Shear and bending deformation of sandwich parallelogrammic panels.

Amit K. Guha-Thakurta
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/6515

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

UMI®
SHEAR AND BENDING DEFORMATION
OF
SANDWICH PARALLELOGRAMMIC PANELS

A Thesis
Submitted to the Faculty of Graduate Studies through the
Department of Civil Engineering in Partial Fulfilment
Of the Requirements for the Degree of
Master of Applied Science at
The University of Windsor

by
Amit K. Guha-Thakurta
B.E., The University of Calcutta, 1961
Windsor, Ontario, Canada
1968

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT

Clamped parallelogrammic sandwich panels are analysed by splitting the panel deflection into two parts; one due to shear and the other due to bending. An 'exact' solution to the governing differential equations is found. Results for maximum deflection, centre and edge moments are obtained for various skew angles, aspect ratios, flexural and shear rigidities of panel. The influence of the above independent variables on the behaviour of the panel is investigated. The results from experimental model tests are compared and good agreement is shown for the maximum centre deflections. However, favourable comparison for centre moments is found only for panels with a very rigid core. The validity of the small deflection theory is examined in the light of the theoretical and experimental results.

Tests to rupture revealed sudden reversal of strain around the obtuse corner region after progressive yielding of the edges had taken place.
ACKNOWLEDGEMENTS

The writer wishes to express his gratitude to Dr. J.B. Kennedy for his guidance and encouragement in the preparation of this work and for his generous aid and constructive criticism at every stage of its development.

The writer also wishes to thank Mr. Bob Waymouth whose assistance in the experimental work was of great help.

The financial assistance offered by the National Research Council, Grant No. A-1896, is greatly appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>III. THEORETICAL ANALYSIS</td>
<td>5</td>
</tr>
<tr>
<td>IV. EXPERIMENTAL STUDY</td>
<td>18</td>
</tr>
<tr>
<td>(a) Materials & Apparatus</td>
<td>18</td>
</tr>
<tr>
<td>(b) Procedure & Results</td>
<td>19</td>
</tr>
<tr>
<td>V. COMPARISON AND DISCUSSION OF RESULTS</td>
<td>38</td>
</tr>
<tr>
<td>VI. CONCLUSIONS</td>
<td>44</td>
</tr>
<tr>
<td>APPENDIX I: NOMENCLATURE & SYMBOLS USED IN THE THEORETICAL ANALYSIS</td>
<td>68</td>
</tr>
<tr>
<td>APPENDIX II: LISTING OF THE FORTRAN PROGRAM USED FOR THEORETICAL ANALYSIS</td>
<td>84</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>97</td>
</tr>
<tr>
<td>VITA AUCTORIS</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table I</th>
<th>Detailed Description of the Experimental Sandwich Panels</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table II</td>
<td>Strain Gauge Readings (Micro-inch per inch) for Different Intensities of Loading</td>
<td>23</td>
</tr>
<tr>
<td>Table III</td>
<td>Convergency of Theoretical Solution for Centre Deflections and Centre Moments</td>
<td>30</td>
</tr>
<tr>
<td>Table IV</td>
<td>Theoretical Study of the Effect of Variation of the Independent Variables of the Skewed Sandwich Panels e.g., Skew, Aspect Ratio, Shear Rigidity of the Core, Face thickness, etc.</td>
<td>31</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Sandwich panels are widely used in the construction of aircraft and missiles because of the relatively high strength of the material per unit weight. The core is usually made of a light material e.g. styrofoam, paper (honeycomb), balsa wood, plastic or cellular assembly of any suitable sheet. The core has to be adequately rigid and well bonded to the skin which is usually metallic. The purpose of the core is to stabilize the face plate in compression and to provide enough strength for the structure to withstand the loading that an aircraft is usually subjected to. Apart from the enhanced structural strength, sandwich plates are advantageous also from the point of view of aerodynamic drag.

Rectangular sandwich plates subjected to uniform transverse load have been analysed by various investigators by different analytical methods e.g. strain energy method, Principle of Virtual Work and the use of the Calculus of Variations for the derivation of the governing differential equations and the appropriate boundary conditions. However, no solutions are yet available for parallelogrammic sandwich panels under similar conditions.

The work embodied in this thesis consists of:

i) a theoretical analysis on the bending and shear deformation of clamped parallelogrammic sandwich panels subjected to a uniformly distributed lateral load; and

ii) experimental investigation of the bending behaviour of several clamped parallelogrammic sandwich panels with different core material.
The theoretical analysis is based on small deflection theory of Sandwich Plates. The total deflection of a point on the sandwich plate is divided into two parts i.e. W_B, due to bending and W_S, due to shear. An "exact solution" for the governing differential equation for the bend deflection W_B is found. The arbitrary constants contained in the deflection function, W_B, are solved from the boundary conditions by expanding them into Fourier Sine and Cosine series. Thus the deflection functions W_B and W_S are explicitly known for every point on the skewed clamped sandwich plate and the necessary moment and shear expressions are then obtained from the deflection functions.

The experimental investigation consisted of the loading of sandwich plates of three different core materials e.g. paper, styrafoam and plywood, three different dimensions i.e. 20 in. x 30 in., 16 in. x 14 in., and 15 in. x 12 in. and two different skew angles i.e. 30° and 50° by uniformly distributed load with the four sides clamped. The choice of the three different core materials was made to study the effect of varying core rigidity on the behaviour of the sandwich plates. The softer the core the more pronounced is the effect of transverse shear deformation on the deflection of the sandwich plates. Meta-film strain rosette gauges were installed and moments and stresses were calculated from the strain measurements. Dial indicators were also installed to record the lateral deflection at chosen points on the skewed plates.
CHAPTER II

REVIEW OF LITERATURE

carried

Reissner\(^1\) in 1948 carried out a rigorous analysis on the finite deflections of rectangular sandwich plates. He developed the basic differential equations for finite transverse deflections of sandwich panels neglecting the transverse normal stresses in the core and the variation of the face stresses over the thickness of the face layers. He also analyzed the range of linearity of deflections and showed that this range decreases rapidly with the softness of the core relative to the faces.

Taylor\(^2\) in 1948, developed a set of modified plate equations from the classical theory of plates applicable to the solution of the rectangular sandwich plates. He showed that the total deflection can be divided into two parts: (a) deflection due to bending, and (b) deflection due to transverse shear. His equations show the basic relationship between these two kinds of deflections so that the total deflection could be determined by solving the governing differential equation for deflection due to bending.

Libove and Batdorf\(^3\) in 1949, developed a general small deflection theory for the elastic behaviour of orthotropic rectangular sandwich plates. This theory is applicable to all types of rectangular sandwich plates and is based on seven physical constants (five stiffnesses and two Poisson ratios) of sandwich plates. These physical constants could be derived analytically or could be determined experimentally. The energy expressions as well as the differential equations for the sandwich plate were developed.

Hoff\(^4\) in 1950, derived a set of differential equations for the bending and buckling of rectangular sandwich plates. The differential
equations were derived by means of the principle of virtual displacement from the essential parts of the strain energy stored in the sandwich plate. The set of differential equations thus deduced was further reduced to a single sixth order partial differential equation for the solution of a rectangular sandwich plate.

Ikeda, in 1955, developed a theory for bending isotropic flat rectangular sandwich plates taking into account the contributions of the individual stiffnesses of the faces and the core. The solution of the basic differential equations gives the deflection and the stress function, from which the expressions for moments and stresses could be developed.

Thurston, in 1957, applied the Lagrangian multiplier method to Hoff's energy expressions for sandwich plates and derived equations for evaluating the deflections and buckling loads of clamped rectangular sandwich plates.

Cheng, in 1962, developed a system of differential equations for small deflections of a rectangular sandwich plate by means of the variational theorem of complementary energy in conjunction with Lagrangian multipliers. These equations, in turn, yield a governing linear differential equation of sixth order for the deflection \(W \).

Eringen, in 1951, carried out a rigorous analysis of the bending and buckling of rectangular sandwich plates having homogeneous core by the use of the theorem of minimum potential. In this theory he considered the three dimensional stress distribution in the core thus taking care of the flattening and the bending rigidity of the core. The bending rigidities of the individual faces were also taken into account.
CHAPTER III

THEORETICAL ANALYSIS

The theoretical analysis consists of the application of the method of partial deflections. A sandwich plate, unlike a homogeneous plate, undergoes considerable deflection due to the transverse shear deformation of the core over and above the deflection due to bending. Thus the total deflection of the plate is divided into two parts, \(W_B \), the deflection due to bending, and \(W_S \), the deflection due to transverse shear deformation of the core material. The assumptions of this theory are as follows:

1) Thefacings and the core are assumed to be isotropic materials.

2) The core stiffnesses associated with plane stress components in the plane of the plate are negligibly small.

3) The facings are treated as solid membranes i.e. negligible bending rigidity, of equal thickness.

4) The linear theory of elasticity is assumed to be valid.
The Relationship Between W_B & W_s

Fig. 4 illustrates the forces acting on a rectangular sandwich plate and the various geometrical dimension of a rectangular sandwich plate, e.g. face thickness t, core thickness c.

The shears Q_x & Q_y are given in rectangular co-ordinates in terms of the bend deflection, W_B, as in the classical theory of plates, as follows:

\[Q_x = -D_o \frac{\partial^2}{\partial x^2} \left(\frac{\partial^2 W_B}{\partial x^2} + \frac{\partial^2 W_B}{\partial y^2} \right) \] \hspace{1cm} (1)
\[Q_y = -D_o \frac{\partial^2}{\partial y^2} \left(\frac{\partial^2 W_B}{\partial x^2} + \frac{\partial^2 W_B}{\partial y^2} \right) \] \hspace{1cm} (2)

where Q_x, Q_y & D_o are defined in Appendix I.

The shears Q_x and Q_y can also be expressed in terms of the shearing strains of the core as follows:

\[Q_x = (G\tau) \frac{\partial W_s}{\partial x} \] \hspace{1cm} (3)
\[Q_y = (G\tau) \frac{\partial W_s}{\partial y} \] \hspace{1cm} (4)

where $G = \text{modulus of rigidity of the core in shear}$

\[\frac{\partial W_s}{\partial x} = \text{shearing strain in the core parallel to Y-axis} \]
\[\frac{\partial W_s}{\partial y} = \text{shearing strain in the core parallel to X-axis} \]

From Eqs. (1), (2), (3) & (4), the shear deflection, W_s, can be expressed in terms of the bend deflection, W_B, in rectangular co-ordinates as follows:

\[W_s = -\frac{D_o (G\tau)}{\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}} \left(\frac{\partial^2 W_B}{\partial x^2} + \frac{\partial^2 W_B}{\partial y^2} \right) = -\frac{D_o (\nabla^2 W_B)}{\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}} \] \hspace{1cm} (5)

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The governing differential equation for \(W_B \) (from small deflection theory of plates) in rectangular co-ordinates is:

\[
\nabla^4 W_B = \frac{q}{D_o} \quad \ldots \ldots \quad (6)
\]

where

\[
\nabla = \frac{\partial^4}{\partial x^4} + 2 \frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4}
\]

and \(q \) is defined in Appendix I.

The governing differential equations for the sandwich plate, Eqs.(5) & (6) become when transformed to dimensionless skew coordinates \(\eta \) and \(\xi \):

\[
W_B,\eta,\eta,\eta,\eta,\xi,\xi,\xi,\xi + 2(1+2s^2)p^2 W_B,\eta,\eta,\xi,\xi,\xi,\xi,\xi - 4s(p^3 W_B,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi + p W_B,\eta,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi) = \frac{(bc)^4 \eta}{D_o} \quad (7)
\]

\[
W_S = - \frac{D_0}{\bar{c} \bar{c} G (bc)} \left(W_B,\eta,\eta - 2sp^2 W_B,\eta,\xi,\xi + p^2 W_B,\xi,\xi,\xi,\xi,\xi \right) \quad (8)
\]

where \(D_0, \bar{c}, \bar{c}, c, s, p, b; q \) are defined in Appendix I.

For an exact solution to Eq.(7), the same method of solution is followed as given in Ref.9. An outline of this method is presented here. For the complementary function of Eq. 7, i.e., the general solution of

\[
W_B,\eta,\eta,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi + 2(1+2s^2)p^2 W_B,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi,\xi - 4s(p^3 W_B,\eta,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi,\xi,\xi + p W_B,\eta,\eta,\eta,\eta,\eta,\xi,\xi,\xi,\xi,\xi,\xi,\xi,\xi) = 0 \quad (7a)
\]
a Fourier series is assumed as follows:

\[W_b = A_{10} + \sum_{n=1}^{\infty} \lambda_n \left(P_n \sin \pi n \eta + Q_n \cos \pi n \eta \right) \] (7b)

in which \(n \) is an integer,

\[\lambda_n = \pi n \alpha \]

\[\lambda_n = \text{characteristic number} \]

\[A_{10} = \text{a constant independent of} \ n. \]

By substituting Eq. (7b) in Eq. (7a) and equating the coefficients of \(\sin \pi n \eta \) \& \(\cos \pi n \eta \) two equations for \(P_n \) \& \(Q_n \) are obtained. From these two equations the characteristic double roots are obtained as follows:

\[\lambda_n = H_n (\pm i \alpha \pm c) \]

where \(i = \sqrt{-1} \rightarrow H_n = \alpha \pi /p \)

Because of the multiplicity of the roots of the characteristic equation, \(\lambda_n \) in Eq. (7b) is replaced by a linear combination of \(\lambda_n \) and \(\pm \lambda_n \).

Thus

\[G_n e^{\lambda_n \xi} = C_{1n} \cosh (\xi \eta) \cos (\xi \eta) + C_{2n} \sinh (\xi \eta) \sin (\xi \eta) \]

\[+ G_{1n} \sin (\xi \eta) \cos (\xi \eta) + C_{2n} \cosh (\xi \eta) \sin (\xi \eta) + C_{1n} \sinh (\xi \eta) \cos (\xi \eta) \]

\[+ C_{1n} \cosh (\xi \eta) \sin (\xi \eta) + C_{2n} \sinh (\xi \eta) \sin (\xi \eta) + G_{1n} \sinh (\xi \eta) \sin (\xi \eta) \]

in which \(C_{1n}, C_{2n}, \ldots, C_{1n} \) are arbitrary constants and \(\xi \eta, \xi \eta, \sin \xi \eta, \cosh \xi \eta \) are defined in Appendix I.
The consideration of the inherent polar symmetry of the deflection function requires only even functions to appear in it.

Therefore,

\[C_{2n} = C_{4n} = C_{6n} = C_{8n} = 0 \quad \ldots \quad (7a) \]

Hence,

\[A_n \sigma_n = C_{2n} \cos \beta \sigma_n + C_{4n} \sin \beta \sigma_n \]

\[+ C_{6n} \sin \beta \sigma_n + C_{8n} \cos \beta \sigma_n \]

\[\left(C_{2n} \sin \beta \sigma_n + C_{4n} \cos \beta \sigma_n \right) + C_{6n} \cos \beta \sigma_n + C_{8n} \sin \beta \sigma_n \]

\[\ldots \quad (7b) \]

From \(A_n \) it can be shown that

\[P_n \sigma_n = -C_{2n} \sin \beta \sigma_n + C_{4n} \cos \beta \sigma_n \]

\[- C_{6n} \sin \beta \sigma_n + C_{8n} \cos \beta \sigma_n \]

\[\ldots \quad (7c) \]

For a more general representation of the deflection function \(W_B \), a Fourier series in \(\sin \alpha_n \sigma_n \) and \(\cos \alpha_n \sigma_n \) is also considered; thus the complete form for \(W_B \) is:

\[W_B = A_{10} + \sum_{n=1}^{\infty} \left[A_{2n} \sin \alpha_n \sigma_n + A_{4n} \cos \alpha_n \sigma_n \right] + \left[A_{6n} \sin \alpha_n \sigma_n + A_{8n} \cos \alpha_n \sigma_n \right] \quad \ldots \quad (7d) \]

in which \(A_{2n} \sigma_n \) and \(A_{4n} \sigma_n \) are analogous to

\[P_n \sigma_n \]

The particular integral of Eq. (7) can be taken as

\[\left(\frac{b e}{4 b e_{\alpha}} \right) \left[-e^{-z t} + (i - 2 e^2 + z^2) / p e^2 \right] \]

Also in order to have the same number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
arbitrary constants in \(w_b \) as there are equations, a biharmonic function of the following form:
\[
A_2 \phi^2 + A_4 \phi^2 + A_5 \phi (\eta^4 - \phi^4/p^4)
\]
is added to the deflection function, \(w_b \), in which \(A_2, A_4, A_5 \) are arbitrary constants. Thus, an exact solution to Eq. (7), taking into consideration the inherent field symmetry can be expressed as
\[
w_b = C_1 \phi^2 + C_2 \phi^2 + A_5 \phi (\eta^4 - \phi^4/p^4) + 1 - 2 \phi^4 + \int_0^1 \frac{C_1 \phi^2 + C_2 \phi^2 + A_5 \phi (\eta^4 - \phi^4/p^4)}{2} \, d\eta
\]
\[
+ \sum_{m=1}^{\infty} \left(C_{2m} \sin \phi \sin \eta + C_{2m} \cos \phi \sin \eta \right) \sin \theta \sin \eta
\]
\[
+ \sum_{m=1}^{\infty} \left(C_{2m} \sin \phi \sin \eta + C_{2m} \cos \phi \sin \eta \right) \cosh \sin \eta
\]
\[
+ \sum_{m=1}^{\infty} \left(C_{2m} \sin \phi \sin \eta + C_{2m} \cos \phi \sin \eta \right) \sinh \sin \eta \right] \quad (9)
\]
where
\[
\phi = s K \eta + \alpha \eta
\]
\[
\phi = s \bar{K} \eta + \alpha \eta
\]
and the terms e.g. \(K_n, \bar{K}_n, \ldots \) etc. are defined in Appendix I.

The boundary conditions for a clamped parallelogrammic sandwich panel are:
\[
w_T = w_B + w_s = 0 \quad \text{at} \quad \theta = \pm \theta \quad \ldots \quad (10)
\]
\[
w_T = w_B + w_s = 0 \quad \text{at} \quad \eta = \pm \eta \quad \ldots \quad (11)
\]
\[W_b, x = 0 \quad @ \quad \xi = +1 \quad \text{i.e.,} \]
\[p W_b, \xi - s W_b, \eta = 0 \quad @ \quad \xi = +1 \quad ---- \quad (12) \]
\[W_b, \xi = 0 \quad @ \quad \eta = +1, \] where \(\xi \) is the outwardly drawn normal, \(\text{i.e.,} \)
\[W_b, \eta - s p W_b, \xi = 0 \quad @ \quad \eta = +1 \quad ---- \quad (13) \]

The substitution of Eq. (9) in each of the above four boundary conditions and upon expansion in Fourier Sine and Cosine series and equating the coefficients of the latter to zero (since they are independent) yield 8 equations; hence there would be 12 equations to solve for the 12 constants in Eq. (9).

In the process of satisfying the various boundary conditions, cumbersome and rather lengthy algebra is encountered. This is taken care of by using various symbols e.g., \(f_1, f_2, \ldots, \) etc., in \(R_{1w}, \ R_{2w}, \ldots, \ R_{1w}, \ R_{2w}, \ldots, \) etc to represent the lengthy algebraic expressions defined in Appendix I.

The total deflection, \(W_\eta \), could be expressed in terms of \(W_\eta \) by virtue of Eqs. (10, 15), as follows:
\[W_T = W_B + \sum B_i \hat{B}_i, \theta_z + B_2 \hat{B}_2, \eta \eta + B_3 \hat{B}_3, \gamma \gamma \]

where \(B_1, B_2, B_3 \) are defined in Appendix I.

Thus Eq.(10), for example yields:

\[
A_{10} + A_{30} + A_{40} (s^2) + (1-2s^2 - s^4) / p^4 + A_{50} (1- s^4 / p^4) + A_{50} (12B_2)
\]

\[
+ A_{30} (2B_2) + 8B_2 + A_{40} (2B_3) - 4B_2 / p^4 + 12B_3 s^2 / p^4 - (12B_3 s^2 / p^4) A_{50}
\]

\[
+ \sum \left[(-1)^{m} C_{5n} C_{2n} \sin \theta_2 \nu \sin \theta_1 \nu + C_{6n} \sin \theta_2 \nu \sin \theta_1 \nu + \left(2 \epsilon_4 B_2 \right) C_{7n} \sin \theta_3 \nu \sin \theta_1 \nu
\]

\[
+ (2 \epsilon_4 H \nu B_2) C_{8n} \sin \theta_2 \nu \sin \theta_1 \nu \right] - \cdots \cdots \cdots (14)
\]

Eqn. (14) can be written as:

\[
\frac{f_0}{c}(s) + \sum \left[\frac{f_n}{c}(s) + A_n \sin \alpha_n \nu + B_n \cos \alpha_n \nu \right] = 0 \cdots \cdots (15)
\]

where,

\[
f_0 \left(\frac{s}{c} \right) = A_{10} + A_{30} + A_{40} (s^2) + (1-2s^2 - s^4) / p^4 + A_{50} (1- s^4 / p^4) + A_{50} (12B_2)
\]

\[
+ 8B_2 + A_{40} (2B_3) - 4B_2 / p^4 + 12B_3 s^2 / p^4 - (12B_3 s^2 / p^4) A_{50}
\]

\[
f_{10} \left(\frac{s}{c} \right) = (-1)^{m} C_{5n} C_{2n} \sin \theta_2 \nu \sin \theta_1 \nu + C_{6n} \sin \theta_2 \nu \sin \theta_1 \nu + \left(2 \epsilon_4 B_2 \right) C_{7n} \sin \theta_3 \nu \sin \theta_1 \nu
\]

\[
+ (2 \epsilon_4 H \nu B_2) C_{8n} \sin \theta_2 \nu \sin \theta_1 \nu \right] - \cdots \cdots \cdots (14)
\]

\[
A_n = - \phi_{25n} C_{4n} + \phi_{26n} C_{3n} + \phi_{27n} C_{3n} + \phi_{28n} C_{4n} + \phi_{29n} C_{4n}
\]

\[
B_n = \phi_{27n} C_{3n} + \phi_{28n} C_{3n} + \phi_{29n} C_{3n} + \phi_{21n} C_{4n} + \phi_{22n} C_{4n}
\]

Expanding \(\frac{f_0}{c}(s) \) and \(\frac{f_n}{c}(s) \) in a Fourier Cosine series,

\[
\frac{f_0}{c}(s) = b_0 c + \sum b_n \sin 2 \pi n s
\]

\[
\frac{f_n}{c}(s) = A_n c + \sum A_n \cos 2 \pi n s
\]
Eqn. (15) then becomes:

\[
\begin{align*}
bo + & \sum_{n=1}^{\infty} A_{on} \cos n\pi \xi + \sum_{n=1}^{\infty} B_{on} \sin n\pi \xi \\
& + \sum_{n=1}^{\infty} A_{n} \sin n\pi \xi + \sum_{n=1}^{\infty} B_{n} \cos n\pi \xi = 0
\end{align*}
\]

By changing the "dummy" summation index \(n \) to \(m \) and combining terms, the above Eqn. can be written as:

\[
bo + \sum_{n=1}^{\infty} A_{on} + \sum_{m=1}^{\infty} \left(B_{mn} + \sum_{n=1}^{\infty} A_{mn} \right) \cos m\pi \xi \\
+ \sum_{m=1}^{\infty} A_{m} \sin m\pi \xi = 0
\]

To satisfy the above equation identically,

\[
bo + \sum_{n=1}^{\infty} A_{on} = 0
\]

\[
bo m + B_{mn} + \sum_{n=1}^{\infty} A_{mn} = 0
\]

Writing out these equations in full would give the following:

\[
\begin{align*}
A_{10} + Y_1 A_{20} + Y_2 A_{30} + Y_3 A_{40} + Y_4 A_{50} \\
+ \sum_{n=1}^{\infty} \left(R_{35n} C_{5n} + R_{36n} C_{6n} + R_{37n} C_{7n} + R_{38n} C_{8n} \right) = C \quad \text{(6)}
\end{align*}
\]

\[
\sum_{n=1}^{\infty} \left(C_{5n} R_{28n-1} + C_{6n} R_{29n} + C_{7n} R_{27n} + C_{8n} R_{30n} \right) \\
+ \left[4 A_{40} - 2/p + (1283/p^2) (1 - A_{50}) \right] + 24 A_{10} - (1 - A_{50}) \\
+ \left[4 A_{28n} \right] C_{1n} + \left[4 A_{27n} \right] C_{2n} + \left[4 A_{26n} \right] C_{3n} + \left[4 A_{25n} \right] C_{4n} = C \quad \text{(7)}
\]

\[
\begin{align*}
- \phi_{25n} C_{1n} + \phi_{26n} C_{2n} + \phi_{27n} C_{3n} + \phi_{28n} C_{4n} = 0 \quad \text{(8)}
\end{align*}
\]
Similarly by employing exactly identical expansion procedures with other boundary conditions i.e., boundary conditions (I), (II), and (III) respectively, the following 9 equations are obtained:

\[A_{10} + Y_5 A_{50} + Y_6 A_{30} + Y_7 A_{40} + Y_8 \sum_{n=1}^{\infty} \left(R_{4m} C_n + R_{3m} C_n + R_{2m} C_n + R_{1m} C_n + R_{0m} C_n + C_0 \right) = 0 \]

(19)

\[\phi_{24m} C_{5n} + \phi_{23m} C_{4n} + \sum_{n=1}^{\infty} \left(R_{4m} C_n + R_{3m} C_n + R_{2m} C_n + R_{1m} C_n + R_{0m} C_n \right) = 0 \]

(20)

\[-\phi_{21m} C_{5n} + \phi_{22m} C_{4n} + R_{37n} C_{7n} + R_{36n} C_{6n} = 0 \]

(21)

\[A_{40} = \left(\frac{2}{\mu} \right) A_{50} \]

(22)

\[R_{1m} C_{5n} + R_{2m} C_{4n} + R_{3m} C_{3n} + R_{4m} C_{2n} + R_{5m} C_{1n} + R_{6m} C_{0n} = 0 \]

(23)

\[A_{30} = \left(-2 \right) A_{50} \]

(24)

\[R_{13m} C_{4n} + R_{14m} C_{3n} + R_{15m} C_{2n} + R_{16m} C_{1n} + R_{17m} C_{0n} = 0 \]

(25)

\[R_{17m} C_{1n} + R_{18m} C_{2n} + R_{19m} C_{3n} + R_{20m} C_{4n} + R_{21m} C_{5n} + \sum_{n=1}^{\infty} \left(R_{2m} C_n + R_{22n} C_{2n} + R_{23n} C_{3n} + R_{24n} C_{4n} + R_{25n} C_{5n} \right) = 0 \]

(26)

From Eqs. (16), (19), (22), (25) it is possible to evaluate \(A_{30} \), \(A_{40} \), and \(A_{50} \) in terms of \(C_{m} \cdots C_{n} \) as follows:

\[A_{50} = Y_5 + \sum_{n=1}^{\infty} \left(R_{4m} C_n + R_{3m} C_n + R_{2m} C_n + R_{1m} C_n + R_{0m} C_n + C_0 \right) \]

\[A_{40} = \left(\frac{2}{\mu} \right) A_{50} \]

\[A_{30} = \left(-2 \right) A_{50} \]
\[A_{10} = -\sum_{n=0}^{\infty} Y_n A_{20} + Y_1 A_{40} + Y_2 + \frac{1}{6} A_{50} + \sum_{n=1}^{\infty} (R_{42n} C_n + R_{43n} C_n + R_{44n} C_n + R_{51n} C_n + R_{52n} C_n + R_{53n} C_n) \]

Eqns. (17), (18), (20), (21), (23), (24), (26), (27) could be rewritten by substituting the values of \(A_{10}, A_{30}, A_{40} \) and \(A_{50} \) which are now in terms of \(C_1 \) ---- \(C_8 \) and eight simultaneous equations comprising \(C_1 \) ---- \(C_8 \) could be formed as follows:

\[\sum_{n=1}^{\infty} (R_{54n} C_n + R_{55n} C_n + R_{56n} C_n + R_{57n} C_n + R_{58n} C_n + R_{60n} C_n + R_{54n} C_n + R_{61n} C_n) = R_{53n} \]

\[R_{90n} C_n + R_{100n} C_n + R_{110n} C_n + R_{120n} C_n = 0 \]

\[\sum_{n=1}^{\infty} (R_{63n} C_n + R_{64n} C_n + R_{65n} C_n + R_{66n} C_n + R_{67n} C_n + R_{68n} C_n + R_{69n} C_n + R_{70n} C_n) = R_{62n} \]

\[R_{10n} C_n + R_{11n} C_n + R_{12n} C_n + R_{13n} C_n + R_{14n} C_n + R_{15n} C_n + R_{16n} C_n = 0 \]

\[-\sum_{n=1}^{\infty} (R_{72n} C_n + R_{73n} C_n + R_{74n} C_n + R_{75n} C_n + R_{76n} C_n + R_{77n} C_n + R_{78n} C_n + R_{79n} C_n) = R_{71n} \]

\[-R_{80n} C_n + R_{81n} C_n + R_{82n} C_n + R_{83n} C_n + R_{84n} C_n + R_{85n} C_n + R_{86n} C_n = 0 \]

\[\sum_{n=1}^{\infty} (R_{91n} C_n + R_{92n} C_n + R_{93n} C_n + R_{94n} C_n + R_{95n} C_n + R_{96n} C_n + R_{97n} C_n + R_{98n} C_n) = R_{90n} \]
Equations (28) – (35) can be arranged in a matrix form for the solution of the coefficients C_1, \ldots, C_n as follows:

\[
\begin{bmatrix}
R_{13} S_n & R_{14} S_n & R_{15} S_n & R_{16} S_n & 0 & 0 & 0 & 0 \\
-\phi S_n & \phi S_n & R_{23} S_n & R_{24} S_n & 0 & 0 & 0 & 0 \\
R_{54} S_n & R_{55} S_n & R_{56} S_n & R_{57} S_n & R_{58} S_n & R_{59} S_n & R_{510} S_n & R_{511} S_n \\
R_{65} S_n & R_{66} S_n & R_{67} S_n & R_{68} S_n & R_{69} S_n & R_{610} S_n & R_{611} S_n & R_{612} S_n \\
R_{76} S_n & R_{77} S_n & R_{78} S_n & R_{79} S_n & R_{710} S_n & R_{711} S_n & R_{712} S_n & R_{713} S_n \\
R_{87} S_n & R_{88} S_n & R_{89} S_n & R_{810} S_n & R_{811} S_n & R_{812} S_n & R_{813} S_n & R_{814} S_n \\
0 & 0 & 0 & 0 & R_{12} S_n & R_{13} S_n & R_{14} S_n & R_{15} S_n & R_{16} S_n & R_{17} S_n & R_{18} S_n & R_{19} S_n & R_{110} S_n & R_{111} S_n & R_{112} S_n & R_{113} S_n & R_{114} S_n \\
0 & 0 & 0 & 0 & -\phi S_n & \phi S_n & R_{23} S_n & R_{24} S_n & R_{25} S_n & R_{26} S_n & R_{27} S_n & R_{28} S_n & R_{29} S_n & R_{210} S_n & R_{211} S_n & R_{212} S_n & R_{213} S_n & R_{214} S_n \\
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_5 \\
C_6 \\
C_7 \\
C_8 \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
C_7 \\
C_8 \\
\end{bmatrix}
\]

where S_n = Kronecker delta

i.e. $S_n = 0$ for $m \neq n$ and $S_n = 1$ for $m = n$

Once the eight constants dependent on n, C_1, \ldots, C_n are found, the constants A_{10}, A_{20}, A_{40}, A_{50} can be easily established from Eqs. (16), (19), (22) and (25).

Hence the deflection functions W_6 and W_8 are explicitly known and hence the moments and shears are readily obtained.
Expressions for Moments and Shears

The moments \(M \) and shears \(S \) at a joint in a sandwich plate, in rectangular co-ordinates \(X \) \& \(Y \) are given by:

\[
M_X = -D \left(W_{b, xx} + v W_{b, yy} \right) \\
M_Y = -D \left(W_{b, yy} + v W_{b, xx} \right) \\
M_{xy} = D (1-v) W_{b, xy} \\
Q_X = -D \left(W_{b, yxx} + W_{b, yyy} \right)
\]

By transforming the rectangular co-ordinates into dimensionless skew co-ordinates \(\eta, \xi \), the expressions for moments and shears become:

\[
M_X = -D \left(a_1 W_\eta, \eta + a_2 W_\eta, \xi + a_3 W_\xi, \xi + a_4 W_\xi, \eta + a_5 W_\xi, \xi + a_6 W_\xi, \xi + a_7 W_\xi, \eta + a_8 W_\xi, \xi \right) / \left(bc \right)^2 \\
M_Y = -D \left(b_1 W_\eta, \eta + b_2 W_\eta, \xi + b_3 W_\xi, \xi + b_4 W_\xi, \eta + b_5 W_\xi, \xi + b_6 W_\xi, \xi + b_7 W_\xi, \eta + b_8 W_\xi, \xi \right) / \left(bc \right)^2 \\
M_{xy} = D (1-v) c (-s W_\eta, \eta + \bar{s} W_\eta, \xi) / \left(bc \right)^2 \\
Q_X = -c (d W_\eta, \eta + e W_\eta, \xi + d W_\eta, \xi + e W_\eta, \xi + d W_\xi, \eta + e W_\xi, \xi) \left(bc \right)^3 \\
Q_Y = -c (d W_\eta, \eta + e W_\eta, \xi + d W_\eta, \xi + e W_\eta, \xi + d W_\xi, \eta + e W_\xi, \xi) \left(bc \right)^3
\]

Evaluating the derivatives of \(W_{b, \xi} \) in the above formulas, the resulting expressions for the moments and shears are as follows:

\[
M_X = -\frac{2}{y^2} (bc)^2 \sum \left[C_{\eta, \eta, \eta} \left(a_1 C_{\eta, \eta} + a_2 C_{\eta, \xi} \right) + \frac{S_{\eta, \eta, \xi} + S_{\eta, \xi, \xi}}{2} \left(a_7 C_{\eta, \xi} + a_8 C_{\eta, \xi} \right) \right] \\
+ \frac{3}{y^2} \left[C_{\eta, \eta, \eta} \left(a_1 C_{\eta, \eta} + a_2 C_{\eta, \xi} \right) + \frac{S_{\eta, \eta, \xi} + S_{\eta, \xi, \xi}}{2} \left(a_7 C_{\eta, \xi} + a_8 C_{\eta, \xi} \right) \right] \\
+ \frac{3}{y^2} \left[C_{\eta, \eta, \eta} \left(a_1 C_{\eta, \eta} + a_2 C_{\eta, \xi} \right) + \frac{S_{\eta, \eta, \xi} + S_{\eta, \xi, \xi}}{2} \left(a_7 C_{\eta, \xi} + a_8 C_{\eta, \xi} \right) \right] \\
+ \frac{3}{y^2} \left[C_{\eta, \eta, \eta} \left(a_1 C_{\eta, \eta} + a_2 C_{\eta, \xi} \right) + \frac{S_{\eta, \eta, \xi} + S_{\eta, \xi, \xi}}{2} \left(a_7 C_{\eta, \xi} + a_8 C_{\eta, \xi} \right) \right] \\
+ \frac{3}{y^2} \left[C_{\eta, \eta, \eta} \left(a_1 C_{\eta, \eta} + a_2 C_{\eta, \xi} \right) + \frac{S_{\eta, \eta, \xi} + S_{\eta, \xi, \xi}}{2} \left(a_7 C_{\eta, \xi} + a_8 C_{\eta, \xi} \right) \right]
\]
\[
\begin{align*}
M_y &= \left(-\frac{q}{48}\right)(bc)^2 \sum_{n=1}^{\infty} \left[C_{n} \bar{S}_{n} \bar{C}_{n} \bar{S}_{m} \left(-a_{1} C_{m} + b_{2} C_{m}\right) \right. \\
&+ S_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{1} C_{m} + b_{2} C_{m}\right) + S_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{1} C_{m}\right) \\
&\left. + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{3} C_{m} \right) + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{3} C_{m} \right) + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{3} C_{m} \right) \right] \\
&\left[2 A_{30} - 4 + \left(\frac{24 \eta^2}{p^2} + 12 \gamma / p\right) \left(1 - A_{50}\right)\right] \\
M_{xy} &= \left(-\frac{q}{48}\right)(bc)^2 c (1 - v) \sum_{n=1}^{\infty} \left[S_{n} \bar{S}_{n} \bar{S}_{m} \left(C_{1} C_{m} + b_{2} C_{m}\right) \right. \\
&+ S_{n} \bar{S}_{n} \bar{S}_{m} \left(C_{1} C_{m} + b_{2} C_{m}\right) + S_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{1} C_{m}\right) \\
&\left. + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \left(C_{3} C_{m} + b_{2} C_{m} + C_{1} C_{m}\right) + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \left(-a_{3} C_{m}\right) \right] \\
&\left[2 A_{30} - 4 + \left(\frac{24 \eta^2}{p^2} + 12 \gamma / p\right) \left(1 - A_{50}\right)\right] \\
Q_x &= \left(-\frac{q}{48}\right)(bc)^2 \sum_{n=1}^{\infty} \left[C_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} \right. \\
&+ C_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} + C_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} + C_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} \right] \\
&\left[-24 \eta \left(1 + A_{50}\right) \theta + \left(24 \gamma / p\right) \left(1 - A_{50}\right)\right] \\
Q_y &= \left(-\frac{q}{48}\right)(bc)^2 \sum_{n=1}^{\infty} \left[-d_{1} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} + d_{1} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} C_{m} \right. \\
&+ \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} \left(d_{1} C_{m} - d_{2} C_{m}\right) + \bar{S}_{n} \bar{S}_{n} \bar{S}_{m} \bar{C}_{m} \left(d_{1} C_{m} - d_{2} C_{m}\right) \right] \\
&\left[+24 \eta \left(1 + A_{50}\right) \theta + \left(24 \gamma / p\right) \left(1 - A_{50}\right)\right]
\end{align*}
\]
It is important from the point of studying the behaviour of sandwich plates to evaluate the centre deflection and the centre moments. These can be readily obtained by substituting \(\gamma = \beta = 0 \) in the general expressions for deflections and moments.

Thus at the centre of the plate:

\[
W_0 = \left\{ \sum_{n=1}^{\infty} \left(C_{5n} + C_{11n} \right) + A_{10} + 1 + \frac{1}{\rho^4} \right\} \left(\frac{bc}{48D_0} \right)^2 \\
W_3 = \left\{ \sum_{n=1}^{\infty} \left[(2cB_1 - B_3)C_{7n} + (2cB_2)C_{5n} + B_2(4a_0 - 4) + C_5V - A_0 - 4 \right] \right\} \left(\frac{bc}{48D_0} \right)^2 \\
M_x = \left\{ -\frac{9}{48} \right\} \left(\frac{bc}{2} \right)^2 \left\{ \sum_{n=1}^{\infty} \left\{ \left(a_1 C_{5n} + a_2 C_{7n} \right) + \left(a_3 C_{7n} + a_4 C_{2n} + a_5 C_{3n} + a_6 C_{5n} - 2 \right) \right\} \right\} \\
M_y = \left\{ -\frac{9}{48} \right\} \left(\frac{bc}{2} \right)^2 \left\{ \sum_{n=1}^{\infty} \left\{ \left(-a_1 C_{5n} + b_2 C_{7n} \right) + \left(-a_3 C_{7n} + a_4 C_{2n} + a_5 C_{3n} + a_6 C_{5n} \right) \right\} \right\} \\
M_{xy} = \left\{ \frac{9}{48} \right\} \left(\frac{bc}{2} \right)^2 \left(\frac{1 - \nu}{2} \right) \left\{ \sum_{n=1}^{\infty} \left\{ \left(-c_1 C_{6n} - c_2 C_{8n} \right) + \left(c_3 C_{1n} - c_4 C_{2n} + c_5 C_{3n} - c_6 C_{5n} \right) \right\} \right\} \\
-5 \left(2A_{30} - 4 \right) \\
Q_x = 0 \\
Q_y = 0
\]
(a) **Materials & Apparatus:**

Three different kinds of sandwich plates were tested. These were sandwich plates made up of:

- Aluminium faces and
 - 1) honeycombed paper core
 - 2) styrafoam core
 - 3) plywood core

The sizes and angles of skew of the first two kinds were:

- a) 30 in. X 20 in., 30° skew
- b) 16 in. X 14 in., 50° skew
- c) 15 in. X 12 in., 30° skew.

The size and the angle of skew of the plywood core plate was 16 in. X 14 in. and 50° respectively. Altogether seven plates, three from each of the first two kinds and one from the third kind, were tested. Six strain rosette gauges, three on top and three on the bottom of the plates, were installed on each plate. The thickness of core was 1.0 inch for all plates, the thickness of the faces being 0.025 inch in every case. All rosette gauges were of the 3-gauge 45° rectangular type, having a gauge factor of 2.05 and a resistance of 120 ohms. Terminal strips (type T-50) were used to connect the lead wires to the gauge tabs. The wire leads were at least 12'-0 feet long and were made of No.26 stranded copper wire and with vinyl insulation.

Each sandwich plate was stiffened around the edges by 3 in. X 1 in. plywood stiffeners glued in between the aluminum faces so that the edges
did not get crushed and distorted under clamping conditions. To provide support for the plates, frames shaped to suit the dimensions and skew angles of sandwich plates were made from standard steel channels 12 in. deep and weighing 20.7 lbs./ft. The larger frame, i.e. one for the plates 30 in. x 20 in. @ 30° skew was provided with 1/4 in. thick vertical stiffeners welded to the web of the channels to ensure against any possible twisting of the frame. To simulate the built-in edge condition, the sandwich plate was sandwiched between the flange of the channels and a 1 inch thick cold-rolled steel pressure plate, 3 inches wide. The plate was cut in such a way that it provided a clamping edge of three inches while the width of the flange of the channel was also three inches. An aluminum plate having the same outside dimensions and skew as the model sandwich plate was put on top of the cold rolled frame and the whole assembly of the model sandwich plate, pressure plate, aluminum cover plate were clamped to the channels of the supporting frame by strong U-shaped steel clamps. The sandwich plate was loaded by air pressure through a hole drilled in the side of the pressure frame, the air chamber being formed by the enclosed space between the pressure plate and the bottom of the aluminum cover plate. This chamber was made airtight by providing gaskets on top and bottom surface of the pressure plate. Strains were measured by means of a switch and balancing unit and a digital strain indicator which permitted the strains to be printed out directly in micro-inch per inch. Several dial gauges were used to measure the deflections at various points on the bottom of the model plates.

(b) Procedure & Results:

Each plate was cleaned and the gauge locations on top and bottom
surfaces of the plates were precisely marked. The installation of the gages followed a standard procedure as described below:

i) the spot where the rosette was to be placed was first wiped clean with acetone, sanded with silicon carbide paper.

ii) The gage location was again cleaned with a metal conditioner and then with a neutralizer.

iii) The rosette and the terminal strips were properly lined and Eastman 910 cement was applied to stick the assembly onto the plate.

iv) The gage and the terminal were left to dry for one minute during which time pressure was applied to the gage by means of the thumb.

v) The insulation of both ends of the lead wires was stripped and the bare copper strands twisted. Each lead wire consisted of three copper strands, one strand was soldered to one tab of the terminal strip while the other two were twisted together and soldered to the other tab of the terminal. The tabs of the terminal strips were then connected in turn with the tabs of the gages by means of thin copper jumper wires.

vi) To provide waterproof and mechanical protection, besides the usual highly insulating gage coating, a special transparent glue was applied to cover the entire gage and part of the lead wires.

Gage lead wires from 6 rosette gages were soldered to four 5-channel receptacles especially provided for the switch and balance unit. The unit strains were automatically printed out by a printing unit attached to the strain indicator.

All the gages and dial indicators were "Zeroed in" before loading of each plate and the zero readings were recorded for the strains and deflections as well. For each increment of loading similar readings were
taken and recorded. The average of the loading and unloading readings was computed and the resulting strains tabulated in Table II. Three strain values \(e_a, e_b, \) and \(e_c \) (see Fig. 3) were obtained from each rosette gage. From these the values of the principal stresses and principal moments were calculated by the following formulae:

\[
\sigma_{\text{max}} = \frac{E}{2} \left(\frac{e_a + e_c}{1-\nu} + \frac{1}{1+\nu} \sqrt{2(e_a-e_c)^2 + 2(e_a-e_b)^2} \right) \tag{36}
\]

\[
\sigma_{\text{min}} = \frac{E}{2} \left(\frac{e_a + e_c}{1-\nu} - \frac{1}{1+\nu} \sqrt{2(e_a-e_b)^2 + 2(e_a-e_c)^2} \right) \tag{37}
\]

\[
\phi = \frac{1}{2} \tan^{-1} \left(\frac{2(e_a-e_c)}{e_a-e_b} \right) - 45^\circ \tag{38}
\]

where \(\phi \) gives the direction in which the maximum stress occurs, this angle being measured counter-clockwise from the X-axis.

The moments are then given by:

\[
M_{\text{max}} = t(\bar{e}+t) \sigma_{\text{max}} \tag{39}
\]

\[
M_{\text{min}} = t(\bar{e}+t) \sigma_{\text{min}} \tag{40}
\]
TABLE I

Detailed Description of the Experimental Sandwich Panels

\[a = \text{Half of the width of a sandwich panel} \]
\[b = \text{Half of the length of a sandwich panel} \]
\[p = b/a, \text{ Aspect Ratio} \]
\[\phi = \text{Angle of skew} \]

The thickness of each face, \(t = 0.012" \) for all panels

The core thickness of sandwich plates, \(c = 1.0" \) for all panels

<table>
<thead>
<tr>
<th>Panel No.</th>
<th>(a) (in)</th>
<th>(b) (in)</th>
<th>(p)</th>
<th>(\phi)</th>
<th>Core Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0</td>
<td>15.0</td>
<td>1.5</td>
<td>30°</td>
<td>Paper (Honeycomb)</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
<td>15.0</td>
<td>1.5</td>
<td>30°</td>
<td>Styrafoam</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>7.5</td>
<td>1.25</td>
<td>30°</td>
<td>Paper (Honeycomb)</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>7.5</td>
<td>1.25</td>
<td>30°</td>
<td>Styrafoam</td>
</tr>
<tr>
<td>5</td>
<td>7.0</td>
<td>8.0</td>
<td>1.14</td>
<td>50°</td>
<td>Paper (Honeycomb)</td>
</tr>
<tr>
<td>6</td>
<td>7.0</td>
<td>8.0</td>
<td>1.14</td>
<td>50°</td>
<td>Styrafoam</td>
</tr>
<tr>
<td>7</td>
<td>7.0</td>
<td>8.0</td>
<td>1.14</td>
<td>50°</td>
<td>Plywood</td>
</tr>
</tbody>
</table>
TABLE II

Average Strains at Different Gage Locations for Panel 1

All Strains are in Micro-inch per inch

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.15 p.s.i.</th>
<th>0.30 p.s.i.</th>
<th>0.45 p.s.i.</th>
<th>0.60 p.s.i.</th>
<th>0.75 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>+25</td>
<td>+53</td>
<td>+76</td>
<td>+99</td>
<td>+124</td>
</tr>
<tr>
<td>1b</td>
<td>+19</td>
<td>+36</td>
<td>+53</td>
<td>+74</td>
<td>+89</td>
</tr>
<tr>
<td>1c</td>
<td>-8</td>
<td>-16</td>
<td>-24</td>
<td>-31</td>
<td>-40</td>
</tr>
<tr>
<td>2a</td>
<td>+28</td>
<td>+53</td>
<td>+73</td>
<td>+86</td>
<td>+103</td>
</tr>
<tr>
<td>2b</td>
<td>+46</td>
<td>+91</td>
<td>+127</td>
<td>+145</td>
<td>+177</td>
</tr>
<tr>
<td>2c</td>
<td>+17</td>
<td>+34</td>
<td>+46</td>
<td>+59</td>
<td>+64</td>
</tr>
<tr>
<td>3a</td>
<td>-8</td>
<td>-15</td>
<td>-19</td>
<td>-27</td>
<td>-33</td>
</tr>
<tr>
<td>3b</td>
<td>-7</td>
<td>-13</td>
<td>-17</td>
<td>-24</td>
<td>-32</td>
</tr>
<tr>
<td>3c</td>
<td>-1</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-5</td>
</tr>
<tr>
<td>4a</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>4b</td>
<td>-13</td>
<td>-25</td>
<td>-41</td>
<td>-54</td>
<td>-70</td>
</tr>
<tr>
<td>4c</td>
<td>-14</td>
<td>-30</td>
<td>-47</td>
<td>-59</td>
<td>-76</td>
</tr>
<tr>
<td>5a</td>
<td>-22</td>
<td>-45</td>
<td>-69</td>
<td>-85</td>
<td>-107</td>
</tr>
<tr>
<td>5b</td>
<td>-62</td>
<td>-100</td>
<td>-138</td>
<td>-171</td>
<td>-199</td>
</tr>
<tr>
<td>5c</td>
<td>-24</td>
<td>-53</td>
<td>-70</td>
<td>-81</td>
<td>-97</td>
</tr>
<tr>
<td>6a</td>
<td>+8</td>
<td>+14</td>
<td>+19</td>
<td>+25</td>
<td>+26</td>
</tr>
<tr>
<td>6b</td>
<td>+11</td>
<td>+22</td>
<td>+35</td>
<td>+50</td>
<td>+57</td>
</tr>
<tr>
<td>6c</td>
<td>+10</td>
<td>+20</td>
<td>+28</td>
<td>+37</td>
<td>+42</td>
</tr>
</tbody>
</table>
TABLE II (CONT'D)

Average Strains at Different Gage Locations for Panel 2

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.11p.s.i.</th>
<th>0.21p.s.i.</th>
<th>0.32p.s.i.</th>
<th>0.43p.s.i.</th>
<th>0.53p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-12</td>
<td>-20</td>
<td>-28</td>
<td>-40</td>
<td>-44</td>
</tr>
<tr>
<td>1b</td>
<td>+10</td>
<td>+24</td>
<td>+42</td>
<td>+56</td>
<td>+72</td>
</tr>
<tr>
<td>1c</td>
<td>+17</td>
<td>+41</td>
<td>+59</td>
<td>+85</td>
<td>+106</td>
</tr>
<tr>
<td>2a</td>
<td>+26</td>
<td>+46</td>
<td>+61</td>
<td>+87</td>
<td>+101</td>
</tr>
<tr>
<td>2b</td>
<td>+43</td>
<td>+93</td>
<td>+135</td>
<td>+182</td>
<td>+229</td>
</tr>
<tr>
<td>2c</td>
<td>+23</td>
<td>+46</td>
<td>+70</td>
<td>+94</td>
<td>+115</td>
</tr>
<tr>
<td>3a</td>
<td>0</td>
<td>-1</td>
<td>-6</td>
<td>-9</td>
<td>-7</td>
</tr>
<tr>
<td>3b</td>
<td>-2</td>
<td>+8</td>
<td>-9</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>3c</td>
<td>-3</td>
<td>+2</td>
<td>-3</td>
<td>-8</td>
<td>-9</td>
</tr>
<tr>
<td>4a</td>
<td>+4</td>
<td>+6</td>
<td>+6</td>
<td>+8</td>
<td>+8</td>
</tr>
<tr>
<td>4b</td>
<td>-15</td>
<td>-30</td>
<td>-44</td>
<td>-60</td>
<td>-73</td>
</tr>
<tr>
<td>4c</td>
<td>-18</td>
<td>-33</td>
<td>-45</td>
<td>-62</td>
<td>-76</td>
</tr>
<tr>
<td>5a</td>
<td>-18</td>
<td>-35</td>
<td>-49</td>
<td>-65</td>
<td>-79</td>
</tr>
<tr>
<td>5b</td>
<td>-31</td>
<td>-66</td>
<td>-89</td>
<td>-121</td>
<td>-145</td>
</tr>
<tr>
<td>5c</td>
<td>-17</td>
<td>-28</td>
<td>-40</td>
<td>-44</td>
<td>-46</td>
</tr>
<tr>
<td>6a</td>
<td>+5</td>
<td>+18</td>
<td>+28</td>
<td>+42</td>
<td>+53</td>
</tr>
<tr>
<td>6b</td>
<td>+13</td>
<td>+29</td>
<td>+45</td>
<td>+63</td>
<td>+79</td>
</tr>
<tr>
<td>6c</td>
<td>+10</td>
<td>+22</td>
<td>+31</td>
<td>+43</td>
<td>+55</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE II (CONT'D)

Average Strains at Different Gage Locations for Panel 3

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.32 p.s.i.</th>
<th>0.64 p.s.i.</th>
<th>0.96 p.s.i.</th>
<th>1.28 p.s.i.</th>
<th>1.60 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>+2</td>
<td>-7</td>
<td>-8</td>
<td>-14</td>
<td>-15</td>
</tr>
<tr>
<td>lb</td>
<td>+6</td>
<td>+10</td>
<td>+19</td>
<td>+28</td>
<td>+34</td>
</tr>
<tr>
<td>lc</td>
<td>+12</td>
<td>+21</td>
<td>+36</td>
<td>+51</td>
<td>+62</td>
</tr>
<tr>
<td>2a</td>
<td>+8</td>
<td>+21</td>
<td>+29</td>
<td>+47</td>
<td>+50</td>
</tr>
<tr>
<td>2b</td>
<td>+23</td>
<td>+64</td>
<td>+106</td>
<td>+147</td>
<td>+175</td>
</tr>
<tr>
<td>2c</td>
<td>+20</td>
<td>+42</td>
<td>+59</td>
<td>+87</td>
<td>+97</td>
</tr>
<tr>
<td>3a</td>
<td>-3</td>
<td>-8</td>
<td>-12</td>
<td>-17</td>
<td>-20</td>
</tr>
<tr>
<td>3b</td>
<td>+2</td>
<td>-1</td>
<td>-7</td>
<td>-7</td>
<td>-11</td>
</tr>
<tr>
<td>3c</td>
<td>-7</td>
<td>+5</td>
<td>+8</td>
<td>+4</td>
<td>+7</td>
</tr>
<tr>
<td>4a</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-7</td>
<td>-8</td>
</tr>
<tr>
<td>4b</td>
<td>-6</td>
<td>-11</td>
<td>-18</td>
<td>-24</td>
<td>-29</td>
</tr>
<tr>
<td>4c</td>
<td>-6</td>
<td>-14</td>
<td>-20</td>
<td>-28</td>
<td>-32</td>
</tr>
<tr>
<td>5a</td>
<td>-13</td>
<td>-32</td>
<td>-49</td>
<td>-68</td>
<td>-78</td>
</tr>
<tr>
<td>5b</td>
<td>-16</td>
<td>-41</td>
<td>-64</td>
<td>-89</td>
<td>-101</td>
</tr>
<tr>
<td>5c</td>
<td>-20</td>
<td>-39</td>
<td>-57</td>
<td>-112</td>
<td>-93</td>
</tr>
<tr>
<td>6a</td>
<td>-3</td>
<td>-2</td>
<td>+3</td>
<td>+7</td>
<td>+12</td>
</tr>
<tr>
<td>6b</td>
<td>+3</td>
<td>+9</td>
<td>+17</td>
<td>+26</td>
<td>+31</td>
</tr>
<tr>
<td>6c</td>
<td>+3</td>
<td>+8</td>
<td>+17</td>
<td>+25</td>
<td>+31</td>
</tr>
</tbody>
</table>
TABLE II (CONT'D)

Average Strains at Different Gage Locations for Panel 4

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.16 p.s.i.</th>
<th>0.32 p.s.i.</th>
<th>0.48 p.s.i.</th>
<th>0.64 p.s.i.</th>
<th>0.80 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-7</td>
<td>-15</td>
<td>-22</td>
<td>-26</td>
<td>-36</td>
</tr>
<tr>
<td>1b</td>
<td>+15</td>
<td>+33</td>
<td>+49</td>
<td>+71</td>
<td>+94</td>
</tr>
<tr>
<td>1c</td>
<td>+17</td>
<td>+38</td>
<td>+60</td>
<td>+83</td>
<td>+107</td>
</tr>
<tr>
<td>2a</td>
<td>+17</td>
<td>+33</td>
<td>+49</td>
<td>+75</td>
<td>+99</td>
</tr>
<tr>
<td>2b</td>
<td>+39</td>
<td>+83</td>
<td>+123</td>
<td>+166</td>
<td>+217</td>
</tr>
<tr>
<td>2c</td>
<td>+10</td>
<td>+35</td>
<td>+57</td>
<td>+80</td>
<td>+111</td>
</tr>
<tr>
<td>3a</td>
<td>-6</td>
<td>-13</td>
<td>-16</td>
<td>-25</td>
<td>-29</td>
</tr>
<tr>
<td>3b</td>
<td>-11</td>
<td>-23</td>
<td>-27</td>
<td>-36</td>
<td>-35</td>
</tr>
<tr>
<td>3c</td>
<td>-1</td>
<td>-4</td>
<td>-13</td>
<td>-16</td>
<td>-20</td>
</tr>
<tr>
<td>4a</td>
<td>+4</td>
<td>+4</td>
<td>+11</td>
<td>+13</td>
<td>+15</td>
</tr>
<tr>
<td>4c</td>
<td>-16</td>
<td>-32</td>
<td>-44</td>
<td>-59</td>
<td>-71</td>
</tr>
<tr>
<td>5a</td>
<td>-16</td>
<td>-33</td>
<td>-47</td>
<td>-64</td>
<td>-77</td>
</tr>
<tr>
<td>5b</td>
<td>-32</td>
<td>-63</td>
<td>-91</td>
<td>-122</td>
<td>-149</td>
</tr>
<tr>
<td>5c</td>
<td>-16</td>
<td>-34</td>
<td>-51</td>
<td>-63</td>
<td>-75</td>
</tr>
<tr>
<td>6a</td>
<td>+8</td>
<td>+14</td>
<td>+20</td>
<td>+28</td>
<td>+42</td>
</tr>
<tr>
<td>6b</td>
<td>+12</td>
<td>+24</td>
<td>+35</td>
<td>+46</td>
<td>+63</td>
</tr>
<tr>
<td>6c</td>
<td>+10</td>
<td>+18</td>
<td>+26</td>
<td>+36</td>
<td>+46</td>
</tr>
</tbody>
</table>
Average Strains at Different Gage Locations for Panel 5

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.16 p.s.i.</th>
<th>0.32 p.s.i.</th>
<th>0.48 p.s.i.</th>
<th>0.64 p.s.i.</th>
<th>0.80 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-9</td>
<td>-10</td>
<td>-11</td>
<td>-13</td>
<td>-17</td>
</tr>
<tr>
<td>1b</td>
<td>+13</td>
<td>+30</td>
<td>+47</td>
<td>+59</td>
<td>+82</td>
</tr>
<tr>
<td>1c</td>
<td>+7</td>
<td>+23</td>
<td>+36</td>
<td>+50</td>
<td>+68</td>
</tr>
<tr>
<td>2a</td>
<td>+15</td>
<td>+27</td>
<td>+33</td>
<td>+54</td>
<td>+55</td>
</tr>
<tr>
<td>2b</td>
<td>+18</td>
<td>+40</td>
<td>+64</td>
<td>+89</td>
<td>+112</td>
</tr>
<tr>
<td>2c</td>
<td>+10</td>
<td>+17</td>
<td>+22</td>
<td>+43</td>
<td>+55</td>
</tr>
<tr>
<td>3a</td>
<td>-6</td>
<td>-10</td>
<td>-11</td>
<td>-14</td>
<td>-21</td>
</tr>
<tr>
<td>3b</td>
<td>-2</td>
<td>-10</td>
<td>-16</td>
<td>-21</td>
<td>-25</td>
</tr>
<tr>
<td>3c</td>
<td>-9</td>
<td>-9</td>
<td>-11</td>
<td>-13</td>
<td>-15</td>
</tr>
<tr>
<td>4a</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4b</td>
<td>-18</td>
<td>-32</td>
<td>-50</td>
<td>-69</td>
<td>-80</td>
</tr>
<tr>
<td>4c</td>
<td>-10</td>
<td>-22</td>
<td>-34</td>
<td>-45</td>
<td>-57</td>
</tr>
<tr>
<td>5a</td>
<td>-15</td>
<td>-30</td>
<td>-45</td>
<td>-59</td>
<td>-71</td>
</tr>
<tr>
<td>5b</td>
<td>-22</td>
<td>-46</td>
<td>-66</td>
<td>-90</td>
<td>-109</td>
</tr>
<tr>
<td>5c</td>
<td>-5</td>
<td>-10</td>
<td>-19</td>
<td>-22</td>
<td>-24</td>
</tr>
<tr>
<td>6a</td>
<td>0</td>
<td>+1</td>
<td>+5</td>
<td>+7</td>
<td>+12</td>
</tr>
<tr>
<td>6b</td>
<td>-2</td>
<td>+6</td>
<td>+13</td>
<td>+20</td>
<td>+28</td>
</tr>
<tr>
<td>6c</td>
<td>-1</td>
<td>+6</td>
<td>+11</td>
<td>+15</td>
<td>+21</td>
</tr>
</tbody>
</table>
TABLE II (CONT'D)

Average Strains at Different Gage Locations for Panel 6

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>0.43 p.s.i.</th>
<th>0.85 p.s.i.</th>
<th>1.28 p.s.i.</th>
<th>1.70 p.s.i.</th>
<th>2.13 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>+4</td>
<td>+8</td>
<td>+11</td>
<td>+19</td>
<td>+20</td>
</tr>
<tr>
<td>1b</td>
<td>+10</td>
<td>+18</td>
<td>+28</td>
<td>+41</td>
<td>+45</td>
</tr>
<tr>
<td>1c</td>
<td>+2</td>
<td>+3</td>
<td>+10</td>
<td>+16</td>
<td>+22</td>
</tr>
<tr>
<td>2a</td>
<td>+2</td>
<td>+6</td>
<td>+12</td>
<td>+16</td>
<td>+19</td>
</tr>
<tr>
<td>2b</td>
<td>+22</td>
<td>+45</td>
<td>+65</td>
<td>+90</td>
<td>+110</td>
</tr>
<tr>
<td>2c</td>
<td>+13</td>
<td>+30</td>
<td>+43</td>
<td>+60</td>
<td>+77</td>
</tr>
<tr>
<td>3a</td>
<td>-5</td>
<td>-5</td>
<td>-7</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>3b</td>
<td>-6</td>
<td>-12</td>
<td>-13</td>
<td>-20</td>
<td>-37</td>
</tr>
<tr>
<td>3c</td>
<td>-8</td>
<td>-17</td>
<td>-22</td>
<td>-32</td>
<td>-40</td>
</tr>
<tr>
<td>4a</td>
<td>-5</td>
<td>-10</td>
<td>-14</td>
<td>-19</td>
<td>-20</td>
</tr>
<tr>
<td>4b</td>
<td>-14</td>
<td>-27</td>
<td>-43</td>
<td>-56</td>
<td>-66</td>
</tr>
<tr>
<td>4c</td>
<td>-13</td>
<td>-24</td>
<td>-37</td>
<td>-48</td>
<td>-56</td>
</tr>
<tr>
<td>5a</td>
<td>-4</td>
<td>-12</td>
<td>-17</td>
<td>-23</td>
<td>-27</td>
</tr>
<tr>
<td>5b</td>
<td>-22</td>
<td>-42</td>
<td>-57</td>
<td>-78</td>
<td>-102</td>
</tr>
<tr>
<td>5c</td>
<td>-12</td>
<td>-27</td>
<td>-39</td>
<td>-52</td>
<td>-57</td>
</tr>
<tr>
<td>6a</td>
<td>+3</td>
<td>+8</td>
<td>+14</td>
<td>+19</td>
<td>+25</td>
</tr>
<tr>
<td>6b</td>
<td>+4</td>
<td>+11</td>
<td>+19</td>
<td>+27</td>
<td>+34</td>
</tr>
<tr>
<td>6c</td>
<td>+2</td>
<td>+7</td>
<td>+12</td>
<td>+16</td>
<td>+21</td>
</tr>
</tbody>
</table>
TABLE II (CONT'D)

Average Strains at Different Gage Locations for Panel 7

<table>
<thead>
<tr>
<th>Gage No.</th>
<th>5 p.s.i.</th>
<th>10 p.s.i.</th>
<th>15 p.s.i.</th>
<th>20 p.s.i.</th>
<th>25 p.s.i.</th>
<th>30 p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>-7</td>
<td>-15</td>
<td>-22</td>
<td>-29</td>
<td>-45</td>
<td>-51</td>
</tr>
<tr>
<td>lb</td>
<td>29</td>
<td>57</td>
<td>87</td>
<td>114</td>
<td>138</td>
<td>160</td>
</tr>
<tr>
<td>lc</td>
<td>24</td>
<td>56</td>
<td>84</td>
<td>113</td>
<td>135</td>
<td>166</td>
</tr>
<tr>
<td>2a</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>2b</td>
<td>18</td>
<td>30</td>
<td>42</td>
<td>53</td>
<td>67</td>
<td>81</td>
</tr>
<tr>
<td>2c</td>
<td>-11</td>
<td>-12</td>
<td>-27</td>
<td>-34</td>
<td>-43</td>
<td>-38</td>
</tr>
<tr>
<td>3a</td>
<td>-35</td>
<td>-66</td>
<td>-96</td>
<td>-138</td>
<td>-165</td>
<td>-204</td>
</tr>
<tr>
<td>3b</td>
<td>-56</td>
<td>-113</td>
<td>-168</td>
<td>-224</td>
<td>-276</td>
<td>-343</td>
</tr>
<tr>
<td>3c</td>
<td>-45</td>
<td>-92</td>
<td>-130</td>
<td>-176</td>
<td>-219</td>
<td>-259</td>
</tr>
<tr>
<td>4a</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>22</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>4b</td>
<td>-31</td>
<td>-62</td>
<td>-83</td>
<td>-112</td>
<td>-134</td>
<td>-155</td>
</tr>
<tr>
<td>4c</td>
<td>-26</td>
<td>-53</td>
<td>-72</td>
<td>-96</td>
<td>-120</td>
<td>-141</td>
</tr>
<tr>
<td>5a</td>
<td>-19</td>
<td>-36</td>
<td>-49</td>
<td>-60</td>
<td>-68</td>
<td>-77</td>
</tr>
<tr>
<td>5b</td>
<td>-14</td>
<td>-30</td>
<td>-37</td>
<td>-46</td>
<td>-45</td>
<td>-44</td>
</tr>
<tr>
<td>5c</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>21</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>6a</td>
<td>29</td>
<td>55</td>
<td>84</td>
<td>109</td>
<td>131</td>
<td>163</td>
</tr>
<tr>
<td>6b</td>
<td>47</td>
<td>96</td>
<td>134</td>
<td>187</td>
<td>232</td>
<td>279</td>
</tr>
<tr>
<td>6c</td>
<td>39</td>
<td>79</td>
<td>119</td>
<td>160</td>
<td>198</td>
<td>234</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table III

Convergence of Theoretical Solution for Centre Deflections and Centre Moments

For all cases \(p = 1.0 \), \(t = .025 \) in, \(E = 10^7 \) p.s.i., \(G = 10^3 \) p.s.i., \(c = 1.0 \) in.

\(\bar{N} = \) Number of harmonics used in the theoretical solution

<table>
<thead>
<tr>
<th>Skew</th>
<th>(\theta)</th>
<th>(\eta_B)</th>
<th>(\eta_S)</th>
<th>(M_x)</th>
<th>(M_y)</th>
<th>(M_{xy})</th>
<th>(M_{max})</th>
<th>(M_{min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>30°</td>
<td>7.4526</td>
<td>6.7873</td>
<td>5.3119</td>
<td>5.0214</td>
<td>0.2516</td>
<td>5.4572</td>
<td>4.8762</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>11.3159</td>
<td>11.0555</td>
<td>5.9580</td>
<td>5.2629</td>
<td>0.3475</td>
<td>6.1019</td>
<td>5.1190</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>23.0327</td>
<td>25.0113</td>
<td>7.0469</td>
<td>5.6462</td>
<td>0.4043</td>
<td>7.1552</td>
<td>5.5379</td>
</tr>
<tr>
<td>10</td>
<td>30°</td>
<td>7.4535</td>
<td>6.7858</td>
<td>5.3085</td>
<td>5.0225</td>
<td>0.2477</td>
<td>5.4515</td>
<td>4.8795</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>11.3189</td>
<td>11.0501</td>
<td>5.9489</td>
<td>5.2666</td>
<td>0.3412</td>
<td>5.0902</td>
<td>5.1252</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>23.0480</td>
<td>24.9920</td>
<td>7.0253</td>
<td>5.6577</td>
<td>0.3948</td>
<td>7.1311</td>
<td>5.5519</td>
</tr>
<tr>
<td>12</td>
<td>30°</td>
<td>7.4543</td>
<td>6.7846</td>
<td>5.3058</td>
<td>5.0233</td>
<td>0.2447</td>
<td>5.4471</td>
<td>4.8821</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>11.3218</td>
<td>11.0460</td>
<td>5.9419</td>
<td>5.2694</td>
<td>0.3363</td>
<td>6.0812</td>
<td>5.1301</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>23.0598</td>
<td>24.9773</td>
<td>7.0092</td>
<td>5.6664</td>
<td>0.3876</td>
<td>7.1130</td>
<td>5.5626</td>
</tr>
</tbody>
</table>
TABLE IV

\[E = 10^7 \text{ p.s.i., Modulus of Elasticity of the faces} \]
\[\nu = 0.32, \text{ Poisson's Ratio for the face material} \]
\[q = \text{Intensity of lateral load, p.s.i.} \]
\[t = \text{thickness of each individual face, in} \]
\[\sigma = \text{thickness of core, in.} \]
\[C_s = \frac{Et(\sigma + t)^2}{2(1-\nu^2)} \text{, Core - softness of the sandwich plates} \]

Total Deflection = \(W_T = W_B + W_S = \frac{W_T}{48} \), in.

\[M_x \text{ at Centre} = M_x \times \frac{q}{48}, \text{ 1 b-in./in.}, M_y \text{ at centre} = M_y \times \frac{q}{48}, \text{ 1b-in/in.} \]

\[M_{xy} \text{ at Centre} = M_{xy} \times \frac{q}{48}, \text{ lb-in/in} \]

\[M_{\text{max. at Centre}} = M_{\text{max}} \times \frac{q}{48}, \text{ lb-in./in.}, M_{\text{min. at Centre}} = M_{\text{min}} \times \frac{q}{48}, \text{ lb-in/in} \]

Max. Edge Moment, \((M_{\text{max, edge}}) = M_{\text{edge}} \times \frac{q}{48}, \text{ 1b-in./in} \)
<table>
<thead>
<tr>
<th>ASPECT RATIO</th>
<th>FACE THICKNESS (in.)</th>
<th>SKEW θ</th>
<th>CORE SHEAR MODULUS G (psi)</th>
<th>CORE SOFTNESS C_s</th>
<th>DEFLECTION AND MOMENT COEFFICIENTS</th>
<th>w_B</th>
<th>(\bar{w})</th>
<th>(\bar{w}_{T} = \frac{w_B + \bar{w}}{T})</th>
<th>(M_x)</th>
<th>(M_y)</th>
<th>(M_{xy})</th>
<th>(M_{max})</th>
<th>(M_{min})</th>
<th>(M_{edge})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>.025</td>
<td>15°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.981</td>
<td>0.0256</td>
<td>1.01</td>
<td>1712</td>
<td>1662</td>
<td>93</td>
<td>1794</td>
<td>1591</td>
<td>-3683</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>14.63</td>
<td>1.28</td>
<td>0.263</td>
<td>1.54</td>
<td>1767</td>
<td>1716</td>
<td>95</td>
<td>1839</td>
<td>1643</td>
<td>-3550</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>292.62</td>
<td>6.23</td>
<td>5.58</td>
<td>11.31</td>
<td>1853</td>
<td>1828</td>
<td>46</td>
<td>1888</td>
<td>1793</td>
<td>-3250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.487</td>
<td>0.0257</td>
<td>0.51</td>
<td>1722</td>
<td>1672</td>
<td>94</td>
<td>1794</td>
<td>1600</td>
<td>-3640</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.761</td>
<td>0.269</td>
<td>1.03</td>
<td>1796</td>
<td>1748</td>
<td>89</td>
<td>1864</td>
<td>1680</td>
<td>-3400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>614.14</td>
<td>5.63</td>
<td>5.60</td>
<td>11.23</td>
<td>1859</td>
<td>1839</td>
<td>38</td>
<td>1888</td>
<td>1810</td>
<td>-3100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>15°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.677</td>
<td>0.0209</td>
<td>0.70</td>
<td>1464</td>
<td>1301</td>
<td>141</td>
<td>1545</td>
<td>1220</td>
<td>-3084</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>14.63</td>
<td>0.925</td>
<td>0.216</td>
<td>1.14</td>
<td>1510</td>
<td>1347</td>
<td>141</td>
<td>1592</td>
<td>1266</td>
<td>-2870</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>292.62</td>
<td>5.05</td>
<td>4.70</td>
<td>9.76</td>
<td>1593</td>
<td>1512</td>
<td>71</td>
<td>1634</td>
<td>1471</td>
<td>-2725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.025</td>
<td>30°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.338</td>
<td>0.0211</td>
<td>0.36</td>
<td>1473</td>
<td>1309</td>
<td>142</td>
<td>1555</td>
<td>1227</td>
<td>-3057</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.570</td>
<td>0.221</td>
<td>0.79</td>
<td>1536</td>
<td>1384</td>
<td>132</td>
<td>1612</td>
<td>1308</td>
<td>-2900</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>614.14</td>
<td>4.60</td>
<td>4.75</td>
<td>9.35</td>
<td>1601</td>
<td>1533</td>
<td>59</td>
<td>1635</td>
<td>1499</td>
<td>-2770</td>
<td></td>
</tr>
<tr>
<td>ASPECT RATIO</td>
<td>FACE THICKNESS (in)</td>
<td>SKEW</td>
<td>CORE SHEAR MODULUS, G (psi)</td>
<td>CORE SOFTNESS, C_s</td>
<td>DEFLECTION AND MOMENT COEFFICIENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>p = 1.0</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td></td>
</tr>
<tr>
<td>10^4</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>292.62</td>
<td>3.42</td>
<td>3.41</td>
<td>6.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10^5</td>
<td>3.07</td>
<td>0.172</td>
<td>0.0145</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.339</td>
<td>0.154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>514.14</td>
<td>3.14</td>
<td>6.61</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>10^5</td>
<td>3.07</td>
<td>0.055</td>
<td>0.0076</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.147</td>
<td>0.0828</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>514.14</td>
<td>1.62</td>
<td>3.60</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV (CONTD)
<table>
<thead>
<tr>
<th>ASPECT RATIO</th>
<th>FACE THICKNESS (in)</th>
<th>SKEW</th>
<th>CORE SHEAR MODULUS G(ksi)</th>
<th>CORE SOFTNESS Cs</th>
<th>DEFLECTION AND MOMENT COEFFICIENTS</th>
<th>Max. M_{xy}</th>
<th>Min. M_{xy}</th>
<th>Max. M_{edge}</th>
</tr>
</thead>
<tbody>
<tr>
<td>.025</td>
<td>15°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.345</td>
<td>(\bar{W}B) (\bar{W}S) (\bar{W}{B+S}) (M_x) (M_y) (M{xy}) (M_{max.}) (M_{min.}) (M_{edge})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>15°</td>
<td>10^4</td>
<td>14.63</td>
<td>0.530</td>
<td>0.149 (0.68) 1203 766 14 1203 766 -2300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>15°</td>
<td>500</td>
<td>292.62</td>
<td>3.60</td>
<td>3.30 (6.90) 1204 974 5 1204 974 -1970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>15°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.176</td>
<td>0.0143 (0.19) 1196 686 10 1196 686 -2379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>15°</td>
<td>10^4</td>
<td>30.71</td>
<td>0.348</td>
<td>0.154 (0.50) 1205 829 14 1205 828 -2215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>15°</td>
<td>500</td>
<td>614.14</td>
<td>3.36</td>
<td>3.33 (6.69) 1204 992 3 1204 992 -1930</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>30°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.235</td>
<td>0.0114 (0.25) 987 517 11 987 517 -2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>30°</td>
<td>10^4</td>
<td>14.63</td>
<td>0.389</td>
<td>0.121 (0.51) 997 600 19 998 599 -1850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.025</td>
<td>30°</td>
<td>500</td>
<td>292.62</td>
<td>2.92</td>
<td>2.75 (5.67) 1012 806 8 1012 806 -1730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>30°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.121</td>
<td>0.0115 (0.13) 989 530 13 989 530 -2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>30°</td>
<td>10^4</td>
<td>30.7</td>
<td>0.265</td>
<td>0.126 (0.39) 1001 658 20 1003 656 -1820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>30°</td>
<td>500</td>
<td>614.14</td>
<td>2.74</td>
<td>2.79 (5.53) 1013 825 6 1014 825 -1700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPECT RATIO</td>
<td>FACE THICKNESS (in)</td>
<td>SKEW</td>
<td>CORE SHEAR MODULUS G (psi)</td>
<td>CORE SOFTNESS (in)</td>
<td>DEFLECTION AND MOMENT COEFFICIENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\bar{w}_B</td>
<td>w_s</td>
<td>$\bar{w}_T = \frac{w_B + w_s}{2}$</td>
<td>M_x</td>
</tr>
<tr>
<td>1.5</td>
<td>.025</td>
<td>45°</td>
<td>10^5 1.46</td>
<td>0.114</td>
<td>0.076</td>
<td>0.12</td>
<td>685 317 7</td>
<td>685 317 -1361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4 14.6</td>
<td>0.223</td>
<td>0.0816</td>
<td>0.31</td>
<td>695 382 14</td>
<td>696 382 -1474</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 292.62</td>
<td>1.98</td>
<td>1.95</td>
<td>3.93</td>
<td>724 563 9</td>
<td>724 562 -1600</td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>45°</td>
<td>10^5 3.07</td>
<td>0.0612</td>
<td>0.0077</td>
<td>0.069</td>
<td>686 328 8</td>
<td>687 328 -1374</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4 30.71</td>
<td>0.162</td>
<td>0.0857</td>
<td>0.25</td>
<td>702 429 15</td>
<td>703 428 -1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 614.14</td>
<td>1.87</td>
<td>1.98</td>
<td>3.85</td>
<td>727 582 7</td>
<td>727 582 -1700</td>
</tr>
<tr>
<td></td>
<td>.025</td>
<td>60°</td>
<td>10^5 1.46</td>
<td>0.0336</td>
<td>0.0037</td>
<td>0.037</td>
<td>355 138 1</td>
<td>355 138 -727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4 14.63</td>
<td>0.0912</td>
<td>0.0411</td>
<td>0.13</td>
<td>364 178 5</td>
<td>364 178 -797</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 292.62</td>
<td>1.01</td>
<td>1.05</td>
<td>2.06</td>
<td>393 299 6</td>
<td>394 298 -890</td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>60°</td>
<td>10^5 3.07</td>
<td>0.0196</td>
<td>0.0038</td>
<td>0.023</td>
<td>357 145 2</td>
<td>357 145 -738</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4 30.71</td>
<td>0.0734</td>
<td>0.0438</td>
<td>0.12</td>
<td>371 207 6</td>
<td>372 207 -851</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500 614.14</td>
<td>0.958</td>
<td>1.074</td>
<td>2.03</td>
<td>396 312 6</td>
<td>397 312 -1038</td>
</tr>
<tr>
<td>ASPECT RATIO</td>
<td>FACE THICKNESS (in)</td>
<td>SKEW</td>
<td>CORE SHEAR MODULUS G(ksi)</td>
<td>CORE SOFTNESS C_s</td>
<td>DEFLECTION AND MOMENT COEFFICIENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\bar{W}_b</td>
<td>\bar{W}_s</td>
<td>$\bar{W} = \frac{\bar{W}_t}{\bar{W}_b + \bar{W}_s}$</td>
<td>\bar{M}_x</td>
</tr>
<tr>
<td>2.0</td>
<td>.025</td>
<td>15°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.131</td>
<td>0.0079</td>
<td>0.14</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>14.63</td>
<td>0.253</td>
<td>0.0854</td>
<td>0.34</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>292.62</td>
<td>2.27</td>
<td>2.00</td>
<td>4.27</td>
<td>772</td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>15°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.0701</td>
<td>0.00801</td>
<td>0.078</td>
<td>746</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.183</td>
<td>0.0897</td>
<td>0.27</td>
<td>760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>614.14</td>
<td>2.16</td>
<td>2.03</td>
<td>4.19</td>
<td>773</td>
</tr>
<tr>
<td></td>
<td>.025</td>
<td>30°</td>
<td>10^5</td>
<td>1.46</td>
<td>0.0882</td>
<td>0.0063</td>
<td>0.094</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>14.63</td>
<td>0.198</td>
<td>0.684</td>
<td>0.87</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>292.62</td>
<td>1.84</td>
<td>1.64</td>
<td>3.48</td>
<td>636</td>
</tr>
<tr>
<td></td>
<td>.05</td>
<td>30°</td>
<td>10^5</td>
<td>3.07</td>
<td>0.0482</td>
<td>0.00636</td>
<td>0.055</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^4</td>
<td>30.71</td>
<td>0.141</td>
<td>0.0722</td>
<td>0.21</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>614.14</td>
<td>1.76</td>
<td>1.67</td>
<td>3.43</td>
<td>638</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Face Thickness (in)</td>
<td>Skew</td>
<td>Core Shear Modulus G (psi)</td>
<td>Core Softness C_s</td>
<td>Deflection and Moment Coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.025</td>
<td>45°</td>
<td>10^5</td>
<td>1.46</td>
<td>$\bar{w}b$ 0.0423 $\bar{w}s$ 0.0041 $\bar{w}{b+s}$ 0.046 $\bar{M}x$ 404 $\bar{M}y$ 142 $\bar{M}{xy}$ 0 $\bar{M}{max}$ 404 $\bar{M}{min}$ 142 \bar{M}_{edge} -803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>45°</td>
<td>10^4</td>
<td>14.63</td>
<td>$\bar{w}b$ 0.0111 $\bar{w}s$ 0.045 $\bar{w}{b+s}$ 0.16 $\bar{M}x$ 414 $\bar{M}y$ 181 $\bar{M}{xy}$ 2 $\bar{M}{max}$ 414 $\bar{M}{min}$ 181 \bar{M}_{edge} -871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>292.62</td>
<td>$\bar{w}b$ 1.24 $\bar{w}s$ 1.12 $\bar{w}{b+s}$ 2.36 $\bar{M}x$ 439 $\bar{M}y$ 303 $\bar{M}{xy}$ 1 $\bar{M}{max}$ 439 $\bar{M}{min}$ 303 \bar{M}_{edge} -980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>45°</td>
<td></td>
<td>10^5</td>
<td>3.07</td>
<td>$\bar{w}b$ 0.0243 $\bar{w}s$ 0.0042 $\bar{w}{b+s}$ 0.028 $\bar{M}x$ 406 $\bar{M}y$ 147 $\bar{M}{xy}$ 0 $\bar{M}{max}$ 406 $\bar{M}{min}$ 147 \bar{M}_{edge} -814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>45°</td>
<td>10^4</td>
<td>30.71</td>
<td>$\bar{w}b$ 0.0885 $\bar{w}s$ 0.048 $\bar{w}{b+s}$ 0.14 $\bar{M}x$ 421 $\bar{M}y$ 213 $\bar{M}{xy}$ 2 $\bar{M}{max}$ 421 $\bar{M}{min}$ 213 \bar{M}_{edge} -914</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>614.14</td>
<td>$\bar{w}b$ 1.19 $\bar{w}s$ 1.15 $\bar{w}{b+s}$ 2.34 $\bar{M}x$ 441 $\bar{M}y$ 315 $\bar{M}{xy}$ 1 $\bar{M}{max}$ 441 $\bar{M}{min}$ 315 \bar{M}_{edge} -1028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>60°</td>
<td></td>
<td>10^5</td>
<td>1.46</td>
<td>$\bar{w}b$ 0.0126 $\bar{w}s$ 0.0020 $\bar{w}{b+s}$ 0.015 $\bar{M}x$ 202 $\bar{M}y$ 65 $\bar{M}{xy}$ 0 $\bar{M}{max}$ 202 $\bar{M}{min}$ 65 \bar{M}_{edge} -414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>60°</td>
<td>10^4</td>
<td>14.63</td>
<td>$\bar{w}b$ 0.0475 $\bar{w}s$ 0.0219 $\bar{w}{b+s}$ 0.069 $\bar{M}x$ 207 $\bar{M}y$ 82 $\bar{M}{xy}$ 0 $\bar{M}{max}$ 207 $\bar{M}{min}$ 82 \bar{M}_{edge} -457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>292.62</td>
<td>$\bar{w}b$ 0.628 $\bar{w}s$ 0.573 $\bar{w}{b+s}$ 1.20 $\bar{M}x$ 226 $\bar{M}y$ 152 $\bar{M}{xy}$ 1 $\bar{M}{max}$ 226 $\bar{M}{min}$ 152 \bar{M}_{edge} -546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>60°</td>
<td></td>
<td>10^5</td>
<td>3.07</td>
<td>$\bar{w}b$ 0.00313 $\bar{w}s$ 0.00204 $\bar{w}{b+s}$ 0.010 $\bar{M}x$ 202 $\bar{M}y$ 67 $\bar{M}{xy}$ 0 $\bar{M}{max}$ 202 $\bar{M}{min}$ 67 \bar{M}_{edge} -422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>60°</td>
<td>10^4</td>
<td>30.71</td>
<td>$\bar{w}b$ 0.0411 $\bar{w}s$ 0.0236 $\bar{w}{b+s}$ 0.065 $\bar{M}x$ 212 $\bar{M}y$ 99 $\bar{M}{xy}$ 1 $\bar{M}{max}$ 212 $\bar{M}{min}$ 99 \bar{M}_{edge} -483</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>614.14</td>
<td>$\bar{w}b$ 0.606 $\bar{w}s$ 0.587 $\bar{w}{b+s}$ 1.19 $\bar{M}x$ 228 $\bar{M}y$ 160 $\bar{M}{xy}$ 1 $\bar{M}{max}$ 228 $\bar{M}{min}$ 160 \bar{M}_{edge} -554</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER V

COMPARISON AND DISCUSSION OF RESULTS

Analytical results for deflections at the centre, W_B and W_s and the maximum moments at the centre for various harmonics are shown in Table III. The analytical solution of the governing differential equations given in Chapter III involves summation of the elements of the matrix up to n terms, where n is theoretically infinite. In Table III, however, three finite values of n i.e., $n = 8$, 10 and 12 are tried. Inspection of the figures in this table indicate good convergence for the centre deflections and the maximum moment at the centre. The maximum difference between the results for $n = 10$ and $n = 12$ for deflections do not exceed 1.2 parts in 100 parts and 1.8 parts in 100 parts for the maximum moment at the centre.

Analytical results for centre deflections, maximum moments at the centre and the maximum edge moments for different skews, aspect ratios, core rigidities and face thicknesses are given in Table IV. Plots of the ratio of shear deflection to bend deflection i.e. W_s/W_B versus skew angles for various aspect ratios, core rigidities and face thicknesses are shown in Figures 6(a) and 6(b). Plots of maximum centre moments
versus skew angles for various aspect ratios, core rigidities and face thicknesses are shown in Figures 7, 8, 9, 10, 11 and 12.

Inspection of Table IV and Fig. 6(a) and 6(b) shows that the effect of the skew is to decrease the centre deflection. Although the panel deflection at the centre decreases with increasing skew, the shear deflection becomes more and more pronounced. Table IV and Figures 7, 8, 9, 10, 11 and 12 also show that the skew produces a decrease in the maximum centre and edge moments. Another effect of skew is to displace the location of the maximum edge moment towards the obtuse corner of the panel as shown in Figures 13, 14, 15 and 16.

From Table IV and Figures 6(a) and 6(b) it can be further seen that the effect of aspect ratio is to decrease the panel deflection at the centre. Like Skew, an increase in aspect ratio produces an increase in the contribution of the shear deflection (see the ascending curves for increasing aspect ratios in Figures 6(a) and 6(b).) The maximum centre and edge moments (see Table IV, Figures 7, 8, 9, 10, 11 and 12) decrease with increase in the aspect ratio. The effect of the aspect ratio is more appreciable than that of skew on the change in the values of the deflections, maximum centre and edge moments.

To investigate the effect of core rigidity on the behaviour of the sandwich panels, the term "core-softness" is introduced here. Let the core-softness be denoted by
\[C_s = \frac{E t}{2(1 - \nu^2)} \left(\frac{c + t}{2} \right)^2 \]

Referring to Figures 6(a) and 6(b), it can be seen that the effect of increasing \(C_s \) is to increase the panel deflection at the centre, and simultaneously producing rapid increase in the ratio \(\frac{W_s}{W_B} \). For example, the magnitude of the shear deflection, \(W_s \), increases from approximately 2\% of the bend deflection, \(W_B \), for a very low \(C_s \) value to 122\% of \(W_B \) for high values of \(C_s \). (See the plot for \(C_s = 614, \ p = 1.0, \) Figure 6(a) and 6(b).) Inspection of Table IV and Figures 7, 8, 9, 10, 11 and 12 reveals also that increase in core-softness value produces an increase in the maximum centre moment. It should be noted, however, that the rate of such an increase is not very appreciable as was found for total centre deflection and the ratio \(\frac{W_s}{W_B} \). The variation in the maximum edge moment was rather unexpected. See Table IV. It can be observed that for smaller skews an increase in \(C_s \) has the effect of diminishing the maximum edge moment; however, for skews of approximately 45° and larger this effect is reversed. See also Figure 17.

The effect of increasing the face thickness is to decrease the panel deflection but the contribution of the shear deflection, \(W_s \), is increased. (Refer to Table IV and Figures 6(a) and 6(b).) It is also seen from Table IV that an increase in the face thickness reduces the bend deflection, \(W_B \), but the shear deflection, \(W_s \), increases. Furthermore, the centre moment increases with increase in face thickness (see Figures 7,
8, 9, 10, 11 and 12); also the maximum edge moment decreases for skews upto 30° and increases for skews of approximately 45° and over with increase in face thickness. A typical plot, showing this behaviour, of the ratio of maximum edge moment to the maximum centre moment is shown in Figure 17. Reference to Figures 13, 14, 15 and 16 also reveal high concentrated edge moments at the corners of the panels.

There is some interaction between the different independent variables e.g. skew, aspect ratio, core rigidity and face thickness when each of these are allowed to vary. For rigid cores, i.e., cores with low C_s values, the contribution of shear deflection at the centre increases with increasing skew and aspect ratio. The rate of this increase diminishes for higher C_s values, becoming quite rapid with increasing aspect ratio (see Figures 6(a) and 6(b)).

The comparison of experimental and theoretical results for centre deflections of panels 1 to 6 are shown in Fig. 18 whereas the comparison of experimental and theoretical results for centre deflections and centre moment M_x for panel 7 (plywood core) are shown in Figs. 19 and 20. For low intensities of lateral loads Fig. 18 exhibits good agreement between the experimental and theoretical centre deflections, the theoretical results being on the conservative side. The value of the shear rigidity of the styrafoam core was based on the five point loading test (see Ref. 25) and that of the paper core was based on the single block loading test (see Ref. 25). It was found that theoretical centre deflections based on the core shear rigidity obtained from the five point loading test.
were not comparable to the experimental results. This kind of discrepancy may be due to the nature of the paper core material not being a perfectly continuous one. The area of contact between the paper core and the skins was around 5 percent of the skin surface. Furthermore, the bonding between the core and the skin not being uniform may have given rise to some sort of irregularity in the behaviour of the paper core.

The agreement between the theoretical and experimental centre deflections for low intensities of loads is to be expected since with greater intensity of loading the behaviour of the plate is not in keeping with small deflection theory. The correspondence between the experimental and theoretical moments were not good for any of the first six panels. Figs. 19 and 20, however, show very good agreement between the experimental and theoretical values of centre deflection and centre moment M_x for panel 7 with the plywood core. This is, of course, to be expected, since a sandwich panel with a rigid core like plywood would behave more closely to the small deflection theory than a soft core. The comparison of experimental and theoretical values of M_y and M_{xy} for the plywood core, however, was not good. This could have been due to the fact that in the present analysis the core stiffnesses related to plane stress components in the plane of the plate are neglected. This, obviously, does not apply for the plywood core and hence could be a cause of discrepancy.

Certain pertinent remarks could be made at this stage in a general way in connection with the discrepancies found. The deformations of a sandwich panel do not vary linearly with respect to the load as assumed by small deflection theory for any appreciable load. Further, the range
of linearity decreases rapidly with increasing core-softness.

In conclusion it is interesting to mention that the behaviour of all the first six panels was observed to the point where they ruptured. At a certain stage of loading the panels suffered permanent deformations. The strains around the obtuse corner region were suddenly reversed after progressive yielding of the edges had occurred. Fig. 21 shows a photograph of a ruptured panel wherein a sharp fracture could be observed along the edges and extending very closely to the obtuse corner region.
CHAPTER VI

CONCLUSIONS

The following conclusions can be drawn from the study presented herein:

(1) Maximum centre moment increases with the core softness, C_s.

(2) Maximum edge moment decreases with increase in the core softness, C_s, and the aspect ratio for low values of skew. Thus the increase in the core softness, C_s, has a relieving effect on the maximum edge moment for low values of skew whereas it has an augmenting effect on the maximum centre moment for all values of skew. Furthermore, this moment is located usually around the middle of the longer side and tends to be displaced toward the obtuse corner with increase in skew.

(3) Shear deflection becomes predominant with increasing values of C_s and for very soft cores, i.e. cores having $C_s > 292$, shear deflection could be 22% greater than the bend deflection.

(4) Skew produces an increase in the contribution of shear deflection.

(5) For relatively rigid cores, i.e. cores having low C_s values, the increase in aspect ratio augments the shear deflection but this effect diminishes with increasing values of C_s.

(6) Maximum centre moment decreases with an increase in the aspect ratio.

(7) Significant concentrated moments at the corners were observed for panels with soft cores.
The comparison of experimental and theoretical results show good correspondence of the centre deflections for small loads. The correspondence of the moments is rather poor except for the very rigid plywood core. This, however, is expected in the sense that with increase in C_s, the core softness, the range of linearity of small deflection theory upon which the present theory is based, diminishes very quickly. For a better correspondence of moments and deflections of panels with very soft cores a general theory based on nonlinear flexural behaviour of sandwich panels is desirable.
Top Surface of Panels
Showing the location of strain gages (Typical)
FIG. 2

Bottom Surface of Panels
Showing the location of Strain gages (Typical)
All co-ordinates are in dimensionless co-ordinates η & ξ
Location for strain gages are the same for top & bottom surfaces of the plate.
(Typical)

Alignment of Gage (Typical)

Dial gage
strain gage
Dial & strain gage
(Typical)

Bottom surface of Panels 1 & 2
FIG. 4
Bottom Surface of Panels 3 & 4

$2b = 15''$

$2a = 12''$

(-35, 95)$

(-5, 5)

(-95, 95)

$\theta = 30^\circ$
FIG. 5

Bottom surface of Panels 5, 6 & 7
RATIO OF SHEAR DEFLECTION TO BEND DEFLECTION AT CENTRE, $\frac{W_s}{W_B}$

$C_s = 292.6$

$\theta = 15^\circ, 30^\circ, 45^\circ, 60^\circ$

$t = 0.025$ in.

$C_s = 14.6$

$C_s = 1.46$

$\rho = 1.0, 1.5, 2.0$

$\rho = 1.0, 1.5, 2.0$

FIG. 6a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[(M_{\text{MAX}})_{\text{CENTRE}} = (\overline{M}_{\text{MAX}})_{\text{CENTRE}} \times \frac{q}{48} \]

\[t = 0.025 \text{in.} \]
\[p = 1.0 \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[\left(\frac{M_{\text{MAX}}}{M_{\text{CENTRE}}} \right)_{\text{CENTRE}} = \left(\frac{M_{\text{MAX}}}{M_{\text{CENTRE}}} \right)_{\text{CENTRE}} \times \frac{q}{48} \]

\(t = 0.025 \text{ in.} \)

\(p = 1.0 \)

\(C_s = 1.46 \)

\(C_s = 14.6 \)

\(C_s = 292.6 \)
COEFFICIENTS FOR MAX. CENTRE MOMENTS, \((\bar{M}_{\text{MAX}})_{\text{CENTRE}} \)

\[
\begin{align*}
900 & \\
1000 & \\
1100 & \\
1200 & \\
1300 & \\
1400 & \\
1500 & \\
1600 & \\
1700 & \\
1800 & \\
\end{align*}
\]

\[
\frac{t}{c} = 0.05 \text{ in.} \\
s = 3.07 \\
p = 1.0 \\
\]

\[
(\bar{M}_{\text{MAX}})_{\text{CENTRE}} = (\bar{M}_{\text{MAX}})_{\text{CENTRE}} \times q^p
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}_{\text{CENTRE}}} \right) = \left(\frac{\tilde{M}_{\text{MAX}}}{M_{\text{MAX}}_{\text{CENTRE}}} \right) \times \frac{q}{48}
\]

\[t = 0.05 \text{ in.}\]
\[p = 1.0\]
\[C_s = 3.07\]
\[C_s = 30.7\]
\[C_s = 614\]
\[\left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}} \right)_{\text{CENTRE}} = \left(\frac{\bar{M}_{\text{MAX}}}{M_{\text{MAX}}} \right)_{\text{CENTRE}} \times \frac{q}{48}\]

- \(t = 0.025\) in.
- \(p = 1.5\)
- \(C = 1.46\)
- \(C = 14.6\)
\[
\left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}^{\text{CENTRE}}} \right) = \left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}^{\text{CENTRE}}} \right) \times \frac{q}{48}
\]

\[t = 0.025 \text{in.} \]
\[p = 1.5 \]
\[C_s = 1.46 \]
\[C_s = 14.6 \]
\[C_s = 292.6 \]
\[
\left(\frac{M_{\text{max}}}{M_{\text{max, centre}}} \right)_{\text{centre}} = \frac{q}{48}
\]

- \(t = 0.05 \text{ in.} \)
- \(p = 1.5 \)
- \(C_s = 3.07 \)
- \(C_s = 30.7 \)
- \(C_s = 614 \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(M_{\text{MAX}})_{\text{CENTRE}} = (M_{\text{MAX}})_{\text{CENTRE}} \times \frac{q}{48}

\begin{align*}
t &= 0.05 \text{ in.} \\
p &= 1.5 \\
C_s &= 3.07 \\
C_s &= 30.7 \\
C_s &= 614
\end{align*}
\[
\left(\bar{M}_{\text{MAX}} \right)_{\text{CENTRE}} = \left(\bar{M}_{\text{MAX}} \right)_{\text{CENTRE}} \times \frac{q_l}{48}
\]

\[t = 0.025 \text{ in.} \]
\[p = 2.0 \]
\[C = 1.46 \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MOMENT COEFFICIENTS FOR MAX. CENTRE MOMENTS, \((M_{\text{max}})_{\text{CENTRE}}\)

\[
(M_{\text{MAX}})_{\text{CENTRE}} = (M_{\text{MAX}})_{\text{CENTRE}} \times \frac{q}{48}
\]

- \(t = 0.025\) in.
- \(p = 2.0\)
- \(C_s = 1.46\)
- \(C_s = 14.6\)
- \(C_s = 292.6\)

ANGLE OF SKEW \(\theta\)

FIG. 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}} \right)_{\text{CENTRE}} = \left(\frac{M_{\text{MAX}}}{M_{\text{MAX}}} \right)_{\text{CENTRE}} \cdot \frac{q}{48}
\]

- \(t = 0.05 \)
- \(p = 2.0 \)
- \(C = 3.07 \)
- \(c = 3.07 \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Moment Coefficients for Max. Centre Moments

\[
\left(\frac{M_{\text{MAX}}}{\text{CENTRE}} \right) = \left(\frac{M_{\text{MAX}}}{\text{CENTRE}} \right) \times \frac{q}{48}
\]

- \(t = 0.05 \)
- \(p = 2.0 \)
- \(C_s = 3.07 \)
- \(C_s = 307 \)
- \(C_s = 614 \)

Angle of Skew \(\theta \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[(M_{\text{Max}})_{\text{edge}} = - (\bar{M}_{\text{Max}})_{\text{edge}} \times \frac{q}{48} \]

\(p = 1.0 \)

\(\theta = 15^\circ \)

LOCATION OF MAX. EDGE MOMENT, \(\eta = -0.2 \)

DIMENSIONLESS SKEW COORDINATE, \(\eta \)

FIG. 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[(M_{\text{MAX}})_{\text{EDGE}} = -(\overline{M}_{\text{MAX}})_{\text{EDGE}} \times \frac{c_y}{48} \]

\(\rho = 1.0 \)

\(\theta = 30^\circ \)

LOCATION OF MAX. EDGE MOMENT, \(\eta = -0.4 \)

DIMENSIONLESS SKEW COORDINATE, \(\eta \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
MOMENT COEFFICIENT FOR MAX. EDGE MOMENTS ALONG EDGE $\xi = \frac{1}{2} \max_{\text{edge}}$
(M_{MAX})_{EDGE} = -(M_{MAX})_{EDGE} \times \frac{\rho}{48}
\rho = 1.0
\theta = 60^\circ

LOCATION OF MAX. EDGE MOMENT, \eta = -0.65

DIMENSIONLESS SKEW COORDINATE, \eta

FIG. 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 17

Angle of skew, θ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
EXPERIMENTAL RESULTS FOR \(\max{X} \) CENTRE...X

FIG. 20

IN\[\text{TEN}\]S\[\text{ITY OF UNIFORM LOAD } q, \text{ LB./IN.}^2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX I

NOMENCLATURE AND SYMBOLS USED IN THE THEORETICAL ANALYSIS
\(A_{10}, A_{30}, A_{40}, A_{50} = \text{Arbitrary constants}\)

\(2a = \text{Skew width of the sandwich plate}\)

\[B_1 = \frac{2 \phi D_0}{b^2c^2 G}\]

\[B_2 = -\frac{D_0}{b^2c^2 G}\]

\[B_3 = -\frac{\beta^2 D_0}{b^2c^2 G}\]

\(2b = \text{Skew length of sandwich plate}\)

\(C_m, C_{2m}, \ldots = \text{Arbitrary constants}\)

\[C_3 = \frac{E_f + (\varepsilon + t)^2}{2(1-v^2) G}\]

\(c = \cos \theta\)

\(\varepsilon = \text{Thickness of core, in.}\)

\(\cosh = \text{Hyperbolic Cosine (Cosh)}\)

\(D_0 = \frac{E_f + (\varepsilon + t)^2}{2(1-v^2)}\), \(\text{bending rigidity of sandwich plate}\)

\(\text{neglecting individual rigidities of the faces & the core.}\)

\(E_f = \text{Modulus of Elasticity of the faces}\)

\(H_{in} = \alpha w/p\)

\(G = \text{Modulus of shear rigidity of the core material.}\)

\(K_{in} = \alpha m/p\)

\(M_x, M_y = \text{Bending moments per unit length of sections of}\)

\(\text{the sandwich plate perpendicular to X and Y axes}\)

\(\text{respectively, positive when producing compression on}\)

\(\text{the top face of the plate.}\)
\[M_y = \text{Torsion moment per unit length of section of the sandwich plate perpendicular to } X\text{-axis, positive when producing compression at the top face of the plate in direction of line } x=y \]

\[M_{max, min} = \text{Maximum & Minimum moments} \]

\[n = \text{Integer} \]

\[n = \text{Integer} \]

\[p = \frac{b}{c}, \text{ the shear aspect ratio} \]

\[Q_x, Q_y = \text{Shearing forces parallel to } Z\text{-axis per unit length of section of the sandwich plate perpendicular to } X \text{ and } Y \text{ axes respectively.} \]

\[q = \text{Uniform load per unit area} \]

\[s = \sin \theta \]

\[Sh = \text{Hyperbolic Sine (Sinh)} \]

\[t = \text{Thickness of each face plate} \]

\[W_b, W_s = \text{Deflections of the sandwich plate due to bending and transverse shear deformation respectively.} \]
\[
Y_1 = 1 + 2E_2
\]
\[
Y_2 = \frac{1}{3} + 2B_3
\]
\[
Y_3 = 8 \left\{ E_2 + \frac{1}{15}p^4 \right\}
\]
\[
Y_4 = \left\{ 1 - \frac{1}{15}p^4 + 12E_2 - \frac{4B_3}{p^4} \right\}
\]
\[
Y_5 = \left\{ \frac{1}{5} - \frac{1}{p^4} + 4E_2 - \left(\frac{12}{p^4} \right) B_3 \right\}
\]
\[
Y_6 = Y_3 + 2E_2
\]
\[
Y_7 = 1 + 2B_3
\]
\[
Y_8 = 8 \left(\frac{1}{15} + \frac{B_3}{p^4} \right)
\]
\[
Y_9 = 8 \left\{ -\frac{1}{15} - \frac{1}{15}p^4 + E_2 + \left(\frac{1}{p^4} \right) B_3 \right\}
\]
\[
Y_{10} = (Y_8 - Y_3) / Y_9
\]

\(X, Y, Z = \text{Rectangular Co-ordinates}\)

\(\alpha = n \pi\)

\(\delta = \text{Kronecker delta}\)

\(\frac{1}{2} = sH_n \xi + \alpha \eta\)

\(\eta, \xi = \text{Dimensionless skew co-ordinates}\)

\(\frac{1}{2} = cK_n \eta\)

\(\delta_n = sK_n \eta\)

\(\theta = \text{Skew angle}\)

\(\frac{1}{2} = sK_n \eta + \alpha \xi\)

\(\nu = \text{Poisson's Ratio for the material of the face of the sandwich plate}\)

\(\frac{1}{2} = cH_n \xi\)

\(\xi_2 = sH_n \xi\)
DEFINITE INTEGRALS

\[W = \frac{1}{2} \left(u_1 + u_3 \right) \]
\[U_1 = s N_v + m \pi ; \quad U_2 = s N_v - m \pi ; \quad U_3 = c N_v ; \quad U_4 = s N_v \]

\[I_{1 \text{muz}} = \int \frac{1}{2} \left(u_1 + u_3 \right) \sin u_1 + u_3 \cos u_3 \cos \pi \pi \pi \pi d \pi \]
\[= \frac{1}{2} \left(u_1 \chi u_3 \sin u_1 + u_3 \sin u_3 \cos \pi \pi \pi \pi / (u_1^2 + u_3^2) \right) \]
\[+ \frac{1}{2} \left(u_2 \chi u_3 \sin u_2 + u_3 \sin u_3 \cos \pi \pi \pi \pi / (u_2^2 + u_3^2) \right) \]

\[I_{2 \text{muz}} = \int \frac{1}{2} \left(u_1 + u_3 \right) \sin u_1 + u_3 \cos u_3 \cos \pi \pi \pi \pi d \pi \]
\[= \frac{1}{2} \left(-u_1 \sin u_3 \cos u_1 + u_3 \sin u_3 \cos u_2 \right) / (u_1^2 + u_3^2) \]
\[+ \frac{1}{2} \left(-u_2 \sin u_3 \cos u_2 + u_3 \sin u_3 \cos u_1 \right) / (u_2^2 + u_3^2) \]

\[I_{3 \text{muz}} = \int \frac{1}{2} \left(u_1 + u_3 \right) \sin u_1 + u_3 \cos u_3 \cos \pi \pi \pi \pi d \pi \]
\[= \left[\frac{1}{2} \left(u_1^2 + u_3^2 \right) \sin u_1 + u_3 \sin u_3 \cos u_1 \right] / (u_1^2 + u_3^2)^2 \]
\[+ \left[\frac{1}{2} \left(u_2^2 + u_3^2 \right) \sin u_2 + u_3 \sin u_3 \cos u_2 \right] / (u_2^2 + u_3^2)^2 \]

\[I_{4 \text{muz}} = \int \frac{1}{2} \left(u_1 + u_3 \right) \sin u_1 + u_3 \cos u_3 \cos \pi \pi \pi \pi d \pi \]
\[= \left[\frac{1}{2} \left(u_1^2 + u_3^2 \right) \sin u_1 + u_3 \sin u_3 \cos u_1 \right] / (u_1^2 + u_3^2)^2 \]
\[+ \left[\frac{1}{2} \left(u_2^2 + u_3^2 \right) \sin u_2 + u_3 \sin u_3 \cos u_2 \right] / (u_2^2 + u_3^2)^2 \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[I_{7n} = \int_{-1}^{+1} \xi \cos \xi \sin \xi \sin 2 \xi \, d\xi \]
\[= 2 \left[(u_4^2 + u_3^2) (u_3 \sin u_4 \cos u_3 + u_4 \cos u_4 \cos u_3) \right. \\
\[+ 2 u_3 u_4 \cos u_4 \cos u_3 + (u_4^2 - u_3^2) \sin u_4 \cos u_3 \right]/(u_4^2 + u_3^2)^2 \]
\[I_{8n} = \int_{-1}^{+1} \xi \sin \xi \cos \xi \sin 2 \xi \, d\xi \]
\[= 2 \left[(u_4^2 + u_3^2) (u_4 \sin u_4 \cos u_3 + u_3 \cos u_4 \cos u_3) \right. \\
\[- 2 u_3 u_4 \sin u_4 \cos u_3 + (u_4^2 - u_3^2) \cos u_4 \cos u_3 \right]/(u_4^2 + u_3^2)^2 \]
\[I_{9n}(\omega) = \int_{-1}^{+1} \eta^2 \cos \omega \pi \eta \, d\eta = \int_{-1}^{+1} \xi^2 \cos \omega \pi \xi \, d\xi \]
\[= (-1)^{n \nu} \frac{1}{\omega \pi^2} \]
\[I_{10n}(\omega) = \int_{-1}^{+1} \eta \sin \omega \pi \eta \, d\eta = \int_{-1}^{+1} \xi \sin \omega \pi \xi \, d\xi \]
\[= (-1)^{n \nu} \frac{2}{\omega \pi} \]
\[I_{12n}(\omega) = \int_{-1}^{+1} \eta^2 \sin \omega \pi \eta \, d\eta = \int_{-1}^{+1} \xi^2 \sin \omega \pi \xi \, d\xi \]
\[= -2 (-1)^{n \nu} \frac{1}{\omega \pi^2} \left\{ 1 - 6/\left(\omega \pi^2\right)^2 \right\} \]

With \(u_1 = 5K_n + \pi \); \(u_2 = 3K_{n-1} + \pi \); \(u_3 = 3K_n \); \(u_4 = 3K_{n+1} \); the expressions for the following definite integrals,
\[I_{12n}, I_{13n}, I_{14n}, I_{15n}, I_{20n}, I_{21n}, I_{22n}, \\
I_{23n}, I_{16n}, I_{17n}, I_{18n}, I_{19n} \] are identical to these
for \(I_{10n}, I_{11n}, I_{12n}, I_{13n}, I_{14n}, I_{15n}, I_{16n}, I_{17n}, I_{18n}, I_{19n} \) respectively.
where,

\[I_{12mn} = \int_{-1}^{+1} \chi_{1m} \cos \eta_{2n} \cos \omega \pi \eta \, d\eta \]

\[I_{13mn} = \int_{-1}^{+1} \sin \eta_{1m} \sin \eta_{2n} \cos \omega \pi \eta \, d\eta \]

\[I_{14mn} = \int_{-1}^{+1} \chi_{1m} \sin \eta_{2n} \cos \omega \pi \eta \, d\eta \]

\[I_{15mn} = \int_{-1}^{+1} \sin \eta_{1m} \cos \eta_{2n} \cos \omega \pi \eta \, d\eta \]

\[I_{16mn} = \int_{-1}^{+1} \sin \eta_{2n} \cos \eta_{1m} \sin \omega \pi \eta \, d\eta \]

\[I_{17mn} = \int_{-1}^{+1} \sin \eta_{2n} \sin \eta_{1m} \sin \omega \pi \eta \, d\eta \]

\[I_{18mn} = \int_{-1}^{+1} \chi_{1m} \sin \eta_{2n} \sin \omega \pi \eta \, d\eta \]

\[I_{19mn} = \int_{-1}^{+1} \chi_{1m} \cos \eta_{2n} \cos \omega \pi \eta \, d\eta \]
\[
I_{24^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin \xi_{1n} \cos \xi_{2n} \sin \frac{\pi n}{2} d\xi \\
= (u_1 \cos \theta_1 \sin \theta_3 + u_3 \sin \theta_1 \cos \theta_3) / (u_1^2 + u_3^2) \\
+ (u_2 \cos \theta_2 \sin \theta_3 - u_3 \sin \theta_2 \cos \theta_3) / (u_2^2 + u_3^2)
\]

\[
I_{25^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos \xi_{1n} \sin \xi_{2n} \sin \frac{\pi n}{2} d\xi \\
= (u_2 \sin \theta_2 \cos \theta_3 + u_3 \cos \theta_2 \sin \theta_3) / (u_2^2 + u_3^2) \\
- (u_1 \sin \theta_1 \cos \theta_3 + u_3 \cos \theta_1 \sin \theta_3) / (u_1^2 + u_3^2)
\]

\[
I_{26^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin \xi_{1n} \sin \xi_{2n} \sin \frac{\pi n}{2} d\xi \\
= \left[(u_1^2 + u_3^2) (u_2 \sin \theta_2 \cos \theta_3 + u_3 \cos \theta_2 \sin \theta_3) \\
+ (u_2^2 - u_3^2) \cos \theta_2 \sin \theta_3 - 2 u_1 u_3 \sin \theta_1 \cos \theta_3 \sin \theta_3 \cos \theta_3 \right] / (u_2^2 + u_3^2)^2 \\
- \left[(u_1^2 + u_3^2) (u_1 \sin \theta_1 \cos \theta_3 + u_3 \cos \theta_1 \sin \theta_3) \\
+ (u_1^2 - u_3^2) \cos \theta_1 \sin \theta_3 - 2 u_1 u_3 \sin \theta_1 \cos \theta_3 \sin \theta_3 \cos \theta_3 \right] / (u_1^2 + u_3^2)^2
\]

\[
I_{27^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos \xi_{1n} \cos \xi_{2n} \sin \frac{\pi n}{2} d\xi \\
= \left[(u_1^2 + u_3^2) \left(u_3 \sin \theta_1 \cos \theta_3 - u_1 \cos \theta_1 \sin \theta_3 \right) \\
+ 2 u_1 u_3 \cos \theta_1 \sin \theta_3 + (u_1^2 - u_3^2) \sin \theta_1 \cos \theta_3 \sin \theta_3 \cos \theta_3 \right] / (u_1^2 + u_3^2)^2 \\
- \left[(u_2^2 + u_3^2) \left(u_3 \sin \theta_2 \cos \theta_3 - u_2 \cos \theta_2 \sin \theta_3 \right) \\
+ 2 u_2 u_3 \cos \theta_2 \sin \theta_3 + (u_2^2 - u_3^2) \sin \theta_2 \cos \theta_3 \sin \theta_3 \cos \theta_3 \right] / (u_2^2 + u_3^2)^2
\]

\[
I_{28^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \sin \theta_{4n} \cos \xi_{2n} d\xi \\
= 2 (u_4 \sin \theta_4 \cos \theta_5 \cos \theta_3 + u_3 \cos \theta_4 \sin \theta_3 \cos \theta_3) / (u_4^2 + u_3^2)
\]

\[
I_{29^{\text{sn}}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos \theta_{4n} \sin \xi_{2n} d\xi \\
= 2 (u_4 \cos \theta_4 \cos \theta_5 \sin \theta_3 + u_3 \sin \theta_4 \cos \theta_3 \sin \theta_3) / (u_4^2 + u_3^2)
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[\Phi' = \Phi_{m^2} = (-1)^m \left(\alpha_m^2 \right) \]
\[\Phi_{2,m} = (-1)^m \left(\sin \alpha_m \right) \]
\[\Phi_{3,m} = (-1)^m \left(\cos \alpha_m \right) \]
\[\Phi_{4,m} = (-1)^m \left(\sin \alpha_m \right) \]
\[\Phi_{5,m} = (-1)^m \left(\cos \alpha_m \right) \]
\[\Phi_{6,m} = (-1)^m \left(\sin \alpha_m \right) \]
\[\Phi_{7,m} = (-1)^m \left(2 \cos \alpha_m \right) \]
\[\Phi_{8,m} = (-1)^m \left(2 \sin \alpha_m \right) \]
\[\Phi_{9,m} = \cos \left(\alpha_m \right) \sin \left(\sin \alpha_m \right) \]
\[\Phi_{10,m} = \sin \left(\alpha_m \right) \cos \left(\sin \alpha_m \right) \]
\[\Phi_{11,m} = \sin \left(\alpha_m \right) \sin \left(\sin \alpha_m \right) \]
\[\Phi_{12,m} = \cos \left(\alpha_m \right) \cos \left(\sin \alpha_m \right) \]
\[\Phi_{13,m} = \cos \left(\alpha_m \right) \sin \left(\sin \alpha_m \right) \]
\[\Phi_{14,m} = \sin \left(\alpha_m \right) \cos \left(\sin \alpha_m \right) \]
\[R^\prime_s \]
\[R_{1\nu} = -c \Phi_{23\nu} \alpha_{\nu} \]
\[R_{2\nu} = c \Phi_{24\nu} \alpha_{\nu} \]
\[R_{3\nu} = -p \Phi_{23\nu} - c \Phi_{21\nu} \alpha_{\nu} \]
\[R_{4\nu} = p \Phi_{24\nu} + c \Phi_{22\nu} \alpha_{\nu} \]
\[R_{5\nu} = c \Phi_{22\nu} \alpha_{\nu} \]
\[R_{10\nu} = c \Phi_{21\nu} \alpha_{\nu} \]
\[R_{11\nu} = p \Phi_{22\nu} + c \Phi_{24\nu} \alpha_{\nu} \]
\[R_{12\nu} = p \Phi_{21\nu} + c \Phi_{23\nu} \alpha_{\nu} \]
\[R_{13\nu} = (cK_{\nu}) \Phi_{26\nu} \]
\[R_{14\nu} = (cK_{\nu}) \Phi_{25\nu} \]
\[R_{15\nu} = \Phi_{26\nu} + (cK_{\nu}) \Phi_{28\nu} \]
\[R_{16\nu} = \Phi_{25\nu} + (cK_{\nu}) \Phi_{27\nu} \]
\[R_{17\nu} = (-cK_{\nu}) \Phi_{27\nu} \]
\[R_{18\nu} = (cK_{\nu}) \Phi_{28\nu} \]
\[R_{19\nu} = -\Phi_{27\nu} - (cK_{\nu}) \Phi_{25\nu} \]
\[R_{20\nu} = \Phi_{28\nu} + (cK_{\nu}) \Phi_{26\nu} \]
\[R_{25m} = 4s (I_{11m} - I_{30m}) \]
\[R_{26m} = -(R_{25m})/p^3 \]
\[R_{31m} = (2eK_m B_2) \Phi_{28m} + \Phi_{26m} \]
\[R_{32m} = -(2eK_m B_2) \Phi_{25m} - \Phi_{27m} \]
\[R_{33m} = (2eK_m B_2) \Phi_{26m} + \Phi_{28m} \]
\[R_{34m} = (2eK_m B_2) \Phi_{27m} + \Phi_{25m} \]
\[R_{35m} = (-1)^m I_{5m}/2 \]
\[R_{36m} = (-1)^m I_{6m}/2 \]
\[R_{37m} = \Phi_{7m} I_{5m}/2 + (-1)^m I_{8m}/2 \]
\[R_{38m} = \Phi_{7m} I_{6m}/2 + (-1)^m I_{7m}/2 \]
\[R_{39m} = -(2eH_m) B_3 \Phi_{21m} - \Phi_{23m} \]
\[R_{40m} = (2eH_m) B_3 \Phi_{22m} + \Phi_{24m} \]
\[R_{41m} = (2eH_m) B_3 \Phi_{23m} + \Phi_{21m} \]
\[R_{42m} = (2eH_m) B_3 \Phi_{24m} + \Phi_{22m} \]
\[R_{43m} = (-1)^m I_{16m}/2 \]
\[R_{44m} = (-1)^m I_{17m}/2 \]
\[R_{47m} = \frac{\phi_{4m}}{2} I_{10m}/2 + (-1)^{mn} I_{12m}/2 \]
\[R_{50m} = \frac{\phi_{8m}}{2} I_{17m}/2 + (-1)^{mn} I_{18m}/2 \]
\[R_{51m} = 24 I_{10m} + (128 - 2)(I_{9m})/p^2 \]
\[R_{52m} = 24 p^4 (I_{10m}) + (128 - 2) I_{7m} \]
\[R_{53m} = (-R_{25m}) (1 + Y_{10}) \]
\[R_{26m} = R_{26m} (1 - Y_{10}) \]
\[R_{71m} = R_{51m} (Y_{10} - 1) \]
\[R_{80m} = (-R_{52m}) (1 + Y_{10}) \]
\[R_{5mm} = (-\phi_{4m} I_{21mn} - \phi_{6m} I_{12mn})/\alpha_n \]
\[R_{1mn} = (\phi_{4m} I_{22mn} - \phi_{6m} I_{21mn})/\alpha_n \]
\[R_{7mm} = (-\phi_{1m} I_{22mn} - \phi_{3m} I_{23mn} - \phi_{20} I_{23mn})/\alpha_n \]
\[R_{8mm} = (\phi_{1m} I_{23mn} - \phi_{3m} I_{21mn} - \phi_{20} I_{22mn})/\alpha_n \]
\[R_{21mn} = -\phi_{4m} I_{25mn} - \phi_{6m} I_{24mn} \]
\[R_{22mn} = \phi_{4m} I_{24mn} - \phi_{6m} I_{25mn} \]
\[R_{23mn} = -\phi_{4m} I_{26mn} - \phi_{6m} I_{24mn} - \phi_{20} I_{27mn} \]
\[R_{24mn} = \phi_{4m} I_{27mn} - \phi_{6m} I_{25mn} - \phi_{20} I_{26mn} \]
\[
\begin{align*}
R_{27mn} &= \phi_{7m} I_{1mn} + (-1)^n I_{4mn} \\
R_{28mn} &= (-1)^n I_{1mn} \\
R_{29mn} &= (-1)^n I_{2mn} \\
R_{30mn} &= \phi_{7m} I_{2mn} + (-1)^n I_{3mn} \\
R_{43mn} &= (-1)^n I_{12mn} \\
R_{44mn} &= (-1)^n I_{13mn} \\
R_{45mn} &= \phi_{8n} I_{12mn} + (-1)^n I_{15mn} \\
R_{46mn} &= \phi_{8n} I_{13mn} + (-1)^n I_{14mn} \\
R_{54mn} &= R_{5mn} + (R_{25mn} R_{47n}) / Y_q \\
R_{55mn} &= R_{6mn} + (R_{25mn} R_{48n}) / Y_q \\
R_{56mn} &= R_{7mn} + (R_{25mn} R_{49n}) / Y_q \\
R_{57mn} &= R_{8mn} + (R_{25mn} R_{50n}) / Y_q \\
R_{58mn} &= R_{1m} S_{mn}^w - (R_{25mn} R_{55n}) / Y_q \\
R_{59mn} &= R_{2m} S_{mn}^w - (R_{25mn} R_{56n}) / Y_q \\
R_{60mn} &= R_{3m} S_{mn}^w - (R_{25mn} R_{57n}) / Y_q \\
R_{61mn} &= R_{4m} S_{mn}^w - (R_{25mn} R_{58n}) / Y_q \\
R_{63mn} &= R_{11m} S_{mn}^w + (R_{47n} R_{26m}) / Y_q
\end{align*}
\]
\[R_{64} = R_{18} S_{m} + (R_{46} + R_{26}) / Y_{9} \]
\[R_{65} = R_{17} S_{m} + (R_{47} + R_{27}) / Y_{9} \]
\[R_{66} = R_{20} S_{m} + (R_{50} + R_{26}) / Y_{9} \]
\[R_{67} = R_{21} - (R_{35} + R_{26}) / Y_{9} \]
\[R_{68} = R_{22} - (R_{36} + R_{26}) / Y_{9} \]
\[R_{69} = R_{23} - (R_{51} + R_{26}) / Y_{9} \]
\[R_{70} = R_{24} - (R_{58} + R_{26}) / Y_{9} \]
\[R_{71} = \frac{1}{2} R_{28} S_{m} - (R_{51} + R_{47}) / Y_{9} \]
\[R_{72} = \frac{1}{2} R_{27} S_{m} - (R_{51} + R_{48}) / Y_{9} \]
\[R_{73} = R_{31} S_{m} - (R_{51} + R_{49}) / Y_{9} \]
\[R_{74} = R_{34} S_{m} - (R_{51} + R_{38}) / Y_{9} \]
\[R_{75} = R_{28} + (R_{37} + R_{35}) / Y_{9} \]
\[R_{76} = R_{29} + (R_{51} + R_{36}) / Y_{9} \]
\[R_{77} = R_{27} + (R_{36} + R_{37}) / Y_{9} \]
\[R_{78} = R_{30} + (R_{51} + R_{38}) / Y_{9} \]
\[R_{79} = R_{32} + (R_{51} + R_{39}) / Y_{9} \]
\[R_{80} = R_{43} + (R_{52} + R_{47}) / Y_{9} \]
\[R_{81} = R_{44} + (R_{52} + R_{48}) / Y_{9} \]
\[
R_{85\text{mm}} = R_{45\text{mm}} + \frac{(R_{52\text{mm}} - R_{44\text{mm}})}{Y_1},
\]
\[
R_{84\text{mm}} = R_{46\text{mm}} + \frac{(R_{52\text{mm}} - R_{50\text{mm}})}{Y_1},
\]
\[
R_{85\text{mm}} = \phi_{24\text{mm}} S_{2w} - \frac{(R_{52\text{mm}} - R_{35\text{mm}})}{Y_1},
\]
\[
R_{86\text{mm}} = \phi_{23\text{mm}} S_{2w} - \frac{(R_{52\text{mm}} - R_{36\text{mm}})}{Y_1},
\]
\[
R_{87\text{mm}} = \phi_{41\text{mm}} S_{2w} - \frac{(R_{52\text{mm}} - R_{37\text{mm}})}{Y_1},
\]
\[
R_{88\text{mm}} = \phi_{42\text{mm}} S_{2w} - \frac{(R_{52\text{mm}} - R_{38\text{mm}})}{Y_1}.
\]

Symbols for \(M_x \)

\[
\alpha_1 = p^2
\]
\[
\alpha_2 = -2 \beta p
\]
\[
\alpha_3 = (c^2 + \nu s^2)
\]
\[
\alpha_4 = 2 s c^3 K_n \left(1 - \nu \right)
\]
\[
\alpha_5 = 2 s c^2 K_n \left(1 - \nu \right)
\]
\[
\alpha_6 = 2 c K_n \left(c^2 + \nu s^2 \right)
\]

Symbols for \(M_y \)

\[
b_1 = \nu p^2
\]
\[
b_2 = -2 \nu s p
\]
\[
b_3 = c^2 + \nu s^2
\]
\[
b_4 = 2 c K_n \left(c^2 + \nu s^2 \right)
\]
SYMBOLS FOR \(M_x \)

\[C_1 = -c x_n^2 \]
\[C_2 = -p x_n \]
\[C_3 = -2 SC^2 K_n \]
\[C_4 = c K_n (s^2 - c^2) \]
\[C_5 = K_n (s^2 - c^2) \]
\[C_6 = -2 SC K_n \]

SYMBOLS FOR \(Q_x \)

\[d_1 = 2 p c^2 x_n^2 \]
\[d_2 = -2 C^3 K_n \]
\[d_3 = -2 s c^2 K_n \]
\[d_4 = -s \]
\[d_5 = -3 s p^2 \]
\[d_6 = (1 + 2 s^2) p \]

SYMBOLS FOR \(G_y \)

\[e_1 = p^2 \]
\[e_2 = -2 s p \]
APPENDIX II

LISTING OF THE FORTRAN PROGRAM
USED FOR THEORETICAL ANALYSIS
FLOW DIAGRAM FOR THE COMPUTER PROGRAM

READ INPUT TAPE: DATA

CALL SUBROUTINE FOR THE SOLUTION OF MATRIX EQUATION

CALL subroutine for the solution of matrix equation

COMPUTE PARAMETERS B1, B2, y1, y2, ...

--- Y10 etc.

COMPUTE \phi', \phi'' (known vector in matrix eq.)

COMPUTE DEFINITE INTEGRALS I_{en}, I_{bn}, etc.

COMPUTE DEFINITE INTEGRALS I_{mn}, I_{2mn}, etc.

COMPUTE \rho m's in the matrix eq.

COMPUTE \rho m's in the matrix eq.

COMPUTE CONSTANTS OF INTEGRATION INDEPENDENT OF x, A10, A20, etc.

COMPUTE THE COEFFICIENTS A1, A2, etc. in moment and shear expressions

COMPUTE THE DEFORMATIONS \psi, \psi', \psi'', \psi''', \psi'''' and moments at the centre

COMPUTE THE DEFORMATIONS \psi, \psi', \psi'', \psi''', \psi'''' and moments at the centre

WRITE OUTPUT TAPE: INPUT DATA, P, Q, E, and deflection and moments at the centre, \psi, \psi', \psi'', \psi''', \psi'''' and

WRITE OUTPUT TAPE: INPUT DATA, P, Q, E, and deflection and moments at the centre, \psi, \psi', \psi'', \psi''', \psi'''' and

READ INPUT TAPE: COORDINATES OF POINTS ON THE SANDWICH PLATE X AND Y

READ INPUT TAPE: COORDINATES OF POINTS ON THE SANDWICH PLATE X AND Y

CALL COORDINATES OF ONE POINT (X, Y)

CALL COORDINATES OF ONE POINT (X, Y)

COMPUTE MOMENTS AND SHEARS

WRITE OUTPUT TAPE: MOMENTS AND SHEARS AND COORDINATES X, Y

WRITE OUTPUT TAPE: MOMENTS AND SHEARS AND COORDINATES X, Y

YES

ARE ALL POINTS (X, Y) CONSIDERED?

ARE ALL POINTS (X, Y) CONSIDERED?

YES

YES

ARE RESULTS FOR ANOTHER PLATE REQUIRED?

ARE RESULTS FOR ANOTHER PLATE REQUIRED?

NO

NO

END

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
JOB VERSION 5 HAS CONTROL.

BFTC DK 186

DK 186 - EFN SOURCE STATEMENT - IFN(S) -

SHEAR AND BENDING DEFORMATION

SANDWICH PARALLELOGRAMMIC PANELS

DIMENSION Y(64,12),U(32,12,12),BGM(96,96),V196),TEAT(21)

REAL(5,99),THETA,THICK,EMOD,GE,CBAR,BE,ANU

FORMAT(8E9.3)

EH=CBAR+THICK

DE=THICK*EH*EMOD/(2.*(1.-ANU*ANU))

DG=CE/(GE*CBAR)

PI=3.14159265358979

TH1=THETA*PI/180.

S= SIN(TH1)

C= COS(TH1)

P2=P*P

P3=P2*P

P4=P2*P2

C2=C*C

S2=S*S

BE2=BE*BE

AF1=C2*C2*BE2*BE2/DE

AF2=RE2*BE2

AF3=BE*C

B1=0G/(BE2*C2)

B1=2.*S*P*B11

B2=B11

B3=P2*B11

Y1=1.+2.*B2

Y2=(1.+6.*B3)/3.

Y3=8.*(B2+1./(15.*P4))

Y4=1.-0.2/P4+12.*B2-4.*B3/P4

Y5=0.2-1./P4+4.*B2-12.*B3/P4

Y6=(1.+8.*B2)/3.

Y7=1.+2.*B3

Y8=8.*(B3/P4+1./15.)

Y9=8.*(B3/P4+82-1./15.-1./15.*P4))

Y10=(Y8-Y3)/Y9

TP0=1.0

DO 10 N=1,12

BAA=N

ALF=BBF*PI

ALF2=ALF*ALF

AH=ALF/P

AK=ALF*P

AK2=AK*AK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CAK = C*AK
CAH = C*AH
TPO = -TPO

Y(1, N) = TPO*C2*P
Y(2, N) = TPO*S*CAH
Y(3, N) = TPO*S/ALF
Y(4, N) = TPO*C2*ALF
Y(5, N) = TPO*S*C*ALF
Y(6, N) = TPO*S*P

Y(7, N) = TPO*2.*B3*CAH
Y(8, N) = TPO*2.*B2*CAK
SAK = S*AK
SAH = S*AH
SK = SIN(SAK)
SH = SIN(SAH)

CK = COS(SAK)
CH = COS(SAH)
CAK2 = 2.*CAK
CAH2 = 2.*CAH
S02 = EXP(-CAK2)
S03 = EXP(-CAH2)

SNK = (1. - S02)/2.
SNH = (1. - S03)/2.
CNK = (1. + S02)/2.
CNH = (1. + S03)/2.

Y(9, N) = CNK*SK
Y(10, N) = SNK*CK
Y(11, N) = SNK*SK
Y(12, N) = CNK*CK
Y(13, N) = CNH*SH
Y(14, N) = SNH*CH
Y(15, N) = SNH*SH
Y(16, N) = CNH*CH

AH2 = AH*AH
AH4 = AH2*AH2
AH21 = AH2*(S2-C2)

Y(17, N) = 2.*(SAH*Y(13, N) + CAH*Y(14, N))/AH2
Y(18, N) = 2.*(S-CAH*Y(14, N) + CAH*Y(13, N))/AH2
Y(19, N) = 2.*(AH2*(CAH*Y(15, N) - SAH*Y(16, N)) + 2.*SAH*CAH*Y(14, N)

1 + AH21*Y(13, N) / AH4
Y(20, N) = 2.*(AH2*(SAH*Y(15, N) + CAH*Y(16, N)) - 2.*SAH*CAH*Y(13, N)
1 + AH21*Y(14, N) / AH4
Y(21, N) = TPO*4./ALF2
Y(22, N) = TPO*(ALF2-6.)/(1.*AK2*AK2)
Y(23, N) = -TPO*2./ALF

Y(24, N) = -2.*(TPO*(ALF2-6.)/(ALF2*ALF)
AK4 = AK2*AK2
AK2L = AK2*(S2-C2)

Y(25, N) = 2.*(SAK*Y(9, N) + CAK*Y(10, N))/AK2
Y(26, N) = 2.*(S-CAK*Y(10, N) + CAK*Y(9, N))/AK2
Y(27, N) = 2.*(AK2*(CAK*Y(11, N) - SAK*Y(12, N)) + 2.*CAK*SAK*Y(10, N)

1 + AK21*Y(9, N) / AK4
Y(28, N) = 2.*(AK2*(SAK*Y(11, N) + CAK*Y(12, N)) - 2.*CAK*SAK*Y(9, N)
1 + AK21*Y(10, N) / AK4
Y(29, N) = C*ALF*Y(15, N)
Y(30, N) = C*ALF*Y(16, N)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
Y(31,N) = -P \cdot Y(15,N) - C \cdot ALF \cdot Y(13,N) \\
Y(32,N) = P \cdot Y(16,N) + C \cdot ALF \cdot Y(14,N) \\
Y(33,N) = C \cdot ALF \cdot Y(14,N) \\
Y(34,N) = C \cdot ALF \cdot Y(13,N) \\
Y(35,N) = P \cdot Y(14,N) + C \cdot ALF \cdot Y(16,N) \\
Y(36,N) = P \cdot Y(13,N) + C \cdot ALF \cdot Y(15,N) \\
Y(37,N) = C \cdot ALF \cdot Y(10,N) \\
Y(38,N) = C \cdot ALF \cdot Y(9,N) \\
Y(39,N) = Y(10,N) + C \cdot ALF \cdot Y(12,N) \\
Y(40,N) = Y(9,N) + C \cdot ALF \cdot Y(11,N) \\
Y(41,N) = C \cdot ALF \cdot Y(11,N) \\
Y(42,N) = C \cdot ALF \cdot Y(12,N) \\
Y(43,N) = Y(11,N) - C \cdot ALF \cdot Y(9,N) \\
Y(44,N) = Y(12,N) + C \cdot ALF \cdot Y(10,N) \\
Y(45,N) = 4.0 \cdot S \cdot (Y(23,N) - Y(24,N)) \\
Y(46,N) = Y(45,N) / P3 \\
Y(47,N) = C \cdot ALF \cdot Y(12,N) + Y(10,N) \\
Y(48,N) = -C \cdot ALF \cdot Y(9,N) - Y(11,N) \\
Y(49,N) = C \cdot ALF \cdot Y(10,N) + Y(12,N) \\
Y(50,N) = TP0 \cdot Y(17,N) / 2. \\
Y(51,N) = TP0 \cdot Y(16,N) / 2. \\
Y(52,N) = Y(17,N) + Y(16,N) + TP0 \cdot Y(20,N) / 2. \\
Y(53,N) = Y(18,N) + Y(17,N) + TP0 \cdot Y(19,N) / 2. \\
Y(54,N) = C \cdot ALF \cdot B3 \cdot Y(13,N) - Y(15,N) \\
Y(55,N) = C \cdot ALF \cdot B3 \cdot Y(14,N) + Y(16,N) \\
Y(56,N) = C \cdot ALF \cdot B3 \cdot Y(16,N) + Y(14,N) \\
Y(57,N) = C \cdot ALF \cdot B3 \cdot Y(15,N) + Y(13,N) \\
Y(58,N) = TP0 \cdot Y(25,N) / 2. \\
Y(59,N) = TP0 \cdot Y(26,N) / 2. \\
Y(60,N) = Y(25,N) + TP0 \cdot Y(28,N) / 2. \\
Y(61,N) = Y(26,N) + Y(25,N) + TP0 \cdot Y(27,N) / 2. \\
Y(62,N) = 24.0 \cdot Y(22,N) + (12.0 \cdot B3 - 2.0) \cdot Y(21,N) / P4 \\
Y(63,N) = 24.0 \cdot P4 \cdot Y(22,N) + (12.0 \cdot B3 - 2.0) \cdot Y(21,N) \\
Y(64,N) = Y(45,N) * (1.0 + Y10) \\
Y(65,N) = Y(46,N) * (1.0 - Y10) \\
Y(66,N) = Y(62,N) * (Y10 - 1.0) \\
Y(67,N) = Y(63,N) * (1.0 + Y10) \\
Y(68,N) = C \cdot ALF \cdot B2 \cdot Y(11,N) + Y(9,N) \\
DO 11 M = 1, 12 \\
BM = P \\
BM1 = BM * PI \\
TP0 = 1.0 \\
DO 11 N = 1, 12 \\
BAA = N \\
TP0 = -TP0 \\
AH = BAA * PI / P \\
AK = BAA * PI * P \\
U1 = S \cdot AH + BM1 \\
U2 = S \cdot AH - BM1 \\
U3 = C \cdot AH \\
SU1 = S \cdot IN(U1) \\
SU2 = S \cdot IN(U2) \\
CU1 = C \cdot COS(U1) \\
CU2 = C \cdot COS(U2) \\
U13 = U1 * U1 + U3 * U3 \\
U13N = U1 * U1 - U3 * U3
\]
\[U_{23} = U_2^* U_2 + U_3^* U_3 \]
\[U_{23N} = U_2^* U_2 - U_3^* U_3 \]
\[U_{13S} = U_{13}^* U_{13} \]
\[U_{23S} = U_{23}^* U_{23} \]
\[U_3T = 2 \cdot U_3 \]
\[S0_3 = \text{EXP}(-U_3T) \]
\[\text{SNH} = (1 - S0_3) / 2 \cdot \]
\[\text{CNH} = (1 + S0_3) / 2 \cdot \]
\[\text{PT1} = (U_1 \cdot \text{CNH} \cdot SU_1 + U_3 \cdot \text{SNH} \cdot CU_1) / U_{13} \]
\[\text{PT2} = (U_2 \cdot \text{CNH} \cdot SU_2 + U_3 \cdot \text{SNH} \cdot CU_2) / U_{23} \]
\[\text{PT3} = (-U_1 \cdot \text{SNH} \cdot CU_1 + U_3 \cdot \text{CNH} \cdot SU_1) / U_{13} \]
\[\text{PT4} = (-U_2 \cdot \text{SNH} \cdot CU_2 + U_3 \cdot \text{CNH} \cdot SU_2) / U_{23} \]
\[\text{PT5} = (U_{13} \cdot (U_3 \cdot SU_1 \cdot \text{SNH} - U_1 \cdot CU_1 \cdot \text{CNH}) + 2 \cdot U_1 \cdot U_3 \cdot CU_1 \cdot \text{SNH} \]
\[1 + U_{13N} \cdot SU_1 \cdot \text{CNH} / U_{13S} \]
\[\text{PT6} = (U_{23} \cdot (U_3 \cdot SU_2 \cdot \text{SNH} - U_2 \cdot CU_2 \cdot \text{CNH}) + 2 \cdot U_2 \cdot U_3 \cdot CU_2 \cdot \text{SNH} \]
\[1 + U_{23N} \cdot SU_2 \cdot \text{CNH} / U_{23S} \]
\[\text{PT7} = (U_{13} \cdot (U_1 \cdot SU_1 \cdot \text{SNH} + U_3 \cdot CU_1 \cdot \text{CNH}) + U_{13N} \cdot CU_1 \cdot \text{SNH} \]
\[1 - 2 \cdot U_1 \cdot U_3 \cdot SU_1 \cdot \text{CNH} / U_{13S} \]
\[\text{PT8} = (U_{23} \cdot (U_2 \cdot SU_2 \cdot \text{SNH} + U_3 \cdot CU_2 \cdot \text{CNH}) + U_{23N} \cdot CL_2 \cdot \text{SNH} \]
\[1 - 2 \cdot U_2 \cdot U_3 \cdot SU_2 \cdot \text{CNH} / U_{23S} \]

\[U_{1}, N, M \cdot N = PT1 + PT2 \]
\[U_{2}, M, N \cdot M = PT3 + PT4 \]
\[U_{3}, M, N \cdot N = PT5 + PT6 \]
\[U_{4}, M, N \cdot M = PT7 + PT8 \]
\[U_{16}, M, N \cdot N = PT6 - PT7 \]
\[U_1 = S \cdot AK + BM_1 \]
\[U_2 = S \cdot AK - BM_1 \]
\[U_3 = C \cdot AK \]
\[SU_1 = \text{SIN}(U_1) \]
\[SU_2 = \text{SIN}(U_2) \]
\[CU_1 = \text{COS}(U_1) \]
\[CU_2 = \text{COS}(U_2) \]
\[U_{13} = U_1 \cdot U_1 + U_3 \cdot U_3 \]
\[U_{13N} = U_1 \cdot U_1 - U_3 \cdot U_3 \]
\[U_{23} = U_2 \cdot U_2 + U_3 \cdot U_3 \]
\[U_{23N} = U_2 \cdot U_2 - U_3 \cdot U_3 \]
\[U_{13S} = U_{13}^* U_{13} \]
\[U_{23S} = U_{23}^* U_{23} \]
\[U_3T = 2 \cdot U_3 \]
\[S0_3 = \text{EXP}(-U_3T) \]
\[\text{SNH} = (1 - S0_3) / 2 \cdot \]
\[\text{CNH} = (1 + S0_3) / 2 \cdot \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
$1-2.*U2*U3*SU2*CNK)/U23S$

$U(5,M,N)=PT1+PT2$

$U(6, M, N)=PT3+PT4$

$U(7,M,N)=PT5+PT6$

$U(8, M, N)=PT7+PT8$

$U(9, M, N)=PT3-PT4$

$U(10, M, N)=PT2-PT1$

$U(11, M, N)=PT8-PT7$

$U(12, Y, N)=PT5-PT6$

$ALF=6AA*PI$

$U(17, M, N)=ALF*(-Y(1, N)*U(10, M, N)-Y(2, N)*U(9, M, N))$

$U(18, M, N)=ALF*(Y(1, N)*U(9, M, N)-Y(2, N)*U(10, M, N))$

$U(19, M, N)=ALF*(-Y(1, N)*U(11, M, N)-Y(3, N)*U(9, M, N))$

$U(17, F, N)=ALF* (-Y(1, N)*U(10, M, N)-Y(2, N)*U(9, M, N))$

$U(18, F, N)=ALF*(Y(1, N)*U(9, M, N)-Y(2, N)*U(10, M, N))$

$U(20, M, N)=Y(7, N)*U(12, M, N)-Y(4, N)*U(13, M, N)-Y(5, N)*U(14, M, N)-Y(2, N)*U(11, M, N)$

$DO 12 M=1, 96$

$V(M)=0.0$

$DO 12 N=1, 96$

$12 BIGM(M, N)=0.0$

$DO 13 M=1, 12$

$V(M+24)=Y(64, M)$

$V(M+36)=Y(65, M)$

$V(M+48)=Y(66, M)$

$V(M+60)=Y(67, M)$

$BIGM(M, M)=Y(37, M)$

$BIGM(F, M+12)=Y(38, M)$

$BIGM(M, M+24)=Y(39, M)$

$BIGM(M, M+36)=Y(40, M)$

$BIGM(M+12, M)=-Y(40, M)$

$BIGM(M+12, M+12)=Y(44, M)$

$BIGM(M+12, M+24)=Y(48, M)$

$BIGM(M+12, M+36)=Y(49, M)$

$BIGM(M+72, M+60)=Y(54, M)$

$BIGM(M+72, M+48)=Y(33, M)$

$BIGM(M+72, M+72)=Y(35, M)$

$BIGM(M+72, M+64)=Y(36, M)$

$BIGM(M+84, M+48)=-Y(13, M)$

$BIGM(M+84, M+60)=Y(14, M)$

$BIGM(M+84, M+72)=Y(54, M)$

$BIGM(M+84, M+84)=Y(55, M)$

$DO 13 N=1, 12$

$BIGM(M+24, N)=U(17, N, N)+Y(45, N)*Y(58, N)/Y9$

$BIGM(M+24, N+12)=U(18, N, N)+Y(45, N)*Y(59, N)/Y9$

$BIGM(M+24, N+24)=U(19, N, N)+Y(45, N)*Y(60, N)/Y9$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{align*}
\text{BIGM}(M+24, N+36) &= U(2C, M, N) + Y(45, M) \times Y(61, N) / Y9 \\
\text{BIGM}(M+36, N+48) &= U(21, M, N) - Y(50, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+36, N+60) &= U(22, M, N) - Y(51, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+36, N+72) &= U(23, M, N) - Y(52, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+48, N+48) &= U(24, M, N) - Y(53, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+48, N+60) &= U(25, M, N) - Y(54, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+48, N+72) &= U(26, M, N) - Y(55, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+60, N+48) &= U(29, M, N) - Y(58, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+60, N+60) &= U(30, M, N) - Y(51, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+60, N+72) &= U(31, M, N) - Y(52, N) \times Y(46, M) / Y9 \\
\text{BIGM}(M+60, N+84) &= U(32, M, N) - Y(53, N) \times Y(46, M) / Y9 \\
\end{align*}
\]
\[\text{BAB} = N \]
\[\text{ALF} = \text{BAB} \times P \]
\[\text{AS0} = 50 + Y(5U, N) \times V(N) + Y(59, N) \times V(N+12) + Y(60, N) \times V(N+24) \]
\[1 + Y(61, N) \times V(N+36) - Y(56, N) \times V(N+48) - Y(51, N) \times V(N+60) - Y(52, N) \times V(N+72) \]
\[2 - Y(53, N) \times V(N+84) \]
\[\text{CAK} = C \times \text{ALF} \times P \]
\[\text{S02} = \exp(-\text{CAK}) \]
\[\text{CAH} = C \times \text{ALF} / P \]
\[\text{S03} = \exp(-\text{CAH}) \]
\[\text{CAK2} = V(N) \times \text{SG2} \]
\[\text{CAH2} = V(N+24) \times \text{S03} \]
\[\text{CAH1} = V(N+72) \times \text{S03} \]
\[\text{WB} = \text{WB} + \text{CAK2} + \text{CAH2} \]
\[A1Q = A1Q + Y(56, N) \times V(N) + Y(59, N) \times V(N+12) + Y(60, N) \times V(N+24) \]
\[1 + Y(61, N) \times V(N+36) \]
\[21 \]
\[\text{WS} = \text{WS} + 2 \times (B3 \times \text{CAH1} \times \text{CAH} + B2 \times \text{CAK1} \times \text{CAK}) \]
\[A50 = Y10 + A50 / Y9 \]
\[A40 = 2 \times A50 / P4 \]
\[A30 = 2 \times A50 \]
\[A10 = (Y6 \times A30 + Y7 \times 4C + Y8 + Y5 \times A50 + A10) \]
\[\text{WB} = \text{WB} + A10 + 14 \times P4 \]
\[\text{WS} = \text{WS} + B5 \times (2 \times A30 - 4 \times B3 \times A40 - 4 / P4) \]
\[\text{AMX} = 0 \times 0 \]
\[\text{AMY} = 0 \times 0 \]
\[\text{DO22} = N = 1, 12 \]
\[\text{BAB} = N \]
\[\text{ALF} = \text{BAB} \times P \]
\[\text{AK} = \text{ALF} / P \]
\[\text{ALF2} = \text{ALF} \times \text{ALF} \]
\[Y(1, N) = \text{ALF2} \times C2 \times (1 - \text{ANU}) \]
\[Y(2, N) = 2 \times C \times \text{AK} \]
\[Y(3, N) = -P2 \times Y(1, N) \times (C2 - S2) \]
\[Y(4, N) = 2 \times S \times C \times P2 \times Y(1, N) \]
\[Y(5, N) = 2 \times S \times \text{AK} \times C2 \times (1 - \text{ANU}) \]
\[Y(6, N) = 2 \times C \times \text{AK} \times (S2 + \text{ANU} \times C2) \]
\[Y(7, N) = Y(2, N) \times \text{ANU} \]
\[Y(8, N) = 2 \times C \times \text{AK} \times (C2 + \text{ANU} \times S2) \]
\[Y(9, N) = -C \times \text{ALF2} \]
\[Y(10, N) = -\text{AK} \]
\[AK2 = \text{ALF2} \times P2 \]
\[Y(11, N) = -2 \times S \times C \times \text{C} \times \text{AK2} \]
\[Y(12, N) = C \times \text{AK2} \times (S2 - C2) \]
\[Y(13, N) = \text{AK} \times (S2 - C2) \]
\[Y(14, N) = -2 \times S \times C \times \text{AK} \]
\[Y(15, N) = 2 \times P \times C2 \times \text{ALF2} \]
\[Y(16, N) = -2 \times C2 \times \text{C} \times \text{AK2} \]
\[Y(17, N) = -2 \times S \times C2 \times \text{AK2} \]
\[\text{CAK} = C \times \text{ALF} / P \]
\[\text{S02} = \exp(-\text{CAK}) \]
\[\text{S03} = \exp(-\text{CAH}) \]
\[\text{AMX} = \text{AMX} + \text{S03} \times (V(N+48) \times Y(1, N) + Y(2, N) \times V(N+72)) \]
\[1 + \text{S02} \times (Y(3, N) \times V(N) - Y(4, N) \times V(N+12) + Y(6, N) \times V(N+24) - Y(5, N) \times V(N+36)) \]
\[\text{AMY} = \text{AMY} + \text{S03} \times (-Y(1, N) \times V(N+48) + Y(7, N) \times V(N+72)) \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
1+SO2*(-Y(3,N)*V(N)+Y(4,N)*V(N+12)+Y(8,N)*V(N+24)+Y(5,N)*V(N+36))

22 AMXY=AMXY+SU3*(-Y(9,N)*V(N+60)-Y(10,N)*V(N+84))+SO2*(-Y(11,N)*V(N)
1-Y(12,N)*V(N+12)+Y(14,N)*V(N+24)-Y(13,N)*V(N+36))

AMX=AMX-(S2+ANU*C2)*(2.*A30-4.)-2.*P2-A40 +4./P2
AMY=AMY-(C2+ANU*S2)*(2.*A30-4.)-ANU*2.*(A40*P2-2./P2)
AMXY=(AMXY-S*(2.*A30-4.))*C*(1.-ANU)
PP1=((A+X-A*Y)/2.)*2
PP2=AMXY/2
AMNT=SQRT(PP1+PP2)
AMMAX=(AMX+AMY)/2.+AMNT
AMMIN=(AMX+AMY)/2.-AMNT
PIPE=2.*AMXY/(AMX-AMY)
ALPHA=28.64789*ATAN(PIPE)
WB=KB*AF1
WS=WS*AF2
AMX=AMX*AF2
AMY=AMY*AF2
AMXY=AMXY*AF2
AMMAX=AMMAX*AF2
AMMIN=AMMIN*AF2
WRITE(6,151)P,THETA,THICK,EMOPtGE,CBAR,RE,ANU,DG,WS,AMX,AMY,
LAMXY,LAMMAX,LAMMIN,ALPHA
151 FORMAT(6E16.8/5E16.8/6E16.8,/) READ(5,201) (TEAT(I), I=1,21)
201 FORMAT(2LF3.1)
163 DO 101 L=1,21
169 AMX=0.0
AMY=0.0
AMXY=0.0
QX=0.0
QY=0.0
DO 93 N=1,12
BAB=N
ALF=BAB*PI
CAK=C*ALF*P
CAH=C*ALF/P
CAK1=ALF*(STA+S*AXI/P)
CAK2=ALF*(AXI+S*ETA*P)
SU= SIN(CAK1)
CU= COS(CAK1)
SU2= SIN(CAK2)
CU2= COS(CAK2)
UI=CAH*(1.-AXI)
U2=CAH*(1.+AXI)
CH= EXP(-UI)
SH= EXP(-U2)
CHN=(CH+SH)/2.
SNH=(CH-SH)/2.
U1=CAK*(1.-ETA)
U2=CAK*(1.+ETA)
CH= EXP(-U1)
SH= EXP(-U2)
CHN=(CH+SH)/2.
SNK=(CH-SH)/2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{align*}
AMX &= AMX + CU1 \cdot CNH \cdot (Y(1,N) \cdot V(N+48) + Y(2,N) \cdot V(N+84)) + AX1 \cdot CU1 \cdot SNH \cdot V(N+72) + SU1 \cdot CNH \cdot \\
& \quad + V(N+36) \quad \times Y(3,N) \quad \times V(N+48) + Y(5,N) \quad \times V(N+24) \\
3 \cdot Y(5,N) \quad \times V(N+36) \quad + SU2 \cdot CNK \cdot Y(4,N) \quad \times V(N) \quad + Y(3,N) \quad \times V(N+12) \quad + Y(5,N) \\
4 \cdot V(N+24) \quad + Y(6,N) \quad \times V(N+36) \quad + ETA \cdot CU2 \cdot SNK \cdot Y(3,N) \quad \times V(N+24) \quad - Y(4,N) \\
5 \quad \times V(N+36) \quad + ETA \cdot SU2 \cdot CNK \cdot Y(4,N) \quad \times V(N+24) \quad + Y(3,N) \quad \times V(N+36) \\
AMY &= AMY + CU1 \cdot CNH \cdot (-Y(1,N) \cdot V(N+48) + Y(7,N) \cdot V(N+72)) + SU1 \cdot SNH \cdot \\
& \quad + V(N+36) \quad \times Y(3,N) \quad \times V(N+60) + Y(7,N) \quad \times V(N+84) \\
- AX1 \quad \times Y(1,N) \quad \times (CU1 \cdot SNH \cdot V(N+72) + SU1 \cdot CNH \cdot V(N+72) + Y(8,N) \\
3 \cdot V(N+24) \quad + Y(5,N) \quad \times V(N+36) \quad + SU2 \cdot SNK \cdot (-Y(1,N) \cdot V(N+48) \quad - Y(7,N) \quad \times V(N+72)) \\
4 \cdot Y(13,N) \quad \times V(N+24) \quad + Y(14,N) \quad \times V(N+36) \quad + ETA \cdot CU2 \cdot SNK \cdot Y(11,N) \quad \times V(N+24) \\
5 \quad \times Y(12,N) \quad \times V(N+36) \quad \times ETA \quad \times SU2 \quad \times CNK \quad \times Y(11,N) \quad \times V(N+24) \quad + Y(11,N) \quad \times V(N+36) \\
QX &= QX + Y(15,N) \quad (CU1 \quad \times SNH \quad \times V(N+72) \quad + SU1 \quad \times CNH \quad \times V(N+84)) \quad \times SU2 \quad \times CNK \quad \times Y(11,N) \quad \times V(N+36) \\
93 \quad \times QY \quad \times Y(17,N) \quad (AMX \quad \times V(N+36) \quad + SU2 \quad \times CNK \quad \times \quad V(N+36) \quad + SU2 \quad \times CNK \quad \times Y(11,N) \quad \times V(N+84)) \\
(1 \quad \times Y(17,N) \quad \times V(N+36) \quad + SU2 \quad \times CNK \quad \times V(N+36) \quad + SU2 \quad \times CNK \quad \times Y(11,N) \quad \times V(N+84)) \\
& \quad \times Y(16,N) \quad \times V(N+24) + Y(17,N) \quad \times V(N+36) \\
AMX &= AMX - (S2 + ANU \cdot C2) \quad (2 \quad \times A30 - 4 \quad + 12 \quad \times ETA \quad \times ETA \quad \times (1 \quad + A50)) \\
1 \quad \times 2 \quad \times A40 \quad \times P2 \quad + (4 \quad - 12 \quad \times AX1 \quad \times AX1 \quad \times (1 \quad - A50)) \quad / \quad P2 \\
AMY &= AMY - (C2 + ANU \cdot S2) \quad (2 \quad \times A30 - 4 \quad + 12 \quad \times ETA \quad \times ETA \quad \times (1 \quad + A50)) \\
1 \quad \times ANU \quad (2 \quad \times A40 \quad \times P2 \quad - (4 \quad - 12 \quad \times AX1 \quad \times AX1 \quad \times (1 \quad - A50)) \quad / \quad P2 \\
QX &= QX - 24 \quad \times ETA \quad (1 \quad + A50) \quad \times S \quad - 24 \quad \times AX1 \quad (1 \quad - A50) \quad / \quad P \\
QY &= -QY - 24 \quad \times ETA \quad (1 \quad + A50) \quad \times C \\
QN &= QX + S + QY + C \\
PP1 &= (AMX - AMY) \quad / \quad 2 \quad \times \quad *2 \\
PP2 &= AMX * A2 \\
AMNT &= SQRT(PP1 + PP2) \\
AMMAX &= (AMX + AMY) \quad / \quad 2 \quad \times \quad AMNT \\
AMMIN &= (AMX + AMY) \quad / \quad 2 \quad \times \quad AMNT \\
PIPE &= 2 \quad \times \quad AMXY \quad / \quad (AMX - AMY) \\
ALPHA &= 28.64789 \times ATAN(PIPE) \\
AMX &= AMX \quad \times AF2 \\
AMY &= AMY \quad \times AF2 \\
AMXY &= AMXY \quad \times AF2 \\
AMMAX &= AMMAX \quad \times AF2 \\
AMMIN &= AMMIN \quad \times AF2 \\
QX &= QX \quad \times AF3 \\
QY &= QY \quad \times AF3 \\
QN &= QN \quad \times AF3 \\
101 WRITE(6,154) AMX, AMY, AMXY, AMMAX, AMMIN, ALPHA, QX, QY, CN, AX1, ETA \\
154 FORMAT(6E16.8/S/5/6E16.8,/) \\
DO 3 L=1,21 \\
ETA = 1.0 \\
AX1 = ETA(L) \\
AMX = 0.0 \\
AMY = 0.0 \\
AX1 = 0.0 \\
QX = 0.0 \\
QY = 0.0
\end{align*}
\]
DO 2 N = 1, 12
BAB = N
ALF = BAB * PI
CAH = C * ALF / P
CAK1 = ALF * (ETA + S * AXI / P)
CAK2 = ALF * (AXI + S * ETA / P)
SU1 = SIN(CAK1)
CU1 = COS(CAK1)
SU2 = SIN(CAK2)
CU2 = COS(CAK2)
UL = CAH * (1. - AXI)
U2 = CAH * (1. + AXI)
CH = EXP(-U1)
SH = EXP(-U2)

CNH = (CH + SH) / 2.
SNH = (CH - SH) / 2.
UL = CAH * (1. - ETA)
U2 = CAH * (1. + ETA)
CH = EXP(-UL)
SH = EXP(-U2)

CNK = (CH + SH) / 2.
SNK = (CH - SH) / 2.
AMX = AMX + CU1 * CNH * (Y(1, N) * V(N + 48) + Y(2, N) * V(N + 72)) + SU1 * SNH *
1 (Y(1, N) * V(N + 48) + Y(2, N) * V(N + 72)) + AXI * (CU1 * SNH * V(N + 72) + SU1 * CNH +
2 (V(N + 48) + Y(1, N) + CU2 * CNK * (Y(3, N) * V(N) - Y(4, N) * V(N + 12) + Y(6, N) * V(N + 24)
3 (Y(5, N) * V(N + 36)) + SU2 * SNK * (Y(4, N) * V(N + 24) + Y(3, N) * V(N + 12) + Y(5, N) *

4 (V(N + 24) + Y(5, N) * V(N + 36)) + ETA * CU2 * SNK * (Y(3, N) * V(N + 24) - Y(4, N) *
5 (V(N + 36))) + ETA * SU2 * CNK * (Y(4, N) * V(N + 24) + Y(3, N) * V(N + 36))

AMX = AMX + CU1 * SNH * (Y(9, N) * V(N + 48) + Y(10, N) * V(N + 72)) - CU1 * CNH *
1 (Y(9, N) * V(N + 48) + Y(10, N) * V(N + 72)) - AXI * Y(9, N) * (CU1 * SNH * V(N + 72) +
2 SU1 * CNH * V(N + 72)) + CL * CNK * (Y(11, N) * V(N) - Y(12, N) * V(N + 12) + Y(14, N) *
3 (V(N + 24) + Y(13, N) * V(N + 36)) + SU2 * SNK * (Y(12, N) * V(N + 24) + Y(13, N) * V(N + 12) +

4 (Y(13, N) * V(N + 24) + Y(14, N) * V(N + 36)) + ETA * CU2 * SNK * (Y(11, N) * V(N + 24)
5 (Y(12, N) * V(N + 36)) + ETA * SU2 * CNK * (Y(12, N) * V(N + 24) + Y(11, N) * V(N + 36))

QX = QX + Y(15, N) * (CU1 * SNH * V(N + 72) + SU1 * CH * V(N + 84)) + SU2 * CNK * (Y(16, N) *
1 (V(N + 24) + Y(17, N) * V(N + 36)) + CU2 * SNK * (Y(17, N) * V(N + 24) - Y(16, N) *
2 QY = QY + Y(15, N) * (CU1 * SNH * V(N + 72) + CU2 * SNK * (Y(16, N) * V(N + 24) +
1 (Y(17, N) * V(N + 24) - Y(16, N) * V(N + 36)) - CU2 * SNK * (Y(16, N) * V(N + 24)
2 (Y(17, N) * V(N + 36))}

AMX = AMX * (S2 + ANU * C2) * (2 * A30 - 4 + 12 * ETA * ETA * (1. + A50))
1 - 2 * A40 * P2 - (4 - 12 * AXI * AXI) * (1. - A50) * P2
AMY = AMY - (C2 + ANU * S2) * (2 * A30 - 4 + 12 * ETA * ETA * (1. + A50))
1 - ANU * (2 * A40 * P2 - (4 - 12 * AXI * AXI) * (1. - A50)) * P2
AMXY = (AMXY - S2 * A30 - 4 + 12 * ETA * ETA * (1. + A50)) * * C * (1. - ANU)

QX = QX * P2 - 12 * ETA * ETA * (1. + A50) / P
QY = QY - 24 * ETA * (1. + A50) * C
QN = QX * S * QY * C
PP1 = ((AMX - AMY) / 2.) * * 2
PP2 = AMXY * * 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
AMNT = SQRT(PP1 + PP2)
AMMAX = (AMX + AMY) / 2 + AMNT
AMMIN = (AMX + AMY) / 2 - AMNT
PIPE = 2 * AMXY / (AMX - AMY)
ALPHA = 2 * 64789 * ATAN(PIPE)
AMX = AMX * AF2
AMY = AMY * AF2
AMXY = AMXY * AF2
AMMAX = AMMAX * AF2
AMMIN = AMMIN * AF2
QX = QX * AF3
QY = QY * AF3
QN = QN * AF3

3 WRITE (6, 154) AMX, AMY, AMXY, AMMAX, AMMIN, ALPHA, QX, QY, QN, AXI, ETA
GO TO 373
END

THE FIRST LOCATION NOT USED BY THIS PROGRAM IS 46027.
REFERENCES

16. Kommers, W.J. and Norris, C.B.,

17. Hoff, N.J. and Mautner, S.E., Bending and buckling of sandwich beams,

21. Yen, K.T. GunturKun, S., Pöhle, F.V.,
Deflections of a simply supported rectangular sandwich plate subjected to transverse loads, NACA TN 2581, 1951.

VITA AUCTORIS

1937 Amit Kumar Guha-Thakurta was born in Calcutta, India, November 2, 1937.

1947 In January, 1947, he entered South Suburban (Branch) School, Calcutta, India, where he completed his primary and secondary education.

1954 In March, 1954 he passed the School Final Examination, Board of Secondary Education, West Bengal, India.

1956 In March, 1956 he passed the Intermediate Science Examination, University of Calcutta.

1961 In May, 1961, he graduated with a Bachelor in Engineering in Civil Engineering, University of Calcutta, from Bengal Engineering College, Sibpore. In August, he was employed by the Department of Irrigation and Waterways, Government of West Bengal, India, as an Assistant Engineer and worked there for four months.

1962 In the middle of December, 1961, he joined the Pask Corporation, and worked as an Engineer trainee for six months on structural design of Industrial buildings. In September, he joined the Steel Design Cell of Heavy Engineering Corporation Ltd., Ranchi, India.

1965 He resigned from Heavy Engineering Corporation, in December, 1964 and came to Windsor, in January 1965.

Continued
to accept an offer of employment in the Engineering office of Canadian Bridge Co., Windsor, Canada.

In August 1966 he resigned from Canadian Bridge Co., and enrolled at the University of Windsor for the degree of Master of Applied Science in Civil Engineering.