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ABSTRACT

An elastic analysis of gridwork in skew bridges by 

the method of finite differences has been presented 
through this investigation. The analysis is based on 

the theory of equivalent orthotropic plate which is 
considered to be a substitute of gridwork and slab 

system of skew bridges.
By using appropriate boundary conditions finite 

difference equations have been derived for different 
typical network points covering the entire bridge which 
is simply supported on the two opposite sides and free 
at the other two. Simple formulae have been presented 
for computing bending moments in longitudinal and tran­
sverse girders of the grillage skew^ bridge. Several 
factors such as number of girders and diaphragms, their 
spacing and stiffness ratio, aspect ratio of the bridge 
and skew angle have been studied. A study of the in­
fluence of Poisson's ratio on the stress distribution 

has also been made.
An experimental study was performed on a model 

skew bridge under three different types of loadings.
The results obtained from the tests are found to be in 

satisfactory agreement with the theoretical solutions.
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NOMENCLATURE

Bx , By Orthotropic flexural rigidities per unit
width in x and y directions

Bxy,'.Byx, Orthotropic torsional rigidities per unit 
t f y , ■f'p width in x and y directions
bo, lo Spacing of longitudinal girders and cross

beams
C Torsional rigidity constant
C-̂  Shape factor involved in the torsion

constant of rectangular section
E Modulus of elasticity
F j , Fp Torsion constants of plane areas in long­

itudinal and transverse directions
G Shear modulus of rigidity
H Apparent torsional-rigidity of the equi­

valent orthotropic plate
Ij, Ip Moment of inertia of plane areas with

respect to longitudinal and transverse 
directions

Lx, Ly Span length and width of the bridge
Mx, My Bending moments per unit width, acting

on sections, normal to x and y axes, 
respectively

Mxy, Myx Twisting moments per unit length acting
on sections normal to x and y axes, 
respectively

Po Concentrated load
p^ Uniformly distributed load

q(x,v) Load intensity at point (x,y)
qQ Line load per unit length in x direction
q0 Equivalent combined load acting at node

point

x
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Qx, Qy Shear force per unit length perpendicular
to x and y axes

V x , Vy Support reactions per unit length on
edges perpendicular to x and y axes

w Displacement component in z direction
w is called 'deflection'

x,y Horizontal rectangular co-ordinates
u ,v Oblique co-ordinate axes as shown in

Fig. 5

Torsional parameter
7x, 7y Dis tances between node points in x and y

directions
Tu, Tv Dis tances between node points in u and v

directions
/ i x ,  Xy Poisson's ratio associated with x and y

directions
<ox, 4 y  Unit normal stresses in x and y directions

7xy, 7yx Unit shearing stresses on planes perpend­
icular to z axis but parallel to y and x 
axes

2 -3- a2
v  = — 0 + -r-;> Laplace's operator in two variables

c>x2 . £>yc

U  J ?Ks = V  w

0 Angle of skew

xi
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INTRODUCTION

A grillage or gridwork is a structure composed of 
two systems of intersecting flexural members, the 
members in each system being parallel to one another 
and continuous through the point of intersections.

In the field of reinforced concrete the study 

of gridwork in skew bridges is of considerable in­
terest and practical importance when a highway bridge 
is to cross streams, railways or other highways below 
at an oblique angle. Because of the present practice 
of transporting heavy loads, an accurate method of 
analyzing the behaviour of main girder and cross beam 
is essential. Owing to the high degree of statical 
indeterminancy, the actual stress distribution imposed 
on such a grid system by an external load is a problem 
in itself. The number of redundant components is gen­
erally considerable which complicates the numerical 
calculations so that analytical investigations become 
highly involved.

To reduce the size of the problem, Hendry and 

Jaeger [l]* assumed that the transverse members of a 
skew grid may be replaced by a continuous torsion - 
free spread medium of equivalent elastic rigidity. 
Further, the whole grid is taken as a simply supported

* Numbers in brackets refer to the number of reference 
in the Bibliography of this thesis.

1
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2

beam carrying all the applied loads. The solution is 

then obtained in the form of first harmonic distribution 
coefficients, in terms of two dimensionless parameters. 
The method is restricted to a limited number of long­
itudinal girders and the engineer is to be satisfied 
with determining only the approximate critical moments 

because the complete solution of even a simple grid in­
cluding the evaluation of all the stress resultants and 

deformations at every point of the structure is very 
impractical. Furthermore any change in loading data 
entail a separate series of calculations.

Langendonclc [̂ 2j presented a method to analyse 
gridworks of skew bridges consisting of only two simply 

supported equal longitudinal girders connected by equal 
and equidistant transverse cross beams. With the a s ­
sumption that the loads are applied at the intersections 
of the cross beams with the girders it was possible to 
yield an exact solution to the problem in terms of tri­
gonometric polynomials, by satisfying conditions of 

static equilibrium and geometric compatibility. But 
the extension of this method to the case of bridges 
with a greater number of longitudinal girders involves 
cumbersome arithmetical computations.

Recently a remarkable change has taken place in 
the manner of the approach applied in structural a n ­
alysis to the solution of gridwork problem. This is
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the new concept of 'Equivalent orthotropy1 14, 3, 11,
13J. For the purpose of estimating overall deflections 
and stresses, the skew bridge stiffened with longitud­
inal and cross beams may be conceived to be replaced 
by a substitute 'Equivalent orthotropic plate1 of a 
uniform spread longitudinal stiffness and a uniform 
spread transverse stiffness.

R. Bares and C. Massonet 3 have presented tables 

and diagrams for the distribution coefficients based 
on the theory of 'equivalent orthotropic plates' which 
are very effective in the analysis and design calculat­
ions of right girder bridges. Extending the theory of 
equivalent orthotropic plate to the analysis of skew 
grillage, Naruoka and Ohmura [ 4 ] derived skew network 
finite difference equations using Marcus' finite diff­
erence approach to calculate the influence coefficients 
for deflections and bending moments for simply supported 
orthotropic parallelogrammic plate. They employed a 
network proposed by Favre, dividing the plate into a 

6x6 skew mesh.
Based on this analysis, Fujio, Ohmura and Naruoka [s] 

proposed formulae to calculate the longitudinal bending 
moment at mid.span of interior girder in grillage skew 
girder bridges. In formulating the finite difference 
equations they neglected the Poisson's ratio effect on 
deflections and moments of the equivalent orthotropic 
skew slab. But Kennedy and Tamberg [6]in their broad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

and critical discussions against the background o£ 
available analytical and experimental method of solution 

of skew bridges have given special considerations on 
the influence of Poisson's ratio on the stress distribut­
ion of a skew slab.

Based on the same network as suggested by Favre,
Basar and Yuksul [7] have also developed the finite 
difference equations for an orthotropic skew slab. No 
numerical results were given. But some difficulty was 
experienced by Basar and Yuksul (and presumably Naruoka 

and Ohmura) in satisfying the condition U=0 (Eq. 4.2) 
along the simply supported boundary of the orthotropic 
plates and a constraint is imposed near these edges,
g inro •f-lngy USGd SIX LOUS tO si 1.1TI i.n.3. £.0 f i. V 0 \IT1~

knowns.
A similar problem occurs if Jensen's [17] network 

is used.
Fawcett [8] has suggested that the external points 

to the simply supported edges be left initially in the 
finite difference equations to be eliminated later on 

when the final set of simultaneous equations is being 
formed. Situations arising from the suggestions of 
Fawcett have been examined in this investigation.

Coull jjL8j has published an approximate method 
for the analysis of simply supported uniformly loaded 

orthotropic skew bridge slabs with two opposite edges
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5

free. He used the principle of least work in conjunct­
ion with the assumption that the load and stress com­
ponents may be represented by a power series in the 
chordwise co-ordinates, the coefficients of this series 
being functions of spanwise position only. He found, 
on comparison with model tests on isotropic slabs, that 
agreement between theoretical and experimental results 

deteriorated with increasing skew.
Cheung, King and Zienkiewicz j^l^J applied the 

finite element method for the solution of isotropic 
skew plate problems. Recently Powell and Ogden ĵ 20j 

have published a paper on finite element method of 
analysis of orthotropic steel plate bridge decks in 
orthogonal configuration. This work can be extended 
to include the effects of skew for the analysis of 

gridwork in skew bridges. But the choice of a proper 

displacement function, satisfying not only the cur­
vature criterion along the interface of the elements 
but also slope compatibility, appears to be a problem 
for an idealized orthotropic equivalent skew slab ĵ l9j .

When the two systems of intersecting beams forming 
the gridwork of a skew bridge are not orthogonal, skew 
anisotropic plate theory as proposed by Lie |̂ 24j can be 
applied to the solution of gridwork in skew bridges. Since 
the governing differential equation of an anisotropic plate 
in skew configuration is very involved, a transformation of
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6

the flexural and torsional rigidities from a skew aniso­
tropic plate to an equivalent orthotropic parallelogrammic 
plate may be made and the analysis of grillage skew bridge 
can be based on the theory of equivalent orthotropic skew 
plate. However, the additional work taking the anisotropic 

form of the system into account as well as an experimental 
test on a plate with orthogonal beams will be carried out 
in near future and will be reported in the literature.

The present investigation stems from the need to study 
by means of an elastic theory several factors that enter 

into the analysis and design of gridwork in skew bridges.
Such factors include number of girders and diaphragms, their 
.spacing and stiffness ratio . in flexure and torsion, aspect 
ratio:, of the bridge and skew angle.

Based on the theory of equivalent orthotropic parallel­

ogrammic plate which is assumed to be a substitute of grid­
work and slab system of a skew bridge, finite difference 
equations have been developed and compared with those of 

available solutions [4,7j . A comparison of present analysis 
with a numerical solution of a skew grillage based on the 
theory of anisotropic plate jj?4,25j has also been made. 

Favre's skew network has been used for deriving the finite 
difference equations for deflections, bending and twisting 

moments.
Theoretical solutions have also been verified with 

experimental results.
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7

I

THE THEORY OF ORTHOTROPIC PLATE AS APPLIED 
TO THE ANALYSIS OF A GRIDWORK AND SLAB 

SYSTEM IN ORTHOGONAL CONFIGURATION.

The study of the composite action of grid and 

slab system may be arranged to form a sequence of 
structural forms, the sequence beginning with an ideal 
orthotropic plate, a simple gridwork and ultimately 

ending with a slab and grid pattern.
1.1 Orthotropic plate

The analytical approach to the problem of an 
ideal orthotropic plate, which is composed of materials 

exhibiting elastic symmetry with respect to three 
mutually perpendicular planes (i.e. materials which are 
orthogonally anisotropic), is based on the classical 

Poisson-Kirchoff’s simplifying assumptions [3] relating 
to the form of the material of the plate and to the 
state of strains induced by external loading. These 

are the same usual assumptions as used in the small 
deflection theory of isotropic plate.

The differential equation giving the relationship 
between the deflection and the loading of an ideal 
orthotropic plate, often referred to as H u b e r ’s eq-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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8

where w is the deflection of the middle surface of the 

plate at any point (x,y) and q(x,y) is the loading 

intens ity.
The rigidities are defined as:

1 12 0 5

PH, = 2 (2 rV  B xy, ■) 
,2>

= ? 12 + /it* y.

B — X̂ X — s(jLy 6x I

(1.2)

Following Huber we define the shear modulus as:

where Ex = Ey = E (1-3)

1. 2 Simple Gridwork
Mathematical similarity which exists between the 

behaviour of plates and grillage seems to have been 
realised first by Timoshenko [14] . This basic concept
has been used by Guyon and Massonet [sj who used Huber's 
solution of orthotropic plates and applied it to the 
analysis of right girder grillage.

Fig. 1 shows a system consisting of n simply 
supported longitudinal beams of span Lx running in the 
x-direction and m cross beams of length Ly running in

. Lythe y-direction and free at the ends y  = ~ ~o~

For the purpose of analysis the concept of 'Equi­
valent orthotropic plate' as a substitute of original 
gridwork is utilized where the elastic stiffness in 
both flexure and torsion of discrete beams are assumed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to be continuously distributed to have a uniform spread 
longitudinal and transverse stiffness. The system is 
now submitted to a virtual deformation defined by the 
elastic surface w = w(x,y) which yields the governing 
equation for the equivalent substitute of a simple 
gridwork in the form:

, + By' 5 V  = 5*4 c>x*dy2 a y4
(1.4)where B x '= Br B / __ B e.

bo L0
2 h '= It ' +
Y ' <k_ n / p ' =
h  ~ bZ > F lo

B t = Ex. It and BP= E/ ■ Ip are the flexural rigidities
of the longitudinal and cross beams, respectively.

/■“_ o -n A ~ o f- Vi o f n r c i n n o l  ri nirli ti p c  r\ -f V» 1 nnrr*N— I v*-. w  w v *  ^  ^  ^  ^ v .  —  w  ̂

itudinal and cross beams, respectively.

1.3 Slab with grillage in tivo mutually perpendicular
direction.
The slab stiffened by longitudinal and cross beams 

may also be replaced by an 'Equivalent orthotropic 
plate’ provided the ratio of gridwork spacing to slab 
boundary dimensions are small enough ■££ \  } to
ensure approximate homogeneity of stiffness JjllJ . The 
elastic parameters relating to the substitute system 
are assumed to be continuously distributed in the two 
mutually perpendicular directions.
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The theory of the 'Equivalent orthotropic plate' 
presupposes that both the longitudinal and transverse 
beams of a composite system are symmetrically placed 
with respect to the middle surface of the equivalent 
slab so that the true system possesses a horizontal 
plane of symmetry. But in a bridge deck system, both 
longitudinal and transverse beams arc placed asymmetric­
ally with respect to the slab portion of the cross 
section. An eighth order partial differential equation 
[3] is obtained as a more rigorous solution based on 
the consideration of displacement components u, v, and 

w in all the three x, y and z directions. Bares J\3j 
has shown, from the analysis of the three dimensional 
problem mentioned, the important fact that the shear 

distribution is considerably dependent on support 
condition and loading intensity.

For the plane stress analysis, in order to minimise 
the error due to eccentric position of the beams with 
respect to the middle surface of the plate and hence 

the problems entailed with the torsional rigidity have 
been investigated by many authors £3 , 11, 13, 23j. 
Huber's fourth order differential equation for the eq­
uivalent orthotropic plate which must satisfy both 
equation (1-1) governing the problem of orthotropic 
slab, and equation (1.4) corresponding to the problem 
of simple grid of beams was finally obtained in the 

form:
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B x - ^ x  -+2H ■ ̂ fi-g + B X = % l x ’ y) (1-5)5*4 aX2c)y2 £)y4 *>
, _ Ex - h3 h Ex-Isx , Ex.?,?h ,

where Bx = ,f?TXi,) + “ ST" +  i - x . k i  (a)

i- £y' ̂  - Ey £sy i £y' n i i-i n
By " “T T "  + ~ T a a T  tb3 F  5

2H = & x  My + B//&. + 4C (c)

and h = thickness of the slab

bo = spacing of the main girder 
lo = spacing of the cross beam

and Z2 are the distances of the neutral surface 
of the repeating section from the middle 
plane of the slab in longitudinal and 

transverse directions, respectively.
Isx = Moment of inertia of the longitudinal beam 

about the neutral surface i.e. Zp below 
the middle plane of the slab.

Isy = Moment of inertia of the cross beam about 
the neutral surface i.e. Z£ below the 
middle plane of the slab.

Isx and Isy are calculated for the beam-sections 
without regard to the slab.

4C = 7t+ YP
The values of YT and 7p are the torsional rigidities 
determined by means of torsion constants F t and Fp 
of the sectional areas corresponding to the different
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elements constituting a section.
In case of an open slab and beam section (T-beam) 

as in Fig. 2, the torsion constant of the entire re­
peating cross-sectional area is given by the formula [3]

Ft = j?hoh3C, + b.afh.-h) C, 5 
FP = £ioh3c, + b/ Ch?-h) Ci • (

(1.7)

where the first term of the right hand side refer to 
the slab portion and the second term to the beam 
portion of the section. The value of the factor Cj 
depends on the shape (side ratio) and is called the 
shape factor involved in the torsion constant of a 

rectangular section.
The value of is given in the following table.

hibi i 1.5 1.75 2 2.5 3 4 6 8 oO

Cl 0.141 0.196 0.214 0.229 0.249 0.263 0 .281 0 . 299 0.307 0 . 333

Now Equation (1.6C) of the apparent torsional rigidity 
of the equivalent system:

2H — Bx'by + Byskf. •+ AC

4C = yT f rP - C,x + Gy-
is defined such that (1.8)

bo Lo

Gx and Gy are the shear modulus in x and y direction, 

respectively and are defined as:

Ex - -Gx = and Gy = -y
2 C i + My )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The stress couples, shear resultants and the vertical 

reactions are expressed as:

ax
a

Ky = - E y ( ^  + ^ ^ r )

Mxy = -PC c~) vJ
d x d y

Qx =-Bx Bxl/ +2c')a X3 v. y  ax<?/2

Vx = ' el f e .  + ( 4 fe + iv ) l

Vy = -B> L dv ' 1 4 ry +'4<) ax2c>y

(a)

Xb)

(c)

(d)

(e)

(f)

(g)

(1.9)

Positive directions of stresses, stress couples and 
the shear resultants of an orthotropic plate elements 
are shown in Fig. 3 and Fig. 4, respectively.

1.4 Dimensionless parameter:
A dimensionless parameter 12is introduced which is 

characteristic for the resistance in torsion of the
structural pattern and limited by the values 0 and 1.
This interval covers all the structural systems. For 
the simple grid of beams of weak torsional resistance 
.(2=0, while 12 = 1 relates to the true slab.

Q  is expressed in the form:

/ b y  Bx "P M * -t Tr "P12 = (1.10)
P / B x  B y

and is evaluated by employing the theorem of Betti

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

which proves that:
Bx by  ~ By sIa*

or M y  =  b x
&K

1.5 Orthotropy of form:
In the analysis of gridwork, it is recognised at 

this state that the factors M * and b v although represent 
the relationship between the stress b  and the transverse 
strain £, are not material constants as 'Poisson's ratio' 

proper but are elastic constants corresponding to the 
form of the system. Hence the name 'orthotropy of form' 
as distinct from the 'orthotropy of material.'

The value of My may be evaluated from the relations 
of Eq = (1=6) and (1.11), Tn the present analysis of 
gridwork in skew bridge,the influence of Poisson's ratio 
on the stress distribution will be studied for different 

values of h* and its relative importance will be discussed 
in details.

For the case where Ex = Ey = E and

EGx = Gy

Eq. (1.10) reduces to:

_ Q  = /fcSy + 4 C i <-SH7T7- )
Ft Fp
bo Lo

B y  /
* M

(1.12)
V

Ref. has given several values of /hx corresponding
to the different types of gridwork with regard to the
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different material of construction. For simple beam 
grids without slab the Aralue of 4X = 0 is acceptable. 
For reinforced and prestressed concrete box section 

■hx = 0.10 and for open section comprising a single 
slab (e.g. T-beam section) A =  0.15 are sufficiently 

accurate. In case of orthotropic steel deck bridges 
the value of ^  may be taken as 0.3.

The flexural and torsional rigidities as defined 
in Eq. (1.6) for orthogonal equivalent gridwork will 
be assumed to be valid for an equivalent orthotropic 
skew plate. The differential equation governing the 
problem of the equivalent orthotropic skew plate whicli 
is a substitute of grillage in skew bridges will be 

derived in the next chapter.
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y+-?7dy
c/y

4 V

FIG. 3 P O S I T I V E  DIRECTIONS OF STRESSES

F I G . 4 O R T H O T R O P I C  PLATE ELEMET SHOWING 
POSI T I VE  D I R E C T I O N S  OF STRESS 
COUPLES AND SHEAR RESULTANTS
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II

APPLICATION OP ORTHOTROPIC PLATE THEORY 
IN THE ANALYSIS OF GRIDWORK IN SKEW BRIDGES

Theoretical Background:
The plane stress solution obtained for orthogonal 

grid systems by orthotropic plate theory proved to be 
veil in accordance with numerous experimental data and 
comparative analytical investigations gave further 
justification to this new method of solution.

Naruka and Ohmura [4] were the first to assume that 

the theory of orthotropic parallelogrammic plates will 
be effective to the same degree in the analysis of skew 

girder bridges as the orthotropic rectangular plate in 
the analysis of right girder bridges. Applying this 
basic concept the governing differential equation (1.5) 
of equivalent orthotropic plate may be transformed to 
skew co-ordinates parallel to the edges (u, v) for a 

skew gridwork system as follows:
If (x, y) are the rectangular co-ordinates of a 

point (Fig. 5) in the middle surface of the plate, 
with (u, v) the corresponding oblique co-ordinates 
and 0 the skew angle

then
u = t f y t a n  4> 

v = y Sec <fi
X.u

Fig. 5

(2.1)
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Differentiating E q . (2.1) with respect to x and 

one obtains:

■ax
3 v
Sx

= 1

=  0

3u
By = 4:an cf>

, Seccj>ay

(2 .2)

Since w is a function of both u and v

3 w
3 x

3w
~5>?

c)vs 3u 3w <3v _ B 
du dx S>v 3x $ 0.

S>«/ 3u 3w
3u c>y 5>v

jhs
ay M 2 - 3 )

^r.+ao<6 + ■ Sec <j>au av

After successive partial differentiation of Eq. 
the following relations are obtained:

%3w t3 w
3x2 Bu2

-2a w a2w
dx dy Bu.z

ji JU3 w dw +.
dy2 au2

d^W
dx3 du5

c) W C?w
8x2dy au3

3̂  w -cs
0X<?y2

d\y ,
3y5 a u * 1

+  *

0-
t a n  cj> - f   Sec1 J5,i JSis

a.
3 1*
(?U ̂  v 
J-o W
BuBx

+ Sec2 '

•fan —  Sec <p
L du' -dv

$ u7- Bv 

■_ 5e <r2

(a)

(b)

(c)

(a)

(b)

(c)
a w 
c?k av3-

3  4> + ̂  __dif-av+ 3-ilhL_ fan2-̂  Sec (d) u2, ^n’-av
fan d> Sec*? + ^  5«<V an av2- * T 3^

(2.3)

>(2.4)

>(2.5)
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4<y W
a t *

$^w
c>x2c>r d u 4-oin2<£ -+2 -\&ncf> 5 c c 4>

(a)

(b)

dy4

+ ^ w i> e c1 
d i i1 dv2

-f- 4 -^V7 S’ Z c f i<?tH dLp’cPv
+ 6 <?̂ w 4qr>2<5& S e c 1 ^

d vp-dv2-

+ -f ^  Se^4>

C c )

<9̂iv

2 0

I- (2.6)

Putting the values of —  ̂ into
Equation (1*5), one obtains the fourth order partial 
differential equation of the equivalent orthotropic 
skew plate which is a substitute of gridwork in skew 

bridge in the following form:

(a... j.ou -f 6  v -(̂ a n  ̂  <ji

+ M H  +fln 4> $ec<t> - MBy ferrv’d’ ^ec4~)
dvp Jv

+ ( 2 H $ e c 2 4> + 6 3 / $ e c ' l 4>')
d u %d v 2

+ ( 4  By { a n  4> 5ec*<p') +  (By Sec*4>) - % ( x ,y ) (2.7)
and/3 d y 4

The stress couples, shear resultants and vertical reactions 
of Eq. (1.9) may be expressed in skew co-ordinates as:

O' W
~dlMx = -Bx

My = -By

Mxy = ~2c

Qx = -ax

Z -  +  L J  S & . I q n 2 <p +  2 Jran<]> $ ? < 0  + £* T
U2 y  I  du^ <3̂  <3̂  dvz J_

*2, ^
dw L n J - S  +  2 S l  4-a* <P 5 ? ' $  +  T ^ 7 SecW-i- t x  ̂~ 4 a o  y  t  ^  ^<2u

^  f 5ec<^
- aw1 <5n <3v

du3.
= -ex A  - c6 ■ +  2 O [ % y < - « - 1*  + 2 f e > " * S" Jdu cJtt̂ dv

(a)

(b)

(c)

(d)

(2 . 8)

+ dw <j>
dudv"1
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-v*+ 5<5^ dvr"

+ $ € C Z 4>T -V. :w*Du dv'

Vy = -B

Recently Patterson and Cusens j^2lj have presented
a solution of orthotropic skew plate under uniform load. 
The solution is an extension of an early work by Kennedy

infinite series representation of the deflection of an

the case of a slab simply supported on the two opposite 
sides and free at the other two were found unreliable 
due to the use of Kirchoff's two boundary equations in­
stead of three. Moreover the method presented by Patters 
and Cusen [21J does not consider the application of the 
concentrated loadings on the skew orthotropic slab.

Because of the complicated boundary conditions, an 
exact solution of the fourth order differential equation 

governing the behaviour of simply supported orthotropic 
skew slab with tivo opposite edges free has so far proved 
impossible. Since in a bridge structure a loaded vehicle 
would act more as a point load distributed only over a

and Huggins who developed a method using a single

isotropic plate with edge stiffening beam. Results for
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small portion of the deck slab, finite difference method 
seems to he the best analytical method available in
dealing with such point loads. In the present invest­

igation, the same approach which Basar and Yuksul [7] 
have utilized in their formulation of finite difference 
equations for a simply supported orthotropic skew slab 
has been folloured in a somewhat different manner that 
leads to a fairly simple solution incorporating all the 
essential parameters of a gridwrork in skew bridge which 
is simply supported on the two opposite edges and free 

at the other two.
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III

THE METHOD AND SOLUTION

Due to rapid development of the computing machines 

and the good convergence properties of the method of 
finite difference which replaces functions and their 
derivatives by algebraic expressions involving only the 
values of the functions at a finite number of points 

in or near the region or interval of interest, the 

complicated boundary value problems involved in this 
present investigation will be solved by this method. 
Replacement of functions reduces the problem to a set 
of simultaneous algebraic equations.

The method permits the immediate writing of the
force-displacement relations in the form 15 , 16[A]{KHq} (3.1)

where |q| is a column of static loads acting at a 
predetermined set of points (called node points of a 
certain netv^ork^ and |wj is the column corresponding 
to vertical displacements. [ a J is the conventional 
stiffness matrix obtained by a few algebraic operations 

The method of central finite differences will be 
applied in the solution of the problem.

3 .1 Computation of Equivalent Plate Moments:
Solution of Eq. (3.1) yields numerical values of
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deflections at the nodal points of the equivalent plate. 
By substitution of these values in appropriate moment 
equations (Eq. 2.8), numerical values of moments are 
found. Combining the sets of influence coefficients 

for Mx, My and Mxy, influence coefficients for the 
equivalent principal moments with their directions at 
ail the network points may be computed according to the 
equations below:

3.2 Computation of Beam Moments:
The moments acting on the equivalent orthotropic 

plate may now be integrated over the whole flange 
width of the beam to compute the bending moments which 
are of greatest importance for design purposes. For 
example, the moment in longitudinal beam B in Fig. 6A 
in x-direction is given by:

o-5 ba

Similarly moment in transverse beam C in the 

y-direction is given by:
rsLo

^ c(y)~ f  M y d x  (3.6a
0'5l0

If the cross beams are in a direction at an angle 0

M  = +I i max 2m m > (3.2)

%

1-5 ba

(3.5)
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with the y-axis, the bending and twisting moment of the 
transverse beam in the oblique direction v, for example
at point A, in Fig. 6A are given by [12J

M v  = Mx'Sin2<£ + M / C o S 2c£ -2Hxy'5in 4> C° $ (3.6b)

H w  = ~ ̂ Iv") ̂  4> C o s 4 > + b U y ' (3.6c)

where Mx ’ , M y 1 and Mxy' are the integrated moments o v e r  

the spacing of the gridwork at the section under consid­

erations.
Equation (3.6b) and (3.6c) can be derived from the 

equilibrium of an element of the plate as shown in Fig. 6

\
r\

dx

Fig. 6. Moments acting on different planes

The integration of the equivalent plate moment for the 
beam may be carried out by Simpson's Rule [o]. Thus
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for a mesh size of n division, the integral of a function

corresponds to the magnitude of functions of moments 
within the region yn and Vo . If the spacing of the 
longitudinal and cross beam is small and coincides with 

the mesh point layout, equivalent plate moment can be 
considered to be the average value within the flange- 
width of the gridwork.

3.3 Limitation and Accuracy of the Method of Finite Differences 
The approximations by the finite difference method 

can be limited to a minor interference which breaks the 

deflection curve at discrete points and join them in 
straight lines. Hence the finite difference equations re­

presenting the original differential equations are valid 
as long as the finite number of points which have been 
reduced from an infinite number of points on the deflection 
surface and arranged to form a certain network are close 
enough for straight line approximations. ' Of course finite 

difference equations do not exactly represent the original 
governing equations and hence it is not an exact mathemat­
ical method. However, when properly applied, using finite 
number of network points it is a sufficiently accurate

f ( y ) may be evaluated by:

f nfCy)dy = - | ^ T f  C%) + 4 f O O  ■+£ f  </s?H...........d f ^ - 0
O

where (yo-yo) represents the spacing of the gridwork in 
either x or y direction and 3 f cy,) , f cvz) •••• etc.,
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tool for analysis of complicated structural systems.

3.4 Selection of Mesh Sizes:
In the present investigations since seven number 

of longitudinal and cross beams at different spacings 
have been prox^ided for the model skew bridge, numerical 
solutions were obtained by dividing the equivalent bridge 
system into 6x6 skew panels so that nodal points of skew 
meshes coincided with the point of intersections of grid­
work in both longitudinal and transverse directions to 
facilitate direct comparison between experimental and 
theoretical results at these points. However, the effect 
of different network spacings on the accuracy of the 
results has been examined by dividing the plate into 4x4, 

6x6 and 8x8 meshes which resulted into 8, IS and 32 
simultaneous equations, respectively. It was observed 

that finer mesh sizes produced about 3% and 6% more 
accurate deflection and girder moment Mx, respectively, 
at the point of maximum stress intensity than the coarser 
mesh size. This is expected because of the inherent 
limitations of finite difference approximations.

Though the number of simultaneous equations increases 
considerably with the choice of finer mesh sizes, it does 
not impose a problem to the solution of the structural 
system when an electronic computer can be conveniently 

used for this purpose.
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IV

OUTLINE OF THE METHOD OF FINITE DIFFERENCES 
AS APPLIED TO THE SOLUTION OF SKEW GRIDWORK

4.1 General Approach
Adopting Marcus' method, the fourth order differ­

ential equations of equivalent orthotropic plate can 
be split up into two equations of second order as given 
in reference [7] in the following form:

Bx + 2H"5X4
-Jd w

=  (■ dx2
5 ^  ^  ■ * f r ' v )

-) (8

, )
c> w  
c>x2

- ( -t-

(4.1)

Writing

and

a w 
ax2 x  » -f#- - Y

2H - Bx - By =■ D

(4.2)

(4.3)

Eq. (4.1) reduces to

$u
d x z

3jj_
3>yz + D

and
7. 2.0 + B c1
ax2 d y

+ D

a x  = 
ay2
dx Y _

* (4.4a) 

(4.4b)

Eq. (4.4a) can now be easily put into finite difference
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the gridwork in 

fourth order

the complicated 
of the equations. 

Since the approach followed by Basar and Yuksul 
is relatively simple compared to that of Naruoka and 
Ohmura, derivation of finite difference equations in 
the present investigation is primarily based on Ref. \ l J 

The final expressions of the equations derived here, 
have been compared with those of Naruoka and Ohmura jVj 
which appear to agree when and in the present sol­
ution are put equal to zero. Comparison of the present 
solution with those of Basar and Yuksul [7] revealed 
minor discrepancies between the two solutions which 
may be attributed to the arithmetical computations 

for (1) interior point near the acute, corner, (2) in­
terior point near the obtuse corner, (3) general edge 
point and edge points near the acute and obtuse corners, 

respect ively.

form using Favres' skew network for 

skew bridges.
Naruoka and Ohmura split up the 

differential equation in the form:

^ . + n = u
d Y  D x 2

where m = [h  + / b x By - H2 J
n = -gyfH-i/Bx By-H?]

which are further abbreviations for 
terms that occur in the derivations
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A comparison of the present solution by equivalent ortho­

tropic plate theory for gridwork in skew bridges with the sol­
ution based on the theory of skew anisotropic slab formulated

skew bridge system revealed very close agreement between the 

two solutions near the central portion. But a discrepency in 
the value of deflection and moment at the free edge was ob­
served which may be attributed to the unsatisfied boundary 
conditions as discussed in Section (b) of Chapter VIII of 

this thesis.
The simply supported edge boundary conditions and the 

boundary conditions of the free edge have been discussed 
and mathematically formulated when deriving the finite 
difference equations at different typical network points. 
Since six equations are to be used to eliminate five un­
knowns at the bridge boundaries, a constraint + w j ' - 2 vj0=o ' )

Eq. (5.4e § 5.4f) is imposed near the simple support. How­
ever, it is felt reasonable to assume that this constraint 
imposed near the simply supported edges is valid, since the 
deflections at these points of questions are sufficiently 

small so that the value of + ^ - 2 w o ^ ) tends to zero in the 
limit. The suggestion by Faucett ^8] of leaving the external 
points to be eliminated later when final set of equations is 
being formed, has been examined. Since it does not solve the 
boundary value problem, the external points for the typical 
network points near the boundary have been expressed in terms 
of deflections of internal points while formulating the 

finite difference operators.

by Lie [24j and used by Naruoka [̂ 25] for analysis of grillage
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F H• *7m i — "T̂ y I
Fin. 7.

T'u = Vx
Favre's Finite Difference Network

4.2 Finite Difference Approximations:
The deformation of the equivalent skew slab defined 

by the elastic surface w = w (x ,y ) is also a function of 
w =w(u,v).

Recalling the finite difference approximations for 
the partial derivatives at a point (ar,y ) or (u;v ) 
ranging over the domain of definition of the function, 
derivatives can be approximated in terms of deflections 

of nodal points of Favre's skew network as follows:

( All ̂  = —  f w/.pwo +w,)  ̂ 3uV0 T’u  ̂ '
*2

(LALLL)- J   (w\? -VV.'o +VV,'o' - ̂ 12')
^dudvJo 47-u?̂  ' 12 ' r (4-5)

\
Sv2/o 7\v2

Eq. (2.4) can now be written in finite difference approx­

imations as:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

= 2?- /w,'-2Wo +W,-)
7>/2  ̂ '

where X = - ^ — and T'x - Au
?K

(fe) = ^ /-2W0 + W,)  ̂+ 2?'m ?v
+ 4~2 (^?'-?w'c+'v2)

(4.6a)

(vVi£ - W ('2 +iv,'2'- Wi?' ) ̂ art 'f>  5(C<j>

but T'y = ?y 5 e < r a n d  putting p  $

one can write

/ d^\_ 
( S>y2/<T 7*y2

[ / £ ( * , ' + * , )  -  ( 2 - f 2 ( b L) ^ o  +/| (-w,'? + W,24 w,-g

+ iV2'+ w 2 J (4.6b)

Hence z

( fr*+ 1 ? V  O V >  fWl'+ w 4 -  +«  >"
-t/i (-W,'2 +^12 + vVi,2'- W|21' } + W2'+W2^J

— J-. ̂ I" oC ( w/+Wi ̂ — ('2 +? o<- ) Wo
[?l (-w,'2+1̂12 +W|'2Cw,i2')+VJ2 v̂,iJ(4 . 6c)

= /32+ x 2

u °= Ê # 4 +8^ # 0 °
-  7 y 2 ^ ("& x  Z 1,4 B yj^v )  ( ^ i ' + w i )  -  ( 2 3x■3e’4'-+ 2 5 /  + 2/51" B y ) w D 

(-W /g  +  W(2 + W |,2/ -  W (2 ')  •/- By fw 2 / + w '2 )|

whe re

?\y2 A  Cw.' +  Wi) -  6?A + 2  By) Wb 

f ^ B y  (-Wi'2 + w /2 -t-V'/jfe- VV;2/ )  +  By ('w 2 /4 W 2 ') j ( 4 . 7 )

where A = Bx ;ev-f f̂ yys2
Following equations (4.6b) and (4.6c) the governing 
equation of the equivalent orthotropic skew plate 
Eq. (4.4a) for general interior point (Point 0) can
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be written a s :

v v  W = . L ? [ o c  ( L y +  U \ )  - ( 2 +?o>C) U o  + / j  C - lv 2 + u ,2  + ^ I 2 ' - U i 2 ' )

+ U2f + UgJ ■+ “ • 2 ft (X/+ X| ) — +2ji ~) Xo

\  f k  C-X,2 + Xj2 4-Xi'g'- * 1 2 ')
+ Xp' + Xg J = (4.8)

where,from Equation (4.7) and (4.3) it follows:

A (vvV-f-Wo) - ( 2 A -+ 2 By) vv/

+ /3-By (-w 3'? -fw2+w3y-vV ) + By (vv,'z '■+ w,'g) (4.9 a)

A ( W 3  + W0) — ( 2A +  2 8 y ) W |

71/27.„2

U ‘ 7V

(4.9b)

U,2 = 1̂y2

i t U = 1
v

_|_^3.Sy ^->v2 +W 52  +W 2 - 4 6 y  (’ w'tg /4  vJi?)

U 12 -  2 ( w s'2 + “ (2 A 4 ? ®>0 W|/?

4 -+w^t + W 3/ - Wo") By (w ^ ̂  (4.9c)

A Cy 2̂ 4 ~ ( 2 A 4 2 By") **42

■f ft- if-ŵ  + W 34 +wo -W3) + 8y <(Cv, + W| 4)) J  (4.9d)

A ( vj-2,'2'+ w 2' )  -  (2A + 2 By)w/2;

+ f t-®/ (-v^s'+ vjo -v vv w<')-f-By (wi'-hX/Y) (4 . 9e)

U,2' = -^2[a  (w?' + W3?') - (2A+ 2 By) w <2'

f A  ̂  (-Wo + Wj + W 3̂ ]') -f By (wĵ '+W;̂ ) (4 . 9f )

112'= ^ [ A ( ^ V 4 W , 2') — (2 A-t 2 By) w z'

f /3. 6 W/+Wi + W|q'~Wjig ) + By W  Wo) j ( 4 . 9 g )
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U

and

2 = V j^A (w i'2 ■+ Wi2 ^ — A  ■+2 2>y') w z

( -w,q + W|^ + W|'-i«̂ i} + By (w0 + j (4.9n)

x , ' =
2

( <3w 
V dx2

~\ 1 - ("WV-2 W /+  U/q')
J1 T y2

( a )

X , =
V

j j r
f.yZ

(wo - 2 Wj -+ W3) (b)

X0 = £
T'Y2

f w /-2 W o  4 w i ) (c)

X \r2 = y?'
T'y2

( ^ z '2 ~ 2 'Wi'g + w 2) (d)

X i? =
T'Y2

(W2 - 2 Wjj> - f  W 32) (e)

x , v = *?’ 7y2
(wz'2' -  2 w /2 ' -f-Wg') (f)

x ,? ' = XT
? y %

<V 2 ' -  2 w /2' +  vv32'^ (g)

X2' =
t y2

( Wj'2 ' - 2 ^ 2 / ■+ w 'ig ') (h)

x 2 = Xp
? Y 2

- 2 YJz 4 W,2 ^ (i)

>(4 . 10)

These finite difference approximations which have 
been used successfully in complicated boundary value 
problems can be utilized to formulate difference 
operators to be applied to different types of skew 
girder bridges, e.g. single span simply supported 

bridge, continuous bridge over several spans etc., by 
incorporating suitable boundary conditions. In what 
follows, the solution for a simply supported bridge 
grillage, pertaining to this investigation, will be 
obtained in terms of finite difference equations.
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V

DERIVATIONS OF FINITE DIFFERENCE EQUATIONS

In this Chapter finite difference equations for a 
simply supported skew grillage bridge with two opposite • 
edges free at y= + ^  will be derived. To cover the 
entire equivalent plate it is necessary to formulate 

difference equations for nine typical network points. 
These are: 1) General Interior Point, 2) Interior Point 
near the left simple support, 3) Interior Point near 
the right simple support, 4) Interior Point near the 
edge girder, 5) Interior Point near the acute corner,
6) Interior Point near the obtuse corner, 7) General 
edge Point, 8) Edge Point near the acute corner, 9)
Edge Point near the obtuse corner, respectively.

5 .1 General Interior Point:
Putting the values of U a n d X  in terms of d is­

placements from F.q. (4.7), (4.9) and (4.10) into 
equation (4.8) one can deduce the governing equation 
for general interior point a s :

V V  W = [ cCA ( w j '  +  2w o + w j )  (2A -)■ a B y )  (W i'-+ W i)

+
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+ | { a ( -w3'2 + W a2 + - <"2A + 2Sy) £-w/2 4^i2 + w^'-iw.g')

+ (^ V p  - 2 w j  -2 v s /j/ -2 w ^ ' +  lV2,4 4W3V - f ! V j4' )

+ By {w /|^  -  W,'<] +WV4' -V V |4/ ’)  j>- 

+ A  ( w iV  H-W ij'+W i'e +VN/12)  -(2 A + 2 & y } (fwg + w 2'_)

+ yGd|y (v/14 -Wi'i] + w ,^ '_ iA fM ')  -f-By ( vv^' - f 2 wo +  y j  

+ X ) ^  (fvV j'- 2 w ,7 + 2 W C -  2 w , +  W j )  -  ( 2  ■+2fb1')  (w ,'-  2 wo + w .)

+ fL  ( - W3'2 + 2 w ,'2 - 2 w , j  -+ W 5 2  - fw j '2 ' - 2  vs/,'2 ' -+ 2 i v ^ '  -  V^2S ,~) 

+ ^ V V 7 - J? Wp' 4* W  \g l -f- W  /g — 2 Vp + 2̂) = fo?/ (5.1)

From equation (5.1), coefficients associated with 
deflection of different nodal points can be separated 
as shown below:

Coefft. O f  Wo : 2A £3*+2) + By C/̂ -t 4,̂  + 6) + V X ^ C b ^ A )

" " w, : -2°c (2 A-t p?y) - 2 D K 1' (2^+1) -2 A

" " W/ : - 2  cC (2 A+e>y)  - 2 D X 1'  (ZfP'-tO - 2  A-

"  "  w!z : _2> By C + 2 )  - 2  ( A +  D X '5' )

It ! i vvy - 2 By foC + 2) - 2 ( A + b 3C 3

" " Wj : OCA (X>^~

II n vv3< ; c<A + 1 ^ ( 0 ^ -

" "  w4 : By (> - l i t )
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Coefft >v4< : By o r | - )

v"i2 : 0 ( 3 )  O B y  A A A P X % )  - -2 /3 -By

W,2/ ; 0 + /3 )  (cK By A A  A DX1-) -+2/5. By

w/2 : By +  A  A j> ;< 0 ■42/3- B y

w/2' : O / 1)  ( p c e>y _f a  a  d ^ v )  -2 /i-  & y

: /S. By

w,4' ; - j i . & y

w/4 : - j h . & y

: j h . & y

W54 :
1 i

w *  ; A '.e y  
1 4

W iV.
O

W34' ;
O

u/32 : ( i  ( c C & y  -t A A D * ' ’')

; / |  O  B y + A A D ;ev)

W ?  : (O B y  +  A +

: ~ / |  (c< By A A A p?€v)
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Using Favrc's skew network, Equation (5.1) can now- be 
conveniently presented as in Fig. 8(b).

32

X

32'.32

Fig. 8(a)

General Interior Point

(i7 &y//\ 8 y 0 - 3 i )  f i&y

- 4  (■=< &y + A

+ A  i 
-BA-By

■f v x

(SA+By)

-/3) ( * & y  \  /§ f r B y  +  A +  D X 1-)

• j fSA + By') \  c<A\---1 . y ...-\ ( d x 1-- by/2 )

(<fO +2) \  (l-t-ft) (°<&y (cCBy

(A  ■+ DxP~) \ + A  +  D X 7-) \  -+ A + D x 1')
■+ 2/3- By

&y o - f / i ) -ft-5 y

> w - . p  V

Fig. 8(b). Finite difference equation for general Interior 

Point
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where 2 = * 1
7-x

1% = cj>

oC =

A = bx*?-* syy^ 

D = 2 H - Bx - By

r (5 .2)

simple support 
\

5.2 Interior Point near the left simple support
Boundary Conditions:

The conditions on the simple support are as follows:
(I) Deflections along the edge are zero. i.e. w = 0

Hence w (Cj •= ia/,'2 -w/ = vviV ■+ w (V  - o
(II) Since the condition of zero

=  0

and moment perpendicular to the 
edge are zero (Mn = 0), these 
lead to the boundary condition 
that sum of the curvatures in
two mutually perpendicular

sslope along the edge gives Sts'
d v 2

direction is zero along the edge. Fig. 9(a) Interior 
Point near the 
simple support.

Hence in terms of moments one can wTrite
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From Eq. (1.9) it follows:

- Bx ( % ■ ,  + A  C f e  f e )  = °

o r  C f ty  +  B x / y )  = o?>**  ̂ / <3yz (5.3a)

Following E q . (4.6a) and (4.6b)

and

^ $ 7  % 2  ( w ^ ^ w + w / o )  (5.3b)
<2̂

f|^) = “ 2 K'+wo) - ( 2 + 2̂ ) * / , '  a- /| (-̂ j'2 4 W H W 3'?'-Wj')

-f W /2 ‘ •+ * ] (5.3c)

Let Bx f By^x •=■ Kx

and B>y + Bx^y - Ky

Combining condition (I) into Eq. (5.3a) with the 
values of curvature from Eq. (5.3b) and (5.3c) one 

can write:

( k x x N- Kŷ >2) 6 vs' + Wo) + K/,|" ^ ‘V3/2 +w 2+ vv^ ' - ivz') ,o (5.4a)

From the condition of zero slope along the edge and by 
the method of interpolation one can deduce:

/ £w \  _ i r/jwi j./<? 
( a7A~ 2 ( ^ 3 '  +

W
c>v /q

- O

or

or

va/3/2 -W '$'2 ' W2-Wj'
2 ?'v

- O

(5.4b)
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Let kx ^ — &

From Eq. (5.4a) and (5.4b) it follows:

wy = ( * /£ ' -  y/2 ~) - wo (5.4 c)

Following the same procedure one can obtain:

w'2,/2= ( w o - W 2 (5.4d)<T

wy?'= (w^'-wo) — W2 ' (5.4e)

From Eq. (5.4b) it follows:

wy2'= P'JpL - ^ 2 ' (5.4f)d

Since n/^-wj' ■= w 0 - w,, (5*4g)

and - w j V  - w^-ivo (5.4h)

Hence ^  ) _w<f (5.5 a)
J"

and w 3V  _ ^-Ky_ cw2'-w2 (5.5b)
6

The set of two equations (5.4e) and (5.4f) which 
have different values for the same external point, 
imposes a constraint w*) tw^'-pw0 o , near the 
simple support. It is,however,assumed in the present 
investigation that this constraint is valid near the 

simple support.
Now, putting the values of exterior mesh points 

outside the boundary of the plate in terms of deflections
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of interior mesh points into Eq. (1.5) and maintaining 
the condition of zero deflections along the edge, the 
finite difference equation for interior point near the 
left simple support is obtained as follows:

V V  w  = f w 2 ' - W 2 ) -  Wo + 2  Wo - © C  ( 2 A - 4  2g>y) vV,

+ oCj3. By ,f — ( i - k * (Wo-w^i) -fW2 -f/3'̂ 21 ^ - W q 1 -f sv3 2 _ w/3 2'

+ oCgy -  ( 2 + 2  cC ) |aw, - (2 A t-P&y) Wo

(Wig -W|2' ) q-By ('W2/-t-W2

+ ^ { A  ( j ^ ' ~  <rvVo'w^  +VVz ’+W32 + ^ ‘T

- (2A+?By^ (w 12 - W|2')

+ ft- §y - 2y3 Jk ( w 2'- w2 ) -f-2 v/o -2\a/̂  - 2 w<]' -4- w/=,4

+ l$ -^y (yj2 ' . W 2 )  -v\q C Wg'.wj j 4 ^ 3 4 ^

+ By ( W 1 4 - w „ . ) j  -j-A (w/2' +  W 2 )  - f 2 A +2 By ) ( w g  4 w 2')

+ i3 (vJ,q - W|^' ) +• By (v\Zq' 4 2 w 0 4-w-j ")

(w2/-w2) - w 0 4 2Wo - 2 w, +w/jj __ (2 + 2̂ )  (-2wp•+■ w,^

2 

+

+ /I (vy0 -W4) W ;  -2w ,2 + W 32 (Wo-W<(^ - WjP \ r <r

+ f w l2'-W32')+ ('2w?' + Wi2'-2Wj +W|2^) -  py  (5.6)

Separating the coefficients associated with the different 

nodal point deflections, in the same way as in Section 
5.1, Eq. (5.6) can be conveniently presented as in Fig. 10(b)
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simple
support

Fig. 10(a)
Interior Point near the left simple support

(f-A-ty/gJ + S y ( i  \ ft>- B y

■ fry (4 +  2 q<- Q-fi) f a  B y  +  A  \ |  (<< B y

\+A([k - 2 - + By ^ *  Af D* y
\ + D ^ (

s *
A  (SoC  +  4 )  \ - 2 * C  ( 2 A - t  B y )  \  oCA •+
- fb ' - .Ky-A/f \ -24 - 2 D ^ (z f^  \  A ' f o x * -  &1 ) 
/ t D x V < + s f i  \  + • )  Y  * '

+ B>y (s ■+

&y (4 -+2°(. ■+ (t-tfi) (°(&y____\ ^  C°^By
-t-A - u > x v)

fW - fo^y

+ A(-1V?-2 \  +A + 0 * vJ
+ »c/3J<//«r; \ +2y3'8'/
+ D*Y-A£-2

f i1. A- Ky /g ̂ 
+ 6y

ŷ .gy

Fig. 10(b) Finite difference equation for Interior Point 
near the left simple support.
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5.3 Interior Point near the Right Simple Support:
From the same boundary condition as in Sec. 5.2, 

external mesh points outside the boundary can be ex­

pressed as:

W32 - Wo ̂ — Ŷ 2

W 32' = bf/3 (vJa -v*4 ' )  ~W2' 
£

W 3? ' =  - W o  } — yJ2 f
7

w

fv/?
<r

(5.7a) 

(5.7b)

} (5.7c)

(5.7d) 

(5.7e)W 3 <  =

and condition of zero deflection along the edge yields 

W/yj = Wi2 = W| ■= W ig ' -  W i4' = O

Putting these values in 
Equation (5.1) one can 

deduce the finite diff­
erence Equation near 
right simple support as: Fig. 11(a)

V v w = o C A  ^ w b' f 2 W o  + typ* I w 2 - W 2') -Wo') — c C  ( 2  A  +  2 B y )  CVA/i ' )

eC^, B y |  - W 32 4  \a/s'2 ' 4  6v<f - vVo) - w ? ('w '4 -w ' o ) + ^ j
2 L " 6  S

t  o C . Q y  + w / 2 )  -  f 2 + 2 < c )J  A (W /)  -  ( ? A 4 2  B y )  w 0

+ f t ( ~ w / 2 + W | '2' )  4- By ( w 2 ' 4 W2 ) |  f / | |  A ( -  Wj'a +  ( v ^ - w 0)

-Wg ■+ w 3/2 ' “  (vvc> — W V  )  4  W 2' ^
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( ? A + < ? B y )  (^ v v y2 4 4 ^ 3 - S y  ^ i a / c — 2 (*/g • w 2 / )  4  2  W o -2^=/

-  2 w j  -  2 v \V - t -  ( \ V 2 - W g ' )  -  w/4 +  +  vA/3'4 ' 4- i?Vy4 ( W 2 -  va/2 ' )  - w ^ '  j
d <5 /

+ By ( -  Wi'-f -+-W1V )  +  A  ( v v / 2 ' + W |'2 )  -  6 ? A 4- 2 E>y )  (  W? +W2' )

+ A  i h  ^ -vv /4  + w </̂ / )  -4 B y  ^ w -q '- t  2 wo + W 4 )

+  j>?e2 |̂2 V̂V5/-2\a/,/ -f-̂ vVo 4 6w2 -vv2 ' ) —Wô J - (.2 + 2y£ )Av/-2Wo)

+ / |  ( - w 3'2 + 2 w , '2 +  f w ^ - v v / o ) - W ? + W 3 V

+  W; +  I(w i/2 /-  2 4  ^ ' 2  - 2  ^ 2 ") (5.8)

Separating the coefficients associated with the differ­
ent nodal deflections in the same way as in Section 5.1, 
Equation (5.8) can be presented as in Fig. 11(b).

/ V 4 .-/S-By f r f x r + B r O - m f y x

B>y + A j- D \  (ftft) (c< & y  + A  \  — By CA 4 2 <=<? 4
4 D - ? V)  + 2 / 3 .  B y  \  +  A f - 2 - A  4  °<

W-DadY-/^

v » c A + / i V - B > /2 +£>^v) \ . 2oO ( & y  + 2A) \  A (SoO-f-A)-/^-1̂ r W  -ffty

\~ P A - 2  D?ev ( z ^ + ! )  \f-By (6 + §■/£+  ̂ “>0 )
4 PA?"1- y.? 4 Sy3z)

4  (°<~gy4A +  \  6 ^ )  fpQ B y  +  A - j-P x y \ -  By (~ •?42 °Q - ^ A g )

■ + A ( t \  - ‘2 ' ° ckrf*/j) 
4 £ ̂ ’Y/' -2 -fft-p :^

A (? « y  f 2 Y
■4 B y  Ci- ft. j A )

Fig. 11(b)
Finite difference equation for Interior Point 

near the right simple support.
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5.4 Interior Point near the free edge:

r free edge
- - 3 d _ 34

\

32

3.2'

Pig. 12(a)

On the free edge at nodal points 3'2 , 1*2, 2, 12 and 32,
My = 0

(My) f = -By t £ «  +/* - 0
K /Jed£e 1 1 dyz 7 I

* Y  ( $•, + 4 ^  0<y y ~ w/» #
~2Adding and subtracting 3/ to the above expressionax2

2. 2 2. J Z+ By ~ Bx -f Sy/M* ,|^t = o
3x2 2y2

but U = Bx + By ax2-
*2̂

Hence U ed^e = ( 6X - By/fx) ( ed3e (5.9)

For points 1 T 2, 2, and 12, from Eq. (5.9) one obtains 

U 1̂2 = (  Bx — Byy^x) ^  - 2 1A/|'2 + Vn/2)

—  „ ( w  3/2 - ? W,'2 -f W 2 )^ *2. c. y
h

(a)

Similarly U 2 = -2** + w 'a) (b)

(c)

* r ‘

1

r (5.io)

lii2 = —  CWg - 2(V/2 -f wg,^)
V
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where T =  (  &x - S y J j * )

Comparing Equation (4.9c), (4.9d), (4.9h) with 

E q . (5.10) one obtains the following relations:

B y ( — W j/ )  + w^j) +  0>y = - By w /  -  / |  B y  ( yJ * , ' -  yJ0 ~)

-{- (26y t ? A - 2 Y ) w l'? +  ( r -A )  ( m '2 -+ w 2) (5.11a)

^  £>y ( - W i ' e )  + W|^ )  -+ By W4 = -  By W0 -  [~  B y  C w ' -  w ()

+ ( 2 By -f 2 A ~ 2 y) K/2 ■+ f W|£ + ) (5.11b)

/ |  By -+ W 34 )  -f- B y  -  - B y  w ,  - / i  By ( w 0 - vv3)

-f (2 By -+ 2 A - 2 w/12 + ("/-A ) (W2 -t wjs ") (5 . 1 lc)

from Eq. (5.11) one can deduce:
2PJb' CvyJ*/  ̂-+ W 34 -2w^) ( - w /4 + W i -f By W 4

= -B y  Wo + ( y~A ) ^W i'g 4- W ig) -J- ( 2 B y  -¥2 A -  2 Y)  wg

• -j- /3 J li’ ( w ^ ' - S  Wo-i-Wi] + (^ ( 2  8y + 2A - 2 / )  (wi?-Wi'z')

4 ^  ^ 3 ? - w 3'2) (5 .12)

With these values of nodal deflections outside the 
boundary Eq. (5.1) reduces to:

v v w OC / \  ( W j ' ’ - f2 Wo - t ^ j )  - ° C ( ? A  +  2 B y )  ( W i ' + w , )

+  (~ W V 2  +  W 3 V  -+ W 3 2  - W 3 g') +  o t B y  (wi'y +  w , ^  -v W,?'h-w,2)

- ( 2 + ? o O ) ^ ' a  (\A//4 Wi ) —  ( 2 A - + ? B y )  W o  By (-W  /z + W 15 + W,,2/ -W12')
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+ By CWj'-t- W2) j .  t ( |  A + ^ 2  + Wj 2/ - W 3 2 Q

7,
-  / |  f 2 6 y + 2 A )  C -w / j  + W ,2 + W , V  - w , 2') +  t - Z v ^ '  +  ^Wo -t-w3y  + W j4, - 2 ‘A,3

2 lA/^'"j -f-/|  By _ W|ij/ j) _(- A  (vJ^' + Wi2; ■+ v^/2 + ^ 12)  -  ( 2 8 y + 2 A X w 2/

+ W 2 ') A - f t .  By f w i V - W i ^ )  -+- B y  2w oJ -  B y (w o )

+ (V -A )  ( v J i ' l  + W 12)  -A (2 6 y  + 2 A - 2 / j  w 2 t / 3 ' ^  W - 2 y J o - i ^ )

+  / |  {2 By - h 2 A - z / )  f v V / 2 - v^ | /2 )  - t  ( Y - A )  ( \ V 3 2 -  W 3'2j

+ D ??7’ ft (y/$ - 2 'aji' ■+ 2 vJo - 2 w  1 - f 'A /3)  — (z +  2y5 y ( w / ~  2 w o  -+WiJ

+ /§ (^ w -i2 +2^1? -2 W ,2 +W32 f-WaV - 2 w/a/_vy32/-f-2W'/2̂

1 - 4 -
+ 2W1 4 W ,2 = £ 0 ? y  ( 5 . 1 3 )

Separating the coefficients of deflections; E q .  ( 5 . 1 3 )  

can be presented as in Fig. 12(b).

f t  (cCBy+

ft/2 ft/By-i| &y-f / By (oC^-fi) - 2 & y ( l 4 ° G )  &Y
j.fi (cCB'
+2f+ P;>e

i p f t f t & y / j  \ ~ 2 o C  ( 2 A - t  B y )  \ 2 a ( B ^ + 2 . )  \ - 2 * C  ( z A + b r )  \ ° c A  +

-2 (■/-toxv’J \-ft (°<8y + tf) \ ft+Qxft+ r+ Dx̂ o-ft)

fzr?+'y\ +b / ( 5  + 4oc \  - 2A_2d?2 \  (^(~By4
^  J ^ + ( % ) + Z D X v( f \ + 0  ' \ + D X y

\+2̂ \
(/-/$)'(ocey+A' \-2&y (cc-fQ.) \ 0  tftU°<&y+4 \-| <«: ŝ.

-2 (D X ^ + A ) W  D x r) t 2f t -&y  

By 0 -  f t/2 )  \ - f t - B y _________

- 4-W : gcAy

Fig. 12(b) Finite difference equation for Interior Point
near the free edge.
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5.5 Interior Point near the Acute Corner:
From the boundary conditions of Section 5.2 and 

5.4, it follows that when the exterior points (Eq. 5.4 
(b, c, d, g, h)) outside the boundary

\ 3232 \- -

34/

Fig. 13(a)
Interior Point on Acute Corner

and (Eq. 5.11(a, b, c ) , (5.12)) are put into Eq. (5.1), 
finite difference equation for interior point near the 
acute corner is obtained as shown below:

v  v  w = |  ^ Ŷ z '~ v/2 )  +  w °  +  w 3 j“ ~  ^  ( ? A  +  2  E>r) w  i

+ p. ?£ By C s v ^ '-w o )  (CvV-wo)-t/v2 ' +  vv3 g - w 3 g ^

+ oC &y  + -  <’ 2 + 2 « < - ) j A w l -  (Z A  + ? e > J w 0 + P ? * C  ^ ‘2 -*> ? ')

+ By ( w 2'+ W 2)| + | | a  + W 2 + ^32 b/3-^ (W^-Wo)

-  Wj.' ~  ^ 2 S y  +  2 A )  (^12 '^12') +  (S -B y  ^ w 0 - 2 ^ 3  - 2 y3-^y ("w2 -vv2)

+ 2 w 0 - f  ( w 2 ‘ - W 2 )  -  w *\' -r w 3 f - 2 W < i ' ' j  -  ®y w , v j  

+ A ( w , y + W i 2 )  -  (20y  -f-2 A )  C ' r t z ' - i v J z )  ~  / |  &y w  lE  E  By

■ &/Wo <f r- ̂ ) w, 2 -f (a&y + 2 A - 2 /)W2 + /3<î -y (W2/-W2) -Wp-2Wo+W3I.
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£  (? & V  4  2 A - Z i )  w,2 +  / |  (V -A )  ( w V - w f e )  4 -W 2^

] > ^ a  ^ vV2/’- W 2 )  - W o  +2  Wo - 2 w ,  -f-V '^j. -  ( 2 +2^>1 ') ( - 2  W©+w/i )

+ ^vv^-vVo) + W j  -2 vv,2 4- W >2 -+P‘^ -  ( \sJ £jf- W o )  -va/2 ;

W32' 4 2 \ V | 2 ' ^  -  2 vVj. '+- W |2 ' -  2 w/j -+W |2 -  1 7V 
~ Y (5.14)

Separating the coefficients of deflections, Eq. 5.14 
can be conveniently presented as in Fig. 13(b).

py-

-AoC /3 K ^ -  _ 2 / - g g y ^ C + l )  g y V - y ? ) _,9 y  By 4 ^  A g  V & y  + /

i - ( k  (oC  B / +  / ;  \  4  /  + P X 1  d i-y8 )  \ T ^ J

4-?o?el- ( ' 2  4 / |  - / ^ j

A(5cC44) V 2 ^  (6y4?A) \ ° t̂ * p l(-&YA

4 - By f  5 4 A - 2>A " 2 D ^ V 2/ 3^ 1)  \  +  D ^ a‘)
\ j - n - t? 1- ^ \  \+  D

c r - A )

J \ c < f t  K y / £ - 2 A  \ d ’ 4 / ^  ( ° < & y  4-A \ ~ / |  ( ° g 6 y

y -  By -  A \  4  1> ^ v _) 42y3-6/  \  4  A +022 )

-2Sy(^+2) J .

S y

c a -*02<r

y- /3. By

Fig. 13(b)
Finite difference equation for Interior Point 

near the Acute Corner.
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Fig. 14(a)

Interior Point near the Obtuse Corner

Putting the values of nodal points outside the 
boundary (Eq. 5.7(a, b, c, d, e) , Eq. S.11 (a, b, c) 
and Eq. (5.12)) in E q . (5.1) one can deduce the finite 
difference equation for Interior Point near the obtuse 
corner a s :

v v  w  = | a  ^  + 2 w 0 +  - W 2') - W o) -  (2 B y  - f  2A ) W , '

+ f t  c~ -  B y  ■+ f t  (wc> -Wq/ ̂ - Wj — Ky/̂  ( v^o - •+• 'W2 J
\  g «r /

+ oC B y  ( v v , '? ' +  W i '2 ) -  ( 2  + 2 A W|' -  (2  By -+ 2 A )  ^  4 ^  By d-vV i /2 + vv>V)

+ B y(\A '2/ -+w2) -+ ( | | a  -+ C ^ - w ^ '  )  - W 2 + w ^ z ' - ^ ( W vV ) +wf )

- (i2B’Y -+2A) -+w /2')j- 4 Wo +w/av  -+ (w2-Wj')-*/«'

_ 2 ("Wg-wg') -+ 2Wo - 2 ^ ^  -f- By w,'̂ ' + A  (w/j' + w/2)

"  (2  B>y +  2 A') ( ,a /2 / + w 2 )  +  / |  & y  W i Y  -f- B y  + 2 w o )

- By Wo f (Y-A ) vy,'2 -+ (f?4 -f-2 By -2 /J Wz + / ^ y (^''Sw 0 + ̂  hvg-vv^-vvo)^ a

+ / |  ( y - A )  ( ^ -  6 v o - w V ;  - w 2 - w 3V )  t / |  ( 2 A ^ 2 &y - 2 Y )  ( - ^ 1 2 )
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+ P ^ <2̂ 2^ /3/-2Wi'+'2 Wc + ( w 2 - r t2') -WcT) -("2+2^3 C'V/-2w'̂

+ |  ( j - ^ 3 2  + 2w,'? + & ( *  ( « o - v < 4 )  - W 2 4 W 3V - ? w , ' 2' _ | / / ^ ^ 0 - w ^ ) +lvP)

4* W  1 ~ e? 1 4- Va/  j j? — 2 W 2 4 (5.15)

Separating the coefficients of deflections associated 
with different nodal points E q . (5.15) can be conven­
iently presented as in Fig. 14(b).

~/f foc&y - f / - f  D%%) By C ^ c - f / in /  A dC ^ y/ S  - 2 f
+fb (cCQy ■+#)
+ DXV/+/3)

\-/§ 0* ^ ^ )  
K~ 2 B y  ( c C  +1) 

^-Dx"2- (z+/| -/*

\oCA l /12 (~ (f?A4 B y )  \  A ( 4 + 5

+  D X ~ )
O A  *-> n. /_ a 1.-ivn -c UX (Syr-* 1 ̂

Y+Dx’' (SfhA-4)
\ + (?-Ky C?_A) 

2S

( ecB y  + A4PXa ) \  ( i- /3 ; f tc  & y + A  \  - d ^  K/ / S ~ Z A

y+ D X 1") —2̂3 ■ By

/*>/4

By Of + 2 =C)

^ A / k  4 D XY-2
vf |  - P g )

\+ Qy-^foA

By O - ^ A f

(A-
2S

L̂ W  = £P?V

Fig. 14(b)
Finite difference Equation for Interior Point 

near the Obtuse Corner
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5 . 7 General Frc-e Edge Point:

f r e e  e d g e
32 32__  \— I

Fig. 15(a) General free edge point

For the G.eneral Point on the free edge the second 

order differential equation (4.4b) is taken as the 
governing equation, i.e.

W w =
dx? ^y1- a>*2 0

Following Eq. (4.6a) and (4.6c) one can deduce:

( \J,'+ U \ )  - (2 + 2 oc.') U o  +  / f  f - . V z  -f- ( J i 2  +■ t V a ' - ^ i 2 ' )

-j- U g 7 ■+ U 2 +- p x
?yz

y tr - 2Vo +Y,J = (5.16)

From Eq. (5.9) for Points 1,0,1 one obtains the 

following relations:

U, ' -  ~ 2

u 0 =  C  * 1 ' -  2 W o  +  W , )
q (V" “ 2W| •+ ^ 3")

h

(a)

(b)

(c)

(5.17)
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Since Ky = 0 on the edge

- By ( ^
3 y z 7>x2 J

i  
)  V"

t>X2

o r ! ^ L \  . - L  f  d\v 1 , r
\,<>y2jec{%e 3xzied?e

Following equation (4.3) one can now deduce:

Y/ = - J ay. X,'

~  -  Jj,X. C VJ'b -  2 V J [ ‘ 4  vVo)
V

~Y0 = _/&x .Y- ((w i 2 +  Wi"j (5.18)
V

%  = - J . f X  ^  ( w 0 - ? W ,  - f v J i ' )

Again, from the boundary condition of free edge, i.e.

veitical isaction

Since

/V.) = 0  Eq. (1.9g) and Eq. (1.8) lead to:
\ Vedge

By i^L + (4c-\ Mx) ilL '
5>y3 By dX2dY

= 0

or B y  + d2H- b x A y )  i k  :o (5.19) / ay3 y ' dx^y

WU  =  By + S y / -
Bu _ a ,, F>\/ . c .= By iL Y . 4  By ,By 2>x2dy 5>y3

Eq. (5.19) can now be written as

iu
ay

+ (2H - B x A y  -  By'} (5.20)

Let F (*>y) be a function of x and y. From general edge 
point 0, (Fig. 1 5 (a))a perpendicular is drawn parallel
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to y axis touching the network line at t and s respect­

ively. Ref. 7 ] .
Hence b = 7y -Fan

Ft

A t P o in t 0 , / gj73F ̂  _ Ft- Fs
/'o ?Xy

.|.7'v _] 77
Fig. 15(b)

By interpolation:

F12 — F \2 bF* = F2+

= F2 4- y/3 C P"l2 - F /2 )

F

f|2

Fig.(15c)

Similarly

Fs = h '  C F12- FiV)

jF? + yyB C f i 2 - ( F 12-Hence 1
By jo 2?y (5.21)

Proceeding in the same way, for the function u , one 

can deduce:

au) _ _l _ 
dy)o 2?y (5

Similar to Eq. (5.22)

i d ? -  (  W / - 2  Wc> + VV/) i-
d / 1  v  J

??x3l
|vv,'2 +R/3 (w2- w $ (w2'-wbV)

g^w2 +iy3 (V,2 - w,'2)|+ 'a/2/- iy l (w 12*-

W[2 4-1A ^ 32- ^2) }  -T
— 12' -  ^[b ('a/32/ - \V2') [ (5.25)
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Putting the values of E q . (5.22) and (5.23) into Eq.

(5.20) one obtains:

U 2 + ^  ( V n -U/z)

= - £  -jw/z + ^ j l (w2-wVz)} - { * , ' 2 ' -  i-yj

- 2 1^2 (w <2 - w i2)j + 2 { ̂ 2 - gy# (W 12 /- WiV)}

+ | vv,2 +^y3 (W32 -W*)}

- { W 2 -EA (w-sz'-Wz' 
where <f = 0?H-Bx/y-Bx)*v ' JJ C5 -24)

Putting the value of u 2 from Eq. (5.24) into Eq. (5.16), 
the governing equation for general edge point is obtain­

ed as follows:

V V  w  = -Jj- 'Ay2! 2 Eg' -jo (Ut2 /-Uif2,)\ 4 T'y cC ( \J ,'+u i) - T'Y* (\ L'y2 l)g ' -  IS (  Ut 2 ' -  U l'2 ' )"| + T'y cC (  (J l'+ U  1)  _  ^  

I^W.'z -f C w z - W i '2 ) - { w / 2 ' -  

-2 { Wg + E/3 (v̂ i? - wfe) j + ? j iy4 (k/,2E 'A//2OJ 

+ | W 12 + -E/3 CvV32 - W2 )} - W 2 ' “ -gj/3 <f W32 l/V2')J-

+ ^Y/-2r0 +y,)= (5.25)

Comparing Eq. (5.17) with (4.9a), (4.7) and (4.9b) one 

can deduce the following relations:

I j b y  ( -W 3'? i -W 2) +By Wi'z ~ " B y  w , ' z '  By ( - W ? ' )  f(2A 4 - 2 & y - z V )  w , ‘

+ (/-A) (W}'+ w«)
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}tL
B y

5 8

By ( - w / j  +  vJ\7)  -f By w<2 — -  B y  By (  v j fe ' - W 12') A + 2  B y - 2 ~Y) w0

+ (T̂ -A) (h)

S By (- ^ 2 + W 3 2 } + B>y W 12 “ -By W 1 2 ' - /| 6 y C vVg'’- vVgj' ) d2 A + 2 6y-22^Wj

+ (/-A) fwo +vv3 ) (b) (5 .26)

and - +J-5 ( w 2 ~ w 3 2 )  -2W2 - ( v J t Z - W s ' 2 )  + M < l  +-Lj?> ( w ^ z  -w2)J

- B y  w / g '  ~ / |  By  f t v ^ ' g W - 2/ )  +  ( 2 A + 2 B y - 2 / )  y / , '

+ C '/ -A )  (w ? ,'*  Wo) -  2  ^  -  B yvyg / ~ / |  B y  6 v / 2 - w i j ' )

+ C 2 A -f- 2 By - 2 /) Wo -f ( Y-A) 6 w / ̂  Wi) j-

-  B y  w ('z/ _ / |  B y  Y W 2 ' - v / i 2 ' }  + C 2 A  +2  6y - 2 Y ) w ,

+ C /-A) (vVo + ^ 3,) (d)

From the relations of Eq. (5.17), (5.18), (5.26) and 
(4.9) finite difference equations (5.25) for general 
edge point reduces to:

V V  w  ~ A  ( w Y j ' - f  W12') -  (2A  +2 By )  W g ' - t  / |  B y  ( - i v / 4 \ v , + w ’i /̂ / -W i4 /j  

+ B y (w o  + W 4 ' )  ~ / |  £  A  (W 2 '+ W 3 2 ')  -  (2A + 2B y ) W 12 '

+  { - !  g y  ( 1va/0 +VV3 +  W 4 ' -  W 34  ' ^  +  By A/V| + W14 -  A (lfV3 /2 / -+W2 ' )

+ ( 2A + 2 g y ) > v ,y  -  / |  B y ( '- '^ /3./ +  w o +  W 3V -  - B y  ( W i ' + va /iV )J

+ * £  (wy-2W,' +WoJ -V °%-y (W*-2*/,^) - / 6  + ̂ J  ^,'-2^-f'vV|)

+ ■& { w , ' z ' - - ^ 3  ( w 2' - w 3'2 ' ) J  ~ vv2 ' - i y 3  ( w ,2' -  w /2' ) j  

+ 'I' ^32'-^2') |

-  By w ^ '  - / -  By  (  w 3V - W 2 ' )  +  C2 A + 2 B y  -  2 W i '
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+ (/-A ) (Wj'+Wo) W 2' -  [^ |3y fWi'z '- Wj2'j

+ (s?A +26>y- 2  "/) Wo •+ ( 3 'A ) fw/ -+ w  i Jj--£>y wt?J ~ gy )

+ ( 2  A  -)- 2 B y - 2  Y )  w ,  +  ( / - A )  ( ^ o  +  W > )

- E > X ^ A _ k ( ' w3/ - 4 v / i / + 6 w 0 -  A vv'i •* Wa )  = °  ( 5 . 2 7 )

59

Separating the coefficient of deflections associated 
with different nodal points Eq. (5.27) can be presented 

as in Fig. 15 (d).

oCY/2 (4-7) r2eCf - f - y  3^ / -h % ( A - f j  cc//2 + y_. „ . ,  ̂ 2&y j

■yS -B>y_ DX Ax 
4 2

P J ? y - V  2J L  ( 4 -Yj
B y
■+2DxlJix

> W -  U j y

Mr ( A + V )

Fig. 15(d)
Finite difference Equation 

for general free edge point

5.8 Edge point near the Acute Corner:

32\“
\\3>'_ _

\ r2 * 2 T _ _ y 12 “\ “ \
32

\ 3

\ ^  _ \  /g'

\

>34 ‘

Fig. 16(a)
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From the boundary conditions of See. 5.2 and 5.7 it 

follows :

w,'= w  iV  ̂w \'a' = o

w 3 ' =  - KY ljl'2 -  W o
£ 5

W 3V= ^  <V2'-w2) _ kV wV2 -kV
S T

W,V= (W-^o) " W 2'
<T

^"^2 — (vJq-Wo') - Wg
£

(a)

(b)

(c)

(d)

(5.28)

and from Eq. (5.17a) and the relation = -w? -vWay+v^'

one can deduce:

ji w2 + Wi'2,o  _  (/M) W 3' |3w2'4
&y 6/ Wo (5.29)

Comparing (5.28a) and (5.29) it can be shown that 

— - Wo

Putting these values into Equation (5.27) for general 
edge Point, equation for edge Point near the Acute 

Corner is obtained as follows:

v V  W  = A ( W i 2/) _'('2'4‘'+2B'y) V̂ 2 ' 4 /g’ By ( vA - Wj 4') + By Aa/o + W 4 J

-* (i A  ( w 2/ -+ W 3 2 O  — (2  A +- 2 B y )  W 12' - f ( - W 0 + W j  + ia/<j'- W 3 <?')

+ & y  ( w r + w , ^ ' )  -  A j  (  w f w , ) }  ~ / f  6 y f 2 vv0 - 2 W 4 ' )

+ (yy0 - 2 W |  +  W 3 )  -  Y  ( t  +  cC)  C ~ 2 W ° +  w0 
+ ^ j  ("- / | )  ^ W 2 '  ~  C ^ a ' - W o )  4  W 2 7j  -  JA ( y / z ' - i j Z W r t ' )

£
t \ W,z' - 4 « f W * , '  -Wa')^
2 6 /
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~ J?^ -B y  w / j ( -  ( ~  By  ( - 1 2  1 •+ Q 2A -t- ? By - 2  3̂ ) W© 1  ( Y~A) w  1

-  By Vî /2 / -  &>' ( ^ 2! -  W3 27J +  ^2 A +  2  B y - 2 2f) W| +  ( v ^ °  t y / ^ )

4
- P >C ^ _ ̂,0 +  (,yJo -  4 W\ + W3 j- = ^  (5.30)

Separating the coefficients associated with different 
nodal points Eq. (5.30) can be presented as in Fig. 
16(b)

A / i 2 V / ^ c T  

• r  2<T

Fig. 16(b)

Finite difference equation 

for edge Point near the Acute Corner
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5.9 Edre Point near the Obtuse Corner:

32

32

Fig. 17(a)
Edge Point on Obtuse Corner

From the boundary conditions of Sec. 5.2 and 5.7 it 
follows:

W t - Wi2■' 0

W 3 = B lf* (W2- W z‘)  - w,2 -ia>0 (a)
S $

( W 2. -W21) - va/,2. - '  (b)
& %

W32'= C ^ o - W A ' )  - W 2 1 (c)

Wi2 = — ^ (d)
d

1,(5.31)

and from the E q .  (5.17c) and the relation w# - ~ w 2 - f - ^ iz '+ rv y  

one can deduce:

-/3.w^w,2 _ , _/3-w2'+ (^a) l (5.32)
B y *  '  £ &y °

Comparing (5.31a) and (5.32) it can be shown that

W 3= -w0
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Putting these values into E q . (5.27) for general edge
point, equation for edge point near the obtuse corner
is obtained as follows:

v v w =  A ( v V | '2( )  - (2 A +-28>')vx/2' By ( ~ W ( + w , y  ) -f-6/ +
- Î  A /-f (vVo-Wf) 'W2'| q- (" —2 w/o + 2 W / J  - 4 (W 3 w/2()

+ ( 2 A + 2 B / )  v\/('2' ~/| By ( - ^ / r w 0 ^ - W h ' q ' - v J ) -8/ ('W+vs/iVjj

+ <^T (w^-Zw.'+we) _ y  dit^c)2
+ | W ,f2/ - w 3 2'jj " ^ ■̂VV2./- p W/2

• ^  C \ * o - w ' )  - 2 w 2 ' ?

«T >»+
- _|A f-Syw.V -/yS/ C v t H - * * )  ■+ C2 ̂  + 2 ®>" ~ 2 ̂  ^  ̂ A ̂ rvV̂'+̂2i>y L p

-  ? ^ - S y C w 2' ;  -  f - * t L  )  + ( z A + 2 8  y -2 f j i r / o

- 2'- ( W o - « 4 ' )  + W2 t ]
f

P _ X ^  * ( w ^  -  4 wi ' +  6 W o  - We,) = j k ? y  ( 5 . 3 1 )

Separating the coefficients associated with different 

nodal points Eq. (5.31) can be presented as in Fig. 17(b)

-y£ By A -ZcC/- -|y (A - /j - A f o y A S + f i g r

h- 5 A <y-/)
+ B y O + f h/ 4 )  &  

+ 2 ( r + * ) ~  ^

4 A - t y - - J i - B v  2 fPr+ B y i -

-(b (A + 9' )  y  4 - y t  + Affe

8 y O - f a )

y v t z

2

A s
6y  hl 

' 2. 2/
Fig. 17(b)

Finite difference equation for edge point near the obtuse 
corners.
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In these equations the quantity is the equivalent 
combined effects in terms of load per unit area for all 
the loads which act upon at point 0.

If a uniformly distributed load of p per unit area, 

a line load of %  per unit of the length in x direction 
and a concentrated load Fq act at point 0, <£.0 is given

If point 0 lies on an exterior edge of the plate, fyc> 

is given by

5.10 Finite Difference Equations for Moments:

Finite difference equations for moments M x , My 
and Mxy can be derived by substituting the finite dif­
ference approximations Eq. (4.6a), (4.6b) into approp­

riate moment equations (1.9). Their final expressions 
are the same as in Ref. 7̂ J except for equation (5.38) 
However, complete derivations of moment equations are 
presented in this Section.

(a) General Interior Point:

by:

= -&X_ r ^ ( w / - 2 w e +w,) - t A y  - ( ' Z ^ ) W o
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Similarly:

Hy =
1 ' h f

/-tWi) — (■Z-^ljb ) V'/q -f(L (-VJ\l2 JtW\2 +Wi/2'-W//)

w 2'-+w2| - v j A t X 1 (W-Zvyp+vv) (5.33)

and M^y= - 2 c [ % l ^ ^ + ^ r  5ec 4>]
’ - d a 7- 3u<?v J

= -2C* 
7>y2

y3 (V/-2w0 -tw.) -+ ̂  (w/tg-w^+w^ (5.34)
-W|2')J

These moment equations can be presented as in Fig. 18(a), 
18(b) and (18c), respectively.

'Uy

Fig. 18(a)
Finite difference equation 

for Mx at general interior Point
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Fig. 18(b)

Finite difference equation 

for My at general interior Point

Fig. 18(c)
Finite defference equation 

for Mxy at general interior Point
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(b) Points on the left simple support:

\___ 12

\— ,

\___
3 2

Fig. 19(a) 

Interior Point on support

From the boundary conditions as derived in Sec. 5.2 
it follows tha t :

Wz — Wo - w z' -  o
(5.35a)

M n  M \/ -  H x  +  r f y  -  O

o r y v  1*2 — 1 — w* i2 * ~~ 12 (5.35b)

From the relation:

it follows: w/= -/3-h -  ( w l2 - w l2' ) - w , (5.35c)
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Substituting these values of exterior nodal points 
into moment equations (5.32) and (5.34) one obtains:

= - B x  [j/^r - f e -  ^'2 -
a
_|3. ( ' £ ' -Yyf^

M x >xy:
2 C Z

? y ‘

(5.36)

(5.37)

(5.38)

Equations (5.36), (5.37) and (5.38) may be presented 
as in Fig. 19(b), (c) and (d), respectively.

Mx -

■ Ay -/3-

Fig. 19(b)
Finite difference equation 

for Mx on simple support

W  Ci2')
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| fi .  A y  - A  K y /J  ( X 2-+/*}'[ i Z)

Fig. 19(c)
Finite difference equation 

for My on simple support

Fig. 19(d)
Finite difference equation 
for Mxy on simple support
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(c) Points on the right simple support:
In a similar manner equations for moments on 

Point of right simple support may be derived from the 

relations:

>• (5.39)

Fig. 20(a)
Point on Right Simple Support
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These moment equations can be presented as in Fig. 20(b), 
and Fig. 20(c), respectively:

-j a \ +

W O O

l iA y  \  W ;

Fig. 20(b)

Finite difference equation 
for Mx and My on right simple support

wo'rO 
Fig. 20(c)

Finite difference equation 
for Mxy on right simple support
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(d) Points on the free ed g e :
on the free edge My = 0

Hence -B>’( &  + / x "c>yz /
Z. z

or = - y&x ^
d y z d X z

but Mx = — B x (  -h A y $ ! *  ̂
ax2 7 r  ay2 / 

= -e* ( i - M A v )

Hence (fix) = -Bx ( y f w i - 2 w i 4 w i )  (5.40)
7y2

Eq. (5.40) can be presented as in Fig. 21(a)

Fig. 21(a)
Finite difference equation 

for Mx on free edge.

For deriving the equation for Mxy on free edge the nodal 

points outside the boundary can be expressed in terms of 
interior points as follows:

Fig. 21(b)
Point on free edge.
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Since /
( ax' o

h e n c e W, -Wi;
2?X

= j_ 
2

Ys/,2 - W /g + W 1 2 - W|'/
2>x 2Ax

or -4- (Wi2 - Wi2 ) W i - W /  ""2 ^VN,I2/ ~ vv' i 2 * (5.41)

Putting the value of w,2 and v/2 into equation (5.34) one 

can deduce :
Mxy = - 2 cX-

V
+  ( f r - ' 4 ) w , '  -2/S - (5.42)

-+ -L (vJi'z'-wiz)

E q . (5.42) can be presented as in Fig. 21(c)

w

Fig. 21(c)
Finite difference equation 

for Mxy on free edge.

5.11 Application of the method of finite difference:
By superposing the skew network on the equivalent 

orthotropic skew plate and applying the typical finite 
difference equations for each network points yield a 
set of simultaneous equations, the solution of which 

yields the numerical values of deflections at all 
network points. By substituting the values of
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deflection in proper moment equations as derived in 
Sec. 5.10 of this chapter, numerical values of moments 
acting on the equivalent orthotropic skew plate can 
be obtained.

Bending moments acting at different sections of 
longitudinal girder and transverse beams can be com­
puted by integrating the equivalent plate moment over 
the flange width, according to the formula presented 
in Chapter Three.
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V I

GENERAL SOLUTION AND STUDY OF THE FACTORS 
THAT ENTER INTO THE ANALYSIS AND DESIGN 

OF GRIDWORK IN SKEW BRIDGES

General Solution:
Finite difference equations as derived in Chapter 

V can be applied for each of network points (Fig. 22) 
to yield the force displacement relations in the form:

M M  - (1} 7>y

where jfoj- is the column of static load acting at the 
predetermined set of points and is the column
corresponding to the vertical displacement. [a ] is 
the conventional stiffness matrix and is obtained by 

a few algebric operations in the following form:

Al,l A |,2 A), 3 A ,,4 - - - A (,is

A2,l A 2,2 A - - - A2,!8

A3,! A 3,2 A*,3 A3,4 " ~ -  - A 5,1Q

AV A 4,2 A4,3 I1 -  -  A 4 , iB

A i8,i ^ 10,2 Ai8,4 - - A i87i8
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To clarify the application, some of the equations for 
tim typical network points are shown in the appendix.

By inverting the stiffness matrix [a ] and carrying 
out the multiplication with the load v e c t o r d e f l e c t '  

ions at different network points can be obtained. By 
substituting these values in proper moment equation as 
described in Sec. 5.11, numerical values of moments 
acting on the equivalent plate can be easily computed.

Computation of longitudinal and cross beam moments 
can be performed as outlined in Chapter III.

The finite difference solution for the gridwork 
with slab representing the m o d a l  skew bridge has been 
obtained. The deck slab is assumed to be an isotropic
—  1 „  -  1------~  7 6 1 )  7 0 1 1  v  3_ I! fr.irr T U  o-r,,1
p i a t c  J i a v  u x j i i w u o x u n  j x  c/  ^  ^  j u u u

stiffened by longitudinal and cross beams of different
stiffnesses in both flexure and torsion. The material 
of the plate was hot rolled structural steel having 
Young's modulus of elasticity E = 30 x 10^ psi and 

Poisson's ratio = 0.3.
The following are the loading conditions for which

the solution has been obtained.
(a) A single concentrated load P, located at 

centre.
(b) Two equal concentrated loads each of magnitude 

P/2 , located symmetrically along the longitudinal.axis

( ' f  , 0 )  and ( U - , 0 ) .
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(c) Two equal concentrated load each of magnitude 

P/2 located symmetrically along the transverse axis 
(o?L% )  and ( o , ~ Ly^ > )

Since the loading conditions and plate geometry are 
symmetrical about the central axis, only one half of 
the plate has been considered.

Factors that enter into the analysis and design of grid- 
work in skew bridges are: (a) Number of girders and
diaphragms, their spacing and stiffness ratio, in both 
flexure and torsion; (b) Aspect ratio' of the

bridge where Lx is the skew span between the supports 
parallel to the roadway and Ly is the width of the 
bridge and (c) skew angle.

Theoretical solutions for the different factors 
influencing the analysis and design of gridwork in 

skew bridges have been presented graphically (Figs. 3.1 
to 3.29). In varying the number of longitudinal and 
cross beams the total cross-sectional area in the two 
directions has been kept constant so that the cost 
per linear distance of the span length does not change 

appreciably, (Figs. 3.1 to 3.4).
Aspect ratio which is treated as one of the var­

iables was varied from 1, 1.2S, 1.5, 1.75 to 2.0 and 
its.effects on deflections and intensity of moments 

are presented in Figs. 3.5 to 3.15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7 8

The change of skew angle from 0, 15, 30, 45 to 
60 degrees is treated as another variable and their 
effects on deflections and moments are presented in 

Figs. 3.16 to 3.23.
A disputable question in the value of Poisson's 

ratio which is not a material constant as Poisson's 
ratio proper but an elastic constant depending on the 
orthotropic form of the system has been treated as 

another variable. The value of was varied from 0,
0.10, 0.15, 0.20, 0.25, 0.30 and 0.33 and their effects 
are shown in Figs. 3.24 to 3.29.

Graphical representation showing the influence 

of these different factors upon deflections and moment 
intensity M x , My, Mxy and equivalent principal moments, 
have been presented for some typical node points, e.g. 

central point of the bridge, interior point near the 
obtuse corner, interior point near the acute corner, 

and central point on the free edge. In all cases the 
solutions have been obtained in the form of influence 
coefficients of deflections and moments for a unit central 

point loading. Influence coefficients have also been 
obtained for uniformly distributed loading, two point 
loadings and for aspect ratio at a different skew angle. 
The plate geometry is the same as for the model skew 

bridge. (Fig. 22).
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VII

EXPERIMENTAL VERIFICATION OF THE THEORY

7.1 Description of the Model Bridge:
The gi'idwork ancl the deck plate of the model skew 

bridge were fabricated from a 36" (skew length) x 30” 
x 3/16" thick plate, 7 nos. of longitudinal beams 
(3/16" x 2") and 7 nos. of cross beams (3/16" x 1%") - 
all made of hot rolled structural steel. The two sets 
of intersecting flexural members forming the gridwork 

were welded intermittently to one side of the deck 
plate to form a skew mesh as shown in Fig. 22. In- 
spite of cooling the model with cold water during the
i.ta1  fl i  rr -v* o c o c r  o t  a  v  n l i  1 r\ 1 n r* n 1 u o r n i n n  T n  cm 1 r* A

U r  U i.  U £.» X W S.. J UL/XV J. V' V U X «» X j.-> x. 4 J. A w U U Jl W w v»

from the intense heat of r^elding. In order to have a

flattened surface and to reduce the locked-in stresses 
the bridge model was annealed. Four flat bars of the 
same material were also subjected to the same heat 
treatment; They were tested in the universal testing 
machine to evaluate the modulus of elasticity E and 
Poisson's ratio A *  under uniaxial tensile test, the 
average value of which were found to be 30 x 10® psi 

and 0.3, respectively. In order to have a simple line 
support along the two edges, the gap between the long­
itudinal beam and cross beam was filled up with pieces 
of %" x h" x 6b" long square bars by spot welding with 

the cross beams (Fig. 1.1).
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7.2 Abutment Franc:
The model bridge was simply supported on the two 

specially machined 1,: diameter steel rods resting on 

the two opposite edges of the abutment frame. The frame 
was fabricated from two h " x 3%" x 15" deep channels 

which were rigidly connected to each other by two V' x 
3" x S" deep I-beams welded to the frame -6" below the 
bridge deck level. The frame was in turn supported on 
six-standard steel blocks resting on a fiat steel 

base (Fig. 1.2).
7.3 Loading Device:

The model skew grillage bridge was tested within 
the elastic range under the following types of loadings:

i . Concentrated load at the center:
The load was simulated concentrically on the 

central point of the bridge deck plate through a Thaw- 
ing-Albert load cell which was attached to a hydraulic 
ram mounted under the beam of the testing structure.

The load cell was calibrated by recording increments 
of strains corresponding to the direct load increments 
with a Budd portable type strain indicator (Model P-350) 

and a PCA - 300,000 lb. testing machine. (Calibration 
curve Fig. 2.24). A skew steel block (3bn x 3b" - 1" 
thick) with a groove underneath to accomodate the strain 
gage was placed below the load cell for transferring 
the load to the deck plate. (Fig. 1.4).
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2. Two equal concentrated loads applied on the 
longitudinal axis C ~ 1 and C ^ K/ & / 0 ') .

For this type of loading a Strainsert 100,000 
lb. flat load cell was used which was calibrated with 
the same Budd portable type strain indicator and the 
PCA - 300,000 lb. testing machine. (Calibration curve 

Fig. 2.25). The load was simulated by using the same 
hydraulic ram as in Case 1 on a 4" x 4" - 2' ft. long 
solid bar resting symmetrically on two skew steel 

blocks dividing the central load into two equal con­
centrated loads. (Fig. 1.5).

3. Two equal concentrated loads applied on the 
transverse axis ( ° .  L̂ /6) and ( o  7- ly4>).

For this type of loading the same loading 
device as in Case 2 was used except that the two skew 
steel blocks were placed symmetrically on the transverse 
axis of the bridge model along the V-direction. (Fig. 1.6).

7.4 Testing Procedure and Recording of D a t a :
The PCA - 300,000 lbs. testing machine was used to 

simulate the load through the hydraulic ram in all the 
three cases.

Deflections at different points of intersections of 

gridwork were recorded by dial gauges (Mercer Dial 
gauges, accuracy 10'0 in.). To measure the strains, 
electrical resistance strain gauges were used. Strain 
rosettes (Type EA-06-125 RA - 120) were mounted on the
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top face of the deck plate and linear gauges (Type DA - 

06-062 AK - 120) were mounted on the bottom face of the 

longitudinal beams. Fig. 23 shows the location of the 

strain gages on both loaded and unloaded side of the 

model bridge. A Datron Digital strain indicator to­

gether with a switch and balance unit, a Datron polarity 

transposer and printer control unit was used to record 

the strains. (Fig. 1.7).

The results of the experimental tests under differ­

ent types of loading conditions are presented in the 

form of figures, comparing the experimental and theoret­

ical values at various points of gridwork of the skew 

model bridge. (Figs. 2.1 to 2.23).
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VIII

DISCUSSIONS, CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER RESEARCH

8.1 Discussions of Experimental and Theoretical Results:
For a single point loading on the midspan of central 

longitudinal girder, comparison of Figs. 2.1 to 2.4 shows 
that experimental values of deflections are higher (14% 
maximum) than the theoretical values. For the same type 

of loading comparison of girder bending moments calculated 
from the measured strain gauge readings (Figs. 2.5 to 2.11) 

shows that the moments are at some point 12% higher (Fig.
2.5) than the theoretical values and at some points 11%
(Fig. 2.10) lower than the theoretical ones.

For two point loadings on the longitudinal and trans­
verse axes, the experimental values of deflections are 
observed to be 13% (maximum) and 14% (maximum) higher than 
the theoretical ones (Figs. 2.12 and 2.19). For the same 
type of loadings experimental values of girder moments were 

within -12% (maximum) of the theoretical values (Fig. 2.21).
A comparison of the normal stress distribution along 

the depth of the longitudinal beam (Fig. 2.23) shows that 
experimental values are 15% (maximum) higher than the 
theoretical ones.

Both experimental and theoretical values of deflections 

and moments are observed to have higher magnitude towards the
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obtuse corner than those at the acute corner (Pigs. 2.2 
and 2.6). On the average, experimental values are ob­
served to be higher than the theoretical solutions.

The deviation of the theoretical solutions from the 
experimental results may be attributed to the following:

(a) Effect of discontinuity on deflections and stresses: 
Since the spacing of gridworks, the rigidity of which 

is assumed to be continuously distributed for the substitute 

orthotropic plate, is larger than the dimension of the 
applied load 23 , which is usually the case in bridge deck 

design using concentrated wheel load, the discontinuity of 
steel plate deck system is of consequence in determinations 
of deflections of the system and bending moments and stress­

es of the individual members. The effect of the actual dis­
continuity could be considered by taking an effective width 
in computing rigidities of the equivalent system. Hence, 

it may be inferred that higher values of rigidities in the 
stiffness matrix, equation (3.1), result in lower theoretical 

deflections and consequently lower values of moment than the 
experimental results.

In order to examine the effect of effective width on 
the theoretical solutions of the problem, 90% of the rib 
spacing in the longitudinal direction of the bridge was 
considered instead of the full flange width of the origin­
al programme [23J . The results for deflections and moments 
were found to be only 2 % higher than the original solutions. 
This, however, justifies the introduction of the concept of
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an effective width in the solution of gridwork problems, 
the value of which depends on the span of ribs and load 
distribution on the deck floor. Ref. [23J gives an excell­
ent treatment of the effective width of deck plate in orth­

otropic steel deck bridges. The same values of effective 
width as applied in the orthogonal bridge structures may 
be assumed to be valid for the skewed configuration of 

this structural system.

(b) Effect of unsatisfied boundary conditions at 
the free edge and imposition of constraints 
near the simple support:

The boundary conditions at a free edge were first 
expressed by Poisson as:

My- 0 ,  M y x = 0, Qy= 0 
But due to the nature of the fourth order differential 

equation governing the behaviour of the plate system, 
which is based on the small deflection theory, only two 

boundary conditions are possible at the free edge, and 
later on Kirchoff proved that the last two conditions 
concerning the twisting moment and shear force could be 
combined into one single condition in the form of an edge 
force expression as in equation (l,9g). These two bound­
ary conditions, My= 0 and Vy= 0, which have been utilized 
in the formulation of finite difference equations for 
typical network points on the free edge, give rise to a 

value of Mxy at the free edge (Eq. 5.42). Similar expres­
sions for Mxy at the free edge have been presented in
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Ref. 4, 7, 17]. This violates the Poisson's original 
boundary conditions at. the free edge and will have some 

effect in the deviation of experimental values from the 
theoretical solutions. Similarly., the constraints imposed 
near the simple support as discussed in Section 5.2 may 

be of some consequence in the determination of deflections 
and bending moments of the structural system.

(c) Effect of experimental and constructional 
inaccuracies of the model bridge.:

Instead of cooling the model bridge with cold water, 
the substantial warping resulting from the intense heat of 

welding, could not be totally balanced by subsequent an­
nealing of the system. The model had an uneven initial 
curvature in its neutral plane in both longitudinal and 
transverse directions. During the welding process and 
fitting of the ribs with deck plates, a great deal of 
residual stresses might have also been induced in the 
structure. The strain gage readings on which bending 
moments and stresses have been computed could give lower 
values than the theoretical ones because of these unbal­
anced locked-in stresses at some points (Figs. 2.5, 2.16, 

2.21) .
Due to the warping and non uniformity of the simple 

support condition along the edge because of shimming, the 
slightly unsymmetrical deflections of the model bridge 
under the symmetrical loading is one of the major causes 
of deviation between the experimental and theoretical 
results.
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8 . 2 Pis cuss i ons of Fac.t ors that influence the Analysis
and Design of the Gridwork in Skew Bridges :
(a) Number of girders and diaphragms with differcnt 

spacing and stiffness ratio:
Figs. 3.1 to 3.4 sliov the effects of variation of 

the number of longitudinal and transverse beams on deflect­
ions and moments of the gridwork system under a unit concentrated 
load at centre. As would be expected, larger errors can occur 
for decks with smaller number of girders (Fig. 3.1), since 

the assumption of the uniform spread medium will not be 
satisfied in that case. A system with seven number of gird­
ers seems to approach an optimum design as far as deflections 
and bending moments are concerned (Figs. 3.2, 3.3, and 3.4). 
Negative moment Mx (Fig. 3.2) at the simple support in­
dicates the effect of skew and the restraint imposed by 
the cross diaphragms on the free deflection surface of 
the central longitudinal girder.

In actual practice the road width, the skew span of 

the bridge and the type of highway loadings to which the 
bridge is anticipated to be subjected should determine 
the spacing of the girders and diaphragms to obtain an 
economical design. For this purpose several trial prog­
rammes can be.run on a computer with different number of 

girders and diaphragms having different spacings and 
stiffness ratios in both flexure and torsion.

(b) Aspect ratio of the bridge:
The effects of aspect ratio on deflections and moments
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of the gridwork in skew bridges are shown in Figs. 3.5 
to 3.15. Figs. 3.5 to 3.9 snow the variation of deflections 
and moments with aspect ratio for a skew angle of 45°, 

under a central concentrated load. Deflections of network 
points sharply decrease with decrease in aspect ratio 
(Fig. 3.5). While at this angle of skew, longitudinal 
girder moment Mx decreases slowly with decrease of a s ­

pect ratio, transverse moment My at. a point near the 
acute corner tends to increase sharply with decrease of 
aspect ratio (Fig. 3.7). The twisting moment Mxy arid 
the principal moment of the equivalent system decrease 

at ail points with decrease of aspect ratio (Fig. 3.8 
and 3.9).

Examination of Figs. 3.10 and 3.11 shows that with 
a large skew angle of 60°, the variation of deflections 
and moments Mx with aspect ratio are more rapid than the 

case with a 45° angle of skew under the same central con­
centrated load. Variations of deflections and moment Mx 

for two point loading on the transverse axis and uniformly 
distributed load over the whole bridge deck are shown in 
Figs. 3.12 to 3.15. The variation appears to be similar 
in the two cases for the same angle of skew.

An aspect ratio in between 1 to 1.5 appears to be 
desirable, although in practice, the anticipated traffic 
density will determine the width of the skew bridge and 

hence the aspect ratio.
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(c) Skew Angle:
Figures 3.16 to 3.23 show the effect of variations 

of skew angle on deflections and moments of the skew 
grillage system. With increase of skew angle, under a 
concentrated load at the centre, deflections of central 
nodal point decrease sharply after the skew angle has 
exceeded 30°. Up to 50 degrees,variations of deflections 
with the angle of skew is not very appreciable. Similar 
is the variation of longitudinal moment Mx with the angle 
of skew (Fig. 3.17). A slight increase in the value of 
deflections and moment (Figs. 3.16 and 3.17) is observed 

at the mid point of free edge girder with an increase of 
skew angle up to 30°.

Fig. 3.18 shows that after the skew' angle has ex* 

ceecled 3 0°, the transverse moment My at central interior 
point increases slowly up to a skew angle of 45° and tends 

to decrease slowly beyond this value. While My at the 
interior acute corner decreases appreciably, it increases 

sharply at the interior obtuse corner with further increase 
of skew angle. This points to stress concentration near 
the obtuse corner with increase of skew angle.

The influence of increasing angle of skew, for two 
point loadings and uniformly distributed load on the 
deflections and moment Mx are shown in Figs. 3.20 to 3.23.

From this study it can be justified that up to a 
skew angle of 22°, the grillage in skew bridges can be 
analyzed in the same way as the right girder bridge by the 
method of lateral distribution and distribution coefficients [3 1.
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(d ) Poisson's {latip :
The value of A x was varied from 0.0 to 0.33 to show 

its influence on deflections and moments of the struct­
ural system (Figs. 3.24 to 5.29). Under a concentrated 
load acting at the centre, a change in the value of A x  

from 0.0 to 0.33 resulted in a decrease of deflection up 
to 15% at central point, 3% at the mid point of free edge, 
111 at the interior point near the obtuse corner and 81 
at the interior point near the acute corner, respectively 
(Fig. 3.24). The influence of Poisson's ratio on moment 
Mx (Fig. 3.25) for a concentrated load at centre appears 
to be appreciable. An increase of 81 and a decrease of 

7% in the value of Mx were observed for central interior 
point and mid point on the free edge for an increase in 
the value o f  A x  from 0.0 to 0.33 (Fig. 3.25). While a 
change of Poisson's ratio does not have an appreciable 
effect on moment My at interior central point (Fig. 3.26), 
a sharp decrease of My was observed at the interior point 

near the acute corner.
Figures 3.28 and 3.29 show the influence of 

Poisson's ratio on deflections and moments Mx at differ­
ent points on the bridge under uniformly distributed 
load. At the mid point of the free edge deflections in­
creased by 41 for an increase of Poisson's ratio from 0 
to 0.33 whereas deflections at the central point decreased 
by 101. For the same variation of A x , the interior acute 
corner deflection increased by 4% and the interior obtuse
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corner deflections decreased by 3$. Under the same un i ­
form loading, though the moment Mx docs not change app­
reciably at the central point and interior point near the 
acute corner, an increase of 5£ in the value of Mx at the 
mid point of edge girder was observed for the same variat­
ion of ^x  (Fig. 3.29).

From this study it is clear that a proper value of 
Ac which is not a material constant as Poisson's ratio 
proper but an elastic constant corresponding to the form 
of the system (since the value of A" is determined from 
the relation A r= "f^Ax) should be incorporated in the an­
alysis of gridwork with deck slab to yield a more accurate 

solution.

8.3 Conclusions:
From the investigation of this problem it has been 

shown that the theory of orthotropic plate can be effect­
ively used in the analysis of gridwork in skew bridges.

The difficulties encountered in satisfying the bound­

ary conditions along the simply supported edge and free 
edge of the structural system (the imposition of constraint 

w4' -2w0 -- o near the simple support may not always be
true depending on the loading condition) arc not of a serious 
nature, since in actual practice extra reinforcement would 
be provided along the simply supported edge to take the 
support reactions and the free edge would normally have 
some form of footpath which would prevent heavy loads to
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be applied at the free edge of the skew bridge.
By simply changing the data cards in the general 

computer programme, all the variable parameters such as 
number of girders and diaphragms, their spacing and 
stiffness ratios and aspect ratio for a particular alignr 

merit of a skew bridge can be examined to obtain an op­
timum design.

Due to simplicity in application and quite a good 
degree of accuracy in results, orthotropic plate analysis 

of gridwork in skew bridges by the method of finite dif­
ferences, may be used as a powerful design tool.

8.4 Suggestions for further Research:
Though the elastic analysis dominates the field of 

bridge engineering, it is now generally acceptable that 
the understanding of any structure is incomplete unless 
its behaviour beyond the elastic range is fully invest­

igated. Hence the elasto-plastic and plastic behaviour 
of gridwork in skew bridges may be of considerable in­
terest and practical value for economical design purposes.

Since the ultimate strength design presupposes that 
the governing forces acting in the structure due to dead 
load and live load are calculated by elastic theory [b] , 
it is recognized at this point that, further research b e ­
yond the elastic range should be carried out to have a 
clear insight of the structural behaviour of gridwcrks 
in skew bridges.
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FIG. 1.1 MODEL BRIDGE
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Fig. 1.3 Calibration of Load Cell

Fig. 1.4 Loading Device for a 
Concentrated Load at Centre.
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Fig. 1.5 Loading Device for Two Point 
Loading on the Longitudinal Axis

Fig. 1.6 Loading Device for Two Point 
Loading on the Transverse Axis
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Fig. 1.7 Digital Strain Indicator
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A. APPLICATION OP FINITE DIFFERENCE EQUATIONS AT

DIFFERENT MESH POINTS

f r e e  e d g e

19

s i m p l e
s u p p o r ts i m p !e_ 

s u p p o r t ia

00

f r e e  e d g e

Model Bridge 
ref. fig .

1. At point 18, Eq. (5.1) represented by Fig. 8(b)

can be applied as follows:

{ ?  A ( 3  cC-F'2 )  +  B y  ( ^  +  6 )  +  T > X ^  ( j  w )a +  { - 2  By (  ° C + 2 )  - 2  [A

+ pa2'V)j VV/3 +- $ _ B y  ( i - p / z ) }  i" f "/• }  W 7-l- "f/" z f } V 6

+ | ( l+fi) (oc By + A  + + 2/- SyJ ̂ '2 + {-2 2̂ A t  B y )  -2DX (*f

+ |)-2 A] w,7 + { ( < ' £ )  ( c C & y  ~t A H-D>ev) — t j i -  B y J  w l 4 '  +  JyS. By} uv9'

+ ^ B y  +  A +  D ^ ) }  +  { o C A  +p> [$y~ - Ba/z ) } w 1&

+ ^ i f  ^ S y  +  A - t  D ^ ) } w , 5 ' ■+ { y ^  § £ . ]■  W 10 '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



156

+ |&-&yjw9 + [ (<?C By  +  A + D 3e°") -2/3- B y  J W|^

+  2  c C  ( 2 A  +  B y )  -2 T > X i' (Z-yS’ +  O  - z A j w l ? /

+  |  ( / ^ / )  ( ^ & m - A + P X v ) +  2/3-6 y ]  ^ 2' +
+ |  / |  C ctC By +  A + D 2 ^ )  j  WIS +7  c-CA + ^  (  T > ^ ~  w 'fe

+ f - / |  ^ B y + A + D ^ j  w , /  +  I  f ^ ' ^ }  ^ 6 ' +  { - 2  3 y  (>C - t -2 ) - 2  (A

+ D^°')}w '3/ +  { B y  ( i - f i / z ) ]  w 6 '  *  {  - ~ - ?y ^ ^  - - - t a .  \ .

2. At Point 3, Eq. (5.27) represented by Fig. 15(d)

can be applied to obtain the following deflection equation:

  5y  _  u p t ’ a‘
2&y 1 4~

- j - J2 ( A -  - f t  ' — D * Z vv,

+ { - K X  - 7 T -  -  V l -  ( A - / )  + ? P ^ ‘f/ x j  vv2

+ ( 3 - c Y  + I t  ( A -  Y)  + 2  t r + 1 )  + & y  ( i + f X j - d P Z / t y  j  vVj

I B y  . j c / l 2 b y i

~ p J t’y -  j y/5 + 5 /§ ^  ^  } v"/6 -f £ A - P>. By -t ̂ -/i (A + J"j)] W 7'i 2
+ | + (a\ | /3 . S'̂  + + + f A + P j J  I+9 + f _ yf ^  + ̂  1 w//:5
+ £ - ? M  + & /  + V ' }  w e  +  f/®* 5 ^ 3  -+ ijZ-fty} iv,i ( i - P t y } * #

* p p  e > d  W H  -+ | /  ^ } w lS * ^  -  e e - 14

The formulation of the stiffness matrix |\A.J can now be 
easily performed when the appropriate finite difference 
equations are applied to each of the mesh points in a 
similar manner.
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B COMPUTER LANGUAGE

NOMENCLATURE COMPUTER LANGUAGE 
(In Order of Program)

Lx

i y

m 

n
lo
bo

0
Ex 
Ey 
h ■ 

bi ’ 
(h,-h

Hy

Zi

b 2
Fx
Hx

- No. of cross be :ns
No. of longitudinal beams

- Spacing of the cross beams
- Spacing of the longitudinal beams

thickness of slab 
width of longitudinal beams 

) - clear depth of longitudinal beams
- repeating width of slab in 

y-direction

- width of cross beam
- skewed width

- repeating width of slab in 
x-direct ion

( h2-h ) - - clear depth of cross beam

Ix

iy
/ h x

M y

TL

TB
AM

AN
AL
AB

FI
EX
EY
T
FY

ZX

MY
Zl
FV

FX

HX
Z 2
ZY
XI

YI
XMU
YMU

= fV/ c o s ( F \ )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NOMENCLATURE COMPUTER LANCUj

Bx BX

By BY.

7y AH

T x BY
X  = V A X AS

/* =
%  -f-cin (p BET

Ft FT

FP FP

Gx GX

Gy GY

A = d>y^ ~t & X  X 1' AX

n = ( 3 x y L y  f  £>yy£* X + 1  C) / 2 . H

ctC  = ALP

II ( B>x - B y  A x  ) X % GAM

D = 2 H -B x -  By D

Kx = Bx By XK

Ky = By +J x y  Bx YK

s  - X ^ K X + ^ K y DEL
(2 H -  B>x/n/ — B X  )  X S I

S I OMEGA

Mx RMX

My RMY

Mxy RMXY

B.M. m a x * Principal moment of the BMMAX

B . M . i  equivalent plate BMMIN

- Angle, the m a x m . Principal TMETA
moment ma 1:e w ith x - axis
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-LOW DIAGRAM OF GENERAL COMPUTER PROGRAM

READ INPUT 
DATA

COMPUTE P

Bx ? By y Atp y.
ARAMETERS
b I I 'p ’ x ’ y
) , C ,  e t c .

PRINT SECTIONAL 
PROPERTIES Z1 ,Z?

PRINT RIGIDITY 
CONSTANTS Bx,B y ,
a t ,a  a n d  d i m e n -
sionLess para­

meter &

COMPUTE ELEMENTS 
OF STIFFNESS 

MATRIX

PRINT STIFFNESS 
MATRIX

CALL SUBROUT­
INE FOR MATRIX 

INVERSION

COMPUTE
DEFLECTIONS

PRINT 
DEFLECTIONS

COMPUTE 
Mx,My, Mxy

COMPUTE EQUIVAL 
ENT PLATE PRIN­
CIPAL MOMENTS

PRINT OUTPUT FOR 
Mx , M y , M x y , 
B.M.max,B.M.min.

vSKEW BRIDGE 
REQUIRED ?
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4 2 C O N T I N U E  
P R I N T  2 2 ?

2 2 2  F O R M A T ! 1 H 0 » 1 5 H D E F L E C T I O N S  ARE)
DO 21 1 = 1 , 1 8  

2 1  P R I N T  7 1 , 1 , ' w m  
. 7 1  FORMA T ( 1 H 0 , 3 0 X , 2 H W ? , I 2 , 2 H < * E 1 3 . 6 )

P R I N T  1 6 , D E TR M
1 6  FORMA T ( 1 H 0 , 1 4 HD E T E R  M I N A N T  I S / E 1 3 . 6 )  ................................... .

B l = - B X / ( A H * * 2 )
A 2 0 =  ( B E T * Y M U - B  E T * Y K * <  A S * * 2 + B  E T * * 2 * Y M U )  / D E L  ) * B 1  - 
A 2  1=  { - B E T * Y M U + B E T * Y K * K  A S * * 2 "+ R E T * * 2 * Y M U  F / ’D E L } '* B  1 
RMX f  2 5 )  = 0 .
R M X ( 2 4 ) = A 2 0 * W < 1 5 ) + A 2 1 * W ( 5 )
R MX (  2 3  > = A 2 0 * W (  1 6 )  + A2  1 *W ( 10  ).................................     -...................  ............. ...............
R M X l 2  2 ) = A 2 0 * W ( 1 1 ) + A 2 1 * W ( 1 5 )
R M X { 2 1 ) =  A2 0 * W ( 6 ) + A 2  1 * W ( 1 6 )
R?FX (~2 0 T = A 2 0 * W ( 1 ) + A 2 1 *W ( 1 1 )
RMX ( 1 9 ) = 0 .
R MX I  1 8 ) = ( - Y M U * R E T * W (  12 ) + 2 . * Y M U * W ( 1 3 ) + Y M U * B E T * W ( 1 4 )

1 + 2  . * {  A S * * 2 + B E T * * 2 * Y M U )  *W ( 1  7 ) - 2  .  *  ( A.S* * 2  + Y M U + B E T * * 2 * Y M U ) *W I 18 M * 8 1  
RM X ( 1 7 ) =  ( —Y.MU*BE T *  W ( 11 ) / ? .  .  + Y M U * W{  1 2 ) + ( A S * * 2 +  B E T * * 2 * Y  MU ) *W I 1 6  )

1 — 2 .  *  ( A S * * 2 + Y M U + B E  T * * 2 * Y M U )  * W(  1 7 ) +  ( A S * * 2 + B E T * * 2 * Y M U  ) * W  ( 18 ) 
T F ^ U 4 B E T * W T l5 T 7 2 r F ? M U 4 W <  14 ) T * B l  

R H X ( 1 6 ) = { Y M U * W ( 1 1 ) + Y M U * B E T * W ( 1 2 > / 2 . - 2 . * f A S * * 2 + Y M U + B E T * * 2 * Y M U )
1*W< 1 6  ) + ( A S * * 2 + B E T * * 2 * Y M L J )  * W(  1 7 ) + Y M U * W ( 1 5 ) - Y M U * B E T * W < 14  ) / 2 .  ) * B 1  

R M X ( 15  ) = < - B E T * Y M U * W ( 9 ) / 2 .  + Y M U * W ( 1 0 ) + ( A S * * ? + B E T * * 2 * Y M U ) * W ( 1 4 )
1 - 2 . * (  A S * * 2 + Y M U + B E T * * 2 * Y M U )  * N (  1 5 )  + Y M U * R E T * W  ( 17  ) / 2  .+ Y M U *W  ( 16  ) ) * B l  

RM X { 1 4 ) = I - 3  E T * Y M U * W ( 8 ) / 2 . + Y M U * W ( 9 ) + Y M U * B F T * W ( 1 0 ) / 2 . 
l  +  { A S * * 2 + 8 F T * * ? * Y M ( J )  * W(  1.3 ) -  2 . “* (“ A S * * 2  + Y M U + "B E T * * 2 * Y M IU *  W( 1 4 )
2 + ( A S * * 2 + B E T * * 2 * Y M U ) * W ( 1 5 ) + Y M U * B E T * W ( 1 8 ) / 2 .
3 + Y M U * W ( 1 7 > - Y M U * B E T * W ( 1 6 1 / 2 . ) * B 1  

RM X ( 1 3  ) = ( -  B E T *  YMU *  W ( 7 )  / 2  .  + Y M U *  W { 8 ) + Y M U *B  ET *  W ( 9  ) /  2 .
1 + (  A S * * 2 + B E T * * 2 * Y M U )  *W< 12 ) - 2 .  *  ( AS * * 2  +  YMU+ B E T * * 2 * Y  MU ) *  W ( 1 3 )
2 +  < A S *  *  2 + B E T * *  2 * 'YM U) *  W ( 1 4  ) + Y.MU *  B E T *  W ( 17 ) /  2 .  + Y M U * W ( 1 8 )
3 - Y M U * B E T * W (  1 7 ) / 2 . )  * P  1

P.M. X ( 1 2  ) = ( - B E T * Y M U * W (  6 ) / 2  .  + YM U*W  ( 7 )  + Y M U *B  ET * W ( 8 ) /  2 .
1 +  { A S * * ? + 3 E T * * 2 * Y M U ) * W (  1 1 ) - 2 . * ( A S * * 2  + Y M U + B E T * * 2 * Y M U ) * W ( 1 2 )
2 +  ( A S * * 2 + 8 E T * * ? * Y M U ) * W {  1 3 ) + Y M U * R E T * W ( 1 6 ) / 2 . + Y M U * W ( 1 7 )  .......................
3 - Y M U * B E T * W ( 1 8 ) / 2 . ) * R 1

R H X {  11 ) = ( Y M U * W ( 6 ) + Y M U * B E T * W < 7 ) Z 2 . - 2 . * ( A S * * 2 + Y M U + B E T * * 2 * Y M U ) * W ( 1 1 )
1 +"{ A S * *  2 + B E T * * 2  * Y M U 7 *  W ( 1 2 )  +  Y M 't jW  1 6T - Y M O W e T * W T T 7 1 ^ T .  ) *  B 1 

RMXC 1 0  ) =  ( - B E T * Y M U * W (  4 )  / 2  .  + Y M U * W ( 5 ) + ( A S * * 2 + B E T * * 2 * Y M U ) * W ( 9 )
1 - 2  . *  ( A 5 * * 2  +  YMU + B E T * * 2  * Y M U  ) *V! ( 1 0  ) +Y  M U*B ET *W ( 1 4  ) /  2 . + YMU* W ( 1 5 ) ) * B 1 

 ̂ R M X ( 9 ) = ( - R E T * V M U * W ( 3 ) / 2 . + Y M U * W ( 4 ) + Y M U * B E T * W ( 5 ) / 2 .
1 + ( A S * *  2 + BE T * * 2  * Y M U ) *  W( 8 ) - 2 . * ( A 5 * * 2 + Y M U + B E T * * 2 * Y M U ) * W ( 9 )
2 +  ( A S * * 2 + B E T * * 2 * Y M U ) * W ( 1 0 ) + Y M U * B E T * W <  1 3 ) / 2 . + Y M U * W ( 1 4 ) - Y M U * B E T * W ( 1 5 )
3 / 2 . ) * B  1

RM X ( 8  ) = ( - B  E T * Y  MU*W ( 2 ) / 2 .  + YMU*W ( 3 ) + Y M U * B E T *  W ( 4 )  / 2  .
1 + ( A S * * ? + B E T * * 2 * Y M U )  *V I( 7 )  -  2 .  *  ( A S * * 2  + Y MU + B E T * * 2 * YMU ) *W ( 8 )
2 +  ( A S * * 2 + 8 E T * * 2 * Y M U ) * W ( 9 ) + Y M U * B E T * W ( 1 2 ) / 2 . + Y M U * W ( 1 3 )
3 - Y M U * B E T * W ( 1 4 ) / ? . ) * B 1

R M X ( 7 )  = ( - B E T * Y M I J * W (  1 ) / 2  .  + Y M U *  W ( 2 ) + YMU * B E T *  W ( 3 ) /  2 .
1 + ( AS *  *  2 + BET * *  2 *  Y m7u ) *  Vn! ( 6  j - 2 V  *  ( A S * * 2  W m U + R  ET * * 2 * Y M U  F * W l 7 )
2 +  ( A S * * 2 + B E T * * 2 * Y M U )  * W(  8 ) + Y M U * B E T * W  ( 1 1 1 / 2  , + Y M U * W  ( 12 )
3 —Y M IJ*B  ET*Vj  ( 1 3 )  / ? .  ) * 8  1

R M X ( 6  ) = ( YMU* W(  1)  + YM U * B  E T *W ( 2 ) /  2 .  -  2 . *  ( AS * * 2  +Y MU + B E T * *  2 *  Y MU ) *W ( 6  )
) +  ( A S * *  2+ R E T * * 2  *  YM U ) * N (  7 )  +YM(J*W ( 1 1  ) - Y  M U *B  ET* W ( 12  ) /  2 . I * R  1 

A l l = —B X * ( l . - X M U * Y M U ) * A S * * 2 / ( A H * * 2 )
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P M X ( 5 ) = A 1 1 * ( W ( 4 ) - 2 . * W ( 5 ) )
RMX(  4 ) = A 1  I ' M  W( 3 )  - 2 . * W (  4 }  +W ( 5 )  )
R M X ( 3 ) = A 1 1 * ( W (  2 ) - 2 . * W ( 3  ) + W ( 4  ) )
RM X { 2  ) =  A 11 *  ( W ( 1 )  -  2 .  *  W ( 2 ) +  W{ 3 ) )
R M X ( 1) =A 1 1 *  { - 2  .  -  W ( 1}  +W ( 2 )  ) ~ ................ ,
DO 22  1 = 1 , 2 5

2 2  P R I N T  2 0 2 ,  I  , P M X (  I )
2 0 2  FORMAT < I H O  , 3 0 X ,  4 H R M X *  , 12  , 2 H < # E 1  3 .  6 > ......... ................................................

B 2 = - B Y / ( A H * * 2 )
P M Y { 2  5 )  = 0 .
R M Y ( 2 4 ) = - R  M X ( 2  4 )
R M Y ( 2 3 )  = - R . M X ( 2 3 |
R M Y ( 2 2 ) = - P M X ( 2 2 )
RMY(  21  ) = - R M X ( 2 1 ) “   ....................... .............. ................................................................
R M Y ( 2 0 ) = - R M X ( 2 0 )
R M Y ( 19 ) =  0 .
R ,M T rre T  = ( -  be  t *  w ( 1 2 ) + 2 .  *~w ( 1 3  > + B ~ e m !  f i 4 ) + 2 .  * T  b e t * * ? + as-* * 2 * x $ v i w ( r n

1 - 2 . * M  , + B E T * * 2 + A S * * 2 * X M U ) * W <  18 ) ) * 6 2  
RM Y ( 1 7 )  =  ( — B E T * W ( 1 1 ) / 2 . + W ( 1 2 )  + ( 8 E T * * 2 + A S * * 2 * X M U ) * W< 1 6 )

1 -  2 .  *  ( 1 .  + BE T * * 2  + A S * * 2  * X  >VU ) *W ( 17  ) + ( B E T * * 2  +  A S * * 2 * X M U  ) *W ( 1 8  5 
2 + B E T * W ( 1 5 ) /  2 .  +  W ( 1 4 ) ) * B 2  

R M Y ( 1 6 ) = { W { 1 1 ) + B E T * W ( 1 2 ) / 2 . - 2 . * ( 1 . + B E T * * 2 + A S * * 2 * X M U ) * W ( 1 6 )  
r +  (T 3 E T * * 2 + A  S *  *  2 *  X M I f )  *W TT 7“ ) + W f l  5 r - B E T  *W ( 1 4 ) 7  2 . T *  62 

R M Y ( 1 5 )  =  ( — B E T * W ( 9 ) / 2 . + W C 1 0 ) + ( B E T * * 2 + A S * * 2 * X M U ) * W ( 1 4 )
_  1 - 2  . * ( l . + B E T * * 2 + A S * * 2 * X M U ) * W ( 1 5 )  + B E T * W ( 1 7 ) / 2 . + W { 1 6 ) ) * B 2

PM V ( 1 4 )  = ( — 8 E T * W ( 8 ) / 2 . + W( 9 ) + B E T * W { 1 0 ) / 2 . +  ( B E T * * 2 + A S * * 2 * X M U ) * W ( 1 3 )
1 -  2 .  *  ( 1 . + B E T * * 2  +A S * * 2 * X M U ) * W ( 1 4 )  + <B E T * * 2  + A S * * 2 * X M U ) * W ( 1 5 )
2 + B E T * W ( 1 8 ) / 2 . + W ( 1 7 ) - S E T * W ( 1 6 ) / 2 . ) * B 2  

R M Y ( 13 ) =  < -  B E T *  W ( 71 /  2 .  + W < 8 ) + B ET>: i f ( 9 ) 7 T 7 + T B ¥ f  *  2 *  jTMU"? ̂ ( T 2 _)
1 -  2 . * (  1 , + R E T * * 2 + A S * * 2 * X M U ) * W ( 1 3 ) + { B E T * * 2 + A S * * 2 * X M U ) * W ( 1 4 )
2 +B E T *  W{ 17 ) /  2 .  + W ( 1 5 ) - B E T * W f  17 ) / 2 .  ) * S 2
"RM Y ( 1 2 )  =  ( —B E T * W ( 6 ) / 2 .  + W<7 ) + B E T * W ( 8 ) / 2  . +  ( B E T * * 2 + A S * * 2 * X M U ) * W ( 1 1 )  

l - 2 . * ( 1 . + B E T * * 2 + A S * * 2 * X M U ) * W ( 1 2 ) + ( B E T * * 2 + A S * * 2 * X M U ) * W ( 1 3 )
2 + 3  ET* VJ ( 1 6 ) / 2 .  + W( 1 7 ) - B E T * W (  18 J / 2 . ) * B 2  

R M v 'm  ) = ( W( 6 T + F E T * W ( " 7 7 7 2 . - 2 .  * 7 1  V + l lT T W 2 T 7 r S ^ ^ 2 '* X iT U 7 * W X r n  
l  +  ( B E T * * 2 + A S * * 2 * X M U ) * W ( 1 2 ) + W ( 1 6 ) - B E T * W ( 17  ) / 2 . ) * B 2  

R M Y l  1 0 ) = ( - B F T * W ( 4 )  / 2 .  + W{ 5 ) + ( B E T * * 2 + A S * * 2 . * X M U )  *W ( 9 )
 ........ 1 — 2 . *  ( 1 . + 6 E T * * 2 + A S * * 2 * X M U ) * W ( 1 0 ) + 8 E T * W ( 1 4 ) / 2 . + W ( 1 5 ) ) * B 2 ........ ............. .......

R M Y ( 9 ) = ( - B E T * W ( 3 ) / 2 . + W( 4 ) + B E T * W ( 5 ) / 2 . + ( B E T * * 2 + A S * * 2 * X M U ) * W ( 8 )
1 - 2 . * ( 1 . + B E T * * 2 + A S * * 2 * X M U 5  * W ( 9 )  + ( B E T * * 2 + A S * * 2 * X M U } * W ( 1 0 )
Z T 4 3 T T W 7 T r / E 2 7 W a ~ 4 " ) ^ F T W ( T 5 7 7 7 T 7 * 'B '2 ---------------------------------------------------------------------------------

R M Y ( 8 ) = ( - B E T * W { 2 ) / 2 . + W ( 3 ) + B E T * W ( 4 ) / 2 . + ( B E T * * 2 + A S * * 2 * X M U ) * W ( 7 )
1 - 2  . * ( 1 . + B F T * * 2 + A S * * 2 * X MU ) * W <  8 )  + ( B E T * * 2  + 4 S * * 2 * X M U ) * W ( 9 )

; 2 + B E T * w ( 1 2 ) / 2 .  + W( 1 3 ) - B E T * W (  1 4 ) / 2 . ) * B 2
R M Y ( 7  > = ( - B E T * W ( 1 ) / 2 . + W ( 2 ) + B E T * W ( 3 ) / 2 . + ( B E T * * 2 +  A S * * 2 * X M U ) * W ( 6 )

1 - 2  . * ( 1 , + B E T * * 2 + A S * * 2 * X M U ) * W ( 7 )  + ( B E T * * 2 + A S * * 2 * X M U ) * W ( 8  )
2 + B T n ^ n r r 7 ' 2 7 + ¥ ( ' i 2 ' )  - & r r w r o 7 T 2 T T * ! S 2 '

R M Y ( 6 ) = ( W ( 1 ) + 8 E T * W ( 2 ) / 2 . - 2 . * ( 1 .  + R E T * * 2  + A S * * 2 * X M U ) * W( 6 )  
l + ( B E T * * 2 + A S * * 2 * X M U ) * W < 7 ) + W ( 1 1 ) - B E T * W ( 1 2 ) / 2 .  ) * B 2

RV.Y(  5 )  = 0 . ................................... .................................................. . ........................................... .............
P M Y (  4 )  = 0 .
R M Y ( 3 ) = 0 .
P M Y ( 2 7 = 0 .
R M Y ( 1 ) = 0 .
DO 2 3  1 = 1 , 2 5

2 3  P R I N T  2 0 3 ,  I  , R M Y (  I  ) ......... ................  ....... ’       '
20 .3  F O P M A T ( 1 H O , 3 0 X , 4 H R M Y <R , I 2 , 2 H < ^ E 1 3 . 6 )

A 1 2 = - 2 . * C * A S / < A H * * 2 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( r ' V ' " l  ■•'T 4 MAI N '"'AT!. = 7 0 1 1 ? 5 7 / 6

l r  { _  p i ;  / O '  L • > • ] . / ? . } * . ' ■  J

A .7 /t- f r T v -  y y /n p | - l ./?.) * A ] .?
■- vyY ( r ] p)

v v  ( p y  )= ' A T - p  ; 5 , ) + A 7,- - W (  3  1

n. •• y v ( ?  3  ) - \ L ? ( 1  A \ 4 ■\ ' ;  1 j . ; 1 r /

;; * \ v  Y ( 2  ?  ) - A 'v ! { ] ] } -*■ A '7 / t ( 1 r: >

A' A/ / ( 0 1  ! = \ '? '. ( 6  ) + A 7  /*  V 0 ( 1 6 )

U y  y ( V 0  ; r. h A >•: f 1  )
,A '3 V. ( 1  I )

;; v  Y ( 1 9 ) i: -A n ’ ( M
' • y  a > ( 1  p - { — \ ' 1 ? )  / 9 A  ( 1 ; / ? 4- c ;V f; T  -v { “7 '

I ■! > — ?. « - p r y w  ( 1  3  ) ) vO 1

4  \ r Y ( 1 7 ) = { - A ' ( i n  / * m +  A ■r- 0 - 6  ! 1 6 \ - * T, 0' T n  i ) 4- 7 T V: (\ 1  3 5 + 0 ( 1  ^  ^1 - t /  A  B

■■■• y  y ( 1 6 ) - f K1 ( 1 V ) ? n r T ( I f . \ 4- }-• r- T i 1 7 ) - 0 ( 1 4 ! / .. J *  6  1
P ■ ■ v  y ! 1  F ) - { _  i ; O ) / /:j 6 •f rj r  T - V : { 1 /

5 - 7 * n r T  ^  1 - ( ! H I 4 W (  1 7  ) f 4 .  ! 6  3  1 2

■' y  y ! 1  ) -A ( { ) /  A » -i ( 1 /  4 * 4 A T T ( 1 3  ) - E T H W (
1J_ u )

-! P  T • O .  i  ! * 0 X -1- p. ( 1 n  ) / e 1 6 : / / . \ 1 ?

( 1  ? ) - { - ( 7 ) /  A C 4- !■; ( 0 5 / ' + » 4- n IT T t1 V a ?  1  - J * *r  . T  ;*r • • ; 1 T j +  0 r: *r ^ A ( 1 4 )  } ^

p  ■ y  Y f 1  2 ) - ( ( A ) / A - V p ;. / v'!' « 4* !' - T * V: (
■5 1  ) -

T e ■' ' *' L. T *  0 {1 2 )

+  y  r r y ;  { i • 0 } :Y ( ] A ! / ‘ r * -  f 1 c; ) / /{ e \ A 1  y

0 ‘ :■ 1 •' v ( i n = { { -7 } /  A  * - ;> Vi ' * r' F T *■-; / 1 I } 0 - : ■; l: t { I
4 __ jp

( 1 7 5 ! 4 4  ̂ * A 1 2
... v  y

( 1 0  5 - ( — i-; (
/,

} /  / - 4 - y  y  • y  r> ( c ) - ;h * 2 '-. : i p T 1 6- 1 4  0 ( 1 6 } / 9 5 Y A 1 2

: y y ! Q  ! = { - ( 5̂ } /  a  # ■f ( 5  ! /  4 .  + 7 C X * t A
\

£  t F r  6 O  ( P } 6
r> i- T '•/ ( 1 ?

1 4 Y f ! :: ) /  0  , — O ( J A ) /  > ) ' ' A ] •-
v p v y  ( ; ; ) = ( - : . : ( 2  } M . 4  y { A ) / A „ 4- B E T # 6 f 7 } -  7 . Y Y r T * /  ( 0 ) 4- P t  I  W { c j o k  U  2 ) /  A

1 -  • { 1.6 1 / 4 .  ! - A : /
!•' '•• y  v  { 7 > -  ( -  V, ( ] 1/ 4 . 4- v; ( ~ ) /  A c + P F T -  ' v { 6 ) -  ? . *  7 c t  ( 7 )

1 + ’A r T *  .< ( 0 ! -t- a ( 1 i  ) /  A . -  f 1 3 ) / A ,  } A.\ 5 ? 
nv  v v  ( 6 ) = (V. { 2 1 / 4 . - 2 .  * AF. T* W{  65 4- r ! F T 7VM 7 5 -  > < 13 5 /  A .  } * A3  2 
r  V  ; <v  ( 5 ) -  ( ( :. T -  * 3  } ( A  5 -  ? .  *  B -- T  A  V; ( 3  5 +  0 !  0 ) *  .  5  ) *  A 1 2

v y  { A )' = (' { B r T - . 5>  ) *V: (  3 ) - 2 . * B -  T * h (  A ) + ( B F T + .  5") * U ! 3 ) -i-k ( 8 ! *  . 5 - VI ( 10 )
1 *  .  3 5 '• A 1 p

c-, ‘ v: v ( 7 } = { ( ■’< f T— . ) o y  { 3 ) s B F T * v , (  U  + ( Hr  I  f  . 5 1 * i - ‘ ( A ) + W (7  3 -  . 6 - W ( °  )
1 6 , r. ) * A l  2

P ' v y  ( ? )  = << h, f t -  ,5 3 ) - ? . * P E T * w ( 2 ) + (  Hr  14-. 5 ) ^  W < 3 )
i  4-H { -  ) * .  3 - i  - ( 6 . 5 ) ] 3

AM XV ( I  ) = ( - ? , - B E  1 ) 4 ( BFT + . ’5 ) ( 2 )  - V ‘ < ? ) * ' . ?  ) *  A 1 2
on  ? a 1 = 1 , 2 3

2 4  Pr M' J T  2 P 4 ,  I , " ' A v  ( j  )
2 0 4  r r p - v A T  ( 1 HO * V )  K f HMP i - y y ^ ,  I 2 , 2 H <  = E I 3 .  6 5

n o  3 1 I = 1,73
r': A x { J ) = ( ~ HY(  I 5 + 0 ’ ’ Y ( I 5 5 /  2 • + S C H T /  ( p y x  { I ) - t> MY ( 1 ) ) * ' * 2 / 4 .

! +(  Pv i vy  < I ) ) A P )
31 CO 0 ! I O U r

on 3 ? 1 = 1 , 2 3
I V ( T )= (C y v  ( I i +C f V (  I } ) / p . - S C ^ K  ( ~- ' X ( T ) -0 v y  ( I  ) ) * * 2 / 4 .

1 -M : ’ O V  ( T ) ) * * 2 )
5 ?  (O '01 IMIJF

OH I -  ] , 7
3 0  op  1 y 3 C 1 ,  I T )

301 ,:0 '-O A T ( ] H O ,  • 3 v , 6H A  Y.V., I 2 ? 2 ! K C r : i 3 .  6 )
PH 3 4 1 = 1 , 2 3

5 4  p * i m t  5 C2 ,  1 I i - i f  I )
500  FO \ j  ( 1! i ,  °H x , 6 r ln J N'-’ ,  I 2 ♦ 2 H < *  1 1 3 .  f . ' !

f'O vi i p , ? "
7 0 r  4 ( I )=  „ 54  i , \ t  ;■■■■■) { p . *■?■'/; v y  ( I ) /  ! F vx  ( ] > -  v >-y < ! ) > ) >

5 5 H i v r j O H '
! : ^ i ' I ~ I ? >S
t  p r  T p ( t ) rr 7 i- t  0 ( T ) p jOi 0 . /  £ n T )

ip cn\T TNf *r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

1940

1957

1959

1965

1964

1965

1967

1968

Born at Rangamati, Chittagong Hill Tracts,
East Pakistan on January 12.
Completed Secondary School from Rangamati 
Gov't. H.E. School and received first grade 
Scholarship.
Stood first class second in order of merit 
in Intermediate Science Examination from 
Sir A.T. College, Kanungopara, under 
Dacca University.
Stood First class Second in B.Sc. Engg.
(Civil) final examination from East Pakistan 
University of Engg. and Technology, Dacca.
Joined the Associated British Consultant Ltd., 
Chittagong, E.P. as an Assistant Engineer.
Appointed as a Resident Engineer in 'The 
Engineers Ltd.' Dacca, E. Pakistan. -
Promoted to the Post of Senior Engineer 
(Design) and held this position until left 
for Canada for higher studies.

•70 Enrolled as a Graduate (Teaching and Research) 
Assistant in the University of Windsor, while 
pursuing a Master's Program in the Department 
of Civil Engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Analysis of gridwork in skew bridges.
	Recommended Citation

	tmp.1506712331.pdf.LUkPn

