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ABSTRACT

An elastic analysis of gridwork in skew bridges by
the method of finite differences has been presented
through this investigation. The analysis is based on
the theory of equivalent orthotropic plate which is
considered to be a substitute of gridwork and slab
system of skew bridges.

By using appropriate boundary conditions finite
difference equations have been derived for different
typical network points covering the entire bridge which
is simply supported on the two opposite sides and free
at the other two. Simple formulae have been presented
for computing bending moments in longitudinal and tran-
sverse girders of the grillage skew bridge. Several
factors such as number of girders and diaphragms, their
spécinv and stiffness ratio, aspect ratio of the bridge
and skew angle have been studied. A study of the in-
fluence of Poisson's ratio on the stress distribution
has also been made.

An experimental study was performed on a model
skew bridge under three different types of loadings.
The results obtained from the tests are found to be in

satisfactory agreement with the theoretical solutions.
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NOMENCLATURE

Bx, By Orthotropic flexural rigidities per unit
width in x and y directions

Bxy, Byx, Orthotropic torsional rigidities per unit

XT, j@ width in x and y directions

bo, 1lo Spacing of longitudinal girders and cress
beams

C Torsiocnal rigidity constant

Cy Shape factor invelved in the torsion
constant of rectangular scction

E Modulus of elasticity

Fr, Fp Torsion constants of planec areas in long-
itudinal and transverse dircctions

G ‘Shear modulus of rigidity

H Apparent torsional-rigidity of the equi-
valent orthotropic plate

Ips Ip Moment of inertia of plane areas with
respect to longitudinal and transverse
directions

Lx, Ly Span length and width of the bridge

Mx, My Bending moments per unit width, acting
on sections, normal to x and y axes,
respectively

Mxy, Myx Twisting moments per unit length acting
on sections normal to x and y axes,
respectively

Po Concentrated load

Pg Uniformly distributed load

q(x,y) Load intensity at point (x,Y)

do Line load per unit length in x direction

do Equivalent combined load acting at node

point
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Qx, Qy Shear force per unit length perpendicular
to x and Yy axes

Vx, Vy Support reactions per unit length on
edges perpendicular to x and y axes

W Displacement component in z direction
w is called 'deflection'

X,Y Horizontal rectangular co-ordinates
u,v Oblique co-ordinate axes as shown 1in
Fig. 5
£ Torsional parameter
Tx, T Distances between node points in x and y
directions
Tu, Tv Distances between node points in u and v
directions
/éx, A& Poisson's ratio associated with x and y
directions
é;, 6} Unit normal stresses in x and y directions
7;y, 7}x Unit shearing stresses on planes perpend-
icular to z axis but parallel to y and X
axes
2 2
v? =2 = Laplace's operator in two variabl
= 552 2 aplace perato n tw ariables
U = V?W
U] Angle of skew
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INTRODUCTION

A grillage or gridwork is a structure composed of
two systems of intersecting flexufal members, the
members in each system being parallel to one another
and continuous through the point of intersections.

In the field of reinforced concrete the study
of gridwork in skew bridges is of considerable in-
terest and practical importance when a highway bridge
is to cross streams, railways or other highways below
at ‘an oblique angle. Because of the present practice
of transporting heavy loads, an accuratc method of
analyzing the behaviour of main girder and cross beam
is essential. Owing to the high degree of statical
indeterminancy, the actual stress distribution imposed
on such a grid system by an external load is a problem
in itself. The number of redundant components 1is gen-
erally considerable which complicates the numerical
calculations so that analytical investigations become
highly involved.

To reduce the size of the problem, Hendry and
Jaeger [l]* assumed that the transverse members of a
skew grid may be replaced by a continuous torsion -
free spread medium of equivalent elastic rigidity.

Further, the whole grid is taken as a simply supported

#  Numbers 1n brackets refer to the number of reference
in the Bibliography of this thesis.
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beam carrying all the applied loads. The solution is
then obtained in the form of first harmonic distribution
coefficients, in terms of two dimensionless paramecters.
The method is restricited to a limited number of long-
itudinal girders and the engineer is to be satisfied
with determining only the approximate critical moments
because the complete solution of even a simple grid in-
cluding the evaluation of all the stress resultants and
deformations at every point of the structure is very
impractical. Furthermore any change in loading data
entail a separate series of calculations.

Langendonck [2] presented a method to analyse
gridworks of skew bridges consisting of only two simply
supported equal longitudinal girders connected by equal
and equidistant transverse cross beams. With the as-
sumption that the loads are applied at the intersections
of the cross beams with the girders it was possible to
yield an exact solution to the problem in terms of tri-
gonometric polynomials, by satisfying conditions of
static equilibrium and geometric compatibility. But
the extension of this method to the case of bridges
with a greater numbér of longitudinal girders involves
cumbersome arithmetical computations.

Recently a remarkable change has taken place in
the manner of the approach applied in structural an-

alysis to the solution of gridwork problem. This is
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the new concept of 'Equilvalent orthotropy' {14, 3, 11,

13]. For the purpose of estimating overall deflections
and stresses, the skew bridee stiffencd with longitud-
inal and cross beams may be conceived to be replaced
by a substitute 'Equivalent orthotropic plate' of a
uniform sprcad longitudinal stiffness and a uniform
spread transverse stiffness.

R. Bares and C. Massonet[S}have prescnted tables
and diagrams for the distribution coefficients based
on the theory of 'equivalent orthotropic plates' which
are very effective in the analysis and design calculat-
ions of right girder bridges. Extending the theory of
equivalent orthotropic plate to the analysis of skew
grillage, Naruoka and Ohmura [4] derived skew network
finite difference equations using Marcus' finite diff-
erence approach to calculate the influence cocfficients
for deflections and bending momen£5'for sinply supported
orthotropic paréllelogrammic plate. ‘hey employed a
network proposed by Favre, dividing the plate into a
6x6 skew mesh.

Based on this analysis, Fujio, Ohmurd and Naruoka [5]
proposed formulae to calculate the longitudinal bending
moment at mid,span of interior girder in grillage skew
girder bridges. In formulating the finite difference
equations they neglected the Poisson's ratio effect on

deflections and moments of the equivalent orthotropic

skew slab. But Kennedy and Tamberg [6]in their broad
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and critical discussicns againét the background of
available analytical and experimental method of solution
of skew bridges have given special considerations on

the influence of Poisson's ratio on the stress distribut-
ion of a skew slab.

Based on the same network as suggested by Favre,
Basar and Yuksul [7] have also developed the finite
difference equations for an orthotropic skew slab. No
numerical results were given. But some difficulty was
experienced by Basar and Yuksul (and presumably Naruoka
and Ohmura) in satisfying the condition U=0 (Eq. 4.2)
along the simply supported boundary of the orthotropic

plates and a constraint is imposed near these edges,

~ knowns.

A similar probleﬁ occurs if Jensen's [1{1 network
is used.

Fawcett [8} has suggested that the external points
to the simply supported edges be left initially in the
finite difference equations to be eliminated later on
when the final set of simultaneous equations is being
formed. Situations arising from the suggestions of
Fawcett have been examined in this investigation.

Coull {}g] has published an approximate method
for the analysis of simply supported uniformly loaded

orthotropic skew bridge slabs with two opposite edges
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free. e used the principle of least work in conjunct-
ion with the assumption that the load and stress com-
ponents may be represented by a power series in the
chordwise co-ordinates, the coefficients of this series
being functions of spanwise position only. He found,
on comparison with model tests on isotropic slabs, that
agreement between theoretical and experimental results
deteriorated with increasing skew.

Cheung, King and Zienkiewicz [19] applied the
finite element method for the solution of isotropic
skew plate problems. Recently Powell and Ogden [2@
have published a paper on finite element method of
analysis of orthotropic steel plate bridge decks in
orthogonal configuration. This work can be extended
to include the effects of skew for the analysis of
gridwork in skew bridges. But the choice of a proper
displacement function, satisfying not only the cur-
vature criterion along the interface of the elements
but also slope compatibility, appears to be a problem
for an idealized orthotropic equivalent skew slab [lé] .

When the two systems of intersecting beams forming
the gridwork of a skew bridge are not orthogonal, skew
anisotropic plate theory as proposed by Lie [?4} can be
applied to the solution of gridwork in skew bridges. Since
the governing differential equation of an anisotropic plate

in skew configuration is very involved, a transformation of
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the flexural and torsional rigidities from a skew aniso-
tropic plate to an equivalent orthotropic parallelogrammic
plate may be made and the analysis of grillage skew bridge
can be based on the theory of equivalent orthotropic skew
plate. However, the additional work taking the anisotropic
form of the system into account as well as an experimental
test on a plate with orthogonal beams will be carried out
in near future and will be reported in the literature.

The present investigation stems from the need to study
by means of an elastic theory several factors that enter
into the analysis and design of gridwork in skew bridges.
Such factors include number of girders and diaphragms, their
.spacing and stiffness ratio.. in flexure and torsion, aspect
ratio:. of the bridge and skew angle.

Based on the theory of equivalent orthotropic parallel-
ogrammic plate which is assumed to be a substitute of grid-
work and slab system of a skew bridge, finite difference
equations have been developed and compared with those of
available solutions [4,7] . A comparison of present analysis
with a numerical solution of a skew grillage based on the
theory of anisotropic plate [24,25] has also been made.
Favre's skew network has beeﬁ used for deriving the finite
difference equations for deflections, bending and twisting
moments.

Theoretical solutions have also been verified with

experimental results.
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THE THEORY OF ORTHOTROPIC PLATE AS APPLIED
TO THE ANALYSIS OF A GRIDWORK AND SLAB

SYSTEM IN ORTHOGONAL CONFIGURATION.

The study of the composite action of grid and
sléb system may be arranged to form a sequence of
structural forms, the sequence beginning with an ideal
orthotropic plate, a simple gridwork and ultimately
ending with a slab and grid pattefn.

1.1 Orthotropic plate

The analytical approach to the problem of an
ideal orthotropic plate, which is composed of materials
exhibiting elastic symmetry with respect to three
mutually perpendicular planes (i.e. materials which are
orthogonally anisotropic), is based on the classical
Poisson-Kirchoff's simplifying assumptions [3] relating
to the form of the material of the plate and to the
state of strains induced by external loading. These
are the same usual assumptions as used in the small
deflection theory of isotropic plate.

The differential equation giving the relationship
between the deflection and the loading of an ideal
orthotropic plate, often referred to as Huber's eq-

uation [1@] 1s

4 4 4
Bx, 2% H 9w 1By 2w o (=, ) (1.1)
" oxA4 +2 A+ oy® N 7
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where w is the deflection of the middle surfacc of the
plate at any point (x,y) and q(x,y) is the loading
intensity.

The rigidities are defined as:

) 3

E)( l"i B E)’ H
X, = e Y, = m——_
: 12 Cl-/&h{/‘y) 7 : 2 (l-"{(x &r)

OH = 2 @+ Bxy,)
2
- Gh
—2[9—,5— +/{"X BY!J
BX)’( = /Lx B)/l = /{‘y 5;(l
Vs ahie

> (1.2)

Following Huber we define the shear modulus as:

E where Ex = Ey = E (1.3)
2 (14 VA iy )

G=

1.2 Simple Gridwork

Mathematical similarity which exists between the
behaviour of plates and grillage seems to have been
realised first by Timoshenko [14] . This basic concept
has been used by Guyon and Massonet [3] who used Huber's
solution of orthotropic plates and applied it to the
analysis of right girder grillage.

Fig. 1 shows a systeﬁ consisting of n simply
supported longitudinal beams of span Lx running in the
x-direction and m cross beams of length Ly running in

. . L,
the y-direction and free at the ends y =% g

For the purpose of analysis,the concept of 'Equi-
valent orthotropic plate' as a substitute of original
gridwork is utilized where the elastic stiffness in

both flexure and torsion of discrcte beams are assumed
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to be continuously distributed to have a uniform spread
longitudinal and transverse stiffness. The system 1is
now submitted to a virtual deformation defined by the
elastic surface w = w(Xx,y) which vields the governing
cquation for the equivalent substitute of a simple
gridwork in the form:

By 2% 4 oH PAY 4 Byt O o g (x,7)

x4 ox* 9y? %
where Bx’= BT By - Be r(1.4)
bo ? Lo

2H'= 1+ ﬂ"

. £L '/’: E_P,
11' - bO 9 P LO J

Br = ExIy and Bp= Ey-lp are the flexural rigidities

of the longitudinal and cross beams, respectively.

j6

nd

nd Cp are the torsional

[§
n
O
t-h
-

3
»

™
~1

&)
. s

Q

»

»
a2

itudinal and cross beams, respectively.

1.3 Slab with grillage in two mutually perpendicular

direction.
he slab stiffened by longitudinal and cross beams
may also be replaced by an 'Equivalent orthotropic

plate' provided the ratio of gridwork spacing to slab

o bo

boundary dimensions are small enough ( L 2T
¥

<< 1) to
ensure approximate homogeneity of stiffness [11]. The
elastic parameters relating to the substitute system

are assumed to be continuously distributed in the two

mutually perpendicular directions.
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10

The theory of the 'Equivalent orthotropic plate'
presupposes that both the longitudinal and transverse
beams of a composite system are symmctrically placed
with respect to the middle surface of the equivalent
slab so that the true system possesses a horizontal
plane of symmetry. But in a bridge deck éystem, both
longitudinal and transverse bcams arc placed asymmetric-
ally with respect to the slab portion of the cross
section. An eighth order partial differential equation
[3} is obtained as a more rigorous solution based on
the consideration of displacement components u, v, and
w in all the three x, y and z directions. Bares [3]
has shown, from the analysis of the three dimensional
problem mentioned, the important fact that fhe shear
distribution is considerably dependent on support
conditién and loading intensity)

For the plane stress analysis, in order to minimise
the érror due to eccentric position of the beams with
respect to the middle surface of the plate and hence-
the problems entailed with the torsional rigidity have
been investigated by many authors [3, 11, 13, 23].A
Huber's fourth order differential equation for the eq-
uivalent orthotropic plate which must satisfy both
equation (1.1) governing the problem of orthotropic
slab, and equation (1.4) corresponding to the problem
of simple grid of beams was finally obtained in the

form:
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4 aqw a4w
Bx 2;; +2H <55 + By e g (x,¥) (1.5)
3 S
_ Ex.h Ex.lsx Ex.Z'h
where Bx = 00—y T Tbe 1~ Mty (a) ]
3 2
Ey. K Ey.lsy Ey. % h
- —+ +
B)’ 12 (l-/L(x/wly) lo l—/(/lx/(h’ (b) &(1.6)
2H = By ly + By A +4C " (c)
and h = thickness of the slab
bo = spacing of the main girder
lo = spacing of the cross beam

Z1 and Zp are the distances of the neutral surface
of the repeating section from the middle
plane of the slab in longitudinal and

transverse directions, respectively.

Isx = Moment of inertia of the longitudinal beam
about the neutral surface i.e. Zj below
the middle plane of the slab.

Isy = Moment of inertia of the cross beam about

the neutral surface i.e. Z, below the
middle plane of the slab.
Isx and Isy are calculated for the becam-sections
without regard to the slab.
4C = T+ %
The values of j@ and 7} are the torsional rigidities
determined by means of torsion constants Fr and Fp

of the sectional areas corresponding to the different
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elements constituting a section.
In case of an open slab and beam section (T-beam)
as in Fig. 2, the torsion constant of the entire re-

peating cross-sectional area is given by the formula [3]

. £ bo
Fr = —‘gbolf\BC, + B Ch-h) G Cg, é(h,-"D) ? : 1 (1.7)
FP = —5[0 ha C‘ + b?—7> (hg—h> Cl ; tgi?hg‘h)) J

where the first term of the right hand side refer to
the slab portion and the second term to the beam
portion of the section. The value of the factor (g
depends on the shape (side ratio) and is called the
shape factor involved in the torsion constant of a
rectangular section.

The value of Cq 1is givén in the following table.

% 1 1.5 | 1.75 2 2.5 3 4 6 8 o

C1/0.141}0.196/0.21410.229{0.249/0.263/0.281/0.299|0.307]0.333

Now Equation (1.6C) of the apparent torsional rigidity
of the equivalent system:
211 =By Ay + By iy + 4cC is defined such that
(1.8)
- v V., = F L Gy F
4C = % +% = Gx & + G £
'Gx and Gy are the shear modulus in x and y direction,

respectively and are defined as:

Ey

Gx =
: 2 (Vi )

Ex
=X and Gy =
ol /iy ) e 7Y
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The stress couples, shear resultants and the vertical

reactions are expressed as:

a?'w AW ]
Mx = ‘Bx("-a;g"i‘/(‘Y 557 (2)
My = -By < a‘” + Aix 2 v )
1 - <‘>W
Mxy =-2¢ 55y - (1.9)
x  =Bx a3‘w @m, +2<> o (@)
Qr =-By a“’ ——<B>’/Cfx +2C angy (e)

.= E)W c
v =-Bx] )aw] (£)
. .

o w

Vy ="By[ W 4 +/f‘) axzay] (2) )

Positive directions of stresses, stress couples and
the shear resultants of an orthotropic plate elements

are shown in Fig. 3 and Fig. 4, respectively.

1.4 Dimensionless parameter:

A dimensionless parameter 52 is introduced which is
characteristic for the resistance in torsion of the
structural pattern and limited by the values 0 and 1.
This interval covers all the structural systems. For
the simple grid of beams of weak torsional resistance
2= 0, while {2 = 1 relates to the true slab.

2 is expressed in the form:

/4’5x +/&xgy-+?}+3%

2/ Bx By

and is evaluated by employing the theorem of Betti

2 = (1.10)
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which proves that:

BX /{l)/ = 8)/ /{Jx
or .Ay = %i'&x (1.11)

1.5 Orthotropy of form:

In the analysis of gridwork, it is recognised at
this state that the factors /&xand 4@ although represent
the relationship between the stress 4 and the transverse
strain €, are not material constants as 'Poisson's ratio'
proper but are elastic constants corresponding to the
form of the systenm. Hence the name '‘orthotropy of form'
as distinct from the 'orthoetropy of material.'

The value of 1@ may be evaluated from the relations
of Fq. (1.6) and (1.11). Tn the present analysis of
gridwork in skew bridge the influence of Poisson's ratio
on the stress distribution will be Studied for different
values of «%<and its relative importance will be discussed

in details.

For the case where Ex = Ey = E and
E
6x = ——+—=, =G
2(l+ ’hx/.ly) y
Eq. (1.10) reduces to:
: E Fr Fe
/{fx By + & {—— + ’—}
bo L
Q - B‘“"‘”’**y ) ° (1.12)
y | A
Ay

Ref. [3] has given several values of AL corresponding

to the different types of gridwork with regard to the
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different material of construction. For simple beam
grids without slab the value of b = 0 is acceptable.
For reinforced and prestressed concrete box scction
Ax= 0.10 and for open section comprising a single
slab (e.g. T-beam section) 4£x= 0.15 are sufficiently
accurate. In casec of orthotrépic steel deck bridges
the value of ‘4(may be taken as 0.3.

The flexural and torsional rigidities as defined
in Eq. (1.6) for orthogonal equivalent gridwork will
be assumed to be valid for an equivalent orthotropic
skew plate. The differential equation governing the
problem of the equivalent orthotropic skew plate which
is a substitute of grillage in skew bridges will be

derived in the next chapter.
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FIG.3 POSITIVE DIRECTIONS OF STRESSES

FIG.4 ORTHOTROPIC PLATE ELEMET SHOWING
POSITIVE DIRECTIONS OF STRESS
COUPLES AND SHEAR RESULTANTS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

11

APPLICATION OF ORTHOTROPIC PLATE THEOCRY

IN THE ANALYSIS OF GRIDWORK IN SKEW BRIDGES

Theoretical Background:

The plane stress solution obtained for orthogonal
grid systems by orthotropic plate theory proved to be
well in accordance with numerous experimental data and
comparative analytical investigations gave further
justification to this new method of solution.

Naruka and Ohmura [4]wcrc the first to assume that
the theory of orthotropic parallelogrammic plates will
be effective to the same degrce in the analysis of skew
girder bridges as the orthotropic rectangular plate in
the analysis of right girder bridges. Applying this
basic concept the governing differential equation (1.5)
of equivalent orthotropic plate may be transformed to
skew co-ordinates parallel to the edges (u, v) for a
skew gridwork system as follows:

If (x, y) are the recfangular co-ordinates of a
point (Fig. 5) in the middle surface of the plate,
with (u, v) the corresponding oblique co-ordinates

and § the skew.angle

Q- y then
----- a &y U= Xtytang
(2.1)
Q i : vV = Y Sec P
: —X U
- u
Fig. 5§
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Differentiating Eq. (2.1) with respect to x and y

one obtains:

ou _y , = =+tan¢

Bx (2.2)
v ov

°Y - =~ =5

5, =© .3, ec @

Since w is a function of both u and v

.a.ﬁ’-: QLV abl + aan = &-2—“-/

3X ou  ox Bv ox e

Sw _ Bw du L dw .av

S = Be oy T r(2.3)

- ow. ow . s¢
T du tand + Av C¢ )

After successive partial differentiation of Eq. (2.3)

the following relations are obtained:

a’).w _ a’Zw . -~
BT (a)
32w w oy 95 Sw 5 &
Iy - 9 an + dudv €c (b) r(2'4)
2 2 . '
) dw 4 A2 Sw 5
2 = Shtadd pr gy tand SR (g
+ a;\”/"z sec? P’ -~
Dw - abw .
x>~ ou? (a)
3 3
a:g= = bfa iiﬁ_-Sec¢ (b)
Ax*Iy u >(2.5)
Ow = ?_’E: n% ¢ +2 {and; Sec @ ()
Axdy: ou®
¥ aa:(va > 5662 qb
>
%"% = tan5¢ +3 3“’ {arﬁ-qb 52695 (d)
3w 2 e sec 34 J
+2 Qu dv* {an¢5€c i +9V"‘
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A

ow E)qw
e 554 (a) 20
S e ran?d 42 3 tond secd
;2T Toud Sudov
(b)
. W secd
aurov’ L (2.6)
ohw - Qi— nid + 4 a4 S tan®d secd
dy4 oud
+ 621":’ +qnzqﬁ 52(2(}5 (c)
Jurdv? '
1
4 3 oW 56(‘i
a2l gangsedd 4 N, secly |
4 4 q
. , v 2w 2w o 'w .
Putting the values of 354 pzﬂzéw_)'g;? into
Equation (1.5), one obtains the fourth order partial
differential equation of the equivalent orthotropic
skew plate which is a substitute of gridwork in skew
bridge in the following form:
't g, +oH +an?d +By tanie)
aui v
» A oqy tan ¢ secd +4By tan® e secd)
du’dv
o 2 onsec?d + 6By taniP Sec? )
durav?
+ dq: (4 By tan ¢ 5ec®P) + =7 W (By 5eciP) = ¢ (xy) (2.7)
Qudy
The stress couples, shear resultants and vertical reactions
of Eq. (1.9) may be expressed in skew co-ordinates as:
4 % a% a%
¢ P b DWs 2G4 g O
My =——8y[ 3;;’,1 tan*¢ + 2 % av-!’an(ﬁ S5ecd + ovi € P4 Mx Yo (b)
2.8)
o 9w 1 [
< = =/C 0 — Sec
Mxy 2 [ - , fand + 35y ¢_ (c)
3
Qx =—5xaw *(804y+25>[:¥- mﬁ¢‘*2%£%Jﬁ”¢5“¢
(d)

+ @?V_V_ et ¢]
duav?
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Qy = —By[ o fon>® +3 aw +an ¢5e(¢-f3a“ tand sec?d  (e)
2u3 ou* Du dv?
+-§§ 5e<5¢}——(Bvﬁx+?<)é£&-+on¢ + Q&L. Sec¢>
ov?® ’ au® Surov
3 ) >
= - Qw_ 4c OW tan2d 423V tanpsecd
Vx = Bx[ ENE +(6)< -l‘/&Y)JL Sy T ¢ + Semor
(£)
3
ow Sect P
du av*?
_ aW > a 2 s 2 a”w 2
Vy = —-By[ +om4> +53:C)+an ¢ @C(fS -+ 55, +qnqb5€cq$
2 > C &W aW s¢ec¢ } (g) B
+awﬁe<<}5+(4y+%){ +an¢+_aTaV ¢

Recently Patterson and Cusens LZ;] have presented
a solution of orthotropic skew plate under uniform load.
The solution is an extension of an early work by Kennedy
and Huggins [22] who developed a method using a éingle
infinite series representation of the deflection of an
isotropic plate with edge stiffening beam. Resulits for
the case of a slab simply supported on the two opposite
sides and free at the other two were found unreliable
due to the use of Kirchoff's two boundary equations in-
stead of three. Moreover the method presented by Patterson
and Cusen [21] does not consider the application of the
concentrated loadings on the skew orthotropic slab.

Because of the complicated boundary conditions, an
exact solution of the fourth order differential equation
governing the behaviour of simply supported orthotropic
skew slab with two opposite edges free has so far proved
impossible. Since in a bridge structure a loaded vehicle

would act more as a point load distributed only over a
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small portion of the deck slab, finite difference method
seems to be the best analytical method [8] available in
dealing with such point loads. In the present invest-
igation, the same approach which Basar and Yuksul [7]
have utilized in their formulation of finite difference
equations for a simply supported orthotropic skew slab
has been followéd in a somewhat different manner that
leads to a fairly simple solution incorporating all the
essential parameters of a gridwork in skew bridge which
is simply supported on the two opposite edges and free

at the other two.
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THE METHOD AND SOLUTION

Duc to rapid development of the computing machines
and the good convergence properties of the method of
finite differcnce which rcplaces functions and their
derivatives by algebraic expressions involving only the
values of the functions at a finite number of points
in or near the region or interval of interest, the
complicated boundary value problems involved in this
present investigation will be solved by this mecthod.
Replacement of functions reduces the problem to a set
of simultaneous algebraic cquations.

The method permits the immediate writing of the

force-displacement reclations in the form [15, 16]

-4 Cen

where {q} is a column of static loads acting at a
predetermined set of points (called node points of a
certain network)and {w} is the column corresponding

to vertical displacements. [A] is the conventional
stiffness matrix obtained by a few algebrai; operations.

The method of central finite differences will be

applied in the solution of the problem.

3.1 Computation of Lquivalent Plate Moments:

Solution of Eq. (3.1) yields numerical values of
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deflections at the nodal points of the equivalent plate.
By substitution of these values in appropriate moment
equations (Eq. 2.8), numerical values of moments are
found. Combining the sets of influence coefficients
for Mx, My and Mxy, influence coefficients for the
equivalent principal mements with their directions at
all the network points may be computed according to the
equations below:

Memax = Mx; My + /@%—ﬁyj" + Myxy?

min

8= o HNE

(3.2)

3.2 Computation of Beam Moments:

The moments acting on the equivalent orthotropic
plate may now be integrated over the whole flange
width of the beam to compute the bending moments which
are of greatest importance for design purposes. For
example, the momcnt in longitudinal beam B in Fig. 6A
in x-direction is given by:

15 bo _
Mew= / Mxdy (3.5)

Similarly moment in transverse beam C in the
" y-direction is given by: .

1'5lo
M= | ol (3.6a)

05l

If the cross beams are in a direction at an angle §
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with the y-axis, the bending and twisting moment of the
transverse beam in the oblique direction v, for example

at point A, in Fig. 6A are given by [}@

Mv

1t

MxISin2<}5 + My Cos?P ~2Mxy' 5in ¢ cos (3.6Db)

(MXQJ4¢)5&7¢(bs¢uFMxy’(5wF¢-<b§¢) (3.6¢)

1}

Mvn

where Mx', My' and MMxy' are the integrated moments over
the spacing of the gridwork at the section under consid-
erations.

Equation (3.6b) and (3.6c) can be derived from the

equilibrium of an element of the plate as shown in Fig. 6.

\de ~ " dx |
f | |
J . , "
’///////¢6=90-¢ J\Myxdx
n A \
A - ( M/de
q :
Mxy dx d
tan 6 Mx dx My 3%9
+an€ e
C
MVH

Fig. 6. Moments acting on different planes

The integration of the equivalent plate moment for the

beam may be carried out by Simpson's Rule [9]. Thus
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for a mesh size of n division, the integral of a function
f©) may be evaluated by:

Yo "
of f(y) dy = _)’é,n_)/ [1{:()’0) +4F(>’1) +EFCY2)+~--~-4F(,—,_;)
A'R%g] (3.7)

where (%b-yo) represents the spacing of the gridwork in
either x or y direction and {0w) ,fny, Foey .... etc.,
cérresponds to the magnitude of functions of moments
within the region ¥, and Yo . If the spacing of the
‘longitudinal and cross beam is small and coincides with
the mesh point layout, cquivalent plate moment can be
considered to be the average value within the flange-

width of the gridwork.

3.3 Limitation and Accuracy of the Methoed of Finite Differences

The approximations by the finite difference method
can be limited to a minor interference which breaks the
deflection curve at discrete points and join them in
straight lines. Hence the finite differcnce equations re-
presenting the original differential equations are valid
as long as the finite number of points which have been
reduced ffom an infinite number of points on the deflection
surface and arranged'to form a certain network are close
énough for straight line approximations. ' Of course finite
difference equations do not exactly represent the original
governing equations and hence it is not an exact mathemat-
ical method. However, when properly applied, using finite

number of network points it is a sufficiently accurate
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tool for analysis of complicated structural systems.

3.4 Selection of iMesh Sizes:

In the present investigations since seven number

. of longitudinal and cross beams at different spacings
have been provided for the model skew bridge, numerical
solutions were obtained by dividing the equivalent bridge
system into 6x6 skew panels so that nodal points of skew
meshes coincided with the point of intersections of grid-
wqu in both longitudinal and transverse directions to
facilitate direct comparison between experimeﬁtal and
theoretical results at these points. However, the effect
of different network spacings on the accuracy of the
results has been examined by dividing the plate into 4x4,
6x6 and 8x8 meshes which resulted into 8, 18 and 32
simultaneous equations, respectively. It was observed
that finer mesh sizes produced about 3% and 6% more
accurate deflection and girder moment Mx, respectively,
at the point of maximum stress intensity than the coarser
mesh size. This is expected because of the inherent
limitations of finite difference approximations.

Though the number of simultaneous equations increases
considerably with the choice of finer mesh sizes, it does
not impose a problem to the solution of the structural
system when an electronic computer can be conveniently

used for this purpose.
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v
OQUTLINE OF THE METHOD OF FINITE DIFFERENCES

AS APPLIED TO THE SOLUTION OF SKEW GRIDWORK

4.1 General Approach

Adopting Marcus' method, the fourth order differ-
ential equations of equivalent orthotropic plate can
be split up into two equations of second order as given

in reference [7] in the following form:

T
BX———-+2H—E—2—5—§ + By 84VJ %(zy)
= (2, + 24 <B>< By 2% )
ox2 ayz) oY L (4.1)
+ (2H-Bx-By) YZ( £33
- -~ 7 - \2 '31:..\
= 24 o
- (2o 2r) (kP emE)
3 O
+@H—&w5ﬂ—72(-723 j
T
Writi ow - .
riting By axz‘+ By =5 U (4.2)
5, ' Fw .
R .5
and 2H -Bx-By =D
Eq. (4.1) reduces to
2 2 2
2] 3V X =
L+ Z8402% -% (4-42)
Su . 3u Y
and St + 5y +D Syl % (4.4b)

Eq. (4.4a) can now be easily put into finite differcnce
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form using Favres' skew network for the gridwork in
skew bridges.
Naruoka and Ohmura split up the fourth order

differential equation in the form:

2

ow al !
== e e =
ov? %2

azu +m a?-U - %

S =

oy? Ox2 By

é;b4+i/BxBY_H2]
= J i/ 2

n = "B‘y[H"l Bx By ~H ]

which are further abbreviations for the complicated

where m

terms that occur in the derivations of the equations.
Since the approach followed by Basar and Yuksul

is relatively simple compared to that of Naruoka and

Ohmura, derivation of finite differende‘equations in

the present investigatién is primarily based on Ref. [7}.

The final expressions of the equations derived here,
have been compared with those of Naruoka and Ohmura [4]‘
which appear to agree whenlﬁx and,&y in the preéent sol-
ution are put equal to zero. Comparison of the present
solution with those of Basar and Yuksul [7] revealed
minor discrepancies between the two solutions which
may be attributed to the arithmetical computations
for (1) interior point near the acute corner, (2) in-
terior point necar the obtuse corner, (3) general edge

point and edge points near the acute and obtuse corners,

respectively.
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A comparison of the present solution by equivalent ortho-
tropic plate theory for gridwork in skew bridges with the sol-
ution based on the theory of skew anisotropic slab formulated
bv Lie [24] and used by Naruoka [25] for analysis of grillage
by Lie [24] and used by Naruoka |25
skew briage system revealea very close agreement between the
two solutions near the central portion. But a discrepency in
the value of deflection and moment at the free edge was ob-
served which may be attributed to the unsatisfied boundary
conditions as discussed in Section (b) of Chapter VIII of
this thesis. |

The simply supported edge boundary conditions and the
boundary conditions of the free edge have been discussed
and mathematically formulated when deriving the finite
difference equations at different typical network points.
Since six equations are to be used to eliminate five un-
knowns at the bridge boundaries, a constraint(wq+mmtewb=o>
Eq. (5.4e § 5.4f) is imposed near the simple support. How-
ever, it is felt reasonable to assume that this constraint
imposed near the simply Qupported edges is valid, since the
deflections at these points of questions are sufficiently
small so that the value of (v@-%WqLZMb) tends to zero in the
limit. The suggestion by Faucett [8] of leaving the external
poihts to be eliminated later when final set of equations is
being formed, has been examined. Since it does not solve the
boundary value problem, the external points for the typical
network points near the boundary have been cxpressed in terms

of deflections of internal points while formulating the

finite difference operators.
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4.2 Finite Difference Approximations:

The deformation of the equivalent skew slab defined
by the elastic surface w=w (x,y) is also a function of
w =wu,Vv).

Recalling the finite difference approximations for
the partial derivatives at a point (z,y ) or (u,v )
ranging over the domain of definition of the function,
derivatives can be approximated in terms of deflections

of nodal points of Favre's skew network as follows:

(auz z (W',’QW" +W‘> |
2

TN S
%) e (- )

~

Eq. (2.4) can now be written in finite difference approx-

imations as:
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2
") ! ,
a\v >_ .77\_;‘2 (V\/l _2“\{0 +V\/!>

ox? o—
2
= _8_2 (W,’_g\.‘\/o ‘f‘\/\/[) (4.68-)
Dy
‘here = 2y and Tx = P
wh X S X

2 ¢
(aﬁw> = tan’e {%‘z (w,’-zwo+w')} +27:(—7T (wig - wiz +wiptwip' ) fantp 5¢C$
7

: ’71\‘;2 (wo'-2wo +w2) Sec? P
but Py = 7y secd and putting /5 = tan @

one can write

2
awx:

EY: [/52 (Wi'+wi) — (24 ?/52) Wo + /‘; (- wip +Wig +Wighwiz')

A
7’y2
+ W2’+w2] (4.6b)

Hence 2 n :
dw , Owl= L 2 12 Ve ~ 2824 2:0% w
oxz ay?j(, ?yQ[(’e *P ) (e} = (2420 ?

T (wiz +wie +wig =Wz’ )+ W't WZ]

i

.7;:.2[ oC (w,’+w,> — (2+20cL ) Wo
14
+ /_2’2__ (—W,’2+W,'z +W|'2'—'—W|2/)+W24“§](4 . 6C)

pox?

where ol

2 2
= o ow
Uo BX ( a;VZ o + B)’ ( ayz o}

i

2| (Bx 74 By F) (wiawi) — (2Bx X"+ 2By +2(37 By ) e

+ BBy (-wiz +wiz +wia -wiz') +8y (W2'+W2)]

| ’ /
—7‘\‘)'2[A (v +W:> — (2A +2By) Wo

+@2-By (- Wiz +Wi2 +Wis - wig’ ) + By (wQche)} (4.7)
where A = Bx 2™+ Byp?
Following equations (4.6b) and (4.6c) the governing
equation of the equivalent orthotropic skew plate

Eq. (4.4a) for general interior point (Point 0) can
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be written as:

VV W =

1%? [°< (Ux’+ W) -(2+2C) Uo +/g (—U.’2+u,g+u,'2'_u,2'>

+ U+ u2] + %2[/32 (X4 x0) -(2+2/31) Xo
HE Gxip 4 Xz + X2 Xig')
T X'+ Xg] = ?—o (4.8)

where, from Equation (4.7) and (4.3) it follows:

Uy

Ui

c
i

2

Uiy =

U;Q'

U»'
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= L.
ry2

-LQ[A (wa'+wo) - (2A 4 2By) wy
7y
+ P%Y (_ V\/3/2 _+W2+ W3’21_W2/ )+By (W'lz ’+ Wf’?)] (4 . 9 a)
L [A (V\/3+Wo) —(2A+2By)wW,
7y?
HPEY (o +waz 0t vy ) +By (wies wiz) } (4.9b)
L [A (W3’2 + W2> —(?A 4'2BY>\’V1'2
%
+/3-%>' (-w3Yy +wag, +wWa'-wo) 4By (w't WM)] (4.9¢)
[A (wp +W32) ~ (2A+2By) Wi2
—{-/3 By (—W4 +wWzg +Wo ~wW3z) +By (W, +W[4> ] (4 .9d)
2
5 [A (waa’ +wp')y ~ (2A +2By) Wiz’
%
+ F%y (-W3' +wo A W34~ wa') +By <Wll+wl/49] (4.9¢e)
!
L?yz[A (w2’+W32’) ~(2a+2 BY) Wi2
+/3_82_y (-wo + Wz +wqt wagq’) + By'(w‘4’+w,) ] (4.910)
.;\;Z[A (wip” Awig') — (RA+2By) wo’

+/3.%z W W g )+ By (Wa'swo) ] (4.9¢g)
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U2 = ;}‘LYZ[A (\«/.’2+W|27~(?/¥+25y)wz

+/5§éz’ (-wlzq.;.WM +wir-wy) + By (wo+W4)] (4.9h)

2 2 1
and K= (g__;’z o oE —7%2 (wWyi-2wi+ Wo) (a)
X, = %;2 (wo ~2w) +ws3) (b)
X, = %2 (wi-2wo +wi) (c)
X = %:2 (wa =2 wifp +W7) (d)
Xp = 2;_; (wp - 2 Wip +W32) (e) $(4.10)
Xig= XL (wip! -2 wig!Heeg') (£)
Xp' = %’1 (wa'-2wig! + W32") (g)
X' = a;:y (Wi’ - 2 +wig!) (h)
Xp = ;—; (wip- 2wy +wiz) i)

These finite difference approximations which have
been used successfully in complicated boundary value
pfoblems can be utilized to formulate differcnce
operators to be applied to different types of skew
girder bridges, e.g. single span simply supported
bridge, continuous bridge over severallspans etc., by
incorporating suitable boundary conditions. In what
follows, the solution for a simply supported bridge
grillage, pertaining to this investigation, will be

obtained in terms of finite differencc equations.
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v

DERIVATIONS OF FINITE DIFFERENCE CEQUATIONS

In this Chapter finite difference equations for a
simply supported skew grillage bridge with two opposite-
edges free at y=1 % will be derived. To cover the
entire equivalent plate it 1is necessary to formulate
difference equations for nine typical network points.
These are:1) General Interior Point, 2) Interior Point
near the left simple support, 3) Interior Point near
the right simple support, 4) Interior Point near the
edge girder, 5) Interior Point near the acute corner,

6) Interior Point near the obtuse corner, 7) General

edge Point, 8) Edge Point near the acute corner, 9)

Edge Point near the obtuse corner, respectively.

5.1 General Interior Point:

Putting the values of U and X in terms of dis-
placements from Eq. (4.7), (4.9) and (4.10) into
equation (4.8) one can deduce the governing equation

for general interior point as:
VYW= [DCA (Wa'+2wo +W3) ~oC (2A+ 2 By) (i)

+ 0(}/3%’ (-Wa% +W3as! twap -W32') +oCBy (W2 +wWhi2 '*‘ngg'—foQ)
—(2+2x){A(wu+wJ ~(2A428By) Wo +P'%’GW@+WQ+W@ZNQQ

+ By (walawe) |
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+ /% { A (-ws2 twse + w2 —wae') — (2A +2By ) (-Wi'z Wiz +vv,'2/_w.21)
+ 'B%—)' (4o -2ws —2wz -2wa4 -?W4’+Wa4 +wag +W5’-4’+W34’)
+ By (wigq —wig +wiy ~vV,4') }

+ A (Wh twip +wip FWi2) (oA +28y) (we +w2')

+/Zs@2y (wiq -wiq +Wig —Wq') +By (Wq' +2wp +W4>]

+ DX [/bq' (W3'=2w/ +2Wo = 2w, +W3) — (2—!-2,/57’) (w‘.’-ng +wi)
+ /% (-waz +2 wys —2wip TWa2 4w ~ 2w+ éWIZ/‘W32'>

=.4
+ (Wip! - 2o+ Wigl +Wip =2W, +Wtz)}= &7y (5.1)
From equation (5.1), coefficients associated with

deflection of different nodal points can be separated

as shown below:

Coefft. of wo: 2A(3x+2) + By (B4t +6) +DX" (ep"+4)
" " W, 1 =2eC (2A+By) —2DX¥(2p741) -2A
" " W o -2eC (2A+By) -2DX” (2p™41) ~2A
" W W o P By (o€ +2) -2 (A+DXY)
" " Wyt -2By (oc+2) -2 (A+ DX)
2 Howy L oA +pt (DR BY)
Ty -2

Tt 1 ‘A/4 : B)’ (l—@;)
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of

1t

Tt

vt By (o)

v L (-f) (XBy +A+pxT) —-2/3-8)/
wig’ (H‘P)»(O(By +A % D2*) 42p. By
Wi o Gif) (<By +A 4px™) +28.8y
Wit s (1-f) (eC By + A +DXY) -2p. By
wiq ﬂABy

Wiq' -ﬁ.By

wy o -B.By

wig' P.By

Wag: [-.51%’

Way /51-%1

W' p*%y

Waq' (bm-%_y

Wiy : [% (By +A+DX")

wiy o f (CBytA +DpxY)

Wiy 1 =5 (<By +A+Dx™)

W't = («BY + A+ DRY)
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Using Favre's skew network, Equation (5.1) can now be

conveniently presented as in Fig. 8(b).

4’
\ \
Fig. 8

(a)

General Interior Point

[ By (-%%) By ]
\ B (« By\(Hﬂ) [a(By\"ng (“*k ) («kﬁ (By+A+DXT)
+ Dx?) +A 4+Dpx?) -2 (A+Dx*) \+A+Dx%)
+2/3 By —-28.8y .
=a.]
. -2 (2A+8y) 24 (3x+2) \~Po< (2A+By) A (o B 7 W=2%ly
+/5 (D= B )\2 0% (o) N\ By [Plr4x4d -wzz(z/m G
+Dx™(emq) \ "
Bh (oCBy (1-B) (0By \-2By (ec+2) \ (144) (x8y \~Plh (%By
+A +0x%) +A +Dx*) -2 (A+Dx*) \+A + Dx*) + A+Dx?)
—Qﬁ E>y —f‘?p By
£ By /-8 By (-f%) By Vo
4

Fig. 8(b). Finite difference equation for general Interior

Point
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where Z = %f
p oxiont
o< = 4" > (5.2)
A = Bxx"+BYP
D = 2H-Bx- By

5.2 Interior Point near the left simple support

Boundary Conditions:

The conditions on the simple support are as follows:
(I) Deflections along the edge are zero. i.e. w = 0

Hence wiy —wip =W’ =wiz'+ w4’ = O

\ simple support
\ //* P PP

(II) Since the condition of zero Y \ \
slope along the edge gives g%i = 0 E?-J“% \4 \ia A4
and moment perpendicular to the \%L~—'%y z e <2
edge are zero (Mn = 0), these \%inQTQ\O \U \6 ek
lead to the boundary condition \@§L>\%’ 2’ \iz’ \a2’
\
that sum of the curvatures in \QEL 2 \q" \14" \34'
two mutually perpendiculaf \
direction is zero along the edge. Fig. 9(a) Interior

Point near the
simple support.

Hence in terms of moments one can write:

(M” + MV]Suppor’r = (Mx +My) support = 0
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From Eq. (1.9) it follows:

2 2 2o 2
- Bx (%inz ’*‘/&Y %;\2) ~By (%72 + Aax %)Z(Zz) =0

Dw A Dw  (By + Bx/& ) = o
oT Sx? (Bx +Bylix) + S y Y (5.3a)
Following Eq. (4.6a) and (4.6b)
2 1+
S o (wai-awr4we) (5.3b)
2
Wy o ] ’ — [} 't i
and %;2)’,— W [[b"(waquw‘:) (2+2/3")v\/.’—+/% (—N32+We+w3,?—w2)
Fwig! T wig | (5.3¢)
Let Bx + By Aix = Kx
and

By + BX/(A)/ = Ky

Combining condition (I) into Eq. (S.Sa) with the

values of curvature from Eq.

(5.3b) and (5.3c) one
can write:

<Kx 3@1—1‘ KYPZ)(waq W,,) + KY@é (-ws3% +wy +W3’2’—~W2’> =0 (5.43)
From the condition of zéro slope along the edge and by

the method of interpolation one can deduce:

or 3 [~W3’2 -WaP' | Wa-wp! ] -0
or Wa% - w32’ = Wp'- Wy (5.4b)
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Let  keXTtkyp =$
From Eq. (5.4a) and (5.4b) 1t follows:
Wy = ﬁ%_v. (W= wiz) - wo (5.4c)
Following the same procedure one can obtain:
Walp = /5;5! (wo -wa) —wp (5.44)
Wah'= /5;;{ (wa'-wo) -wz' »l (5.4e)

From Eq. (5.4b) it follows:

Wyp'= /3%:_& (Wo -wa) —We' | (5.4f)
Since Wa'g -wi' = Wo - Wy (5.4g)
and w3 - walq’ = W -wo (5.4h)
Hence wWild = F%%'(W?LW5>“W4 (S.Sa)
and Wzl = UL Cwgtug ywa (5.5b)

The set of two equations (5.4e) ahd (5.4£) which
have different values for the same external point,
imposes a constraint wq +wWyq'-2wo = O , near the
simple support. It is however assumed in the present
investigation that this constraint is valid near the
simple support.

Now, putting the values of exterior mesh points

outside the boundary of the plate in terms of deflections
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of interior mesh points into Eg. (1.5) and maintaining
the condition of zero deflections along the edge, the
finite difference equation for interior point near the

left simple support is obtained as follows:
VVW = [OCA{/}%Z (Wz’_wz') ~-Wo +2Wo ’\“\’\/5} *OC(QA"*'QBY) e
+ oCp. By | —pky (Wo-wa) +wy Ky (Wo-wy) -wyp! """’32—"\/32'}
2 Py e
+ OCB)’ (W)21+W(2)—(2+20C){AW|“(QA %‘28)/)\/\/0

APBY (g ) By Coglare) |

+

A -B.Ky (wWo-wWq) + Wz +W32 +F"—’51 CW4’—WD>‘W2"W32>
Q{A (ﬁs 0 =v4) s .

(2A+2By) (Wiz -Wig")

+

/3%! (4\/\{,, -2wW3 —2/3_?{ (W'z'-w'g) +2wo ~2wyq - Z2Wgq' -+ wWad

+ /5?}_/ (Watwz) —waq +F§Z (Wo'-wp ) —wy’ _‘_W34)

+

By(wm-wmﬁ} +A(wmh+ww)—wA+2&J(W?ﬂwO

*

@'%{ (wig-wiq') +'BY[“M'+QMM'“Vﬂ7}

DJQ’L[P'Z <ﬂ§}'— (wz/_wz) ~Wa +2Wo -2W, +w5> - (2+2/52) ('2\V0+W‘)

+
+ (;)’é <_/5_’§__>: (Wo ~W4) +Wp ~2Wp + W32 +(b%y_ (Wo-wa) —wg’
+ ZWIEI‘W-B?I) + <~2W2’ +V\/I21 "‘?\‘\/2 +W‘Q>] = ?O])"l (5.6)

Separating the coefficients associated with the different
nodal point deflections, in the same way as in Section

5.1, Eq. (5.6) can be conveniently prescnted as in Fig. 10(b).
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)\ VI R

NAVAVAN

\ \ AN
imol \2( \‘21 \?’Ql

Fig. 10(a)

Interior Point near the left simple support.

\\ \ﬂ‘Akr,gJ +8y( \/9’ By \/57? By/4

- /5"}
\* By (4+2-f \ (/-ﬁ){exsy*/t\ B (x8y

+A([3 -2~ e(/!kx) +Dx"™) +A+ DX")

+D=*(f2 2/3 2 PR

A(5:c+4) —2»0(2A+3,v) oA +

1KY'A/J -2 —-ZD.J?V{2/3 (02 By
px"'(4+5ﬂ) + 1) ﬂ )
+3>/ (6+ 4v<+

- By (4+zo\+°<fs/ (145 (<By -2 («8y

+A (-2 +A+Dx) +A+px”)
+ o3 Kr/S) +23-8y
+D%Y(-f4-2
+3* K./ d)
/5 L%

BLAKy /o g ‘ﬁ-By
+8y (- /)

>W = éoﬁyq

J

Fig. 10(b) Finite difference equation for Interior Point
near the left simple support.
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5.3 Interior Point near the Right Simple Support:

From the same boundary condition as in Sec. 5.2,

external mesh points outside the boundary can be ex-

pressed as:

ws = KB, ~wz') - Wo , (5.7a)
EY
W32 = l%@(v\/.q —Wo) —W2 (5'7b)
Waa' = K (o -wa') ~mp
S ’ (5.7¢)
w32r = KY[B (V\/q'—l/\/o) —W?I
Wagq = ?’/3 (wp —wp') —wy (5.7d)
waq' = E?ﬁ (we - wp') - w4 (5.7¢)

and condition of zero deflection along the edge yields:

WM] = Wjp =W =Wl = wig! = O
\34 4 \4_ N4\

A
5 . ' . .
Putting these values in 5 2 \o \\”_-k%

A\
Equation (5.1) one can N N \\p \\, N3
. \
deduce the finite diff- \\yr\\@'\\q'\\gg_539'
' \
erence Equation near \\??\\ﬁf\\f'\\§f-léf

right simple support as: Fig. 11(a)

&
+ VCﬂ .%Z{—‘WB,Q +v\/3'2l + E)_’ﬂ (w4_wo)—w2 —‘5’_/5 (W4-wo)+w2'}
2 g d
By (Wip'+Wi'2) - (2+2o<:){/\5w.') - (2A+28By) Wo
(B o i 8 o) A s P
~wiy # eyt = I (wo —war) +w2,>
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(2A +2By) (wiz +wi%') +3- %z (4w,, —2;2/5 (Wp -Wp') +2 Wo -2wWa!

- 2wyq - 2w+ K (wp-wp') — w4 Wzl +W3’4’+%/5 (w2 -wz’)-\~4>
S
+ By (— Wy +\/\/,/41)}-f- A(WI/E/-PWI’Z) - (2A +?By) (Wg +W2’)

+ B %” (-wiq +wiy) +By (wa’+ 2wo +W4>]

+

px? {(52 <w3’—2w./ Fowo + 9P Cwz-we') —Wo> —(2+2/>"') (wi’ 2wo)
J

% ("Ws'z + 2wz + ‘ﬁ'_/; (wq-Wo) -Wp +W 3Rl -2 W"2’~A_‘f-y/% (w4 -wo)
S

o+

e 4
wg) + (Wi~ 2wWp' + Wiz -2 Wz)] = &0y (5.8)

Separating the coefficients associated with the differ-
ent nodal deflections in the same way as in Sectiomn 5.1,

Equation (5.8) can be presented as in Fig. 11(b).

2

\/";16% \-ﬁB}’ \’?‘ﬂ}' Ky +6>'(f"%/5¢) \\

\J;’-’ (xBy+A+ ox"x{/fﬂ‘) (= By +h \\~Br (9+2-C+ k
+02") +28. By :D('f-% 44“7%)
x - - 3 Je
¢ ‘s 2-{-/&g_‘~z_’)
wa -+ (-8 02)\20c (By +24) A (sec+4)-L 55\ "W=%"7‘$
' =2A -2 (24%+1) 3Y(6-+§ﬁ?+4“?9\
+DxX¥ (4 +5p°) :
B (By+a+ X\ (1-A) (< By+4+0x\ By (q420¢-% %
| e\ ACR 2-<hpy)
+ox¥(f -?-/33?"1’)
L By £5%
\ \

\ _3pn* N\
+ By (1 4_/53

-

Fig. 11(b)

&>

Finite difference equation for Interior Point
near the right simple support.
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5.4 Interior Point near the free cdge:

frec edge

32"\ 8\ 4\ 19\ 34\

Fig. 12(a)

On the free edge at nodal points 3'2, 1'2, 2, 12 and 32,

My =0

2
- ow \ =
() euge = 7B (2% 4/ 25 -0

oye
2 2
Sw
By ( %%gz X ax2v'o

_ ) _
Adding and subtracting BXA%F; to the above expression:
X
2 2 2 2
dw dw - 2w PEXI
8)(3;2'{'?»/ 5 Bx £ + By ix 2o -0

9. ¢
but U = Bx v 4y 2
x> oy

Hence Uedge = ( Bx - Byfix) (5‘ )edge (5.9)

For points 1'2, 2, and 12, from Eq. (5.9) one obtains

Ulf2 = (BX —-By/& ) g_{ (W_g,'z -2 w2 +V\/2)
’f / s, T
= ;\;,_ (wiaz~2wip +w,) (a)
Similarly Up = Z’ (wiz -2we W) (b} ¢ (5.10)
Y
Uip = 1 (Wa = 2wz +W3’2)‘ (c)
)\Y'Z J

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48
where V= (Bx -Byhx) x*

Comparing Equation (4.9c), (4.94d), (4.%h) with

Eq. (5.10) one obtains the following relations:
%By Ewslg +wa) + By wiq = ~By w - é By (W3- wo)
+ (2By +2A-27) Wiz + (¥-A) (wa2 +w2) | (5.11a)
é By (~wi'q twiq) + By wq = =By wo —/—;2- By (witwi)
+(28y +24-27) w2 + (7-A) (wi2 +wip) (5.11b)

/—‘3—87 (—Wq-i- Waq) -+ By wiq = ~By w, —-/% 57/ (wo - wa)

+(28y +2A-2V)wiz + (¥-A) (wWo +w3az) (5.11c)

From Ea. (5.11) one can deduce:
2’)
ﬁq@y (wWalg +wW34 -2w4) —}—F».By (-wig +wiq) + By w4

= =Bywo 1 (¥-A) (Wi +Wiz) + (2By+2A—23/) wo

2
-+ ﬂ ,g)_’ (wW3'-2wWo+wW3) +é (2By+24-20) ('w:g-W"z)

1B (-8) (wsp-ws) (5.12)

With these values of nodal deflections outside the

boundary Eq. (5.1) reduces to:

AvAVAL = [OCA (w3 +2wo +w3) = oC (2A+2By) (Wi'+wi)
+ ﬁ’o‘gQ By (-ws? +W3’2'+W32‘W3?'> + el By (wi2/+Wis +Wiplhwip)

-(2+ ?oz‘){A (Wi 4+wi) — (2A+2By) Wo + /% By (-Wi% +wiz Wb’ -wi2’)
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+ By (V\/gl—i- VJ2)} -1—(% A (—W3{2 + W3z +\A/312/—W32,>

2
- /% (28){ +2A) (’WI'Z + Wi +wile! —ler) +ﬁ.£27 (_2“/3/__{_4‘”0 +W3’4’+W34'_2W3
) 2w4') +e By (wia' —wia’y + A (w2’ rwie! v +wig) - (2By+2A) (wo'
+W2) ‘f'/% By (Wl{q'_\/\flq’) + By (W4/—t 2\,\/9) —By(Wa)

. '13y
+ (X'A) (V\/JIZ +W12) —+ (2 By +2A-Z?’) Wp +{3_€_ (Wal- 2V~/0~:Wg)
/ I
+ /% [2By +2A-27) (wiz-wi'2) _,_/g; (#-A) <w32_w32)]
* 2
+ D)Z’L[ﬁ <W3/-2w,/+2wo -2w, +W3) _ (2.;.2/}) (W«'—pr-alw,)
+ [’7_2- <—W3’2 +2w 5 —2wiz tW32 +wWah! _ 2w/ wsaz +2le)

* W,'21_2W2/+W12/4W1I2- ZW'Z"'W’Z:]: §03>’4 (S°13)

Separating the coefficients of deflections; Eq. (5.13)

can be presented as in Fig. 12(b).

B (By+7 By (<43 2By (1+ ¢ By (<->) Bs sy
+Dx* («<By+¥) — \_2(7+Dx") \-f (x8Y17) FTH+0X ]
) £;+Dx”0ﬁﬁ) + 7+ DRY() J
KA 17 (-Byfy  \~2:¢ (24+BY) A (3¢2) ~22C (24 +8y) CA +
+De™) ~2A -2DR (5% 1) +By(5+4x L\ ~2A-2Dx(op” R¥(-Byy gw:@#
+@/)+20%(% +1) +Dx")
+2)
/—é (¢By+ A (1-8) (ccBy+h’ \-28y (<+2) (1 13) (< By +4 2 (<a,
+D2") +Dx¥) =28-By \-2(Ddx*+A) \*+Dx*)+z8By szx
. v
-84 ﬂ By 5y0 £2) ﬂ By A

\

Fig. 12(b) Finite difference equation for Interior Point
near the free edge.
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5.5 Interior Point near the Acute Corner:

From the boundary conditions of Section 5.2 and
5.4, it follows that when the exterior points (Eg. 5.4
(b, ¢, d, g, h)) outside the boundary

ﬂr"__@____i___ﬁ_~_ﬁ____~~_

\ \ N \\ \
\

A \
\ 12 \ 32

211:\\ \
\e

KR \ \e

514)\'_ _ K
\

14

47 14’ 34/

\
\

Fig. 13(a)

Interior Point on Acute Corner

and (Eq. 5.11(a, b, c¢), (5.12)) are put into Eq. (5.1),
finite difference equation for interior peint near the

acute corner is obtained as shown below:
VW= [DCA{/A;—K—Y (W2'-wp) +Wo + W3z — o€ (2A+2 By)w,
+ {3 = By <‘P'EZ.(\«/4'—W0) + W +/3_K_y_. (W‘ll’ wWo) Wy !+ wWap —Wag?
2 Iy 5
+ By (wig’'+wiz) - (?+2°<){Aw. - (2A+2 By)wo +ﬂ~5,2_>’(wzz—wxz')
+ By (wor+ Wz)} + %{A (‘F?’Y- (Wq'-wo) +Wz + Wap +/33_'2 (Wq'- o)
- W?_'—Wag'? —(28By +2A) (Wi -wWiz') + @v %_Y GWO —-2\/\/3..2/5,;_): (WZ"‘WZ)
+ 2% ‘*Fx;f—" (we'-wep) - Wa' 4 W34’~9W4’> - By wm’}

+ A(wg twiz) ~ (2By +2A) (Wz'+we) “/% By Wia' 4 By (wa'+2we)

2
T Brwe + (7-A) Wiz + (2By +24-27)w, +/3._?y [5;1“ (wQ’-wz)—wo-ZWo+W5}
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+ /% (2By +2A-27) wiz +{2§ (7-4) ws2-/3'.§_i (W4'~‘A’°> +VJ2>}
+ Dfl[(f{ /53,‘9-' (W2'_wWp) —Wo +2Wo - 2w, *V"b} ——(2+’7’/52) (-2 wo +wi)

(%{—P-;Y (Walwo) +Wg -2 Wip +w22 +F K’ (wal-we) —wp!

- W32' + 2\'\/12I} —QW?'-(-—V\/,Z'—ZWZ +V\/12] = ZLO 7‘)’
(5.14)

Séparating the coefficients of deflections, Eq. 5.14

can be conveniently presented as in Fig. 13(b).

- 'A"CPKY/J 28 -2By (C +1) By (°<'/3)~’3[o<:8;/-+'3) ﬁ/ (< By +7
+/3 (o€ By +7) +Y x> (1-p) +0x>)
+0%+ (24 F
A(:oc+4) -2 (By +2A) °<A+/3(B>/4
By (5+af5 +4a¢) —2A - 29331‘[2/2-44) + D)
-4 +Dx™ ¢ 5
oMy W 4
§ ) P Kf (7~ A)
A-xﬂ‘@/f 24 O+f) (xBy +A ‘/52 (ec By

~By ac/s APz +Dx™) +2/a By +A +D%")
+px* -2~ 4 )
~ﬁ By [5 B)%{

L By (- 3@
(3”;7 (A 3’)

Fig. 13(b)

Finite difference equation for Interior Point
near the Acute Corner.
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5.6 Interior Point near the Obtuse Corner:
[ 7 .-
>4 14 4 14 24
I U N Y A
. ‘ 5 N \
N\ L2 Ny ‘\ \"\.‘ \
\32 N2 \2 W2 1\32

Interior Point near the Obtuse Corner

Putting the values of nodal points outside the
boundary (Eq. 5.7(a, b, c, d, e), Eq. §5.11 (a, b,.c)
and Eq. (5.12)) in Eq. (5.1) one can deduce the finite
difference equation for Interior Point near the obtuse

corner as:

VVW = [ocA (w3'+2w,,+§"/3 (Wz—wz')—wa ~e< (2By +2A) wy/
*-#§BYGWQ+W%WEﬁ[Mwwf)”%—%ﬁhmwmﬂ+W>
i .

+cﬁBy(wh'+wh)—(zﬁxw{Awu~Q5y+m@ww+éey0W@+ww)

+

By (Wa'+wy) +@{A <W3'2 + E_ZP (We ~wWa'y —pp + Wz - S_Z/Z(WO'Wq')‘“WZ)

]

2
(QBy +?A> ('lez + WV ! )} ’f‘[&.;lgy{—?wg—{- 4wo +Wag' + 5}_@ (Wz'Wg')'-Wq'

?’S‘;P (W ~wgz’) +2wo —2w4/} 1—[—’;— By wea! + A (Wi’ +Wi2)

(QBy +2A4) (W2’+w2) + ﬁz By wigq' + By (wy’ +2wo) '

2
- Bywo + (¥-AY Wi & (24 +2By-2Y) we +/5;§~" (W3/“?Wo + L;’Vf (Wz“"’fl)-“/0>

-+

/—% (¥-4) (K;Y(ﬁ (wo-wa')y - w; —W3’2> tf (za+28y-2Y) (-wiz)
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v DL (s 2wr k2w + 5 (nigmigy -wi) = (243P3 (i 2u)
£ : K ' wWala! = By = KiP (W - wa ) vy
+ 3 “W32 +2w,b +f)’[3 (Wa-‘»‘\/q) ~wy W22’ - A 7

v+ Wl,?’ —-2\/\/2/4-\/\/)/2 _QWZJ = go?y (5.15)

Separating the coefficients of deflections associated
with different nodal points Eq. (5.15) can be conven-

iently presented as in Fig. 14(b).

- (ocBy +Y+DEY) By ()4 A xpBRy/s 2o
-5 (xBy+7)

+/$ (<X By +7)
+DX'L(I+/6) ~2By (eC +1)
oCA _{_[57 (‘Byé 2o (2A+8By)

1
-Dxe? (243 LK
(2+6 -,
\ +0%") \~2A -20X7 (1) \

A(4+50¢)
By (5+244c) \
+Dx‘(5p?+4)
2
B Ky c7-n)
24

\7\‘\/ = ép ?‘Y4

~AX PRy /f 24
- By (4+2-<)
tAL 4DRV(2
+£ - /52‘2’)
+Byec /A
By (- 3/4/51‘) \
\

Finite difference ELEquation for Interior Point
near the Obtusce Corner

{—32— (ocBy-f-A-PDJéI) (l—ﬂ’) (cC By +A

+Dx”)-28 8y
ﬁq.By/q \/& By
\ \

Fig. 14(b)
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5.7 General Free Edge Point:

bbby
free edge
y : 't 12 _

_ 32 e 21 o 22
- i e ~NT - N | ™ i
\ \ N i i \ \
N \ AN \ \\
A N ' \\I l N \
v 3 N Jo M1 D
i ]
’ 1
| l
25" (2’ RN 2! 32/
S

Fig. 15(a) General free edge point

For the GCeneral Point on the free edge the second
order differential equation (4.4b) is taken as the

geverning equation, i.e.

2 1. 1
2x? ay* ox?2 8

Following Eq. (4.6a) and (4.6c) one can deduce:

—-‘,}\—;Z[OC (U'+u) -~ (2+2ec) Uo + é (-uip +U2 +U('2’*U12'>

+ Up’ -+ Uz]*—%;Z[Wﬂ’“?Y6'+YJ = %o (5.16)
p

From Eq. (5.9) for Points ﬂo,l one obtains the

following relations:

Ull = %2 (V\/;I ~2 Wll + V\/o) (a)
Up = %;2 (wi=2wWo +w,) (b) »  (5.17)
U, = .;%2 (Wo — 2vg, + Wa) (c)
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Since M, =0 on the cdge
-By (—n--be =
a
oT (—E‘T_ g /{/ (aW\eche

Following cquation (4.3) one can now deduce:

YI/ = "_/(‘>< X/
= —-/(4)( (\/\/3 2wy’ -+v\/o>
Yo = —/&x Zef (w.’-QWo+W:) (5.18)
?y2
Y,

it

- Aix %?fz (Wo~2w +wW3)
V4

Again, from the boundary condition of frece edge, i.e.

vertical reaction
(K¢‘%,= Eq. (1.9g) and Eq. (1.8) lead to:
edpe
w /& ow _
-Ey[ 55t (4c+ x) XZa;]'O
, Dw b(oH-BxAy) D co (5.19
Since U = By cj_vy +By W aw

ox2

_QLJ = B aw B a\\/
oy X axzay+ Y oy

Eq. (5.19) can now be written as:

gﬂ « (2H~BxAy - BX) axza), -0 (5.20)
y

Let F(x,vy) be a function of x and y. From general edge

point 0, (Fig. lS(a))a perpendicular is drawn parallel
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to y axis touching the network line at t and s respect-

ively. Ref. [7]. F
llence b = 7y fan¢
Fs |3 Ft
Y
Fe-F w“y ?71
At Point 0, (2;) = "%}—ji“
o Py Fig. 15(b)
FLo
By interpolation: b H
Fiz ~Fi%2 T R | T2
- —_—t b (Pl Tt
F{ = F2 + 2 7x —
'. 7‘xl X
= P +—l2—/3 (Fiz- Fi2) Fig. (15¢)
Similarly

Fs = Ep —%/5 ( Fip’- F12")

Hence (%F)D = :j;y BF? +—g—/3 (FiZ'Fllz)j—{le-lz‘/g (Fi2" Fn’z’):ﬂ(S .21)

Proceedlnq in the same way, for the function y , one

can deduce:

(%‘i): —2'7 Huz +~/5 (Viz - U:z)} {U2 - 1B (Ui~ Ul?)}J (5.22)

Similar to Eq. (5.22)

dw 1 . i(i@x)
axwyo oy > ox? o

\

=-§~{§f (WH—2w0+wQ}
oy 772
: [FW'I? —HZ—/J (wz ~ w32 )} —{sz ——’5 (wp!~ w3’z >}

- 2{"\/2 +2i/$’ (wiz - Wl'z)}Jr ?{ Wg"~ lz/@ (wig™ w:’z’)}

+ J:le +‘z/5 (»Vaz-:v{?V}'gl_ | /; (g~ W)}] (5
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Putting the values of Eq. (5.22) and (5.23) into ILq.

(5.20) one obtains:

Up + -/5 (V2 -Ui%) ‘UZ"’"[z’P (Vi -vi2)

g
- 5 ZL{W-% +Ep Corn)] - ot ot

ry

-2 {\Nz +-%/5 {(wiz - \/\/)12)} + 2 {\,\/2'_ —%/B (wig - W‘,2,)}

+ { Wiz +—'§/’: (w3p —Wz)}

- 9w _ L (V\/BI—W'
where ¢ = (?H~Bx/4y-5x)pez'. {Vz 2/5 ‘ Z)H (5.24)

Putting the value of y, from Eq. (5.24) into Eq. (5.16),
the governing equation for general edge point is obtain-

ed as follows:

!

vvw = "2“'7‘Y2[?U2"‘ﬁ (Um'-u.'z')] +2 ,gg (Urpon) = Pre (140} Vo

- %[WI’Q + —;_-/5 (wa-wW372) —{Wx’z’— ";‘/5 (“’2/*“/3/2')&
2§ w +if (l«/12~W’|’2)} *2{ wo'- LA (wig'- Wl/z')}

{le + ﬁ (wsz - WQ)} {W‘? ‘—ﬁ (w32 Wz’)}]

+ D)@ 7\2)’ (Y, 2Y0+Yl)— %2), (5.25)

Comparing Eq. (5.17) with (4.9a), (4.7) and (4.9b) one

can deduce the following relations:

/%E’Y (‘WB'? +W3) +By wiz =- By wii’ "% By (Ws'z’—-v\/g’) +(2A +2Ry- 2#) w,’

£

+ (B/"A) (ws'+ Wa) (a)
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/% By (~wiz +wi2) + Bywa = =Bywyr - [3 By (wiz-wi) + @A +2By-2F)we

+ (7-A) Cwilewi) | (b)
% By (-wp +\«/327 + By wip = -Bywip' - % By (wrp'-wzp') + (2A+2 By-”?h/\

+ (Y-A) (wo +W3) (&) (5.26)
and - ¥ [wiz +hB (wp-w3z) -2 Wy —/5 (wiz - W% ) +wip +—£—ﬁ (W;z—-Wz)]

= ‘Byi {_BV Wip! -2 By (Wz'z"-w'z’> + (2A+2By-27) Wy
Y 2
+ (-A) (wavwo) - 2% - Bng’-%'By (o - \Allgl)
+ (2A+2By ~20)wo + (7-4) (w,’4w.)}
- By wiz/ —//—g— By (Wa'-wsp’) + (24 +28y 2w,

+ (7-A) (Wo-{')'\'g)] (d)

From the relations of Eq. (5.17), (5.18), (5.26) and
(4.9) finite difference equations (5.25) for general

edge point reduces to:

A (W,'2’+ wiz') = (2A+28y) wp! —r@ By <—W.'—+W,+W,’q’—w,4’)

<
4
3

I

+

By (wo+ wgq') - /%— { A (wal +wap') =~ (2A +2BYy) wyp!

@By (-Wo + w3 +W4'—W54'> +By (W1+W|4') - A (N3/2'+V\/z')

+

-+

(24 +28y) w7 ‘/%BYG“’B"*‘WD +wWagl-wa') -By (w.’+w1’4')}
+ RY (walmz2w +wo) -+ "%—X(WO'ZWHLW%) =¥V 1+ ) (W2wo+w))
7

Y ~p (v ~wa) b= wpim g (Wi - wit)}

-+

—g’— § Wiz - YL/B (Mz’ —Wz’)}

2%\/[~ By wiy! ’% By (W32 ~wz') + (2A+2By =27) W'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



! o) — - ’—-Q_’_ ‘V\(I - !
+ (=) (w3 o) —2f=By wa' - & By (w22
+ (24 +28y -2Y)wo + (¥-A) (w, *W')}"P’yw’"’/ “/ﬂ% By (we'-wiz2')
+ (2A 128y -27)yw, + (¥-4) (W°+W3>1
4 %o 7\\’4
-Dx /é_’f (Wa/-dwif+ b6 wo —4 W, Twa) = -2_— (5.27)
2

Separating the coefficient of deflections associated

with different nodal points Eq. (5.27) can be presented

as in Fig. 15(d).
Ve, (A ctof Ay BCUH LAY puy -ty <lptr (4 A
_p E,), z‘/‘ » —25a (A-¥) +?(¢+3’) "2—5’— (A~3) _ﬁ?efsypxux
NG %) \ % 202y, 7z
Yoo ths ~3D% 7 Asx

> W= %073

1% (A+y) AP By+y N\ -2(h+yip) \ A+B-By

—/5 (A+¢) + g1 //Hy)
\/5 3&4 \\ﬂBy By(l~/5,/2) -/8 By \/3 3)//

Fig. 15(d)

e

Finite difference Equation
for general free edge point.

5.8 Edge noint near the Acute Corner:
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From the boundary conditicns of Sec. 5.2 and 5.7 it

follows:

Wy!t= wiz! =whfa' =0

Wa/ = EYP (Wz'—\&’g\) - Ky b2 _ (a) 7

s 5 4
Wag'= K> (wplowg) - ¥ Y1 owy! (b)

§ g L (5.28)
Wi = Kl (wy'-wo) -wy (d)

—

and from Eq. (5.17a) and the relation Wwa2=-w; TwWala 4w/

one can deduce:

‘o ' -
ﬂWQ + Wiz - (E_éé)"% h ﬂwz'—+ %Wo (5.29)

Comparing (5.28a) and (5.29) it can be shown that

W3'= - Wo

Putting these values into Equation (5.27) for general
edge Point, equation for edge Point necar the Acute

Corner is obtained as follows:

A (wig') = (2A+2By) Wz’—f[—éﬁy (wWi-wyq”) +By (Wo +wa’)

<
<
2
i

é[A\UNy+mg20 ~(2A+-?8Y)th-+ﬁ‘%¥(¥WO+W3+WW—W34)

+

By (Wit wig') — A { ;f_/g(w43/—h/a)} -/—g_ By (2wo -2\/\/4')}
+€}(my4wﬁwa)~YG+£)CQW0+WJ

*(—é—‘) (—%) %\’\/2' - "gﬂ (waq’-wo) +W2’)Z - % (Wzl—QL/WIQI)
g Wia’ ~~/}(¥V5Ql ~wyp! )i— *% [ /b By{ Ky (o' wo 'Z’VZ.}
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2{ By wo -2 By(-wd)-+(2A+25y—zz}wb-f<x,gh,}

- By wyg -ﬂ By (Wo" waz2') + <2A+ 2 By—??}’) " +<f A) (wo +w3>]

=z 4
4 4
—Df/_g{_m + 6wo —4w|+W5} = g—zi)y (5.30)

Separating the coefficients associated with different

nodal points Eq. (5.30) can be presented as in Fig

16 (b)
.{ﬁBné-eéf

#W Kros +P BW@ ~2xZ-EZ(446

+8y (1+34)
+2(2’+w

-2 (A+By+w) A4-%ﬁ@by

4
2Py = w {
~B A+ ¢) B A+E)
By (1~/a) /5 By

) +Apzk//b§
56/5 “/
/g

roj o)

Fig. 16(b)
Finite difference equation

for edge Point near the Acute Corner
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5.9 Edge Point near the Obtuse Corner:

- 2 2 12 32
< T T T YT T TRRNT T T ™
\\ \ \ \ \
\ \ \ \ \\
i \\ A \ \
) ! \\O N \3

Fig. 17 (a)

Edge Point on Obtuse Corner

From the boundary conditions of Sec. 5.2 and 5.7 it

follows:
W, = wip! =Wy O
W3 = ?ff; (vs/g—-\/\/z’) - —L;.Z‘W'Z"Wo (a) ]
W gf = ﬁﬂg (W -wy') - &Y wig—wy! (b)
s J (5.31)
Wy o'= KY%. (V\/o—V\/4/) ~wgz' (c)
Wy = ;Z’Il5 (V\/o—wq’) —Wz (d)

and from the Eq. (5.17c) and the relation wy=-W; +Wy/+wy!

one can deduce:
By rwip ~ (VA) = [ worp (YA} 5.32
F’z 12 E”yv\/3 /3 '+ "@;WO ( )
Comparing (5.31a) and (5.32) it can be shown that

W3= ~Wo
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Putting these values into Eq. (5.27) for general edge
peint cquation for edge point near the obtuse corner
is obtained as follows:
VOWE A (W) —(2A +287')W2' +,C;- By (-w( +wiq’ ) +By (‘A/0+W4I)

+ (2A+2By) wi?’ "% By (w3 +wo +Wa'g"-w g’ ) - By (w.’-h\/.’z?')]
+ On’ (Wa'-2w'+We) ~ % Civec) (wi=2we)
+ _Sff{ wlgl_ /3 <W7_ —-Waz)} — V{Wz _n/J (- w2 )}
2
+ ¥ 1 - Ky (wo -wa —ZWJZ
Fx-df il X o) B

—% L By wip! ’/’3‘57 (wsla'-wy! ) + (ZA+2BY ~2)wn (TR (w5 wWa)
- 2{ By (wa') - /B By (wi'2' ) +(2A+28y Zf)w.o-f(zﬁA) w}

- éﬁyé wy! - ﬁgﬁf{__ (Wo—-W‘T)"‘WZ }]

- D__264/&K (waf — 4w’ + 6Wo—""°) =
2

4
% (5.31)

r\)l%‘*’\

Separating the coefficients associated with different

nodal points Eq. (5.31) can be presented as in Fig. 17 (b)

2 2 2
~4§ By +CYp ey - %f;’ (4-7) -A/5 ky 58 +/3;2£37 1

+2 (a’+</')—~!"
._5032 V 24

ﬁ(4+ﬂ -ZM+BM+9\

A+y—
-3 [A+i") +BY + Ak
/5 By 4 By (1 ﬂ/A{

+A ez

._ﬁ 57 +* 5’/-{»‘(7

Fig. 17(b)

Finite difference equation for edge point near the obtuse
COTners.
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In these equations the quantity ?ois the equivalent

combined effects in terms of load per unit area for all

the loads which act upon at point 0.

If a uniformly distributed load of B per unit area,

a line load of 9p per unit of the length in x direction
and a concentrated load R act at point 0, @m is given
by:

%= p +% o %
%o 0'1'7\}/—{- 5,

If point 0 lies on an exterior edge of the plate, %o
is given by

g =R &O_- Po
fo o-f-STy +'5%x37

5.10 Finite Difference Equafions for Moments:

Finite difference equations for moments "Mx, My
and Mxy can be derived by substituting the finite dif-
ference approximations Eq. (4.6a), (4.6b) into approp-
riate moment equations (1.9). Their final expressions
are the same as in Ref. [7] except for equation (5.38).
However, complete derivations of moment equations are

presented in this Section.

(a) General Interior Point:

e[ (), +4 (2)]

2
~Bx. [X’L(W‘/*Qwo cua) Ay §PTCwiwg) - (2 42p ) wo
7y?

+ /g {- Wi +wWig ‘H’\//'a/—"Wrz') -Hx/zf-bwz}:l (5 . 32)

My
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Similarly:
My=="EZ-[{élUm“wm7*fzfqﬁ)wo+é-‘W@+M2+MV'WM)
raLt :
7 Gk 9w sec ¢ |
- - oW tang + Z¥. Sec ]
and Ry ?C[.aulia ? Suov

= -2¢cX [ﬁ (w,’—QWO-fW:) —i—"T (Wig -wi2 4w (5,34)
2y —le')]

These moment equations can be presented as in Fig. 18(a),

18(b) and (18c), respectively.

\"/&x/z’/z \/«y | \/ﬁy Bro
de} W(2> Y/m)

\

My = ~2Xx (2 +fr3) -2( 2 thy thify \ (€ A

7\)/2 W(’ W (o) W(l)
,Arﬁé Ay ~ferfy

W(@u \éwi) \Cfnzb

Fig. 18(a)
Finite difference equation

for Mx at general interior Point
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\A \s \ 4

w(i'2) w(z) w((2)
M B), (/52"‘/(”( X’B ‘?(117’5¢+/{‘sz {/51:.‘“/{\;/?@45
Y:‘;P_X \\w(@ w(o) NG
/3/2 I —-ﬂ/z
\W (12 \we’) \w ey
Fig. 18(b)

Finite difference equation

for My at general interior Point

\4@ ' \o \M

W (i) w(2) w(i2)
M ._2¢x ﬂ “Qﬁ B
Xy = 2p2 X w(r) W o) Wy
% 0 el
\w(i2) \w (2 \w 2%
Fig. 18(c)

Finite defference equation

for Mxy at general interior Point
Y 8
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(b) Points on the left simplc support:

\\1’2' ) \\2’ Nz’ \32'
| Fig. 19(a)

Interior Pecint on support

From the boundary conditions as derived in Sec. 5.2

it follows. that:

Wz = Wo =wy =0

(5.35a)
Mn-;{i.Mv =Mx+My =0
and QVQ ( ‘N>
aV o 2 DV = o
or -’—[W"Z“W"?' L Wiz —M?? =0
2 2P v 22v
oT Wi -wip = Wi’ - wp (5.35b)
From the relation:
2 2
owl, oW -0
Kx(axﬁ>o Ky( ay2>0
it follows: wy'= —ﬁ{%—fwm—WMV'W' (5.35¢)
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Substituting these values of exterior nodal points

into moment equations (5.32) and (5.34) one obtains:

Mx = _gx [{/&ky pky (% +/Zl‘//3)} wiz = § Phr (5.36)
ﬁ Ky (2 +/€xy/5 )}le]
My = —Mx (5.37)
Mey= - 2£.’§ [(/5 K g LY wie + (/3'—‘;51—71)%1(5.33)
Equations (5.36), (5.37) and (5.38) may be presented
as in Fig. 19(b), (c) and (d), respectively.
\ \ (fbr -fss (x wﬂ}
\ W (i2)
My = "7?;— wa)
/4/«7 P e +/y/‘)}

V\/(I:z)

Fig. 19(b)
Finite difference cquation

for Mx on simple support
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\ \{ By ~p-Kors (23 4y )

W (12)

V\/(()

— By + B R (27 /Ayﬁl)
e 5
\\ \ wiie’)

Fig. 19(c)

Finite difference equation

for My on simple support

CO\gen)

Mxy—~2(’ex W(]
(5 )

\\M/OZ)

Fig. 19(d)
Finite difference equation

for Mxy on simple support
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(c) Points on the right simple support:

In a similar manner cquations for moments on

Point of right simple support may be derived from the

relations:
Waz Wa's Wp = Wp =wWp’ =0 ]
Wip - W= Wiz -Wi'z L (5.39)
w,= - Kif? (Wi =wip ) —wwr

\3’ \U/ \&O \U
TTTT

\

32 AN

\

It \

34 ! Nigq!

\\ \

\

i'2!
s 4" _
N

Fig. 20(a)

Point on Right Simple Support
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These moment equations can be presented as in Fig. 20(b),

and Fig. 20(c), respectively:

Bl \+ K L (54 \\

Wiz ) \

Phy X L)
\iz \

Fig. 20(b)

Finite difference equation

for Mx and My on right simple support

yﬂ/z)\\

Mxy—— x

2
(- <25 +1)
\

weigy N
Fig. 20(c)
Finite difference equation

for Mxy on right simple support
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(d) Points on the free edge:

on the free edge My = 0

2 2
lence ’E‘<—%‘;—,~Z ~I-/&x d ) =0

ox?
2 2
2 - 2
B (S oty O
but Mx = —DPx ey 4

axz )/ a)/z

1
= —BK (( "'/(/1)‘/6\)/) aav;/z

Hence (Mx}; -Bx (a—/éxx/&v)%q; (wil2wo +w) (5.40)

Eq. (5.40) can be presented as in Fig. 21 (a)

v -

X ‘_—-5)\’ /i—l';([\y\xq‘x ! :—,g, : )
1 (I /;;2 Y) Y \(,)

Fig. 21(a)

Finite difference equation
for Mx on free edge.

For deriving the equation for Mxy on free edge the nodal
points outside the boundary can be expressed in terms of

interior points as follows:

12 2 12

el

\(,2, \2, \‘2, Fig. 21(b)
\ \

Point on frce edge.
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since  (32) = F[ (%), ~(37),)

hence wi-wi’ _;_[w,e_w"’g + Wiz’—wip’
2 2x 27rx 2 71X
or —,2"(\/\/:2—\/\/1/2 Y = wimwy’ - L (wiz! =wi2' ) (5.41)

Putting the value of wp and w’% into equation (5.34) one

can deduce:

Mxy = —?E‘%[(/ﬂ';)w. +(/’5—'/z)w,'—2f wo (5.42)
Ayt + L (WI/QI‘WIQ/)}

Ea. (5.42) can be presented as in Fig. 21(c)

(f-4) - 25

Wi(o) W(’l)

2 ~%
w

(%) \(2) (,2)

Fig. 21(c)

M'X), =-2(Z x
2y?

Finite difference equation
for Mxy on free cdge.

5.11 Application of the method of finite difference:

By superposing the skew network on the equivalent
orthotropic skew plate and appl?ing the typical finite
difference equations for each network points yield a
sct of simultaneous equations, the solution of which
yields the numerical values of deflections at all

network points. By substituting the values of
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deflection in proper moment equations as derived in
Sec. 5.10 of this chapter, numerical values of moments
acting on the equivalent orthotropic skew plate can

be obtained.

Bending moments acting at different sections of
longitudinal girder and transverse beams can be com-
puted by integrating the equivalent plate moment over
the flange width, according to the formula presented

in Chapter Three.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VI

CENERAL SOLUTION AND STUDY OF THE FACTORS
THAT ENTER INTO THE ANALYSIS AND DESIGN

OF GRIDWORK IN SKEW BRIDGES

General Solution:

Finite difference equations as derived in Chapter

V can be applied for each of network pcints (Fig. 22)

to yield the force displacement relations in the form:

[0 {2

where{é%is the column of static load acting at the
redetermined set of pecints and {Q} is the column

corresponding to the vertical displacement. [A] is

the conventional stiffness matrix and is obtained by

a few algebric operations in the following form:

At ALz Aps A4 - - = = Ape
A?,l Az Ap3 A4 - - - - Az,i8
Az Az Ay A4 - - = - Ag,8
Agi A4 Aay Az 4 - - - - Aq8
|
(
!
Aug,i Alg,z A18,3 Ag4 - - - - A(@718
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To clarify the application, some of the equations for
two typical network points are shown in the appendix.

By inverting the stiffness matrix [A] and carrying
out the multiplication with the load vector{%}, deflect-
ions at different network points can be obtained. By
substituting these values in proper moment equation as
described in Sec. 5.11, numerical values of moments
acting on the equivalent plate can be easily computed.

Computation of longitudinal and cross beam moments
can be performed as outlined in Chapter III.

The finite difference solution for the gridwork
with slab representing themodal skew bridge has been
obtained. The deck slab is assumed to be an isotropic

Ao
(eSS

A Thhaosrd e AimaAanaedAan ZTAN L 2NN
1 £ G aac o\ P R V) [

w1 o 3 .
ylat- 2.t (Flr\-

X% r, 22)
stiffened by 1on§itudinal and cross beams of different
stiffnesses in both flexure and torsion. The material
of the plate was hot rolled structural steel having
Young's modulus of elasticity E = 30 x 106 psi and
Poisson's ratio = 0.3.

he following are the loading conditions for which
the solution has been obtained.

(a) A single concentrated load P, located at
centre.

(b} Two equal concentrated loads each of magnitude

P/2 , located symmetrically along the longitudinal. axis

(«Lg"- ,0) and (% ,O> .
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(c) Two equal concentrated load each of magnitude
P/2 located symmetrically along the transverse axis

(0,%%) and (0,-"76)

Since the loading conditions and platec geometry are
symmetrical about the central axis, only onc half of

the plate has been considered.

Factors that enter into the analysis and design of grid-

work in skew bridges are: (a) Number of girders and

diaphragms, their spacing and stiffness ratio. in both
flexure and torsion; (b) Aspect ratio (%i) of the
bridge where Lx is the skew span between the supports
parallel to the roadway and Ly is the width of the
bridge and (c) skew angle.

1 enlnutinneg far the Adifforant fo
i goilutrigng 1or U L I

(o AT e m A s <

Thanrat ~tAarc
ineoret ctors

jon

influencing the énalysis and design of gridwork in
skew bridges have been presented graphically (Figs. 3.1
to 3.29). 1In varying the number of longitudinal and
cross beams the total cross-sectional area in the-two
directions has been kept constant so that the cost
per linear distance of the span length does not change
appreciably, (Figs. 3.1 to 3.4).

Aspect ratio which is treated as one of the var-
iables was varied from 1, 1.25, 1.5, 1.75 to 2.0 and

its. effects on deflections and intensity of moments

are presented in Figs. 3.5 to 3.15.
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The change of skew angle from 0, 15, 30, 45 to
60 degrees is treated as another variable and their
effects on deflections and moments are presented in
Figs. 3.16 to 3.23.

A disputable question in the value of Poisson's
ratio whichbis not a material constant as Poisson's
ratio proper but an elastic constant depending on the
orthotropic form of the system has been trcated as
another variable. The value of éx was varied from 0,
0.10, 0.15, 0.20, 0.25, 0.30 and 0.33 and their effects
are shown in Figs. 3.24 to 3.29.

Graphical representation showing the influence

of these differcnt factors upon deflections and moment

ntensity Mx, My, Mxy and eguivalent pvin

3
Fa <

cipal moments,

>

have been presentéd for some typical node points, e.g.
central point of the bridge, interior point near the
obtuse corner, interior point near the acute corner,

and central point on the free edge. 1In all cases the
solutions have been obtained in the form of influence
coefficients of deflections and moments for a unit central
point loading. Influence coefficients have also been
obtained for uniformly distributed loading, two point
loadings and for aspect ratio at a different skew angle.
The plate geometry is the same as for the model skew

bridge. (Fig. 22).
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VII

EXPERIMENTAL VERIFICATION OF TIIE THEORY

7.1 Description of the iModel Bridge:

The gridwork and the deck plate of the model skew
bridge were fabricated from a 36" (skew length) x 30"
x 3/16" thick plate, 7 nos. of longitudinal beams
(3/16" x 2') and 7 nos. of cross beams (3/16" x 1%'') -
all made of hot rolled structural steel. The twc scts
of intersecting flexural members forming the gridwork
were welded intermittently to one side of the deck
plate to form a skew mesh as shown in Fig. 22. 1In-
spite of cooling the model with cold water during the
ng resulted
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from the intense heat of welding. In order to have a
flattened surface and to reduce the locked-in stresses
the bridge model waé annealed. Four flat bars of the
same material were also subjected to the same heat
treatment. They were tested in the universal testing
machine to evaluate the modulus of elasticity E and
Poisson's ratio Afx under uniaxial tensile test, the
average value of which were found to be 30 x 100 psi
and 0.3, respectively. In order to have a simple line
support along the two edges, the gap between the long-
itudinal beam and cross beam was filled up with pieces

of %" x L' x 6%" long square bars by spot welding with

the cross beams (Fig. 1.1).
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7.2 Abutment Frame:

The model bridge was simply supported on the two
specially machined 1% diameter steel rods resting on

the two opposite edges of the abutment frame. The frame
was fabricated from two %" x 3%' x 15" deep channels
which were rigidly connected to each other by two %" x
3" x 8" deep I-beams welded to the frame -6" below the
bridge deck level. The frame was in turn supported on
six-standard steel blocks resting orn a flat steecl

base (Fig. 1.2).

7.3 Loading Device:

The model skew grillage bridge was tested within
the elastic range under the following types of loadings:

1. Concentratea load at the center:

The load was simulated concentrically on the
central point of the bridge deck plate through a Thaw-
ing-Albert load cell which was attached to a hydraulic
ram mounted under the beam of the testing structure.

The load cell was calibrated by recording increcnments

of strains corresponding to the direct load increments
with a Budd portable type strain indicator (Model P-350)
and a PCA - 300,000 1b. testing machine. (Calibration
curve Fig. 2.24). A skew steel bleock (3%'" x 3%'" - 1V
thick) with a groove undernsath to accomodate the strain

gage was placed below the load cell for transferrin

72

the load to the deck plate. (Fig. 1.4).
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2. Two equal concentrated loads applied on the

L

- . . L « 7 Lx
longitudinal axis (- §%,Q) and kLW%,0>

For this type of loading a Strainsert 100,000
1b. flat load cell was used which was calibrated with
the same Budd portable type strain indicator and the
PCA - 300,000 1ib. testing machine. (Calibration curve
Fig. 2.25). The load was simulated by using the same
hydraulic ram as in Case 1 on a 4'" x 4" - 2' ft. long
solid bar resting symmetrically on two skew steel
blocks dividing the central load into two equal con-
centrated loads. (Fig. 1.5).

3. Two equal concentrated loads applied on the

transverse axis (0 %/%) and (0,-"%).

For this type of loading the same loading
device as in Case 2 was used except that the two skew
steel blocks were placed symmetrically on the transverse

axis of the bridge model along the V-direction. (Fig. 1.6).

7.4 Testing Procedure and Recording of Data:

The PCA - 300,000 1bs. testing machine was used to
simulate the load through the hydraulic ram in all the

three cases.

Deflectioqs at different points of intersections of
gridwork were recorded by dial gauges (Mercer Dial
gauges, accuracy 10-3 in.). To measure the strains,
electrical resistancestrain gauges were used. Strain

rosettes (Type LA-06-125 RA - 120) were mounted on the
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top face of the deck plate and linear gauges (Type LA -

06-062 AK - 120) were mounted on the bottom face of the
longitudinal beams. TFig. 23 shows the location of the
strain gages on both loaded and unlcaded side of the

model bridge. A Datron Digital strain indicator to-

[

gether with a switch and balance unit, a Datron polarity
transposer and printer control unit was used to record
the strains. (Fig. 1.7).

The results of the experimental tests under differ
ent types of loading conditions are presented in the
form of figures, comparing the experimental and theoret-

ical values at various points of gridwork of the skew

model bridge. (Figs. 2.1 to 2.23).
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VIII
DISCUSSIONS, CONCLUSIONS AKRD SUGGESTIONS

FOR TFURTHER RESEARCH

8.1 Discussions of Experimental and Thcoretical Results:

For a single point loading on the midspan of central
longitudinal girder, comparison of Figs. 2.1 to 2.4 shows
that experimental values of deflections are higher (14%
maximum) than the theoretical values. For the same type
of loading comparison of girder bending moments calculated
from the mecasured strain gauge readings (Figs. 2.5 to 2.11)
shows that the moments arc at some point 12% higher (Fig.
2.5) than the thecoretical values and at some points 11%
(Fig. 2.10) lower than the theoretical ones.

For two point loadings on the longitudinal and trans-
verse axes, the experimental values of deflections are
observed to be 13% (maximum) and 14% (maximum) higher than
the theoretical ones (Figs. 2.12 aﬁd 2.19). For thec same
type of loadings experimental values of girder moments were
within *¥12% (maximum) of the theoretical values (Fig. 2.21).

A comparison of the normal stress distribution along
the depth of the longitudinal beam (Fig. 2.23) shows that
experimental values are 13% (maximum) higher than the
theoretical ones.

Both experimental and theoretical values of deflections

and moments are observed to have higher magnitude towards the
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obtuse corner than these at the acute corner (Figs., 2.2
and 2.0). On the averagce, experimental valucs are ob-
scrved to be higher than the theoretical solutions.

The deviation of the theorctical solutions from the

experimental results may be attributed to the following:

(a) Effect of discontinuity on deflections and stresses:

Since the spacing of gridworks, the rigidity of which
is assumed to bec continuously distributed for the substitute
orthotropic plate, is larger than the dimension of the
applied load [23}, which is usually the case in bridge deck
design using concentrated wheel load, the discontinuity of
steel plate deck system is of consequence in determinations
of deflcctions of the system and bending moments and stress-
es of the individual members. The effect of the actual dis-
continuity could be considered by taking an effective width
in computing rigidities of the equivalent system. Hence,
it may be inferred that higher values of rigidities in the
stiffness matrix, equation (3.1), result in lower theoretical
deflections and consequently lower values of moment than the
experimental results.

In order to cxamine the effect of effective width on
the theoretical solutions of the problem, 90% of the rib
spacing in the longitudinal dircction of the bridge was
considered instead of the full flange width of the origin-
al programme [23]. The results for deflections and moments
were found to be only 2% higher than the original solutions.

This, however, justifies the introduction of the concept of
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an effective width in the solution of gridwerk problewms,

1T

the value of which depends on the span of ribs and load
distribution on the deck floor. Ref. [23] gives an excell-
ent treatment of the cffective width of deck plate in orth-
otropic stecl deck bridges. The same values of effective
width as applied in the orthcgonal bridge structures may

be assumed to be valid for the skewed configuration of

this structural systemn.

(b) Effect of unsatisfied boundary conditions at

!

the free edge and imposition of constraints

near the simple support:

The boundary conditions at a free edge were first

expressed by Poisscn as:
My= 0, Myx= 0, Qy= 0

But due to the naturc of the fourth order differential
equation governing the behaviour of the plate systenm,
which is based on the small deflecticn theory, only two
boundary conditions are possible at the frec edge, and
later on Kirchoff proved that the last two conditions
concerning the twisting moment and shear force could be

combined into onc¢ single conditicn in the form of an edge

<

e

force expression as in equation (1.9g). These two bound-
ary conditions, My= 0 and Vy= 0, which have becen utilized
in the formulation of finite difference equations for
typical network points on the free edge, give risc to a
value of Mxy at the frce edge (Ba. 5.42). Similar expres-

sions for Mxy at the free cdge have becen presented in
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\_.._.J

Ref. [f This violates the Poisson's original
boundary condi ns at the frece edge and will have some
cffect in the deviation of experimental valuves from the
theoretical sclutions. Similarly,the ceonstraints imposed
near the simple support as discussed in Section 5.2 may

be of scme conseguence in the determination of deflections

ural system.

-

o

he struc

ct

and bending moments of

-
i

(c) Effect of experimental and constructional

inaccuracies of the model bridge:

Instead of cooling the model bridge with cold water,

the substantial warping resulting from the intense heat of
welding, could not be totally balanced by subsequent an-
nealing of the system. The model had an uneven initial
curvature in its neutral plane in both longitudinal and
transverse directions. During the welding process and
fitting of the ribs with deck plates, a great dcal of
residual stresses might have also been induced in the
structure. The strain gage readings on which bending
moments and stresses have been computed could give lower
values than the theoretical ones because of these unbal-
anced locked-in stresses at some points (Figs. 2.5, 2.16,
2.21).

Due to the warping and non uniformity of the simple
support condition along the edge because of shimming, the
slightly unsymmetrical deflections of the model bridge
under the symmetrical loading is one of the major causes
of deviation between the experimental and theoretical

results.
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‘actors that influence the Analysis

t

8.2 Discussions of

and besign of the Gridwork in Skew Bridges:

“

(a) Number of girders and diaphragms with different

spacing and stiffness ratio:

n

Figs. 3.1 to 3.4 show the effects of variation of
the number of longitudinal and transverse beams on deflcct-
ions and moments of the gridwork system under a unit concentrated
load at centre. As would be expected, larger errors can occur
for decks with smaller number of girders (Fig. 3.1), since
the assumpfion of the uniform spread medium will not be
satisfied in that casc. A system with seven number of gird-
ers seems to approach an optimum design as far as deflections
and bending moments are concerned (Figs. 3.2, 3.3, and 3.4).
Negative moment Mx (Fig. 3.2) at the simple support in-
dicates the effect of skew and the restraint imposed by
the cross diaphragms on the free deflection surface of
the central longitudinal girder.

In actual practice the road width, the skew span of
the bridge and the type of highway loadings to which the
bridge is anticipated to be subjected should determine
the spacing of the girders and diaphragms to obtain an
economical design. For this purpose several trial prog-
rammes can be.run on a computer with different number of
girders and diaphragms having different spacings and
stiffness ratios in both flexure and torsion.

(b) Aspecct ratio of the bridge:

The effects of aspect ratio on deflections and moments
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of the gridwork in skew bridges are shown in Figs. 3.5
to 3.15. TFigs. 3.5 to 3.9 show the varilation of deflcctions
and moments with aspect ratic for a skew angle of 459,

under a central concentrated load. Deflections of network

2]

t10

o

points sharply decrease with decreasc in aspect r
(Fig. 3.5). While at this angle of skew, longitudinal
girder moment HMx decreases slowly with decrease of as-
pect ratio, transverse moment My at a point near the
acute ceorner tends to increase sharply with decrease of
aspect ratio (Fig. 3.7). The twisting moment Mxy and
the principal moment of the equivalent system decrease
at all points with decrease of aspect ratio (Fig. 3.8
and 3.9).

Examination of Figs. 3.10 and 3.11 shows that with
a large skew angle of 609, the variation of deflections
and moments Mx with aspect ratio are more rapid than the
case with a 45° angle of skew under the same central con-
centrated load. Variations of deflections and moment Mx
for two point loadiné on the transverse axis and uniformly
distributed load over the whole bridge deck are shown in
Figs. 3.12 to 3.15. The &ariation appears to be similar
in the two cases for the same angle of skew.

An aspect ratio in between 1 to 1.5 appcars to be
desirable, although in practice, the anticipated traffic

density will determine the width of the skew bridge and

hence the aspect ratio.
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{c) Skew Angle:

Figures 3.16 to 3.23 show the effcct of variations

of skew angle on deflections and moments of the skew

48]

griliage system. With increase of skew angle, under a
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concentrated lgad at the centre, deflec
nodal point decrease sharply after the skew angle has
exceeded 30°. Up to 30 degrees variations of deflections
with the angle of skew is not very appreciable. Similar
is the variation of longitudinal moment Mx with the angle
of skew (Fig. 3.17). A slight increase in the value of
deflections and moment (Figs. 3.16 and 3.17) is observed
at the mid point of free edge girder with an increase of
skew angle up to 30°.

Fi

(3
-~

(921

.18 shows that zfter the skew angle has ex-
ceeded 30°, the transverse moment My at central interior
point increases slowly up to a skew angle of 45% and tends
to decrease slowly beyond this value. While My at the
interior acute corner decrcases appreciably, it increases
sharply at the interior obtuse corner with further increase
of skew angle. This points to stress concentration near
the obtuse corner with increasec of skew angle.

The influence of increasing angle of skew for two
point loadings and uniformly distributed load on the
deflections and moment Mx are shown in Figs. 3.20 to 3.23.

From this study it can be justified that up to a
skew angle of 229, the crillage in skew bridges can be
analyzed in the samec way as the right girder bridge by the

method of lateral distribution and distribution coefficicnts [3}.
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(k)

(d) Poisson's Ratio:

The value of Ax was varicd from 0.0 to 0.33 to show
its infiuence on deflections and moments of the struct-
ural system (Figs. 3.24 to 3.29). Under a concentrated

load acting at the centre, a change in the value of/éx

¢

'3 resulted in a decrease of deflection up

st

from 0.0 to 0.

¢

to 15% at central point, 3% at the mid point of free edge,
11% at the interiocr point near the obtuse corner and 8%

at the interior point near the acute corner, respectively
(Fig. 3.24). The influence of Poisson's ratio on moment
Mx (Fig. 3.25) for a concentrated locad at centre appears
to be appreciable. An increase of 8% and a decrease of

7% in the value of Mx were observed for central interior
point and mid point on the free edge for an increase in
the value of/éx from 0.0 to 0.33 (Fig. 3.25). VWhile a
change of Poisson's ratio does not have an appreciable
effect on moment My at interior central point (¥Fig. 3.26),
a sharp decrease of My was observed at the interior point

near the acute corner.

ool

igures 3.28 and 3.29 show the influence of
Poisson's ratio on deflections and moments Mx at differ-
ent points on the bridge under uniformly distributed

load. At the mid point of the frce edge deflections in-
creased by 4% for an increase of Poisson's ratic-frem O

to 0.33 whereas deflections at the central point decreased
by 10%. For the same variation of %x, the interior acute

corner deflection increased by 4% and the interior obtuse
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corncr deflections decreascd by 3%. Under the same uni-
form loading, though the moment iix docs not change app-
reciably at the central point and intcrior polnt ncar the
acutec corner, an increasc of 5% in the value of Mx at the
mid point of edge girder was observed for the same variat-
ion of Ax (Fig. 3.29).

From this study it is clear that a proper valuc of
Ax which 1s not a material constant as Poisson's ratio
propcr but an elastic constant corresponding to the form
of the system (since the value of Ay is determined from
the relation Ay= %idx) should be incorporated in the an-

alysis of gridwork with deck slab to yield a more accurate

solution.

8.3 Conclusions:

From the investigation of this problem it has been
shown that the theory of orthotropic plate can be effect-
ively used in the analysis of gridwork in skew bridges.

The difficultics encountered in satisfying the bound-
ary conditions along the simply supported edge and {ree
edge of the structural system (the imposition of constraint

Wy +wy-2we= 0 near the simple support may not always be
true depending on the loading condition) arc not of a serious
nature, since in actual practice extra reinforcement would
be provided along the simply supported edge to take the
support reactions and the free edge would normally have

some form of footpath which would prevent heavy loads to
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be apnliecd at the free edge of the skew bridee.

1 (=] 0

By simply changing the data cards in the gcneral
computer programme, all the variable paramecters such as

and

pte

girders and diaphragms, their spacin

Ial

je]

nﬁmber of
stiffness ratios and aspect ratio for a particular align-
ment of a skew bridge can be examined to obtain an op-
timum design.

Due to simplicity in application and quite a good

1

degrec of accuracy in results, orthotrcpic plate analysis

(

of gridwork in skew bridges by the method of finite dif-

ferences, may be used as a powerful design tool.

8.4 Suggestions for further Research:

Though the elastic analysis dominates the field of
bridge engineering, it 1is now generally acceptable that
the understanding of any structure is incomplete unless
its behaviour beyond the elastic range is fully invest-
igated. Hence the elasto-plastic and plastic behaviour
of gridwork in skew bridges may be of considerable in-
terest and practical value for economical design purposes.

Since the ultimate strength design presupposes that
the governing forces acting in the structure due to dead
load and live load are calculated by elastic theory [6],
it is recognized at this point that further research be-
vond the elastic range should be carried out to have a
clear insight of the structural behaviour cf gridworks

in skew bridges.
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A.  APPLICATION OF FINITE DIFFLRENCE EQUATIONS AT
DIFFERENT MESH POTNTS

free dge

2\\\\\\\
NV
VAV AW \z:;g;:
NAVAVAVAVAVAY
ANAVEAVIRY \\
\\\\\\\

Liree edge

Model By 1doe
ref. fig.

1. At point 18, Eq. (5.1) represented by Fig. 8(b)

can be applied as follows:

{?A(3%+2)+By(ﬂ?+4oc+fﬂ +Drv(éﬂhhﬁ}w@-y{g57(£+@_gm
Dﬁﬂ}vwa+{By(rﬁ2)}w6—%ivﬁBy}M@f{fﬁ%}W%

+ {(/Jr/ﬁ) (< By +A+DE”) +25. 8y} wip +5-2e {2A+By)-2D1’v(2/>’b

+l>~2A} Wi +—{(rﬁ) @ﬁﬁy—fA-%D?”)—-?@.Bx}m”4’+-{ﬁ48y}mg’

~ e
+ g,‘/’l»/z (eCBy +A+ DQQQ’>}W,, -+ { e A +//5 (px -~ 8)’/2)}\/\/,6

3 (% (o By + A+ D)Zv)}wlg’ 'f{fﬁ %\4} Wi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156

+

{//55?’}\/\/9 +{(s_/6) (o< By +A+DXY) —28.8y | wig
* {* A(ZAiav)—QDyv(2540 ~2A}va

s § () (cBy 1+ axD) 42p By [ Wi+ {-p By fwy s g7 BY I,
B (ecoy +A+Dx") s + DCM/f (5 2) }wie

—/% (0\.13)’ +A+ DX )} wl o+ i/b Dy}“// +{ 2By (Dc+?) -2 (A

+D:€"')}W:5’ "’{15\/ (,,/3/2)§ wg' = %myﬁm ---Ea. 1.

4
M,\MJ\

2. At Point 3, Eq. (5.27) represented by Fig. 15(d)

can be applied to obtain the following deflection equation:

14,
[ + f 43y - [ -PEL fw
2y - -2 (A-7) +2p;a4/éx} w0

ey
s §3.0Y 4 3 (a-Y) w2 (pH)) By (i#f72)-30% Ui § v
+ {1-29:1-7—% - _Zé.%}.f A-T) +epRlhist vy +5 ey +5§;“’Z/}
- /A;By ~DX%(7(W5 +§ @. (/-\+qv)} wg, +{A-ﬁ,5y+y-/ﬁm+s@§w7
é’-\+/3 3/)1_»7»/3(,41-9/)};«/9 + /'" (A+$b)}vs/,9
+{ 2(A+ By +¥} wp + {’5 B>’j wu o+ By f e +§/3>’ G- vis

+ %‘/6' BY}WM) -+ ?ﬁ T}wls = (’_9 ) ij -- EQ- 14

.‘.

SPAXPy 2
The formulation of the stiffness matrix [A] can now be
easily performed when the appropriate finite difference
equations are applied to cach of the mesh points in a

similar manner.
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FI
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thickness of slab T
b, - width of longitudinal beams FY
- clear depth of longitudinal beams ZX
- repeating width of siab in
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NOMENCLATURE COMPUTER LAI\‘CU.»".\G E
Bx BX
By BY.
7\)’ AH
Tx BY
Ro= My AS
p =%tond : BET
Fr FT
Fp Fp
Gx GX
Gy GY
A = By /4L+ By x* AX
M= (Brby +Brix +40) /2 H
oc = F4x" ALP
7 = (Bx-Byix)x" GAM
D = 2H-Bx-By D
Kx = Bx +/Ax By XK
Ky = By + /iy Bx YK
S = 2Mux +F>7.’Ky , DEL
W = (2H-Brfay —Bx)E" SI
2 OMEGA
Mx RMX
My RAMY
Nxy : RMXY
B.M. max. Principal moment of the BAMAX
B.H. min. equivalent plate ~ BMMIN
& - Angle, the maxm. Principal THETA

moment make with x-axis
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C. FLOW DIAGRAM OF GENERAL COM
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OF STIFFNESS
MATRIX

PRINT STIFFNESS

CALL SUBROUT-

INE TFOR MATRIX
INVERSION

DEFLECTIONS

PRINT
DEFLECTIONS

COMPUTE
Mx, My, Mxy

COMPUTE EQUIVAL-
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CEVEL 1% MATN ' DATE = 7015°
42 CONTINUE
PRINT 222
222 FARMAT(1HC,15HDEFLECTIONS ARE)

DO 21 T=1,118

i
i

21
.71

Ve

PRINT 71:1,W(I)

FORMAT (1HO,30Xy2HW%Z,12,2H<#E13.6)

PRINT 1€&,DETRH :

FORMAT (1HO,14HDETERMINANT IS/F13.6)

Bl=—BX/{AH®*2)
A20=(BETSYMU-RETHYK*(ASE%2+RBET*%2%YMU) /DEL ) %B1

A2 T={-BETHYMU+RETRYKH(ASHR 2+ BET *%2%Y¥(J) /DELY*B1
RMX{25)=0.

RMX(24)=A20%W{ 18)+A21%W(5S)
RMX(23)=A20%W{ 16)+A21%W(10)
RMX(22)=A20%W{11)+A21%W(15)
RMX{21)=R20%W{ &I +A21%UW{16)

REX(Z20Y=A20%WTTI+AZI®W{1T)
RMX(19)=0,.
RMX{18)=(-YMU*BET*KW{ 121 +2, XYMUXW (13 ) +YMU*BET*W(14)

T 142 K {ASKR24BETRR2AYMY) KW (1T7) =20 ¥ {ASHE2+YMU+BETHH2YMUI*W(18) }¥B1

RMX{(17)={-YMUXBET*W(11) /2, +YMUSW({12)+(ASH%2+BET**2XYMU)I*K{16)
1=2 % (ASEXZ2+YMUHBE TREF2FYMUY WL T) + {ASHR2+BETHH2XYMU )W (18)

ZHYHMURBETSW(15) 72+ YHURW( 14 ) 1 *B 1

RMX{U16)={YMUXWILL1)+YMURBET*W(12) /2. -2 3 LAS*%2+YMU+RET**2%YMU)

C1HRC16)+(ASHER2+BETHE2KYMU) ¥ W( 17)+YMURW (15 ) =YMUBET#U (

141/2.,)%81

RMX(15)=(-BETxYMUXK( Q) /2 .+ YMURW(10 )+ {ASH=2+BETHA2%xYMUI*W (14)
1-2 . % (ASHH2+YMU+BETHX2FYMU) *W(15) +YMURBET#W (171 /2. +YMUXKW {16} }*B1

RMX{14)={-BETHYMUXW{8) /2 .+ YMUXW{9}+YMUXRFT*W(10) /2.

THOASER24BF TRV M) HW( 131 -2, *(ASHHZ2+ YMU+BETHE2%YMUI*W(14)

2HCASHR 2+ DETHRX2RYMUY XW{ 151+ YMURBET*W(18) /2.

BHYMURW (17)=YMUSBET*W(16)/2.) %Rl S
TRMX(13)=(~BETHYMURI(T) /2. + YMURK( 8) + YMUSBET#W(9) /2.

TH{ASHE24BETHR2EYMU) ¥ W( 12) =24 F{ASHI2+YMUFBETHX2EYMUI*W(13)

2H{ASHkX24BETHH2XYMUY XU 14 )+ YMURBETRW(17) /2. +YMUXW(18)

B-YMURBET*W(17) /2. ) %P1
RMX(12)=(-BETXxYMUXW{6E) /2 +YMURW{ T} +YMUXBET*W(8)/ 2.
T+{ASHER24+BETXRH2FYMU)FW( 11 ) =24 FLASH¥2+YMU+BET*#2%KY MY ) *

2+ (ASHEX24RETR*X2XYMUIRW( 13 )+ YMUNXRET*W(16) /2., +YMUXH(17)

3-YMURBET*W(18)/2.)%*81
"“X(ll)—(YMU*W(6)+YWUrBFT*W(?)/Z. 2 ¥{ASHRZ2+YMU+BET*

1+ CASHER 24 PETARR2RYMUY #W{ 12+ YMUSW (1 6y -YMURBET*W({17)/2.

wiizy)

*2%¥YMUI*W(11)

19/22/58

Y%xB1

RMX(IO)’(—BET YMURW(4) /2 +YMUTW{S )+ { ASER2+BET*E2XYMU ) =W (9)

12 K (ASHER2FYMUFBETHR2XYMU) =W (10 +YMURBET*W (14) /2 +YMURW(15) ) *B1
PMX(Q)=(=BETHVMURXW{3 1-/2 +YMUXW (4 1+ YMUSRETHW(5) /2.,

T+ (ASHER2+BETHAH2=YMUI KW B) -2 H(ASTR2+YMUHB ET %X 2%YNMU) *W (9)

2H{ASHE2+RETHX2FYMU) kW 10)+YMUSBET*W(13)/2 . +YMUXW (14)

~YMUXBET*W{15)

3/2.Y%B1
RMX{RY=(~BETHRYMURW{Z) /2. +YMUXWI[3) +YMUXBET=W{4) /2.

JH(ASHF24BETHR2AHYMUIHW( 7)) =2 % (ASKKR24YMUHFBET*%2%YMU) %W (8)

2H{ASHAHBETAR2HYMU) HW () +YMUSBETHW(12) /2. +YMURKW(13)
B-YMUSBET=V{14) /2. ) %81

‘4x(7)-(~BFT yr.‘u-1.r(1)/2 +Y-4u-==w(2)+YMU BET*M%)/_ZV.M__-

2+(A§»~2+§5T*“2 Y”U)«”(8)+YMU*BET*W(11)/2 +YMUSW{12)
2=YMUSRETHW13) /2.) %R}

AMX(A)=(YMUSH LY+ YMURBETHW(2) /24 =2 « ¥ (ASH#2+Y MU RETH% 2% Y MU )XW (6)
1+(“§”*?+°FT**2'YVU)*‘(7)+VMU‘W(11)-YMU BET*W(12)/2.}%B1

Al 1=-BXE{1.=-XMURYMU) ®ASHEX2 /L AHKR2)
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LEVEL 18 MATN DATE = 70153 - 19/22/58

RMX(5)=A11%{W(4)=-2.%W(5))
RMXU4)=A1L3{W(3) =2, xW({4)+W(5))
RMX{3)=A11%(W{2)=2.%W(3)4+W(4))
RMX(2)=A11H{W(1)=2,%xW{2)4W(3))
RMX(IY=ATIR(=2. %W 1Y +W (2 ))
DN 22 1=1425
22 PRINT 202,1,RMX(I)

T 202 FORMAT (1HO, 30X 4HRMXZ 412, 2H<K#E13.6)
B2=~BY/{AH%%x2)
RMY(25)=0.

’RMY(24)=-RMX(24)
RMY{23)==RI1X(23)
RMY([22)==PMX(22)
TRMY(21)=-RMX{(21)
RMY{201=-RMX(20)
RMY(19)=0. '
MYUIET=(-BETFWOI2T+ 2 W (13T +BETFW T4 +2 K (BETHHR 2+ ASEREZREXMU ) ¥W (17)
1=24%( 1 ,+RETHK2HASHE2AXMUIXW(18) ) *B2
RMYU17)=(=BETHW(11) /2. +W(12)+ {BETH*2 +ASHA2%XMU)%¥W(16)
TN 2% {1 JHBETHED 4+ ASHA2 XX MUY RW{ LT )+ { BET* %2+ ASEK2EXMU) XW (18)
2HBET#W(15)/2+W{14))%B2
RMY(16)={WI11)+BET*WI12Y/2.-2.%(1 ., +BETH¥2+ ASKk2XMUIXW (16)

T (RETEF 2 ASHFRIEXMUY EW( LT T+ WIS T -BET*W( 1472, YXA7
RMY(IS)‘( BETHUWIC) /24 +W{10)+{RETHA2+ ASKH2EXMU)I*¥W(14)
(1o +BETHH2+ASKE2XXMUIRW( LS V+BETEW(LITI/ 2. +W({16))%R2
'““““”“Puvt14)-(—pET W) /2 +WIQ)+BETHW(10)/2.+ (BET**2+AS%k2xXMU ) #W (13)
1-2,%{ 1 ,+RETH#2 +A Sk 2% XMUIXW( 14 )+ {BETHR2+AS#R2RXMUIXW (1 5)
2+BETHEN(18) /2. +WILT)-SET*W( 16)/2.)%R2
REMY (I3 )1=(=BETHFW{ 7)Y /2 +W{BV+BETXN(T) /2 s+ (RETEX2FASKEIEXMUVEN (12)
1= 2% (1 o +BETH%2 +ASHE2%XMU) HW( 13 )+ (BETHX2+ ASAX2%XMU ) *W (14)
2HBETHRW{17 ) /2. +Wl18)=BET*WI 17} /2, )%R2 ‘
TURMY(12)={-BETHW(6) /2 +W{T)+BETHW(8) /2 + (BETHH2+ASHR2 %X MU XW{11)
1-2.%01 J+BETHE2 +ASk¥ 2 XX MUY XW( 12 )+ {BETHH2 4 ASx%2%XMU ) *W (13)
24BETEW(16) /2. +W(1T)-BETHW(18})/2.)%RB2
TREAY{T I =S (WG FRETEN{ 7Y 72 =2 . # [ L  FBETHREOFASEREX MUY EW (11D
1H{BETHRX2+ASHH2%XMU) W 121+ W{16)-BET%W{17)/2,)%B2
RMY(10)=(-8BFT*W(4)} /2. +K{5)+(BETH%2+ASxx2EX MUY *W(9)
TTTTY=2 Uk {1 HRETHR2 4ASHE2 HXMUYRW( 1OV HBRETHH(14) /2. +W(15) ) %R2
RMY({Q)={-BETHW(3)/2+W{4)+RETHW(5) /2 e+ {BET X2 +ASH# 2= XMY ) %W (8)
1-2 % (1 J4BETH%2+ASEX2%X MUY ¥ W{ Q) + [ BETH X2+ ASK%2XX MUY XW(10)

ZEBETHR I 72, ¥ WIS Y -BET*W(1I5Y/7 2 1%82
RMYUB8)=(-BET*W(2) /2. +W{3V+BETHW{4) /2 + (BETHEX2+ASHX2RXMU YXW(T)
1-2 % (1 4+BETHE2+ASKkH2% XVU)*W(9)+(°FT**2+AS**2*XWU)*W(9)
T24BETHEW(12) /2.4 W13V -BET=WI14)/2,)%R2
RMY(T7)=(-BET*W(1)}/2.+W(2)+BETHW(3) /2. +{BETHX2+ASH¥2EXMUI %W (6)
1-2 % (1o +BETHRZFASHER2XXMU) X WITI+(BETRHZ24ASHA2HXXMU )XW (8)

HBETHEW(IT) /2., +WUIZY-RET=W(13) /2. )V *R2
RMY{O)=(W(LI+BETHW(2)/2e—2e ¥ {1 +BETH¥2+ASHKE2XXMU )XW 6)
1+(BET**?+AS**7*XMU)*W(7)+H(11)-BET$W(12)/2.)*BZ
RMY(5)=0. e
RMY{4)=0.
RMY(3)=0.
RMY(27=0.
RMY(1)=0,
DO 23 I=1,25
23 PRINT 203,1,8MY(IY 7
203 FORMAT{1HO,30X 4HRMYZ,1242HLK#E13.6)
A12==2,%C*AS/{ AH%%2)
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1656

1964
1965

1967

1968-70

169

VITA AUCTORIS

Borsn at Ranges
East Pakistan

from Rangamati

Completed Secondary School
reccived first grade

L)

GCov't. H.E. School and
Scholarship.

Stood first class second in order of merit
in Intermediate Science Examination from
Sir A.T. College, Kanungopara, under

Dacca University.

Stoed First class Second in B.Sc. Enge.
(€Civil) final examination from East Pakistan
University of Engg. and Technology, Dacca.

Joined the AssociatedBritish Consultant Ltd.,
Chittagong, E.P. as an Assistant Engineer.

Appointed as a Resident Engineer in 'The
Engineers Ltd.' Dacca, E. Pakistan. -

Promoted to the Post of Senior Engineer
(Design} and held this peosition until left
for Canada for higher studies.

Entolled as a Graduate (Teaching and Research)
Assistant in the University of Windsor, while
pursuing a Master's Progrem in the Department
of Civil Enginecering.
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