region. The photomultiplier, 

shielded against external magnetic and electric fields, was housed 

in a liquid air-cooled cryostat^^ and, as a result, had low background
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noise. High voltage was generated by a Fluke 412B power supply 

operated at 1300 V through a resistive divider chain providing a 

73 V drop per stage. The output was amplified by a Keithley model 

417 high speed picoammeter fitted with variable damping and high 

suppression current adjustment. The latter feature permitted current 

suppression at the input of up to 1000 times full scale deflection, 

allowing large scale display of 0.1 per cent variation in the signal, 

thus eliminating most of the background noise which originated from 

dynodes other than the photocathode.. The signal was then applied 

to the Y axis of a Hewlett-Packard model 2D X-Y plotter, the X axis

of which was connected to the output of the gaussmeter.

(v) The Vacuum and Gas-Filling System

The vacuum system, a block diagram of which is shown in

Fig. 8, was constructed of pyrex glass. The vacuum was attained by

means of an Edwards water cooled oil diffusion pump model E02

operated with No. 704 silicone pumping fluid and backed by an Edwards

single stage rotary pump model ES35. With a liquid air trap, the
* 7system produced vacua of the order of 10 Torr. Damage due to water

and/or power failure was prevented by using a line relay switch in

addition to an Edwards thermal switch on the diffusion pump which 

was also equipped with an Edwards electromagnetic backing valve.

The vacuum was measured with a C.V.C. model GIC-110 

ionization gauge and an Autovac model 3294-B gauge was used for 

preliminary measurements of gas pressure. Final pressure readings 

were obtained with a C.V.C. model Q4-100A trapped McLeod Gauge. When
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Fig. 8. The vacuum and gas-filling system. C - fluorescence cell;
D - diffusion pump; B - backing pump; L - LKB gauge;
I - ionization gauge; M - McLeod gauge; S - double flow
stop cocks; T - trap.
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not in actual use, the latter gauge was isolated from the system, to 

prevent contamination with mercury vapour.

The gas-filling assembly consisted of a dual stopcock, 

which permitted either slow or fast gas flow into the system, and a 

sealed pyrex flask containing the inert gas. The spectroscopically 

pure inert gases were supplied by the Linde Company, in one litre 

pyrex bulbs which could be sealed to the system and which, in the 

case of Kr and Xe, were fitted with cold traps.

The whole system was fastened to a rigid aluminum frame 

mounted on castors which straddled the pedestal mount of magnet 

and allowed easy and precise positioning of the fluorescence cell 

between the pole faces.
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V. EXPERIMENTAL PROCEDURE

The configuration of the magnets was adjusted so that the 

surfaces of the right-hand (or left-hand) pole pieces were coplanar 

hence making the magnetic fields mutually parallel. This was done by 

using an aluminum optical bench as a straight edge for the pole piece 

surfaces.

The fluorescence cell was cleaned with dichromate cleaning 

solution and rinsed thoroughly with distilled water. It was then 

attached to the vacuum system and outgassed for several hours at a 

temperature of 150°C under a vacuum of 10  ̂Torr. An ampoule containing 

99.95 per cent pure potassium (supplied by the A. D. McKay Company) 

was broken under vacuum and about one g of the metal was distilled 

into the cell and side-arm. Distillation into the side-arm was 

completed by installing the cell in its oven in which a temperature 

of 150°C was maintained for several hours. During this time, the 

side-arm temperature was kept at 20°C by using the ultrathermostat 

to circulate cool water through the side oven coil. Thermistors and 

thermocouples were fastened in position using asbestos cement and 

the cell was properly enclosed in the oven. The operating temperatures 

of 95°C and 80°C for the main and side ovens, respectively, which were 

then established, produced a temperature gradient sufficient to 

prevent condensation of alkali vapour on the windows. The cell was 

positioned between the pole pieces of the magnet M^ and its position

25 i T i l l Z
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was adjusted, using a light beam which passed through both pole piece 

apertures, until the corner between the windows was clearly seen 

through one of the apertures.

The rf lamp was positioned between the pole pieces of 

magnet and the oscillator was set for maximum output (200 mA and 

325-375 V) by adjusting the voltage and current of the input and by 

modifying the configuration of the tank coil with an insulated rod 

to change its capacitance^^. After the lamp had been glowing for a 

time sufficient to raise its temperature above 300°C (about 15-30 min), 

the temperature of its side-arm was adjusted (140-70°C depending on 

the age and condition of the lamp)^^. The cell temperatures were 

set at 95 and 80°C for the main and side ovens, respectively. An 

unresolved beam of potassium resonance radiation was directed at the 

cell and the resulting fluorescence was detected on the photomultiplier 

whose signal was registered on the linear scale of the picoammeter.

The output of the latter was applied to the axes of the X-Y plotters 

and the signal fluctuations were used to determine the degree of 

linearity of the plotter, which was found to be satisfactory. The 

X axes of the recorders were calibrated in terms of the magnetic 

field strength using the output of the gaussmeter, by adjustment of 

the range controls for a varying magnetic field.

With the lamp and photomultipliers operating, interference 

filters were placed in the collimated portions of the beam. They and 

the lenses were adjusted separately until a maximum signal was indicated 

by the X-Y recorder. The lamp position was readjusted to improve the
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signal strength and then the position of the prism used in perpendicular 

observation of the fluorescence was also appropriately adjusted. A 

field of five kG was applied to the lamp and, for excitation and 

observation perpendicular to the fields and M^, the resulting 

intensity, as indicated by the recorder, decreased significantly.

The magnetic field was then slowly scanned from 0 to 10 kG and a 

recorder trace similar to that shown in Fig. 1 was obtained. The 

position of the elements in the optical system were then slightly 

readjusted to increase the height of the main maximum and to decrease 

the background. Polarizers were placed in the collimated beams of 

both the exciting and fluorescent light and were separately adjusted 

to produce maxima at about five kG for transmissions of vertically 

polarized o light. From Fig, 1, it would be expected that the result 

should consist of a single peak of half the intensity at five kG. 

Furthermore, with the transmission axis of. the polarizer oriented 

parallel to the magnetic field M^, an identical curve would result 

for tt observation of the fluorescence. Fig. 2 shows that this is 

indeed the case except for a small peak at two kG. The fact that the 

two curves were identical indicated, that the 7699 & resonance line 

was unpolarized, as expected. The \/4 plates were then inserted into 

the collimated beam after the first and second azimuthal directions 

had been determined by using a reference A./4 plate.

For observation and excitation parallel to the magnetic 

fields and with the X/4 plate and polarizer adjusted to pass a light 

in both the directions of excitation and observation, the magnetic
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field Mg was scanned to produce the intensity profile shown in Fig. 2.

The X/4 plate in the exciting beam was adjusted for minimal transmission 
4-of the unwanted a component by reversing the field M^ and obtaining the

"Î”least signal which arose from a fluorescence. The \/4 plate in the 

fluorescent beam was adjusted similarly except that the magnetic field 

M^ was reversed to obtain the minimal signal.

The procedure followed in an actual experimental run consisted 

of the following steps.

The fluorescence cell was completely evacuated and the magnetic 

field M^ was set at five kG. The lamp was started and adjusted. For 

a excitation and observation, the fluorescent intensity corresponding 

to the main peak in Fig. 2 was closely scrutinized. Lamp stability was 

determined by the behaviour of the peak height with time (a few hours 

were sometimes required to establish the desired degree of stability).

The shape of the peak was usually quite sharp and any indications of 

broadening or self-reversal necessitated a decrease in the pressure of 

alkali vapour in the lamp achieved by a temperature decrease. It was 

found that a sharp line could become very broad and quite self-reversed 

if the temperature increased by 2-3°C in the vicinity of 137°C. After 

lamp stability was established, the magnetic field Mg was scanned from 

zero to 10 kG and back, reversed, and scanned again. The main peak 

heights in the resulting recorder trace similar to that shown in Fig. 2, 

were used in the determination of the degree of polarization in con­

junction with Equation (7). Although lamp intensity might vary over a 

one hour period (stability within three per cent for periods exceeding
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45 min was usual) recording time for one trace was less than three min 

so that the important relative intensities of the two peaks remained 

essentially constant.

Inert gas was next introduced into the vacuum system and 

fluorescence cell. Equilibrium was established after a few seconds 

and the scanning procedure described above, was repeated at a series of 

pressures ranging from less than 0.2 Torr to about five Torr, resulting 

in intensity profiles similar to those shown in Fig. 9. For the heavier 

inert gases, especially at higher pressures, the time required for the 

attainment of equilibrium between the gas-filling system and the fluor­

escence cell increased markedly (for Xe at 6 Torr, 40 min was required). 

All inert gas pressures were adjusted using the slow leak valve located 

near the gas input in conjunction with a slow leak valve connected to 

the liquid air trap and diffusion pump.
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VI. RESULTS AND DISCUSSION

The degrees of polarization of the resonance fluorescence

observed in the various vapour gas mixtures are listed in Table I and

are plotted as functions of inert gas pressures in Fig. 10. All the

sets of values, each set obtained from at least two different runs to

insure reproducibility, were substituted into Equation (ll) to obtain

the corresponding collision numbers Z,j.,x or Z^,~^ . The values of T|,
2 2and Zgi corresponding to the 4   4 mixing process, were

obtained from the previous work of Chapman^^.

It may be seen in Fig. 10 that the degree of polarization 

in the absence of inert gas, P^, is not quite equal to unity. The 

magnitude of P^ depends on the quality of the Zeeman components emitted 

by the lamp. For example, the curves for A and He are based on data 

obtained using a lamp filled with inert gas at a slightly lower pressure 

than was used in the other experiments. This would affect the operating 

characteristics of the lamp and would probably account for the observed 

differences in the values for P^. In addition, the operating conditions 

of each lamp change with time because of a decrease in the carrier gas

pressure and the formation of a brown deposit on the windows of the
16 'lamp . This latter effect would partially depolarize the emerging

radiation and hence result in a slightly lower value of P^. Any 

depolarization due to circular polarizer inefficiency or collisions with 

cell walls appeared to have little effect on the atomic orientation.

31
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TABLE I

Collision Cross Section for = -1/2   irij = 1/2 Mixing
2

in the 4 State of Potassium

Collision Collision Average
Collision Degree Numbers Cross Sections Cross Section
Partners of H - i ”  H - i ° '  V ±

(Torr) Polo'i-otron ^ ,%,2 (J,2

K - HE

K - NE

K - A

0.00 0.882 - -

0.06 0.845 0.82 * 35.54
0.16 0.770 2.82 * 45.82
0.30 0.692 5.04 47.94
0.53 0.615 9.13 44.76
0.79 0.535 14.44 47.45
1.20 0.457 20.94 45.31
1.85 0.368 32.99 46.31
2.50 0.321 42.27 43.91
3.85 0.257 60.90 * 41.07
5.00 0.220 76.84 * 38.90

0.00 0.860
0.06 0.843 0.37 * 33.83
0.11 0.814 1.05 47.53
0.29 0.757 2.56 43.82
0.53 0.701 4.33 40.34
1.02 0.620 7.62 37.12
1.45 0.548 11.49 39.34
2.25 0.479 16.62 36.68
3.45 0.386 26.76 38.51
4.55 0.345 33.51 •k 36.55
5.55 0.319 38.54 * 35.41

0.00 0.879
0.06 0.860 0.41 41.83
0.11 0.840 0.87 48.26
0,28 0.780 2.42 52.76
0.55 0.710 4.68 51.89
1.16 0.590 9.98 52.49
1.80 0.500 16.72 56.63
2.52 0.456 20.82 50.38
3.45 0.396 28.27 49.92
4.32 0.362 34.04 48.04
5.36 0.326 41.79 47.53

(Table continued on next page)

*
•k

■k
*

*

46.0

39.3

52.4
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Table I - Collision Cross Section for = -1/2 --
the 4^P^y2 State of Potassium (continued)

m. 1/2 Mixing in

Collision
Partners

Inert
Gas

Pressure
(Torr)

Degree
of

Polarization

Collision
Numbers

(sec“ )̂ X  1 0 ” ^

Collision Average
Cross Sections Cross Sec_tion

(%)2 (%)2

K - KR

K - XE

0.00 0.863 - -

0.06 0.834 0.61 76.75 •k

0.11 0.796 1.54 94.98
0.32 0.740 3.15 69.58 •k

0.50 0.673 5.52 76.29
1.10 0.540 12.61 79.84
1.50 0.485 17.09 79.38
1.72 0.449 20.76 84.08
2.20 0.416 25.02 79.22
3.10 0.348 36.35 81.67
4.33 0.301 47.87 77.01 •k

5.25 0.264 58.85 78.08 k

0.00 0.862
0.05 0.826 0.82 * 128.21 k

0.10 0.797 1.55 * . 111.13 k

0.31 0.716 4.01 096.21
0.48 0.646 6.80 105.21
0.94 0.517 14.61 115.33
1.55 0.432 23.33 111.12
2.03 0.386 30.00 109.13
3.45 0.291 51.23 109.63
4.20 0.264 60.91 * 107.05 k

5.70 0.232 74.26 * 096.19 k

78.6

107.9

* Results not included in the averaging process 

Main Oven Temperature: 95°C

Side Oven Temperature: 81 - 82°C
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Fig. 10 The degrees of polarization of the 7699 X resonance fluorescence, 
plotted as functions of inert gas pressures.
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The variations of the collision numbers with inert gas

pressure, along with an additional plot for neon obtained using
2 2Equation (12) in which the transitions    ^3/2 been

neglected, are shown in Fig, 11. The cross sections or Q

were determined in a series of point by point calculations using

Equation (13) and all the experimental data. The final values for

Q-a,x or Qx,-x were obtained by averaging the individual values for

each gas. With the exception of a few experimental points which were

judged unreliable, all the individual cross sections for a given gas

agreed with each other to within five per cent.

The variations of collision numbers with inert gas pressures

are linear up to pressures of six Torr. Above this pressure, however,

the deviation from linearity becomes increasingly pronounced. The

exact cause of this deviation is not known but is thought to arise

from the fact that Equation (ll) becomes increasingly approximate since
2 2terms pertaining to transitions between the and ^3^2 assonance

2states do not take into account m^ mixing in the state which will

be reflected in any selection rules governing collisional transitions. 

The variation of collision numbers with low inert gas pressure also 

displays a non-linearity arising from relatively small differences 

between P^ and P, to which the collision number is proportional. The 

plot of collision numbers against inert gas pressure according to the 

Stern-Volmer formula (the broken curve in Fig. 11) becomes non-linear 

in the region of one Torr. This is due principally to the fact that 

the Stern-Volmer formula does not allow for transitions between the
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two fine structure resonance states.

It might be considered noteworthy that the cross sections

reported here are of the same order of magnitude as recently determined
3alignment depolarization cross sections for the lowest level of

17cadmium perturbed by inert gases

Fig. 12 shows the variation of the total cross section with

atomic number of the inert gases and also a similar plot for elastic

electron scattering cross sections^^. The magnitudes of the cross

sections of these two cases are different but each plot exhibits the
2 2same general behaviour as observed in the cases of --- ^3/2

mixing collisions between potassium, rubidium or cesium and inert gas

atoms^. Collisional interactions leading to   ^^3/2 excitation

transfer have been interpreted as taking place between inert gas atoms 

and alkali atoms behaving as quasi free particles. Fig. 12 suggests 

that a similar mechanism might govern the collisional m^ mixing process.
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