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A bstract

.. Muon-atomic systems are of interest because of the 

important role playact by q uantum e 1ectrodynamic (QED) effects 

as com p a re d with e.l ec.tr ontc sys terns tui lh, the same nuclear 

charge. The . QED. corrections to the energy, levels consist 

primarily of nuclear, vacuum po lar.iza.t i on, and muon self-energy 

effects. The differences in energy levels 23^ are

paricular 1 y s e nsitive to OED and finite n u c 1 ear size effects.

This w o t k 'describes the calculation, of the energy levels 

ls^ ,23^ ,2pti , 2p^; and the energy differences 23^ -20^ ^
4- — j . L ++ ' _ 3*" _ ‘i-tof the muon ic* systems p-, H, , Ho^ , ,^u- Lif and p- Bc^

by direct numer ical' integration of the Dirac equation.. The 

results for the energy differences are used to identify cases 

which might be. accessible to experimental measurement.
" ...................... .. :  • iA lthough the splittings n ominally .scale as 2, . 

cancel la.t'i'ons. .between, the. v acuum po.lar iza.t.i on and finite 

nuclear size terms bring sown of the'transitions for yu- Li*+ 

and yu- Ee,j into the range co v er ed  by. tunable dye lasers. A

m easurement of the trans i t i on. frsquenc.i as. would. provide a

more precise determination, of the nuclear radii . than is 

currently available.
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1_ INTRODUCTION

Quantum electrodynamics: is the s tudy of quant ized field

effects between charged p a r t i c 1es via photon interactions.

It predicts corrections- to relativistic quantum mechanics

which have now* been tested by a wide variety of hign

precision experiments. This work is primarily concerned with

a study of QED effects in muonic systems. However, we begin

with a brief review of the corresponding effects in more

familiar electronic systems.

In atomic physics, the principal test of QED is the energy

shift of the 2s. state relative to the 2p^_ state in
1 2  3 4

hydrogenic ions \the Lamb shift). Lamb and Retherford

used radio frequency resonance tuned to the 2s^ - 2pk energy

shift to measure the energy difference. This technique has

been used more recently in higher precision experiments by
5 6

Mewton ct a i , and Lundeen and Pipkin . Quenching 
7 . 8

anisotropy and laser resonance arc two other experimentally

used techniques to measure 2Sj, -2$^^ shifts in higner

frequency (higher 2) regions. In the experiments indicated,

close agreement with theory was obtained.

In hydrogenic ions the dominant- quantum electrodynamic

effect in 2s^ -2p^,^ transitions is the electron self-

eneruy. This effect may be interpreted as the 2s^ electron

interacting, with its own radiation field. This interaction

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



is -ach i e'ved via t h e ' electron' emitting a virtual photon and 

s u b s e q u e n t l y : absorbing it.'" •

'The next largest QED effect for electrons is vacuum 

oo 1 ar i sat ion which - corr es ponds ''to- the creation of virtual 

o 1e c t r o n - p o s i t r a n 'pairs from the vacuum in the presence of an 

electric field. These d i p o I e - 1 ike pairs surround the nucleus 

so that the observed charge at a large distance from the 

nucleus is really a screened charge. Within a shorter range 

of the nucleus, of the order of the Compton wavelength, the 

nuclear charge is on 1 y partia Ily screened. This produces a 

s m a l 1 downward s h i f t 'compared to the much larger, upward shift 

due to the electron self-energy (see 2.10 for a more detailed 

'discuss i oh - of ' orders - of magnitude.)

The other major contribution to the 2sy shift is the

finite nuclear size. Rather than being a point source,- the 

nuclear 'charge' is distributed over a finite region of sps.ee 

with root moan square radius r . This produces a further 

smalI'upward' shift of the 2s^ state;

In addition to QED and finite s i ze. effects t h e ' 2p>j state 

is shifted upwards by- the 2p^ -2pa fine structure splitting. 

This 'is, a relativistic, but non-QED effect predicted m  

•lowest order by the Dirac equation.

Thus far only electronic systems have been considered. If 

the electron in a hydrogenic ion is replaced by a muon, then

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



vacuum po 1 ar izat- i on 'bee omcs the dominant 'QED effect. Since

tno muon i s about two hundred t imes-roar a massive ' than the

electron, the mean n u c L e u s - m u o n - orbi-tai radius is about one

twa-hundredth of that of- the electron. In this r egion the

bare charge is only partially s c reened and hence the effect

due to vacuum p o 1 a.r i z a t i o n is m u c h  intens i f i ed r elative 't o

that of the electron system. Hence, unlike electronic

systems, the net QED shift of the 2s,, state is downward.■1
Interest in muonic systems has been stim u la te d by

measurements of the 2s^ “2p>^ and 2s^ -2p^ energy spli'ttings

in the system ' 'yet- Ho^f . Bor ten et al m e as u re d  the Es^

2p. energy splitting by using laser resonance in the infra

r e d  to stimulate emmission ■ at B 1 2 d A . ’ B u b s e g u e n t 1v,
10,11

Carboni ct al with higher pr ec i s i on measur ements; found

£ < 2 p u ) - £ ■: 2s ̂  )'« 1527.5 ± . 3meV and £<2p^ )-E(2sx. ) 1331.3

- .5meV. Ear 1ier calculations have been done for hydrocen by 
12 13

Di Giacomo and for H e li um  by Eorie and Rinker . - This

present work extends those earlier calculations to the Is,, ,'l
2s^ ,2-p^ ,2p^ energy levels of /u~bit and ■ T1*,e

lowest order vacuum polarization potential (Uchling 

p o t e n t i a l ), and the finite n u c 1 ear size ar e i n c 1uded by 

direct numerical integration of the Dirac eauation for the 
muonic system.

With the inclusion of the above effects, the 2s,. -2p,. j.2 f ** * i
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shifts may be determined, to leading order. Since the enercy
4

solittings nominally scale ac 2 , one would normally expect

the transition Frcquenciac for Li^ and Bo? to bo above the
, .. _ ..... _ *• ’ '

optical region covered b.y tunab 1 o laser sources. However,

the present work shows that there is a strong cancellation

between the downward vacuum polari za ti o n and upward nuclear

size shifts. Consequently, some of tha oredictod transition

frequencies lie within the region accessible to experimental

measurement.

Further, since the energy shifts are a sensitive

function of the nuclear radius, experimental' measurements of 

the shifts would yield improved values for the nuclear

radius. On the following page an energy M e v e  1 diagram for

H e ^  illustrates the energy splittings Z s y -Sp^.^ .
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F i ci ur g 1. I 

EI’IERGY LEVEL DIAGRAM FOR He ++-
H
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2 THEORETICAL DESCRIFTIOII

In this jectian the theoretical background useful in the 

c alculation of energy levels for-.light muon-hydrogenic Ions 

is given. This background consists of the construction of a 

one-body problem in 2.1, the Dirac equation (.2.2) tyhereby the 

dominant energies are determined. s tationary n o r t u r a a t :on 

calculations (2.3), and the various potentials (2.4-2.?) used 

in Ihc Dirac equation or stationary perturbation calculi* 

t i o n s .

The quantum electrodynamic potentials (2.5-2.7) are the 

and vacuum polarisation and the muon self-

energy. The effect of finite nuclear size corrections to the 

C o u 1crnb potential is discussed in (2.4).

The vacuum polarization potential and the Coulomb

potential with finite nuclear size arc included in the Dirat. 

equation in order to determine the arso c ia te d  energy levels 
(see 2.8). The vacuum polarization potential and the

< muon s e lf-energy are dete rm in ed  via perturbation theory.

The sum of a l 1 the energies are used in determining the 

total energies of the 13^,23^,20^, 2p,^ states and the energy 

differences E( Ssj^-Sp^^ ) . Those energy'differences due to
Vthe fin i te nuciear size Coulomb potential and *2v vacuum 

p o 1arization • potential are functions of the nuclear radius. 

Empirical curve fits are obtained in (2.1).
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finally. 2,9 contain: loaddng correction: not included in 

this -work. Their order of m agnitude determines the t heoreti

cal uncertainty in the p r edicted energy level s p l i t t i n g s .

2,1 Ccntr c of mass Motion:

Energy level calculations for two-bocly systems are

s implified if the centre of mass m otion can be eliminated.

This can be done in the n o n - r e 1 ativistic limit by rewriting

the total H a miltonian given by

H •- • + V(rj-q). (2. 1. 1 >
2m, 2mA

in terms of centre of mass and relative coordinates.

o

Fi gure 2.1.1

Illustrating Centre of Mass and

Relative Coordinates , '

Referring to figure 2.1.1, the position of the centre of mass

is denoted by R where

R~ m, r, '+ mx f;.. (2.1.2)
M

with

m,+ m x . (2.1.2)
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Usina this result with

r - r - r (^.1.4'IX i j.
yi a 1ds

rx - ft - nil '
(2.i.5)

M

Subs t i tut i ng 2.1.5 in 2.1.1 gives ...

. H~ m̂ . fdR_ m* dj^]1 . , fdR _ jT* .+
2 ldt M dt J 2 ldt Tl “ J

*- X 1- m, + m, fdR). 1 (m, m + m„ m, )dr;x V(rt, >
2 ldt/ 2H -

V (r )i»

dt

-Pern. . Pr e I . V (r )
2M + +

<2.1.6 )
whor 0

m = m, m, . (2.1.7)
r H

Since the kinetic energy of the centre of mass is a constant, 

of the wot i on, wo can subtract it,' leaving

l-T-- Pr e 1 + V(F\X >. (2.1.S)
2mr

Thus the two-body problem has been r educed to an equivalent

one-body problem of a particle., of r e d u c ed  mass tty orbiting a

fixed centre of force.

2.2 Dirac Eouat i o n :

The Dirac equation is the relativistic analogue of the

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



_ o _

single particle Schroedi'nqer equation. It has the form

( pc • p -v R m r)l// ■ 1 c-̂  (=E for stationary states)
1 <2.2.1)

where

/ \ t to I  L . • Lm t

in units with *fiac = l. The unit of energy is thus me1 a.u.

With the introduction of a Scalar potential §{r) in 2.2.1, E 

becomes . ’

~ E~ e f ( r ) =  E- V (r ) (2.2.3)

and so 2.2.1 is rewritten as

[* • p + p m r + VCr)]-*^ “ E 9 . (2.2.4)

The total angular m o m en tu m operator is given by

J - r  + -i/2 Z  ' - - 42.2.5)
where

L - R x P and g  = (°~ 0 ) ' (2.2.6)
\° V

_ *.
The e igenvec t or s , o f a n d  £  ar c

■ V - . G )  i n d  K- k  ’ ( ? )  •
Since J commutes witlr the - Ham i I ton i an, J and arc

constants of the motion. .^The, large component ^ , is an

eigenfunction of J and . It- can be constructed by the

vector coupling of L and S as follows, .
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i> -  g C r  ) Z  < 1, m, 1 / 2 , 11 JM> Y* ( r  ) K.
: j 1H , m;t

- g <r> ^ l.M-1/2, 1/2, 1/2 1 JM> Y*‘* <r )

< 1 ,M+l/2, 1/2, 1/2 I JM> v”** «:f )

whore the vector coupling coefficients may be obtained from 

Table (2.2.1). The spherical harmonics Y? in are tne
rvisame as in Akhiezer and Eerestetskii but differ by (-> from 

those in Eethe and Balpeter. .

Table 2.2.1 

VECTOR C OU PL I NG - CO E F F IC I E N TS  < 1 ,m, 1/2, t ! JM> 

• t 1 + l l - l

J,
2 fl+H+1/221+1

l-il+l 7 2 1
2 1 r l . •

J 1-H+l/ 2 ’ 21 + 1

l+M+1/2'
J- 21+1

The small component is re la te d to through

2 . 2 . l y i e l d i n a

X  1 f ' P  ^.ill)
E- V(r) + m

This leads to

X = if(r) /<l'\M-l/2, 1/2, 1/2 /JM> Yg» (r)x 

< l' , M+l /2, 1 /2, 1 /2 / JM>. Y** i (r >/
j 1M

a  o)v I  L . I  —* /

(2 , 2 4 10)
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Subs t i tut i'tig” 2." 2. B and 2.2.10 into 2.2.4 yields 

dg(r) + (l+k)g(r> = CE - V(r) + m^)f(r)
"Sr ~r ‘ ' <2.2.11)

df (r ) ■■■+• f l-k )f Cr ) = (mr + VCrJ - E)g(r) 
dr r

with

k = -Cl+1) for j =1 + 1/2, \ =1 + 1

k =1 for j =1-1/2, l'^T-1. (2.2.12)

Getting F ( r ) ~ r f ( r ), G(r)"rg(r), 2.2.11 may be r ewritten as

A G ( r ) + kG ( r ) * (E-V(r)+m )FCr) 
dr r ' ■ ' r

(2.2.13)
d F ( r ) -  k F ( r ) = (mr - E + V ( r ))G C r ). 
dr r

In the numerical integration of the coupled differential 

equations 2,2.13 it is n ecessary to have an unnor ma li se d  farm 

of F(r) and Q(r) for r approaching 0 as a boundary condition. 

The Small r behaviour m a y  be dete rm in ed  by examining 2.2.13 
and considering the leading term of an expansion of F(r> and 

G(r) in powers of r. For k greater than aero, as r- 
approaches zero F(r> approaches r and G(r) approaches br 
Using this in 2.2.13 to solve for b yields

(E - V (0)+mr )r - b((k+l)+k)r. (2.2.14)

Thus

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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b- E-V('0) +nv • : (2 .2 . 15)
2k + l

For k 1 css than sero, as r approaches rero Q(r > approaches r"*

and F ( r ) approaches Cr**' : . Using this in 2.2.13 gives

<V<0)-E+mr >rK -C (-k+.l-k )rk ; (2.2.16)

from which ... -
C = V(O) - E + m.. . (2.2.1?)

l-2k

2.2 Per turbati on C a 1cuI at i ons
lion-degenerate p erturbation theory is used to calculate 

the second order correction to the nuclear vacuum 
po 1 ar i'zat-i on. Using s tandard Ray I e igh-Schr oed inger

perturbation theory, the H am il to ni a n is parti ti on ed  according 

to
H - H 0 + (2.3.1)

<—wh e re "
H )V> “ E /#>, (2.3.2)

E and ) V'> have the expansions

E = E0 + XE, + + ... , (2.3.3)

)^> = IO> + AI 1 > + X̂(2> + . . . . (2.3.4)

and - ■ ‘ /’

H |0> - E l  0>. (2.3.5)

Subs t i tut i nq E and 1 ^ >  into 2.3.2 and eguatina equal powers
14

of \  leads to
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e ; «■ x e , - < o ; v ’ ; o > . ( 2 . 3 . 6 )
o ! 0  >

whore r*r ’ ~ X U •

The Dirac wavcfunctioms for the scalar potent ia is are 

given in the previous section. Using these w a v e f u n c t 1ons in 
2.3.13 and performing the angular integration yields

E ’
f*
J ( : f (r ) !* + 1 g (r ) : ) V* (r )r2 dr

j (! f (r ) ! * + ! g (r ) I*) r2 c.r

J ( ! F (r ) !* + 1 G*(r ) 1* ) V ’ (r ) dr .

. . . f ( SFCr > P. * .JQtr >.P >dr (2.3.7)
0

2.4 Finite N u c 1 ear Size

The actual nuclear charge i: distr ibuted over a finite

region of space instead of being concen t ra te d at a point. A

commonly used finite nuclear size model has the nuclear
15charge density

JJCr) “ Ae“^  , (2.4.1)
where

'/x
) P(r >r* dr - t (2. 4.2)

Substituting 2.3.1 in 2 .4.2 yields
.H ■- "■   V .A = ' °* 2 . (2.4.3)

- " - & ) *  ai'0

90

L *
■o' .... - dr

The radial parameter
k

rQ = (2/3<r1 > ) 

is obtained from
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In order to evaluate the electrostatic potential for finite 
nuclear si 2 0 ,'apply G a u s s ’ 5 Law. This gives

* £ tr- (ty i
Y t*. ?/ e ■ r ’ dr ' .

r l  ~

( 2 . 4 . 6>

r } Z dr 1

The coirr csp ond i ng p o ten tial is

u f  __ rr  K, *
V - -tf* J E* dT * -a 7- / dr^ / e'H u*du

Mk ^  *V> (2. 4. 7 )
z*3 aj c‘w U1 du 

•'oThis reduces to f>
- p  2

VF ■= -2 *<Z J e u du. ^  ■ (2.4.8)
,S- / T  -

2. 5 Leadi na or dor Vacuum I-o 1 ar 1 cat i o n - - ;

The dominant quantum e 1ectrodynamic effect for low 
muonic systems is the ptS®4- v acuum polar ization potential, 

It is illustrated by the Feynman graph shown in Fig 2.5.1. '

F igur e 2.5.1 
o«. 'i<x Vacuum Fo 1 ar i cat i on Potent i al
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In order '/to .-evaluate the effect of the closed electron loop,
consider the scattering of an electron and a positron as

16
shown in fiauro 2.5,2

i i
. F i g u r e  2.5.2 

Electron Positron Scattering in the Field of the * 

Leading Order Vacuum ■ Polarization Potential

Using standard techniques of quantum electrodynamics, the

scattering matrix is given in the co-ordinate representation
/&  - ........

by
V . f

J  r ‘ = - r. - i * > d ̂ wd ̂ xd ̂ yd^C (w > ^  (ui) 3 i D_ C w-x) x. P  I* * F

xC-f i Sc ( y - x ) iS_ < x - y ) 3 i D (y-z)v C £,f?z ) /  </(l > 3c*.̂ r p* "XT F T<k r i V i

(2 .5 . 1 >

where Dp is the photon propagator and ■ S p the electron 

propagator. In order to evaluate 2.5.1 everything in the 

integrand is Fourlor transformed. The photon propagator is 

given by
(2.5.2), M  -ui j.Dp(wi-x) q e " D (q ),

wher e . F

D (a9- ) - - 1 , f"> 0V , . (2.5.2)
p q*+i€-
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The G l e e  iron propo.ga.tor g i ven in the motnentum

r o p r o s e n U t i o n  by

f - m + i e
C 2. 5. 4 )

with

^ 1 71* *nd ^ ^  2. 5.5)

After the integrand has been Fourier transformed the

coordinate integrals are calculated. Next the mom en tu m space 
integrals are performed (for this we must cut off high 

frequency parts a n d r e n o r m a l i z e  charge and mass).

Comparing the- Scattering Matrix given by figure 2.5.2 
with figure 2.3.2 below, a proscription for modifying the 
photon propagator- to obtain higher order corrections is

obtained (see figure 2.5,^).
/

Figure 2.5.3

Electron Positron Scattering via Coulomb Interaction

F igur e 2.5.4

Expansion of the Esact Photon Prapogator
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Following Bor i e and R i n k e r , the expression for the amplitude
..........  13 . \ :

of figure 2.5.4- is . .

Sp ■* U * p ’ )U( p) C4-cAa($> : (2TT>3 (p’- p - q > ,  (2.5.6)
where the Coulomb gauge /7'A ~ 0 is used and

cA, (q ) ~ -4TT 5 <» F (q ) . 2 TT f( E » - E )
qx

s c (2.5.?)
d r V <r ) e “ 2 TT d(E’-E) .

Here q - CO,q) is a c o nsequence of using the Coulomb gauge. 

The- nuclear form factor F(ip is given by
F (q ) * JdJr (r >e"'V*! (2.5,3)

The m o di fi e d  photon propagator is written in the farm

J

1
qx \ t(x / (2. 5. 3)

as i 1 lustrated in figure 2.5.5. After r e no r ma li za ti on  the 

Tr<Q*) /g* correction term is
s* . . U

TT(q^) _ - 7 *qx f d* f 1 . 1_) (z*--l )
H  j \z* " a v * . 1 z^.+q" /<Q**- 6 "H I I c-1 2Z**. zx n-q /4

-  U A <q>« (2.5.io)
Since (2.5.6)’ results from using 1/5X for the photon'
propagator, the above m o di fi ca ti o n for vacuum p o 1arization 

leads to the , 1aading ordor vacuum polarization potential.

V VP1 (5! = JLiali eft. (q> 
d4

= -4 If Zb< F(c-) V(a). (2.5.11)
qx

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Fuur icr tranrformincf (2.5.11) g i ves
,-r.(F-r^r •* t * i a *tr_K

V  ( r >  = -  » L  d  r ! o ( r ' )  I d  q e  ^  U ( a >
™  2lf] “  J

(2 .5 .12)
)r

Substituting 2.5.10 for U( q > (with .fd3 q e^ ̂  » 2/7 e~1,r"Z '
* J a-3-f-4Za “7 

13 '
tn 2.5.12 yields

V. <r> = - 1 ri3 r ! P( r ■ ) X, (2 ! r-r '’! > (2 .5 . 1 3 )
v?l 3TT J '

whor e V_
k

xri(x) - M. (t2 - ! ) ^  fl +_l"1 e art. (2.5.14)
t”*' L st^J

Ey considering & spherically symmetric nuclear charge

distribution, the angular integrations of 2.5.13 rnay be

performed leaving
V , (r)'-'-2°ta | d r ’r*p(r») EX. (2! r-r ’ i >-X ( 2 l r - r M ) 3

P1 s r  j \ * A
O (2.5.15)

To sufficient accuracy, a homogeneous charge distribution.
31 for r 4 ■ R

4TTRJ-
O ( r )= (2.5.IS)
) 0 for r > R

i a
may be us.ed to obtain

V (r ) ~ -3 * Z ( 2r + 1/4 EX.,(2R. + 2r ) - XV (2R -2r > j 
VPI 2/Tr R3 5" y

t4

1/2 R . E X _ (2R + 2 r )3 - X _ (2 R ,- 2 r )2 > 
N 3 M 3 N

(2.5,1 I a

for r inside Lhe nuclear radius R,. Outside the nuclear   H
r ad i us
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V <r) = .(1-/4 C Xu. ( 2 R , + 2r) - X„(2r - 23^)3
W  2 IT rR^ ^  •* ^ *

+ j.Rrt CX5 (2Rm + 2r> + (2r - 2R^> 3 ). ..
C-

(2.5. 17b ).
The X n <x) are given by

o2. n 4-n-' _2»~ 2?X^(x> = E ,(X>Z C nK ->c -re^ Z. D**
K-ivMr'fv̂ O

wh er e
-urbE. (x) =

( 2. 5 .IB)

l dt .§__ . , (2.5. 19)
t

and the C |1k ’s and D h K ’3 can be evaluated from r ecurrence

relations g i v e n b y  Huang. A l t e rn a t e ly  a power series5

expansion for Vyp (r) may be obtained. This is accomp li sh ed
19

by first r e w r i t i n g „2.5.15,and using 2.5.16 yielding
a rRv

V . _. (r,) = ~ * 5 dr r 1 • UK (2 ! r -r ' ! )-Ke (2!r + r ' ! >3V P L  2 T i > R I  Jb
(2 .5.2 0 )

where . <o» , ' ...
K 0 (x> = - ^ d t e ' X _1>>i (2.5.21)

and

K ( x > = (- ) <£_ K ( x ) . (2.5.22)
° dx"

A Taylor expansion of the K rt's in 2.5.20 is then performed

about 2r to yield a useful expression for Vypi_ <r) for r
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r e a so na bl y larger than the nucl ear radius. Thus 

K  '( 2 (r +r • ) > ~ H (2r >" + K' (2r > (2r > )" + . . .O O o
■ ; - - (2. 5. 23)

so that • -
Ko(2Cr+r *) )-Ka (2(r-r > ) ) = 2CK„ (2r )2r » + K« (2r ) (2r 1 f

+ K r (2r ) <2r ’ f + . . . . ]
5!

(2.5.24)
is used in <2.5.20). Integration gives

11 - <r) -2 <xX S CK , (2r > + 2 R ^ K , ( 2 r )  + 2&K«-(2r) + . .. 3 .
(2.5.25)

WPl w  ' " “ •• - T -T5 35

Ful lerton, and Rinker expand K < x ) for x in Cl,00) as

v tJ
K _(x ) - e T  d. x'1, (2.5.26)n ti’ i

s’* i  «,
fat

-ke „x

The coefficients d- ,cR are listed by them. The computational 

ease of 2.5.26 for x in Cl,*5 ) makes it preferable to 
(2.5.17).

The • nuclear radius .R M for the homogeneous charge 

distribution 2.5.16 is r e l a te d  to the root mean square (RM5) 

radi us by r "tJ1. M
o ( r )r dr

r̂ij
J <ra' >' = j p( r) r^

| |j (r )r* dr

7^, p
,ta"  **N
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£< c* 5oC) Vacuum Po 1 ar i cat i on Potential *.

The second order vacuum po 1 ar i sat i on- contributions 

are illustrated in the Feyman grs.phs of figure 2.6.1.

F i gur a 2.6. 1

w  s 1̂  V a c uu m- P ol ar iz at io n Potential ...

Following the same type of procedure as outlined in the
. ■ ■ 13 ,

previous section, Kalien and Sabry obtained

V <q> = -4TT S* F(q> UL Cq> v po ~~6l 4 (2.6. 1 >

where U w (q) is given* in r eference 13. Elomqvist gave the 
' 7 18

following useful expression for Vvpj (rl as
TtVPX fr) = -z*. p..,,cr; 

r
(2 .6 .2 )

wh ere

R x. <r )

O

Tt1).
dt e-Ztrt -13 + 7__  + 2 ) ( ^ - 1 ) ^

54+^ lOBt*1 ~SiF J

5 +
W

( t V l  )Z 1 n C 9 1 (t*- -1 )2

+ [ -44 + 2 + 5
V 9t "StT T S

+ ( it*  + 3fr ) "

£r):
lnCt+( t1 -1 )z 2

t sl \\ Lm 4 Q • /
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and

lnC8x(x - 1 >1

(2.6.4>
The small r expansion is given by 3.1

V (r! = **VPi f  -4 (I 
T\' { 9?

^  rr3-nr+C > -13 ( 1 nr+C > -J. CZ (3 > + J L  + 65 3
54r "r 27 64B

'+ 137T% + 32lfln2 - 7 S 6 TT + 5r ( l n r + O -  £ 5 r 
9 , 9 135 3 IB

+ /l4TTa-a0ir)rx - J .  r 5 (lnr+C)V + 3 2 3 r * ( 
\27 31 / 13 216

+ flZ(3) - 5 TT3' - £ 5 0 9 Vr* + (Mr*)} 
216 2532/ /

I nr+C >

-_jp
2 * w . . . .

' ’ (2. 6. 5)

uihare Z(x) is the R i emann-zeta function and C is E u l e r ’! 

c ons t a n t .

2.7 Muon SeIf Energy: , „

The „ muon self energy of ‘order u j x  is the next leading 

quantum electrodynamic effect as illustrated in figure 2.7.1.

Figure 2.7.1 

oc Muon-Self Energy •

Using lower order scattering amplitudes and comparing them
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with higher order sc At tor i ng amplitudes, the mu.cn propagator 

is mo di f ie d According to figure 2.7.2.

F i a ur e 2. T

E spans i on of the .Exact. Muo.n .Propagator
After cancel ling the-divergences an. the right side of figure

2.7.2 a n d - r e n o r m a 1 iring the fermiori mass,. the potential for

the self-energy may be determined. A perturbation

calculation for the muon sc If-energy including higher order
20

corrections yields - ■
H -3E m> C ( l + m !> C19_ + I n C 2 *  ) - 1 n >S.e. 67r H  30

- < 1 +m.' )X &  • + 37fe< 5(133 - _1_ ln2) D.
. • M- - . S . . . 1 2 B ... 2

(2.7.1)

Here lntl? is c alculated from the Eethe logarithms giving

lnliS. - In(■pfc) ■; ,n fe)
a 2.81177 + . 03002 -- 2.34179.' (2.7.2)

Ĉ . is defined by
1 “for j-- I >  1/2

-i + i - ■ .    . ...............

, '*>) ■ -1 - for j - 1 - 1/2,
I
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and nr i - the wuon mass , M t he nuc 1 oar w a s s  .

2. 3 C a 1c u 1 a t i on of Ensrgy Levs Is ;

.A method must- be devised to •. calciiUte- the '"Dirac 

eigenvalues' with the potential energies used in 2.2.2. Our- 

numerical integration method involves evaluating the • scaled, 
large and small components, G(r) and F(r ) respectively, at 

large values of r for a variety of energy (E) values. Since 
the norm

< ^1 V >  = ( IF(r > ? + !Q(r ) !** >dr (2.8. 1 )Jo ■ ,   ■
must be finite for e i q e n f u n c t i o n s ,!F ( r )! and !G(r)! must

approach zero as r becomes large. On the other, hand, for
energies not equal to eigenvalues, !F(r)l and !G(r>! diverge 

exponentially. This leads to a prescription for finding the 

energy levels of 2.2.13. - The energy levels are varied so as 
to minimize !F(r. >! and !G(r>! at large r.

This m e th od  was used for the Dirac equation containing 

the sum of the finite nuclear size 2 . 4 . S and the leading

order vacuum polarization potentials (2.5.17,25)- to determine 

the bound state energies ls^ ,2s^ ,2p^ ,2p^ . In particular

for Be^ ,F(r) and G(r) for these bound state energies are

plotted in section 3 . J
The calculation of the energy correction due to the
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oca £ 6* vacuum po lar izat i on term was done using the s ta t io 

nary pertubation result 2.3.7. The wavefunctions that are 

obtained by solving' 2.2*. 13 for the finite nuclear size and

the leading order vacuum polarisation potentials included are
2used, and the potential correction 2.6.2 is regarded as

the p e r t u r b a t i o n .

2 .9 Other C o r r e c t i o n s ;

The largest correction unaccounted for by this work, is

that of nuclear polarisation. This accounts in yw “Ho£+ for

about . 27. of E(2s. - 2pu , •>. In order to estimate how -the.■Z K ' \

nuclear polarisation correction to the energy levels scales 
with nuclear -charge, consider the nucleus as being made.up of. 

2- positive charges

f

F igur e 2. 3. 1 

Observation Point F Outside a Discrete 
Hue 1 ear Charge Distribution

The interaction with an orbiting electron is then given by
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•= J * "-if-r* p» :cos*-°,1
: r - r- : j r

3
= (X + cosfr- + . . , ) . (2.9.1)

  ' R ■*TPS * ■ ......

For r< R so that asymp t o t i c aT 1 y ,

V ^ °±Z_ + •” (2.9.2)
R

uhere
V  = .g-g_cose- . (2.9.3)

R

The first term in (2.9.2) is simply the nuc 1 ear gr ound state 

Coulomb interact i on and. the second term, VD m ay be c onsidered 

a per tur bat i o n . A first order perturbation calculation for 

the ground state of tho nucleus gives no contribution because 

VD is of odd parity. Therefore second order perturbation 

theory must be used. This gives

A E wp ^2. < i ! I n > <n! ", i i>
En “ El ........

- 1 • ' 1 < L I rv cos &; ! n > ! . . .
~W~----------- Ert.F,7 E E*A  t

 - _£iD (2.9.4)

where !i> is the nuclear ground state. Since R scales as 1/2

ss. (2.9.5)

where is the model dependent n u c 1 ear p o 1a r i z a b i I i t y . Its

value can in principal be determined from nuclear scattering

data. Since the leading order corrections to the 2s^
, Henergy splittings scale "2 (see 2.10), the order of
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magnitude of the r elative u ncarta:nity in the energy

splittings to the nuclear p o 1arization correction should

remain constant in all o'f the above considered.

Hext, the muon vacuum polarization accounts for about 

0. 022*'. of the energy splittings E(2s^ -2p^, j,) for He** ■/-<” • 
Other corrections are vertex corrections of order ^ for

n greater than 2 and corrections contributing about
0.013% in E ( 2 s ^  ~ 2 p ^  ) for ̂i-He^. Er e i t recoil and two

photon interactions account for about 0.01% in E <E s ^ - E p ^ ,^ )

of ..

on of theThe relativistic corrections to the eliminat 

centre of mass motion (Section 2.1) becomes relat 

important with

vcly less

n creasing S, since the nuclear mass 

increases ro u gh ly  in proportion to twice the atomic number 

(for stable n u c 1e i i ). The two body p r o b 1em approaches that 

of a muon moving in the field of an infinitely heavy nucleus.

2,.. 1,0: Or d er.s;c:n£ Magn i tude -

Q. E.-D. patent i als are identified as t arms i n espans i ons 

of Feynman diagrams.' The dependence of each diagram on s a n d *  

is d etermined through' the calculation- of its scattering 

amplitude. The Coulomb potential, of order *5- is shown in 

figure 2.10.1.
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Figure 2.10.1 

Muon Scattering via the Coulomb Interaction

The vacuum p oIarization potentials involve m odifying the 

photon propagator (see Figures 2.5.1 and 2.S.1) by 

introducing pairs of vertices, each pair contributing ^  . 

The first order vacuum polarisation potential is then seen to 

be of order ,Oc.~e< mh i 1 e the second order vacuum po lar izat i on 

if of order «.a5 w .

The leading order muon self energy potential (Figure

2.7.1) contains a pair of vertices giving a factor of ^ .

The scattering process is also the'result of the Coulomb

interaction of order y-Z. The complete scaling is given by 
Ot-Scv; .

It is useful to consider the order of m agnitude of 

various -corrections through n o n r e 1 ativistic perturbation 

ca leu 1 at i ons.'^,S inc e ’ the 2s>^ -2p,^,^ energy differences are 

being considered, the wavefunctions for 2s and 2p states

are required. These are given by

; ^ 2 a )  ■= (Syo.* )^_i_ 2mr oc ,
Y  2Jb

v

and the perturbation calculation is given by

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

^( 2s (Zwy <*• _1 <2- 
■iTn'

-?a a X Pi2rnr« . r ) e r



-C3Q -

J Y i V ^ s ) ! 1- : .ŝ (2p) i3') Avr^r* <2 .10.2 )
Using tha point nucleus leading order vacuum polarisation

given b y
3- f* -irl 1 ^V.„. = - 2S* I e <1+ 1 xt -1) >d t, (2.10.3!'

I F  I  2t* F~~

i n (2. 10.2) g i ves

* E vp.= - [' (l+-a /a ) (l-sa )^sd= . (2.10.4)
Pl ~ 15tt ~ ^  <1 + . ps)*

The muon self energy can be viewed as a correction to
21

the interaction'energy with the Coulamb field given by

< £ V> = <V (r+5r) - V(r)> a* J_ ( J~K\ f‘<V*V>

(2.10.5)
wh er e

(  ̂r >z ~ < (c>r ̂  > - (2 (X̂  a a / ,n')ln( « 5)
-  I
) ‘ (2.10.6)

and • " -
f 3V  V = 4H 2* > <h ) (2.10.7)

Substituting 2.10.7 and 2. 10. S in 2.10.5 and usina ^ ( 2 s )
m

from 2.10.1 gives
r f  -fA E t =. m. ln(-* 2 ) (2.10.3)

SE’ 3T\

In order to determine the order of magnitude of the 

finite size correction to the point Coulomb case consider a 

homogeneous uniformly charged sphere of radius P. . Applying 

G a u s s ’s Law inside the sphere gives

E = rSe ' - (2.10.9)
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The potential is them given by

r*
Couio**d R R
Vr>£ = -^-5 + c* a r'dr' = jls /•r' -s') 

2R VR5, /
r < R

:a
= - «*• 5

r r > R

(2.10.10)

H o t i n g ” tha deviation of this result from the- point Coulomb 
case- gives

J ’L  = -o'-5 + *S_ Crf-3 3 r < R -KS r 2R Rx

0 r > R,
' o .  io. 11)

Next a perturbation calculation is used. Noting that for 

small r ( r > 2 0 and (r) approaches a constant (see* i i
2.10.1) the correction due to finite nuclear size is then

i.< A vr„ > » I ^  (0) I 1 m 3 * 0.8 ' Cr* - 33 r* dr' .
H ' . 2‘ J ~  2E R 2

_y _a. H*i 3= 5 <*• R ~ ^  H- m„ R .
; ' ‘ 20" 20 (2.10.12)

Using (2.5.27) gives
H ^

<"&■'&"££ '<* S n\? <r* >. (2.10.13)
12~^
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3 RESULTS

In this section, the muon energy level and energy 

difference .calculat i ons are tabu 1 sited. Tab 1 e 3.3.1 gives the 

energy levels for the muon systems obtained as a solution of 
the Dirac a quation1 with t h e  finite nuclear sice and leading 

order ..vacuum -.polar ization potentials. Table 3.1.2 has the 2sj, 

-2 p !j energy splittings obtained from Table 3.1.1. ’ Table
3.1.2 also gives the nuclear radial dependence of the energy 

splittings. Tables 3.1.3 and 3.1.4 give corrections due to 

the c*z 2(x vacuum polarization and * muon self energy
potentials respectively. In Table 3.1.5 the total energy 

splittings and their -associated wavelengths arc tabulated. 

Table 3.1.6 contains the 2 p ^  "Sp^ energy difference due 
primarily to fine structure. The subscripts of entries in 

these tables indicate the magn it u de  of u n cortaintity in the 

final figure quoted.- Table 3.1.? summarizes the methods used 

to obtain those uncortainties.

Graphs 1-8 show the wave functions obtained by numerical 
integration of 2.2.13 in the following order: 1s ^  C<r).ls>
F(r),2sit C (r >, 2Sjt F(r>, 2Pj<_ G (r ) , 2 p ^  F (r ), 2 p ^  G (r > , 2 p ^  F (r > .
The wavcf une t i ons are unnorm al iz ed  and m a gn if ie d by ar. 
appropriate power of ten, with r in relativistic length units 
*: ex. a0 -■ 1). The normal i zat i on factors needed for the p e r t u r 

bation calculations are indicated on graphs 3 and 5 as *1 where
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A
CO

( i f ? " *  : c : x > d r  =  1 , : : . "(3 . i . : >

Section 3.2 out linos the computational procedures used 

in the de term i na.t i on of.the results, linked with a discussion 

of,.the uncertainties involved. ... Finally section 3.3 .gives, a 

discussion of the results. In all of the following tables 

r.£.u. is a relativistic energy unit (K atomic units).

Cons tants

The following are the values of the constants used.

*  = 1/137.03608

H, H 1 HeM Li4 E e 9

r 1B5.B41 185.741 201.068 202.841 204.188
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TABLE 3.1.1

DIRAC ENERGY EIGEN VA LU ES  OET A IH ED  UITH (Xi-* VACUUM

.POLARIZATION A M D  FINITE SIZE COULOMB POTENTIALS
- a.

( in u.n i ts o f  10 r . E . U . >

) E ( 2p i/x ) E(2p >R 10 crn) £ ( 1 s

H

. 832 

. 362 

. 892

-.495186968, -.123747861,

-.495186555, -.123747309, -.123708413, -.123706766,

-.493186128, .123747756,

R

H

2 . 0 
2 . 1 
2.2

1. 643

1. 673 
1 . 703

2. 46

-.52156061, 

-.52155676, 

~.52155273,

-2. 1447953, 

-2.1447793, 

-2. 1447630,

-4.8706291

Lit 2.56 -4.8702259,

2.65 -4.8698080,

2.42 -8.7122312,

'Be, 2.52 -8.7109840,

2. 62 -8.7096922

■. 130339063,

.130338582, -.130299198, -.130297462, 

■. 130338079,

. 53574705,

53574505, -.53547555, . 53544699,
-.53574301,

1. 21665263, -1. 21636242,' -1. 21621636,

1.21660228, -1.21636242, '-1.21621636,

■1. 21655010, -1 .•21636242, -1. 21621635,

•2.17643029,

■2. 17627451,

-2. 17611310,

-2.17653303, - 2 . 17606B1?X 

-2.17653301, -2.17606851, 

-2.17653330, -2.17606946^
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TABLE 3.

2a -2n - EHEREGY * DIFFERENCES

1.2
OBTAINED WITH <x VACUUM

POLARIZATION AND FINITE SIZE COULOMB POTENTIALS

(in units of 10~^ r.E.u.)

R ( 1 0 "  cm) E(2sv -2p> )U *
. 832 

. 862 

. B92

-.39448

-.39396
  'DQ'T'flCr'• OZrw’HfcD

- . 402643+. 0 147514R* -. 355661 x 10"ZR3.

2. 0 

2 . 1 
2 . 2

- .39B65 

-.39384 

-. 3BSB1

.446553+,0 1 24297R*-.226929xld*R^N  N

-2.71501 . 643 

1. 673, 

1. 703

-2.6950 

-2.6746

-3.23864+. 1B0224R* +. 837181x10"2 R?
H u

2. 46 

2. 56 

2 . 66

-2.9021 
-2.3986 

- 1 . B76B

-9. 14937+1. 0B763R1" - . 0224777R*N
2. 42

2. 52

<£. . SS

+1.0274 

.+2..5850 

+ 4.2020
1 3- 17.7955+3.32B99R. -. 047486R.

E ( 2 s ^  -2pv ^ > 

-.41095 

-.41043 
-.40990

,.-zr-. 419113+. 0147514R,, - .355661x10 Rw 
-.41601 
-.41120 

-.40617
-.463913+.0124297P^-.226929x1d*R^ 

-3.0006
....... -2.9806

-2.9602
-3. 52424+. 180224?^ +. 837181x10~3 rJ 

-4.3627 
-3.8592
-3.3374 

- 1 0 . 6 1 + 1 . 08763R*-.0224777R^

. 6212

-2.0600 

- .4364,,

- 2 2 . 2 0 8 1 + 3 . 19909R*-.0104614R„
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TABLE 3.1.3

PERTURBATION C AL CULATIONS .OF THE e t ^  VACUUM 

P OLARIZATIOM CORRECTIOH

(in unit-2 of 10 r.E.u. 

E < 2 s ^  ) E < 2 p ^  > E<2sK  -2p,^
H, -3.235A - -.2343^ -2.351H

H 2 ■ -3.-SOI - - . 3 4 2 6 ^ . -  ::: -2. 259^

He -29. 79^ -7.177^ -22. Sl^.

Li 97. 28^. -34. 12^ - - -63. l£uj;-;

Ee^ 222.8^ -95.15^ - 1 2 7 . 7+

TAELE 3. 1. 4 ••

PERTURBATION C AL CULATIONS OF THE MUON

SELF-ENERGY CORRECTION
(in units of 10 r.E.u.

Ei2s^ -2pv )" E t E ^  -2p

H, 1.292 • ■ 1.253

H x 1.507, 1. 439

He^ 21.66 21.01

Lit 99.5 96. IB

Ee. 290.9 • . 2 3 0 . 3
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TABLE 3. 1.5 '

TOTAL E f B s^  - 2 p ^ r^  ) ENERGY SPLITTINGS AND THEIR 

ASSO C I A T E D  WAVELENGTHS

E ( 2 s„2 -2p ,/jL ) (A > E (2s ̂  -2p  ̂ ) (A)

-7 -7H, -3.9562 XIO 61329 -41212 XIO 5BB74I

■q

u

(-.20217eV > (-2. 1 0 5 0 e V >

'7 61334 -4.1299 xlO'*7
(-.20215eV) (-. 2 1 104eV >
-3.9559 x 10 61334 -4.1299 xlO 5B750

-L -(*He -2.6960 xlO B999. 7 -2. 9B22 xlO B13££>
** (-1. 3 7 7 7 e V ) (-1.5239eV>

-4 _6
0 10271 -3.B262 xlO

(-1.2072e V ) (-1.9552eV >
Lib -2.3623 xlO 10271 -3.B262 xlO 6341.3

— L —i)EeA 2.7482 xlO BB2B.7 -1.9074 xlO 12720
(1. 4 0 4 4 eV > (-.97470eV >

TABLE 3.1.6 

E C B p ^  > - E ( 2 p ^  ) ENERGY DIFFERENCES 

(Prima.ri1y Fine structure)

r.E.u. ( eV )•
’ - 9 ,-r3 ,H, 1-. 650 xlO (S. 431 x 10
-8 .-3,H^ 1.740 xlO v (8.891x10 >
~~T -I

Heu 2.862 XlO (1.462x10 )■ 7 ■ - •
, -C -ILi, 1.464 xlO (7.481x10 )

-£Be^ 4.656 xlO (2.379)
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TABLE 3.1.7

METHODS USED IN THE DETERMINATION OF UNCERTAINTIES
boarce Method Unc er t a. i n ty
tt'*£<x v. R

ck** v.p 
it Finite Size

Uncertainitias in the. 
expans i ons • used were 
checked by comparing 
with numer i c a 1 i n't e- 
grat i o n .

1) V ar y i n g the
accuracy level of the 
numerical integration.
2) Varying the d is 

tance to the point of 
observation (see 3.2)
3) Comp ar i s o n with 

known results for H, 
and He. .

"2 in the f ifth 
f i g ur e .

See Table 3.1.1

A E  x .v.P.

Correction for not 
us i ng a Gauss i an 
charge distribu- 
t i on in the 
E fc-S* V. P.

1) Accuracy of small r 
expansions known.
2) Accuracy of course 
curve fits estimated 
by c ompar i s on w i th 
values computed 
through numerical in
tegration.

1) Varying the
accuracy of the
numerical integration.
2) Varying the upper 
limit cutoff (sec 3.2) 
for the perturbation 
calculation.
3) Comparison with 
known results for He. 
and H ( .

Estimated by varying 
the nuclear radius by 
107. and noting the 
difference in energy 
s p 1i 11 i n g s .

1) '̂1 in the
third figure.
2) "37. 1. 5< r < 2. 5 

"67. 2. 5<r<3. 5

See Tab 1e 3.1.3

Li*.’ **3 in the 
forth figure.
Ee^: A,1 in the 
th ird f igure
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3ourc c

& E  (2s* -2pj*,!* )
curve fits

Hue 1 ear
Po 1 ar i zat i on

Table 3.1.7 (continued)

Methods

Estimated by comparing 
values of calculated 
splittings with curve 
fits.

Bee 2.T

Unc er ta i nt i es 

See 3.2
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Pr ocedur es. -Add £cjc_an .DJ.5JLU5.5j.g.n.s.
Ro m be rg  integration and A i tkens interpolation p ro v ed  

useful as a check on the a p p 1 ication of the expansion given 

by Huang, and F u l le rt on  -and Rinker for the ^-2or and 

v a c uu m  p ol a ri z at i o n  potentials. Further, Romberg integration 
was u sed to- c a l c u l a te  the value of f(x> in the
va c uu m p o l a ri z at io n potential giving a.value

JVlxlJxii2. 463 ± .001 (3.2.1)

Also, the p e r t u r ba t io n  c a lc u la t i o n involving the tv-S&r 

v ac u um  polar ization potential was e v al ua te d through Romberg 

integration, v Numerical integration a f f o rd e d the p o s s i b i l i t y  
of p r o du ci ng  a r ou gh  c urve fit for the vacuum

p o la r iz a ti o n  potential. Two such curves were c o n s t r u c t e d  in
d i f fe r en t    regions using . the- m e t h o d  d e s c r i b ed  for
interpolation using c oe f fi c ie n t s  (A.2). These. c ur v es  were 

g i ven by ■ ■ .• ■ - ;

R,,(r) * - .4932 x ld? + .28602 x l d V  + .90975 x l<5e*-ar
11 C2r>) ~ F

( ̂  "“3 ^ \l u l l  U  I L- *

where 1.’5 <~ r £ 2.5 and

R (r) - -. 3 1 5 2 5  x id** + .611186 x IQ7 + .107982 x 10e'lh. ■2I . . . . .  2r 2r
-■ ■ r  o  o  r? \

w here 2.5 < r 3.5.

The first of these (3.2.2) has a m a x i m u m  error of about
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whereas the second, has- a m a x i m u m  error of about 6*(. E ec au s e  

of the smallness of the w a v e f u n c t i o n  in these regions, tho 
error of the p e rt u r b a t i o n  c a l c u l a t i o n  is m uch smaller than 

In fact the estimated. error of the p e rt u rb a t i on  

c a l c u l at i o n  is- less than . 31i.
The c on tr i b u ti o n  of the potential for r greater than 3.5 

d. id not- affect the p e r t u r b a t i o n  c a lc u la t io n s  to w it hi n the

d es i r ed  degree of accuracy. The n o rm a l i s a t i o n: .... - _

< ^  : 9 > = I ( 1 F Cr ) ! 3 + ! G (r > :X ) dr (3.2.4)
o

had a t r u nc at ed  upper limit in order to evaluate the integral 

n u m e r i c a ll y  to w i th in  the desired, accuracy.
The c o u p le d  differential equations 2 . 2 .1 3  were e va l ua t e d 

n u m e r i c a ll y  for 2 or 3 trial energy eigenvalues *nd the wav e- 

functions exa mi ne d at large r. The energy eigenvalues were 
then c al cu l a t ed  for the value in which the w av ef u nc t io n s  were 

0 at large r. This was done u s i n g- e i t he r  linear or q u adratic  
Aitkens interpolation. The process of s ol vi n g  the
differential equations for 2 or 3 e n er gy  eigenvalues and

r'"'interpolating was r e p e a t e d  until the energy eigenvalues were

of the d es i r ed  accuracy. The st a rt in g point for the energy
calcul a ti o ns  was the n o n - r e 1 a t ivistic eigenvalue.

£ = - 2 ( 3 . 2 . 5 )
2 n*

after which the rest energy ny was added. Errors in s o lving  

the differential aquations for the energy were e s t i m a t ed  by
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varying the t r uncation error t olerance and/or the d istance of 

integration while observing the effect on the energy 
e i g e n v a 1u e s .

The curve fits for H x and were e s timated to be 

accurate to appr oc innate ly . For He^ the e s t im at ed  error
was. a p p r o x i m a t el y  .25/i. In a d d it io n  to the numerical errors 

indicted for the L i t and Be^ E v acuum p ol a ri z at i o n  and 
finite nuclear size corrections, the error due to using a 

homogeneous charge d i st r i b ut i on  for the v ac u um  p o l a r i z at i o n  

potential was e s t im a te d (see Table 3.1.7). This error was 

e st i m a te d  at a p p r o x i m a t e l y  3 in the fourth figure for Li^ and 

1 in the third f igure for Ee^. Due to the large d e pe n d e n c e  
on r of E(2s|^- 2p u ,3,) for L i ga n d  Be^ , these curve fits were 

still estimated to be a cc ur a te  to a p p r o x i m a t e l y  . 5X.
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2.3 Die cue's ion of Results:

The r esults show that s owe' 'trins i t i on’ f requencies lie in
the v isible r eg i on of the spectrum. It is well known that

—  •+■+■the 2s i. - 2 p u and 2s, - 2p. tran s it i on  frequ e nc ie s for J*-He*.
i  x. r>- 'a  /  T

lie in or near -the vi si bl e r eg i o n  of the s p e c t r u m . . The

oresoht c l ac ul at io ns  s how that the transitions Bŝ , -- 2 p« in
Li^ and 2 s^ - 2pj, in ^ - B e ^  also lie in or near the visible

r e gi o n (Table 3.1.5). At first sight this r e su lt  is

s u r p r i s i n g  b ec au se  one w ould n o rm a l l y  expect the t r ansition
H-f r equencies to scale as 5. A s tu d y of the order of m a gn it ud es  

for the v acuum p o l a r i z a t i o n  and finite size c or r ec ti on s 

(2 .1 0 ) shows that as 2 increases the finite size correction, 

initially smaller, eventually' dominates the v acuum 

p o l a r i z a ti o n correction. The r e a s o n  that the t r ansition 
frequencies are so small for the above cases is that the

v ac u um  p o l a ri z at i o n  and finite size corre ct io ns  are of

similar m a g n i t u de  and act in opposite directions ca us in g 

strong cancellation. Further, the d o m in an ce  of the finite
size c o r r e c ti o n  is easily seen in T able 3 .1 . 5 by n oting the

tv-

change of sign f rom Li^ to Be<j of the 2 sv  - 2p ^  energy
s p I i 11 i n g .

The strong nuclear radial d e pe n d e n c e  of these Lamb
shifts is the r e su l t  of the r e l a t i v e  importance of the. finite- 

size c or re ct io n  to the overall Lamb shift. Due to the
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s t re n g t h of the nuc i ear ra.dial dependence, empirical curve 

f it s - r el a t e  the 2s^ e nergy d if f er en ce s  to the nuclear
radius with fairly good acc u ra cy  (see 3.2)■
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4 Cone I as i an; and Pi scuss i ons

As the results have indrcated, the quantum

e 1 e 1 ctrodynamic effects in low 5 muonic atoms were 

pronounced. The energy d i fferences 2s^ d i sp la ye d
Q.E.D. effects due to nuclear v acuum p o la r iz a t i on  a n d ’ muon 

s e l f e n e r g y .  ■ Also the finite s i z e c o r r e c t i o n t o  Lamb shifts 
was seen to be of increasing importance with increasing S, 

e v entually d o minating the corr ec ti on  due to v acuum 
po 1 ar i zat i o n . The f in i te size c o rr e ct i on  in'the 2sj,. - 2 p u

and 2 s^ - 2
r e s p e c t iv e ly  was seen to be the do m in an t correction.

The mode and/or f e a s i b i 1 ity for future muonic Lamb shift

m easurements is also seen by the results. These results show
, . . . 1(based on current nuclear radii) that Lamb shifts for He^ lie

just outside the visible s p ec t ru m toward the infra red
region. The same is true for Be^ for the 2 5 ^  - 2p,u e n e r g y
difference. The 2s^ -2p^ energy d ifference for'Li^ 1 ies in

the v i s i b l e ’spec tr urn. The other values lie in the infra r e d

region. The r anges of wave 1 engths g i veh i n 3 .1.5 are c over ed
by a variety of tunable laser types. Among these are dye

lasers ("3000 A - "1 0 , 0 0 0  M ) , ' se m ic on du ct or  lasers ("5000A -
" 3 0 0 , 0 0 0  A), colour centre lasers ("11,000 S - "3 0 , 0 0 0  S) ,

O aRaman lasers ("1500 A - "1 0 , 0 0 0  A) in a ddition to optical
€> C Om ixing techniques ("1000 A - 10 A ) .

energy spi u u n g s  tor l ^ q- ana i ^
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Since the nuclaar raidius1 is not known to better than a 
few percent in L i t and E e ^ , it is very p ossible that Lamb 

shifts which appear to lie jn t h e  infra r e d  r e gi o n m a y  

a c t u a l l y  lie in the optical region. An exami na ti on  of the 
d ata  far Be^ gives the wide r an g e of p o ssible values for 

A E  (2s ^  -2 p ^  ) for small vari a ti on s of the nuclear radius.

The strong nuclear radial d e pe nd e n c e of Lamb shifts in 

muonic atoms -a. 1 lows - for an a c cu ra te  d e t e r m i n a t i o n  of the 

nuclear radius by c o mparing the c a l c u l a t e d  energy s plittings 
with future measurements. These nuclear radi i may in turn be 
used to cal cu la te  the finite, size c o rr e ct i o n  in electronic 

Lamb shifts. Ey r e m o v i n g ’ the f i ni te  size corre c ti on s from 
m e a s u r e d  Lamb shifts of e lectronic atoms, higher order Q. E. D. 
corre c ti on s can be verified.

C o n ce rn in g actual calculations,' the a bility to obtain 

energy levels by numerical integration of the Dirac equation 
has a dvantages over c a lc u la t i n g c or r ec ti on s through first 

order p e r t u r b a ti o n theory. Firstly, the c o n t r i bu t i o n of each 
potential H o  energy levels is m ore a c c u r a t e l y  d e t e r m i n e d  by 

the c a l c u l a t io n  of the a s s o c i a t e d  energy eigenvalues. This 

r e s ul t  is obvious as first order p e rt u r b a t i o n  only includes 

the first two terms of a p e r t u r b a t i o n  expansion. SecondLy, 
any c o m b in at i on  of pote n ti al s m a y  be included d i r e c t l y  into 

the Dirac equation rather than p e r f o r mi n g several
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p er t u r b a t i o n  c a 1 cu I at i orts .
The largest n e g l e c t e d  c o nt r i b u t i o n s  to the' Lamb shifts 

are the n u c 1 ear p o l a r i z a t i o n  c o r r e c t i o n  and the r e p l a c e m e n t  

of an exponential charge d i s t r i bu t i o n in the -2 <*■ nuclear 
v acuum polar ization potential . These a ccount f oh about .3*1 

error in the Lamb shifts. However, since the nuclear radial- 

d e p e n d e n c e  is so strong' in L î  and E e ^ , the error in the 

nuclear radius due to these c o rr ec t io n s can be e s ti m at e d  at-* 

less than .1*1. Including these c o r r ec t io ns  in the Lamb 
shifts a nd us i ng 1 east square fits w o u l d  a llow the n u c l e a r ’ 
radius to be d e t e r m i n e d  to better than ". 1*1 in Li^ and Ee^ .
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Aooend i x A

Muffler i c a 1 Techn i gues
This section, gives the b a c k g r o u n d  for the numerical 

techniques and co m pu ta ti on al  p rocedures u sed in this work.

There are three numerical t e chniques which p ro ve d  useful
R o m b e r g ’s m et h o d  of integration, which is useful , in

evaluating potentials, is d e s c r i b e d  in section A.I. A nother 

technique useful in curve fits and energy c a l c ul a ti on s is 
interpolation, d i s c u s s e d  in section A . 2. Section A . 3
explains numerical techniques u sed in s o lv in g  the Dirac 
equation. S ection 3.2 d e s c r i b e d  how the computational
p roc e du re s were a p pl i ed  for o btaining the energy levels,

s pli t ti ng s and curve -fits.

A. 1 R omberq Intearat i on
Ro m be rg  integration provides a r a p i d l y  c on ve r g i ng  m ethod

of numerical integration. The m e t h o d  uses s u cc es si ve

iterations to r e duce the error term in the previous 
iteration, the .starting point being the trapazoidal rule. 

Consider the trapazoidal rule and its errorf’ (o> : : • ~ :.......E - I0 - I. (A. 1 . 1 )

where If̂  is the actual integral up to order h* and lj,° is the 
value obt ai n ed  by the trapazoidal rule. Since the error for 

the trapazoidal rule behaves o.s h , halving the step size
gives 1/4 the error. Thus from A . 1.1
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= 2L + K  , ( A . 1.2)p - f  p- i p*'

a.nd
(,) toy r»vi; -• E ft + Ie = IE., + Ip (A. 1.3)P P .... t 4 ? P > •

g l ve

’f “ ^ — ^ - 4
fii <<►■> tOI. ^ 4 L  - I,., (A. 1 • 4>

C o n t i n ui n g in exactly the same manner t o .e l im an at e the errors 
* tof order h ,h ..., the value for m interationc is given by

Ip " 4 *» - rS, (A. 1.5)
I 4U - 1 “

A . 2 Interno 1 at inq PoIvnomi a Is

(a) An interpolating polynomial is a m e t h o d  of 

de t er mi n i n g functional values where the f unction is not given 
explicitly. The f u n ct i on  is a p p r o x i m a t e d  by a polynomial

f<x) oi P<x> = i  a „ x K , (A.2.1)l o , K
where there are n +1 points for which

f(x.) =. p x t) i ~ 0,1,... n <A. 2. 2)

are known. The c o ef f i ci en ts  of p( x ) are then d e te r m i n e d  by 

solving the n + 1 equations in n + 1 unknowns given by A.2, 1. and 

A . 2.2. Thus for
A ~ £ x# , x, , . . ( A. 2. o ) 

f-< x > m a y  be a p p r o x i m a t e d  by p<x) for X in Cm in A, max AD. 
E x tr a p o l a t i o n  may also be done for short intervals outside
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Crnin A, max AH.
(b) A useful interpolating t echnique which evalu <£*. t- G S o.

fu n ct io n up to an n1-̂  order polynomial (depending on the 

d es i r ed  accuracy) is given by A i tk e ns  interpolation method. 

Def ine
x-x*

X.

Jt-I0 ~i , ■ • . 1 X*.,
k-f
!*• i ? ? * • ■ j  Xfi

wh er e
f (X. )

A table for the iterative p r o ce du re  is given below

T a b Ie A.l 
I ter at i ons

C A . 2. 4 >

(A.2. 5)

0 n

fix, )

<X)

(x>

f -  *J ->V| ■> **

(X)

P
( X )

(X)
n

3.

? Vj.?
(x)

f <xn )
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Each iteration produces a poTynominal of the order of the 
number of iterations, ' the v alue being r e f l e c t e d  along the 
upper desc en di ng  diagonal of Table I This m ay  e asily be 

seen by s u b s t i t u t i n g  the a p p r o p r i a t e  values for p in terms of 

x and f(sc') in A. 2. 2. Since
p  ( x* ) ,= f ( x j > f orv i=0 ,l,2 ,...k ,

(A.2.6)
the polynomial is u n iq u e l y  d e t e r m i n e d  and the value of f<x). 
for x in Cm in A, m ax A] is a p p r o x i m a t e d  by it.

A . 3 Burneri cal So 1ut i ons t o First Order C o uo I ed  D i f f er e n t i a 1

Ecruat i ons

The numerical m e t h o d  u sed to solve differential
equations involves three G i 1 I-Runge-Kut- ta steps f o ll o we d by a

Ham mi ng s pr.edictor-corrector, The Gi 1 1 - R u n g e - K u t t a  steps are

b ased on the' Taylor series expansion
y ( x . . ) = y < x . ) + h y ’ < x . ) + h* y " < x • ) + ...if I t. ’PT, 1

/ «"■% 4 *,( H i u i 1 «'
wh er e j • ~ ■ ■ -......’ ,   .

h = ( x • . - x . ) . (A . 3. 2 )tfi
Cons i der.

when e
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k^~ hf ( x( +h.i V» f «
2 v2 /£

y 1 - f ( x , y > . (A . 3. 4 >
A. 3.1 and. A. 3. 3 are e q uivalent to fourth order in h, as can
be be r e v e a l e d  by expanding k , , k x ,k? ,k^ in A . 3.3 in two

  • ■ ■ • = - •   +  1

dimensional Taylor series and r e t a i n i n g  terms to order h .
U sing the initial v alue and the three G i I 1 - R u n g e - K u  t-ta

steps,. the four r e q u i r e d  paints for the Ham mi ng s p r e d i c t a r ~

corr ec to r are applied. The H ammings p redictor is b ased on

the four points c o n t a i n e d  in the expression

yttx - y'v- v + dl}(2 yi ~ + 2y.’ 2 > . (A. 3. 5).

In :order to obtain A. 3.5 consider

^ ’<X> - yn»>  •<*-*„> - ŷ  - ay;., +
h 2! 1?"

v ’ - 3 %'* + 3y ’ « - yi , < x - x,* ) < x - x_ ,><x-x. _) ,

(A. 3. 6 >!t?

It is clear that
y» k= 0, 1,2,3. (A.3.7)

Us> l ng
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bt}

—6 0 —

y <x0+, > - ^  y ’(x), (A.3.B)
approx imat i ng y 1 (x > to third, order by ' ( x ) i n A. 3. 8 y i eIds

a V̂vH
y <xnt., J y f‘X M-2 ) &  ’<x)dx. (A. 3. 9)

Substituting ^ ' ( x )  from A.3.S and . i ntegr at ing A. 3. 9 gives
21

A . 3.5. The genera.! corrector is given by

yK+. = *»yn+ W a-. + + h(b»*rC*+ b*Vn + bn-.y»-,>-
... (A. 3. 10)

Setting â .., =0, expanding the left and right hand slides of
A . 3.10 and adjusting the remaining coefficients so that the

4left and riqht hand sides are ^equivalent up to order h 
21 ‘

g i v e s -  ... •
f ( A fy = X c 9yA ~ y*-v + s^y*'^ +2y; - y;>, n  -_i_ h y >

B 40
(A.3.11)

A modifier is based on the truncation error and it is given
- 21 v ..........
fay

m = p„, - 112 ( P^- c^), (A. 3. 12)

an improved value for y^, . .The corrector is given by A.3. 11
(

where, we replace yĵ ., ^with m ^ +, . The truncation error of the
corrector is given by

. g.
121

E = _ 2 ~ ; < p A - c^ ), (A.3.13)

hence

un + -JL_ ~ • (A. o.l4)
121 I
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