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ABSTRACT

In the design of control systems, the selection of a per-
formance index is frequently a difficult one. In some applications,
such as, time optimal control, the index is predetermined, but
in other cases the decision is not as clear cut, The selection
of a performance index is an importantone, since it determines
the nature of the system transient response. Therefore, some
guidance is required in selecting a suitable performance index.

The work déscribed in this thesis makes an attempt to
simplify the selection of a suitable performance index. This
is done by designing the system so as to minimize a certain per-
formance index during the transient period of a second order
system. Additional indices are evaluated during the transient
period and the results are tabulated for each index, This was
carried out for six performance indices, and each time all the
indices are evaluated. The results for each transient response
were tabulated in oxrder to provide a quick reference for the

selection of a suitable index.
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NOMENCLATURE

T system time constant

K gain of the system (=1,0)

y K/T '

g damping ratio of a second order system

G(s) open loop transfer function in the Laplace variable
E(s) closed loop error in the Laplace variable s

e(t) closed loop error in the time domain

F(;,E,t) performance index which may be a function of ;,5,

and _ and t
f(x,m,t) © ,
ISE j e(t) dt
o . .
® 2
ITSE J; t e(t) dt
R(s) Laplace transform of the time function step input r(t)
c(s) Laplace transform of the time function c(t)
m(t) optimum input to the system
x(t) System state variables

H(;,E,;,t) Hamiltonian function

or H

p(t) Adjoint system state variable

E The desired value of the system output
«+1 if x> 0

sgn(x)= 0 if x = 0

-1 if x <0
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I. INTRODUGCTIGN

The design of control systems by the classical control tech-
niques is rarely used at the present time, due mainly to the
better methods now available with the modern control theory.

The amount of information that can be obtained about the system

using classical control is limited to the system frequency res-

ponse, stability, transient response, etc. Most of the design
techniques in classical control are by graphical means. This
makes the design somewhat laborious, since trial and error
methods have to be used in the design.

Optimization techniques can be used in classical control as
well as in modern control theory. System optimization is con-
cerned with making some performance index or criteria take on a
extreﬁum value, in which case we have optimum control. A per-
formance index is used to uniquely determine the optimum operating
conditions of the system., When a system is optimum it is usually
only optimum with respect to the performance index or criteria
used.

There are basically two optimizing techniques:

i) The type of controller and the nature of the system are
predetermined and the parameters of both are selected so as
to optimize some criteria,

ii) The controller is designed so as to optimize some chosen

performance criteria of the system.
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The first method falls into the class of parameter optimi-
zation. Parameter optimization has limitationms in that the
system response is usually oscillatory with overshoots. The
performance indices normally used with parameter optimization
are ISE and ITSE. Other indices are not so amenable to para-
meter optimization and are seldom used.

The second method uses either the dynamic programming or
the maximum principle. Dynamic programming always results in a
feedback controller with time varying gains if optimized for the
finite time interval. The feedback loops make the overall system
stable during the optimizing interval and the effect of any disturb-
ances at the output are reduced., Dynamic programming does how~
ever require a knowledge of all the state variables, which makes
it unsuitable for certain systems. This limitation can in some
cases be overcome by using state variable estimation techniques.
Another serious disadvantage with dynamic programming is that it
is not very easily applicable to discontinuous control.

The maximum principle involves extremization of the Hamilton-
ian function. 1If the performance index is to be minimized the
Hamiltonian is maximized., Extremization of the Hamiltonian pro-
vides an adjoint system, the output of which is fed through a
controller to the process or plant. The controller can be contin-
uous or discontinuous, depending upon the performance index used.
If the plant to be controlled is stable, then the adjoint system
is unstable, This is not a serious limitation since the adjoint
system can be made stable over the optimizing interval.

One important point that should be realized is that the
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3
performance index dictates the type of controller that will be
used. This is more apparent by observing the Hamiltonian
function., If the control signal m, appears in the performance
index to a powey greater than unity, then this will result in
analog or continuous control, otherwise the control will be dis-
continuous (may be ®hang-bang, or on-off). Also, the performance
index dictates whether the resultant controller is open or closed
loop. For a closed loop controller the output state variable
must appear in the performance index to a power greater than
unity, otherwise the controller will be open loop.,

The aim of the work in this thesis was to study the role of
the performance indices in optimal control of a second order
system, This problem is of interest in industry where it is
desirable to get the plant or process up to its operating condi-
tion and at the same time extremize some performance or cost
criteria., The possibility of using either dynamic programming

or the maximum principle will be considered.
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I1. PERFORMANCE INDICES IN OPTIMAL CONTROL

In optimal control, it is necessary to have some means of
assessing the performance or the quality of control of the system.
A performance index is introduced to fulfill this requirement.
The performance index depends entirely on the type of system
being controlled. Minimum fuel indices are used in applications
such as space vehicles and sattelite control systems. In these
situations the amount of fuel that can be carried is severely
limited and any manuevre must be performed using the least amount
of fuel, Other indices, such as minimum time, require that the
manuevre be carried out in the minimum possible time. This
index could be used in the dive or surface control system section
of a submarine, No one index could possibly be used in a complex
system to define the optimum performance, and usually large systems
are broken down into small sections where we can apply the appro-
priate indices.

A performance index is used as a means of determining
uniquely the optimum operating conditions of a control system
or process. One possible performance index is to minimize the
system error.

We would like the system to respond to the command without
error. This is not generally possible and our only alternative
is to operate the system in the best possible way subject to
any imposed constraints., The controller is designed incorporat~

ing the imposed constraints and a performance index is used to
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5
check the system performance. The choice of the performance
index is an important one since it determines the nature of
system response. In some cases undesirable results can be
obtained by the wrdng choice of a performance index. Often a
compromise has to be reached in the selection of a suitable
index, especially if the most suitable one is difficult to eva-
luate or impossible to optimise, Listed below is a brief
summary of some of the most common performance indices.,

The system described in this thesis has the open loop trans=-
fer function,

K/T

s(s + 1/7T)

and is shown in a closed loop configuration in Fig. 1.

tf
i) fo (ez +/\m2)dt

This is one of the most widely used indices, involving
quadratic terms of error and the system control signal m, The
A in the index is the Lagrange multiplier if there are con-
straints in the system, otherwise i; is only a weighting factor.
This index attempts to minimize both. the system error and also
the input energy. It is easily applicable in either the maximum
principle or the dyhamic programming techniques. In both cases

it gives continuous and closed loop control.
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This index penalizes both positive and negative errors
equally, since the product is always positive, It has been
widely used in the past, especially in parameter optimization
techniques. Minimization of this index using parameter optimi-
zation, produces lightly damped systems having poor relative
stability(l’s). It is also insensitive to small errors or dis-
turbances at the output, which will go undetected. The integral
could be made zero by applying an infinite input to the system.
This is, however, impractical since it is difficult to generate
such high inputs and there would invariably be saturation in

the system,. In practice this integral would have to be minimized

with fixed constraints on various quantities in the system,

t
£
iii)[ dt
o

This index is commonly called the minimum time or time optie
mal performance index. It is used when it is desired to transfer
the system from some fixed initial state to some fixed final state
in the minimum possible time. For a second order system with
constraints on the control signél, it has been found that maxi=-
mum available power should be used at all times to either accele=

(6)

rate or to brake the system « This form of control is common=-

ly called '*bang-bang" control.
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iv) £ .szdt

o

This is called the minimum energy performancg index. It
is a measure of the energy required to transfer the system from
a fixed initial state to some prescribed final state, The time
required for this manuevre, ty, may or may not be specified,
The XN in the index is the Lagrange multiplier if there are con-
straints on the input m., This index is used when the input
energy to the system is limited and m is chosen so as to minimize

the power over the optimizing interval,

This index is similar to the ISE, except that it does not
penalize as severely large initial errors. It does, however,
penalize errors that persist for a long time. Because of this
it is more sensitive to disturbances at the output, than the
ISE index. Minimization of this index using parameter optimiza-
tion produces lightly damped systems having poor relative stabi-

lity. The final time t_ may or may not be specified. 1If it is,

£

then only the error up to the time ty is of interest,

f
vi) lml dt
o
This is the minimum fuel index, and is particularly useful

in applications where the amount of available fuel is limited.

In these cases the controller is designed so that the system
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consumes the minimum amount of fuel in transferring the system
from some fixed initial state to some fixed final state. Usually
other measures of the system are sacrificed, e.g. settling time,
etc., in order to achieve the minimum fuel requirement. For

type O and type 1 systems only one sign of the control signal

is required, that is either +M or ~M and zero., This requires
ON-OFF control. However, for a type 2 or higher systems,a change
of sign of the control signal is required, with possibly a zero
input in between the controller switchings. If the control
signal to a type 0 or type l, system changes sign, this will

result in sub-optimal control,
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I1I. PARAMETER OPTIMIZATION

Parameter optimization involves the selection of controller
or system parameters in such a manner that the optimum operating
conditions are achieved., This form of optimization is used when
the type of controller and system have been chosen, but their
parameters can be selected almost at will. This form of optimi=-
zation is usually the cheapest since it requires very little
change to the -existing system. There is a considerable amount
of literature available on this subject(1’2’3), only a brief
summary will be given here.

The most used performance criterion with parameter optimi=-

zation with step type inputs to the system is the ISE. The

ISE is defined as,

w

ISE =’[ e(t) 2dt (3.1)
o

The parameters of the controller and the system are chosen
so as to minimize this integral over the period of integration.
The integral (3.1) can be transformed from the time into the
frequency domain as shown below.

® joo

2
ISE = e(t) dt = -l.. E(s) . E(~s) ds (3.2)

=Joo
where E(s) is the Laplace transform of the time error function

e(t).,
10
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The value of the right hand side of (3.2) can be found

from pﬁblished tables providing E(s) can be written in the form

c(s
E(s) = ﬁ;i‘ (3.3)
-1
where c(s) g-co +CS ¥ . o .4 s" (3.4)
and d(s) é-co + dls . dnsn (3.5)

and where d(s) has zeros in the left half plane only. This
manipulation of the ISE is due to Parseval and is referred to
as Parseval's theorem. Thus the evaluation of the ISE is
simplified and the results are available as published tables.
The minimization of the ISE on a second order system, we
have the choice of two parameters which can be optimized. Con-

sider the second order system whose transfer function is given
by

(3.6)

G(s) = s(sT#+1l)

and we need to determine K and T to make ISE take on the minimum
value., To make use of Parseval's theorem we need the closed loop

system error of Fig. 2, and the error is given by

L
E(s) = R(gr + 1) _ Rés + 1/71) (3.7)
TS“+S+K s“+1/T 5 + K/T
E(s) = Béiiil (3.8)

s“+as+Ka
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where R is the step input to the system

and a is 1/7T

Using Parsevalts theorem on (3.8), we have

- 2

Ka + a 1 1

ISE = R = R | o (3.9)
2Ka? 2a 2K

The minimization of the ISE with respect to K and T gives

a trivial result, since it requires that K =® and T = 0., 1If

K is very high the resultant system response is oscillatory and

the relative stability would be very poor.

A more meaningful result will be obtained if the optimiza-
tion is carried out with respect to the system damping ratic <.
For the system of Fig. 2 it can be shown using Parseval's theorem

that the damping which minimizes the ISE is
S = 0.5 (3.10)

With this value of i;, it can be shown that

ISE ;n = T (3.11)

and the optimum K = 1/T (3.12)

Parseval's theorem has been extended by Westcotta, for the
use of the ITSE performance index. If a similar optimization
procedure is carried out as above, but this time using the

ITSE index, the following results will be obtained.
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14

The damping which minimizes ITSE is Ci== 0. 595 (3.13)

and 2
ITSE . = T (3.14)
min

and the optimum

K = 1.0/1.44 T2 (3.15)

Comparing the values of C: obtained to make both indices
take on a minimum value, both results agree with that obtained
by Graham and Lathropl, The system of Fige 2 was simulated
on a digital computer, the simulation results are displayed in
Fig. 3.

The simulation results of Fig., 3 show that as the damping
ratio is decreased this results in a more oscillatory response.
The values of ISE and ITSE agree with the calculated, the simu=-

lated values are

ISE = 1.999 (3.16)
ITSE = 4.006 (3.17)

Both the results were taken for a 15 second simulation
interval. In parameter optimization, we know that the best system
response will be obtained if<: = 0.7, and what we are doing in
effect, is trying to find an index which gives this result.

The simulation results confirm that the index which gives a
damping ratio of around 0.7 gives the best overall results, in
this case ITSE would seem to be superior. 1Its settling time is

smaller and also the overshoot is less than'for the ISE index.
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IVe OPTIMAL CONTROL

A control system can be optimal in a sense that a perform-
ance index or criteria is extremized., Ideally, we would like
the control system to excecute the commands with no error at
all, This is almost impossible in practice and the next best
solution is to try and minimize the system error. We need not
take the system error as the criteria, we could just as well
minimize the fuel or the energy to the system. Whatever per-
formance index we use, we must ensure that the system is operat-
ing optimally. It should be remembered that usually a system
is only optimal with respect to one performance index. It is
impossible to make a system optimal with respect to all our
indicess The two most powerful optimizing techniques available
at the present time are dynamic programming and the maximum
principle, Both methods will be described and their advantages

and disadvantages will be discussed in the next two sections.

4,1 DYNAMIC PROGRAMMING

Dynamic programming has been found to be very useful with
certain types of optimal control problems. 1Its main advantage
is that it provides a closed loop controller with time varying
gains that approach zero at the end of the optimizing interval.,
This is in contrast with the maximum principle where the adjoint
vectors tend to infinity. The theory behind the dynamic program=-
ing will be stated without proof.

Consider an nth order system characterized by the differen-

tial equation.

15
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——

x(t) = A(t)x(e) + D(e)m(t) (4.1)
where x is an n x 1 vector representing the state of the process

is an r x 1 control vector

8

is the coefficient matrix

>|

D is the driving matrix

The problem now is to determine the optimum control signal
m{t) which will extremize an integral performance index of the
type

g
I(m) = F(;a;"-’t)dt (4.2)

over the interval of time t to tf. Let the minimum of the ine-

tegral (4.2) be

t
£
f(x,t) = min F(x,m,t)dt (4.3)
m

Bellman'®s principle of optimality states that if we have the
optimal trajectory, then any portion of this trajectory must
necessarily be optimal itself. Applying the principle of opti-
mality to (4.3) yields
t+A tf
£f(x,t) = min F(x,m,t)dt + min F(x,m,t)dt
m m

t t+A

(4.4)
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t+A

£(x,t) = min F(X m,t)dt + E(X + XA , t+D )

(4.5)
Assuming A to be very small and expanding the second term on

the right hand side of (4.5) using the Taylor series, we have,

-

p)

£ A+ ECA)
m t

£(X,t) = min | F(X,m,t)A 4+ £(x,t) + x £=4 4
(4.6)

Q/

ol

X

o

where E(A ) is the error incurred by the truncation of the

Taylor series. Taking the limit as A tends to zero, we have

that
min F(g,;,t) + ; éﬁ + ﬁi = 0 (4.7)
m X 3t
rearranging (4.7), we have
- 3E minl}(i,ﬁ, £) « x 2F (4.8)
at é'—
m X

Equation (4.8) is known as Bellmann's functional equation.
The optimization problem has been reduced to one in which we have
to solve the partial differential equation (4.8) for the function

£(X,t). The optimum input is obtained from (4.8) and is given

by,
> RY: .
3o F(x,m,t) + X § = 0 (%4.9)
(o]
m=m
but % = A(t) x(t) + D(t) m(t)

hence (4.9) is simplified to
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2 F(R,m,t) + (Ect> X(t) + D(t) a(c))-——ﬁ =0 (4.10)
om 3%
m=m°

The optimum input obtained from (4.10) is substituted into
(4.8) and the resulting partial differential equation is solved
for the function f(X,t).

If the function F(x,m,t) is quadratic in the system error
e(t) and the control signal ﬁ(t), then by using Merriam's para-

. .9 . = .
metric expansion  the function £(x,t) can be approximated by

n n
f(x,t) = bo = zgz bjxj + :Ei E bijxixj (4.11)

j=1 i=1 j=1

where n is the order of the system, and the b's are time varying
gains that will appear as parameters of the controller.
Substituting (4+11), (4.10) into (4.8) and simplifying the
resulting equation will give 1 + N 4 N(N 4+ 1)/2 first order
differential equations,. The final values of the gains b(t) are
zero and hence the first order differential equations are inte-
grated backwards in time until the b(t) gains reach steady state.
The values of the parametef b(t) are stored and fed into the
system backwards which will yield the optimal system performance.
The above procedure is useful if the performance index is
quadratic in the error e(t) and the input m(t). For other
indices Merriam's parameéric equatiog cannot bi used since it
e
has been found by the author using-fezdt and.mezdt indices to
o °

give undesirable results., Thus dynamic programming is not very

useful for other indices than the one described above, since we
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have to solve for the function f(x,t) and then Bellmann's
functional equation. This may be very difficult and the maxi-

mum principle seems to offer more hope.

4.2 THE MAXIMUM PRINCIPLE

The maximum principle provides a method of obtaining an
optimal solution for control systems. It is capable of handling
optimization problems of extremizing a functional subject to
certain constraints., This is very important, since the optimi-
zing procedure using Variational Calculus often results in the
system having unbounded control signals. In pfactice we have
constraints on the control signal and also on some of the system
state variables. It is for this reason that the maximum principle
is particularly useful as an optimizing technique. The maximum
principle will be stated here without proof.

Consider an nth order system which is characterised by

x = f(x,m,E) (4.12)
where X is the n x 1 state vector
and m is the r x 1 control vector

It is assumed that the control vector is to be confined to
a region M of the space ml. < em e The allowable region for m
could be defined without any loss of generality as,
m.é 1 j.ﬂ 1,2,. . ° r (4.13)
J
The functions Mpse o om are assumed to be piecewise con-

tinuous at the end points t = t, and t = tg, and if there are
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are any discontinuities in m over the interval, (to, tf) the
. A A . 7
right and left hand limits must exist at these discontinuities .

Thus for the left hand limit we must have

my(T) = lim m; (t) (4.14)
t— T

t< T
It is more convenient to deal with the left hand limit
otherwise we are forced to work in forward time. For m to be
an admissible input the properties of (4.13) and (4.14) have
to be satisfied. Let the system be described by a set of

differential equations

x; = fi(E,E,c) i=1,2,. « «n (4.15)

We are to find an admissible control vector H(t), such
that the system of (4.14) is taken from some initial state to
some fixed final state in such a manner so as to optimize the

performance criterion. Let the performance index be of the

type .
f — —
I(m) = p(x,m,t)dt (4.196)

to
The system performance will be judged to be optimum when
(4.16) takes on a minimum value with respect to all admissible
m(t)., Let us introduce a Hamiltonian function
n
H(;’F’H7t) = : : Pifi - @(;’E’t) (4.17)
i=1

where the functions P _(t) are given by
1
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. OH

P (t) = - - i =1,2,s . omn (4.18)

i 3x.

i

From the Hamiltonian (4.17), we have

- OH

X = - 1 = i 2 . . o 11 /01.9

i BPi sé (4 )
with the boundary conditions x(to) = xo, x(tf) = x!

If m*(t) is the optimal control, then there exist58 a
vector P*(t) which satisfies (4.18) and at every instant of

time to< t < tf

H(x*,P*,m¥*,t) = H(X,P,m,t) (4.20)
or
H(gﬁ,ﬁﬁ,a,t) = max H(X,P,m,t)
" méM (4.21)
The above procedure has been carried out minimizing the
performance index. If on the other hand we wanted to maximize
the index, then we need to minimize the Hamiltonian and the
negative sign of (4.17) would be changed. Thus the design of
an optimal control system has been reduced to that of maximizing
or minimizing the Hamiltonian function (4.17). The following
section will deal with maximizing the Hémiltonian function for
various performance indices.,
402 i) -[tf(ez #amo)dt
0
Consider the second order system which is described by the

following state equations.,

;1 = yx, (4422)
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= =ax, + M (4.23)

x!

The system described by (4.22) and (4.23) is shown in

4, Using (4.17) the Hamiltonian becomes

, 2 2 :
He=-(C(E~x) +AmT) + P,yx, + P, (-ax, + m)

(4.24)
. aH
P = =« ™ = - 2(E ~ 4,25
1 dx ( xl) ( )
1
. OH
- - hunad == - .2
P2 BXZ aP2 yPl (4.26)
M=-2>\m_+? (4.27)
dm 2
ti input m° °2 (4.28)
imum 1 m = T .
P P 22

From (4.25) through (4.28) the adjoint system can be

determined and is shown in Fig. 5.

Equations (4.27) and (4.28) can only be applied if the

control signal m is not on the boundary of the permissible region,

This
In th
(4.28
signa

and h

refle

is due to the fact that oH/3m is not defined on the boundary.
e case of continuous control signals, equation (4.27) and

) are valid. However, for bang-bang control the centrol

1 is on the boundary of the permissible region at all»times

ence equations (4.27) and (4.28) are invalid.

It is evident from Fige. 35 that the plant or process is

cted in the adjoint system. For a stable plant the adjoint
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FIGURE 5

Adjoint System for the

2Y
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system will always turn out to be unstable, This is inherent
in the maximum principle and makes the control slightly complex.
With a step input of magnitude E applied to the adjoint system,
the initial conditions PI(O) and PZ(O) have to be determined,
which will drive the system to the desired state optimally.
One desirable feature of the adjoint system of Fig. 5 is that
jt is closed loop and the effect of any disturbances in the
system will be reduced due to the negative feedback.

If the disturbances within the system are large, it may
be possible for the system to go unstable due to these dis-
turbances, If the system is to remain optimal with any dis-~
turbance, this would necessitate new initial conditions on the
adjoint vectors. This would not be possible in practice since
the disturbance would have to be detected and the initial condi-
tions on the adjoint system vectors would have to be altered

without the system straying from the optimal trajectory.

The Hamiltonian for this index and the system shown in

Fig. 4 is

2 A
H = -(E-xl) + Plyx2 + Pz(-ax2 % m) (4.29)
hence
-,
Fl = bxl = - (E-xl) (4.30)
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. - 3H
= — = aP. - vyP 4Le31
P, %3 ar, - yp, ( )
o
the optimum input m = Msgn[:Pz] _ (4.32)

The adjoint system is obtained using (4.30) through (4.32)
and is shown in Fige 6.

Again the adjoint system is uns;able and also there is
“"bang-bang" control. Bang—-bang control is when the input is
at its maximum value and is either accelerating or braking the
system. The initial conditions P;(0) and P,(0) have to be
determined to provide optimum control. The system of Fig. 6 is

closed loop and the effect of any disturbances will be reduced.

e
4.2 iii) J' ' dt

o
This is the minimum time or time optimal performance indexa.

The Hamiltonian for this index and the system of Fig. 4 is

H = -1 % Plyxz +* Pz(—ax2 + m) (4.33)
hence . - OH
Py = 'a';;l =0 (4e34)
° - JH
P = — = abP - P 4,35
2 %2 2 yP; ( )
the optimum.input m® = Msgnl:Pz] (4.36)

The adjoint system is obtained using (4.34) through (4.36)

and is shown in Fig. 7.
Since the performance index does not include m at all, we

can expect bang-bang control. An undesirable feature of the
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FIGURE 7
Adjoint System for the ftf dt Index
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adjoint system of Fig. 7 is that it is open loop. There is no
control over any disturbances within the system, and because of
this it may be difficult to implement in practice. The initial

conditions Pl(O) and PZ(O) have to be determined for optimum

control.
Tt
2
4be2 iv) J‘ Am“dt - Minimum energy
o

The Hamiltonian for this performance index and the system

of Fige 4 is,

2
H= =Xm + Plyx2 + Pz(--ax2 + m) (4.37)
hence
P, =~ °3H _ o (4.38)
axl
’ - JH
P2 = sz = aP2 - yP1 (4.39)
OH n ‘
— 2 - + P 040
- Am 5 (4.40)
o PZ
the optimum input m = EX (4.41)

The adjoint system is obtained using (4.38) through (4.51)
and is shown in Fig. 8.

The performénce index is quadratic in m and because of this
we have continuous control. This system is open loop and the
input to the system is non-dependent on the system variables.

The initial conditions Pl(O) and PZ(O) have to be determined
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for optimum control.

The Hamiltonian for this performance index and the system

of Fige & is

2

H = -t(E-xl) ¥ Plyx2 + Pz(-ax2 + m) (4.42)
hence

.-

P1 = T -2t(E-x1) (4.43)

. -2

Py = 3%, = aP, - yP, (4.464)
the optimum input m® = Msgn[-sz (4.45)

The adjcint system is obtained using (4.43) through (4.45)
and is shown in Fig. 9.

Since the performance index is quadratic in the system error
e, this will result in a closed loop controller. Because m does
not appear in the index, the control is bang-bang. The only
difference between this and the ISE adjoint system is that time
appears in this system as a multiplying factor otherwise every-

thing is the same.

t
£
4o2 vi)‘( m] dt - Minimum fuel

o}

The Hamiltonian for the minimum fuel index and the system

of Fig. 4 is,
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FIGURE 9
Adjoint System for the ftftezdt Index
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H = —lm, + Plyx2 + Pz(-—ax2 + m) (4.46)
hence '
. - oH
p.o= "2 _ (6.47)
1 Ox1
. - aH
= — = P - P teo 8

]

the optimum input m0 +l1.0 if P2,> 1.0 (4.49)

0 if |1>2|< l.0 (4.49)
The adjoint system is obtained from (4.47) through (4.49)

and is shown in Fig. 10. The controller is different from any
of the others in that we have ON-OFF control. This shows that
for optimum system performance the control has to be +1,0 and

Zero.

The controller for each index was simulated together with
the second order system and the results of the simulation are
shown in Fig. 11 through Fig. l4. A general computer program
which was used for the simulation is shown in the appendix.

Only minor modifications are required to the program to optimize

with respect to some other index.

The results of the simulation of the second order system
have been shown graphically. The system response was judged to
be acceptable if the output was within one percent of the desired
value. One unforseen result is that all.the bang~bang controllers
gave the same result, This was not apparent at the beginning
and to confirm this result a third order system was simulated

with two indices that gave bang-bang control,
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FIGURE 10

Adjoint System for the,lrflm|dt Index
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FIGURE 1la

Transient Response of a Second Order

System with a{Ffez +Am2dt Controller
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FIGURE 1l1b

Optimum Input for Controller of Fig. lla
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FIGURE 12a
Transient Response of a Second Order System

ftfezdt, ftfdt, ftftezdt Controllers.
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FIGURE 12b

Optimum Input for the Controllers of Fig. 1l2a
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FIGURE 13a

Transient Response of a Second Order System

with a‘gtf Amzdt'Controller

2
1
T=1/2

1.0

dSNOdsHd WHLSAS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

10

SECONDS

38



FIGURE 13b

Optimum Input for the Controller of Fig. 13a.
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FIGURE 14a

Transient Response of a Second Order System

with a ftf{mldt Controller.
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FIGURE 14b

Optimum Input for the Controller of Fig. l4a.
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rh

t
2
4.3 i){h e dt
o]

Consider the third order system whose transfer function

is given by

G(s) = —XK (4.50)
52(3T+1)
or
a(s) = ZK/T = -2 (4.51)
s“(s+a) s“(s+a)
where
y = 1/T=a

The system of (4.51) is represented schematically in

Fige 15, from which we héve the following state equations,

X) = X%, (4.52
X, = yX, (4.53)
. = eax 5

X4 ax3 + m (4.54)

The Hamiltonian for this index and the system of (4.51)

2
H = —(E—xl) + Pyx, + szx3 + P3(-ax3 + m) (4.55)

hence
. - oH
P1 = g; = —2(E-x1) (4e56)
1
. _ -2
P2 = axz = - P1 (4.57)
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) -
P3 = ax3 - aP3 - yPZ (4- )
the optimum input n® = Msgn [Pé] (4£.59)

The adjoint system is obtained using (4.56) through (4.59)
and is shown in Fig. 16. The simulation results are shown graph-

ically in Fig. 18 and are also tabulated in Table 2.

te
4e3 ii)[ dt
o

The Hamiltonian for this index and the system of (4.51)

is

H= =1 + Pyx, + Pypyx, + PB(-ax3 + m) (4.60)
hence

: -9

Pl = ol = 0 (4.61)

axl

° - BH

P, = — =P 4.62)

2 dx 9 1 (

. -2 3

P3 = be = aP3 - yP, (4.63)
the optimum input n’ = Msgn [P3] (4.66)

The adjoint systeﬁ is obtained using (4.61) through (4.64)
and is shown in Fig. 17. The simulation résults are shown

graphically in Fig. 18 and are also tabulated in Table 2.
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FIGURE 18a

Transient Response of the Third Order System
For The Controllers of Fig. 16 and Fig. 17
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V. EVALUATION OF INDICES

The simulation results, Table 1, showed that the indices
which provide bang-bang control have the best settling time.
If controllers are designed to minimize these indices, then,
although the individual adjoint systems are different, the
system performance for each index is identical, This result is
a useful one since it allows us to interchange the time optimal,
ISE and ITSE indices,vand we can be certain that the system
response will remain optimal with respect to any one of these
indices. Although the controller designed for minimum time
gives the same system response as the ISE and ITSE, both ISE
and ITSE controllers are closed loop whereas the time optimal
controller is open loop. In most cases a closed loop controller
is desirable because the effect of any disturbances within the
system will be reduced with closed loop controllers. Also the
input to the system with a closed loop controller is dependent
upon the system variables. Of the three indices which give bang-
bang control the ISE index is probably the best, It gives the
same system response as the others and it gives closed loop
control. It is also simpler to implement than the ITSE controller.
Another important point is that it is impossible to have a time
optimal and also a minimum fuel or energy system. These two
requirements are contradictory and one has to be foresaken for

the other one., If both minimum time and fuel requirements are

important, then it is best to fix the amount of fuel available
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Table la

Minimum Value 6f Each Performance Index for a

Second Order System.

Time Constant T=2.0.

Simulation Time 10 seconds. A=1

50

Controller Minimum Value of Each P.I.
Designed
For The
Index fEEon?yae | gelar fgat | fam%de | gre’de | ffmjdr
f(e2+im2)dt
2.2775 1.3973 | 6.2999 | 0.8802 | 1.2832 | 1.3384
fezdt 4.1615 1.1948 | 2.9500 | 2.9666 | 0.8290 | 2.9666
fdt 4,1615 1.1948 | 2.9500 | 2.9666 | 0.8290 | 2.9666
fxmzdt 2.5740 1.4301 | 3.8500 | 1.1440 | 1.2423 | 1.8594
ftezdt 4,1615 1.1948 | 2.9500 | 2.9666 | 0.8290 | 2.9666
flmdt 2.4769 1.4685 | 9.9999 | 1.0083 | 1.5529 | 1.0083
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Table 1b

Minimum Value of Each Performance Index for a
Second Order System. Time Constant T=1.0.
Simulation Time 10 seconds. }=1 :

51

Minimum Value of Each P.

J_'e2+7\m2dt fezdt fdat fkmzdt ftezdt Slm|dt
f(ezﬂmz)dt 1.8032 0.9655 | 4.4999 | 0.8377 | 0.6122 | 1.1098
.fezdt 3.0784 0.8868 | 2.2000 | 2.1916 | 0.4555 | 2.1916
fdt 3.0784 0.8868 | 2.2000 | 2.1916 | 0.4555 | 2.1916
fkmzdt 2.0328 1.0208 2.8000 1.0120 0.6286 | 1.5085
ftezdt 3.0784 0.8868 2.2000 | 2.1916 | 0.4555 | 2.1916
[m|dt 1.9627 0.9710 | 7.4499 | 0.9917 | 0.6197 | 0.9917
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Table lc

Minimum Value of Each Performance Index for a

‘Second Order System.

Time Constant T=0.5

Simulation Time 10 seconds. j=1

52

Controller Maximum Value of Each P.I.
Designed
For The
2 2 2 2 2
Index S )dt | fe“dt fdt | Sfxm"dt | ftedt | Smldt
f(e2+km2)dt 1.5414 0.6669 3.2199 0.8746 0.3021 1.0404
fezdt 2.3318 0.6752 1.6600 1.6566 0.2748 1.6566
fdt 2.3318 0.6752 1.6600 1.6566 0.2748 1.6566
fkmzdt 1.6960 0.7347 2.0000 0.9614 0.3341 1.2728
ftezdt 2.3318 0.6752 1.6600 1.6566 0.2748 1.6566
f[m|dt 1.7050 0.6883 3.0999 1.0167 0.2938 1.0167
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and make the system time optimal with this constraint., This
would provide sub-optimal control, but there is no othexr way
around this problem.

Of the tmfee indices that include the control signal m,
probably the_£@2+ Xmadt is the bes& all round index. It is
better in every respect than the-flmldt, except in the amount
of fuel consumed to transfef the system from its initial to its
final state. The difference‘in the amount of fuel consumed is
of the order of 33% more for the,&52+)\m6dt, than for the mini;
mum fuel index.

ty
The °)\mzdt performance index gave somewhat similar result
3

as thei(é%-Amadt, in each case giving a slightly higher value
for each index except for the minimum time and the ITSE. It
was thought that if the system was designed to minimise one
particular index, then no other controller could possibly give
a smaller value of the index than the controller designed for
this index. This was shown to be not the case. The controllers
designed tq min&mize.l@%-kmadt and}};\dt gave a smaller value
f%r the index °);mzdt than did the controller designed for the

°;\mzdt index, This would'indicate that if the design friteria
is to be the conservation of fuel or energy, then the_{@ + Xm%dt
and j jm{ dt indices give better results than v/\mzdt. However,
the_fkm dt index gives the best settling time of the indices
that involve the control signal m. This again shows that it is
not possible to have minimum time and minimum fuel or energy

control,

Some of the indices provide open loop controllers, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.

Minimum Value éf the Two Performance Indices for a
Third Ofder System. Time Constant T=2.0 seconds.
Simulation time 10 seconds.v

54

Controller Designed Minimum Value of Each
for the Index Performance Index
refae rde
fezdt 1.6558 4,1000
Jat 1.6557 4.0000
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is an undesirable feature. This is not a very serious draw~
back since once the optimum trajectories have been determined
they can be stored using function generators, and the resultant
open loop controller can be made closed loop. This may be a
better method of controlling the system since it would obligate
the need for the adjoint system. This has been tried by Roots

&
8 . 2 2
and Lees with success, for the |(e” + XHlﬁt performance index,

It is difficult to compare directly the two indices that
gave continuous control due to the fact that the optimum input
mo is different for each index. In the simulation described in
this thesis A was the same for both performance indices. This
may not be the best comparison and perhaps a more realistic
comparison would be to choose A so that the amount of fuel con-
sumed is the same for both indices. Another possibility is to
impose identical constraints on the magnitude of the control

i o
signal m .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VI. CONCLUSION

6.1 ftﬂéz + km%ﬁt

o

The simulation results showed this to be a very useful
performance index. Most optimal control literature uses this
index more frequently than any of the others, This is due to
the fact that it gives a satisfactory system response and it
can be handled either using dynamic programming or the maximum
principle., Its only disadvantage is that the settling time is
inferioxr to the other indices, except the minimum fuel index.
If the settling time is of secondary importance, this is probably

the most useful all-round index.

t
6.2 f fel4t
Q

0f the indices that give bang-bang control this is probably
the best one. It has a closed loop controller which is desirable
but not essential. As with the other bang-~bang controllers, the
fuel and energy consumptions are relatively high with respect

to the minimum fuel index.

t
6.3 jfdt
[o]

This index has been extensively used in optimal control,
especially in the phase-plane analysis. It has been shown in

this thesis that identical results can be ob tained using an

t
£
2
Jo e dt performance index with the added advantage that the

56
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latter provides a clesed loop controller. If the optimization

is carried out using the maximum principle this index 1is

t
inferior to f £ ezdt. It has the same disadvantages as

te ©
Jo ezdt with 'an additional one, that is, the controller is

open loop and is therefore independent of the system variables.

“t 2
6.4 5 Am dt
o

This index was found to be inferior in most respects to

t
o @ +-Aﬁ1kt index, and also to the indices giving bang-bang
control. For most applications if continuous control is de=-

t
sirable the-{ %?2 + Amz)dt index would give better results than

t o]
the [ £ ym2dt index.
[o]

t
6.5 f ftezdt
o

This index gave the same system response as the other bang-~
bang indices. Its only disadvantage is that it is slightly more
t

complex to implement than the f fezdt index. Since these two

o}

t
indices give the same system response, the ‘f fezdt index would
o

in most cases be the more useful,

t
(o]

The minimum fuel index gives very poor settling times.
This is a result of the input being on for only a short time,

The controller required to achieve this requirement is of the
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ON-OFF type for a type 0 or 1 system., For a type 2 system a
3 position relay is required.,
t

2
O0f the six performance indices considered the f f@“+>\madt
o

and ‘ftfezdt are the best. The first index can be used very
o
easily using either dynamic programming or the maximum principle,
However, the dynamic programming technique is better suited

for this index than the maximum principle especially for third
order systems or higher,

The thezdt index is better suited to the maximum prin-
ciple sinceoit requires discontinuous control. For systems of
higher order than two it becomes very difficult to solve for the
initial conditions on the adjoint vectors.

The findings in this thesis can be summed up briefly as,

i) Optimization using dynamic programming is not easily appli-
cable to indices other than the ‘(tq%z + A mﬁdt.
o
ii) The performance index dictates the type of controller, i.e,
continuous or discontinuous. This has also been reported
by Roots and.Leeslo.

iii) The system response is the same for any performance index

that gives bang~bang control.
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APPENDIX

The program used to evaluate the initial conditions for
the ftfezdt performance index is shown for both the second

o
and third order systems. Minor modifications are required to

accommodate the other performance indices.

39
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