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"ABSTRACT

Doubly curved cable suspended roofs with two
sets of nonorthogonai cables with opposite curvature to form
a hyperbolic parsboloid are analyzed both numerically and ex—
perimentally. Equations have been presented to determine the
initial shape of the unloaded roof and o determine the dis-
placements and tension increments approximately by neglecting
the horizontal displacements. The effect of deformation of
the frame is also taken into account. Equations have also
been derived for more accurate determination of the displace-
ments by taking the horizontal displacements into account.
Correction for nonlinearity of the load-deflection behaviour
is also applied by an approximate method.and bj an incremental
load method. v _

A cable roof 240 ft x 120 ft rectangular in
plan and with a difference in height of 12 £t between adja-
cent corners has been analyzed numerically using the two
methods mentioned above and the results have been compared.
The behaviour of the roof under a uniform load and under
concentrated loads at wvarious positiqns have been determined.
The behaviour with change in the pretension in the cables
and with change in the degree of nonorthogonality of the

cables also has . been studied..
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To check the validity of the theory, a small
scale model was tested and the experimental results have been

compared with the theoretically'calculated valuese.
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Chapter l- Introduction.

1.1 About Cable Roofs,

Cable roofs are recently gaining recognition
as economical structural forms, This is mainly because they
permit very long spans of economical, column-free construction,
which suits large exhibition halls, sports stadiums and other
similar buildings. The economy of cable roofs is due to the
efficiency with which the cable carries the load. The cable
carries the load in pure tension and the use of high tensile
steei increases its efficiency. The direction of the'stresses
in the cable roof are expressed by the cables themselves.
Another advantage is that, there is no possibility of any
buckling of the elements. Prestressing of the cables makes
the roof stiff and resistent to uplift due to wind, This
permits the use of light materials for covering and élso
makes it suitable for permanent buildings.

Another reason for the popularity of the cable
roof is its aesthetic value., An infite number of different
shapes can be obtained with cable roofs, The different types
of cable roofs can be broadly classified into four groups:-
(i) Roofs with a single set of cables with single curvature.
Catenary roofs fall into this group. This type of roof is

liable to flutter and hence a heavy roof deck will have to be
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used,

(ii) Roofs with double set of cables with single curvature,
Here the flutter is eliminated due to the damping effect of
the secondary cables.
(iii)Roofs with single or double set of cables with double
curvature-circular, This is a very econqmicai shape and has
the advantage of all the cables being of equal length. This
means,design.of only one cable. The disadvantage of this type
is the difficulty of drainage. Drainage outlets will have to
be provided ét the center of the roof. ’
(iv) Roofs with a double set of cables with a double curvature-
saddle shape., There is no problem of drainage with this type.
‘One saddle shape which is pqpular as a roof
shape is the rectangular hyperbolic paraboloid with the two
‘sets of cables running diagonaliy'and at right angles to each
other. This requires that the roof be a sqﬁare.or~avrhombus.in
plan, When the area to be covered is rectangular, the two
sets of cables are nonorthogonai. It is this type of roof

that has been analyzed in the present study.
1.2 Review of Prior Work.

In recent years several studies have been
published on cable roofs. The book entitled ‘'Hanging Roofs'}
the proceedings of a colloquium held byutheJInternational
Association for Space Structures in Paris on'9-ll, July 1962,
contains several articles on cable roofs. In a paper presented

at this colloquium, a procedure for determining the initial
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shape of a cable roof was given byuSiem;anddEidelﬁaﬁ?ﬁyhey;also
published a paper which described an approximate method of
analysis of prestressed roofs, neglecting the horizontal
displacements of the joints. Another paper by Siev4gave a
general linear method of analysis with the horizontal dis-
placements taken into account and correction for nonlinearity
applied by an iterative procedure. These analyses were for
orthogonal nets and assumed the angle between the two sets of
cables to be a right angle.

Thornton and Birnstielsderived nonlinear equa-
tions for a three-dimensional suspension structure and used
two methods for their solution. An influence coefficient
method has been used by Krishna and Sparkes6for the solution
of nonlinear equations with the principle of superposition
assumed in a limited way to analyze pretensioned cable systenms.
consisting of'two cables of reverse curvature, pretensioned
together by means of a set of vertical hangers. Buchholdt
used a theory based on the minimization of the total potential
energy and a solution by the method of steepest descent.
Bathishgused membrane theory to analyze cable roofs. Siev9
has analyzed an orthogonal roof bounded by main cables and
compared the experimental values.

In this study a hyperbolic paraboloid non-
orthogonal roof, rectangular in plan, has been analyzed both

theoretically and experimentally.
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Chapter 2- Determination of the Initial Shape of the
Prestressed Unloaded -Roof..

Considering the equilibrium of a typical joint

(m,n), the forces acting at the joint are, the pretension in
the cables as shown in fig.(2-la). The self weight of the
cables is neglected for the moment and the net is assumed to
be weightless. The self weight could later be considered as
part of the external load acting at each joint along with
other superimposed loads.

- Oblique coordinates § and m, in the directions
of the cables are used for convenience. Resolving forces in

the diréction’;éf the § axis,

)sme (2-1)

( "\)"")"I'H 'hvn.'n-l) + (H'Rﬂ'\ 'n\'l'l -v\,n Y

Resolving forces in the direction of the m,

axis )

<H~.,~n,~n+| » el )+ ('-Ln,.,.,...,, N~ ) SINO = O (2..2)

Solving equations (2-1) and (2-2),

(Hm,n,q: H"'s"\,'n-l ) - (Hﬁ,‘m“" H"\,‘m'\-‘ ) SlNze =0

where H : . ) S
wonntt ? Dwmemey  ©¥Ce @re horizontal components of the

tensions in the sections of the cable considered.
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Similarly,
l~l1\,m,m+|== H"\.‘m,‘m-l = H‘n

i.e. The horizontal components of the oblique tensile forces

are constant throughout the cable.

Resolving in the direction of the z-axis,

— ou
V" e * V‘"’“t”"' * \/‘\."'\."\ﬂ-i.\/"\;n,n-\ =0 ( 3)

where Vp n,n4l » Vm,n,n-1 €Pc. are the vertical components..of
the tensions in the cable sections considered.
From fig.(2-1lc),

V'm,-n,mﬂ - H-M COT Y‘M,h,m\-l

where Y is the angle made by the cable section with the

vertical.

e . vm’_“’“_" = HM ( }h\p\-\-\- }m,h ) (2—43)
a .

where a is the length in plan of a cable section and z, the

vertical ordinate of the joint.

Similarly,
v‘,m),”\'m._.I = H“‘ (%m,w-l— bm.m) (2—4-b)
a . .
V-“‘..,,".,,,.“ = Hw (};\-H.n— }'mm) (2_40)
a. : .
vmn.-n-l = H‘V\ (}"‘""“;}"’“) (2—4(1?
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Substituting equations (2-4) into equation (2-3),

Hn (}n,wu- 2 }‘n,n + }'m,h-l )
+ Hh (}mﬂ-lm—z}mm." }’m-lm) = o (2-5)

If Hy and H, are arbitrarily fixed, then the
ordinates‘of the jbints, z will be the unknowns. The number
of unknowns z. will be equal to the number of equations (2-5)
that can be formulated.

BEquation (2-5) can be written in finite difference form as,
a™ )
HM (2—3‘%)." H-n (A'bf)= o ' (2-6)

The ratio Hy/Hp, together with the boundary
conditions, determine the exact shape of ﬁhe roof. It has
been shownlothat for a fixed bounding frame, fhe varigtion in
the ratio Hy/H, does not alter the curvature of the roof

appreciably in the case of orthogonal nets.
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Chapter 3~ Analysis of the Loaded Roof Neglecting

Horizontal Displacements.

In this chapter, the equations to determine
the displacements of the joints and the tension increments
in the cables of the roof are derived using an approximate
method neglecting horigontal displacements. The horizontal
displacements can be expected to be small compared to vertical
displacements when the roof is subjeéted to vertical loads.
Considering the equilibrium of joint (m,n)
under a vertical load Pm,n acting at the joint,and resolving

in the direction of the z-axis,
(osfuel[(3+5), = 2(3%0), 4653, ]
+CED[(5) | —203°9),,, 40+, ] +R =0 D

where 8§ H is the increase in the horizontal component of ten-
sion and 5} the vertical displacement,
Subtracting equation (2-5) from equation (3-1)

and neglecting second order terms,

Be (5,529,485, )+ (), =28 +5 )

+ S_':-,'" (a\.‘-\: 2 b‘m. n+}m,-n-t )+% (b'm-b-l,: 29%.-_: é‘nhl,-n) = —P wn  (3-2)

Resolving in the direction of f’and’n/axes and
neglecting horizontal displacements will result in equations

(2-1) and (2-2), which means that the increase in the hori-
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gontal component of the tension is constant throughout the

cable.

The elongation of the cable section shown in

fig.(3-1) is

SI — 1:""\»‘\n+l' 'é'm‘m.m-t-l (3_3)

n,m,me

where 8 T is the change in tension, 1y,mel,n i the length of
the section and BA is the tensile rigidity of the cable.

Also
ST = SH"‘" (3-4)
MM, me)
SN,
apd
= __a
N, ™M, m| - .SIN x‘.m'm-*-‘ (3"5)

Substituting equations (3-4) and (3-5) in equation (3-3%),

Y SH., a |

n el SING, ey SN ):,'m,m-i-l EA..
EA“ 'SlNa Nom,m |

The elongation of cable n is obtained by summing up the

elongations for all such sections of the cable.

ie.  §4 = @dH, ' (3=7)
< " EA, — sma ):m“ -
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S = a.-dH, ZEH— CaTaa:m‘MJ

n EA. |
Z[H ( i b»m)]
%‘%a Z[“z‘* (3 9,..,,)2] (3-8)

]

]

Also,

(l"w'vnmﬂ o‘".M‘H) ( 'vn+|.-n+ S:'gmﬂm— f a Sf w.m )2

+ (}wﬁ.+ 1~|~H,-n o é"‘:‘h ) | (3-9)

where 8§ is the displacement in the ¥ direction and

f-:,..m.,, = (Snu,: -Sv.,.. )z+ (}"M-I,-n— ; "n )z (3-10)

Subtracting equation (3-10) from equation

(3=9) and neglecting second order terms,

b3 2 (5, 51 400z 3. )C0.5 550)
E S&:ZEZ:T {@am;f )+( e P J&"JQMH (3-11)

Assuming that the length of two adjacent
sections are equal, when the elongations of all sections are
summed up, the first term in the bracket represents the
distance increment between the two ends of the cable. This is

equal to the total movement of the frame at the ends of the
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cable and is zero when there is no deformation of the bound-
ing frame.
Considering the inward displacement of the

frame to be positive and equal to u,

$8.=% [re+3 {5z 200 S, Joo e

Equating equations (3-8) and (3-12),

) oS {2062 %)
- > [4+(s. .")J
[ v+ {( bw»,,, O -)( Foniem :bw. 2}]
1-—~ > 1E+(uns 2T ]

Similarly ’

k= EAe [an{(}.\M.}. 16, :;_“)}]
k. >G5 |

Now substituting for é-H,M and SH,. in equation

(3-13a)

(3-13Db)

(3-2 ) ’ )
% (gb"\ -2 Sé 'Mn\+ Sbﬂ,n-’) + %;“ (J?wum— 2 S}mm + Sé‘m-l,s\ )

il

w07 3 )Gz
+ BhmXom (3 7 22+ D A 2t %
= ) 2 [+ (z 5.

o 00 B 5]
S[e+ (3 2]

= =P (3-14)
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where Xo m? YO n are the length in plan of the cables m and n
? H

‘Trespectively.
When Hy= Hy= H, equation (3-14) may be written

(53,,“,. BBt B 493..)

E Y {625 060.55.)]
+ E_A'IXA' (k-.wn }mm -v.,n-l [q +(5““ b‘n")"]

Yo ["&Z {622,602 5
+ B2 (02200 B )= S B s Y]

= Q.R‘m (3-15)

The number of equations‘(B-lS) that can be

written is equal to the number of joints and when the frame
deformations Uy , Uy are zero, is equal to the number of un-

knowns & Ze

Equation (3-15) can be written in the matrix

for m as
4z=R (5-16)
or "
=4 p

When the frame deformation is to be taken into
account, the number of unknowns is in excess of the number of
equations by the total number of cables. To calculate the
effect of frame deformation, the horizontal inward displace-
ments of the frame between the two anchorage points of each
cable "is determined. Hence the influence coefficients for the

deforrpa*bion of the frame are obtained.
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Thus
[ 91 ] -'&u trer e ell,-m-\-m“ [ SH: ]
(0 = 4 Loy
\ U“*“ / _&N*s\,l' DR d‘l\-&-n,nﬂ_n-_l. \SH""*"‘J

where d,, etc. are the influence coefficients ,
or
U = D.AH (3-17)
Equations (3-17) can be subs‘bifuted into A
equations (3-13) and (3-14) which can be solved to obtain the
displacements dJz. and the horizontal components of the tension

increments & H directly.
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Fig.(4-2)- Plan of a Cable Section between Joints i and j.
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Chapter 4~ Analysis of the ILoaded Roof Taking the

Horizontal Displacements into Account,

Resolving the forces at a joint i [_fig.(ﬂr-l)J

in gll three directions, viz,. }’,ﬂrL and z.directions,

Z{(-Ej+8'ﬁj)c°5@‘+6"),g} + P, ¢ =0 (4~1a)
Z{(—EJ'FST@)C“ ¢c +5,5),-4} + P'i"b =0 (4-1b)
Z{(‘T}ﬁ-&‘l;j)cos (Y+S¥)€i} + R’b o ‘ (4-1c)

where o, P,b’ are the angles made by a cable section with
the 4,m, and % axes respectively.
The extended length of the cable section

between joints i and j is given by,

2 2 <
(f‘} +3 kj) = (%+dx,— x; = J'xj) + (Y, +dy.- %~ 5&-)

+ (b.'."‘ Sé«'." % -;2-__‘) (4-2a)

and the original length is given by,

f,: =(x "755 +(3¢'&)z+ (32 )2 (4-20)

Subtracting equation (4-2b) from equation

(4~22) and neglecting second order ternms,
[*'j Jfg-‘- (xq:"ﬁ') (J Q'J’ﬁ') + (94.‘ j)(gyi';}i)
+ (-5 ) $H9y) (4-3)
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Now,
X=7 + M N6
3 = M, €050
where © is the angle between the " and y axes.
§x = 55+, mo
53 = S'»Lco.se
where. 8§ and 5-:}/ are. displacements in the direction of £
and s axes respectively.
Also from fig.(4-2),
cosox,; = (§-%) + =) sime
4 1.
4
cosA.. - (’li‘%&)"'(sf“f:)s'"e
F‘; _ L}

cos ¥: = (2= 2:

4
1
C-usae‘.i + @f‘ "532') + (Jzei" J"],.;) SING
Sq - _ 4?.(:
cos Getder) = o

)

where é&x is the increment in the angle ex.

|5

since .{{‘} is. small.
i
e. COS@(-}&() —( spc)CGSO( (J; Sf)+(é;h ;‘7")5"‘16 (4-4a) -

4
neglecting second order terms,
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Similarly,

Sh oS 85-J3.)s
cos (F+5/g) =co_73 (- 7_}_) -9, )‘*( y=dL)sine (1)
.} 4 .

cos (7+ J)')‘.J_. = cos%ﬁ (l—é—:ﬁ—‘.‘;) + Q_é#i_& : (4-4c)
Ry v ‘

Substituting now in equation (4-3) for x,y,Jx
and é},

f‘i Sl.-}. = (f; 'Hw sNg-5, ~N.51™9) CE _'5-+J' ), 5INe S5.- Jm‘.smo)
+Oum ) T u)eese + (573 (= 5:)

f‘xg(cffj- SE,+ J’l‘d—&bi sivg) coser,,

+( & (PREE ’L‘) (cos/qx — SIN6. Cosog: ) + (3,53, )cosdy

re. 52}:(J§~ J_.}:)cosoci-{- (J’L’— S"b‘._)c.'csﬁj-f-(é}f-%‘-)Cosx.l. (4_5?
Also,

;Z‘I = __5:7'?“_9‘1 | (4-6)

Combining this with equation (4-5),

Sty Ay
T = CF ) o @y SpJcorpr (Y-Sl (D)

Now considering equations (4-1), the corres-

ponding equations before loading,
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Y (Tycosm)= o

(4-8a)
2 (T“'i _Co.s/aq) = 0 (4—8’0)
Z (T‘i cos):j) =0

(4-8c)

Subtracting equation (4-8a) from equation
(4-1a) and omitting terms of second order,

2[ 1(“5@“‘&‘) ~Cos o, ) +§T COSCYI P“f =0

Substituting from equation (4-4a)

z E:“ {@; Si)+(5’14“’-fb«) siNe co.Sa(]-\-e =0

Subs‘b:.‘butlng again for 5'& from equation (4—6)

[ (d%;- 5f)+(‘;"l¢ S SiNe - &L cos«}
J&g , EA v

ST, cosw. +P_=
+ Tal.J_ ° ang + a.S
Substituting now for &'}f from equation (4-7)

Z [—5’- {(SSI- S_;:) + (5'1,4-.5'1!/‘.) SIN®

+( =L ) ; Coser; {(5§’—¢r§) coser, + v, -Smocasﬂ
+<g;‘-59.‘.)cos 4'12}'_] “'5 = 0

Assuming that the length of two adjacent
sections are equal,
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a Xoum _ !
- - a
‘ei}' i-.\ I +; X:
O,m

for a flat parabola.

It is: also convenient to use the horizontal
component H of the initial tension, which is comstant

throughout the cable instead of Tjj which varies from section

to section.

or
2 o
Also replacing a.(|+-5- -)-(‘_:: ) by B and
Oy
rearranging terms,
u
J. § H Squ‘ EA cos:xij

2[ 5- f){r sm)’ Fi

H cosoty. Cosph;;

G
+ (S I, + - i) <

cosoe; oS _ |
-l—(S; -6'})(EA smr) °5°;_i *] _-\-E;j— 0 (4—9a?
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Similarly,

H sive H ) cose;cos By
E[(;f ‘f ) r sm):; (E"‘ sm?,) . 4}

2 3
_& N JHSINB, | EA<os By
N (J"L; ‘1&) E.SIN i{" F-

'N\-

({é Sé)<EA 5|Nr) Cosﬂj cos A_L] F:”b =‘O : (4-9b)

Z[(Jf ff (EA Smx coscqgf,,sé. B

Y
+ (5"\,,-‘ ) (Ea- s,w) °°s'g{-Lc°s y

m

+(%3- 52»){“5'""‘ 2 c°s }] +P -0 (4-9¢)

Correction for Nonlinearity

In deriving the above equations, the higher
order terms were neglected as being small. This is true only
for an infinitesimal load. For larger loads, the behaviour is
nonlinegr and the correction for this is applied in two ways:
(1) by an approximate method (ii) by an incremental load

method.
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(i) Approximate Method of Correction.

In this method, half the displacements obtained
by solving equations (4-9) are added to the initial co-or-
dinates and the new displacements are calculated using the
corrected co-ordinates. The iteration is continuéd until the
values converge sufficiently. This correction amounts to
basing the calculations on a configuration which is half-way
between the initial and the final (displaced) configurations.

(ii) Incremental Load Method.

Here, the load is applied in small increments
and the calculabions are based on the previous displaced con-
figuration. The accuracy of the finai displacement depends on
the size of the increment; the smaller the increment, the

greater is the accuracy.
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Fig. (5-1)- Views of a 240 ftx 120 ft Hyperbolic Paraboloid
Cable Roof.
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Chapter 5- Numerical Studies.
5.1 DNeglecting Horizontal Displacements.

A hyperbolié paraboloid roof 240 £t x 120 ft
rising by 12 £t from two opposite corners to the two adjacent
corners shown in fig.(5-1), was analyzed by using'the method
mentioned in chapter 2, neglecting frame deformation. The
ordinates of the joints were first determined by solving
equations (2-5) for the roof. Equations (3~16) were then for-
'mulated for the loaded roof and were solved to obtain. the
resultant displacements.'The calcuiations were. done for one
quarter of the net consisting of 21 joints for equal loads atb
all joints and a ténsion of 50 Kips in all the cables., With
.the deformation of the frame neglécted the number of equations
that had to be solved was twenty one.

The same roof was.anglyzed using equations
(3-16) taking the deformation of the frame into account,:For
.this purpose, the frame was assumed to consist of four beams
simply supported at their ends. The flexural rigidity of the
beams were taken as 96,000 Kip-inz. The number of equations
in this case was thirty thrée; twenty one for the joints and
six for cables in each direction, the others being determined
by symmetry. In both cases the equations were.solvéd on the
IBM S/360 computer using the available subroutine. The results

of the calculations are shown in tables (5~1) and (5=2).
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Pable (5-1)= Vertical Displacements of the Joints of
‘ ‘ 240 £t x 120 ft Roof shown in fig.(5-1).

H =50 Kips, EA=30x10° Kip "

Vertical Displacements (ft)

Joint No. | Ioad=1 Kip/joint |Load=1 Kip/joint
-5 Kips at joint 16

Without | With Without | With
frame de- [frame de- [frame de- |frame de-
formation |formation [formation {formation
1 .218095| .199978| .215975| .194460
2 543592 | .535913| .559846| .550742
3 .398608 | .397683| .411660| .410576
4 .860394 | .874873| .927712| .944904
5 755987 | .T73634| .810777| .831731
6 461982 .475346| .490521| .506381
7 1.115842 | 1.149762 | 1.289348| 1.329612
8 1.036608 | 1.072337| 1.169473 | 1.211885
9 813359 | .842227| .888684( .922938
10 461982 | .475346| .490521| .50638L
11 1.281914 | 1.324941 | 1.678529 | 1.729610
12 1.217212 | 1.261412 | 1.473241| 1.525713
13 1.036608| 1.072338| 1.169473 | 1.211886
14 .755987 | .773635| .810777| .831732
15 .398608| .397684| .411661| .410577
16 1.341772 | 1.383839| 2.284966 | 2.334901
17 1.281914 | 1.324942 | 1.678529 | 1.729661
18 1,115842 | 1.149763 | 1.289348| 1.329613

258697
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Table (5-1) (contd.)

Vertical Displacements (£%)

Joint No.| Load=1 Kip/joint |Load= 1 Kip/joint
.5 Kips: at joint 16

Without With Without With
frame de- [frame de- |frame de- |[frame de-
formation fformation |formation [formation
19 860394 | .874874) .92T7712| .944906
20 .543592 | .535914 | .559846 | .550744
21 .218095 | .199977 | .215975.| .194460

Table (5-2)- Tension Increments in the Cables of

H =50 Kips, BA=30x10° Kip-

240 £t x 120 £t Roof shown in fig.(5-1).

Cable

Tension Increments

Load =1 Kip/joint

Toad =1 Kip/joint
5 Kips at joint 16

Without
frame. de=.
formation

With
frame de-
formation

Without
frame de-
formgtion

With
frame de-
formation

H H O a W oe

2.180143
6.698583
10.973134
14.321753
16.155577
15.583756

11.610423
10.194946
11.227890
13.025525
14.709006
15.871707

2.,158948
6.910206
11.752017
15.936039
18.768974
19.315206

13.359888
11.056641
12.054489
14.399519
17.050598
19.657135
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Fig.(5-2)~ Plan of the 240. £t x 120 ft Hyperbolic Paraboloid
Cable Roof.
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5.2 Taking Horigontal Displacements into Account.

The. roof referred to in (5.1) was analyzed
using the generél theory giveh in chapter 4. In this case,
half the net was used. for calculations since there is no
symmetry within half the net. There is only antisymmetry
about the diagonals. For eXampie, for a joint like joint 3,

fig.(5-2) there is a corresponding joint in the oppoéite
corner in the other half of the net which has the same vert-
ical displacement but equal and opposite horizontal displace-
ments as joint 3. Equations (4-9) were written for the joints.
A program was written for the IBM S/360 computer to form the
108 x 108 matrix, solve the equations using the available
subroutine to obtain the displacements, modify the co-ordi-
nates and recalculate the displacements until a satisfactory
convergence was reached. The tension increment in each section
of the cable was then caléulatéd using the final displacements.
The program was also nodified fbr the incremental load method
for comparison of the results. Flow charts for thé two pro-
grams and the computer program'for the incremental load method
are shown in the appendix,

The calculations were performed for various
loadings and varying parameterss-

(i) Equal loads at all joints with H, the hori-
zontal component of tension fixed at 50 Kips in all the
cables. The loads were increased by equal increments and fhe
nonlinear variation of the deflections obtained, Typical

results .are shown in table (5-3) and the behaviour of joints
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Table (5-3)- Vertical and Horigontal Displacements of the
| Joints of 240 ft.x 120 ft Roof shown in fig.(5-2).

H=50 Kips, EA=30x10> Kip- , Toad=1 Kip/joint
Joint No.| Horizontal Displacements (ft) Vertical |
€ direction “ direction ]?ispj(.%giments

1 .009043 ~.005419 ~0.205983

2 .022490 ~.013440 -0.518198

3 014274 -.003338 -0.382553

4 .028636 ~.017070 -0.829292

5 .018983 -.002147 ~0.732224

6 .005984 .007660 ~0. 450873

7 .025604 -.015218 -1.088215
8 .014322 003442 -1.014998

9 .001917 .017658 ~0.801635
10 ~.004715 .018791 -0.458200
11 014965 -.008864 -1.262860
12. .002812 .011588 -1.203370
13 -.008426 .027513 ~1.031159
14 -.014310 .032873 -0.756990
15 -.011860 023797 -0.401313
16 .000000 .000000 -1.328606
17 -.011429 .019288 -1.273480
18 -.019673 .033057 ~1.115296
19 ~.021873 .036605 -0.866189
20 -.016670 .027870 ~0.551684

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



~30=

Table (5-3) (contd.)

Joint No.| Horizontal Displacements (ft) Vertical
5 direction " direction Disp%%%iments
21 -.006113 .010200 ~0.224608
22 ~.014965 .008864 -1.262858
23 -.027037 029266 ~1.202629
24 -.032969 042011 -1.029952
25 - ~.030697 .042509 -0.755783
26 ~.019162 .028061 -0.400632
27 -.025605 015217 -1.088214
28 -.036182 033449 -1.01370%
29 -.036475 040412 -0.799682
30 -.024782 .030633 -0.456666
31 ~.028634 .017069 ~0.829292
32 -.035728 .030449 ~0.730763
33 ~.026599 ©.027022 | -0.449147
34 ~.022491 013440 -0.518198
35 -.023728 .019355 -0.381486
36 ~ -.009043 .005419 -0.205985

1 and 16 are shown in figs.(5-3) and (5-4) respectively.
(ii) Equal loads at all joints and in addition a
éonéentrated load at one of the joints under the same condi-
tions as in (i). The concentrated load was placed at various

Jjoints and the calculations were repeated. The behaviour of
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the different joints are shown in figs. (5-5) to (5-8).
(ii1)- The preteunsion in the cables was:varied.and:
the éalculafions performed for a symmetrical loading of
1 Kip/joint and an unsymmetrical loading of 1 Kip/joint in
addition to a concentrated load of 5.Kips at joimt 2. The
behaviour of joints 1 and 16 with the'change in pretension
is shown in figs,.(5-9) and (5-10).
(iv) The ratio of the éides of the rectangle was
varied keeping the smaller side equal to 120 ft and H equal
to 50 Kips. This varies the obliquity of the angle between
the two sets of cables. The variation was from r, the ratio
of the sides of the rectangle = 1 which is an orfhogonal net
with sin @ = O, to r = 2 for a net with sin @ = 3/5. Here too
the calculations were done for the two loadings mentioned in
(iii). The behaviour of joints 1 and 16 with the variation
in the degree of nonorthogonélity is shown in figs. (5-11)
and (5-12). '

In all these cases, the approximate method of
correction for nonlinearity was used. In case (i) and case (ii),
the calculations were repeated with the incremental load

method for comparison.
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Chapter 6- Experimental Study

6.1 Description of Model.

In order to verify the theory and calculations,
an experiment wéseperformed on a small scale model, Thé model
was 6 £t x 3 £t with a difference in height of 9 ins. between
ad jacent corners. The net consisted of five 1/8 in. diameter
aiuminum wires in each direction. The bqunding frame was of
four 12 in. deep channels welded to form a rectangular box.
Holes wereidrilled on the channels diagonally and along
straight lines to form the boundary of the model Toof. The
wires were provided with screws at the ends for tensioning.
The wires were glued together at the joints and hangers were
suspended from the joints for loading the net.

The.tWO sets of wires approximately took the
shape of parabolas, with the two sets having opposite curva-
ture. The total number of interior Jjoints were thirteen and
heavy channels used for the frame Jjustified the assumption of
no frame deformation, The tensions in the wires were measured
by attaching strain gauges on the wire at the ends. Thé def-
lections were measured by dial indicators.

A plan of the net is shown in fig.(6-1).
Photographs 1 to 4 illustrate the model. |
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Photograph 2. A View of the Loaded Model and the Datran
| Strain Indicating Equipment.
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Photograph 4- Side View of the Ioaded Model.
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6.2 Experimental Procedure.

The wires were tensioned and the strains in
the wires were checked until the necessary tensions in the
wires were reached. The teunsions in the wires were so adjusted
that their horizontal components were all equal to 50 lbs,

The dial indicators were then fixed and adjusted to zero and
the joints were loaded. The dial indicator readings were
noted. The loads were increased by equal increments of 1 1b
at a time to a maximum of 5 lbs. The readings were then re-
peated while unloading.

Readings were also taken for concentrated loads
at various joints increasing from 1 1b to 6 1lbs in addition
to equal loads ofvl 1b at all the joints.

The experimental results and fhe theoretically
calculated results for the model are shown in figs.(6-2) to

(6-10).
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Fig.(6-1)- Plan of Model.
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Chaptér T- Discussion of Results.

1. The vertical displacements were calculated using the
approkimate.méthod neglecting horizontal displacements with
the deformation of the frame neglected in one case and with
the deformation of the frame taken into account in another.
The difference between the calculated values in the two cases
will, of course, depend on the stiffness of the frame. In the
case considered here, with E = 30x103 Kips/in2 and I = 3200 inﬁ
there is a maximum difference of 9% between the two‘displace-
ments but for most of the joints, the difference is about 4%.

~ Whether or not it is necessary to consider the deformation of
the frame depends on the stiffness of the frame actually used.
2. The vertical displacements when calculated using the
general theory taking horigontal displacements into account,
differ from the values calculated by the approximate theory
by a maximum pf 6%, In addition to this difference, the hori-
zontal displacements which were neglected in the latter theory
are significant, approaching 5 to 7% of the vertical displace-
ments when the former theory is used. These two differences:
combine together to give a larger error in the calculated
tension increments, Such increments in the two cases differ
by up to 12% in the longer cables where the change in tension
is large. It is therefore necessary that the general theory

be used in the analysis of this type of roof in order to
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obtain accurate results, even though this involves three
times the number of equations.
3. It is also evident from the graphs [figs. (5-3) to (5-8)]
that the load defléction behaviour is nonlinear for loads
larger than 1 Kip/joint for the roof considefed here, In-
creasing load has a ‘'strengthening' effect on the net,i.e1
the corrected value is lower than the value obtained by the
linear theory. For smaller loads, it would be sufficient to
use the linear theory but for larger loads, this would result
in a conservative value for displacements and the tension
increments.
4, It is seen from‘the calculations‘that the value obtained
by the approximate method of correction for nonlinearity
almost coincides with the value obtainéd by the more accurate
incrementai load me%héd. The difference‘betwéen the two values
is greatest when the loading-is unsymmetrical [;‘ig.(5—5)] but
is negligibly small in the case of symmetrical loading [fig.
(5—6)]. It is sometimes timesaving to use the former, since
"in most cases one is interested in the displacements under
a particular loading in which case solution by the former
will require a few iterations whereas the latter might regiire
several increments to reach the particular value of loading.
The values obtained by the two methods deviate more as the
load increases but the amount of computing time taken with
the incremental load method over and above the approximate
method, also increases with the load and offsets the advantage

of the slightly more accurate resulis, For example, for equal
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loads of 4 Kips/joint, the first method requires 15 iterations
to converge within lx10'6, while the incremental load method
requires 40 increments of 0.1 Kips each and the difference
between the two values is only'about 3% for a saving of 60%
of the computing time.

5 From a conparison of the deflection of joint 2 due to a
concenfrated load at joint 2 and the deflection of joint 20.
due %o a concentrated load at joint 20, it is seen that the
nonlinearity is more marked when the loading is unsymmetrical,
The former is unsymmetrical while the latter is symmetrical
since it assumes a concentrated load in the opposite corner,
6. The deflections and tension increments decrease with the
increaée of H, the horizontal component of tension, as ex-
pected. The deflections could be reduced by increasing the
pretensién in the cables but this increased tension will have
to be accounted for at the edge beams and the anchorages. A |
cbmpromise, therefore, has to be struck and other factors
such as susceptibility to flutter also must be considered.

Te The deflection decreases as the degree of nonorthogona-
1lity of the net decreases and is & minimum when the net is
orthogonal. The horizontal displacements are aglso much smaller
in the orthogonal net than in a nonorthogonal net.

8. The experimentsl values agree with the theoretically
calculated values within reasonable limits. The difference
between the theoretical and the experimental values differ

by very small to large percentages but thé average difference

can be said to be about 10-15%. The theoretical values are on
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the conservative side for most cases of loading and for mos?t
of the joints. This is seen from figs.(6-2), (6-3) and (6-4)
for symmetrical loading and from figures (6-6), (6-~7) and ”
(6-8) for concentrated loads at joints 7,8 and 9 respectively.
The theoretical values are lower than the eiperiﬁental valﬁes
only in the case of concentrated loads at joints 2,10 and 11
figs.(6-5), (6-9) and (6-10)]. Since these latter joints are
less critical than the former joints from the design point of
view and since the theoretical values are on the conservative
side for most cases of loadihg, it may be said that in general
the theoretical values are on the conservative side.
9. The sources of error in the experiment may be one or
more of the following:-

(2) Inaccuracy in measuring the initial tension in thev

wires and the value of EA used.

(b) Irregularity in the.geometry'of the model.

(c) sStiffness of the joints and the bending stiffness

' of the wires which were neglected in the theory.

(d) Any deformation df the frame.

(e) Inaccuracy in measuring the deflections.

(£f) 1Inaccuracy of the theory.

- Source (a) is likely because there would have
been an error in the measurement of the strain with the strain
gauges. A non-axial strain gauge alignment can introduce sig-
nificant error. The value of E used was the value supplied

by the nanufacturer for 6061 T6-H19 aluminum which was used.
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Source (b) is also likely due to irregularities in fabricating
the model and due to the finite thickness of the wire and the
joints.

The stiffness of the glued joints and the
bending stiffness of the wires would also introduce some error.
The measured deflection would have been somewhat inaqcurate
due to friction in the dial indicators but this was eliminated
to some extent by using the average value of the readings
taken while loading and unloading. The deformation of the
frame could not have introduced any significant error, consi-
dering its excessive rigidity. The theory too cannot be called
inexact since it is derived from first principles considering
the equilibrium of the system. Correction for nonlinearity
was applied by incremental load method and hoting the very
small nonlinearity of the system, the error involved would be
negligible. o
10. Since the nonlinearity of the model was smaller than the
accuracy with which the experimental results were obtained,

the nonlinear behaviour of the model could not be'verified.
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Chapter 8- Conclusions.

For the study presented herein, the following
conclusions can be drawni-
1. For nonorthogonal nets the horizontal displacements
cannot be neglected in comparison to the vertical displacements.
Therefore the general theory considering displacements in all
directions has to be used. In the case of orthogonal nets,
however, the horizontal displacements are small and may be
neglected. | ’ |
2. In calculating the vertical displacements of the joints,
the effect of deformation of the bounding frame may have to
be taken into account depending on the flexuralvrigidity of
the edge beam used. This maj become necessary in the casé of
very long spans where the edge beam is used wifhout intermedi-
ate supports.
3. The load-deflection behaviour is nonlinear for large
loads. In applying correction for nonlinearity, the value
obtained by using the approximate method is not very much
different from that obtained by the incremental load method.
The former may be used in favour of the latter on account of
the appreciable saving in computing time for any one particu-
lar set of loading. Furthermore, the nonlinearity is more
marked in %he case of unsymmetrical loading.

4. The deflections and tension increments decrease with the
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increase in pretension. They also decrease with the nonortho-
gonality of the cables. |

5. The experimental values are in fair agreement with the
theoretical values. The theoretical values are in general on
the conservative side. Nonlinear behaviour could not be verified.
experimentally due to the very small nonlinearity of the model
used, For future work, it is recommended that a more flexible
model be used so that the nonlinear behaviour of the system

could be more readily verified,
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Flow Chart 1- Calculation of Displacements-Correction for
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- - APPENDIX B, IISTING OF A SAMPLE PROGRAM.
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