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ABSTRACT

In this investigation, a study is made of the three forms of 

turbine blade damping— root, hysteretic and aerodynamic— which may exist 

in the common gas turbine engine. Hysteretic and aerodynamic damping 

were studied in natural decay while root damping was studied under 

forced vibration.

A number of uniform cantilever beams were tested. Various geo

metries and materials were considered to determine material damping 
constants and to study the effects of geometry on aerodynamic damping.

The results indicate that material hysteresis damping is a function 

of frequency and stress distribution.

Aerodynamic damping in still air is shown to be a function of 

frequency, blade geometry and blade deflection shape. In the first 

flexural mode, aerodynamic and hysteretic damping are shown to be of 

the same order of magnitude.
Root damping is shown to be large at low rotational speeds but 

insignificant at typical design speeds.

111
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NOMENCLATURE

A cross-sectional area

Ao cross-sectional area at blade base

At cross-sectional area at blade tip
b beam width
c chord
D specific damping capacity

d: damping factor
A amplitude (single peak)

Apk tip amplitude (single peak)

Ast static deflection

£ logarithmic decrement
£a logarithmic decrement due to air only

taper coefficient 

E Young's modulus of elasticity

e base of natural logarithms

f frequency
f resonant frequencyR
g acceleration due to gravity
h beam thickness
I moment of inertia

I moment of inertia at blade baseo
j material damping constant
1 beam length

M bending moment
m mass

n material damping exponent
ix
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p period

fa density of air

(°m density of blade material

r frequency ratio

V stress
t time

u strain energy

ztu loss in strain energy over one cycle

V air velocity relative to the blade
V blade velocity
to circular frequency

X
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1. INTRODUCTION

1.1 SUBJECT OF THE INVESTIGATION

The purpose of this investigation was to determine the relative 
importance of root, aerodynamic and material hysteresis damping as

applied to the blades of a gas turbine engine, and the parameters 

involved in these quantities.

1.2 IMPORTANCE OF DAMPING IN TURBINE BLADE VIBRATION

Vibration is a major problem in the turbine engine since it leads 

to high fluctuating stresses which can cause fatigue failure of a blade 

in a very short time. Operating experience with gas turbines in military 

aircraft shows that rotor blades in axial compressors are the most un

reliable single item (1). Blade vibration generally is caused by some 

forcing function within the engine itself which has a frequency near a 

natural resonant frequency of a blade, or some harmonic of this 

natural frequency. The excitation may be an aerodynamic fluctuation

superimposed on the nominal gas bending loads on the blades (2), (3), (4) 

or may be a mechanical vibration from some source such as a gearbox.

Early gas turbine engines could operate efficiently only at one 

fixed design speed. Hence, if blade failures occurred due to vibration, 

blade geometry could be altered to change the blade resonance frequencies

away from all excitation frequencies.

However, recent trends to higher efficiency engines, coupled with

the demands of the aircraft industry for reduced weight, have caused

further vibration problems. The advent of the variable nozzle guide
1
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vane engine, which can operate at high efficiency over a wide range of 

rotor speeds, creates the problem of a wide range of forcing function 

frequency possibilities as rotor speed is varied. Also, one of the most 

obvious ways to increase overall engine efficiency is to increase the 

turbine inlet temperature. This increases actual blade temperature

which reduces fatigue strength, making blade vibration more critical.
Thus, other forms of preventing or reducing blade resonance have 

been sought. The lacing together of several blades either by wires or 

rods is popular since it may be applied to an engine already in produc

tion. However, the method has several serious disadvantages: lacing

disturbs the air flow which reduces efficiency; a stress concentration 

is introduced in the blade where the lacing is attached; and it may 

solve a vibration problem in one mode only to create a serious problem 

in another complex mode due to the extra boundary condition on the 

blade (5). Hence, the use of blade lacing is mainly an emergency stop

gap measure until design improvements can be made.

Tip shrouding has been used successfully in many designs. However, 

the shroud increases centrifugal forces on the blade and hence tends to 

increase blade creep. Also, tip shrouding generally increases blade

fabrication costs.
The question of damping, or dissipation of vibratory energy, is 

important. Three forms of damping may exist in the common turbine 
engine: A) material hysteresis damping; B:) aerodynamic damping; and

C) root damping.

A. MATERIAL HYSTERESIS DAMPING This exists due to a slight 

hysteresis or anelastic phenomenon between stress and strain, This
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energy is dissipated through heat in the blade.
B. AERODYNAMIC DAMPING This results from the dissipation of 

energy of vibration to the atmosphere surrounding the blade due to both

the formation of vortices along the blade edge and work done on the air 
by the blade during vibration.

C. ROOT DAMPING This will dissipate energy at the blade root due 

to sliding friction if any relative motion exists between the blade root 
and the disk fixture.

1.3 PLAN OF TREATMENT
The analysis was split into two segments: blade effectsj and root

effects. Both aerodynamic and hysteretic damping were included in the 

former while root damping made up the latter. Blade effects were studied 

by tests in natural decay. Aerodynamic damping was reduced to a negli

gible amount by placing specimens in a vacuum chamber. Specimens were 

then tested under atmospheric conditions. The increase in damping in 

the second case was attributed to aerodynamic effects.

Root effects were studied by forced vibration tests. Two actual 

cases were considered— that of a fir tree root and that of a dovetail 

root.
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2. LITERATURE REVIEW

2.1 MATERIAL HYSTERESIS DAMPING

The nature of internal hysteresis in solids was investigated in 

the period of 1926-28 by Kimball (6), (7), (8), (9). He initially pro

posed that energy loss was proportional to stress squared, a case 

similar to classical viscous friction. His tests were carried out on 

rotating rods at frequencies generally below 50 cps. He later found 

that damping was proportional to some power of the stress, not nece
ssarily two, and that an upper stress limit existed near the yield 

stress where damping increased rapidly. In all cases, Kimball found 

no dependance of damping on frequency below 50 cps.

In 1932, S. F. Dorey found that hysteresis energy loss was propor

tional to stress cubed (below some critical stress value) for typical 

crankshaft steels (10). In 1946, Robertson and Yorgiadis also found a 

third order dependance of damping on stress. They also found damping 

to be independent of frequency up to 100 cps (11). Marin and Stulen 

found similar results in 1947 (12).
In 1950, B. J. Lazan began a series of tests to study damping

problems (13), (14), (15), (16). He found that damping was proportional

to stress raised to some power. This power varied from two to thirty.

After studying many materials in tests on rotating beams (14) and in

bending specimens (15), he suggested several general conclusions. At
room temperature, and for constant stress, damping was found to settle

out after about 500 cycles and to decrease very slightly with cycles
until failure occurred. At high temperatures, large changes in damping

occurred at large numbers of cycles. The dynamic modulus of elasticity
4
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was found to be within 5% of the static value for low stress levels, 

with very slight dependance on cycles. He found the critical limit for 

damping as a function of stress to a power to be essentially independant 

of cycles and to lie at approximately 80% of the material endurance limit. 

If this value, the sensitivity limit, was exceeded, damping increased 

rapidly (figure 1). The majority of this work was done at 20 cpm, giving 

no information of frequency dependance of damping. A tabulation of many 

of Lazan's results is given by Marin (17).

An interesting electrical analogy for hysteretic damping is given 

by Soroka (18) but no experimental correlation is given.

2.2 AERODYNAMIC DAMPING
The steady, nominal gas bending loads on a blade have been studied 

by many investigators under several methods, such as Kavanagh and Serovy 

(19). Superimposed on these loads are fluctuating aerodynamic loads 

due to upstream interruptions of flow or flow instability (2), (3), (4). 

These fluctuating forces generally act as exciting forces.

Depending on the flow properties, angle of incidence and blade 

geometry, this flow may cause the blade to vibrate, due to its aerodyna

mic shape, or may actually do negative work on the blade, le. damp blade 

vibrations.
Several investigators have studied aerodynamic damping on flat 

cantilevers. Baker, Woolam and Young (20), suggested that two forms 

of damping exist, one proportional to velocity, the other proportional 

to velocity squared. Based on natural decay tests, they suggest that 

air damping is significant at all amplitudes, with damping dominantly 

proportional to velocity squared at high amplitude and proportional to
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velocity at small amplitude. They do not compare the results to theory, 

nor do they attempt to determine the transition point between the two 
types of damping.

McWithey (21), tested 20” x 1" x beams of 4130 stainless steel 
up to maximum tip amplitudes of 0.438 inches in natural decay. He found 

aerodynamic damping to be negligible at small amplitudes but significant 

at large amplitudes.

Hanson, Meyer and Manson (22) have found good experimental verifi

cation of a theoretical solution to aerodynamic damping theory. The 

theory used included vortex losses along the blade edges as well as 

propulsive losses along the blade faces.

2.3 ROOT DAMPING
The problem of root damping is affected by contact stresses in the

root fixture. These stresses have been analyzed statically for several 

types of fixtures by Durelli, Dally and Riley (23).

A theoretical analysis of root damping has been done by Goodman 

and Klurap (24). A controlled experiment verified the results and a 

correlation with actual engine results was suggested, based on uniform 

pressure theory.

Goatham and Smailes (25) suggest that the use of pin-connected 

roots may be effective in reducing vibratory stresses. Experimental 

results for pin-connected roots (22) verify this conclusion.

An evaluation of single and double ball roots has been done ex

perimentally by Manson (26). His results show that root damping may 

be effective at low rotational speeds or under large vibratory forcing 

functions.
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3 OUTLINE OF THE PROBLEM STUDIED
3.1 VIBRATIONS IN TURBINE BLADES

A great number of factors affect vibrations in turbine blades. 
Temperature variation from ambient to operating conditions with the 
associated changes in material properties can change blade natural 
frequencies up to 20$ (27). The stiffening effect of centrifugal 
force can signifigantly alter blade resonant frequencies with 
small changes in engine rotational speed. Naturai frequencies 
can also be altered by deposits on blades such as from salt water 
ingestion and soot in the turbine section, as well as by blade 
erosion and corrosion.

Aerodynamic effects change with gas temperature and pressure 
which can vary considerably through an engine from inlet conditions 
to combustor outlet conditions. Inlet blockages due to leaves or 
ingested birds can cause very large fluctuations of aerodynamic 
conditions.

Material hysteresis damping constants may vary greatly with 
temperature and stress, particularly if the material hysteresis 
sensitivity limit is exceeded ( figure 1 ).

Root contact stresses and hence root damping are a function 
of centrifugal force, fretting, temperature, lubrication and 
root machining tolerances.

The complex geometry of common blade profiles creates a very 
difficult stress analysis problem. A common blade may be tapered iir 
both thickness and in chord, twisted, and curved. Typical nodal 
patterns for a compressor blade are shown in figure 2. Comparison! 
of these nodal patterns with those of a uniform cantilever beam 
(figure 3) shows the complex nature of dynamic analysis of turbine 
blades.
3.2 _ DAMPING

Damping serves to dissipate energy of vibration and to limit 
vibratory amplitude. Theoretically, if energy were fed into a 
system with zero damping capacity at a resonant frequency of that 
system, the amplitude of vibration would become infinite. In 
actual fact, damping of one or more forms exists in every physical 
system.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The two classical forms of damping - viscous and coulombic - 
have been well documented. Viscous damping is proportional to 
velocity squared and coulombic damping is proportional to velocity. 
In most engineering work, however, much more complex,non~linear 
forms of damping are present.

Whenever it is desired to decrease vibratory amplitudes, an 
obvious solution is to increase damping. If a sufficiently large 
amount of damping can be built into a system, even a substantial 
excitation force will not cause severe vibrations.
3.2.1 Classical Damping Theory 

Natural Decay

AMPLITUDE

EXPONENTIAL DECAY ENVELOPE

TIME ✓

//I
c8® t

K

m

The classical natural decay curve, as shown above, may be
written (28) . 2

A«*Ae cos wt and p* -gf
Substituting the initial conditiona =-Aq at t*to»0 

A * Ao
A 2 rrOne cycle later, at«t«tp»25""

A lt1‘‘A oexp(“ -5')
Then the logarithmic decrement , by definition,

A lt
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£ - 2Wc

or the constant
8u>k'~2Tf-

For the simple spring-mass-dashpot system, net potential energy 
at t may he written

U(t > 4 K A  2
2 Vf*where K represents the spring constant.Net potential energy at t 

U(t1)=^KA)2exp(-2ff)
Then energy loss in the one cycle 

AU-U(to)-U(t1)

=*CAo2(l-e2p(-2S))
_2SFor small 8, e «  1 and the total energy at any point in the 

cycle may he written
u=u(to)*u(t1)

Then A U  -̂ RAp2 (1-exp (-2g))
U -gKA Z * o

» 1-exp(-2$)
Applying a Maclaurin expansion

„ 2which, neglecting terms in & reduces to

------------------------------  ( A )

Hence, the logarithmic decrement is approximately one half the 
ratio of net energy loss per cycle to total energy in the cycle.
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Forced Vibrations 10

AMPLITUDE

1
& Af

It is also desireable to 
relate the log decrement to the 
resonance curve bandwidth. For 
a simple system, the shape of 
the resonance curve is given 
by (28)

*  - T - -  1...  -
A st~ /(l-r2)24r2d2

where A  =static deflection under systems own weight 

A=amplitude at frequency f
r=f/fr frequency ratio where fg is the resonant frequency 
d=damping factor 

At resonance, r=l and

~  dst
At the points where the amplitude is reduced to of the resonant 

amplitude

a J I a2 B 2 d

Substituting in the frequency equation
fP 1  L

2 Hi-ft-*?-r ) +r d

or

2dZ (l"^2)24r2d2
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Solving for the frequency- ratio
2 d2+ Id2 4lr = I—  _ ■f

2Neglecting terms in d since d is small.

r2=l ±  d
f +  d d2 ? =r-l± -  - 4 + ....
K=24 A 

~ 2
which gives the frequencies at the points where the amplitude is 
reduced to ^  of the resonant amplitude as

ft= y i +  f)
Then Af=dfR

or Af
d“ f*

In natural decay (27), for small damping

Hence, the log decrement in terms of the resonance bandwidth 
is given by

C _ TTAf
b ~ —    ( B )

R
Although the above analysis applies strictly only to classical 

cases, it is considered suitably accurate for this analysis.
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3.3 MAJOR ASSUMPTIONS
3.3.1 General Assumptions

The following assumptions were made:

1) The jigs used have negligible effects on vibration and 

damping.
2) Damping is small and is a continuous function of amplitude 

or stress.

3) Effects of shear deflection and rotary inertia are small.

4) The dynamic deflection curve of a uniform cantilever beam 

is similar to the static beam deflection curve when the beam is 
subjected to a uniform load.

5) The uniform cantilever beams vibrate in a pure first 
flexural mode.

6) The dynamic modulus of elasticity jl» essentially the same as 
the static modulus.

3.3.2 Blade Effect Assumptions

The following assumptions were made for the blade effect tests :

1) No aerodynamic damping exists at room temperature and a 

pressure of less than one psia.

2) Energy dissipation in the strain gage used is negligble.

3) Hysteretic damping is independant of cycles (stress history ) 
in the range of cycles tested.

4) The hysteretic damping stress sensitivity limit ( figure 1 ) 
was not exceeded at any time.

5) Blade temperature rise due to energy dissipated internally 

as heat is small.
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3.4 GEOMETRIC CONFIGURATIONS STOPISP .. ^

3.4.1 Blade Effects

Due to the complex geometric and vibrational configurations of 
common blades ( figure 2 ), it was decided to analyze blade effects 
using uniform untwisted cantilevers. The term "beam” is used to indicate 

a uniform cantilever as opposed to an actual turbine blade. The beams 
seieecyu. are given in figure 4. Relatively large beams were chosen 
to insure signifigantly large aerodynamic damping at room temperature 
and pressure. Stress distributions encountered should be in the range 
of those experienced in actual blades. Several sizes were used to 

determine if any correlation of aerodynamic damping to size could be 

found. Several materials were tested for material hysteresis analysis. 
The three beams of 6061-T6 aluminum (beams 1,2, and 3) were selected 

to compare material hysteresis damping constants at various frequencies. 

The frequencies selected were concurrent with those studied by Baker, 

V/oolam, and Young (20).

3.4*2 Root Geometries Studied
Two root geometries were available for study - a fir tree root 

and a dovetail root. Both are shown in figure 5.
The fir tree root, from a turbine section, had three lobes on each 

side. The blade was made of cast Inco 713c and the disk of PWA 1003.

The dovetail root was from a compressor. The blade was made of 

AMS 5616.
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143.5 THEORETICAL CONSIDERATIONS
3*5*1 Hysteretic Energy Dissipation, for a Uniform Cantilever Beam

Consider a cantilever "beam vibrating in the first flexural mode* 
The deflected shape of the beam is assumed similar to the beam static 
deflection curve under a uniform load.

— 7i— i2
5 ? l 7 T ~

The deflection curve is given by the well known formula 

A=k(x4-413x-f314) 
where k is a scaling constant required for deflection profile 

similarity. The maximum, or tip deflection is given by

A pk=3W.'*
Then, the non-dimensional deflection is

3 3 4.A  x -41 x+31
kpk 31

The bending moment at any section is given by

d2A  
M dx^

El ?l372

which, for small strain theory, reduces to
M d2A  
El dx

Differentiating and introducing A  ^ gives
2M 4x A T)k

El i4--------------------- ------------- ( C )
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For "bending, the stress at any point is given by
___Mz / h /  / h s
r T  ( - 2 < z W

Substituting ( C )
24x A . Ez 

* ----

The net internal energy dissipation for a given tip displacement 

may be found by integrating the specific damping capacity over the 
entire beam. The specific damping capacity can be written (17)

D = Jr” (in.-lbs./cu. in./cycle) 

where T represents the maximum or peak stress at a point during a 

cycle and J and n are constants independant of stress. Then hysteretic

energy loss per cycle for the beam is given by

f b/2 f 1 K A p > H nB=2J1>i - n Ln  ,4 axis

(assuming symmetry of the stress distribution about z=0 and that 
energy dissipation is the same for tension as for compression.)

A typical hysteresis loop is shown below.
STRESS
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Evaluation of the integral yields the energy loss per cycle in the 
first flexural resonance as

D ’
2nJbEnhn+1l1"2nA  n ________________ pk

(n+l)(2n4|)

or
Jbhl

I) =
(n4t)(2n+ O t 1

2Eh2 Apk
n

It is required to relate the above equation for internal energy 
dissipation to the beam energy loss per cycle in natural decay. 

Neglecting shear, the maximum strain energy in the beam is given by 
"1 M„  M M .

Jq El 2
Substituting ( C )

4 1 .IFJn l6x Â yk EIdx 
~21°

but

-> T.

O-fSS-^Pic2

Then energy loss per cycle

au ^ A Pk 3 ^ -d(cycle) I5i3 d(cycle)

Equating ( D ) and ( E )

( E )

l-n d J1‘
pk d(cycle) "* 4 (n+1) (2n+| )Eh2

2 Eh n
-( P )
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Using equation (P), material damping constants can be calculated 

from experimental results. Substitution of two pairs of values for 
^pk a n c £ ^ ^ e fields two equations for J and n which may be solved 
to separate J and n.

3.5.2. Aerodynamic Energy Dissipation
In still air, aerodynamic energy dissipation may occur in two forms. 

Energy is dissipated in the creation of vortices at the tip and edges 

of the blade as well as by work done propulsively on the blade faces.

Total energy loss per cycle may be calculated from decay curves 
in still air as loss in strain energy per cycle from equation (E). 

dU = 4 Ebh3 Apk d A pk

d(cycle) ^  l3 d(cycle)

At a given value A  pk> the hysteretic energy loss per cycle, calculated 
from equation (E) for decay curves in the vaccuum, may be subtracted 

from the total energy loss per cycle to yield aerodynamic energy loss 

per cycle.
In the experimental range tested, aerodynamic damping may be

represented as being proportional to ( ̂ pk) where"oc"represents an

apparent aerodynamic energy loss exponent. The value of 'cc‘for a given
beam may be found by the slope of a log-log plot of A  againstpic
aerodynamic energy loss per cycle.
3.5.3 Root Damping

Due to the highly complex nature of root damping, no theoretical 

solution was attemped. A large number of variables are involved in 
the problem. Contact areas must be defined as well as contact stresses. 

Contact area is a function of root and fixture deflection unuer 
centrifugal, gas bending and vibratory loads as well as geoine cric
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variations within machining tolerances. Contact area is particularly 

difficult to define in the case of multiple fixtures ie. double ball 
or fir tree. Contact stress is similarly complicated. Also, the 

coefficient of friction is, in most cases, a function of cyclic 

history (24), and a distinction must be made between static and dynamic 
friction.
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4 Experimental Arrangements And Procedure
4.1 BLADE EFFECTS

Since energy dissipation per cycle is small, natural decay 
tests were selected to determine damping properties. Energy 
dissipation was measured in terms of loss of strain energy per 
cycle.

Metal foil strain gages were mounted axially near the base 
of each beam and connected to the carrier-amplifier light-beam 
recorder system. Strain output against tip deflection was then 
calibrated (Appendix F) for the beam in the first flexural mode.
Beams were run at the first flexural frequency for several 
minutes on the shaker table (Appendix D) to remove any material 
hysteresis virgin material effects.

The accelerometer on the tip of the beam was removed and the 
beam was clamped to the vaccuum chamber base plate. The chamber 
caver was put in position and sealed with vaccuum grease. If 
desired, pressure in the chamber was reduced by a vacuum pump.
Pressure was monitored using a vacuum gauge.

An A.C. solenoid was used to give the beam an initial deflection. 
The recorder was started and power to the solenoid cut off to 
release the beam and record its natural decay curve.
4.2 ROOT EFFECTS

Root effects were studied for the two roots available - 
fir tree and dovetail. The appropriate disk was rigidly attatched 
to the large steel table. Centrifugal force effects were simulated 
by loading the blades axially. The electrodynamic shaker was then 
fixed to the blade near the tip using tv/o rollers in the jig to 
create a pinned connection. The amount of total damping of the 
system for various axial loads up to 80 lbs. was determined by 
the resonance bandwidth method. The system aerodynamic and hysteric 
damping value was then determined by repeating the above tests 
with the root rigidly fixed with epoxy resin cement. Root damping 
was then found by subtraction of the aerodynamic and hysteretic 
damping value from the total damping value at each load. Vibration 
amplitude was monitored by accelerometer with readout on the
vibration meter of the frequency analyser. Frequency was determined 
with the digital counter.

19
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5 RESULTS ADD DISCUSSION OF THE ANALYSIS

5.1 BLADE EFFECTS 

5.1.1- Hysteretic Damping

The curves of tip amplitude against cycles from the start of the 

test are given in figures 6 to 13. Each curve has results from at 
least two tests, with good reproducibilty of results. The experimental 

points shown on the graphs represent the maximum tip amplitude of the 

beam taken from the light-beam recorder output. Thus, the curves as 
drawn represent the decay curve envelope for each beam.

Values of J and n calculated from the experimental results using 
equation F may be found in Appendix A. Appendix A, figure 28, shows 
values of damping capacity for materials tested against stress for 
a uniformly stressed unit cube calculated from values of J and n 

found experimentally. Figures 14 and 15 show values of J and n 

respectively as a function of frequency for 6061-T6 aluminum ( beams

1,2, and 3) in the range of 8 to 200 cps, including results taken from 
Baker, Woolam and Young (20). Damping capacity for 6061-T6 aluminum 

is shown to be definitely a function of frequency.
It is obvious that none of the curves, except possibly figure 12, 

are linear on the semi-log plot which is the situation when n=2 
representing a special case since equation (D) becomes

D - ^ 3 ~  *pk2 ( 0 )

For sinusoidal motion at resonant frequency f_. tip velocitya

20
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21Thus (G) may he written
Jbh3E2 2 

2Vpkit
and damping becomes proportional to velocity squared as in the

classical viscous case.

For n=2, equation (F) reduces to
dA = JEf d(cycle)

which has the solution

In a
where (« = c

pk = JEfR (°ycles) + ^
constant

Since the" cycld' scale is arbitrary, an inital condition at cycle 1 
may be set such that

appears linearly dependant on cycles, as is the case with classical 

viscous damping. This special case occurs in the case of beam no. 7 
in figure 12.

It is interesting to note that for n=2, the curves are concave 
up and for n«-2, the curves are concave down.

The actual energy loss due to hysteretic and aerodynamic damping 
was calculated from equation E. The results of energy loss against 
tip amplitude are shown in figures 16 through 23. As expected, the 
curves indicate that energy dissipation increases exponentially with 

tip deflection.

Note that in Appendix A figure 28 specific damping capacity 

for 6061-T6 aluminum at a fixed uniform stress, calculated from 

experimental values of J and n, exhibits little change from 26 to 216 cps

thus V , when plotted to a semi-log scale against cycles,
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although, material damping constants do depend on frequency in this 
range. This possibly explains results of some early investigators 

who found damping to he independant of frequency for certain materials.

5.1.2 Aerodynamic Damping

Prom the natural decay curves of maximum tip amplitude against 
cycles from the start of a test taken at atmospheric pressure, figures 

6 to 13, total energy loss per cycle as a function of mmaximum tip 
deflection was calculated from equation E. Prom this value the amount 

of material hysteresis energy loss per cycle at a given maximum tip 
amplitude was subtracted to yield aerodynamic energy loss per cycle 
as a function of maximum tip amplitude.

Results of aerodynamic energy loss per cycle as a function of 

maximum tip amplitude are plotted in figures 16 to 23. Aerodynamic 
energy loss is not plotted for beam no. 8 since it was neglible.
The plots of aerodynamic damping against tip amplitude are collected 

for all beams tested and plotted to a log-log scale in figure 24.

Curves shown are close to linear on the log-log plot verifying the 
exponential nature of the dependance of aerodynamic damping on tip 

displacement in the range tested. The exponents relating aerodynamic 
damping against tip amplitude for beams 1 and 2 show a similar exponent. 
For the same tip amplitude, the ratio of aerodynamic damping for beams 
1 and 2 is the same as the frequency ratio raised to the aerodynamic 
exponent. However, beam 3 is larger than beam 5 (ie. sweeps a greater 

volume) and has a higher natural frequency, but at the same tip amplitude 
beam no. 3 exhibits less aerodynamic damping than beam no. 5* Hence 
the relationship between beam width and length and aerodynamic damping 

is not simply one of swept volume.
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The aerodynamic exponents (Appendix A) lie between 2.00 and 3.26.

It is of interest to note tbat none fall below 2.0, which represents
the classical viscous case.

Ratios of aerodynamic to material hysteretic energy loss per 

cycle for the beams tested against tip amplitude are plotted in figure
25. It may be seen that this ratio may increase or decrease with tip 

amplitude, depending on the ratio of the aerodynamic damping exponent 
to the material hysteretic damping exponent. For beams 1,3 and 4, 
the aerodynamic exponent is greater than the hysteretic exponent, 

hence, aerodynamic damping increases at a greater rate than hysteretic 
damping as tip amplitude increases. The opposite is true with the other 

beams. All experimental cases except beam no. 7 exhibited a ratio of 
aerodynamic to material hysteretic damping in the range of 0 to 200ap. 
The ratio for beam no. 7 was in the range of 700^ due to its low 
hysteretic damping at low stress levels even for large amplitudes as 

a result of its length and thickness. Beam no. 7 is not shown in 
figure 25 to maintain a suitable scale.

At higher modes, amplitudes would be decreased signifigantly.

The exponential nature of aerodynamic energy loss indicates that at 

modes higher than the first flexural, aerodynamic energy loss should 
be insignifigant.
5.2 ROOT EFFECTS

Logarithmic decrements, as obtained from equation (13), against 

load are plotted, in figure 26 for the dovetail root. The axial load 

has been converted to the angular speed required to create an equivalent 
centrifugal load. Results for the fir tree root tested are not shown 

since significant axial loads could not be applied using the apparatus.
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Figure 26 also shows results for several types of roots as found by 

Hanson, Meyer and Manson (22). The results found agree in order of 

magnitude with these values. As shown, damping decreases signifigantly 
with rpm, due to the second order root tightening effect of centrifugal 
forces, except for the pin root which dissipates energy by rolling 

as well as by sliding. The curves of figure 26 do not approach zero 

damping assymptotically as speed increases indicating that linear or 
coulombic damping does not exist. This figure also indicates the 

relatively small amounts of energy which rnay be dissipated in the root 
at high rpm. The blades used in these tests normally operate at a 

design speed of 35>000 rpm, hence little or no damping results due 
to root geometry. It is interesting to note the suggested results 

for pin connected blades are an order of magnitude greater than for 

sliding friction type roots.
At low equivalent rotational speed, root damping log decrements 

were found as high as 6fo. Due to aerodynamic or hysteretic damping, 
maximum log decrements found in the range tested were in the range 
of 8%, with most values in the range of 0.3 to
5.3 ESTIMATE OF EXPERIMENTAL ERRORS

Errors are considered in two parts
i) Assumptions 

ii) Transducer and readout equipment 

Assumption Errors

Minimum jig to specimen weight ratio was 90, with a maximum 
value of 1,120. Reference 29 suggests this ratio should be greater 
than 100, but no induced experimental error is estimated from these 
tests.
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For most tests, the log decrement value is less than 1% and 

maximum values were 8% in the ranges used. Thus, damping was small, 

that is, the ratio of energy loss per cycle was always less than 16% 
and usually less than 2%, Hence, maximum strain energy could be 
calculated either before or after the cycle in question, although 
the mean value was used in this case.

The continuity of damping is shown by the smooth continuous curves 

of both aerodynamic and material hysteretic damping as functions of 
tip amplitude.

Figure 27 shows a typical plot of a beam (no.4) deflection 

profile. The amplitudes were measured by accelerometers and non-, 

dimensionalized with the tip displacement. This figure also shows 

the static non-dimensional displacement curve under a uniform load 
as calculated from elementary beam theory. Agreement between the 

static and dynamic case was found within 2'jb, which is within the readout 
accuracy of the accelerometers. This agreement indicates that the 

effects of shear deflection and rotary inertia in the dynamic case 

were negligible.
Beams vibrated in a pure first flexural mode at all times during 

tests. This was illustrated by observation of strain gage or 
accelerometer output signals on an oscilloscope, traces at all times 

showed little or no distortion on the signal due to noise or complex 

vibrations, except for the first few cycles after release of the load 
in the natural decay tests. These first few cycles were disregarded 

in data analysis.

No attempt was made to monitor dynamic modulus of elasticity.

O  K "> P
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This would essentially require determination of material hysteresis 
loops. Since energy dissipations are small, this measurement requires 
highly precise equipment. Lazan (14) (15) has suggested that at room 
temperature, the dynamic modulus is essentially the same as the static 

modulus. There is no reason to doubt that this is not the case in 
present work.

Mb differences could he observed in decay curves taken at one 
and four psia, thus it is believed that aerodynamic damping is 

negligible at pressures less than one psia.

Energy dissipation in the strain gage is difficult to estimate. 
Although the gages were placed in high stress areas, they did not 
cover large areas of the beams and their effect is believed to be 

small.

Beams were initially cycled several million cycles to remove 
any virgin material effects. 'This was done in the forced vibration 

apparatus. Beams were run at constant input energy until tip deflection 
was stable.

During a series of decay tests on a given beam, no variation 

in material hysteretic damping constants J and n was noticeable.
Thus it is beleived that no error is introduced by the assumption 

that material hysteretic damping constants remained constant for a 

given beam over the duration of the tests.
The maximum tip deflection of each beam was monitored at all 

times by either an accelerometer or a strain gage. On no occasion 
was the tip deflection allowed to exceed a value which would cause 

the maximum stress in a beam to exceed the cyclic stress sensitivity 
limit. Thus no error was introduced at any time due to stresses
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exceeding the cyclic stress sensitivity limit.

The small amount of energy dissipated in a blade was easily 

dissipated to the surroundings, resulting in no signifigant blade 
temperature rise. Errors in strain gage output due to thermal effects 

are thus judged as negligible.
Transducer and Beadout Errors

Accelerometers, including supplied, cables, are individually 

calibrated by the manufacturer to a suggested accuracy of + 2% with 
flat frequency response within 2% from 2cps to 25 kcs with stability 
better than 2% per year. Miniature accelerometers, as used on test 

specimens weigh 0.07 oz. This represents 6% of the weight of beam 
no.2 but is less than 1.4% in all other cases. Elementary beam 
natural frequency theory suggests that the effective mass of the 
accelerometer is 24% of its true mass. Thus, the error is neglecting 

the effect of accelerometers in both frequency and displacement is 
considered very small.

The digital counter is accurate to + 1 cps in the range used, 
based on an internal calibration test.

For the light beam recorder output, Appendix C figure 30, 

frequency could be determined to + 1 cjo. Frequency response of the 
combined carrier amplifier - recorder system as used is flat within 

3p- from 10 to 400 cps., based on both manufacturer’s specifications 
and actual tests. Strain amplitude could be read to within * 1-̂fjc of 

full scale deflection. At least two tests were run on each natural 
decay tests. Repeatability was within limits of experimental 

accuracy.

Since slopes were required for the separation of material damping 
constants, J and n, larger errors were introduced. To minimize
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probable errors, J and n were calculated for at least ten positions 

along the curve in question and then averaged, but the maximum possible 
error for an individual calculation is - 10.% for n and - 33.4#for J.

The aerodynamic exponent could be determined within - 5‘p.

Maximum strain energy could be determined within - 9-7% Energy 
loss per circle could be determined within - 9»9^ and logarithmic 
decrements, from equation (B), to within - The error involved in 
the assumption that equation (B), developed for a classical viscous 
cuss, is valid for the experimental case is not evaluated.

Using forced vibration tests to determine aerodynamic and 
hysteretic damping log decrements, hence energy loss and ultimately 

material damping constants, introduced unacceptable errors and this 

approach was abandoned.

Forced vibration tests were also found to be unsatisfactory for 
determination of energy dissipation in cantilever beams since attempts 

to measure energy input to the beams, which is equal to energy dissipation? 

proved unsatisfactory due to the extremely small values involved.
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6 RECOMMENDATIONS
6.1 SUGGESTIONS FOR EXPERIMENTAL IMPROVEMENT

The use of a much larger shaker table and the associated larger 
power amplifier with an extremely sensitive and accurate input energy 
monitoring system would allow forced vibration tests to be used to 
determine damping properties. This would also allow steady-state 
forced vibration analysis at high stress levels as ’well as analysis 
of the effect of large numbers of cycles on damping constants.

The use of constant-stress beams would simplify the analysis 
theoretically for the determination of material damping constants.

A non-contacting, full-field method of determining blade 
deflections would allow simple verification of theoretical deflection 
analysis of complex shaped blades. A possible method is that of 
holographic interferometry.

The use of a pressure chamber as well as a vacuum chamber 
would allow derterimination of aerodynamic effects at pressures 
higher than atmospheric.

A displacement transducer which is more sensitive than the 
accelerometers used would allow analysis of off-resonance vibration 
where displacements are much smaller than at resonance.
6.2 SUGGESTIONS FOR FURTHER WORK

The determination of damping constants for other materials of 
the type used in turbine blading in the frequency range of 100 cps 
to approximately 20 kcs. would be valuable. The effects of prestress 
and high damping capacity coatings on blading is also of interest.

An aerodynamic study could determine the relative magnitudes 
of sources of aerodynamic damping.

In. terms of root damping, futher work might include the effects
of sub-platform dampers as well as the use of pin connected roots.
A visco-elastic shear damper may be found which could increase
root damping by several orders of magnitude if the material would
survive in the actual engine environment,

29'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7* CONCLUSIONS

1) Experimentally, values of material hysteretic damping 
constants have been found for the materials tested in the frequency 
ranges used.

2) Material hysteretic damping constants have been shown to he 
a function of frequency in the range tested.

3) Material hysteretic damping for a blade has been shown to be

a function of material, frequency and stress distribution (ie. geometry 
and deflection profile) and to increase exponentially with stress.

4) Natural decay tests conducted in a vacuum chamber and in air 

allow separation of material hysteretic damping from aerodynamic 

damping in still air. For the beams tested, negligible aerodynamic 
damping was found at pressures less than one psia at room temperature,

5) In still air, as found under stall conditions when vibratory 

exciting forces generally are large, aerodynamic damping has been 

shown, to be of the same order of magnitude as material hysteretic 
damping in the first flexural mode.

6) Aerodynamic damping in still air has been shown to be a 
function of blade geometry, vibratory amplitude (or velocity) and 

increases exponentially with blade vibratory amplitude (or velocity) 
at a given frequency.

7) While root damping may be significant at low rotational 

speed, it decreases rapidly as rotational speed increases and may be 

negligible at full operating speed. Root damping will, however, be 

very effective in suppressing vibrations during engine start-up.

30
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APPENDIX A

MATERIAL AND GEOMETRIC PROPERTIES OF THE BEAMS TESTED
BEAM NO. 1 2 3 4 5 6 7 8
MATERIAL 6061-T6

ALUMINUM
6061-T6

ALUMINUM
6061-T6
ALUMINUM

BRASS BRASS 304
SS

304
SS

LOW CARBON 
STEEL

DIMENSIONS
(inches) 6x1 -gxi~ 6xl§x0.1 11x1.88x0.1 6x1x3; 11x1x3; 6xlgx3; llxl5X5 6xlgx£

1st NAT FREQ 
(THEOR) cps. 225 39 26.5 147 43 237 69.1 216
1st NAT FREQ 
(EX'L) cps. 216 88 26.1 127 37.0 202 67.1 202

n* 2.49 2.28 2.15 1.75 2.67 2.36 2.00 2.45
10*JxlO 0.172 1.48 6.60 63.2 0.0406 0.354 5.05 0.0936

AERO.
EXPONENT 2.50 2.00 2.53 3.26 2.40 - 2.60 -

ExlO“6
psi. 10.0 10.0 10.0 14.5 14.5 27.6 27.6 30.0

J/V 0.093 0.093 0.098 0.314 0.314 0.285 0.285 0.285
n oDimensions such that for D=J<r with v in psi., D is in in-lb/in^/cycle.
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APPENDIX B

VIBRATION MONITORING DEVICES USED

Three types of transducers were used to monitor vibrations: 

strain gages, accelerometers and a capacitive pickup.

Strain gages were of the metal foil type. Wherever possible, 
temperature compensated gages were used. Strain gage output was 

amplified in a carrier amplifier and recorded on a light beam recorder. 
(Appendix C)

Bruel and Kjaer piezoelectric accelerometers were used in all 

cases. Type 4333 accelerometers were used on the shaker table (figure 29) 

to monitor motion. Miniature accelerometers (0.07.oz.), type 4336, 
were used on test specimens for monitoring of motion. Accelerometer 

output was monitored on an oscilloscope or a frequency analyser 
(Appendix D).

A Bruel and Kjaer capacitive pickup, type MMOO4, was used, for 
tracing nodal patterns. This transducer measures the capacitance 

change between itself and the specimen as the distance between the 

two varies due to vibration. The capacitive pickup yields only 
qualitative information about displacement.
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Fig. 29. Shaker Table
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APPENDIX C

BLADE EFFECT TEST EQUIPMENT

Strain gages were selected for the natural decay tests since they 
were compatible with the light beam recorder system. This allowed 
recording of the full damped sinusoid motion on a six inch trace width, 
figure 30, with the chart speed ranges up to 2000 mm/sec.

Gages were connected to an SK Laboratories 4300/P Carrier Amplifier 
with a 4000 System Power Supply. Output was recorded on an S. E. Labor

atories Model 2006 U. V. Recorder equipped with silicone-damped galvan
ometers. Frequency response of the entire system is flat within 3% to 

400 cps at full trace width.
Figure 31 shows a block diagram of the test arrangement while 

figure 32 is an overall photograph. A close-up of the natural decay 
test rig is shown in figure 33 while the vacuum chamber is shown in 

figure 34.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

AMPLITUDE (jpeak milli-inches)

100 f\
\

7 5 “
-Decay Envelope

50“

2 5 “

0 H- H '----1- CTCLES4----1-------- f.
10 20 30 40 50 60 70

Fig. 30 Portion of a Topical Decay Curve from 
the Light Beam Recorder

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

60 Cycle AC
Variac Solenoid

Strain
Gage

77777
Light Beam 
Oscillograph

Carrier
Amp.

Fig. 31 Block Diagram of Natural Decay Test Apparatus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test 
Beam



68

Pig. 32. Natural Decajr Test Arrangement
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Pig. 33. Natural Decay Test Rig
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APPENDIX D

FORGED VIBRATION SYSTEM

The forced vibration system was used for initial beam cycling, 
calibration of strain gage outputs (appendix F) and for forced vibra
tion tests on root damping. A block diagram of the system is shown in 
figure 35, with a general view in figure 36. The signal generator 

generates a sinusoidal signal v/hich may vary from 5 cps to 10 kcs. The 
signal is amplified in the power amplifier and sent to the moving coil 
of the electrodynamic shaker. The shaker has a stroke of 1 4 mm and a 
maximum force of approximately eight pounds. An accelerometer on the 

shaker table is used to feed back an acceleration signal from the shaker 
to the signal generator. This signal may be used to control table 
acceleration, displacement or velocity, as desired.

The output acceleration signal is fed to the analyzer whigh serves 
as both an amplifier and a continuous band-pass filter (from 6.3 cps to 

6.3 kcs) to eliminate signal noise. The output signal may then be re
corded on the strip-chart type level recorder. When it is desired to 
sweep a frequency range, the band-pass of the filter and the level re
corder chart drive may be controlled from the signal generator for 

synchronous operation.
The Bruel and Kjaer Type 4336 accelerometers, when coupled to the 

bruel and Kjaer frequency analyzer, Type 5011, have an accuracy of ~2% 
with frequency response flat within 2% from 2 cps to 25 kcs with stability 
better than 2% per year. Nominal accelerometer output is 4 mv/g.

A typical sweep of a resonant frequency as plotted on the level 

recorder is shown in figure 37*
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Fig. 36. General Laboratory Arrangement 
Forced Vibration Tests
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APPENDIX E
ROOT EFFECT TEST EQUIPMENT

The forced vibration system (appendix D) was used for root damping 
tests. The blade in question was hung from the appropriate disk and 

dead loads applied to simulate centrifugal forces. The shaker was 
attached to the blade with a pinned connection. Damping was monitored 
using the resonance bandwidth method. Frequency was measured on the 

digital counter and vibration was monitored by accelerometers on the 
exciter jig.
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APPENDIX F
CALIBRATION OF STRAIN GAGE OUTPUT AGAINST BEAM TIP DEFLECTION

Since strain gages were used in the natural decay tests, it was 

necessary to calibrate the strain output against tip deflection. All 
strain gages were centrally located along the axis of the beam with 

the gage centre line one inch from the beam fixture. Beams were then 
bolted to the shaker table. A miniature accelerometer was fastened 

to the tip of the beam and the accelerometer cable was taped to prevent

stray signals due to cable whip. No stray signals were found in the

accelerometer output due to magnetic fields produced by the shaker

table. When tests were run at high amplitudes, or with heavy beams,
the beams were made symetrical with respect to the shaker centre line, 

as shown in fig. 29, to prevent bending deflections in the shaft of the 
shaker.

The forced vibration system, as shown in figure 35, was then 

used to vibrate the beam in the first flexural frequency. The input 
power level was then varied and the strain gage output on the 

light-beam recorder was compared to the accelerometer output as read 

on the analyze.;'. Calibration was carried out up to the maximum tip 

deflection used in the natural decay tests. A typical calibration curve 

is shown in figure 38. Figure 33 also includes the theoretical strain 
as predicted from the static deflection curve of the beam subjected 
to a uniform load. The curve shows good agreement with this theory.
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APPENDIX g 

EFFECTS OP TAPER OIv HYSTERETIC DAMPING

Due to the complex shape of the turbine blade, it is difficult to 

analyze the effects of all geometric variables simultaneously. Thus, 
an analysis of the effects of linear taper only (figure 39) were 

studied theoretically. An element method was chosen and programmed 

for the IBM 36O/4O computer.
Due to the dependance of hysteretic damping on frequency in the 

higher frequency ranges, only the first flexural frequency was studied, 

and Lord Rayleigh’s energy method (31) was chosen. The beam stiffness 

matrix was determined, neglecting shear deflection and rotary inertia,
The load (due to the beam’s own weight) was applied and nodal deflections 

calculated. Rayleigh's method was then applied to determine the natural 

frequency. The nodal deflections were then non-dimensionalized with 

maximum tip amplitude. This non-dimensional displacement profile is 

shown in figure 40 for depth taper and figure 41 for width taper.
Figure 40 also shows profiles calculated by Carnegie (31) from the 
solution of the Euler-Bernoulli equation for the beam, which he verified 
by exeriment. Agreement between the two methods v/as found within 2f>,.

A comparison of calculated beam natural frequencies as compared with 

those of Carnegie is given below.(based on a nominal beam similar to 

beam no. 4)
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WIDTH TAPER 
A*A0(t+- z/l^ 
I'ldf* z/l J

DEPTH TAPER 
A«A (f> z/l 4 

z/li

Where: A .cross-sectional area
Ao»cross-sectional area at beam base
I.moment of inertia
I0»moment of inertia at beam base
S .taper coefficient "U

Pig. 39. Taper Nomenclature
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DEPTH TAPER 8 0WIDTH TAPER

K
FREQUENCY(cps)

CALCULATED REP.31
+0.50 145 144
0 151 151
-0.25 156 156
-0.50 165 165

K
FREQUENCY(cps)

CALCULATED REP. 32
+1.00 118 120
+0.50 131 133
0 151 151

-0.50 186 185
-1.00 314 -

Excellent agreement is shown between the two methods in both 

frequency and deflection profile. Deflections were then used, in 
conjunction with element stiffness matrices to compute nodal stresses. 

The nodal stresses were then assumed uniform over the elemental and 
hysteretic energy dissipation summed from all elements. Results of 
hysteretic energy dissipation against tip amplitude are plotted in 
figure 42.

Prom figure 42 it may be seen that, for a fixed tip amplitude, 
width taper has little effect on energy dissipation. Depth taper has 

a more signifigant effect, since this affects moment of inertia to 
the third power. Thus,depth taper has a larger effect on stress than 

width taper. It may be seen from the curves that the case of negative 

taper, as is common in turbine blades, of either width or depth 
increases tip deflection required to dissipate a given amount of 

energy. Thus, the greater the negative taper of tne Diaae, xne larger 

the tip amplitude (and maximum stress) under a given excitation 
function. It may be noted that depth or thickness taper is far more 

critical in this respect, yet a blade of constant chord and radially 
outwards decreasing thickness is common.
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appendix: h

AERODYNAMIC ENERGY LOSS IN MOVING AIR

Hanson, Meyer and Manson (22) suggest a correlation exists for 

energy loss in moving air considering both vortex and propulsive losses. 
They found

_ 13.4 v . m ."a - ~R I T T  for 0.1 t-f.<i,o
® R

R Pm (°«229Ao-1.044At)
> a  c2

where § log decrement due to aerodynamic damping^ cl
V mean air velocity relative to blade
fg first natural frequency of blade (cps)

c chord (inches)
|°m material density

air densityr 2
An blade base cross section (in )

QAj. blade tip cross section (in )

Consider a typical case for beam no. 1

Ao=A|= 0.382 in?
c-1.50 in.

f m=l69 lbs./ft.3
f “226 cps.R

Topically in a prototype engine 

V=500 ft./sec.

~\l2.5 ft.3/lb.f
then

R*465
-2£ a.4.25xl0‘
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Consider the approximation of equation ( A )

85

n _  AU
0 2112U

For Z^^*10xl0“3 in.

0=2 E » 3 A  2
q3 pk

=1.45xl0-2 in.-lb.

Then, due to aerodynamic damping in moving air

AU«2U£a
®l*23xl0“^ in.-lb./cycle

In still air at this tip deflection the aerodynamic energy loss
-5per cycle was determined experimentally to be 4.0x10 in.-lb./cycle.

This calculation indicates that aerodynamic damping in moving; 
air may be thirty times the value in still air. Thus it is probable 

that in an engine operating under design conditions, aerodynamic 

damping due to moving air may be far greater than any other form 
of energy dissipation.

However, energy dissipated decreases as frequency increases.

Also, aerodynamic energy dissipation decreases as deflection decreases. 
Thus, at modes higher than the first flexural, the energy dissipation 

to the air will decrease and may become insignificant with respect to 
material hysteretic damping at higher and complex modes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX I
THE COMMERCIAL EQUIPMENT USED
1» Bruel and Kjaer Automatic Vibration Exciter Control Type 1025
2. Philips Excitation Amplifier GM 5535
3. Philips Electrodynamic Vibration Exciter model PR 9270/01

4. Bruel and Kjaer Accelerometer Preamplifier Type 2622
5. Bruel and Kjaer Two Channel Power Supply Type 2803
6. Bruel and Kjaer Frequency Analyzer Type 5011
7. Bruel and Kjaer.Level Recorder Type 2305
8. Monsanto Digital Counter-Timer Model 100A

9. S. E. Laboratories U. V. Recorder 2006
10. S. E. 4000 Amplifier System with Type 4300/P Carrier Amplifiers
11. Bruel and Kjaer Accelerometers Type 4333 and Type 4336
12. Bruel and Kjaer Accelerometer Preamplifier Type 2623
13. Bruel and Kjaer Capacitive Transducer Type MM 004

14. Bruel and Kjaer Cathode Follower Type 2615
15. Hewlett-Packard Oscilloscope Model 175 A with 1750 B Dual Trace 

Vertical Amplifier
16. Tektronix Type 564 Storage Oscilloscope with 3A1 Dual Trace 

Amplifier and 3B3 Time Base
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