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ABSTRACT

A two-dimensional diqital convolution filter (re­
ferred as Convolver) employinq the Fast number theoretic 
transform (FNTT) alqorithm was built in the Department as an 
external peripheral to the 3BL tuini-computer for Imaqe Pro­
cessing. The purpose of this research is to analyse the de- 
siqn, suqqest improvements, provide a workinq system and il­
lustrate the use of the convolver throuqh various examples.

The thesis describes the theoretical bacicqround and 
the nardvare implementation or the convolver. A detailed 
explaination of the design considerations has been developed 
to provide an easy and complete reference for the user. 
Several comparisons have been presented, as part of analy­
sis, to establish the efficiency of the techniques used in 
the desiqn or tne convolver. Timinq diaqrams have been pre­
pared to facilitate the understanding of the processing of 
siqnals throuqh the filter. Throuqh-put rate calculations 
are included to indicate the speed of processing.

A systematic way to write the interfacing software 
has teen explained. A directory of the available software, 
and a table of the main Integrated Circuits used in the con­
volver is included. Software has been written to make the 
convolver part of a user friendly imaqe processing system.
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Two desiqn metnods to improve the speed o£ processing are 
proposed.

- iii -
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Chapter X 
INXBODOCTIOM

1-1 OBJECTIVE AND OUTLINE OF THJ RESEARCH WORK
High speed digital filterinq of two-dimensional signals

is an essential element of contemporary research on siqnal
processinq. The application areas include imaqe processinq, 
pattern recognition, digital communication and robotic vi­
sion. The pre-processinq of siqnals is also important for 
images obtained from space exploration photoqraphs, radio- 
qraphs, nuclear medical imaqes, and geophysical data. The 
filtering, or the convolution of imaqes with a filter ker­
nel, can be achieved eitner by direct computation or indi­
rectly, by the use of a transrorm havinq the cyclic convolu­
tion property.

One of the indirect tecnniques for tne convolution is
use of the Discrete Fourier Transform (DFT). The use of DFT 
ror convolution became popular when Cooley and Tukey [23 1 
introduced the efficient Fast Fourier Transform (FFT) algor­
ithm to compute DFT resulting in a significant savinq in 
computation and performance improvement over the direct 
method. The FFT uses the cyclic property of the complex e x ­
ponential function to reduce the number of multiplications. 
The speed of the FFT and therefore the maximum data-process-

-  1 -
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2
ing speed still remains proportional to the (complex) multi­
plication time. Attempts were made to reduce the multipli­
cation time, for example, Liu and Peled f 25) proposed to use 
a bit-slxcinq alqorithm and table look-up scheme to replace 
the conventional multiplier. Also, tnere xs a definite 
drawback in the use of DPT for machine implementation, that 
there xs finite precxsion representation or the transcenden­
tal multiplier functxons. These approximations contribute to 
the error noise in the output.

An alternative transform domain technique which has at­
tracted consideraole interest in last few years is the use 
or the Number Theoretic Transform (NTT). Fermat Number 
Transforms (FNT) and Rader Transforms (RT), which are spe- 
cxfic NTT's have been implemented [7,1U). A very attractive 
method of implementation or NTT's for convolution is, howev­
er, over the riaqs that are isomorphxc to direct sums of 
Galoxs Fields £13 1. Thxs implies the use of the Residue Num­
ber System (RNS) , which itself is of particular interest in 
liqital signal processinq £311 oecause of the parallel na­
ture or its arithmetic. The RNS was extensively xnvestxqated 
by Szabo and Tanaka [3] in 1967 for use in the desiqn of a 
qeneral purpose computer. Resxdue techniques, however, did
not receive wide-spread attention because tne xerrite core
raeraorxes used at that time were too expensive and bulky to
■justxfy their use to store the needed tables.
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3
With the current advances in semi-conductor memory 

technoloqy, the implementation of NTT's for siqnal process­
inq is a viable alternative to conventional methods I" 7 1- 
Thouqh the transform domain representation of NTT sequences 
nas no known practical interpretation, its implementation 
for convolution is meaninqful. The only restriction to be 
observed is that the data points are small enouqh (scaled) 
so that the final result does not produce a data point 
qreater than the rtnq modulus. Also, since the transform is 
defined over a finite rinq, the results are exact. Further, 
in RNS arithmetic implementation, a multiplication can be 
replaced by a taole lqok-up operation, and thus the throuqh- 
put rate can ue expected to be hiqh with relatively low 
nardware cost. Tne number of bits used for data representa­
tion, nowever, should be small so that memories required for 
look-up tables are commercially available. Jullien f 51 suq- 
qested a method to implement multiplications which results 
m  tremendous memory savinq and reduces memory requirement 
to a viable size, still usinq look-up tables.

The transform domain techniques are only attractive 
when one or the fast alqorithms are employed in their compu­
tation. Fast Fourier Transform type alqoritnms can be ap­
plied to compute the NTT. The heart of sucn fast alqorithm 
is a computational unit called a "Butterfly". One or multi 
dimensional butterrlies have oeeu used to compute the trans­
forms £10 1. The urdered-Input-Ordered-Output (OI00) alqor-
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4
ithm £4] is or particular interest since it eliminates the 
data pre-shufflinq. This further requires unity twiddle 
factors at the last staqe of the butterrfly coaputation. 
Hence, the transform of the coefficients can be multiplied 
by the transform of the data points at the last staqe of 
butterfly computation instead of the multiplication by tne 
twiddle factors. This results in savinq in the total number 
of computations.

for its practical use, any RNS arithmetic structure re­
quires Binary to Residue (B/R) and Residue to Binary (R/B) 
converter units. Several hardware techniques [3] are availa­
ble ror a B/R converter. The separate need of such a B/R can 
be avoided if the A/D converter used qives the binary output 
which also is a residue. This can be a case when the rinq 
modulus is larqer than the possible maximum value of any 
data point. The tinal outputs obtained from a two or more 
moduli, however, have to ne combined to obtain the result. 
The Chinese Remainder Theorem (CRT) is one of tne methods 
[3], but it suffers from the disadvantaqe that it needs a 
mod M adder, where M is tne dynamic ranqe. The other method 
is via the use of a Mixed Radix Conversion (MRC) technique. 
The multiplication needed in this method can be implemented 
usinq look-up tables. This method has computational advan- 
taqes over the CRT wnen fewer moduli are used.

Hardware realizations are normally fixed for a specific 
size of imaqe operated on by a particular alqorithm. Multi-
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pie use of the same piece of hardware and use of over-lap 
techniques can be used ia processinq of imaqes of larqer di­
mensions £ 18 1 than that of the basic block size. Such alqor- 
ithms are attractive when workinq in a limited memory sys­
tem, such as tnat of a mini-computer.

A special purpose diqital siqnal processor is a dedi­
cated piece of hardware whose function is to perform a spe­
cific set of processinq alqorithms (in real time) as a self 
contained subsystem. Obviously all the siqnal procesinq al­
qorithms can be implemented on a qeneral purpose computer, 
however the speed of such implementations on qeneral purpose 
computers are not particularly attractive. Many industrial 
needs have only one application in mind, for example, faul­
ty pact detection in an assembly line. Secondly, most qen­
eral purpose computer architectures can not normally handle 
simultaneous computations. A dedicated piece of hardware, 
however, is desiqned to handle a larqe number of computa­
tions, and employs a parallel processinq and pipelininq to 
achieve speeds several ordecs of maqnitude faster than qen­
eral purpose computers.

This research is an extensive investiqation 
into the processor architecture of a Fast 2-diaensional Di­
gital Convolution Filter using Number theoretic transform
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techniques. The processor was built by Dr.H.K.Naqpal for the 
Signals and Systems qroup, Dept. of Electrical Engineering 
at the University of Windsor [29 1. Although different hard­
ware structures for the realization of Fast Fourier Trans­
forms have been proposed, processinq images and other inhe­
rently two-dimensional siqnals using a Fast Number Theoretic 
Transform (FNTT) with a two-dimensional butterfly structure 
is a relatively recent method. The various components which 
make up the complete processor are examined in this thesis.

In the realization of digital systems usinq special 
purpose hardware, the concepts of parallelism, multiplexing, 
and pipeling are ox great importance in achieving a maximum 
value of performance-cost ratio for the particular applica­
tion being considered. The theoretical considerations use­
ful with respect to 'speed and cost trade-offs' are reviewed 
in this work.

The memory architecture needed for implementation of 
two-dimensional Ordered-Input-Ordered-Output NTT algoritnm 
is investigated in lignt of the speed/cost trade-off. The 
implementation of such a butterrly is descriDed in detail. 
The use of table look-up lor mathematical operations, in 
particular multiplication, by a sub-modular approach, is in- 
ves tiqated.

Several desiqu aspects used in implementation of the 
processor are compared to establish the efficiency of the 
convolver. For example, computation saving by the use of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



two-dimensional butterfly is compared with that of one-di­
mensional butterfly. Several other comparisons are made to 
support the architecture used in tne convolver. For ins­
tance, the use of the Mixed Radix Conversion method is just­
ified compared to the Chinese Remainder Theorem in the im­
plementation of Residue to Binary converter. The 
implementation of multiplication ny sub-modular look-up ta­
ble and by the use or direct ROM multipliers is compared.

Timinq considerations are made for serial sequential 
procesinq (used in the convolver) and cascade processinq, 
and speed/cost (efficiency) consideration for these methods 
are investiqated £oj; video-rate processinq speed. Two 
structures, namely, a three-memory buffer structure and use 
of a 'complete' butterfly structure, have been proposed to 
improve the processinq speed. The timinq diaqrams with re­
spect to reqister contents in the butterfly of the convolver 
are presented.

Several examples or imaqe filterinq are presented to 
illustrate tne application of the processor. The examples 
are taken from well defined imaqes. k simple and approximate 
method to obtain the coefficients of a two— aimesnsional fi­
nite impulse response filter is described. Several standard 
filters are used tor Imaqe Smoothemnq, Imaqe Enhancement 
and other feature extraction on imaqes. The results ob­
tained from three different methods in software, namely di­
rect use of convolution, usinq the FFT and usinq the FNTT.
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8
The use of block-mode filterinq is investiqated in fil­

terinq of very larqe sequences, in a limited main-memory 
system. The choice of the basic-block size is a trade-off 
with speed. Theoretical comparisons for this trade-off are 
presented.

1.2 XHESIS o r g a n i z a t i o n

Chapter-2 provides the theoretical backqround on the 
application of Fast Number Theoretic Transform techniques in 
diqital filterinq of tvo dimensional sequences. It details 
the modular arithmetic, alqebraic constraints to be observed 
in the use of the NTT and the restrictions imposed from 
practical point of view. Further it describes the concepts 
of the 2-diraensional OIOO-NTT alqorithm, and the method of 
Mired Radix conversion used in the residue to binary conver­
sion. Tne desiqn considerations used in the convolver are 
detailed in this chapter.

The implementation of the transform computational ele­
ment, the nutterfly, and the multiplication in the butterfly 
usinq the sub-modular approach, are described in Chapter-3. 
A number of comparisons vita respect to speed, cost and me­
mory storaqe are included in this part to describe the per­
formance of tne processor. Various timinq diaqrams are also 
included in tnis part.

Chapter-4 deals with the hardware and the functional 
details of the imaqe processor. In particular, both the me­
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mory architecture and tne butterfly operation are described. 
The Hiqh Speed Device (HSD) interface of the Pilter with the 
mini-computer SEL and the control loqic are examined. The 
discussion on the software of the HSD is included in the ap­
pendix. The steps for the use of the convolver are described 
in this chapter.

In the next part, Chapter-5, we detail the results of 
filterinq by the use of several standard filters on test ia- 
aqes. The applications in mind were Imaqe Smootheninq and 
Edqe Enhancement. This final part considers the processinq 
of larqe arrays (larqer than can be processed in one block) 
uy block-mode filterinq. The time of processinq, which de­
pends on block size has been compared. Chapter-6 presents 
the conclusions of this research work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter II
DIGITAL FILTERING USING FAST NUMBER THEORETIC 

TRANSFORM TECHNIQUES

2,1 INTRODUCTION
In digital imaqe processing, as well as in other areas, 

it is desirable to filter a two-dimensional discrete signal 
x(i#1) by convolving that signal with the two-dimensional 
digital pulse response of applied filter h(i,j) producing an 
output signal y(i,j).The two-dimensional convolution is de­
fined as

y (i,i) = x * n
= £  X  x(k,l) .h(i-k,j-l) (2-1)

K90
i# 1= 0,1,....... M-1

where the sequences x, h and y are assumed to have 
square shape of dimension (NxN) , (LxL) and (iixa) respective­
ly, M ^ N+L-1.

Processing signals with a digital computer or with spe­
cial purpose digital hardware involves the implementation of 
computational schemes on sequences of numbers. For example, 
Eqn.{2.1) can be implemented hy actually takinq the sum of 
products as defined or by indirect methods. The indirect 
method consists of talcing the transforms of sequences x and

-  10  -
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h, multiplying the tvo transforms and taking an inverse 
transform of the product. The indirect methods are attrac­
tive, because vith viable restrictions on the lenqth of se­
quences, computationally efficient algorithms can be devel­
oped which have advantaqes over direct methods in terms of 
speed and thus the cost of filtering. The most common tech­
nique to reduce the computational cost of convolution is by 
the use of the Discrete Fourier Transform computed via use 
of Fast Fourier Transform (FFT) alqorithm.

It is interesting to note that the FFT has been used to 
compute convolutions and many hardware structures have been 
implemented [4,24] wifh sliqht variations to the basic al­
qorithm suggested by Cooley and Tuckey [231. Each structure 
looks at the hardware/speed trade-off associated with both 
the computational elements and the supporting structure. 
However, this procedure is time-consuming on mini-computers 
even with multiplication nardware installed, due to the 
larqe numoer of complex multiplications required. Further 
there is considerable build-up of round-off error because of 
the finite precision in representinq real numbers on dxqital 
computers. Filter designs usinq ROM oriented HNS arithmetic 
units [11] and implementation of the FFT vitn the use of Re­
sidue Number System [311 have been suqgested for improved 
efficiency, since for convolution we are only interested in 
the Cyclic Convolution Property (CCP) of the transform, it 
is natural that alternatives to complex multiplications in­
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volved in FFT twiddle factors have been investigated. Humber 
Theoretic Transforms (NTT), which are defined as part of 
Generalized Discrete Fourier Transforms (GDFT) , use integer 
twiddle factors and have gained considerable interest for 
several years as a class of signal processing algorithms. 
The hardware of the Image convolver uses Humber Theoretic 
Transform for employing the indirect method of filtering.

2.2 DEFINITION OF MIJHBBB TBBQBBTIC IBABSFQBH
Number Theoretic Transforms are defined as part of a 

class of Generalized Discerete Fourier Transforms and are 
computed over finite fields [13],

*k
r nk ) x en M

-nk (2.2)
M

where N is the sequence length and M represents the modulus 
of the field arithmetic; the generator 5 is an Nth root of 
unity (S**N= 1; S**N1j^1 mod M for 1£NKN) and N exists. It 
has been suggested that NTT*s be implemented in rings which 
are isomorphic to a direct sum of Galois fields:
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where the pi are prises and r represents the deqree of the 
extension fields. The results of the operation can be recov­
ered by either usinq the Chinese Remainder Theorem or a mix­
ed radix conversion [3 1 alqoritnm. This amounts to imple- 
mentinq the NTT usinq the Residue Number System (RNS) and 
the inherent parallelism of RNS implementation can be made 
to advantaqe to obtain faster speed of processinq. We 
rirst discuss some of the basic concepts of RNS from number 
theory relevant to the NTT in the next section.

2.3 MODULAR ARITHMETIC

DEFINITION-2.1: Two inteqers a and b are said to be conqr-
uent mod a if

a = b + k.H (2.4)
where k is some inteqer and H is the modulus. The b is resi­
due of a mod M when

0 < b < a
and is written as

a = b (mod i1)
DEFINITION-2.2: All inteqers are conqruent mod M to some

inteqer in the finite set (0,1,2,.......#M-1) and let the set
of elements be combined by two different operations '+ 1 and

both mod a . Then tnis set is called the rinq of inteq­
ers mod H and is denoted by 2m. Sucn a rinq is a commutative
rinq with identity [9].
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DEFINITIOH-2.3: If in d cinq of inteqers multiplicative

inverses exist for all nonzero inteqers, this rinq is known 
as a Field . It can he shown that Zm is a field if and only 
if a is a prime. The set of all invertible elements of a 
rinq is a qroup with respect to the operation of multiplica­
tion and is called a "multiplicative qroup".

The followinq basic arithmetic operations are defined 
in modular arithmetic.

1. Addition: Example, 7+12=2 (mod 17)
2. Neqation: Example, -7=10 (mod 17)
3. Subtraction: Example, 7-12=7+(-12)=7 + 5=12 (mod 17)
4. Multiplication; Example, 7x12=16 (mod 17)
5. Multiplicative Inverse: Multiplicative Inverse of an 

inteqer b rn Zm exists if and only if b and W are re­
latively prime. In tnat case b is an inteqer such 
that bxb' -1 (mod M). It oay be however noted that 
when M is a non-prime inteqer, not ail members of the 
set nave multiplicative inverses.

-iExample: 7 =5 (mod 17)
for 7xb-1 (mod 17)

3 1 =5 (mod 14) as 3x5 = 15=1 (mod 14) 
but 2 1 (mod 14) does not exist.

6. Divison: x/y exists if and only if y has an inverse 
and x/y is contained in the rinq. In that case x/y 
= x. y~*.

Example: 12/6=12x3=2 (mod 17)
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DEFINITION-2.4: It pi is a prime, the elements
fO, 1, 2,.. - - pi-1) form a field with addition and multiplica­
tion modulo pi. In any finite field the number of elements
must be a power of a prime (pi**ri), where ri is a positive 
inteqer and an element (primitive root) must exist, powers 
of which can qenerate all the non-zero elements of the 
field. Such a n e l d  is commonly denoted by the symbol
GF(pi**ri) and is called a Galois Field r 9 ].
DEFINITION-2.5: The Residue representation of an inteqer in 

the BNS takes the rorm of an L-tuple
X = (x 1 ,x2,..... . xl)

of the least positive residues with respect to the set of
moduli

(m1,m2,-......ml)
Tne ranqe of numbers which can be uniquely coded in RNS are

L
0 s< X < rr mi = N 

A siqned inteqer system can be developed attachinq a posi­
tive siqn to numbers in the ranqe (0,1, N/2-1) for H

even or {0,1,.... (N- 1)/2} for d odd, and a neqative siqn to
the number in the ranqe (d/2,M/2+1,... N-1} or
{(M+1)/2,......M-1} respectively. The operations in RNS can
be carried independently for eacu of the moduli. The correct 
answers would be obtained reqardless of intermediate over­
flows of an arithmetic computation if tne result is witnin 
the ranqe of the numoer system.
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As mentioned in introduction, for the existence of 

transforms with the DPT structure given in Sqn. (2-2) and 
having the Cyclic Convolution Property (CCP), it is neces­
sary that an integer exist that is an Nth root of unity. He 
will consider this problem usinq modular arithmetic.

First Euler's function a) {M) is defined as the number of 
inteqers in 2m taat are relatively prime to ti. Obviously 
then for M a prime number <D(H)=M-1. If M is a composite num­
ber and its prime factored form is denoted by

r1 r2 rl
tl=(p1) • (P2)  (pi)

. i
K

then the qeneral expression for i is [9 1

u) (M) =d (1-1/ p D  . (1-1/p2)----(1- 1/pl) .
= fl (pi-1) (2.5)

tM
IHEOaEN-2.1: Euler's theorem states that for every S prime

to M

(M)
6 =1 (mod M)

For M prime this reduces to Fermat's theorem.
THEOQEM-2.2: Fermat's theorem states that for M a prime

number,

(M-U 
6 =1 (mod :i)
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which holds for all nonzero elements of Zm since they are 
all relatively prime to H if M is a prime.

There are certain roots of unity that are of particular
interest.If N is the least positive inteqer such that 

N N 1
& =1 (mod N) ; 3 £1 (mod d); 1 ̂ N 1 < N (2.7)

then o is said to oe a root of unity of order N, or & is a 
primitive Nth root of unity.

It the order of & is equal to u»(M) , then & is called a 
primitive root. If M is a prime and 8 is a primitive root, 
tne set of inteqers

k
X = {& (mod a ) ,  k = 0 ,  1 , 2 , . . . , a - 2 ]  ( 2 . 8 )

is the total set or nonzero elements in Zm, and all nonzero 
elements in Zm can i»e qenerated by powers of the primitive 
root.Tnis, thus cnaracterizes the entire field. The nonzero 
classes of Zm form a cyclic multiplicative qroup of order
M-1 {1,2, a-1) , with multiplication modulo M, isomorphic
to the audition qroup {0,1,..... H-2) wrth addxtion modulo
a - 1 .

Euler's theorem implies that if & is of order N then N
must dxvide tf(M), denoted by N|u)(M). If a is a prime it can
be shown that roots of order N exist if and only if N| (M-1)
and the roots are qiven ny

(M-1) /N
&=&o (2.9)
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where So denotes a primitive root, More generally if & is a 
root of order N then

&**k is of order N/k if k|H 
&***. is of order N if N and k are 

relatively prime.
This implies that the number of roots of order N is 

qiven by d)(N) and, therefore, the number of primitive roots 
is d>(d(M)). These relations allow one to calculate all of 
the coots of all possible orders from one primitive root. 

Example:
Let d=7, Zm={0,1,2,3,4,5,6:• +
j>(U=1 i) (2) = 1 <h (3) =2
0)(4)=2 a) (5) =4 cfi(6)=2
1) (7) =6

Consider raising eacn element of Z7 to powers from 1 to 6 
(mod 7) , Tab- (2. 1) .

T a ble-(2.1)

0 1 2 3 4 6 6
1 I 1 1 1 1 1 1 1
2 I 1 2 4 1 2 4 1
3 1 1 3 2 6 4 5 1
4 I 1 4 2 1 4 2 1
5 I 1 5 4 6 2 3 1
6 I 1 6 1 6 1 6 1

This illustrates several very interesting features. Consider 
the various roots of order N, Tab- (2. 2).
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Table-(2.2) Boots of order N

N roots of order N
1 1
2 6
3 2,4
6 3,5

Only those N that divide <i (tf) - S  (7) =6 have roots that belonq 
to them. Tne nurnoer of roots is qiven by a) (N) and the num­
ber of primitive roots is 3(td{tt))=2 and they are 3 and 5. 
Note that both of the primitive roots qenerate all the non­
zero elements.

o> (H) - 1

For a nonprime M, 6 nas an inverse qiven by & if 5 and
H are relatively prime. It can be noted tnat for N a compo­
site rather than a prime number, Zm is not a field since all 
elements will not have inverses. There is no primitive root 
that will qenerate the entire rinq, only subsets with i(i!) 
elements. Let a nave tne followinq unique prime factoriza­
tion.

r 1 r2 rl
d = IP 1) - (p2)  (pi)

Hhen the arithmetic has to be performed mod M, it can
be performed modulo eacn prime power (pi)**ri separately £9 1
and the final result mod a can be obtained usinq the Chinese 
Bemainder theorem £ 3 1. When the arithmetic mod (pi**ri) is 
performed in rinite fields, then every field with N ele­
ments is isomorphic to every other field with N elements.
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Now we return to the discussion on the desiqn of the 

NTT processor. He notice the follovinq requirements for the 
CCP to exist and the NTT to be defined over the finite 
field.
THEOREM-2.3: A lenqth N transform having the DFT structure
will implement cyclic convolution if and only if there ex­
ists an inverse of N and an element S, a root of unity of 
order N, i.e.,N is the least positive inteqer such that

&**N =1
This is a very qenecal result applyinq to both rinqs 

and rields that are finite or infinite and it has been de­
veloped from a variety of points of view [25 1. For M a com­
posite number as represented in Eqn. (2-5) , we can obtain the 
results of opeation mod rt by combininq the results obtained 
from the operation mcdulo each (pi**ri).

Therefore, the lenqth N number theoretic transform hav­
ing the CCP in Zm must also have the CCP in 2fpi**ri} for 
i=1,2,....l. Tnis requires that & (mod pi**ri) be an inteqer 
of order N and must exist in Z (pi**ri), i.e.,N is the least 
positive inteqer such that

&**N =1 (mod pi**ri), i=1,2,....l.
Furthermore, since the inverse transform requires N ; the 
inverse of N should exist in Z {pi**ri}, or, N should be re­
latively prime to M. Now we fiad that by Euler*s theorem

N| a) (pi**ri) , i=1,2,...... 1.
ri-1 ri-1

or N|pi (pi-1) because <3 (pi**ri) = pi (pi-1).
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Since N is relatively prime to a (or its factors)

N| (pi-1) i=1,2,...... 1.
N|q cd(p1-1,p2— 1, . . . .pl-1)

We define 0(M) as the greatest common divisor (qcd) of the 

(Pi-D
0 (H) =qcd (p1-1,p2-1,....pl-1) 

therefore, N|0(M)
This qives us
THEOREM-2.4: A lenqth N transform having the DPT structure

will implement cyclic convolution mod M if and only if
NIO (M)

and this establisnes the maximum transform lenqth in Zm as
Nmax=0 (M)

This is a very important theorem that states exactly what 
the possible transform lenqths for a qiven modulus are.

2.3.1 Afl Example of convolution using NTT when M is a 
prime

Consider two sequences 
x= (2,-2, 1,0)
h — (1,2,0,0)

whose convolution is desired. From overflow consideration, 
it is sufficient ir we define the transforms over GF(17)

tt= 1 7 N=4
Now since M=17, the inteqer 2 is of order 8 
therefore [ 2 * * 2)= 4 is an o of order 4.

The transformation matrix T is qiven by
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or,

1 1 1 1
1 4 4**2 4**3

T = 1 4**2 4**4 4**6
1 4**3 4**6 4**9

~1 1 1 1
1 4 16 13

T = 1 1b 1 1b (mod 17)
1 13 16 4

=-4 (mod 17) = 13 (mod 17) and
Transformation Hatrix is

1 1 1 1
1 13 16 4

= 13 1 16 1 16
1 . 4 16 13

The Transforms of x and h are qiven by

1 1 1 1 2
1 4 16 13 15= 1 16 1 16 1

_1 13 16 4_ 0

= t 19 10, 3, 9 1 (mod 17]

similarly H = [3,9,16,101 
and thus Y = X.H

= T 3,5,12,5 1 (mod 17) 
Takinq the inverse transform of y, 

y = (2,2,14,2) (mod 17)

inverse
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According to our assumption, integers are supposed to lie 
between -8 and 8- Therefore 

y = (2,2,-1,2) 
which is the correct answer.

2.4 PRACTICAL CONSIDERATIONS IN CHOOSING &,N AND M FOB AN 
NTT

Although the class of all possible number theoretic 
transforms seems very large at first consideration (in fact, 
infinite), closer examination shows that very few seem to be 
attractive for use in signal processing. Agarwal and Burrus 
f 6 ] summerise the criteria which would make a particular NTT 
to be attractive in comparison to other implementations of 
convolution. They list that for NTT to ne computationally 
efficient three reguirements are:

1. (a) N should be highly composite (preferably a power
of 2) for a fast tFT-type algorithm to exist and
(b) N snould be large enough for practical seguence 

lenths
2. since complex multiplications take most of the compu­

tation time in calculating the FFT, it is important 
that multiplication by powers of S be a simple opera­
tion. For machine implementation, this is possible 
if the powers of & have binary representations with 
very few bits; preferably also a power of two, where 
multiplication oy a power & reduces to a word shift.
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3. In order to facilitate arithmetic mod ii for machine 
implementations, H should have a binary representa­
tion with a very few bits and should be large enouqh 
to prevent overflow.

Unfortunately the conditions given by above theorems in 
s e c - (2.3) do not qive a systematic way of determining the 
"best" cnoices. Usually M nas to be selected first and N 
and & are determined suitably. When the modulus fl is chosen 
to be a Fermat Number as

t
2

M = Ft =2 + 1  (2. 10)
b

= 2 + 1  , b=2**t

then a promisinq class of NTT's can be obtained £8]. Such 
transforms are called Fermat Number Transform (FNT)- A spe­
cial class of such transform is when the value of S is cho­
sen t>=SQHI (2.) . These transforms are described by Bader and 
are known as Rader Transforms £9],

2.5 DESIGN CONSIDERATION FOR NTJ USED IB CONVOLVER
As we mentioned in section-(2-h) , it is usually but not 

always the case that a value of M is chosen first and suita­
ble transform lenqth N and the generator & is determined. We 
will follow the same approacn.
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2-5-1 choosing 3

In the rinq of inteqers mod M, conventional inteqers 
can be unarabiquously represented only if their absolute va­
lue is less than M/2. If the input inteqer sequences x (n) 
and h (n) are so scaled that |y(n) J never exceeds M/2, ve 
would qet the same results by implementing convolution in 
the rinq of inteqers modulo H as that obtained with normal 
arithmetic. In most diqital filterinq applications, h(n) 
represents the impulse response and is known a priori; also 
the maximum maqnitude of the input siqnal is usually known. 
In this case, we can bound the peak output maqnitude f7] by

|y(n) I . ^  U(n) |max * ”2  |h(n) |
Uto

One possible solution to this overflow problem involves 
seqmentinq the words into shorter blocks and convolvinq them 
separately [8 1. Another approach to solvinq the sequence 
lenqth vs word lenqth constrain is to use block processinq 
where the sequence of lenqth N is broken into smaller blocks 
and the results are combined. However a better alternative 
to this problem can be arqued when hardware implementation 
of diqital filters usinq the FNTT is desired. The method 
works as follows:

The convolution is implemented modulo two different 
primes p1 and p2 where p1 ana p2 are chosen such that cyclic 
convolution in Zp1 and Zp2 is easily implemented on the same 
machine. By exploiting the inherent parallelism of RNS ar- 
ithmatic, the processinq mcdulo p1 and p2 can be performed
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in parallel and the results combined to qive the correct and 
exact solution by use ot either the Chinese Remainder Theo­
rem or a Mixed Radix Conversion method .

In our implementation this latter technique has been 
employed; the value or pi and p2 nave chosen to be 6h1 and 
769 which are prime numbers. The operations with respect to 
prime moduli are qenecally represented by pi and we will 
follow the same convention. The prime moduli chosen are of 
the form pi=Mi=q.2**p +1, where (2**p) =128. These numbers are 
chosen for several reasons. First, both the numbers, 6<+1 and 
769, support 128 point transforms and are the larqest two 
primes ( ><; 10-bits) , tnat support this transform lenqth.
Secondly, the desiqn or the Convolver was aimed for Iraaqe 
processinq where 128 or 256 levels are sufficient for iraaqe 
representation. Tnus the input data array will have no num­
ber qreater than 255 and hence the residues with respect to 
mod pi is same as the data itself. This will save us the 
hardware cost in the sense that a binary to residue convert­
er can be avoided. Further since,

M= J"[ pi i=1,2,....l
t

in our case we ootain N=6h1x769 < 2**19 (19-bits). Also by 
simulation results operated over several imaqes usinq the 
Fast Number Theoretic Transform, it was found that the con­
volution result never exceeded a 17-bit binary representa­
tion. In a sense, we have thus provided a 'cushion1 of
2-bits which is reasonably sufficient. Also, it was essen­
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tial from the point of view of Euler's Tneorem (sec-2.2) 
that Nmax = 0 (M) = qcd {p1-1,p2-1,-....,pi-1} and since the 
sequence lenqth was decided as N= 128 for 2-D processinq of 
(128x128) imaqes, the choice of p1=6h1 and p2=769 was most 
suitable for hardware implementation.

2.5-2 choosing N an£ S
For the implementation of NTT's for diqital image pro­

cessinq, it is essential that an FFT-type alqorithm be uti­
lized to compute the NTT of sequences in order to achieve 
the best speed/cost ratio. This requirement implies that 
the sequence lenqth N should be a hiqhly composite number, 
preferably a power of two. Gonqalez [16] descibes that for 
almost all imaqe processinq applications images represented 
by dimensions in the ranqe (128x128) to (5 12x512) are suffi­
cient when 8-bit representation is used for each data-point 
(qray level) . Tnus the choice is limited to have N= 128, 
25o or 512. Now since the prime moduli 6h1 and 7b9 support 
a 126-point transform, tne sequence lenqth was chosen to be 
128. The hardware cost was another factor in decidinq the 
size of the basic block to be (128x128). Further this com­
plies with the requirement of Euler's Theorem.

Once the value of d and N have been fixed the value of
& is determined by findinq an Nth root of unity in each
field as described previously. The main restriction on the
parameters is the value of N so that a FNTT can be utilized.
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The other parameters are chosen based on N. Since the imple­
mentation of multiplication is through the use of look-up 
tables, the restriction on Si is an alqebraic rather than 
hardware related.

2.6 ORDBBED-INPgT-OBDERED—OUTPUT-HTT ALGORITHM
The traditional FFT-type algorithms require pre-shuf- 

flinq or post-ordering of the data which results in a re­
duced througnput rate and increased hardware cost. Osinq a 
hardware implementation, various structures have been sug­
gested [ 1 "] where pre-shu± £1 inq is performed at the host-com- 
puter or by providing.additional logic circuitry. The con­
volver, however, uses an Ordered-Input-Ordered-Output (0100) 
algorithm for implementing the FNTT. The algorithm was pro­
posed by Corintnios [bl and was originally described for a 
1D-radix-2-FFT employing use of seria1-sequencial pipelining 
usinq a single Butterfly Unit (BU). In our implementation, 
the original idea was extended and modified f10]. For exam­
ple, we utilize a 2D-radix-2 Butterfly for the FNTT and the 
operations are performed in parallel for the two moduli. 
The development of the two-dimensional 0I00-NXT algorithm is 
outlined in Appendix- (A).

It is seen from the Eqn. (A-6) that the computation of 
the NTT of the vector 1 can be divided into n-staqes where 
each staqe performs the operations specified by the opera­
tors YiR.c . The operators of any stage operates on the
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output of the previous staqe and the operator of the
first stage operate on the vector f. since the two-dimen­
sional operators and of a staqe have been defined as
the Kronecker product of the 1-d operators, p , q , s±
, the output of a staqe can be computed by sequential appli­
cation of the opeators along each dimension of the input to 
the staqe. Thus a staqe consists of the sequential applica­
tion of an r-point NTT, permutation and twiddle factor mul­
tiplication operations to the points in each dimension of 
the two-dimensional representation of the input to the 
staqe. An analysis of memory orqanization and savinq in 
computation is qiven in the next chapter (sec-3.5).

2.7 RESIDUE TO BINARY CONVERSION
The use of an NTT computed over several Galois fields 

allows us to use Residue Number System concepts. The input 
data is converted to the correspondinq residues before com­
putation with tne NTT processor. By the use of a siqned re­
presentation, numbers in the ranqe {-p/2, p/2-1} can be uni­
quely coded. A combinatorial loqic circuit for such 
conversion is qiven in {3 1. However, the input array can be 
suitably scaled so that numbers are in the ranqe 0 and 255 
(8-bit). Since the moduli are larqer than the maximum possi­
ble value in the input data, the residues of the sequence is 
the sequence itself. Thus we avoid the need of a binary to 
residue converter unit.
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The siqnals ootained after processinq are the residues 

too, and have to be converted to their correct binary repre­
sentation. This is done by either the Chinese Remainder
Theorem or by the use of a Mixed Radix conversion Method. 
For the reasons descrioed in s e c - (3.9) it was preferred to 
use the Mixed Radix Conversion (MRC) to obtain the final re­
sult from the residues.

2.7.1 Use of MRC in obtaining the final result
The mixed-radix system is a veiqhted number system whe­

re a number x is represented as <an,.....,a2,a1> where
n - l

x = an T1 Rif....... + a3.R2.a1 + a2.R 1 *a 1i.= I
where the ui's are the radices and ai's are the mixed radix

*
diqits ai<Ri. Numbers in the ranqe £ 0 , T T  Ri-1] can be

Lit

represented by this manner. By c n o o s m q  the radices to be 
the moduli (pi=ai) when pi are prime numbers,

n-1
x = an fl pi + ....... +a3.p2p 1 + a2.p 1 + a 1 (2-25)£ = l

which is also equivalently represented by 
x = <rn,.......r2,r1>

= residue of x w.r.t. different moduli 
The ai‘s can be determined sequentailly in the followinq 
manner, startinq with a1, since

a1 = x (mod pi) =residue of x w.r.t. p1 =r1 
a2 = ((x-a1)/p1) (mod p2) = | £ x/p 1 ] 1 (mod p2) 
a3 = ( (x-a1-a2.p1)/p1.p2) (mod p3)

= I f x/p 1. p2 ] | (mod p3)
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ai = |[x/p1.p2....pi-11| (mod pi)

Once the mixed diqits are known, then by application of 
Eqn-(2.25) the value of x can be determined.

Example: Let p1=13 p2=17
then p1 (mod p2)= 4
if the qiven x= <r1,r2> = <8,9> 

then x would be obtained as follows:
Moduli 13 17
x=<r1,r2> 8 9 a1=8
x-a1 0 1
f (x-a 1) /p 1)
mod p2 4 a2=4

nence
x = a2.p1+a1 

= 4 . 1 3  + 8 
= 60
which is the correct result.

The method of Mixed-radix conversion thus can be uti­
lized to find the binary representation by performinq opera­
tions in a serial pipeline fashion and is advantaqeous over 
the Chinese Remainder Method of conversion in our case.

2.8 COMCLUSION
In this introductory chapter, we have presented the 

theoretical backqround necessary to understand the processor 
architecture used in the convolver. The modular arithmetic 
necessary to develop tne concepts for use in the implementa­
tion of Fast Number Theoretic Transforms for diqital filter- 
inq nas been discussed. The theoretical and practical con­
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siderations to choose an NTT are outlined. The 
Ordered-Input- Ordered-output (0100) alqorithra has been con­
sidered. Finally the use of a Mixed Radix Conversion method 
for Residue to Binary conversion is presented.
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Chapter III
IMPLEMENTATION OF BUTTERFLY AND ANALYSIS ON THE

CONVOLVER

3. 1 INTRODUCTION
In the previous chapter we developed the theoretical 

backqround necessary tor implementation of Fast Number 
Theoretic Transform techniques to use them in diqital fil- 
terinq of two-dimensaonal sequences. In particular, an 
0100-NTT alqorithm wgs considered for the 2-D-radix-2 but­
terfly structure.

This chapter has two parts. The tirst part discusses 
the structure and implementation of the butterfly unit. In 
particular, the implementation of multiplication in tne but­
terfly unit by the use of a sun-modular look-up table ap­
proach is discussed in detail. Next, this chapter describes 
various topics related to the convolver as part of the ana­
lysis. This part includes the taming diaqrams, throuqhput 
rate considerations, and various comparisons in terms of 
computational requirements. Two design extensions are also 
sugqested to achieve a higher processinq rate. Finally, the 
two popular methods of residue to binary conversion imple­
mentation are compared.

- 33 -
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3-2 EFFICIENT IMPLBHEMTATION OF BUTTEBFLY

As stated in s e c - (2.2) NTT's could be implemented over 
a rinq which is isomorphic to a direct sum of Galois fields. 
This amounts to implementinq the transform usinq the RNS. 
Since in RNS arithmetic the number of different elememts and 
the result of any operation (+,.) is bounded by a maximum 
number (the modulus of the operation), it is possible to 
precompute the results of all possible operations and store 
them in RON arrays. Whenever an operation has to be per­
formed on two operands, the operands are concatenated as a 
sinqle address to a ROM and the result obtained as a table 
look-up. This results in tremendous speed, limited only by 
the access time of the ROM. As memory prices continue to 
decrease and as the advances in semiconductor hiqh density 
memory systems multiply, the loos-up table approach for 
mathematical operation m  HNS becomes more and more attrac­
tive. In fact, tne table-look up appraoach by use of ROM (or 
EPROM) arrays could be considered as the "best" solution 
r21 ] for hiqh speed realization and hence lor hiqh throuqh- 
put cates.

Implementation of multiplication is particularly at­
tractive by this method, since implementation of mod M mul­
tiplication is difficult with tne conventional binary multi­
pliers. The multiplication in the butterfly unit is 
implemented throuqh the table-look up approach for faster 
operation.
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The basic idea of implementinq an efficient Butterfly 

Operation (BO) was described by Jullien [5] for a 1D-radix-2 
by substitutinq the conventional multiplier by the use of 
LooX-up Tables and thus achievinq increased throuqhput rate 

Since the outterfly operation is basic to any transform 
domain implementation, the desiqn suqqested in T5] was im­
plemented in the convolver with little modification. The ac­
tual implementation was extended to a 2-D-radix-2 structure 
and data were pre-multiplexed to obtain an efficient hard­
ware confiquration and to ensure an OIOO-NTT alqorithm.

A butterfly operation can be performed havinq either a 
Decimation in Time (DIT) or Decimation in Frequency (DIF) 
structure. The DIF structure suqqests [1,2] that the multi­
plication by twiddle factors is applied after the addition/ 
subtraction operation over the data points participatinq in 
the butterfly. A 1D-radix-2-DIF butterfly is described by

A= (a+b)
B = (a-o) .&*** (3. 1)

where a and b are the inputs to the butterfly at staqe n-1, 
A and B are the outputs (input to staqe n), and the index X 
depends on the location of the butterfly. Similarly, in the 
case of a 2-D-radix-2 butterfly [2] there are four data 
points aoo,ao1,a1o,d as input aud the output A,B,C,D is as 
qiven below:

A= (a+b+c+d)
3= (a-b+c-d).&**i 
C= (a+b-c-d).&**j
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a

b

c

d

x ( s . t ) A = X ( s , t )

x(S + t )  
r

B = X(s + t )  
r

x (s ,  t  +
r

C = X(s, t  +
r

x(s  + ^  t  + 
r  r

D = X(s + t  + 
r  r

Fig. (3 .1 )  A 2 -D -rad ix -2  B u t t e r f ly  (OIQO-algorithm).
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D= (a-b-c+d).&**(i+j) (3-2)

where the input/output relations hold for a complete staqe 
of butterflies and the indeces, 1 and j, depend on the exact 
location of the butterfly in a particular staqe of the oper­
ation (Fiq-3.1). There are two basic arithmetic operations 
in such an implementation, namely, multiplication and addi­
tion . The use of QOM-array structure over conventional ad­
ders for addition does not siqnificantly improve the compu­
tation efficiency. For example, a 16-bit addition can be 
performed in less than 100 nsec by the use of fast adder 
circuits. The memories used in look-up tables have the same 
order of access time. . However, multiplication can be made a 
faster process throuqh the use of look-up tables.

3.2.1 Implementing Jijlti^iication using the subrmodular 
approach

By the use of look-up tables, tne multiplication can be 
performed as simple and as fast as the addition. The compu­
tation time is qiven ay the sura of ROM-access time (ta) plus 
latch settlinq time (tl). For example the throuput rate of 
operation throuqh currently available 8Kx8 bit PROM's (such 
as the Intel 2732) is in excess of b MHz. Sucn a multiplier 
scheme was considered in £211 f°r butterfly pipelininq fre­
quently used in signal processinq. To add further to the 
speed, and to decrease the net memory requirements for larqe 
dynamic ranqe, a Sub-modular approach to multiplication was 
suggested a y Jullien [5]. He will show the tremendous saving
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obtained through this approach. first, let us consider the 
algorithm.

It was shown in s e c - (2.3) that if S is a primitive root
of the prime, pi, then a mapping given by

xn = &**kn
kn=0, 1,2,..... - ,pi-1

will generate all the non-zero elements of the set given by 
Zpi. Also there exists an isomorphism between a multiplica­
tive group x having elements fxn}= {1,2,3,.........pi-1}
with multiplication modulo pi, and the additive group k hav­
ing elements fkn}= {0,1,2,...... pi-2] with addition modulo
pi-1 when pi is a prime. Thus,

x x . n j = e
Pi

k + k. n j pi-l C3.4)

which suggests that multiplication can be performed in three 
steps:

1. Find the index ki for each number
2. Add indices, mod (pi-1)
3. Perform the inverse index operation

The above steps can be implemented directly using an 
all hOM-array structure with a pipe-lining arrangement. The 
memory reguirement of order {(pi**2) xN-bits) in the second 
step, when addition is performed mod (pi-1), is eguivalent 
to directly performing look-up for multiplication and it 
seems that no improvement results. however substantial sav­
ing accrue because we can perform addition in a modulus oth-
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er than the prime modulus. We can compute addition by de­
composing the modulus into two relatively prime (sub-)moduli 
u and v, and performing the addition in Zu and Zv. The re­
sult is reconstructed using a look-up table which incorpo­
rates the submodular reconstruction, modulus overflow cor­
rection and inverse index-look up. The choice of u and v 
should satisfy u.v > 2.pi. We here describe the steps in­
volved in sub-modular approach or multiplication with an ex­
ample.

3.2.2 calculating the entries in the Look— up tables
The steps in calculating the entries in the look-up table
are as follows:

1. Generating Submodular Index Tables:
Once the primitive root & is decided for the mo­

dulus pi, a table based on x=|&**k|pi is constructed.
By inverting the table with respect to its address
and contents of this table, we have a table of indic­
es which is reduced to two index tables modulo u and 
v. For example, for pi=19 with fu,v=7,Q) and & = 2  we 
form a table of mapping x=J2**k|(mod 19) and rear­
range it to obtain |kj (mod 7) and |k| (mod 8) , 
Fig- (3.2) .

2. Submodular Addition Table Construction:
The addresses of these tables are found by con- 

catening the two-input sub-moduli residues to be ad-
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

X 1 2 4 8 16
*

13 7 14 9 18 17 15 11 3 6 12 5 10

Ca)

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

k 0 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

k 7 0 1 6 2 2 0 6 3 1 3 5 1 5 0 4 4 3 2

k 8 0 1 5 2 0 6 6 3 0 1 4 7 5 7 3 4 2 1

CBJ
Fig. (.3-2J Submodular Index Tables.
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ded. The contents of the table address is the submo­
dulo addition of the input residues, Fiq-(3.3). At 
certain locations corresponding to unused addresses 
in the table we store a code (say, 8) to represent 
the invalid operation of iindinq the inuex of zero.

3. Reconstruction Table:
As indicated above, the reconstruction table 

will incorporate the followinqs:
(a) Submodular Reconstruction: This is obtained us-

inq the Chinese Remainder Theorem for the residues r1 
and r2 with respect to u and v and the table entries 
are computed tg correspond to a value r,- qiven by

•>•1 1_ + r_.u. 1
1 V 2u u V

(b ) Modulus Overflow Correction: Tue overflow of
the modulus (pi-1) can be corrected by the followinq 
operation on r as

ri= |ri( (mod pa-1) (3.5)
(c) Inverse Index Look-up: An inverse mappinq cor­

responding to
yi= |S**ri| (mod pi) (3.6)

is employed on the corrected value of ri to obtain 
the entries for the table.
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Let us take, for example, (pi=19} , fu,v=7,8}, then u-v 

> 2.pi. Let us multiply 7 by 10 (mod 19). We find

1. 1 = 1; 1_ = 1
V u 8 7 u V 7 8 = l

= 2; r2 = 7 (from step 2)

. . r = r^.8.1 + r2 -7.7 56 = 116 + 343 56

= 23

and y = 12 23 18
19 2 19 = 13

The interconnection employed in this all "ROM11 struc­
ture for multiplication is shown in Fiq. (3.3) and the in­
termediate results for the example just worked out are cir­
cled.

3.2.3 memory saving by tfae use pjj sub-modular approach
It is observed that the memory requirements usinq the 

submodular approach are qreatly reduced. To calculate the 
memory requirements and to make a comparison of memory sav­
ing by the sun-modular approach of multiplication as com­
pared to the direct table look-up, we define the Memory Sav- 
inq Ratio (MSR) as,

Mem (dir)
MSR =   (3.7)

Mem (sub)
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where Mem (dir) represents the memory requirement by direct 
multiplicatiooa usinq look-up and Mem (sub) represents the 
memory requirement by use of sub-modular approach. Here we 
consider a case when one modulus is broken into two sub-mo­
duli.

Let N be the number of bits by which each of the moduli 
is represented, c is the number of bits by which each of two 
sub-moduli is represented, and b is the number of bits at 
the output of the result.

1. a direct implementation of multiplication by ROM-look
up would require (for each modulus),

Mem (dir) = (2**N) x (2**N) xb bits (3.8)
In case of convolver, this will be

= (2**24)x 10 bits 
= 160 Meqa bits ! 

which is impractical and the cost unjustified.
2. an implementation usinq sub-modular approach would

require (for each modulus),
In step a) for qeneratinq submodular residues of indices 

Mem (sub-a) = (2**N) x c bits/sub-modulus 
In step b) for performinq the index addition

Mem (sub-b) = (2**c)x (2**c)x c bits/sub-modulus 
In step c) the reconstruction of the result is obtained. 

The memory required is
Mem (sub-c) = (2**c)x(2**c)xb bits
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Thus the total memory requirement usinq the sub-modular ap­
proach is (for each modulus) ,
Mem (sub) = 2xMem (sub-a) +2xMem (sub-b) *Mem (sub-c)

= 2x(2**N)xc + (2**c) x (2**c) x2c + (2**c) x (2**c) xb
and the Memory Savinq Ratio (MSR) is

(2**N)x (2**N)xb
MS R = --------------------------------

2c. (2**N+2**2c)+ b.(2**2c)

b. (2**2 N)
=   (3.g}

(2**2c) (2c+b)+2c. (2**N) 
which for N=2c=b approximates 

MSfl = (l/3) . (2**N)
The MSR for various values of b corressponding to N=2c 

is listed in Table-(3.1). A memory savinq ratio of about 341 
is obtained in case of the convolver (for each modulus). It 
is observed that larqer the dynamic ranqe, niqher is MSR. 
This is an expected result.
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Table- (3.1) Memory Bequirements by Direct and 
Submodular approach of Multiplication and the 
Memory Savinq Ratio (MSB) ; 1K= 1024, 1M= 1024x1024

| Memory Requirements (bits) | MSB
h=2c | direct method | sub-modular appr. 1-----------

1
for I o

r 
I l
l

I 0
0

I 1

8 | 384 K 1 6 K | 64
10 I 8 M 1 28 K | 292.57
12 I 128 M I 128 K | 1024

for i
oII

8 J 512 K 1 6.5 K | 78.77
10 1 10 M 1 30 K | 341.33
12 | 160 M 1 136 K | 1204.70

for b= 12
8 | 768 K I 7 K I 109.71

10 I 12 M I 34 K | 361.41
12 | 192 M I 144 K i 1365.30

3-2-4 further reduction in memory requirements
We can further reduce the memory requirement by provid- 

inq an obvious simplification when the objective is to per­
form NTT where a multiplication by a twiddle factor of the 
form 6**1 is involved. Since multiplication in Eqn-(3-2 ) 
is between some arbitary data and (6**1) where 1 depends 
upon the position of the butterfly m  a staqe, the sequence 
{6**1} can be prestored with the mappinq already applied- 
Tnis will reduce the memory requirement in step a) of sub­
modular approach by half. This excludes the memory required 
to store the reduced sequence (&**1). The memory required to
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store the twiddle factors in any case is small and depends 
simply on the number of points involved in the transform at 
a time ,e.q, in our case 128-different twiddle factors would 
require 128xcx2= 128x12 = 1536 bits/modulus =
1.5 K-bits/modulus.

3.3 TIMING CONSIDERATION FOR THE BUTTERFLY
Next, we describe various topics which are related to 

the convolver as part of its analysis. In this section, the 
timinq diaqram for the outterfly unit is considered.

The workinq of the butterfly has been described in de­
tail in s e c - (4.7 J and the staqe-wise description is qiven 
there. Here we present a timinq-analysis of the butterfly so 
that we can estimate the throuqh- put rate. Fiq-(3.4) shows 
the butterfly computational unit. The reqister-contents of 
the butterfly is shown in Fiq-(3.5). SJith the first clock 
[pipclKS] reqister R1 1 receives the first data point (a1), 
which is buffered in HI2 when the next data (b1) is latched 
in R22 at the second half of [pipclk5]. The result of the 
addition, (a1+b1), is then moved to R13 at the next clock 
when data (c1) arrives in H11. The next half of the clock 
allows fourth data sample (d1) in R22 while (a1-b1) is 
latched to R23. The next clockpulses allow addition, 
(c1+d1), and subtraction, (c1-d1), while data points (a2 and 
b2) for the second butterfly are received in the unit.The 
results (c1♦d 1) and (c1-d1) are latched in R34 and R44 in a
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sequential fashion. When [pipclkl] occurs, the result of 
the second addition (a1+b1+c1+d1) and (a1+b1-c1-d1) are se­
quentially stored in Bib. The other two data points, c2 and 
d2, are received in the unit. The operations after B15 for 
each of the butterflies are straiqht forward and occur with 
each basic clock pulse. The data is divided into two chan­
nels correspondinq to two sub-moduli. The data qoes to next 
reqister (Hi6, i=1,2) after error correction and index
look-up. The added indices are then latched in B17 and R27 
at the next clock pulse. Meanwhile, (a1+b1+c1-d1) and 
(a1-b1-c1+d1) are calculated and input for next butterfly 
computations are received in the pipeline. At the next 
clock pulse, the result from the index add look-up table is 
sent to the Reconstruction EPROMs and are latched in R18.
Thus a rate of (1/t) data per sec is maintained where ' t'
is basic c Io c k . period or half of the period of fpipckl51.

It is noticed that a delay of 9-cycles is introduced
(fiq-3.4) between an input and the correspondinq output of 
the butterfly of that staqe. The butterfly operation pro­
ceeds for 14 staqes t a k m q  into account the forward and the 
inverse transforms. At the final staqe of the forward trans­
form, the NTT of the filter coefficients is used as multili- 
er instead of multiplication by unity twiddle factors.
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3.4 THHOUGHPDT BATE COMSIDEBATIOHS fOIOQ— ALGOBXTH HI
3.4.1 serial sequential processing

The Ordered-Input-Ordered-Output (OIGO) alqorithra has 
.been discussed in sec-(2-6) . The mathematical development of 
the algorithm is qiven in Appendix-(A). The algorithm can be 
characterized by the followinq:

1. Let NxN be the size of the input matrix and r be the 
radix of the butterfly operation. Then the input ma­
trix is divided into r**2 blocks and each block is
further divided into r**2 sub-blocks. If the data
is accessed sequentially, then the address seperation 
between the data points at any staqe of operation, 
alonq any dimension, is always (N/r**2), except at 
the first staqe. The data must be seperated by (N/r) 
words for the first staqe of operation. A 8-point 
transform structure is shown in Fiq-(3.6). To use 
the same hardware configuration for the first stage 
as that of other staqes, the input matrix is permuted 
while loadinq the matrix into the input memory buf­
fer.

2. A butterfly computation (0100-alqorithm) consists of 
preweiqhtinq (addition/subtraction) followed by 
weiqhtinq (multiplication by twiddle factors). At the 
nth staqe of operation, the twiddle factors are all 
unity and the weiqhtinq is not required.
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The above characterizations can be used to calculate 
the throughput rate.

MAXIMUM THEOUGHPUT-flATE POSSIBLE:

Let tp be the time of performing preweighting and tm be 
the time of performing preweighting followed by weighting. 
Since the n-th iteration involves only preweighting, the to­
tal time reguired in the forward transform is

Tc = (n-1) . (N.N/r.r) - tm ♦ (N.N/r.r).tp (3.10)
where n is the number of stages. In hardware implemen­

tations, the multiplication by the twiddle factors can be 
made as fast as audition through the use of a look-up table. 
In that case, we can simplify egn- (3.10) by substituting tm 
= 2.tp, and

Tc= (N.N/r.r). (n-1/2)-tm (3.10a)
Using the relation (3.10a), it is possible to calculate the 
time reguired in computing a forward transform. If addition 
can be performed in 300 nsec. (i.e. tm= 300 nsec.), then tne 
transform of a matrix of size (128x128) can be performed in 

Tc= 7.98 msec. (3.10b)
which implies a sampling rate of 2.051 MHz. If fast adders 
are employed in tne circuitary (say tra= 70 nsec) then the 
time for a transform would be given by,

Tc= 1.86 msec. (3.10c)
which supports a sampling rate of 8.2 MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48
To compute the convolutions, the filter coefficients is 

multiplied to the preweighted output from the final stage of 
the forward transform, and the inverse transform of the re­
sulting sequence is obtained. The multiplication by the fil­
ter coefficients can assumed to be equivalent to veightinq 
at the final stage of the forward transform. Since, there is 
no need of weiqhtinq at the final stage of the inverse 
transform, the total time to compute convolution is given

T(conv)= (N.N/r.r) . {n.tm + (n-1).tm + tp} (3.11) 
Assuminq tp = 2.tm as above, we have

T(conv) = (N. N/r. r) . (2n + 1). tm (3.11a)
Usinq tm = 300 nsec for a matrix of size (128x128), the time 
required to compute Convolutions is

T (conv) = 17.8 msec. (3.11b)
indicating a samplinq-rate of .9 19 MHz. The use of fast ad­
ders and memories ( usinq tm = 70 nsec) will give a process­
ing time of

T (conv) = 5 msec (3.11c)
which supports a sampling rate of 3.76 MHz.
VIDEO-BATE PROCESSING:

In siqnal processing, a process is said to operate in 
real-time if the data-processing rate is higher than or 
equal to the data sampling (input) rate. Thus, depending on
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the particular application, the "real-time processinq time" 
may be different.

In many applications, it is desired that the processinq 
speed supports a video rate. Such hiqh speed procesinq re­
quirement is essential in diqital tele-vision transmission. 
Many Robotics applications also require a very hiqh process­
inq rate. The video-rate is

Vr= 30 pictures per sec (3.12)
= 1 picture every (1/30) sec
= 33.3 msec per picture
= .492 MHz, for a 128x128 pixel picture.

Rased on the calculations (eqn.3-11), it appears that the 
application of tne 0100-alqorithm, with the basic time of a 
mathematical operation as tm = 300 nsec, supprots a video 
rate.

3.4.2 Speed consideration in the Convolver
The use of a 2-D-radix-2 0100-alqorithm requires that

the four data points participate in any butterfly computa­
tion (Fiq-3.1). The mathematical operations required by tne 
butterfly computation (eqn-3.2) can then be implemented by 
the use of 8 adder/subtracters and 3 multipliers. These re­
quirements can be simplified if a sacrifice in speed is
aqreed. In that case, a "quarter" of the butterfly is used
to process the data. The data input to the butterfly is in a
sequential fashion, one data at the occurrence of every
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clock pulse. This type of arranqement saves the hardware 
cost required to implement a "complete" butterfly unit. In 
fact, the convolver desiqu uses only a quarter of the but­
terfly and the data flow is in a sequential fashion. The use
of pipeline arranqement lets a data with every clock pulse, 
and there is delay of 9 clocks between the input and the 
correspondinq output at every staqe of computation. Thus, 
the total time of convolution depends on

1. the total number of data points
2. the time of a basic clock
3. the delay oetween the input and the correspondinq 

output
Tne total time of convolution is then qiven by,

T (conv) = 2. n f(N.N).t + 9. t ] (3.13)

where t is the basic clock period. The basic clock used in 
the convolver is of 300 nsec.. Thus an imaqe of size 
(128x128) is processed in a total time of

T (conv)= 68.8 msec. (3.13a)
which implies a saraplinq rate of 0.24 HHz.
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Table-(3.2) Comparison of Time required for 
convolution by different methods of Processinq.

t= 300 nsec 
J Time Reqd. for Convolution (msec)Method

Pic.Size = 64x64 I 128x128 | 256x256
Serial Seq. 
Processinq

4. 60

Processinq 
in Convolver
7-staqe Cascade 
Processinq

0.62

18.43 73.72

68.8

2. 63 10.53

Ser.Seq.Process. |
t= 70 nsec 

1. 07
----------------------
Proc. in Convolv.)* ♦

4.30 
16. 05 
0.62

17.20

7-st.Cascade 
Processinq

0. 15 2.45

3.4.3 Cascade Processing
A cascade processor may prove to be prohibitively ex­

pensive. Neverhteless, instead of usinq an input buffer me­
mory and oscillatinq data successively betweeen two memo­
ries, if we provide a number of memory arrays and 
butterflies equal to the number of staqes, then the process­
inq speed can be increased by a factor of n, where n is the 
number of staqes. The convolution computation time, in that 
case, is qiven by,

T (conv) = 2. f (N.N/r.r).t + D 1 (3.14)
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where D represents the delay between the input and the cor­
responding output data point. This delay is very small and 
can he neglected in calculation of speed of the processor. 
With t= 300 nsec., the convolution time for a matrix of size 
(128x128) is 2.45 msec. (a sampling rate of 6.5 MHz). A 
further gain in speed by a factor of h can be achieved 
through the use of a ’'complete" butterfly.

The convolution time obtainable through the different 
methods of processinq is qiven in Table-(3.2). The I/O time 
between the SEL computer and the convolver for a picture of 
size (128x128) bytes (throuqh the use of HSD interface) is 
approximately 15 msec. and requires an overhead time of 5 
msec.. Since the use of convolver was intended in conjunc­
tion with the SEL mini-computer, efforts to use very hiqh 
processinq rates may not be supported. Thus the use of cas­
cade processinq is not recommended.

3.5 T HREE— MEMOBY 5TBDCTDRE FOB FASTBE PROCESSING
In this section and in the next section we consider two 

of the design improvements for faster processinq. The I/O 
rate between the SEL minicomputer and the convolver is 1.2 
usec/32-bit word (throuqn the use of the High Speed Data In­
terface) . An imaqe of (128x128) bytes is transferred from 
the computer to the filter in 5 msec, by multiplexing h data 
points to form a word. The filtered imaqe is received in an 
array of 16-bit per data point, and thus the data transfer
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time is 10 msec.. The total I/O time, including the overhead 
of about 5 msec., is 20 msec.. The processing time to filter 
an image is 68.8 msec.(sec-3«4) . In processing of an image, 
the two times do not over-lap. This is because, the convol­
ver desiqn does not allow any communication between the host 
computer and the filter while the processing is in progress. 
Also, there are only two memory buffers, MEM1 and MEM2, in 
the filter. The data oscillates back and forth between these 
two buffers at the various staqes of operation to compute 
the convolution. A three-memory structure is suqqested 
(Fig.3.7) which can reduce the I/O rdle time.

Whether the data.is sent from a video-digitizer camera 
or from the host computer where the images have been stored, 
two of the buffers store the input and output of the in­
termediate NTT stages. The third buffer can be employed to 
collect the sampled input for a second image while the fil­
ter processes the first image. Similarly, the final result 
can be collected in one of the two buffers involved in the 
processing of that image and can be transferred through the 
I/O channel while the processing of the second rmaqe is in 
proqress. All three memory structures are required to be 
identical. Assume that MEM 1 stores the input for the first 
image. Now MEH1 and MEft2 are used to store all the intermed­
iate results or the outterfly stages for that imaqe and the 
final result is available in MEM2. While the first imaqe is 
being processed, the second imaqe is written into memory
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MEM3. At the completion of filtering of the first imaqe, 
MEM3 and MEN 1 are used to store the intermediate results for
the second imaqe. At the time when the processing of the
second imaqe begins, the output multiplexer gates the al­
ready processed image through the output channel. This is 
possible because the input and output of the NTT alqorithm, 
as given by the OIOO-NTT algorithm, have the same addresses. 
At the begining of a new computation, the buffer selection 
is chanqed and durinq the computation of convolution, the 
I/O channel is utilized to perform the input and output op­
erations.

As noted earlier, the total time required for the input
and output of an image (through the use of a BSD interface)
is approximately 20 msec., and the actual processing time 
for an imaqe of size (128x128) is 68.8 msec.. Throuqh the 
use of three-memory structure outlined above, it is possible 
to have 100 % over-lap of I/O time with the processing time 
(Fig.3-8). This implies that if imaqes are processed in suc­
cession, then the processing time can be reduced to about 48 
msec.. This is an improvement in speed by 28 %.

3-6 USING A COMPLETE BUTTERFLY F0£ FASTER SPEED
The convolver implements a 2-D-radix-2 butterfly 

(0100-alqorithm) for the computation of transforms. In Hard­
ware, the processing is performed in a serial sequential 
fashion. It was observed in s e c - (3.3) that we use a multi-
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plexed "quarter" butterfly to compute the transform of the 
sequence. We can, instead, use a "complete" butterfly 
structure to obtain a four-fold increase in speed. The pos­
sible structure or a scheme to use a complete butterfly is 
shown in Fiq-(3.9).

The implementation of a 2-D-radix-2 butterfly requires 
the implementation of e q n . (3.2). The (preweiqntinq) opera­
tions of addition and subtraction can be obtained throuqh 
the use of eiqht adder/subtracters, each with two data as 
input. The method will involve two levels of operation to 
avoid the use of d inputs adders. The implementation also 
requires 3 multipliers as shown in Fiq. (3.7). This is be­
cause the multiplication by unity may not be performed. The 
data flows back and forth between the two memory buffers. 
Once the input sequence has been permuted, the addresses re­
quired for the input and the correspondinq output are the 
same. This means tuat the same address qeneration loqic cir- 
cuitary can be used for the control of data flow by the use 
of a delay equal to the time required for processinq of one 
data point.

This is an arranqement wnere there is a simultaneous 
processinq of d data points toqether in a pipeline flow. The 
time of convolution by this method is qiven by,

T (conv) = 2-n [ (N.N/r.r).t + D 1 (3.17)
where D is the delay between the input and the correspondinq 
output and r=2, tne radix of operation. The time required to
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compute convolution by this method (for an imaqe of 128x128 
pixels) is 18.45 msec.. This supports the video rate.

It is interestinq to note that the hardware requirement 
for the butterfly increases ny a factor of more than 3 
(nearly 4). However, at the same time it is possible to use 
the rest of loqic circuitary with little modifications. This 
implies that the total cost of the entire filter structure 
does not increase by a factor of 4, while the speed qain is 
four-fold.

3.7 A BRIEF COMPARISON OF FFT AND FNTT BUTTERFLY 
IMPLEMENTATIONS

A comparison of FFT and FNTT butterfly implementation 
involves several variables. Here we make a brief comparison 
between a FFT and a FNTT butterfly implementations takinq 
into account the followinq variables only:

1. Speed
2. Hardware complexity
3. Accuracy

There are two distinct operations in a butterfly compu­
tation: addition (or subtraction) of the data points and
multiplication by the twiddle factors. A FFT buttefly re­
quires complex arithmetic. When the arithmeitc unit is of 
qeneral purpose nature, a complex audition takes twice the 
time that of a real addition and, a complex multiplication 
takes four times the time required by a real multiplication

Use can be made of the fact that the input data are real.
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This results in a savinq or 50 percent if one neqlects the 
overhead involved. Thus, the additions in the butterfly in 
the two implementations can be made equivalent in terms of 
speed. The multiplication by the twiddle factors throuqh 
the use of a FNTT outterfly will be efficient on a qeneral 
purpose arithmetic unit. However, the mathematical computa­
tions in the use of FNTT require mod H operations. A mod fi 
operation on a qeneral purpose computer is computed by per- 
forminq inteqer division, which is a time consuminq process. 
Thus the efficiency of a FNTT implementation over a FFT im­
plementation is doomed.

Aqain, it is possible to use special purpose hardwares 
[19 1 to handle the Dutterfly computations. The hardware com­
plexity increases in case of FFT butterfly because of tne 
complex nature of tne arithmetic involved in the computa­
tion. The need or binary to residue and residue to binary 
converters in the use of the FNTT butterfly increase the 
hardware requirement. Also, it is possible to use a table 
look-up approach to implement multiplication for a faster 
processinq. The look-up tables entries required by the FFT 
butterflies are subjected to error due to the finite preci­
sion representation of the transcedental multiplier: func­
tion. In qeneral, these tables require more memory [251 than 
the correspondinq look-up tables in the FNTT butterfly im­
plementation .
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Further, the results obtained through the use of a FNTT 
alqorithm are exact if the dynamic ranqe of the machine is 
larqe enough so that no number in the final result is great­
er than the the machine dynamic ranqe. flut in case there is 
an overflow, the resulting sequeuce does not represent the 
transform. Because of the error due to finite precision re­
presentation of the transcedental multiplier functions, the 
results obtained throuqh the use of a FFT alqorithm are ap­
proximate. Thus it is difficult to establish the superiori­
ty of one implementation over other. Several other factors, 
such as the type or data to be processed etc., must also be 
considered to compare. the two implementations.

3.8 COHPABISON OF 1-D-BADIX-2 AND 2-D-BADIX-2 BOTTEBFLIBS
For this comparison, we will define the complexity 

based on the numoer of multiplications required in the im­
plementation of a 1-D-radix-2 and a 2-D-radix-2 butteflies 
to process a matrix. The multiplications involved in the 
implementation of butterflies are the multiplications by the 
twiddle factors.

For an m-dirnensional-radix-r butterfly, it was shown 
[10] that the total number or multiplications with twiddle 
factors is

[ (r) **ra -1]
as it combines fra. (r)** (m-1) 1 composite twiddle factor mul­
tiplications. If a one dimensional radix-r transform opera—
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tion were performed alonq all m dimensions in a sequential 
fashion, then the number of twiddle factor multiplications 
would be equal to [m.[ (r)**m- (r)** (m-1) ]} . Thus the total 
number of multiplications is qiven by,

M = C (n) **m-1 ]. (n) - (M.ti/r.r)
Where 'a* is tne number of staqes. Hence the ratio of mul­
tiplications (HM) between 1-D-radix-r and m-D-radix-r but­
terfly implementation is

m.[ (r) **m - (r) ** (m-1) ]
H« = --------------------------  (3.15 a)

(r) **m - 1
and the percentaqe sayinq in computation is equal to

ra.r (r) **ra-(r) ** (m-1) 1 -[r**m-1]
----------------------------------------x 100 1%)

m.[ (r) **m- (r) ** (m- 1) ]
(3.15b)

To compare a 1-D-radix-2 and a 2-D-radix-2, we substitue m=2 
and r=2 in eqn- (3. 15). We obtain 

SM = (4/3) = 1.3333 
and a savinq in computation of 25 % is obtained, Ta­
ble- (3.3).

It is interestinq to note a 2-D-radix-2 structure is 
computationaly tne same as a 1-D-radix-4 structure, which
has been described as optimum [1,2 1.
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Table-(3.3) Comparison of butterfly Computational 

acquirements

Method | no. of complex multiplications
| (in thousands)

Pic.Size,N= 64 128 256
I 1-D-radix-2 | 
I I

24.57 114.68 524.28 |

| 2-D-radix-2 | 
I I

18.43 86. 01 393.21 I

3-9 COMPARISON OF B/B CONVERSION METHODS
Hesidue to Binary (B/B) conversion is implemented uy

either the Chinese Remainder Theorem (CRT) or by the use of
«

the Mixed Radix conversion (MRC) method, s e c - (2.7). The 
Chinese Remainder Theorem expresses the relationships bet­
ween the number and its aNS representation as.

X.ItK 1 1 Am.i m.i M

where xi are tae residues (mod pi) and M= Tf Pi- On the oth-•c
er hand, the dixed-Radix conversion method requires two 
steps. In tue first step, the residues are transferred to 
Mixed-Radix (weighted) digits. The second step converts 
these digits into a fixed radix form (e-q- Binary). Repeat­
ing the relations from s e c - (2. 7) ,

<rn,....,r3,r2,r1> — x ^an,....,a3,a2,a1^
n-i

=an.n pi+--..+a3.p2.p1+a2.p1+a1l-l
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(3-16)

where ri's are the residues (mod pi), ai's are the mixed di­
gits and pi's are the prime moduli. The block diagrams for 
the methods are shown P i g - (3-10)and F i g - (3-11). The number 
of computational elements required by the two methods are 
can be compared. Let a(n) represent the number of adder/sub­
tracters, and b(n) represent the number of multipliers. Then

1. For a (n) *n' moduli representation, the CRT requires 
2n multipliers and an adder (mod M).

2. For a (n) 'n' moduli representation, the MRC requires
a (n) = (n-1). (n/2)+1 adder/subtracters 
b(n) = b(n-1) + b (n-2) multipliers

where b(i) is an operator, b(0) = 1 and b(1) = 1 and n > 1.
The requirement tnat a modulo M adder be used in the CRT al­
gorithm, restricts its use in nardvare implementations. Ta­
ble- (3.4) shows the requirements of adders and multipliers 
for various values of 'n'.

Tanle-(3.4) Comparison of CRT and MRC implementation 
(a) Number of adders (b) Number of multipliers

I no. of moduli
1 n=2 | n=3 I 11=4 | n=8
1 Method (a) (b) 1 (a) (b)l 1 (a) (b) 1 1 (a) (b) |1--------------- ------ 1------ 1---- 1 ,---- - 1---- 1 i---- r
| Chinese 1 I 4 1 1 I 6 11 1 1 8 |1 1 I 16 |
1 Rem.Theo. mod M) (2) 1 modMJ (3) 11 mod M| (4)1 1 modMJ (8) 1
1 I 1 1 1 i 11 1
1| Mixed 2 I 2 1 4 1 5 I1 7 1 9 i1 29 | 35 J
j Radix-Conv I (1) 1 1 (3) I1 1 (6) 11 i (2d) |
1 1 I 1 I 1 I1 1
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It will be noticed that for small n (n<4), it is beneficial 
to use the Mixed-Radix-conversion method to compute the re­
sults of Residue to Binary operation. Also, it is possible 
to combine various fixed arithmetic operation for a particu­
lar implementation. The requirements after such combination 
is indicated by puttinq the numbers in brackets in the ta­
ble.

3-10 c o n c l u s i o n

In this chapter we have discussed various aspects of 
tne convolver. The main focus was the butterfly unit. First 
we discussed the efficient implementation of butterfly and 
then we evaluated the performance of the filter with respect 
to speed, memory requirements and computation cost. This 
was followed by a comparison between the implemented filter 
and other techniques of diqital filterinq, in terras of com­
putational efficiency. The tirainq considerations in the 
pipe-line structure was evaluated, and the throuqh-put rate 
determined. Two desiqn improvements for faster processinq 
were suqqested. Finally, the two methods of implementation 
of Residue to Binary conversion were compared.
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Chapter IV
HARDWARE AMD FUNCTIONAL DETAILS OF THE CONVOLVER

4.1 INTRODUCTION
For several problems in Imaqe Processing, linear fil­

tering of imaqes prior to the applications of other alqor­
ithm is extremely important. Filterinq of discrete siqnals 
can be implemented on a qeneral purpose diqital computer of 
reasonable size. This is a time consuminq process, and when 
speed of filterinq is more important a hardware implementa­
tion is the only viable solution. The speed and cost con­
siderations are basic to filter hardware desiqn and a com­
promise has to re achieved between tne two depending on the 
particular application m  mind. For example, the speed of 
filterinq is tne main consideration when real-time process­
inq of siqnals is desired [4 1.

In this chapter we describe the hardware and functional 
details of the convolver. It is suqqested that the user of 
the convolver refers to reference [2^1 for specific details 
about the hardware circuitary.

- sy -
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4.2 OYEHVIEH OF THB HABOHABB
The Convolver hardware has been assembled on four Auqat 

Wire Wrap boards. One of the boards contains the interface 
betweem the HSD and the convolver, and the control loqic; 
two boards support the memory buffers and the 2-D-radix-2 
Butterfly unit; and the fourth board has the Residue to Bi­
nary (R/D) conversion unit. A conceptual diaqram of the 
Convolver organization is given in Fiq-(4.1). The main com­
ponents of the hardware are described in detail in the fol­
lowing sections. An overview is presented here.

The convolver implements a 2-D-radix-2 Fast Number 
Theoretic Transform (ENTT) usinq an Ordered-Input-Ordered- 
Output alqorithm fol where the multiplications in the but­
terfly are performed usinq the sub-modular approach [51- The 
host computer sends the imaqe input and the indices of the 
transformed coefficients and the necessary control siqnals 
to start the filterinq operation. The data stored in the me­
mory buffers are processed with tne butterfly unit for a 
7-staqe sequential implementation. When the input to the 
butterfly is from the memory butfer-1 then the output is 
written to the memory butfer-2 and vice versa. At the final 
stage of the forward transform, the output is multiplied by 
the transform of the filter coeificients usinq the twiddle 
factor multiplier. At the end of the inverse NTT staqe the 
data is processed by a Residue to Binary converter, which 
then transmits the data back to the host computer.
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TABLE (4.1)
THE IMAGE PROCESSOR (BASIC BLOCK)

INPUT DATA ORGANIZATION: 128 x 128 (BYTES) FOR IMAGE

128 x 128 x 24 BITS FOR COEFFS. 

MODULI: 641, 769

ALGORITHM FOR BUTTERFLY: 2D-RADIX-2

0 I  0 0 -  NTT ALGORITHM 

DECIMATION IN FREQUENCY

OUTPUT: 128 X 128 x 16 BIT-BLOCK OF 

FILTERED SECTION OR IMAGE

TIMING: BASIC CLOCK 300 ns

I / O ’TIME = 5 msec + 10 msec = 15 msec.

BUTTERFLY COMPUTATION TIME = 6 8 . 8  msec 

TOTAL PROCESSING TIME = 8 5 . 0  msec

TECHNOLOGY: MSI and SSI Standard TTL and MOS S ta t ic  Memory, 

EPROMs

PHYSICAL: PACKAGED ON 4-AUGAT WIRE WRAP BOARDS 9 x 16 x 1.5 INCH 

POWER CONSUMPTION: 5V DC

L—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

TABLE 4.2 Main Integrated Circuits

IC TYPE MANUFACTURER

74S124 Texas Instrument (TI)

745138 TI

745139 TI

75138 TI

74S74 TI

74S175 TI

LM311 National

74S163 TI

74S253 TI

74S257 TI

' 74S163 TI

74S283 TI

Used in the Convolver

FUNCTION/USAGE

Dual Voltage Controlled 
Oscillator (1 Hz-60MHz);
Generation of Clock

Decoder/Demultiplexer 
Cl of 8) ; Stage Decoder

2 to 4 line Decoders/Demultiplexer; 
Stage Decoder

Quadruple Bus Trans-receiver 
(8-line); Trans-receiver driver.

Dual D-Type .
Positive Edge Triggered 
Flip-Flop; Delay

Quadruple D-Type 
Flip-flop with clear delay.

Voltage Comparator;
In control of circuitary 
for Interface; Reset Logic.

Synchronous 4-bit counter; 
Butterfly and stage counter

Dual 4 to line Data Selectors/ 
Multiplexer with 3-state output;
In control circuitary for 
address generation.

Quadruple 2 line to 1 line 
Data Selectors; Multiplexing 
of Data at output of residue 
to binary converter.

4-bit Sync, counter;
Memory address generation for 
data input

4-bit Full Adder with Fast 
carry; Adder-subtractor
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IC TYPE MANUFACTURER
2118 Intel

AM2964B AMD

AM 2966 AMD

2732A Intel

AM2517 AMD

9319 Fairchild

96SQ2 TI

FUNCTION/USAGE
RAM Memory (.16384 x 1 bit) 
16KX1; Memory Buffers; 
Coefficient Memory

Dynamic Memory Controller 
Cfor 16 K and 64K MOS RAM)
R/W address control

Octal Dynamic Memory Drivers 
with 3-state output; Tristate 
buffer for memory

EPROM (4KX8 bit)
Twiddle Mem/Look-up tables

Arithmatic Logic Unit 
Butterfly - ALU, Function 
Generator Aĵ B, A+B, A*B, etc.

Decode Sequencer Cl of 10 
sequential output)
Generation of different clock 
from the main clock

Dual retriggerable 
monostable multivibrator; 
In correct sequencing.
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The basic block for filterinq by this method is an im­

aqe of (128x128) bytes. The various components of the fil­
ter are described nelow. The main features of the filter are 
suwmerised in T a o l e - (4. 1) . The main Inteqrated Circuits 
(IC's) used in the convolver and their functions are ex­
plained in Table-(4.2).

4.3 SYSTEM CLOCKS AMD BBSBT LOGIC
The filter desiqn is based on a synchronous architec­

ture and is driven by the system master clock. A dual vol- 
taqe controlled oscillator IC-74S124 has been used to qener- 
ate a 20-MHz clock wuich is divided by the Decade Sequencer 
IC-9319 to qenerate six non-overlappinq clocks with a period 
of 300 nsec. These clocks are inverted to qenerate two sets 
of system clocks: One set of the system clocks is used by
the Interface 3oard and the other set is used to qenerate 
memory and pipe-lininq timinq siqnals.

Tne Voltaqe Comparator IC-LM311, drivinq a dono-stable 
circuit has been used to qenerate a power-on reset pulse. 
This pulse is loqically Od-ed with the I/O-reset pulse 
[selior] from the HSD to qenerate three different Resets 
[ filreset, filresetl, filreset2 1 which are used to clear 
various reqisters and to initialize the interface loqic.
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4.4 HSD/COMVOLVBH IMTEHPAC3

The HSD/convolver interface is an esseutial component 
of the convolver as veil as the Image Processing system.
The Hiqh Speed Device (HSD) interface loqic links the HSD 
handler (in S3L-32/27 computer) and the filter. The HSD in­
terface logic is very general in nature and apart from con­
volver, devices such as the video digitizer can use the same 
HSD-interface logic. Tne HSD-interface (Pig-4.2) has the
follovinq main components:

1. Line Drivers/rieceivers
2. Multiplexers (Accumulators)
3. I/O data counter (NTT stage/ butterfly counter)
4. control logic for I/O operations
5. Control logic tor data input from Video-digitizer

The interface loqic is controlled by the siqnals from
the HSD handler. The Filter function reqister is loaded from 
the HSD to specify the uext filter function (sec-4.5) - iihen 
an I/O filter-iunction is specified tne data transfers at a 
rate of 1.2 us (1200 nsec) per 32-bit word. Four pixels are
transferred at a time from the SEL to the convolver as input
data, and tnese are demultiplexed at the basic system clock 
rate of 300 nsec before writing the pixels byte into the me­
mory buffer. This ensures a continuous transfer of data.
The I/O data counter keeps the record of the number of data
transfer and once the specified number of data-transfer has 
taken place, it resets and is then available for other 
counting functions.
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4.4.1 Line Privers/Beceivers

The Line Drivers/Beceivers consist or 12 TI-75138 IC's 
and are connected to the HSD via two 50 pin flat cables. The 
driver part is controlled by the strobe siqnal [selinstbl, 
and is enaoled whenever the data-status is to be sent to the 
HSD.

4.4.2 NTT stage/ bntterflv counter
The NTT Stage/ Buttefly Counter (NSBC) serves a dual 

purpose. Durxnq tne data-transfer between convolver and HSD, 
it counts the number of pixels and durinq the convolution 
operation it serves as a stage and butterfly counter. This 
is also referred to as tne I/O Data Counter.

This Id-bit NSBC is a synchronous counter and is made 
up of five IC-74S163. Durinq an I/O transfer this counter is 
controlled by tne interface loqic and indicates when the 
specified number of data have transferred. When the filter 
is set to perform the convolution, i.e., wnen [filon=11, the 
butterfly counter is used to qenerate the count for the 
14-staqes (7 lor forward and 7 for inverse) a of 123x128 
transform.

When used as the NSBC, it generates a 6-bit column ad­
dress, a 6-bit row address- and a 2-bit word audress. These 
address oits are used to compute the fiead/Write addresses of 
data items from and to MEH 1 and M EM 2 for the current but­
terfly operation. The remaining 4-bits are used for the 
stage count (1-14).
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The NSBC forms a modulo (2**14*9) counter, and 

qenerates the addresses in a serial fashion such that data 
are always (N/r**2) apart as required by the OIOO-NTT alqor­
ithm. The additional count of 9 is required to complete the 
Head/Write operation at each staqe. Out of the 4-bits used 
for the staqe count the dSB determines whether the forward 
(0) or the inverse (1) operation is beinq performed. At the 
end of the filterinq operation, a siqnal [ clrrunif ] is qen- 
erated to clear tne [rilstart] rlip-flop and to terminate 
filterinq [filon=0 1. At this time the filtered imaqe is 
available in HEd1,to be transrerred to the SEL via the HSD.

Durinq the transcer of either Imaqe data or Coefficient 
data between the HSD and the convolver, the counter qener­
ates the address of MEH1/ TCOFMEM to store or retrieve the 
data from dEfll/TCOFSEd. This process proceeds in a sequen­
tial rashion and at tne end or the data transfer of 
(128x128) points a siqnal ffilinaatacomp 1 is qenerated which 
inhibits furtner transfer operations between the HSD and the 
convolver. Tne NBSC is cleared at the beqininq of each 
transfer operation from the siqnal supplied by HSD.

4.5 INTEHFACE CONTROL LOGIC
The interrace control loqic qenerates the siqnals re­

quired for data transfer between the HSD and the convolver. 
Two Kinds of siqnais are recoqnized: FILFONCRDY, PI1FUNCACK, 
FILINRDY and FI LI HACK control the data transfer from the HSD
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to convolver while FILOOTHDY, FILOUTACK, FILSIATHDY and 
FILSTATACK control the transfer of data from the convolver 
to USD.

Whenever a new filter function is specified, the 
[filfuncrdy1 qoes uiqh and with the next [mclk50 ] the six- 
bit function is loaded in the filter-function reqister. 
Tnree of the six Dits specify one of eiqht possible func­
tions:

No Operation
Load Imaqe data in (Buffer 1) 
Load transfer of filter coeff in

Load memory for displayinq imaqe 
Send filtered imaqe to USD 
Send diqitized imaqe from camera

Clear butterfly Counter and send 
Filter status to USD 
left for future use 

The fourth bit Cliifunc3] determines whether or not the 
convolution process has been requested and, at the end of 
the filterinq operation, clears [filstart] at which a new 
filter-function may be loaded to the til-func-reqister. 
There is no provison ror external Interrupts, and once the 
filterinq beqins, there is no data transfer between the USD 
and the convolver until the end of the filterinq operation.

1. NOP (000)
2. LDIMG (001)
3. LDCOF (010)

(Tcoeff dem)
h. LDDSP (011)
5. SDFILDT (100)
6. SDCAMUT (101)

to HSD
7. CLRNCNT (110)

8. NOP (111)
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This ,however, does not affect LDOSP and SDCAMDT since the 
operations they control can be performed independently.

4.5.1 LDIBG operation
Wnen LDIHU is true, the sequential loadinq or the imaqe 

data is enabled. After the [filinrdyl siqnal is active, 
and if no previous function is beinq served, then a 40 nsec 
pulse is qenerated whicn enables asynchronous data transfer. 
The data from the SEL-bus are transfered to the filin-reqis- 
ters (32-bit) and from there the data is demultiplexed and 
written into MEM1. The counter starts countinq at the beqin- 
inq of the data transfer and is sychronised with the rate of 
data transfer. Tne demultiplexing and w n t i n q  into memory is 
completed berore the next data arrives. The 4-byte data is 
always written to memory in the sequence Most Significant 
Byte to Least Significant Byte (bits 31-24 to bits 07-00). 
The siqnal f filinack ] is sent to tne HSD to acknowledge the 
completion ordata transfer.

4-5.2 LDCQF operation
When LDCOF is true, the least significant 24-bits of 

the data are transfered in the same fasnion as above for 
LDIMG. The 24-oit word is formed by reducing the indices of 
the transform of coefficients corresponding to the set of 
sub-moduli 62 and 63, as indicated in s e c - (4.6.6).
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4.5.3 CLBHCHT operation

This is a special type of function performed by the 
filter to inform the HSD status of the filter. Whenever sta­
tus information is requested the CLRMCNT siqnal is made true 
by sendinq the siqnals from the HSD. The filter then tran­
smits a 5-bit data pacK on 32-bit lines indicatinq FILON, 
NTTB,ISTAGR0,ISTAGR1,ISTAGR2. This informs tne HSD as to 
whether or not an I/O operation is to performed.

4.5.4 SDFILDT operation
When SDFILDT is active low, the data from the MEH1 is 

sent to the HSD. T h e .riltered output for each data point is 
a 16-bit word and is multiplexed to form a 32-bit word for 
fast I/O operation. The counter keeps track of the number of 
pixels sent to the HSD.

4.5.5 SDCAMDT operation
This function implies a transfer of data from the fil­

ter to the HSD when the data is obtained from a camera (Vi- 
deo-diqitizer). Tne camera output is a 8-bit word. The cam­
era multiplexer [rocaramux] multiplexes four 8-bit outputs to 
form a 32-bit word for fast I/O operation throuqn the HSD.

i
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4 .6  HBHOBT BOFFBBS

The block diagram of the memory buffer arranqement used 
in the convolver is shown in Fiq- (4.3). The fiqure shows the 
main memory buffers (MEM1 and HEM2), The Twiddle Factor Me­
mory (TFMEM) EPROMs, the transform of the coefficients memo­
ry (TCOFMEM), and the associated logic for the generation of 
Read/write addresses.

1. MEM 1 and MEM2 are organized in 16Kx20 bits each and 
store tne input data and the intermediate results of 
the butterfly operations.

2. TFMEM EPROMs store the indices of 128 residues of
(t>**k) for k=0,1,2,  127 corresponding to the
set of sub-moduli, 62 and 63.

3. TCOFMEM is orqanized as 16KX24 bit and stores the
128x128 indices of NTT of the given filter xernel 
corresponding to the set of sub-moduli 62 and 63.

4.6.1 Memory Hrite Address Generator
The output of the Butterfly counter is also used to

generate addresses for Read/Write operation from and to
MEM 1, MEM2 and TCOFMEM. Because of the pipelining structure
of the Butterfly unit, there is delay of pulses between 
the input and tne corresponding output. This means that out­
put of the butterfly counter must subtract 'J to qenerate 
correct memory addresses. As required by tne OICO-NTT algor­
ithm, data are always written in a block of 64x64 with a

i
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configuration [ ((0,0) , (0,64), (64,0), (64,64)}, {(0,1) ,
(0,65),(64,1),(64,65)} 1 and this configuration is ob­
tained by.......... using the signals
[I30N5—IROSfO ,ICOL5-ICOLO, IWORD1-IWORD0 1«

4.6.2 Memory Head Address Generator
The addresses of the data points participating in a 

butterfly computation depends on the block address within 
the imaqe (there are 4 blocks) and a sub-block address
within the specified blocic. The stage-decoder and the but­
terfly counter are used to control the Hemory-aadress gener­
ator. The f utem-ad-qenl multiplexes the output of tne But­
terfly Counter in sucn a way that a correct memory read 
address is generated during each stage of the NTT and the 
INTT operations.

4.6.3 Twiddle Factor/Trans, of Filter Coeff. Addr- 
Genrator

The TF/TFCOF Address generator generates three types of 
addresses:

1. TCOEMEM address required for storing tne NTT of the 
filter coefficients into TCOFMEM

2. Address required for accessinq the twiddle factors 
from tne memory durinq tne NTT and the INTT opera­
tions

3. Address required for accessing the transform of tne 
filter coefficients from TCOFMEM durinq the final 
stage of the forward NTT computation
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Due to the pipeline implementation of the Butterfly 
unit, a delay of 6 clock cycles between the output of the 
counter and the output required by the address qenerator for 
TCOFMEM must be introduced. Also, due to the the access tine 
of the TF EPROMs, the TF address must be qenerated one cycle 
ahead of tne TCOFMEM address. The transform of the coeffi­
cients is pre-shuffled and is loaded in TCOFMEM in such a 
fashion that they can be addressed sequentially for multi­
plications by the transform of the imaqe.

The OIOO-NTT alqorithm requires three different values 
of tne Twiddle factors for each butterfly operation depend­
ing on the row index .i, the column index i, and the sum 
(i+i) and the stage of tne butterfly. These indices are qen­
erated by masxinq the output of the staqe decoder and are 
then multiplexed to qenerate the correct addresses for the 
Twidule Factors.

4.6.4 Memory Address Multiplexer
while MEM 1 stores the input image, tne filtered output and 
the intermediate staqe results, MEM2 only stores the results 
from intermediate stages. The Memory-add-multiplexer selects 
the memory bufrer and the operation (Read or Write) itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87
4.6.5 Bemorv Buffer HBB1 and BBH2

The memory buffers MEM1 and MEM2 are orqanized as 
16Kx20 bits where bits (19-10) are reserved for residues 
corresspondinq to tne modulus 641 and bits (9-0) are re­
served for residues corresponding to the modulus 769. The 
Dynamic Memory Controller (DMC1) qenerates the row/column 
addresses tor MBM1 and maintains the proper timinq siqnal 
durinq read/write and refresh operations. Since only one of 
the two memories, MEM 1 or ME M2, gives the output at any 
time, the two outputs are wire Ofled to [mem-req]. The input 
data to MEM1 is written oyte oy byte throuqh the [filin-mux] 
from the HSD at the .beqininq of the convolution process. 
MEM2 is controlled oy DMC2 and the necessary addresses for 
this buffer are generated by the [mem-add-mux1-

4.6.6 Memory Buffer TCOPMBH
Tne memory ouffer TCOFMEM is orqanized as 16Kx24 bits 

and stores the indices of the residues of the NTT of the 
coefficients. The indices of each residue are computed with 
respect to sub-moduli 62 and 63 in software and combined to 
form a 24-bit word as snowu below:

The TCOFMEM is also controlled by the dynamic memory 
controller. Tae data input to this buffer is throuqh 
ftilin-mux 1 from the HSD. The output of this buffer is con­
nected to the TFCOF Register and is wire ORed with the TF 
EPROMs, since only one of the two is enabled at any time.
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residue of 7b9 | residue of 6 m
23 18|17 12|11 6 |5
index with I I index | index
respect to | index w.r.t.| w.r.t. I w.r.t. 

63 | o2 | 63 | 62
I I I

4-6.7 Twiddle Factor B PBOHs
The TF EPROMs store the indices of the powers of the 

generator for the set or moduli 641 and 769. The format for 
storinq these indices is same as that for indices in 
TCOFMEM. Tne EPROMs used are IC-2732A. The addresses 0-127 
and 128-255 store the indices correspondinq to the various 
values of 6**k and S**-K respectively.

4.7 THE BUTTERFLY OMIT
The Butterfly Unit (3U), F i q - (4.4), consists of binary 

adders/substracters (Am2517), Look-up tables (EPROMs), and 
standard 8-bit Schottxy TIL reqisters. The transform opera­
tions, correspondinq to moduli 641 and 769, are performed in 
parallel. The residue representation and tne operations of 
addition and subtraction are perxormed in 2's complement bi­
nary. Thus, a residue between fO, (pi-1)/2) has the same 
representation as binary and the values between {(pi*1)/2} 
and {(pi-1)} are represented as (2**10-Xi) where Xi is the 
residue.
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As discussed in sec-(3.2), the implementation of the 
butterfly requires the implementation of the xollowinq equa­
tions:

A(i,i) = r a(i,x)+d (i, j)+a (j.i)+a (j, j) 1 
A (i,.1) = [a (i, i) - a (i # j) +a (-j ,i) - a (j , 1) ]• (&**m) 
A(j,i)= [ a (i#i)+a(i, 1)-a (j,i)-a( j,j) ]. (S**n)
A (1# i) = [ a (i,i)-a (i, i)-a (i,i) +a (j,j) ]. {&** (m+n) }

i = 0 ,1,2,-..63; 1=64,65,___127
where m and n depend on the staqe and the loca­

tion of the butterfly beinq performed.
The butterfly operation is performed in 8 staqes and 

these can be reduced to three basic steps:
1. Pipeline staqe 1 and 2

Staqe one (reqister K11) is used to buffer the 
input to the 1st adder/subtracter and staqe two (re­
qister K 12) delays the first data by a clock pulse 
while the second data is stored in reqister R22. The 
result of acidition/substraction is computed (11-bits) 
and is stored into 3rd staqe reqisters R13 and R23.

2. Pipeline staqe 3, 4 and 5
These pipeline staqes provide buiferinq of the 

data between the 1st and 2nd adder/subtractor. Staqe 
3 and 4 store the result of the pair or additions and 
suntractions. The reqisters (R14-R44) in staqe 4 act 
as buffer and the desired output is obtained by con-
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nectinq the inputs at this staqe to two inputs of the 
2nd adder/subtractor unit. The output of these opera­
tions is obtained in staqe-5 reqister (R15) which, in 
turn, feeds staqe 6.

3. Pipeline staqe 6,7 and 8
These staqes fora the aain computation unit 

(multiplier) usinq the submodular looK up approach. 
In staqe 6, the EPBOMs perform the error correction 
and compute the index correspondinq to the sub-modu­
li 62 and 63. The data for these EPROMs have been 
qenerated usinq tne software on the SEL -32/27.These 
indices are added to the indices of either the Twid­
dle Factors or of the Transform of the coefficients 
in staqe 7 throuqh the use of Index-add-look-up ta­
bles. The output of these EPROMs is stored in reqis­
ters (R17 and R27) at staqe 7 and is fed to staqe 8 
to obtain the reconstruction throuqh the use of the 
Reconstruction/correction table. The EPROMs at these 
staqes nave been proqrammed usinq the software pro- 
qratns (ECILUT,TABLE, and REC0N1).

At the risinq edqe of the HCLKOO the BU output Decomes 
available at staqe-8 reqister (R18) which is then stored in 
either MEM1 or MEM2.
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4.7.1 Pipeline Timing
The basic timing siqnals and tne pipeline clocks are 

derived iron the system clock MCLKOO. The MCLKOO is buffered 
and tne delayed clocics are obtained as MCLK010 through 
MCLK050. These clocks are used to stobe the data into pipe­
line staqes 8,7,b, and 5. The MCLK050 is used to qenerate 4 
non-over lappinq clocks PIPCLK1,PIPCLK2 , PIPCLK3 and PIPCLK4 
havinq a period of 1200 nsec throuqh the use of a decade se­
quencer and delay units. The PIPCLK's are also used to qen­
erate two other clocks PIPCLK5 and PIPCLK5 which are used to 
select different pipeline reqisters in staqes 3 and 4, and 
also to control the 1st and 2nd adder/subtractor staqes. A 
timinq diaqram of these clocxs i s  shown in Fiq.-(4.5).

4.8 RESIDUE TO BIMABY CONVERTER
The output obtained from the nutterfly unit is in the 

RNS representation {nod 641 and mod 7b9) with each residue 
represented in 2's complement form. A Residue to Binary 
(n/B) converter, Piq-(4.6), is used to obtain the final re­
sults. It utilizes the flixed-Radix conversion method [3 1 
for R/B conversion (sec-2.7). The desiqn uses a pipeliniuq 
approach such that the final result can be transferred to 
the HSD at the maximum possiole rate (1.2 usec/32-bit word). 
The auders/ subtractors used are binary adders and the fixed 
multiplication is performed via look-up tables. The output 
of the R/B is a 16-bit number.
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The R/B converter unit is made up of 4 pipeline staqes 
and it receives input from the butterfly unit output stored 
in MEM1. The pipeline timinq pulses are qenerated from the 
delayed clock MCLKOO. The staqe 1 reqisters (R11,R21) are 
used to buffer the output of MEM1. In staqe 2, the residue 
mod o41 is substracted from the residue mod 769. The result 
is then stored in staqe 2 reqister (B12). Also an EPROM is 
used to convert the 2's comlement representation of the re­
sidue, a1, for modulus 6h1 into a positive binary represen­
tation (1b-bit). The result is stored in reqister (H22). In 
staqe 3, a look-up table is used to convert the 2's comple­
ment output of the previous staqes into a positive residue 
with respect to the modulus 769. This residue, a2, is then 
multiplied by 6h1 to qenerate a 19-bit product. The most 
siqniricant 15-bits are taken as the result (in reqister 
R13). These staqe 3 steps are combined toqether and the 
result is obtained from the EPROMs. The EPROMs are proqram— 
med usinq the software proqram RSBCN on the SEL computer- 
Also, the content of reqister R22 is transferred to the re­
qister R23 in staqe 3.

Staqe h of the S/B converter computes tne value of 
(a2*p1+a1) by addinq the output of staqe 3 via the adders. 
The addition is performed by addinq the 1b-bit output for a1 
to the 15-bit output from a2*p1. The result is then sent to 
frbcam-muxl to multiplex two consecutive 16-bit words into a 
32-bit word and is finally sent to the HSD. The final result
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is a positive numuer in the ranqe {0, 769*641/4} and a cor­
rection is applied in software to obtain the true 2's coa- 
pleaent representation.

4.9 USING THE CONVOLVER
He have described the nardware and functional details 

of tne convolver in this cnapter. This section describes the 
steps in usinq the filter. The explaination of the various 
software available is qiven in Appendix-(C) The follovinq 
steps must be carried out:

1. Desiqn a two-dimensional Finite Impulse Response 
(FIR) filter .with a relatively smaller kernel size 
than the dimensions of tne imaqe to be filtered, fit 
was mentioned in s e c - (2.2) that to avoid the wrap-a­
round error, the transform lenqth must be chosen to 
be d ^ N+L-1, where N and L are dimensions of the in­
put sequence and the filter kernel respectively. In 
the use of the convolver, which performs a 128-point 
transform, the wrap-around error can be completely 
eliminated if and only if, the sum of non-zero se­
quence lenqths at the input is less than or equal to
129. However, if the use of the convolver is intend­
ed on an imaqe of size (128x128), then it is advanta-
qeous to have a filter kernel as small as possible
(to have smaller wrap-around error). Alternatively, 
the actual imaqe must be reduced to a smaller size by
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substitutinq appropiate number of rows and columns by 
zeros.] Store these coefficients in a file. Let us 
call tnis file as COfiPP. Mote that the available 
software is written for an imaqe size of (128x128) 
and an filter size of (17x17). The software can be 
modified to include other sizes of the filter kernel.

2. Use the proqram SCLCOF to achieve a proper scalinq 
factor and multiply the coefficients with this scal­
inq factor so that the NTT of the coefficients is 
represented by 12-bits or less.

3. Use the proqram NTCOEF to find the NTT of the coeffi­
cients usinq the moduli 62 and 63 and store the out­
put in a file, say NTTCOF.

4. Use the proqram CONFIL to do the followinq:
a. Transmit the imaqe to the filter
d . Transmit tne NIT of coefficients to the filter
c. Receive the filtered imaqe after processinq

5. Use the proqram DSPSIrtG to display tue oriqinal and 
the filtered imaqe on the Aydin Graphic terminal.

We have combined all these steps in a s m q l e  Command 
File ’’FILTER" and a new user can simply type the followiuq 
on the console (when in FILTER directory) to use the convol­
ver:

TSM> FILTER IdAGE CCEFF OUTPUT <cr>
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where IMAGE is the name of the imaqe to be filtered, COEFF 
is the coefficient-file name, and OUTPUT is the output file 
name in which the filtered imaqe is stored- The processinq 
takes place as described above. The software referred above 
is available in directory ‘FILTER1 on the SEL hard-disk, and 
the hardcopy of the proqrams is available in [29].
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Chapter V
FILTERING APPLICATIONS AND FILTERING OF LARGB

MATRICES

5.1 INTRODUCTION
The filterinq of Imaqes and other inherently two-dimen­

sional siqnals is an important part of imaqe processinq and 
pattern recoqnition. In most applications, filterinq is 
used tor pre-processinq of the imaqes from which certain 
features have to be extracted. For example, by the use of a 
boundary enhancement filter, certain reqions in an imaqe can 
be isolated and the features such as area, centroid, etc. 
can be calculated for that particular reqion. Similarly, in 
the case of detection or a faulty part in an auto-assembly 
line, a template matchinq alqorithm is applied to the fil­
tered imaqe. The filterinq of the imaqes, thus, plays an 
impottant role in imaqe processinq and pattern recoqnition.

In this chapter, we illustrate the application of fil­
terinq on test imaqes. We present a simple and approximate 
frequency domain desiqninq tecnnique for Finite Impulse Res­
ponse filters. We also obtain filtered imaqes usinq the 
same filter Kernel by three different software alqorithms, 
namely, direct convolution, filterinq usinq the FFT and fil­
terinq usinq the PNTT. Next, we describe the filterinq of

- 98 -
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imaqes of dimensions larqer than the basic block size in a 
limited memory system- This block-mode filterinq alqorithm
is discussed in detail. The choice of the basic block size
affects the filterinq speed and theoretical comparisons for 
this trade-off are presented.

5.2 FILTEBIMG OSIMG TflAMS FORM TECHNIQOES
The use of transform domain techniques in diqital fil­

terinq is attractive only when a fast alqorithm is employed 
to compute tne transform. The transform must have the Cyclic 
Convolution Property (CCP). The use of transrorm technique 
for filterinq involves tne follovinq steps:

1. Takinq the transform of the qiven sequence
T: X(k1,k2) = 1 1  x(n1,n2) . {W** (n1k1+n2k2) } (5.1)

2. Takinq the transform of the qiven tilter-coeffi- 
cients, h ( n 1 , n 2 ) ------> H(k1,k2).

3. Multiplyinq the two transform domain representations 
point by point to octain

1 (k1, k2) = X (k1,k2) .U (k1,k2) (5.2)

4. Takinq the inverse transform of the result X(k1,k2) 
to obtain the filtered output
T ' : y (n1 ,n2) =-!£LX (k1,k2) . {w** (-n 1 tc 1-n2k2) } (5.3)

The sequence lenqths in above calculations must be 
larqe enouqn to avoid wrap around error (sec-2.1). We em­
ploy a filter kernel of (17x17) size on tne pre-stored imaq­
es or (128x128) and obtain the results of processinq throuqh 
the convolver.
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5.3 1 SIBPLB TBCHMIQOB TO DBSIGH 2D-FIB FILTBBS
In this section we consider a technique to desiqn sim­

ple FIR filters in the frequency domain. The desiqn assumes 
"bricK-wall'1 type filters with a cut-off based upon the re­
quirement of transmitted or reqected siqnal enerqy [17]. 
Whenever a time domain representation is required we find 
this by invertinq the frequency domain desiqn. We stress 
here that this would only qive an approximate filter kernel 
(truncated to a certain size). We choose such an appoach be­
cause the purpose in this thesis is to show the application 
of filterinq ratner than desiqn techniques.

5.3.1 determination of cut-off based ofl energy 
transmissions f 161

It is possible to compute the Enerqy content of an im— 
aqe by takinq its fourier transform, and computinq the maq- 
nitude square of tne coefficients,

E(ic1,k2) = | I(x1,k2) |**2 (5.4)
= f Re {1} ]**2 + r Im (X) 1**2 

so that the total enerqy (Parseval's theorem) would be pro­
portional to

Et = 2, ?  £ (k 1, k2) (5.5)K| Kx
Assuminq that the transform has been centered, a circle of 
radius r with oriqin at the center of the frequency square 
encloses q(X) of total enerqy, where

q(X) = 100*f ]>}£E{k1,k2)/Et1 (5.6)
K| *2.
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and the summation is taken over the values of (k1,)c2) which 
lie inside, or on the boundary of the circle.

Convecsely, if the desired amount of filtered enerqy 
(pass or stop) is specified, it is possible to determine the 
radius r which encompasses tnat amount of enerqy. This radi­
us can be used as the cut-off frequency to desiqn a stan­
dard filter. We define a standard filter such as a Butter- 
worth Hiqn Pass filter (sec-5.3.3) throuqh an explicit 
mathematical expression. The time domain representation is 
obtained by takinq the inverse Fourier transform of tne 
coefficients. This filter is truncated to a reasonable size, 
which introduces some error (Gibb's oscillation). For the 
purpose of illustratinq the use of the filter, this error is 
acceptable.

Also, in all cases described below, the filters are 
functions which affect the correspondinq real and imaqinary 
components of the Fourier transform in exactly tne same man­
ner. Such filters are referred to as Zero Phase Shift fil­
ters because they do not alter the phase of the transform.

5.3.2 Low Pass Filtering
Edges and other sharp transitions (such as noise) in 

the qrey levels of an contribute heavily to the hiqh fre­
quency content of its Fourier transform. It follows, there­
fore, that blurriuq can be achieved via the frequency domain 
Dy attenuating a specified range of hiqn-frequency compo-
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nents in the transform of a qiven imaqe (passinq the low 
frequency components). The filter coefficients can be ob­
tained by specifyrnq the cut-off and the nature of the curve 
(Fiq.5-1) to fit in one of the followinq standard filters:

1. Ideal Low Pass
'1 if D(k1,k2) ^ Do 

H{k1,k2) = J
J) if D (k 1,k.2) > Do (5-7) 

where Do is the distance from the center to 
cut-off frequency locus, D{k1,k2) is the distance 
from point (k1,k2) to the oriqin of the frequency 
plane, i.e.,

D(it1,k2) = s/{k 1**2 + k2**2)
This is a filter with sharp cut-off.

The sharp cut-off frequencies of an ideal low- 
pass filter cannot be realized with electronic compo­
nents, althouqh they can be simulated The choice 
of a small Do results in pronounced blurrinq and
rinqinq.

2. Butterworth Low Pass
1

H (k 1,k2)  ------------------------------------ (5.8)
1 + 0.U1U * fD (k1,k2)/Do 1**2n

where n is the order of the filter, and the cut-off
xs defined at (1/ 2) of the maximum value of
H(k1,k2). This is a smootn filter.
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Fig. (5.1) Radial Cross-section of Low Pass Filters
(a) Ideal 0E>) Butterworth (c) Exponential
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Fig. (.5.2) Radial Cross-Section of High Pass Filters
(a) Ideal Chi Butterworth (c) Exponential
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3. Exponential Low Pass

H(k1,k2) = exp [ - {(D (k 1 ,k2)/Do} ** n 1 (5.8a)
This is smooth falter and the n controls the rate of 
decay of the exponential function.

5.3.3 High Pass Filtering
Since edqes and other abrupt chanqes in gray levels are 

associated with hiqh-frequency components, imaqe sharpeninq 
can be achieved in the rrequency domain by a hiqh pass fil­
terinq (Fig.5-2). The method of qeneratinq the coefficients 
for a hiqh pass filter is same as in the case of low-pass 
filtering:

1. Ideal High Pass

1 ♦ 0.414 * [ Do/D (k1,k2) 1**2n
3. Exponential Hiqh Pass

H(k1,k2) = exp [- (Do/D ()c1,k2) } ** n 1 (5.10a)
where the symbols have tne same meaninq as in the last sec 
tion.

if D {x1 , k2) > Do (5.9)
2. Butferwortn Hiqh Pass

1

H (k 1, k.2) (5.10)
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5-3-4 Homo-morphic Filtering

The illumination-rerlectance model [16 1 of an imaqe can 
be made the basis foe a frequency-domain procedure that is 
useful for improving the appearance of an imaqe by simulta­
neous brightness ranqe compression and contrast enhancement. 
The illumination component of an imaqe is qenerally charac­
terized by slow spatial variations. The reflectance compo­
nent, on the other hand, tends to vary abruptly, particular­
ly at the junctions of very dissimilar objects- These 
characteristics lead to associate [17] the low frequencies 
of the Fourier transform of the alqorithm of an imaqe with 
illumination, and tî e hiqh frequencies with reflectance. 
Althouqh this is a rcuqh approximation, it can be used to 
advantaqe in imaqe enhancement.

The cross-section of the filter function for use in ho­
momorphic filtering is shown in Piq-(5.3). Tne mathematical 
characterization of the alqorithm is as follows:

1. Find the natural loqarithm of tne input imaqe
2. Compute the transform of the imaqe
3. Multiply the transform with the filter coefficients
4. Compute the inverse transform
5. Find the exponential of the result.
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Fig. (5.3) Cross-section of a circularly symmetric
filter function for use in homomorphic filtering.

Fig. (5.4) The convolver hardware unit.
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5.3.5 Examples of the I wage Filtering

The examples of Image filterinq included in this thesis 
are obtained by the application of the following filters on 
the original imaqes shown in F i g - (5.5) to Fiq-(5.8):

1. Fig - (5.9) to Fi g - (5.11) have been obtained by the use
of a Buttervorth high pass filter.

2. Fig-(5.12) nas been obtained using the filter coeffi­
cients of a high Fass filter available in the depart­
ment £ 29 1.

3. Fig-(5.13) to F i g - (5.15) show the result obtained by
applying tne same filter coefficients throuqh the use
of the convolver, the FNTT alqoritnm in software and
the FFT algorithm in soxtware.

h. Fig-(5.16) to F i g - (5.18) show the result of low-pass
filtering a y  the application of a Butterworth low
pass filter. These fiqures also include the filter­
ing obtained through the use of other algorithms in 
sof tware.

5. F i g - (5.19) shows the result obtained using a Homo­
morphic filter whose transfer function is shown in
F i g - (5.3); fi1= 1.2, H2= 0.5 .
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Fig. (5.5) Image I. Fig. (5.6) Image 2.

Fig. (5 .7 ) image 3. Fig. (5.8) Image 4

Fig. (5.5) to Fig. (5.8) Original Computer Images.
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Fig. (5.91 Fig. (5.10)
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Fig. (5.11) Fig. (5.12)

Fig. (.5.91 to Fig. (5.12) Processed Images (High Pass Filtering)
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Fig. (5.13) Fig. (5.14)

Fig. (5.13) to Fig. (5.15) Original [Right top] and Processed Images
(High Pass Filtering) through the use of the 
convolver [Left top], FNTT algorithm in software 
[Right bottom] and FFT algorithm in software 
[Left bottom].
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Fig. C5.18) Fig. (5.19)

Fig. (5.16) to Fig. (5.18) Original [Right top] and Processed Images
(Low Pass Filtering) through the use of the 
convolver [Left top], FNTT algorithm in soft­
ware [Right bottom], and FFT algorithm in 
software [Left bottom].

Fig. (5.19) Application of a filter function for use in 
homomorphic filtering as specified in 
Fig. (5.3) .
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The time of processinq of an imaqe of size (128x128) 
with a filter kernel of size (17x17) by three different 
methods (applied throuqh software) is qiven in Table- (5.1).

Table-(5.1) Approximate Computation Time *
usinq different metnods of convolution in software
for imaqe-size of (128x128), 256 levels.

| Method | Processinq Time, sec |
t direct convolution I 1500 |I
I convolution usinq 
| FFT

I 70 | 
I I

| convolution using 
I FNTT (in software) 
1 #

I 193 | 
I I ----------------------------------- ,I * I* Reported usinq SEL computer (Programming in FORTRAN-77

and excludinq File-I/O time)

5.4 FILTERING OF IMAGES OF LARGER DIMENSIONS
Next we consider the filterinq of larqer imaqes. A 

common problem in sxqnal filterinq is that of filterinq a 
siqnal of very lonq or indefinite length by an impulse res­
ponse that is of a short length. For image processing in a 
limited main memory system, such as a mini-computer, it is 
necessary to employ special techniques to improve the corapu- 
taional efficiency when the whole imaqe to oe transformed 
can not be accomodated in the main memory. A straignt for­
ward method is to store the data on a disk, find the trans-
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form of rows, transpose the result and then find the trans- 
fora of columns usinq the same computational element. Since 
the processinq is performed takinq one array at a time from 
the disk such a method is I/O bound and is very slow owinq 
to the relatively slow disk access time. A more efficient 
method is to section the input imaqe into smaller blocks 
that can be accomodated in the memory of the computational 
element and then either use the overlap-save or overlap-add 
technique. This method, referred to as block-mode filterinq 
[18], provides a very erficient means to compute two-dimen­
sional convolutions wnen the dimensions of the filter kernel 
are small. An alternate .method has recently been proposed 
by Kraats and Venetsanopculos [19 1 that is computationally 
more efficient in certain instances, specially when the fil­
ter kernel size is comparable to the oasic block of the in­
put data. Since almost all cases of two-dimensional filter­
inq employ a much smaller filter kernel (N>>L), block-mode 
filterinq is preferred.
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5.S. b l o c k -m o d e  f i l t e r i n g

The two-dimensional convolution is defined (eqn.2-1) as

j j
y(j» k) = £ ][ h(j - m  , k - n) f(m, n) (5.12)

n=0 m=0

We begin by proving a fundamental property of~two-dimensional 

transforms and convolutions.

LEMMA. Given two matrices f(m, n) and h(j, k ) , both of dimensions

D. by letr-the transforms of these matrices be X *
D 2~1 D l~1 

F(r, s) = £ ][ f(m, n) exp
n = 0 m  = 0

D 2"l Dl_1
H (r, s) = I I h (j , k) exp

k = 0 j = 0

- i 2tt [rm sn
I d T  d 7'•l 2 J

Then the inverse transform of the product of these transforms, that is
d 2 - i d x - i

y(j, k) =
°1 ° 2 s = 0 j = 0

I I H(r, s) F(r,s) exp

is equivalent to the convolution form

y (j , k) = I i M j  -ra, k - n) f(m, n) 
n=0 m=0

-D -1 D--1
+ I £ h(j + —  m, k + D 2 - n) f (m, n)

n=k+l m=j+l
(5.13)

PROOF. The proof is similar to the proof for t-o We

substitute for H(r, s) and F(r, s) in the relation defining k) an^ have
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d 2-i d x - i d 2 -i d 1 -i
y(j/k) I I I £ M p ,  1) f (m, n)q =* 0 p*--0 n = 0 m = 0

d 2- i d x - i
r V  i iU 1 2 s = 0 r = 0

exp . fr <j12TT --- - m - p) s (k - n - q ) '

(5.14)

However, the double sum on the exponential can be written as

Di-1
I

D. D1 2 r =* 0
exp i.2ir r (j - m - p)

D 2-l
I

s - 0
exp i2ir s (k - n - q)

This is a product of two finite sums. Both sums have the orthogonality 

property demonstrated by Helms [22], that is,

Dr 1
I exp 

r = 0
i27T

r (j - m -p)
if j - m - p = tD_

0 otherwise,

V 1
I exp 

s = 0
i27T s (k - h - q)

if k - n - q = tD.

otherwise.
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All the indices in the first summation above are de­

fined over [ 0 rD1-11 ; all the indices in the second summa­
tion are defined over fO,D2-1l. As a result, in the two
summations we see that t=0 or t=-1 are the only possible va­
lues of t. As a result we can use (j-m-p=0) or (i-m-p)=-D1 
to eliminate the summation on p in Eqn. (5-14); we can also 
use (k-n-q)=0 or (k-n-q) =-D2 to eliminate the summation on
q in Eqn-(5-14). Eqn- (5-13) is the result, and the theorem 
is proved.

Eqn. (5-13) shows a convolution summation with two 
terms- The first term on the riqht-hand side is the desired 
convolution in the form of Eqn. (5-12). The second term is 
the so-called wraparound-error term, the term that results 
from the inherent periodicity in the use of discrete Fourier 
transforms. The problem of convolution with discrete Fouri­
er transforms is to force tne wraparound error to be aero. 
The problem of block-mode filterinq is to decompose the con­
volution of Eqn. (5-13) into a larqe number of smaller convo­
lutions.

5.6 BLOCK-MODE FILTERING ALGORITHM
The followinq is the alqorithm for block mode filter­

inq.
1. Choose two numbers D1> J and D2> K-
2. The matrix n(i,k) is extended by the addition of rows

and columns of zeros to form a matrix hc(1,k), de­
fined as
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J. Let b(m,n) be a block that is composed of the first
D 1 rows and D2 columns of i(m,n), that is,

b{a,n) = f(m,n) for 0<a,n<D1-1,D2-1
4. Compute the transforms of size D1 by D2 of he (1,1c) 

and b(m,n). Fora the product of the transforms and 
then compute the inverse transform of the products. 
Call this inverse transform a matrix c(1,k) of size 
D 1 by D2.

5. Part of c(j,k) .contains the vrapround error. We save 
as valid data the submatrix of c(~j,k) defined by the 
ranqe of indices

"j = d* 11J |. .. ,D1— 1 .
k = K-1,K,...,D2-1. This is a subma­

trix of size D1-J+1 by D2-K+1. The rest of c(j,k) is 
discarded.

6. The procedure now splits into two alternative choices 
for the construction of the next block.

Form a new olocn b(m,n) from f(m,n) of size D1 
by D2 and such that the first J-1 rows of the new 
block are the same as the last J-1 rows of the old 
blocx. That is, cow D1-J+1 of the old block is row 
0 of the new block, row D1-J+2 of tne old block is 
row 1 of the new block, 
and so on; or,
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Form a new block b(m,n) from f (o,n) of size D1 

by D2 and such that the first K-1 columns of the new 
block are the same as the last K-1 columns of the old 
block. That is, column D2-K+1 of the old block is 
column 0 of tne new block, column D2-K+2 of the old 
block is column 1 of the new block, and so on.

7. Repeat steps 4 throuqh 6 until either one of the fol- 
lowinq conditions arises.

Row M— 1 of the picture f(m,n) is included in the 
new block. Add rows of zeros to the new block, if 
necessary, to make it of size D1 by D2 and repeat 
steps 4 throuqn o. Now discard the first D2-K+1 co­
lumns of the picture x(m,n) and redefine the column 
indices of the picture by subtractinq D2-K+1 from the 
column index n of f(m,n). This defines a new picture 
of size a by N-D2+K-1. Go back to step 3 and pro­
ceed. Or,

Column N - 1 of the picture x(m,n) as included in 
the new block. Add columns of zeros to the new 
block, if necessary, to make it of size D1 by D2 and 
repeat steps 4 throuqn b. Now discard the first 
D1-J+1 rows of the pacture f(m,n) and redefine the 
row indices of the picture by subtractinq D1-J+1 
from the row xndex m of f(m,n). This defines a new 
picture of size M-D1+J-1 by N. Go back to step 3 and 
proceed.
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8. Steps 3 throuqh 7 are repeated as directed until the

entire picture has been processed with the overlap­
ping blocks. The juxtaposition of all the submatric-
es saved in step 5, where the juxtaposition is formed 
in the same sequence as the construction of the over­
lapping blocks, constitutes the filtered picture.

5-6-1 Wrap-around Error Consideration for First Block
It the first J-1 rows and the first K-1 columns of the 

picture contain important information that must be filtered, 
then the picture must be enlarged by 'padding* so that the 
discard operations of .step 5 would not result in discarding 
information that it was desired to filter. For example, a 
new picture can be constructed by the following procedure. 
Let f (m,n) oe tne extended (or padded) picture of size 
J-1+M by K-1+N. The picture fc(m,n) is constructed as

where C is any constant. This extended picture is now used 
in the eight-step procedure above, that is, whenever f (m,n) 
is stated above, we replace it by tc (m,n). Similarly, we
would replace a and N in the eiqht steps above by rt'=J-1+M 
and N'=K-1+N, respectively.

f(m,n) J-1,K-1<m,n<J— H-M,K-1+N
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5.6.2 Humber of Blocks to be Processed
Because the blocks must be overlapped, the picture is 

not processed in blocks of size D1 by 02 • Successive 
blocks are overlapped in both rows and columns. From tne 
construction in step 6a, 6b, and 7a, 7b, we can see that the 
total subset of the picture that is processed on any one it­
eration throuqh the eiqht steps is a submatrix of size 
D 1-J + 1 by D2-K+1. Therefore, the total number of blocks to 
be processed is qiven by

a*N
f a 1  =  -------------------------------------------------------------------------------

(Dl-J+1)* (D2-K+1) (5.15)
The symbol Lai stands for the smallest inteqer qreater 

than a. We use the smallest inteqer qreater than the ex­
pression shown because a iraction of a block must be pro­
cessed as one null block by paudinq out the fractional block 
(step 7a or 7b). If we had used an extended picture, as 
discussed in the previous section, then we would replace M 
and N in Eq. (5) oy M'=D1-J+1+M and N ,=D2-K+1+N.

5-7 TIMING COMSIDERATION IN PROCESS IMG LARGER IMAGES
The number of arithmetic operations required in the

processinq of eacn block is proportional to the number of 
computation involved in the 2-D transform domain technique
of filterinq. The total time for processinq depends upon the 
number of blocks to be processed multiplied by time required
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f o r  e a c h  b l o c x - p r o c e s s i n g .  A l s o  t h e  n u m b e r  o f  o p e r a t i o n s  

r e q u i r e d  d e p e n d s  u p o n  t h e  r a d i x  o f  t h e  a l q o r i t h m  a n d  t h e  n a ­

t u r e  o f  t h e  b u t t e r f l y .

We derived relations between a 2-D-radix-2 and a
1-D-radix-2 transform alqorithm in se c - (3.8) and it was 
shown that a saving of approximately 25* occurs when the 
former implementation is used. The derivation in this sec­
tion are for a 1-D-radix-2 structure and the correction fac­
tor can be applied to obtain the computational efficiency 
with respect to other butterfly structures.

Assuminq a 1-D-radix-2 alqorithm for fast transforms, a 
sequence of D1 pornts.can.be transformed with a total of 

N (fl) = (D1/2).log D 1 multiplications
N (A) = (3. D 1/2) -loq D1 additions

where multiplications and additions are complex when the FFT 
structure is considered and are of real type when the FNTT 
structure is considered for a single modulus. Use can be 
made of the fact tnat the data are real, and thus in the use
of the FFT structure a 50 percent savinq in trme can be ob­
tained. Tne transform of an imaqe of srze D1xD2 requires,

N (d) = (D1.02/2) . {loq D1 ♦ loq D2)
N (A) = (J.D1.D2/2) . (loq D1 + loq 02}

S i n c e  t o r  c o n v o l u t i o n  r e s u l t s ,  t h e r e  a r e  t w o  t r a n s f o r m s  ( n -  

s t a q e )  a n d  o n e  p a i r w i s e  p r o d u c t  o f  m a t r i c e s  ( o f  t r a n s f o r m  o f  

c o e f f s  w i t h  i m a q e  t r a n s f o r m ) ,  t o t a l  n u m b e r  o f  c o m p u t a t i o n  

w o u l d  be

Nc ( d ) = 0 1 . 0 2 .  { l o q  01  + l o q  0 2  + 1}
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Nc (A)= 3. D 1 • D2.(loq D1 + loq D2 + 1/3}

If (t1) is the time for an addition and (t2) is the time for 
a multiplication then tne total time for processinq is, 

t (b) = Oc (d) . (t2) + Oc (A) . (t 1) 
and since there are B such blocks, the total convolution 
time is,

T (conv) = B. t (b)
= D1.D2-C (loq D 1 * loq D2+1).(t2)

+3. (loq Dl+loq D2+1/3) . {1 1) 1 
♦Intqf (M.H)/(D1-J + 1). (D2-K + 1) 1

(5.16)
This estimation only .considers the computation time. The 
time required in retchinq tne data is not taken into account 
xn this calculation.

It can be seen from the relation that it is possible to 
vary D1 and D2 such that total filterinq time may be cont­
rolled. However D1 and 0 2 must be inteqer power of 2. Final­
ly, 01 and 0 2 must De cnosen such that matrxx (D1xD2) fits 
into computer memory as a basic block. The best way to 
choose D 1 and D2 is then to evaluate Eqn. (5.1b) for various 
combinatxons and to choose (D1xD2) such that T (conv)• xs min­
imized subject to the condition tnat the data fits into some 
allowable amount of computer memory. Such a tabulation is 
presented in Table-(5.3) for (t1)= 1 usee., (t2) = 5 usee. ,

= (256 and 1024), and J=K= (17 and 25). It is observed, 
as expected, tnat the larqer the size (D1xD2), the smaller 
the time T (conv).
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Table-(5.3) Processinq Tiae by the use of 
different size of Basic Block (time in sec) 
M=N=1024, J=K=25, t1=1 usee, t2= 5 usee

I
I
1 D1

D2 I
32 64 128 256 512 1024 |

j-----------
| 32 1442 630 526 509 519 541 |
J 64 630 274 227 218 221 230 |
| 128 526 22 7 187 179 181 187 J
| 256 509 218 179 171 172 177 |
| 512 519 22 1 181 172 173 177 |
| 1024 
I

541 23 0 187 177 178 182 | 
1

Table-15.3b) Processinq Time by use of Different
size of Basic Block (time in sec)
M=N=256, J— K = 17, 1 1 = 1 usee, t2= 5 usee

1 02 I
1| D 1 32 64 123 256

----1
I

| 32 22.5 16.4 15.3 15.4 I| 64 16.4 1 1.9 1 1.0 11.0 (
| 128 15.3 11.0 10. 1 10. 1 I
| 256 15.4 
I

11.0 10. 1 10.0 I
I

5-8 COMCLOSIOH5
In tnis chapter, we have first described a simple and 

approximate method of 2-D Finite Impulse Response filter de- 
siqn. The test imaqes have been processed by four different 
methods to obtain imaqe smoothinq and imaqe enhancemnt. The 
steps in the use of block- mode filterinq alqorithm, used 
for iilterinq of larqe imaqes, have been described and the 
processinq time for typical cases have been tabulated with 
reference to different sizes of the basic processinq block.
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Chapter VI 
CONCLUSIONS

The objective of the research work described in this 
thesis was to present an elaborate explaination of the 
theory, hardware implementation, use and analysis of a two- 
dimensional diqital filter. The filter hardware utilizes a 
fast number tueoretic transform alqorithm for hiqh speed 
processinq of two-dimensional siqnals. The main area of ap­
plication of this filter is in Imaqe Processinq.

The conclusions of this study are summarised oelow:
1. Desiqn considerations of a two-dimensional convolu­

tion filter has been described.
This includes the followinq:

a) Tne theoretical background necessary to un­
derstand the arcnitecture of the convolver (topics of 
interests from the Residue Number System, the Number 
Theoretic Transform, Fast alqorithm for the NTT, 
2D-0rderea-In put- Ordered-Output NTT alqorithm for 
butterfly implementation) has been described in de­
tail.

b) The nardware implementation of the filter has 
been described. Particular attention has been paid to 
the i up le mentation of the butterfly unit.

- 124 -
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c) Tiie functional detail of each of the units in 

the convolver has been described.
d) A s y s t e m a t i c  w a y  t o  w r i t e  t h e  i n t e r f a c i n q  

s o f t w a r e  h a s  b e e n  d e s c r i b e d  t a k i n q  t h e  e x a m p l e  o f  t h e  

H i q h  S p e e d  D e v i c e  (HSD) i n t e r f a c e  t o  t h e  m i n i - c o m p u -  

t e r  SEL-32/27. A l s o ,  t h e  u s e r  h a s  o e e n  r e f e r r e d  t o

t h e  a v a i l a b l e  s o f t w a r e  t o  o b t a i n  t h e  p r o c e s s i n q

t h r o u q n  t h e  f i l t e r .

2. The steps in the use of the convolver filter has been 
described. A new user can desiqn his own 2-D FIR fil­
ter, store the coefficients in a file and can operate
this filter over any imaqe of size (128x128) pre­
stored in a file. Further all the steps in use of the 
convolver have been combined toqether so that a new 
user can use the n i t e r  throuqh a simple command in 
the format (in FILTER directory):

T3M> FILTER IMAGE COEFF OUTPUT <cr>

where IMAGE is input imaqe file, COEFF is the 
coefficient file and OUTPUT is the output file.

The software has been written and modified to 
make the convolver a user friendly device. A airecto- 
ry of the available software is included in the ap­
pendix. The use of the convolver has been illustrat­
ed throuqh various examples.
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3. Various efficiency analysis on the convolver have 

been presented. This includes the iollowinq:
( a )  1 - D - r a d i x - 2  a n d  2 - D - r a d i x - 2  b u t t e r f l i e s  h a v e  

b e e n  c o m p a r e d  i n  t e r m s  o f  t h e i r  c o m p u t a t i o n  r e q u i r e ­

m e n t s

( b )  T n e  m e m o r y  r e q u i r e m e n t  i n  m u l t i p l i c a t i o n  b y  

t h e  s u b - m o d u l a r  l o o k - u p  t a b l e  a p p r o a c h  h a s  b e e n  c a l ­

c u l a t e d .

( c )  T h e  C h i n e s e  R e m a i n d e r  T h e o r e m  a n d  t h e  M i x e d  

R a d i x  C o n v e r s i o n  m e t h o d  f o r  i m p l e m e n t a t i o n  o f  a  R e s i ­

d u e  t o  B i n a r y  C o n v e r t e r  h a v e  b e e n  c o m p a r e d  i n  t e r m s  

o f  t h e i r  h a r d w a r e  r e q u i r e m e n t s .

4.
(a )  T i m i n q  d i a q r a m s  t o  i l l u s t r a t e  t h e  w o r k i n q  o f  

t h e  n u t t e r f l y  i n  a  p i p e l i n e  i m p l e m e n t a t i o n  h a v e  b e e n  

p r e p a r e d .

(b )  T n r o u q n p u t  r a t e s  o b t a i n a b l e  b y  t h e  u s e  o f  

s e r i a l  s e q u e n t i a l  a n d  c a s c a d e  p r o c e s s i n q  ( 0 1 0 0 - a l q o r -  

i t h m )  w e r e  c o m p a r e d .  T h e  p r o c e s s i n q  s p e e d  o f  t h e  c o n ­

v o l v e r  h a s  a l s o  b e e n  c a l c u l a t e d .

( c )  T w o  d e s x q n  s c n e m e s  t o  i m p r o v e  t h e  s p e e d  o f  

f i l t e r i n q  h a v e  b e e n  p r o p o s e d .

(d )  A t a b l e  o f  m a i n  I C ' s  a n d  t h e i r  u s a g e  i n  t h e  

c o n v o l v e r  h a s  b e e n  p r e p a r e d .
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(a) A simple and approximate technique tor de­
sign of a 2-D Finite Impulse Response filter has been 
discussed.

(b) The block-mode filterinq alqorithm used for 
processinq of larqe matrixes has been described in 
detail. Theoretical comparisons are made to illus­
trate tne trade-oif between speed and the size of a 
basxc block when larqe matrixes are filtered throuqh 
the use of block-mode alqorithm.
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APPENDIX A

TWO-DIMENSIONAL o i o o -n t t  a l g o r i t h m

In [lo]'a multi-dimensional algorithm for computing a cla»» of unitary 

transforms is derived, following the development suggested m  [*•«, 1 2 ).

Since tee NTT has the same structure as the DFT, the general ‘orivation [10] 

can be applied when the'transforms are defined, in a ring 2 {Ml of integers 

modulo M for a two (or multi-) dimensional array for (n^, n^l of size N 

in each dimension.

F ^ ,  k2)
N-l N-l
I I

. y O  n2-0
f(n1# n2) a

I n.k. 
i=l 1 i

M
(A.l)

tilwhere a is the primitive N root of unity in Z(M). When the elements of 

input and output arrays f and F are arranged in a lexicographical order, 

the NTT of eqn. (A.l) can be written as

F » |t  • f|M (A. 2)

2 2 * where T is a (N x N ) matrix jperforming a Number Theoretic Transrormation

on the (N2 x 1) input vector f and yielding a (N2 x 1) output vector ?.

The transformation matrix T can be factorized into Kronecker

products of one-dimensional transformation matrix T^ D ° 1  oqn. (A.2)

could be written as

F = (tn 0  g  • f|M (A. 3)

where 0 represents the Kronecker product and T^ is of size (N x N) with

XTelements t „  = a ,
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When N 3 rn is a composite number conditions [ ] hjlB »hown

that the transformation matrix can further be express^ -is : re Met of

submatrices as,
n

TN - T T u i(r) s*> 
i=l

(A.4)

where r is the radix of factorization for T„.N
drop the super-script r to write

When radix—r is implied, we

n
rN TT S.

1=1
and then eqn. .(A.3) is expressed as

f %n
F =' IT RiI 1"! J

• f

where

R, = S. 0 S.i i i

M

(A. 5)

(A.6)

(A.7)

and r, the radix of factorization is implied.
To see what eqn. (A.6) implies, let us define [id] -i ^-^-dimensional

permutation operator 5^ as,

and %  “ 1 n-i 8 P i r r (A.SI

where I denotes the identity matrix of dimension K'and ? is the ideal shuffleK

base-r permutation matrix operating on a vector of dimension X. *n eqn. (A.*l) 
to (A.7) / ^  ^he weighting or twiddle operator spedfyir.c “ «lt;plica-

tions by the twiddle factors and is given by
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1 1 0

ui(r> = yi ” 1 n-i 0 D i ' 1 * 2. 3, .... n (*•»>

where

and

V k " qUiSl dia9(Vrk’ V  L2k -,r-!iv'

I* a dia (Of nif 2m, . . . , ^ / —i, ■,) ® ) m rx-i.

where an element t of the diagonal matrix represents the ictual 

t (r)element, a , and S is a pre-weighting r-point transform operator given by

(r) S ■ 0 TN/r r (A.1Q)

T = r

0 0 0 --------- 0

0 N/r 2 N / r --------- (r-1) N/r-

0 2n/r 4 N / r ----- ■---- 2 (r-1) N /r

0 r-1)~ 2 (r-1) |  - - (r-1) N / r

(A.11)

where an element of t or represents the matrix element, d

now si-i ■  s • q i i =• 2. 3, •••, n

S = S n

and

then for i / 1

1*1 -
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thus

~ ^ ~ ^ 3| n
when

s ' - IH/r2 0 T r 0 Jr
and, R i _ 1 = S j,_1 Q s ±-1 i = 2, 3, . .., n

- Cq± s') 9 (q± s')
= ( q ± x q ± ) ( s '  9 s ' )

6 i * *S# ® i = 2, 3, ..., n (A.13)

Rn “ 3n 0 Sa
= S 0 S (A.14)

which shows that the operator . R. 1 (i / 1) always operates over data which are1*" «1»
N/r2 words apart. In the first iteration, however, the operator R operatesn

on data which are N/r words apart.
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Appendix B
PROCEDURE TO USE AM HSD DEVICE OM SBL 

MIVI—COMPUTER

EXAMPLE: NTT-Convolver
The two-dimensional NTT-Convolution filter is inter­

faced with tne SEL-32/27 Mini-computer through a High Speed 
Data (HSD) interface. The data I/O rate through the use of 
the HSD are considerably high (1.2 usee/ 32-hit word) and 
the interfacing procedure is different than that of an 
RS-232 port.

The HSD handler is a software component which provides 
qeneral device support for user devices connected to MPX- 
based series-32 computers. The handler design is based on 
the notion that the HSD (hardware) acts as a controller. The 
HSD handler provides a software interface between MPX-32 
Tasks and the HSD. Tne I/O requests could be accepted in 
either of two formats:
a) File Control Block (FCB) Format
b) STAHTIO Format

FCB Format
The FCB interface is designed to permit a device com­

mand and/or a data transfer to be initialized as a result of 
a user reguest. An FCB is created with the address of data

- 132 -
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and the transfer count is mentioned in the FCB. EXPANDED FCB 
mast be used and such could be done usinq M.DFCBE in-built 
subroutine. A call is qiven to IOCS H.EXEC module in form of 
•Service Call (SVC)*. The handler constructs first con­
structs loqical IOCL, takes care of crossinq of map blocks 
and then converts them to physical IOCL. An example is il­
lustrated below:

Makinq an FCB Format I/O request to HSD handler

EXECUTE ASSEMBLE (in assembly lanquaqe)

BOUND 4 . FCB to start at word boundary
M.DFCBE HSDFCB,NAME,0,XARRAY,,,NUT,,DFI,,,,,,,,, HMNWT,EBN WT

LA 1,HSDFCB Load address of label in Req-1
S7C 1,X'nn' Service call number

w here
HSDFCB is the label qiven to expanded FCB
NAME is the Loqical File Code (LFC) to which I/O

is to be performed 
XABRAY is tne name or data array
NUT,...etc are the available options for NOMAIT, EREOB PROCESSING,. . e

STARTIO Format
In this format the user can create his own IOCL by me­

ans of data statements. Information can be stored into these 
IOCL * s later by separate instructions. Usinq his own IOCL, 
the user creates an FCB and uses EXECUTE CHANNEL PROGRAM 
format for this FCB. The address of IOCL is qiven as input 
in the FCB. A STARTIO nas to be issued then to request Ser­
vice Call. An illustrative example is qiven below:
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EXECUTE ASSEMBLE

IOCL GEN 8/X'A2*,8/X'30*,16/0 (1010 0010 0011 C000 00...)
GEN 32/M(DATA)
DATAD 0

BOUND 4
H.FCBEXP HFCB,NAME,IOCL,0 #,,,,,EBHOR

LA 1,HFCB Load add. of HFCB
SVC 1,X'25‘ Channel prcqram no.25 is for EXECUTE

CHANNEL PROG NAM Request of the Handler.

Tnese calls also can he made usinq FORTRAN statements 
'CALL H.IOCS,n' vnere n stands for the operation process 
number.

A Sample procedure for Data-transfer between 
SEL and Convolver

The various possible transfers are :
1. Transfer of NTT of Filter Coefficients to the Convol­

ver
2. Transfer of Imaqe data
3. Transfer of Command
4. Transfer of Filtered imaqe or Camera input from Con­

volver to SEL
We will describe the above transfer and tne handler di­

rectives. These interfacinq proqrams have been written in 
Assembly Lanquaqe.
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1-TKANSPEB OP NTT OP FILTEB COEFFICIENTS

It may be noted that the filter coefficients are multi­
plied by a proper scalinq factor and are made inteqers. Tue 
NTT of the filter coeff. is taicen and is reduced to modulo 
62 and 63 (6-bits each) and a 12-bit word for each moduli 
(total 24-bit) is sent to Coefficient Memory of the Filter 
throuqh the subroutine LDCOEF. The follovinq is the descip- 
tion where a word of 32-bit (with d-MSBs as zero) is sent to 
the convolver.

CALL LDCOEF(IDAT,I2H1,IER2,IOCM)
4

where IDAT is name of the Data-array
IEK1 is the status of the handler posted in FCB 
IER2 is the status of device posted by handler in

I0C1
IOCM is tne parameter to indicate I/O operation com­

pletion

The IOCL used for this purpose is qiven as follows:
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EXECUTE ASSEMBLE
IOCL GEN 8/x'A2',8/x'30»,16/0

GEN 32/W (DATA)
DATAD 0
GEN 8/x'02',8/x'20',16/x'4000'
GEN 32/0 
DATAD 0
GEN 8/x'A8',8/x'00‘,16/0 
GEN 32/W (DATA)
DATAD 0

v here
HSD command 'A2' means INPUT TUANSPER , DEVICE STATUS BEQUEST

and COMMAND CHAIN 
UDD command '30' means CLEAH MAIN COUNTER OF FILTER 
GEN 32/W (DATA) is to generate dummy data address 
HSD command '02' means OUTPUT TRANSFER and COMMAND CHAIN 
UDD command '20' means LOAD COEFF. INTO FILTER 
GEN 16/x'UOOO* gives data count in HEX (16K words)
HSD command 'A8‘ means INPUT TRANSFER, DEVICE STATUS REQUEST

and INTERRUPT AFTER COMPLETED PROCESSING IOC 
UDD command '00' means NOP

2-TRANSFER OF IMAGE TO THE CONVOLVER
The subroutine used for this purpose is LDIMG and is called 

as follows:
LDIMG (IDAT,IER1,IER2,IOCM) 

the parameters have same explaination as above. It may be noticed 
that the transfer of NTT of coeffs. and that Image data is very much 
the same. There are two differences, namely, the number of total 
words to be transferred is '1000' (HEX) i.e. 4K words, and UDD 
command is '10' instead of '20* to load the IMAGE in the proper 
memory location ( '20' describe a FILTER FUNCTION to load COEFFs.). 
Thus the IOCL would be:

IOCL GEN d/X'A2',8/X'30*,16/0 
GEN 32/W (DATA)
DATAD 0
GEN d/X»02',d/X'10',16/X'1000'
GEN 32/0 
DATAD 0
GEN 8/X'Ad',8/X'0 0',16/0 
GEN 32/W (DATA)
DATAD 0
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3-TRANSPER OP CON HAND AND STATUS
This is achieved throuqh the use of subroutine 

CALL CLSRT
which is used for clearinq the aain counter of the filter 
and starting the convolver processinq and for readinq the 
status of the convolver.

The IOCL posted in this case are similar in part 
as used for above two data transfer. This time there is no 
continuous data transfer, rather only the UDD command transfers

4-TRANSFER OF FILTERED IHAGE FROM THE CONVOLVER TO SEL
The subroutine used for this purpose is called as 

CALL 3TFIMG (IDAT,IER1,IER2,IOCM) 
with the parameter description as described above. The IOCL used in 

this subroutine is as follows:
EXECUTE ASSEMBLE

IOCL GEN 8/X»A2',8/X'30»,16/0
GEN 32/W (DATA)
DATAD 0
GEN 3/X' 82 ' , 8/X' 10', 16/X'200 0*
GEN 32/0 
DATAD 0
GEN d / X * A 8 8 / X ' O U * ,16/0 
GEN 3 2/W (DATA)
DATAD 0

The HSD and UDD commands are similar as in the previous cases 
with the followinq differences:

HSD command '82' means READ DATA and COMMAND CHAIN
UDD command '10' means READ FILTERED IMAGE FROM CONVOLVER
and the transfer count is '2000' (HEX) which is 8K words.
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APPENDIX - CC1

FILE
CONFIL
CONTMP
ECILUT
FILRTD

FILTSK

FLTSK1

FLRESD

GTOPRM
HXTOIN

INSBLK

LOGBOOK

NORMAL

NTFLCF
OULPWORD

SCLCOF

DIRECTORY ..........  FILTER

DESCRIPTION
Program to filter a given image using the NTT convolver.
Program for template matching using the NTT convolver.
Program for error correction and index look-up table.
Program for two dimensional convolution using number theoretic 
transform. (A simulation of the hardware.1
A separate task for NTT convolution. Can be activated by 
another task in a multi-task environment.
A sample task to activate the task for convolution using 
NTT convolver.
Program to store the input and output to the butterfly unit 
at each stage.
Program for reading data from the PROM programmer.
Program for converting hexadecimal values into integer values 
used in transfer of data from NOVA TO SEL.
Program to insert a blank in the first column. used in transfer 
of data from SEL to NOVA.
This file gives us the name and description of all the programs 
in the DIR filter.
This program normalizes the output of the convolver between 
levels 0 and 255.
Program to find the NTT of filter coeffs.
This program filters 256 * 256 image using overlap-save method 
of convolution and the NTT convolver.
To scale the given filter coeffs. so that no overflow occurs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX - (C) (Continued)

SDOPRM

XFERHXNS

XFERNS

FALFA

FMINU

FFTTMP

NTTTMP

RIDCAL

Program to send data to the PROM-Programmer.

Program for transferring HEX data from NOVA to SEL.

Program to transfer ASCII data from NOVA to SEL.

To find the cyclic group generator Alpha for a given 
modulus.

To find the multiplicative inverse of a given number with 
respect to a given modulus.

Program for template matching using fast fourier transform.

Program for template matching using number theoretic transform 
(Software).

Program for an iterative thresholding.
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APPENDIX (D)

A User Session With the Convolver

A user of the convolver is assumed to be familiar with SEL-32/27 

computer and how the programs are executed. An image of size (128 x 128) 

with 8-bit representation is assumed to be prestored in SEL computer 

in Directory "IMAGE". Based on the specific requirement, a two-dimen­

sional filter of relatively smaller kernel (say, 17 x 17 size) is 

designed and stored in a file in Directory "FILTER". Let us call the 

image file as "IMAGEA" and the coefficients file as "COEFFA".

When SEL computer is logged-on it prompts with Task System Manager 

(TSM). The user must change the directory by executing 

TSM^> DIRE = FILTER

Now the user is in "FILTER" Directory. A program named "FILTER" 

is a command processing file in this directory. If this command processing 

file is to be used to obtain the filtered image, one must issue the 

following command - TSM> FILTER IMAGEA COEFFA OUTPUTA ̂

The processing follows the following steps:

1) The filter coefficients are scaled by execution of program "SCLCOF".

The input to this program is file "COEFFA" while the output file is 

"SCOEFF".

2) The NTT of the filter coefficients is obtained by the execution 

of program "NTTCOF". The input to this program is the file 

"SCOEFF" and the output file is "NTCOEFF".
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The files "SCOEFF" and "NTCOEFF" are temporary files and are scratched 

at the end of their use. One may not need to worry about them.

3) The filtering operation is achieved by executing the program 

"CONFIL". The files "IMAGEA." will be taken as input image and 

the file "NTCOEFF" will be taken as the file containing NTT of the 

filter coefficients. The IMAGE and NTT of c o e ff ic ie n ts  are sent 

to the convolver, and at the end of processing the filtered image 

is sent back to computer where it is stored in a file named 

"OUTPUTA".

The above steps can also be executed in a serial fashion without 

the use of the command processing file "FILTER". In this case one 

must be in directory "FILTER".' This could be done by executing 

T S M >  DIRE = FILTER )

One must then create files "SCOEFF" and "NTCOEFF" by issuing the 

following command.

TSM y  CREATE SCOEFF 

TSM> CREATE NTCOEFFJ

Next the file "COEFF" is assigned as logical file Code = 1 and 

the program "SCLCOF" is executed as:

TSM> AS 1 - COEFFA ).

TSM> SCLCOF),

Now, the NTT of the coefficients is obtained by issuing the following 

command:

TSM> NTTCOF \
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The filtering is obtained by execution of program "CONFIL". The 

file having the image to be filtered and the output file are assigned 

and filtering command is issued:

T S M >  AS 1 TO @ DPI (IMAGE) IMAGEA )

TSM> AS 2 - OUTPUTA )

T S M >  CONFIL )

Note that since the image was stored in "IMAGE" directory (which

is different than the current default directory), it was necessary

to represent it by 0 DPI (IMAGE) IMAGEA where "0 DPI (IMAGE)" lets

the computer use "(IMAGE)" Directory. The file "OUTPUTA" is stored

in "FILTER" Directory. This file is the filtered output.

The f i l t e r e d  image can be displayed by issuing the

following command:

TSM >  AS 1 = OUTPUT )

TSM >  DISPIMG }

The program "DISPIMG" displays an image o f size (128x128) on the 

Aydin Color Monitor. To display the input image, which was assumed to be

"IMAGE" d ire c to ry , the following commands have to be issued:

TSM y  AS 1 TO 0DP1(IMAGE)IMAGEA )

TSM >  DISPIMG )

As described e a r l i e r ,  the f i r s t  command le ts  the computer search 

the input f i l e  in "(IMAGE)" d ire c to ry .
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