
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-1968 

Dynamic stress concentration using the photolaserelastic Dynamic stress concentration using the photolaserelastic 

technique. technique. 

William G. James 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
James, William G., "Dynamic stress concentration using the photolaserelastic technique." (1968). 
Electronic Theses and Dissertations. 6518. 
https://scholar.uwindsor.ca/etd/6518 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6518&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6518?utm_source=scholar.uwindsor.ca%2Fetd%2F6518&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


DYNAMIC STRESS CONCENTRATION 
USING

THE PHOTOLASERELASTIC TECHNIQUE

A Thesis
Submitted to  the  F acu lty  o f Graduate S tud ies  through th e  

Department of M echanical Engineering in  P a r t i a l  F u lfilm en t 
of th e  Requirements fo r  th e  Degree of 

M aster o f Applied Science a t  the 
U n iv e rs ity  o f Windsor

by

W illiam G. James

V/indsor, O ntario 
1968

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: EC52700

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC52700 

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 E. Eisenhower Parkway 

PC Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVED BY;

ù Ô '% S V 'ii.

9951 i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

In  th is  in v e s tig a tio n  the  p h o to e la s tic  technique was employed to  

determ ine th e  maximum dynamic s t r e s s  co n cen tra tio n  fa c to rs  in  a 

dynam ically loaded s t r u t  due to  sym m etrically  loca ted  e l l i p t i c a l  d iscon­

t i n u i ty .  The two param eters time a f t e r  impact and s iz e  o f d is c o n tin u ity  

were considered . The s t r u t s  were made from a high modulus p h o to e la s tic  

m a te ria l and a l l  e l l ip s e s  were o rien ted  w ith th e  major ax is  p erp en d icu lar 

to  th e  lo n g itu d in a l a x is  o f th e  s t r u t .

A dynamic loading  system in co rp o ra tin g  a 22 c a lib e r  p r o je c t i le  was 

designed fo r  load r e p e a ta b i l i ty  and timewise synchron ization  w ith  the  

ou tpu t from a modulated ruby la s e r .  Using th i s  system and a s t i l l  

camera, th e  load cycle was repeated  many tim es to  o b ta in  photographs 

a t  d i f f e r e n t  tim es a f t e r  impact showing th e  s t r e s s  wave in  th e  model 

m a te r ia l. The l ig h t  pu lse  from th e  la s e r  was in te n se , p o la r iz e d , mono­

chrom atic and of sh o rt enough d u ra tio n  (0 ,1  microseconds) to  s to p  the  

ra p id ly  propagating s t r e s s  waves.

The r e s u l t s  of th i s  experim ent in d ica ted  th a t  the  maximum dynamic 

s t r e s s  co n cen tra tio n  fa c to rs  are  independent of th e  time a f t e r  impact 

a t  l e a s t  fo r  th e  tim e in te rv a l  (50 to  1^0 microseconds) s tud ied  h ere .

At a s p e c if ic  tim e a f t e r  impact th ese  fa c to rs  were a lso  found to  be 

independent of th e  edge d is tan ce  (a /d ) and depended only on (2a/r) where 

a i s  th e  semi major a x is  of th e  e l l ip s e ,  d i s  h a lf  th e  model w idth and 

r  i s  th e  rad iu s  a t  the  end of th e  major a x is .

A dd itional inform ation  was a v a ila b le  fo r  c a lc u la tin g  th e  s t r e s s  

concen tra tions a t  the top and bottom of the d isc o n tin u ity  and th e  edge

i i i
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of the  model ad jacen t to  th e  d isc o n tin u ity . These f a c to rs  were g e n e ra lly  

q u ite  sm all as  compared to  th e  maximum dynamic f a c to r s .  The p o s itio n s  

of the  maximum and zero f r in g e  o rders  were a lso  recorded .

Using some sim p lify ing  assum ptions and th e  one and two dim ensional 

th eo ry  of s t r e s s  wave propagation , a th e o re t ic a l  equation  was developed 

which expresses th e  r a t io  o f th e  s t a t i c  to  th e  dynamic s t r e s s  concen tra­

t io n  f a c to rs  as a fu n c tio n  of poisson*s r a t io  and th e  model geometry.

For the  m a te r ia l (PSM-1) used in  th i s  in v e s tig a tio n , th e  d iffe re n c e  

between the  th e o re t ic a l  and experim ental (Kg/K^)^ g was 5 to  10^, This 

equation  was a lso  compared to  th e  experim ental r e s u l ts  o f an independent 

in v e s tig a to r  who stud ied  p h o to e la s tic a lly  th e  problem of a dynam ically 

loaded s t r u t  con ta in ing  a c ir c u la r  d is c o n tin u ity . For th e  m a te r ia l  used 

(CR-39) th e  d iffe re n c e  between th e  th e o re t ic a l  and experim ental r a t io s  

was le s s  than  10^.

iv
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NOMENCLATURE

A Area, in^

A Angstrom u n i t ,  10~^cm.

a Semi major a x is  of e l l ip s e ,  in .

B Constant

c V elocity  o f propagation  of lo n g itu d in a l wave, in . / s e c .

d Half the  width of p h o to e la s tic  model, in .
2

E Modulus of e l a s t i c i t y ,  l b . / i n

F Force, lb .

fg. M ate ria l f r in g e  value , p s i  -  in /f r in g e  (ten sio n )

b Thickness of model, in .

K S tre s s  co n cen tra tio n  fa c to r

N F ringe o rder

R Constant

r  Radius of e l l ip s e  a t  end of major a x is ,  in ,

t  Time

u L ongitudinal d isplacem ent, in .

V P a r t ic le  v e lo c ity , in /s e c .

X L ongitud inal co -o rd in a te , in .

6? Angular P o s itio n s  of th e  Maximum and Zero F ringe O rders, degrees,

xAX M icroseconds, 10“^ sec .

V P o isson’s r a t io

Mass d e n s ity , lb .  -  s e c ^ /in ^  

<f" S tre s s ,  Ib /in ^
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1 .  INTRODUCTION

1 .1  S ub ject of th e  In v e s tig a tio n ,

The purpose of th i s  in v e s tig a tio n  was twofold

(a ) To synchronize a modulated ruby la s e r  as a l ig h t  source in  a 

p o lariscope  designed to  study t r a n s ie n t  s t r e s s e s .

(b) To determ ine experim en tally  using th i s  p h o to e la s tie  procedure, the  

s t r e s s  co n cen tra tio n  f a c to rs  in  a s t r u t  loaded by high v e lo c ity  

impact and con ta in ing  a sym m etrically  lo ca ted  e l l i p t i c a l  d isc o n tin u ity .

1 .2  The Importance of Dynamic S tre s s  C oncentration .

A member which con ta ins a d isc o n tin u ity  such as a ho le , no tch , o r  a 

change in  c ro ss  s e c tio n  cannot be analysed by th e  elem entary s t r e s s  

equations a t  l e a s t  in  th e  neighbourhood of th e  d is c o n tin u ity .

A considerab le  amount of work has been done to  determ ine s t a t i c  s t r e s s  

co n cen tra tio n  f a c to rs  fo r  th e  more common d is c o n t in u i t ie s .  These r e s u l t s  

have been ta b u la ted  in  th e  form of graphs of experim ental d a ta , em p irica l 

form ulae, and in  some cases th e  more d i f f i c u l t  form of a th e o r e t ic a l  so lu ­

t io n .  ( l ) ( 2 ) ( 3 )  In  th e  p a s t,  th e  e f fe c ts  of dynamic s t r e s s  were estim ated  

e i th e r  from th e  r e s u l t s  of an experim ent on th e  member o r  by adding a 

s a fe ty  f a c to r  to  th e  s t a t i c  s t r e s s  co n cen tra tio n  c r i te r io n  which would 

hopefu lly  cope w ith  th e  unknown dynamic e f f e c t .

The in c reasin g  trend  toward h igher performance and lower w eight to  

s tre n g th  r a t io s  o f dynam ically loaded machine members has made i t  im­

p e ra tiv e  th a t  th e  phenomenon of dynamic s t r e s s  co n cen tra tio n  and d is ­

t r ib u t io n  be w e ll understood.

Unlike s t a t i c  lo ad in g , impact fo rces  a re  no t tra n sm itted  im m ediately

1
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2

o r  in v a r ia b ly  to  a l l  p a r ts  o f th e  member. Thus, the  deform ations and 

corresponding s tr e s s e s  propagate through th e  member in  th e  form of s t r e s s  

waves. Because of th e  re s u l t in g  unknown v a r ia b le s  dynamic s t r e s s  concen­

t r a t io n  i s  no t e a s i ly  analysed .

1 .3  Plan of Treatm ent.

In  th i s  in v e s tig a tio n  a p h o to e la s tic  a n a ly s is  employing a modulated 

ruby la s e r  l ig h t  source coupled to  a rep ea tab le  dynamic load ing  system 

was synchronized to  photograph s t r e s s  wave propagation in  high modulus 

p h o to e la s tic  models. The photographic reco rds o f th e  isochrom atic 

fr in g e s  were s to red  on a s t i l l  camera by rep ea tin g  th e  load ing  cycle a t  

various in te rv a ls  o f time a f t e r  im pact.

In  o rder to  s top  p h o tog raph ica lly  th e  ra p id ly  propagating s t r e s s  

waves (wave f ro n t  v e lo c ity  63OOO inches per second) th e  f a s t  l i g h t  s h u tte r  

ac tio n  of th e  modulated (Q -spoiled) ruby la s e r  was employed to  e lim in a te  

th e  need o f a complex camera system . The la s e r  a lso  supplied  th e  in te n se , 

p a r a l l e l ,  po ld rized  and monochromatic l i g h t ,  making i t  com patible w ith 

th e  p h o to e la s tic  techn ique.
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2 . LITERATURE REVIEW

2 .1  S ta t ic  S tre s s  C oncentration .

Considerable in te r e s t  has been focused on th e  study of s t a t i c  s t r e s s  

concen tra tio n  f a c to r s .  Coker and F ilo n  (4 ) ,  Neuber (5 ) ,  Howland (6 ) ,

Wahl and Beeuwkes (7 ) ,  and F rocht (8 ) ,  a re  ju s t  a few of th e  in v e s t i ­

g a to rs  who have w r itte n  papers on s t a t i c  s t r e s s  co n cen tra tio n . A 

c o lle c tio n  of s t a t i c  s t r e s s  concen tra tio n  f a c to rs  f o r  various geom etries 

have been presented  by P eterson  ( l ) ,  Roark (2 ) , and th e  Engineering 

Science Data U nit (3 ) .  The case o f an e l l i p t i c a l  hole in  a s t r u t  has 

been determined th e o r e t ic a l ly  and experim entally  in  re fe ren ces  (4) and (3 ).

2 .2  Dynamic S tre s s  C oncentration .

The study of dynamic s t r e s s  concen tra tio n  i s  much more d i f f i c u l t  

because of th e  number of v a r ia b le s  involved and the  demand fo r  soph is­

t ic a te d  experim ental equipment. In  th e  area of dynamic p h o to e la c t ic i ty ,  

most in v e s tig a to rs  have turned to  low modulus m a te ria ls  such as  Hysol 8705 

in  which th e  s t r e s s  wave propagation has been slowed doim s u f f ic ie n t ly  so 

th a t  e x is tin g  equipment can be used (9 )(1 0 )(1 1 )(1 2 ). D u re lli  and D ally 

(9) have stud ied  the  problem o f a Hysol 8705 s t r u t  con ta in ing  a symmetri­

c a l ly  placed c ir c u la r  hole and being loaded a x ia l ly  by a f a l l in g  w eigh t. 

The hole diam eter to  model width was 0.29 and th e  dynamic s t r e s s  concen­

t r a t io n  f a c to r  was 3,35 which was e s s e n t ia l ly  constan t w ith tim e a f t e r  

impact and v i r tu a l ly  id e n t ic a l  to  th e  s t a t i c  v a lu e . The problem o f a 

Hysol 4485 s t r u t  loaded by a f a l l in g  weight and con tain ing  a sem ic ircu la r  

d isc o n tin u ity  loca ted  sym m etrically on opposite  s id es  was s tu d ied  by
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Kumar (1 0 ). The r e s u l ts  o f  th i s  experim ent in d ica ted  th a t  th e  dynamic 

s t r e s s  co n cen tra tio n  f a c to rs  were dependent on time a f t e r  impact and 

always lower than  th e  s t a t i c  v a lu es .

U nfo rtunate ly , th e  low modulus m a te ria ls  e x h ib it  r a te  dependent pro­

p e r t ie s ,  In  f a c t ,  s t a t i c a l l y ,  th e  m a te ria l i s  n o n -lin e a r  to  th e  e x te n t 

th a t  i t  i s  seldom used.

In  an e f f o r t  to  avoid th ese  undesirab le  p ro p e r tie s ,  s e v e ra l p h o to e la s tic  

in v e s tig a tio n s  (13)(14)(15) have been c a rrie d  ou t using conventional high 

modulus p h o to e la s tic  m a te r ia ls  such as Columbia Resin (CR-39) and Epoxy 

Resin A ra ld ite  6020, Of th ese  in v e s tig a tio n s , th e  p h o to e la s tic  reco rd s 

have been e i th e r  too poor to  in te rp r e t  a c c u ra te ly  o r sim ply reco rd s of 

various e f f e c ts .  Goldsmith and N orris (1 4 ), using th e  r e p e a ta b i l i ty  

technique of lo ad in g , have obtained c le a r  photographs of dynamic s tr e s s e s  

in  a CR-39 c a n ti le v e r  beam loaded on i t s  f re e  end by a s te e l  sphere . 

C e rta in ly , any a ttem pts to  d a te  to  record  th e  e n t ire  event w ith  a high 

speed camera have been somewhat u n s a tis fa c to ry  since  th e  in te n s i ty  and 

re so lu tio n  are  in s u f f ic ie n t .

D ally and H alb leib  (15) s tud ied  p h o to e la s tic a lly  th e  dynamic s t r e s s  

co n cen tra tio n  in  a CR-39 s t r u t  con tain ing  a c ir c u la r  hole and loaded 

a x ia l ly  by a f a l l in g  w eight. They used th e  r e p e a ta b i l i ty  technique and 

th e  spark gap method of l ig h t in g .  This in v e s tig a tio n  showed th e  dynamic 

s t r e s s  concen tra tio n  f a c to r  to  be independent of the tim e a f t e r  im pact, 

and th a t  fo r  a constan t tim e a f t e r  im pact, th e  f a c to rs  were dependent on 

th e  hole diam eter to  model w idth r a t io ,  ( f ig .  10)

North and Taylor (16) s tu d ied  p h o to e la s tic a lly  th e  same problem as 

D ally and H alb leib  bu t used A ra ld ite  6020 -  an epoxy r e s in  model m a te r ia l.
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In  th i s  in v e s tig a tio n , the  o rd in a ry  l ig h t  source w ith i t s  many problems 

was rep laced  by a modulated ruby la s e r .  The la s e r  ou tp u t was in te n se , 

p o la r iz ed , monochromatic, and of sh o rt enought time d u ra tio n  (0 ,1  

microseconds) to  e a s i ly  s to p  th e  ra p id ly  propagating s t r e s s  wave. The 

r e s u l t s  o f th i s  experim ent in d ica ted  th a t  the  dynamic s t r e s s  concen tra­

t io n  fa c to r  i s  dependent on th e  tim e a f t e r  im pact. For a co n stan t tim e 

a f t e r  im pact, th e  f a c to rs  varied  l in e a r ly  w ith the  hole diam eter to  model 

w idths ( f i g .  1 0 ).

Pao (17) suggests th a t  th e  dynamic s t r e s s  concen tra tio n  f a c to r  depends 

on th e  impulse wave leng th  and po isson’s r a t i o .  Since D ally and H alb le ib , 

North and T aylor, and the au th o r a l l  used d if f e r e n t  m a te r ia ls , and impact 

tim es, th e  r e s u l t s  of f ig .  10 cannot be compared d i r e c t ly .

A comprehensive review  of dynamic p h o to e la s t ic i ty  in  g en era l i s  given 

by Goldsmith (1 8 ). The d e te c tio n  and measurement of s tr e s s  waves by 

o th e r  methods than  a p h o to e la s tic  procedure a re  given by Kolsky (1 9 ).
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3 . OUTLINE OF THE PROBIEM STUDIED

3 .1  S tre ss  C oncentration F acto r.

The g e n e ra lly  accepted d e f in i t io n  fo r  the  s t a t i c  s tr e s s  co n cen tra tio n  

f a c to r  (K^) in  a s t r u t  under a  uniform  s tr e s s  d is t r ib u t io n  i s  th e  r a t io  

o f  the maximum s tr e s s  a t  the  d is c o n tin u ity  (<]^^) to  the  average s t r e s s  

(0%) a t  the  same se c tio n .

This d e f in i t io n  im plies th a t  an accu ra te  measurement o f th e  load on

the  member be known in  o rder to  f in d  the average s t r e s s .  For a  dynamic

load ing  co n d itio n , an accu ra te  determ ina tion  o f the ap p lied  load  i s

d i f f i c u l t  to  o b ta in . As a r e s u l t ,  the  d e f in i t io n  o f the  average s t r e s a

was assumed to  be th a t  based on the nominal s e c tio n  a t  the d isc o n tin u ity

when the  d isc o n tin u ity  does n o t e x i s t .  For th i s  co n d itio n , the  dynamic

s tr e s s  co n cen tra tio n  fa c to r  K, i s  defined  asa

%  = - p i -  (3-2)
nom

when C ^d  i s  the maximum dynamic s tr e s s  a t  the boundary o f the d isc o n - ,

t in u i ty  as a  fu n c tio n  of time a f t e r  impact and d i s  th e  s t r e s s  th a tnom •
would occur fo r  the same time a f t e r  impact and a t  the same p o s itio n  w ith  

no d is c o n tin u ity  p re se n t. I t  i s  n o t p o ssib le  to  compare d i r e c t ly  the 

s tr e s s  concen tra tio n  fa c to rs  and as defined  h e re . I f ,  however, 

the  values o f are  m u ltip lied  by a  su ita b le  geom etric co n stan t based
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on the  model w idth and d isc o n tin u ity  s iz e ,  co n cen tra tio n  f a c to rs  based

on the  gross a rea  o f the se c tio n  can be ob ta in ed . The values o f  and

can then  be compared w ithout d i f f i c u l ty .  In th is  in v e s tig a tio n  the con­

s ta n t  o f e q u a lity  between and i s

= <  /  ( W d )  (3-3)

where a i s  the  semi major ax is  o f  the e l l ip s e  and d i s  h a lf  the model w idth

(see f ig .  l ) .

3 .2  Major Assumptions Involved.

1 . The s tr e s s  concen tra tio n  fa c to r  (K^) which is  norm ally ap p lied  to  the

s t a t i c  loading  can be considered a v a lid  and s u f f ic ie n t  d e f in i t io n  fo r

dynamic load ing .

2 . Since the model th ick n ess  (^” ) i s  sm all r e la t iv e  to  the  o th e r dimen­

sions (ig-" wide X 8“ long) i t  ie  assumed th a t  a  con d itio n  o f plane s tr e s s  

e x is t s .  A fre e  boundary experiences only a  u n ia x ia l s ta te  o f s t r e s s  

having a d ire c t io n  tangen t to  the boundary. Thus, the s tr e s s  o p tic  

equation  fo r  becomes:

(3-4)

where; f  i s  the maximum m a te r ia l f r in g e  constan t p s i  -  in / f r in g e .0 max
h is  the model th ickness in  inches

N i s  the maximum isochrom atic fr in g e  o rder a t  the  boundary o f max
the  d isc o n tin u ity .
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3. At the c e n tra l  p o rtio n  o f  the s t r u t  when no d isc o n tin u ity  i s  p re se n t, 

i t  i s  assumed th a t  the tran sv erse  s tr e s s  i s  n e g lig ib le . Thus, the s t r e s s  

o p tic  equation  fo r  becomes;

( T  d _ nom ^nom (3-5)
nom -

where; f  i s  the nominal m a te ria l fr in g e  co n s ta n t, vnom
N _ i s  the  nominal f r in g e  a t  the a x ia l  c e n te r lin e  o f  the nom
s t r u t  w ith  no d isc o n tin u ity  p re se n t.

Combining equations 3 -2 , 3-4> and 3 -5 :

K, = <TmaÉ = ^max ^max / \

1 — ~ s—
^ nom cnom nom

4 . Although f  and f  a re  probably r a te  dependent fo r  the  m a te r ia l° f  max «rnom ^
stud ied  h e re , i t  i s  assumed th a t  the r a t io  o f these  two q u a n ti t ie s  is . equal 

to  one. Considering the work done by D ally , D u re ll i  an d .R iley  (20) on

hysol 8705 and in v e s tig a tio n s  made by C lark (21) and F roch t (22) on the

high modulus m a te ria ls  CR-39 and C a s to lite  re sp e c tiv e ly , t h i s  assum ption 

probably does n o t lead  to  app rec iab le  e r ro r  in  the m a te r ia l used h e re .

Thus equation  (3-6) reduces to :

V o r  d NK, _ max max
"  (T d ■ Hnom nom

5. E la s t ic  s tr e s s  cond itions e x is t  fo r  a l l  the  co n fig u ra tio n s  te s te d ,  

(appendix A)

6 . A dynamic s ta te  o f s tr e s s  e x i s t s .  To o b ta in  th is  the  lo n g itu d in a l 

s tr e s s  wave pulse must be sh o rt r e la t iv e  to  the model len g th  i f  a
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q u a s i- s ta t ic  s ta te  of s t r e s s  i s  to  be e lim in a ted . However, to  m ain tain  

a plane s t r e s s  co n d itio n , the  s t r e s s  pu lse  must be long r e la t iv e  to  th e  

model th ic k n e ss . (17)(23)

3 .3  The Geometric C onfigurations Tested

A t o t a l  of s ix te e n  models as seen in  f ig .  1 w ith various s iz e s  of 

e l l i p t i c a l  d is c o n tin u it ie s  were te s te d .  The dimensions of a l l  th e  models 

were th ic k  by l|-"  wide by 8” long. One a d d itio n a l model was te s te d  

w ithout th e  d is c o n tin u ity . This model was marked by a l in e  acro ss  i t s  

w idth a t  th e  lo c a tio n  where th e  d is c o n tin u ity  would appear. The m a te r ia l 

used was a high modulus m a te r ia l acquired  from P h o to la s tic  Incorporated  

under the  code number of PSM-1. See Appendix A fo r  more d e ta i l s  concerning 

th i s  m a te r ia l.
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4 . EXPERIMENTAL ARRANGEMENT AMD PROCEDURE

4 .1  The Light Source.

Dynamic p h o to e la s tic  in v e s tig a tio n s  have been hampered p rim a rily  by 

the lack  o f  an in tense  l ig h t  source. I f  o rd in a ry  l i g h t  i s  used, i t  

must be p o la riz e d , made monochromatic (300A band w idth) and stopped 

down a t  the  fo c a l plane o f the  co llim atin g  len s  to  o b ta in  a  p a r a l le l

l i g h t  f i e ld .  Thus, only  a  f r a c t io n  o f the source in te n s i ty  i s  u sa b le .

Di o rder to  avoid the requirem ent fo r  a complex camera system , the  

l i g h t  must be c o n tro lled  to  produce a l ig h t  pulse o f one microsecond or 

le s s  i f  the ra p id ly  propagating s tr e s s  waves are  to  be stopped photo­

g ra p h ica lly  on a s t i l l  camera. The above r e s t r i c t io n s  make conventional 

l i g h t  sources d i f f i c u l t  to  use fo r  dynamic p h o to e la s t ic i ty .  On th e  o th e r 

hand, the use o f a  pockels c e l l  modulated ruby la s e r  com pletely overcomes

the l ig h t  source problem. The advantages o f the ruby la s e r  l i g h t  a re

given below. (24)

(a) The ou tpu t i s  p o la rized  (100^)

(b) The l i g h t  i s  monochromatic (6943A band width O.IA).

(c) The l ig h t  is  p a r a l le l ,  ( le s s  than  one degree divergence)

Thus, the t o t a l  ou tput can be used .

(d) The ou tpu t i s  in te n se . In th i s  experim ent se v e ra l n e u tra l  f i l t e r s

had to  be used so th a t  the f ilm  would no t be pyerexppsed.

(e) The la s e r  i s  e a s i ly  modulated by means o f a  pockels c e l l  to  produce 

a  l ig h t  pulse o f 0 .1  microseconds o r l e s s ,  a technique termed 

Q -spo iling .

The above c h a ra c te r is t ic s  make the la s e r  compatible w ith

10
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1 1

dynamic p h o to e la s t ic i ty .  Appendix B and C con ta in  a more complete 

d e sc rip tio n  of th e  l a s e r ,  i t s  o p era tio n  and asso c ia ted  equipment.

4 .2  The In te g ra te d  System of Components to  Record th e  B ire frin g en ce .

The conventional p o lariscope  used in  th i s  system was modified by 

changing the  quarter-w ave p la te s  to  make i t  com patible w ith  th e  red 

(6943A) la s e r  l i g h t .  Since th e  la s e r  ou tpu t i s  p o la r iz e d , th e  p o la r iz e r  

of th e  p o la risco p e  could be om itted .

A loading mechanism in co rp o ra tin g  a 22 c a l ib e r  a i r  p i s to l  vras designed 

to  load th e  model w ith a re p e a ta b le , s h o r t ,  tim e d u ra tio n  impact load .

The load d u ra tio n  was 30 microseconds o r le s s  which i s  com patible w ith 

assumption 6 o f se c tio n  3 .2 . The p i s to l  charging gas (n itro g en ) was 

s to red  in  a w e ld e r 's  tank and re leased  to  th e  gun by a p ressu re  reducing 

re g u la to r  which was p r e s e t  to  500 p s ig .

A fte r th e  p e l le t  i s  f i r e d ,  i t  f i r s t  a c t iv a te s  a p h o to c e ll. The r e ­

su ltin g  e l e c t r i c a l  p u lse , which i s  am plified  and delayed, t r ig g e r s  th e  

la s e r  power supply re le a s in g  energy to  th e  la s e r  head f la s h  tu b e . When 

th e  p e l le t  reaches th e  top  of th e  model, i t  a c t iv a te s  a mechanical t r ig g e r  

by fo rc in g  a s tro n g  sp ring  re tu rn ed  s te e l  p lunger in to  co n tac t w ith  the  

s te e l  model cap. This co n tac t a c tio n  sim ultaneously  loads the  model and 

t r ig g e r s  the  m u ltip le  pu lse h o ld -o ff c i r c u i t  and pockels c e l l  delay  c i r ­

c u i t .  The ou tpu t pu lse  from th e  pockels c e l l  delay  c i r c u i t  cu ts  th e  h a lf  

vravo b ia s  vo ltage  o ff  the  la s e r  head pockels c e l l  a t  a predeterm ined tim e 

a f t e r  im pact. Imm ediately, th e r e a f te r ,  a sh o rt pu lse o f la s e r  l i g h t  (0 ,1  

microseconds d u ra tio n ) passes through th e  p o lariscope  and model in to  th e  

open s t i l l  camera.
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A block diagram of the  experim ental apparatus is  shoxra in  f i g ,  2 , w hile 

f i g .  3 shows the  lab o ra to ry  arrangem ent. See Appendix B and Q fo r  a more 

complete d e sc rip tio n  o f th e  equipment and i t s  o p e ra tio n .

4 ,3  The Data Recorded.

The f i r s t  p a r t  of th e  problem was to  determ ine how th e  maximum dynamic 

s t r e s s  co n cen tra tio n  fa c to r  depended on the  tim e a f t e r  im pact. To do t h i s ,  

a model w ithout a d isc o n tin u ity  and a re p re se n ta tiv e  model w ith a d iscon­

t in u i ty  was te s te d  to  determ ine the  nominal and maximum fr in g e  o rders  

re sp e c tiv e ly  a t  approxim ately 10 microsecond in te rv a ls  between l im its  of 

50 and I 4O microseconds a f t e r  im pact. The r e s u l ts  o f th i s  t e s t  p lo tte d  

in  f i g ,  7 in d ic a te  th e  dynamic s t r e s s  concen tra tion  fa c to rs  a re  essen­

t i a l l y  independent o f th e  tim e a f t e r  im pact.

The second p a r t  of th e  problem was to  determ ine th e  dynamic s t r e s s

co n cen tra tio n  f a c to rs  fo r  th e  various s iz e s  of d is c o n t in u i t ie s .  Since 

Kj i s  independent o f tim e a f t e r  im pact, a tim e of 100 microseconds was 

used and was chosen on th e  b a s is  o f th e  maximum number of f r in g e s  th a t  

could be counted acc u ra te ly  considering  th e  se v e re s t geometry te s te d  and 

th e  re so lu tio n  of th e  photographs. The photographs o f both t e s t s  gave 

a d d itio n a l in form ation  concerning the  s tr e s s e s  a t  th e  top  and bottom o f 

th e  d isc o n tin u ity  as w ell as the  s t r e s s  a t  th e  edge of th e  model a d jacen t

to  th e  d isc o n tin u ity . The p o s it io n  of th e  maximum and zero f r in g e  o rder

lo c a tio n s  on th e  d isc o n tin u ity  were a lso  recorded .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. RESULTS AND DISCUSSION OF THE ANALYSIS

5.1  B irefringence Photographs.

5 .1 .1  Fringe Propagation in  Models w ith  Time a f t e r  Impact; F igure 4 

i s  a ty p ic a l  s e le c tio n  o f photographs showing the propagating  s t r e s s  wave 

id e n tif ie d  by the isochrom atic fr in g e s  a t  various tim es a f t e r  bnpact. A 

l in q  across the  model w ithout a  d is c o n tin u ity  marks the p o s itio n  along 

which the major a x is  o f  the d isc o n tin u ity  would appear. The top  0.275 

inches o f the  models across th e i r  w idths i s  covered by the m etal cap; 

th u s , the  top  edge o f the models where the  s tr e s s  i s  i n i t i a t e d  cannot be 

seen . Near the loading  p o in t,  the s ta te  o f s tr e s s  i s  b ia x ia l ;  b u t a t  the 

c e n te r lin e  o f the  model the u n ia x ia l  s ta te  o f s tr e s s  assum ption i s  ap­

proached. Furtherm ore, f ig .  7 in d ic a te s  th a t  i s  e s s e n t ia l ly  co n s tan t 

over the time in te rv a l  considered which in d ic a te s  th a t  the  assum ption o f 

a  n e g lig ib le  tra n sv e rse  s t r e s s  a t  the  model c e n te r lin e  i s  j u s t i f i e d .

The time o f impact i s  30 microseconds o r le s s  (appendix C) and the 

wave f ro n t  v e lo c ity  (zero f r in g e  o rd e r) i s  63000 inches per second 

(appendix A). Thus, the  len g th  o f the s tr e s s  wave pu lse  i s  1 .9  inches.

For a  model len g th  o f 8 inches and a model th ickness o f ^  inch , th i s  

s t r e s s  pulse len g th  obviously  s a t i s f i e s  assumption 6 o f  s e c tio n  3 ,2 .

5 .1 .2  Fringe form ation about D isc o n tin u itie s  a t  100 microseconds a f t e r  

Impact! Figure 5 shows a ty p ic a l  s e t  o f d is c o n tin u it ie s  te s te d  fo r  a  con­

s ta n t  a /d  o f 0 .5 8 . For a  p a r t ic u la r  photograph shown in ; t h i s  f ig u re ,  

th e re  were a t  l e a s t  two o th e r photographs taken  and tbe average fr in g e  

count fo r  the  th re e  photographs was used in  the a n a ly s is .  The re so lu ­

t io n  of a l l  the photographs vra.s good and washout o f the h igher o rder

13
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u

fr in g e s  was n e g lig ib le  which is  probably due to  the h ig h ly  monochromatic 

l a s e r  l i g h t .

Figure 6 shows a  ty p ic a l  s e t  o f d is c o n tin u it ie s  fo r  a  co n stan t 2 a /r  = 2. 

The maximum frin g e  o rder i s  n e a r ly  the  same fo r  each photograph re g a rd le s s  

o f the edge d is ta n c e .

5 .2  G raphical D ite rp re ta tio n  o f the  B ire frin g en ce .

5 .2 .1  The ^hximum Dynamic S tre ss  C oncentration F acto r as a  Function o f

Time a f te r  Impact: Figure 7 i s  a  graph o f the fr in g e  o rder a g a in s t time

a f t e r  im pact. Curve re p re se n ts  the maximum fr in g e  o rder a t  th e  erui

o f the major a x is  fo r  the  co n stan t geometry in d ic a te d . The fr in g e  count

a t  both  ends o f the  major ax is  was noted and the average o f the two values

was p lo t te d . The curve was p lo tte d  from the in form ation  o f f ig .  18

shown in  appendix A. The dynamic s tr e s s  co n cen tra tio n  f a c to r  i s  the

r a t io  o f N to  N fo r  any given time a f t e r  im pact. In se t in  f i g .  7zoâx nom . . - ............ v .......... .

i s  p lo tte d  a g a in s t time and shows to  be r e l a t iv e ly  co n stan t over th e

time in te rv a l  considered . The rem ainder o f  the  t e s t s  were th en  taken  a t

100 microseconds a f t e r  impact based on th i s  f ig u re  and the  f a c t  th a t  Nnom
was r e l ia b le  fo r  th i s  tim e.

5 .2 .2  The Ikximum Dynamic S tre ss  C oncentration F acto r a t  a C onstant 

Time a f te r  Impact; Figure 8 i s  a graph o f the maximum dynamic s t r e s s  fa c ­

to r  a g a in s t 2 a /r  fo r  various r a t io s  o f a /d  and a t  a  co n stan t time a f t e r

impact o f 100 m icroseconds. The value o f N = 2,25 was determ ined fromnom
f ig .  7. The experim ental s t a t i c  s tr e s s  concen tra tion  f a c to rs  shown here 

fo r  comparison purposes were taken  from re fe ren ce  (3 ). This re fe ren ce  

in d ica ted  th a t  the curves were an approximate so lu tio n  fo r  th ree  d i f f e r e n t  

shapes o f d is c o n t in u i t ie s .  One o f these d is c o n tin u it ie s  was the e l l ip s e
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although , u n fo rtu n a te ly , i t  vras no t c le a r  which shape was a c tu a l ly  te s te d  

and p lo t te d .

The dynamic s tr e s s  co n cen tra tio n  fa c to rs  K^, u n lik e  the s t a t i c  f a c to r s ,  

a re  independent o f a /d .  Although th i s  was no t expected, i t  may be ex­

p la ined  by considering  the e f f e c t  o f  a  d isc o n tin u ity  on the p ropagating  

s tr e s s  wave. At the  upper boundary o f the d isc o n tin u ity , a  f r a c t io n  o f 

the  in c id en t compression wave i s  r e f le c te d  as a  te n sio n  wave from the  

fre e  boundary and th is  f ra c t io n  tends to  increase  as a /d  o r a  in c reases  

(d = 0 ,75” i s  c o n s ta n t) .

Consider a  co n stan t value o f a /d  approxim ately equal to  0 ,42  where 

the  dynamic fa c to rs  a re  approxim ately equal to  the  s t a t i c  f a c to rs  K^,

I f  2 a /r  in c re a se s , r  must decrease and a decreasing  r  i s  a s so c ia ted  

w ith  an in crease  in  s tr e s s  co n cen tra tio n  which is  c o n s is te n t w ith  f i g .  8 ,

I f  2 a /r  i s  co n stan t and a /d  i s  allowed to  in c re a se , the  n e t se c tio n  

decreases b u t the n e t  se c tio n  sees le s s  o f the in c id e n t s t r e s s  wave.

Thus, the increase  in  average s tr e s s  across the  n e t s e c tio n  i s  reduced 

and th is  reduced average s tr e s s  would tend to  lower the s t r e s s  concentra­

t io n  f a c to r .  B ut, as a  in c re a se s , then  r  must a lso  in crease  i f  2 a /r  i s  

to  remain co n stan t and an in c reasin g  r  i s  asso c ia ted  w ith  a  decrease o f  

s tr e s s  co n cen tra tio n . The two e f fe c ts  o f an in c reasin g  r  and an in ­

creasing  s tr e s s  wave r e f le c t io n  due to  an in creasin g  a  combine to  reduce 

the s tr e s s  concen tra tio n  f a c to r  to  the  p o in t where i t  i s  independent 

o f  a /d .  This same argument can a lso  bç app lied  to  the  case when 2 a /r  i s  

constan t and a /d  i s  reduced below the value o f  a /d  = 0 ,4 2 . In th i s  case , 

the n e t r e s u l t  i s  to  in crease  beyond the  value o f K in  such a  way th a t
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Kj i s  s t i l l  independent of a /d .

F igure  9 i s  a graph of th e  experim ental (K^ /  a g a in s t 2 a / r  fo r  

v arious values of a /d . The graph in d ic a te s  th a t  Kg v a r ie s  from a maximum 

of 1 .8 4  Kj a t  a /d  = 0.75 to  a minimum of 0 ,89 Kj a t  a /d  = 0 ,2 5 . At 

a /d  = 0 , 42 , Kg i s  approxim ately equal to  K^.

F igure 10 shows a graph of K̂  a g a in s t a /d  fo r  c ir c u la r  d is c o n t in u i t ie s  

( 2 a /r  = 2 ) .  The au th o r’s curve, th e  s t a t i c  curve, and th e  r e s u l t s  ob­

ta in ed  by o th e r  in v e s tig a to rs  a re  in d ic a te d . . .

5 . 2 .3  The Dynamic S tre s s  C oncentration F ac to rs  a t  th e  Top and Bottom 

of  th e  D isc o n tin u ity ; The dynamic s t r e s s  concen tra tions a sso c ia ted  w ith  

th e  top  and bottom o f th e  d is c o n tin u ity  were a lso  determ ined. These r e ­

s u l t s  were obtained fo r  a constan t model geometry (a /d  = 0 ,5S j 2 a /r  = 5*6) 

and various tim es a f t e r  impact as w e ll as a constan t tim e a f t e r  impact 

(100 m icroseconds) and v arious model geom etries. The p lo tte d  data i s  

rep resen ted  in  f i g ,  11 and f ig ,  12 re sp e c tiv e ly . F igure 11 in d ic a te s  

th a t  and K  ̂ in c rease  w ith  tim e a f t e r  im pact. These curves could no t 

be p lo tte d  fo r  tim es a f t e r  120 microseconds because was no t c le a r ly  

defined  beyond th i s  tim e. F igu re  12 shows th a t  K  ̂ and K^ vary  w ith  2 a /r  

and a lso  a /d .  K.̂  i s  always h igher than  K  ̂ except fo r  th e  case o f the  

sm a lle s t d isc o n tin u ity  where K̂  ̂ appears to  equal Ky. This i s  l ik e ly  due 

to  th e  len g th  of th e  propagating  wave f ro n t ;  t h a t  i s ,  i t  envelopes th e  

sm a lle s t d isc o n tin u ity  com pletely,

5 . 2 .4  The Dynamic S tre s s  C oncentration F ac to rs  a t  the  Edge of the  

Model A djacent to  th e  D isco n tin u ity : F igure  11 shows K  ̂ fo r  a co n stan t 

geometry and various tim es a f t e r  im pact. The f r in g e  o rd er Ng a t  th e  edge 

of th e  model was sm all and no t g re a te r  than two. Thus, i t  was d i f f i c u l t
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to  determ ine a cc u ra te ly  since the b e s t  f r in g e  count e s tim ates  were 

g en era lly  n o t b e t te r  than  the n e a re s t h a lf  o rd er.

Figure 13 shows a t  100 microseconds a f t e r  impact f o r  various model 

geom etries. This graph in d ic a te s  th a t  depends on both  a /d  and 2 a /r j  

b u t; a t  a /d  = 0 ,4 2  to  0 .25 , appears to  be n ea rly  independent o f 2 a / r .  

That i s ,  as the d isc o n tin u ity  becomes sm all, i t s  in fluence on the  wave 

f ro n t  a t  the edge o f the model becomes le s s  pronounced, indeed, f o r  the 

sm alle s t d isc o n tin u ity  the tren d  i s  to  in d ic a te  no e f f e c t  a t  a l l  (K  ̂ = l ) ,

5 .2 .5  The Angular P o s itio n  o f the I*feiximum and Zero Fringe O rders; The 

angular p o s itio n s  o f the maximum and zero frin g e  o rders on th e  boundary 

o f the hole fo r  a  constan t model geometry are  p lo tte d  in  f ig .  14 as a 

fu n c tio n  o f  tim e. The maximum s tr e s s  occurs i n i t i a l l y  a t  some p o in t 

removed from the n e t se c tio n  and as time in creases  the maximum frin g e  

order moves toward the n e t se c tio n .

This f ig u re  a lso  shows the zero fr in g e  o rder p o s itio n s  above and below 

the c e n te r lin e  o f the  d is c o n tin u ity . The zero p o s it io n  in  both  cases 

tends to  move toward the  n e t se c tio n  as time in c re a se s .

Figure 15 shows the zero fr in g e  o rder p o s itio n s  on the  upper boundary 

o f the d isc o n tin u ity  a g a in s t 2 a /r  a t  a constan t time a f t e r  impact (100 

microseconds) fo r  the geom etries s tu d ie d . These curves in d ic a te  th a t  the 

p o s itio n  o f N = 0 depends on both a /d  and 2 a /r .  The N = 0 p o s itio n s  on 

the lower boundary o f the  hole were q u ite  s im ila r .

5.3 Estim ate o f the Experim ental E rro r.

This estim ate  i s  confined to  the e r ro r  in  the maximum dynamic s t r e s s  

co n cen tra tio n  fa c to r  (K^) a t  100 microseconds a f t e r  im pact. E rro rs  in  

load r e p e a ta b i l i ty  and the r e p e a ta b i l i ty  o f the time a f t e r  impact are
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included in  th e  measurement of th e  frin g e , o rd e rs .

Considering th e  se v e re s t geometry te s te d ,  each photograph showed a 

f r in g e  count of about 16 f r in g e s  fo r  I t  i s  p o ss ib le  fo r  th e  e r ro r

in  th is  f ig u re  to  approach + 1 f r in g e  o r + 6^. This 6^ e r ro r  may be over­

estim ated  s in ce  th e  value of i s  th e  average of a t  l e a s t  th re e  sep ara te

photographs.

The nominal f r in g e  o rder obtained from f ig .  7 a t  100 microseconds a f t e r

impact i s  2.25 which i s  the  value used to  c a lc u la te  Kj . The curve ofu nom

fig u re  7 i s  based on th e  r e s u l t s  o f te n  photographs taken a t  te n  d i f f e r ­

e n t tim es a f t e r  th e  im pact. Hence, th e  e r ro r  in  th is  value of ig  

probably n o t g re a te r  than  + 0 .1  f r in g e  o r + 4.5^»

Since K, i s  equal to  th e  r a t io  N /  N then  th e  e r ro r  in  K, i su luax ' nom a

about + 1 0 ^ .

5 .4  T h e o re tica l C onsidera tions.

Using some sim p lify ing  assum ptions and th e  one and two dim ensional 

th eo ry  of s t r e s s  wave propagation , an equation  can be developed which 

shows the  re la t io n s h ip  between the  in c id e n t and tran sm itted  lo n g itu d in a l 

waves in  a s t r u t  which has a change in  cross se c tio n .

Consider a s t r u t  as shown in  th e  sketch  which i s  assumed to  bo very  

long . That i s ,  th e  assumption i s  made th a t  th e  ends o f the  s t r u t  a re  

f a r  enough away from th e  change in  c ross s e c tio n  so th a t  r e f le c t io n s  

from the  ends do not in te r f e r e  w ith  the  i n i t i a l  s t r e s s  p u lse . F u rth e r

assanod, i s  a uniform ly d is tr ib u te d  compressive s t r e s s  pu lse  th a t  i s  long

w ith re sp e c t to  th e  d isc o n tin u ity  and suddenly app lied  to  the  f re e  end.
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Impact
end

^  °nom

(1) 0

^ ^nom

(2 ) ->-c

Fixed
end

^  Vr (2) -►V.

The cond itions of c o n tin u ity  a t  th e  change in  c ross  se c tio n  re q u ire  

th a t

(5-1)F i  =

Vt = *2 (5-2)

where F i s  the  fo rce  and v i s  th e  p a r t ic le  v e lo c ity . Let (J^, and 0 ^

be th e  s t r e s s  in  th e  in c id e n t, r e f le c te d  and tra n sm itted  pu lse  r e s p e c t i ­

v e ly . From equation  (5-1) and (5-2)

4  K o rn  + = ( C )  A

^nom -  ^ r  "  *o

*2 (5-3)

(5-4)

From the  elem entary theo ry  of wave propagation  (25)(26)

^  = /^ c v  (5-5)

w h e r e i s  th e  mass d en s ity  o f th e  b a r , and c i s  th e  wave v e lo c ity  

(Appendix A). Solving equation  (5 -3 )(5 -4 ) and (5-5) g ives

2 A , /^

/ Î  °nom + *2/^2 °o
<r%nom (5-6)
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(5 . 7 )
h / l  °nom ^ ^ 2 / 2  °o

I f  th e  assumption i s  made th a t  the  v e lo c ity  c^ a t  th e  n e t s e c tio n  of 

a s t r u t  con ta in ing  an e l l i p t i c a l  o r c ir c u la r  hole i s  b e t te r  rep resen ted  

by th e  two dim ensional plane vrave propagation th eo ry , then c^ i s  given 

by th e  d i la t io n a l  wave equation .

°  “  V ( i - f - v K i - z v /z f

Furtherm ore, i f  the sim p lify ing  assum ptions o f = / ^ ,  = E^ and

poisson* s r a t io  (V) i s  not r a te  dependent a re  made and s in ce  c^g^  ̂ = j E y ^  

then .

V b  -  /i l ± j ,) 0 -2 V )_ ^ ^ (constant) (5-8)
c,o V

S u b s titu tin g  equation  (5-8) in to  (5-6) y ie ld s

-  - i — — â -  = B (constant)
T o  2A,

(5-9)

Using equation  (5-9) and th e  equation  fo r  th e  dynamic s t r e s s  concen tra­

t io n  fa c to r  >/e have

/
Kj = _ &  = _ 1 E .  .  = A  ( . 1 0 )

<rEon fEüw (TB B 15 10)

where i s  the  s tr e s s  a t  th e  ends o f the  major a x is  of th e  e l l ip s e

and the  r a t io  of to  th e  tran sm itted  mean s t r e s s  i s  assumed to  be
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/

equal to  the s t a t i c  s tr e s s  co n cen tra tio n  fa c to r  based on the n e t  

s e c tio n . Since is  equal to  m u ltip lied  by the r a t io  o f  the n e t 

a rea  to  the gross a rea  then  (5-10) a f t e r  s u b s t i tu t io n  fo r  B becomes

K A, R + A^

S u b s titu tin g  fo r  A^ and Ag in  terms o f the geom etric p ro p e rtie s  o f the 

s t r u t ,  the th e o re t ic a l  equation  (5-11) becomes

( i  '-  f j )

Equation (5-12) in d ic a te s  th a t  the  r a t io  o f the s t a t i c  to  the dynamic 

s tr e s s  concen tra tio n  f a c to r  depends only on a /d  and p o is s o n 's r a t i o .

For a  given a /d ,  the value o f depends p rim arily  on the  rad iu s  ( r )  

a t  the end o f  the  major ax is  o f the  e l l ip s e  and i s  n o t too s e n s it iv e  to  

the  curvature o f th e  upper and lower boundaries o f  the  e l l i p s e .  Al­

though the  value o f fo r  any a /d  depends on r ,  i t  i s  a lso  dependent 

on th e  p ro p o rtio n  o f s tr e s s  wave r e f le c t io n  a t  the d is c o n tin u ity .  This 

s t r e s s  wave r e f le c t io n  i s  p r im a rily  a  fu n c tio n  o f a /d  and in c reases  as 

a /d  in c rea se s . W ithin l im i t s ,  the  curvature o f the  upper and lower 

boundary o f th e  d is c o n tin u ity  does n o t a f f e c t  the p ro p o rtio n  o f the  

in c id e n t wave r e f le c te d .

The r e s u l t  o f  th ese  e f fe c ts  i s  th a t  the  r a t io  K to  K, tends to  be
s d

independent o f the  rad iu s  r  and becomes p rim a rily  a  fu n c tio n  o f a /d .

This can be seen experim entally  from f ig .  9. In t h i s  f ig u re  a t
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a/d  = 0*75, r  v a r ie s  from I / I 6" to  9 /16” bu t Kg /  K̂  i s  n ea rly  in v a r ia n t 

in  th e  change in  r .

F igure 16 i s  a graph of th e  th e o re t ic a l  and experim ental (Kg /K j)^  g

a g a in s t a /d  (V = 0 ,3 8 ). For a p a r t ic u la r  value of a /d ,  th e  experim ental 

p o in t p lo tte d  re p re se n ts  th e  average (Kg /  K^)g fo r  th e  fo u r models te s te d .  

This graph in d ic a te s  th a t  equation  (5-12) i s  in  very good agreement w ith 

th e  experim ental (Kg /  K^)^; th e  th e o re t ic a l  values being %  to  10^ higher 

than  th e  experim ental v a lu es .

The experim ental r e s u l t s  of D ally and H alb leib  ( I 5) who te s te d  only 

c ir c u la r  d is c o n tin u it ie s  a re  a lso  p lo tte d  in  f i g .  16. The th e o r e t ic a l  

r e s u l ts  of t h e i r  experim ents a lso  shown, vary  from those  of t h i s  inves­

t ig a t io n  la rg e ly  because poisson*s r a t io  fo r  th e i r  model m a te r ia l was 

0 ,4 2  o r approxim ately IC^ h ig h er. T heir experim ental r e s u l t s  a lso  f i t  

t h i s  proposed th e o re t ic a l  so lu tio n  very n ic e ly .
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6 . RECOMMENDATIONS

6 .1  Suggestions fo r  Experim ental Improvement.

In  th is  experim ent, th e  maximum d u ra tio n  of impact was not g re a te r  

than  30 m icroseconds. This was determined by measuring the  e l e c t r i c a l  

con tac t period and i t  i s  q u ite  probable th a t  th e  d u ra tion  of impact was 

considerab ly  sh o rte r  than  t h i s .  T herefo re , a measurement of th e  a c tu a l  

pu lse  d u ra tio n  and th e  asso c ia ted  load v a r ia t io n  would be of in t e r e s t .

I t  would make experim ental procedures more v e r s a t i le  i f  th i s  load time 

p u lse  could be changed in  both magnitude and tim e.

The nominal f r in g e  o rders  and thus the  nominal s tr e s s e s  were somewhat 

d i f f i c u l t  to  an a ly se . I t  would be h e lp fu l i f  another method could be 

used to  v e r ify  th e  nominal s t r e s s e s .  This might be done by using a very 

f a s t  response s t r a in  gauge.

6 .2  Suggestions fo r  F u rth e r Work.

1. Accurate measurements should be ca rrie d  ou t to  determ ine th e  s t r e s s  

o p tic  c o e f f ic ie n ts  and th e  modulus of e l a s t i c i t y  over a wide range of 

s t r a in  r a te s  to  d e f in i te ly  e s ta b lis h  th e  e f f e c t  of s t r a in  r a te  on th ese  

q u a n t i t ie s .

2. I t  has been recognised th a t  dynamic s t r e s s  co n cen tra tio n  depends on 

p o is so n 's r a t io  and th e  pu lse  leng th  (1 7 ). Hence, in v e s tig a tio n s  should 

be c a rrie d  out w ith th ese  two q u a n ti t ie s  as param eters.

3 . Since th e  ruby la s e r  su p p lie s  a very in ten se  sh o rt d u ra tio n  l ig h t  

p u lse , th e  ex tension  of dynamic p h o to e la s t ic i ty  to  th e  th re e  dim ensional 

a n a ly s is  using th e  s c a tte re d  l ig h t  technique i s  ad v isab le . Probably more 

im portant i s  th e  use of holography in  th re e  dim ensional dynamic

23
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p h o to c la s tic  in v e s tig a tio n s .

4. I t  would be of in te r e s t  to  study the  d iffe re n c e  between th e  s t a t i c  

and dynamic s t r e s s  concen tra tio n  fo r  th e  same co n fig u ra tio n s  te s te d  here 

bu t w ith th e  e l l ip s e  o rien te d  90 degrees so th a t  i t s  major a x is  i s  para ­

l l e l  to  the  lo n g itu d in a l a x is  o f th e  s t r u t .  In  th i s  case , th e  d ev ia tio n  

between and measured a t  the  end of th e  minor a x is  may be a minimum,

5. The s t a t i c  s t r e s s  concen tra tio n  fa c to rs  from re fe ren ce  (3) a re  ob­

v io u sly  wrong fo r  various values of a /d  a t  2 a /r  = 2 ( c i r c u la r  ho les) 

in d ic a tin g  th a t  th ese  f a c to rs  a re  l ik e ly  in  e r ro r  fo r  o th e r values of 

2 a / r .  T herefo re , th ese  values should be checked out experim en tally .
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7 . CONCLUSIONS

1 , The nominal fr in g e  o rders  propagate in  the  model w ith d i f f e r e n t  bu t 

constan t v e lo c i t ie s .  These v e lo c i t ie s  range from 63,000 inches per 

second fo r  the  zero fr in g e  o rder to  54,500  inches per second fo r  the  

f i r s t  th i rd  o rd er f r in g e  encountered.

2. The maximum dynamic s t r e s s  co n cen tra tio n  fa c to r  was found to  be 

e s s e n t ia l ly  constan t w ith tim e fo r  the  in te rv a l  50 to  I 40 microseconds 

a f t e r  im pact.

3 . At 100 microseconds a f t e r  im pact, the  maximum dynamic s t r e s s  concen­

t r a t io n  f a c to rs  a re  independent of th e  r a t io  a /d  and depend only  on the  

r a t io  2 a /r .  When a /d  i s  approxim ately 0 .4 2 , th e  dynamic and s t a t i c  s t r e s s  

concen tra tio n  fa c to rs  a re  approxim ately eq u a l. As a /d  in c reases  beyond 

the  value 0 . 42, th e  d ev ia tio n  between and in c reases  and i s  always 

h igher than  w ith  a maximum d iffe re n ce  of 45.6^ based on a t  a /d  = 0 .7 5 . 

As a/d  decreases below the  value of 0 ,4 2 , th e  d e v ia tio n  between and

again  in c rea se s ; bu t now K i s  always le s s  than K w ith  a maximum d i f f e r -s d
ence of 12,2^ based on a t  a /d  = 0,25.

4 , The isochrom atic f r in g e  photographs provided a d d itio n a l in form ation  

about th e  s t r e s s  co n cen tra tio n s a t  the  top  and bottom of th e  d isco n tin u ­

i t i e s  and th e  s tr e s s  co n cen tra tio n s a t  th e  edge of th e  models ad jacen t to  

th e  d is c o n t in u i t ie s .  These s t r e s s  co n cen tra tio n s were g en e ra lly  q u ite  

sm all as compared to  th e  values of K^, The p o s itio n s  of th e  maximum and 

zero fr in g e  o rders  were a lso  obtained and were p lo tte d  as a d d it io n a l  

in form ation .

1 7 9 5 7 1
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5« The s t a t i c  modulus of e l a s t i c i t y  E fo r  th i s  m a te r ia l i s  340,000 

I b . / i n ,^  and th e  r a te  dependent dynamic modulus was c a lcu la ted  as

440,000 I b . / i n .^  This re p re se n ts  an in c rease  o f 29.5^ (Appendix A).

6. The o b jec tiv e  of in co rp o ra tin g  a modulated ruby la s e r  as th e  l ig h t  

source in  dynamic p h o to e la s t ic i ty  was accom plished. The advantages of 

the  ruby la s e r  a re  as fo llow s:

(a) The very in ten se  sh o rt d u ra tio n  Q -spoiled pu lse  i s  monochromatic, 

p o la r iz e d , and p a r a l l e l .  Obviously th en , the  la s e r  i s  an id e a l  

l ig h t  source fo r  dynamic p h o to e la s t ic i ty ,

(b) The in te n s i ty  of th i s  la s e r  was tremendous. Even though th e  l ig h t  

pu lse  was only 0 ,1  microseconds o r le s s  in  d u ra tio n , s e v e ra l n e u tra l 

d e n s ity  f i l t e r s  had to  be used to  p reven t overexposure o f th e  f ilm . 

This i s  in  c o n tra s t  to  th e  use of conventional l ig h t  sources where 

every p recau tio n  i s  used to  minimize the  lo ss  of in te n s i ty ,

(c ) The re so lu tio n  o f the  photographs was very  good. This can be 

a t t r ib u te d  to  th e  high degree of monochromâti c i t y  and th e  very 

sh o r t d u ra tio n  of th e  ou tpu t p u lse .

There are  some d isadvantages a sso c ia ted  w ith th e  use of th e  l a s e r .  These 

a re  as follow s :

(a ) The wavelength of th e  ou tpu t being near the in fra re d  decreases 

th e  m a te r ia l f r in g e  s e n s i t iv i ty  by 21^,

(b) To o b ta in  good c o n tra s t ,  P o laro id  in fra re d  f ilm  type 413 bad to  be 

used. The standard  P o laro id  film  type 47 3000ASA was no t s e n s i­

t iv e  enough to  th e  l a s e r  ou tpu t and only  lim ited  success was 

obtained w ith th i s  f ilm ,

(c) Some focusing problems were encountered s ince  an o rd in a ry  l ig h t
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source had to  be used. The use of a gas la s e r  fo r  th i s  purpose 

would have been id e a l ,

(d) The ou tpu t of the  la s e r  i s  hazardous to  th e  human eye. Hence, i t  

i s  im portant th a t  th e  ou tpu t not be viewed d i r e c t ly  o r as re f le c te d  

from a good r e f le c t in g  su rfa c e . There a re  a d d itio n a l personal 

hazards in  th a t  th e  pockels c e l l  power supply m aintains a b ia s  o f

12,000 v o lts  w hile th e  la s e r  m aintains some 1,400  v o l t s .

With due re sp e c t to  th e  disadvantage (d ) ,  th e  o th e r d isadvantages are  

f a r  outweighed by th e  advantages,

7 , The agreement between th e  th e o re t ic a l  and experim ental K /  K, i s  

very good and th e re fo re  c e r ta in ly  notew orthy. The v e r s a t i l i t y  o f th i s  

equation  i s  encouraging s in ce  i t  f i t s  very w ell th e  r e s u l t s  of an inde­

pendent in v e s tig a to r  who used a d if f e r e n t  pu lse  leng th  and a d i f f e r e n t  

p h o to e la s tic  m a te ria l.
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Impact

0.275"0.5"

1.53 0.264'

S te e l  Cap Dimensions 
Weight = 1 .17oz.
P ro je c t i le  Weight = 0.033oz

Model
Length 1.5"

t— Bottom 3/ 16" o f Model i s  Fixed

C onfigurations Tested

a" a/d 2a / r

9/16 0.75 I A 6 3/32 3A 6 a 18 12 6 2

7/16 0 .5 8 1/16 3/32 15/32 a 14 9 .33 5 .6 2

5/16 0 .4 2 1/16 3/32 5/32 a 10 6.67 4 2

3/16 0 .25 1/16 3/32 1 /8 a 6 4 3 2

F ig . 1 The Model Dimensions
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a /d % 0 ,2 $ a,./d=0.1i.2

a /d = 0 .S 8 a /d = 0 .7^

F ie .  6 Iso ch ro m a tic  F ringe P a tte r n  about D is c o n t in u i t ie s  
fo r  2 a /r* 2  and Time a f t e r  Impact o f  10Q*3econds
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^ 3

90/<sec, 110/rsec,

Nominal F r in g e  P hotographs

70* 8 6 0 . 9 6/1 sec*.
e /d = 0 .^ 8 ,2 a /r * S .6

P lR . Iso ch ro m a tlo  F r in g e  P ro p a g a tio n  w ith  Time a f t e r  Irnpaet
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2 a / r = l^ . 2 a /r = 9 .3 3

2 a /r = $ .6 2a/r=;

F i g .  S laooh rom atlc  F rin ge P a tte r n  about D is c o n t in u i t ie s  
f o r  a/daO ,58 and Time a f t e r  Im pact o f  lOQ*Seconds
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15014.0120 13011080 10070 90
Time a f t e r  Impact (/«seconds)

F ig . 7 Maximum Dynamic S tre s s  C oncentration F ac to r 
a g a in s t Time a f t e r  Impact
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0.58

0.25  “

•d

s

Dynamic Curves 
a /d  Symbols

Time a f t e r  Impact 
1 0 0 ^  sec .

0 2 4 . 6  8  10  12  1 4  16 18 20

2 a /r

F ig , 8 Maximum Dynamic and S ta t ic  S tre s s  C oncentration F acto rs  

ag a in st. (2 a /r)  fo r  various (a /d ) r a t io s
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K.

K,

1 0

9 —

8 -

7 -

6 —

5 —

S ta t ic  Curve 
Ref. (6 )(7 )

Time a f t e r  Impact 1 0 0 //s e c . ©

1 —

J L I
0 0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8

- a /d

F ig . 10 Dynamic and S ta t ic  S tre s s  C oncentration F ac to rs  as a 
Function of a /d  fo r  C ircu la r  Holes (2 a /r  = 2)
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APPENDIX A

MATERIAL CALIBRATION

The m a te ria l used here was a p o ly e s te r  m a te r ia l obtained from 

P h o to la s tic  Incorporated  under the code number o f PSM-l. The manufac­

tu r e r  s ta te s  th a t  th e  m a te r ia l e x h ib its  low creep , minimum tim e edge 

e f fe c ts  and good machining c h a r a c te r is t ic s .  The l i s te d  e l a s t i c  co n stan ts  

a re  ;

p o is so n 's r a t io  (V) = 0 .38

modulus of e l a s t i c i t y  (e) -- 340,000  I b . / in ^

s t a t i c  m a te ria l f r in g e  constan t (f^-) = 40 p s i  -  in . / f r in g e  (ten sio n )

In  th is  in v e s tig a tio n , i t  was found th a t  t h i s  m a te r ia l could be machined 

q u ite  w ell w ithout ob ta in in g  machining s tr e s s e s  i f  an o rd in a ry  tw o -flu ted  

o r fo u r- f lu te d  m illin g  c u t te r  was used a t  normal d r i l l in g  speeds. The 

m u ltip le  f lu te  c u t te r  and high speed m ille r  technique was found to  be com­

p le te ly  u n sa tis fa c to ry . The re s is ta n c e  to  tim e edge e f fe c ts  (ab so rp tio n  of 

m oisture a t  th e  model boundaries producing u ndesirab le  s tr e s s e s )  i s  no te­

worthy since  models two weeks a f t e r  machining were s t i l l  in  good co n d itio n ,

A .l S ta t ic  C a lib ra tio n .

A s t a t i c  c a l ib ra t io n  was c a rrie d  out on th e  PSM-1 m a te ria l using a 

constan t moment beam to  determ ine the  l in e a r i ty  of load versus f r in g e  

o rd e r. The r e s u l t s  a re  shown in  f ig .  17 and in d ic a te  a very good l in e a r  

re la t io n s h ip  to  a f r in g e  o rd er of a t  le a s t  f i f t e e n .  An a d d it io n a l  p o in t 

was p lo tte d  w ith a f r in g e  o rder of approxim ately tw enty. This p o in t was 

d i f f i c u l t  to  determ ine w ith accuracy since  th e  high fr in g e  o rders  were

47
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q u ite  narrow and alm ost washed o u t. Thus, no attem pt ims made to  

determ ine th e  f r a c t io n a l  f r in g e  o rder a t  th i s  p o in t. From th i s  f ig u re ,  

the  m a te ria l f r in g e  value ( s t a t i c )  was ca lcu la ted  as îç- -  37.7 p s i  -  

in , / f r in g e  using standard green l ig h t  (5461A). I f  th e  red l ig h t  of the
O

ruby la s e r  (6943A) had been used, f^- would be 47.9 p s i -  i n . / f r in g e .

A.2 Dynamic C a lib ra tio n .

F igure 18 shows th e  nominal f r in g e  o rder displacem ents measured from 

the  photographs along the lo n g itu d in a l ax is  of the  model a g a in s t time 

a f t e r  im pact. The slope of th ese  l in e s  which i s  constan t g ives the  

in d iv id u a l f r in g e  o rder v e lo c i t ie s  when th e  slopes a re  m u ltip lied  by 

th e  model to  photograph sc a le  fa c to r  of 2 .6 5 :1 . Although th e  zero , 

f i r s t ,  and second o rders p lo tte d  very w e ll, d i f f i c u l ty  was encountered 

in  try in g  to  in te rp r e t  the  two th ird  o rder fr in g e s  p a r t ic u la r ly  a t  130 

and 140 microseconds a f te r  im pact. These f r in g e s  tended to  run to ­

ge th e r a t  th ese  tim es.

F igure 19 i s  a graph of f r in g e  o rder v e lo c ity  ag a in s t f r in g e  o rder 

where i t  i s  obvious th a t  as  the  f r in g e  o rder in creases  the  v e lo c ity  

decreases.

From th e  theo ry  of e l a s t i c i t y  (26 ), th e  d i f f e r e n t i a l  equation  of a 

lo n g itu d in a l wave propagating in  an e l a s t i c  bar i s  given by:

9 ^ u _ c^ u (A-1)
a  t% 9 x 2

The genera l so lu tio n  of (A-1) i s  :

u = f  (x + c t)  + g (x -  c t )  (4-2)

where: x i s  a p o in t along th e  lo n g itu d in a l ax is  of th e  bar measured

from the  impact end.
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u i s  th e  displacem ent of th i s  p o in t fo r  any tim e t  a f t e r  im pact,

c i s  th e  constan t lo n g itu d in a l wave v e lo c ity  and i s  a fu n c tio n

of th e  modulus of e l a s t i c i t y  E and the  mass d en s ity  of th e  bar

c = J e/ / ’ (A-3)

The mass d en s ity  and wave f ro n t v e lo c ity  of th i s  m a te r ia l i s

c = 63,000  in /se c

/ ^  = 111.8 X 10*^ l b .  s e o i/ in 4

Using equation  (A-3) th e  dynamic modulus of e l a s t i c i t y  can be found.

E j = = 440,000  Ib /in ^

Thus, Ej i s  29 . 55s g re a te r  than  th e  s t a t i c  modulus of e l a s t i c i t y .

No attem pt was made to  determ ine the  dynamic f r in g e  co n stan t fg-.

The dynamic modulus of e l a s t i c i t y  E^ i s  r a te  dependent and th i s  i s  

probably tru e  of the  m a te r ia l f r in g e  constan t fg.. However, th e  s t r e s s  

co n cen tra tio n  f a c to r  involves th e  r a t io  ^<TniaxA<rnom th e  e f f e c t  

i s  cancelled  assuming the  f r in g e  v e lo c i t ie s  about the  d isc o n tin u ity  are  

not too d i f f e r e n t  from the v e lo c ity  a t  p o in ts  f a r th e r  removed from th e  

d isc o n tin u ity .
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APPENDIX B

the' modulated RUBY LASER LIGHT SOURCE

The la s e r  ou tpu t con ta ins some very d e s ira b le  c h a ra c te r is t ic s  which 

a re  q u ite  com patible w ith  th e  requirem ents of dynamic p h o to e la s t ic i ty  

( 24) .  These c h a ra c te r is t ic s  a re  shown in  a tab u la ted  form in  th e  f o l ­

lowing ta b le .

OUTPUT CHARACTERISTIC REMARKS

Monochromatic 6943A w ith a band width of O.IA

P a r a l le l  Output Less than  one degree divergence

P o larized 100 percen t

Output In te n s i ty  

(watts/cm ^)

For th i s  system the  ou tpu t was 2 jo u le s  o r  

3500 watts/cm ^ based on random mode of 

o p era tio n . For Q -spoiled mode, the  

in te n s i ty  in c reases  by 2 o rd ers  of 

magnitude.

S p a tia l  Coherence Hot of importance in  th i s  experim ent bu t 

necessary  in  th e  f ie ld  of holography.

With an inpu t of 1000 jo u les  (maximum fo r  th i s  system ), th e  e f f ic ie n c y  

i s  0.2^ in  th e  random la s in g  mode and an o rder of magnitude le s s  in  

th e  Q -spoiled mode. The e f f ic ie n c y  a lso  depends on th e  m irro rs  bounding 

the  la s in g  c a v ity .
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The in te n s i ty  (3500 watts/cm ^) i s  based on th e  cross s e c tio n a l area o f 

th e  ruby (d ia .  = 3 /8 ”) and i s  c a lcu la ted  fo r  800 microseconds random 

la s in g . This time can vary depending upon th e  cond ition  of th e  l a s e r .

B . l .  The Laser Head and I t s  a sso c ia ted  Elements

F igure 20 shows a schem atic arrangement of th e  la s e r  head elem ents 

fo r  the la s e r  used in  th is  experim ent. The ruby and f la sh  tube are  

p laced in  a h ig h ly  r e f le c t iv e  e l l i p t i c a l  c a v ity  w ith the  ruby a t  one 

focus and the  f la s h  tube a t  the  o th er focus. This i s  to  ensure th a t  

th e  ruby rece iv es  as much of th e  f la sh  tube l ig h t  as p o ss ib le . The 

f la s h  tube rece iv es  1000 jo u le s  from th e  la s e r  head power supply (USSA) 

and su p p lies  th i s  energy to  th e  ruby in  approxim ately 2 m illiseco n d s .

I t  has been found th a t  in  o rd er to  have s u f f ic ie n t  am p lif ic a tio n  fo r  

la s in g  a c tio n , i t  i s  necessary  to  have a long la s in g  medium. Since 

th i s  i s  not p r a c t ic a l ,  a system of two re f le c t in g  m irrors producing a 

feedback system i s  used w ith the  ruby rod between them. One m irro r 

( 48^ r e f le c t iv e )  i s  on one end of th e  ruby rod and th e  o th e r m irro r 

(99^ r e f le c t iv e )  i s  d isp laced  so th a t  a pockels c e l l  and prism  can be 

placed w ith in  th e  la s in g  c a v ity . The p a r t i a l ly  r e f le c t iv e  m irro r a l ­

lows the  ou tpu t of the  la s e r  to  escape a f t e r  s u f f ic ie n t  a m p lif ic a tio n  

has occurred . I f  optimum performance i s  expected, th ese  m irro rs  must 

be lin ed  up p a r a l le l  to  each o th e r .

B .1 .1  O peration in  the  Random Lasing Mode; I f  the  pockels c e l l  and 

prism  are  removed from th e  la s in g  c av ity , th e  ou tpu t appears as a number 

of randomly spaced sp ik e s . This random la s in g  w i l l  continue fo r  some 800 

microseconds i f  the  la s e r  i s  in  optimum op era tin g  co n d itio n . Using a 

photo m u ltip lie r  ou tpu t reco rd er (Appendix G) and an o sc illo sc o p e , the
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random la s in g  shown in  f ig .  21 was ob ta ined . Each sp ike in  th e  photograph 

in d ic a te s  la s in g  has occurred and th e  curvatu re  of the  sweep re p re se n ts  

th e  f la sh  tube envelope,

B.2 O peration in  the  Q -spoiled Mode.

To opera te  the  la s e r  in  th e  Q -spoiled mode, a pockels c e l l  and a 

prism  are  introduced in to  the  la s in g  medium as shown in  f ig .  20. The 

pockels c e l l  i s  an e le c t r ic a l ly ,  s e n s it iv e  b iré f r in g e n t c ry s ta l  th a t
O

produces h a lf  wave re ta rd a t io n  fo r  th e  6943A red ruby ou tpu t a t  12ICV 

p o te n t ia l  and th e  prism i s  nothing more than  a good p o la r iz e r .  For 

o p era tio n , the  p o la r iz a tio n  ax is  of the  prism  and y ax is  of th e  pockels 

c e l l  must be o rie n te d  to  a p o s itio n  p a r a l le l  to  the  p o la r iz a tio n  ax is  

of th e  ruby and to  minimize lo s s e s , th e  faces  of the prism and c e l l  

must be p a r a l le l  to  th e  m irro rs .

When th e  p o la rized  ruby l ig h t  en te rs  the  energized pockels c e l l ,  i t  

i s  s p l i t  in to  two equal orthogonal components which a re  in  phase bu t 

a t  45 degrees to  the  i n i t i a l  ruby ax is  of p o la r iz a tio n . When th e  com­

ponents emerge from th e  c e l l ,  th e  r e la t iv e  phase d iffe ren ce  between them 

i s  180 degrees. Thus, th e  v ec to r sum of th ese  components i s  equal in  

magnitude to  th e  in c id en t p o la rized  ruby l ig h t  but a t  90 degrees to  the  

a x is  of ruby p o la r iz a tio n . This l ig h t  i s  now absorbed by th e  prism  

sin ce  the  ax is  of p o la r iz a tio n  of th i s  prism  i s  p a r a l l e l  to  th e  a x is  

of p o la r iz a tio n  of the  ruby. Thus, no a m p lific a tio n  occurs and la s in g  

i s  held o f f .  I f ,  however, th e  c e l l  vo ltage  i s  removed, th e  l ig h t  from 

th e  ruby w i l l  pass through th e  prism  and to  the  m irro r. A m plification  

due to  o s c i l la t io n s  in  the  la s in g  c av ity  can now occur and a very  sh o rt 

(0 ,1  microseconds) in te n se , Q -spoiled l ig h t  pu lse emerges from th e  la s e r .
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The pockels c e l l  vo ltage  must then be qu ick ly  re -e s ta b lish e d  to  stop  

random la s in g  from follow ing a Q-spoiled p u lse . The two photographs 

in  f ig .  21 show the  d iffe re n ce  between random la s in g  and Q -sp o ilin g .

The- Q-spoiled pu lse  i s  so very sh o rt th a t  the  o sc illo sco p e  (Tektronix  

type 564) i s  unable to  record  i t  f a i th f u l ly  although i t s  p o s it io n  i s  

id e n tif ie d  by a break in  th e  sweep.
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Random La s in #

Q -S p o lled  P u lse  
v e r t i c a l  sca le ,O .O ^ v/cm  
h o r iz o n ta l  s c a l e f 2 0 Q4 8 ec/cm

F i g .21 Random L asin g  and Q -S p o llln g  P hotographs
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APPENDIX C

THE AUXILIARY EQUIPMENT AND ITS OPERATION

C.,1 Loading Mechanlsra.

In  th is  experim ent, the  dynamic load vas produced by a 22 c a lib e r  

p r o je c t i le  from an a i r  p i s to l .  The p i s to l  vas modified to  accep t 

n itro g en  from a w elders ' tank which was re leased  to  th e  gun by a 

p ressu re  reducing re g u la to r  s e t  to  a constan t p ressu re  of 500 p s ig .

Two sep ara te  tr ig g e r in g  systems co n s is tin g  of a p h o to ce ll and a mech­

a n ic a l t r ig g e r  were incorporated  as p a r t  of th e  loading mechanism such 

th a t  th e  la s e r  ou tpu t could be synchronized w ith the  load cy c le . A 

cycle begins as the  p e l le t  f i r s t  a c tiv a te s  a p h o to ce ll and th e  re s u l t in g  

e le c t r i c a l  pu lse a f te r  being am plified  and delayed, t r ig g e r s  the  la s e r  

head power supply to  re le a se  energy to  th e  l a s e r .

The p e l le t  a c tiv a te d  mechanical t r ig g e r  which consisted  of a s te e l  

model cap and a s te e l  plunger was designed to  sim ultaneously  load th e  

model and c lo se  an e l e c t r i c a l  c o n ta c t. The m etal cap, as shown in  

f ig .  1, was placed in  con tac t w ith the  end of the  model. The 0 ,73 oz, 

plunger separated  from the  cap by 3/32  inches was held in  p lace  by 

s trong  re tu rn  sp rings under i n i t i a l  ten sio n  and re q u irin g  a s t a t i c  

fo rce  of 5.5 lb .  to  b ring  th e  plunger in  con tac t w ith  the  model cap. 

F igure 22(a) shows th a t  the  e le c t r i c a l  ou tpu t pulse from th e  m echanical 

t r ig g e r  was approxim ately 30 microseconds in  d u ra tio n . Thus, th e  load 

d u ra tio n  was no more than  30 microseconds and could have been as l i t t l e  . 

as 15 microseconds.
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The tim e a f t e r  Impact was measured from the in s ta n t  o f plunger 

c o n ta c t. This r e s u l t in g  t r ig g e r  pulse a f te r  being delayed was then  

used to  t r ig g e r  a Q-spoiled pu lse  from the  l a s e r .  Although th i s  would 

appear to  be d i f f i c u l t  to  co n tro l a c c u ra te ly , i t  i s  estim ated  th a t  the 

experim ent could be repeated  w ith an accuracy of 2 microseconds a t  a 

constan t delay  s e tt in g  fo r  the  in te rv a l  of tim e (50 to  14-0 microseconds) 

s tud ied  here rep re sen tin g  an average e r ro r  ( in  tim e) of only  2 / ,  This 

estim ate  i s  based on the  s im ila r i ty  between photographs obtained  f o r  a 

constan t tim e a f t e r  im pact. The average s h e l l  v e lo c ity  over a d is tan ce  

of 12 3 /16  inches fo r  eleven sep ara te  t e s t s  was 3^0 f t / s e c .

The follow ing sequence of events in  conjunction  w ith f ig .  23 d esc rib es  

what took p lace  to  o b ta in  each photograph fo r  a p a r t ic u la r  delay  tim e ( t )  

a f t e r  impact.

A. The am plified  p h o to ce ll pu lse  t r ig g e r s  the  delay  in  th e  pu lse  

g en era to r.

B. The la s e r  power supply i s  tr ig g e re d  and immediately energy i s  

re leased  to  th e  f la s h  tube.

C. This i s  th e  tim e in te rv a l  fo r  the  p e l le t  to  t r a v e l  from some 

lo c a tio n  beyond the  p h o to ce ll to  the  mechanical t r ig g e r  a t  the  

top of th e  model.

D. At th i s  p o in t, th e  model i s  loaded and sim ultaneously  an e l e c t r i c a l  

pu lse  e n te rs  th e  pockels c e l l  delay  c i r c u i t  to  be delayed a tim e ( t ) .

E. At th e  end of tim e ( t ) ,  th e  pockels c e l l  b ias  vo ltage  i s  removed 

and immediately th e re a f te r  a Q -spoiled la s e r  sp ike o ccu rs.

F . Random la s in g  would occur fo r  approxim ately 800 microseconds i f  

th e  pockels c e l l  i s  not used.
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G. This in te rv a l  re p re se n ts  the  approximate time th a t  energy i s  

supplied  to  th e  f la sh  tu b e .

0„2 Equipment C irc u it  Diagrams.

The fo llow ing subsections d escribe  the  equipment which was b u i l t  by 

the  E le c tr ic a l  D ivision of The C en tra l Research Shop a t  th e  U n iv e rs ity  

of Windsor.

C .2 ,1  P h o to ce ll and A m plifier C ir c u i t : F igure  24- shows th e  p h o to ce ll

c i r c iu t .  The r i s e  tim e o f the  ou tpu t pulse was 50 microseconds and the  

peak vo ltage  was 0.05 v o l ts .  This pu lse was de liv ered  to  the  a m p lif ie r  

v/here i t  was am plified  to  3 v o lts  peak. F igure  25 shows the  a m p lif ie r  

c i r c u i t  and the  photograph in  th is  f ig u re  shows the  ou tpu t pu lse  from 

th e  a m p lif ie r .

C .2 .2  Mechanical T rigger and M ultip le  Pulse Hold-Off C ircu it ;  F igure 26 

shows the mechanical t r ig g e r  and m u ltip le  pu lse ho ld -o ff c i r c u i t .  The 

top tra c e  of photograph (b) shown in  f ig .  22 i s  the  m echanical t r ig g e r  

ou tpu t and the bottom tra c e  i s  the  ou tpu t from the  m u ltip le  p u lse  ho ld - 

o ff  c i r c u i t .  The mechanical t r ig g e r  shows two s te p  pu lses about 600 

microseconds a p a r t .  The second s te p  pu lse  i s  due to  co n tac t bounce and 

produces e l e c t r i c a l  con tac t bu t no load on th e  model. S ince th i s  second 

pu lse  could t r ig g e r  th e  la s e r  a second time and fu r th e r  expose th e  b i r e ­

fringence photographs, the  m u ltip le  pu lse  h o ld -o ff c i r c u i t  was designed 

to  accept only th e  f i r s t  and most im portant s te p  p u lse ,

0 .2 .3  Laser Output Recording System; The la s e r  ou tpu t reco rd er shown 

in  f ig .  27 i s  capable of a r i s e  tim e of 10 nanoseconds. This i s  necessary  

s in ce  the la s e r  sp ikes have a r i s e  tim e and d u ra tio n  in  th e  o rd e r of 

nanoseconds. The output reco rd er was placed behind the  99^ r e f le c t iv e  

m irro r where i t  received  f la s h  tube l ig h t  and approxim ately 1% o f the
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l a s e r  l i g h t .  The asso c ia ted  power supply is  shown in  f i g .  28. The 

design of the  record ing  system was obtained from re fe ren ce  (24) .

C«3 The Commercial Equipment Used.

The follow ing l i s t  of equipment was used,

1« Crossman Mark I  (0 .22 c a lib e r )  s in g le  sho t co^ p i s to l .

2. Milbro "Caledonian" w aisted p e l le ts  (0.22 c a lib e r)  manufactured in  

G reat B r i ta in .

3» Hewlett Packard Pulse G enerator (model 222A) and two D.C. power 

su p p lies  (model 721A).

4, Raytheon Laser

(a) Laser head (LH6) d e liv e rin g  2 jo u les  ou tpu t w ith a 3& in .  long 

by 3/8  in .  diam eter ruby.

(b) Power supply (LPS8A) d e liv e rin g  1000 jo u le s .

(c) Pockels c e l l  Q-switch contain ing  a potassium dihydrogen phosphate 

(KDP) b iré f r in g e n t c r y s ta l .

(d) Pockels c e l l  power supply (LA12A) capable of 0-15 KVDC and 

con ta in ing  a delay  c i r c u i t  w ith a range of 5 microseconds to  

3 m illiseco n d s .

5- Graphlex camera w ith ex tension  bellows and used with 3,̂  in .  X 4 r  in* 

in fra re d  P olaro id  film  type 413.

6. T ektronix  ( 564) s to rage  o sc illo sco p e  w ith  type 3A1 dual tra c e  

a m p lifie r  and type 3B3 time b ase -p lu g -in  u n its .
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( a)

M echan ical T r ig g er  Output— h o r iz o n ta l  
s c a le  2 Q * se c /c m ,v e r t ic a l  s c a le  Iv/cm

(b)

Upper Trace— M echanical T r ig g e r  O utput(2v/cm )
Lower T race— M u ltip le  P u lse  Ë o ld -O ff O utput(lO v/cm ) 

h o r iz o n ta l  s c a le  20Q*sec/cm

F ig .  22 Output P u lse  o f  M echanical T r ig g er  and M u ltip le
P u ls e  H old -O ff C i r c u i t s
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20

OUTPUT

IK
p o t 2.71'

A m p lif ie r  In p u t--S O /^ ec . r i s e  tim e p u lse  
w ith  peak v o lta g e  o f  O .O ^volts

A m p lifier  Output Trace 
v e r t i c a l  s c a le - lv /c m  
h o r iz o n ta l  scale-S O ^ sec/om

F i g . 2^ P h o to c e l l  A m p lif ie r  C ir c u it  Diagram
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