
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-1984

Image processing using a two-dimensional digital convolution Image processing using a two-dimensional digital convolution

filter. filter.

Rajendra P. Rathi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Rathi, Rajendra P., "Image processing using a two-dimensional digital convolution filter." (1984). Electronic
Theses and Dissertations. 6788.
https://scholar.uwindsor.ca/etd/6788

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6788?utm_source=scholar.uwindsor.ca%2Fetd%2F6788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE PROCESSING USING A T WO-DIMENSIONAL DIGITAL
CONVOLUTION FILTER

by

Bdjendra P. Ratni

A thesis
presented to the University of Windsor

in partial fulfillment of the
requirements toe the deqree of

Master of Applied Science
in

Department of Electrical Engineering

Windsor , Ontario, 1984
(c) Raqendra P. Rathi, 1984

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EC54774

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI Microform E C 54774
Copyright 2010 by ProQuest LLC

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A two-dimensional diqital convolution filter (re­
ferred as Convolver) employinq the Fast number theoretic
transform (FNTT) alqorithm was built in the Department as an
external peripheral to the 3BL tuini-computer for Imaqe Pro­
cessing. The purpose of this research is to analyse the de-
siqn, suqqest improvements, provide a workinq system and il­
lustrate the use of the convolver throuqh various examples.

The thesis describes the theoretical bacicqround and
the nardvare implementation or the convolver. A detailed
explaination of the design considerations has been developed
to provide an easy and complete reference for the user.
Several comparisons have been presented, as part of analy­
sis, to establish the efficiency of the techniques used in
the desiqn or tne convolver. Timinq diaqrams have been pre­
pared to facilitate the understanding of the processing of
siqnals throuqh the filter. Throuqh-put rate calculations
are included to indicate the speed of processing.

A systematic way to write the interfacing software
has teen explained. A directory of the available software,
and a table of the main Integrated Circuits used in the con­
volver is included. Software has been written to make the
convolver part of a user friendly imaqe processing system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two desiqn metnods to improve the speed o£ processing are
proposed.

- iii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dedicated to

Carl and Viola Glos

with love, honor and respect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I am deeply Indebted to Dr. W.C. Miller and Dr. G.A. Jullien for
their constant help, support and guidance throughout the course of ray
degree. I express my sincere gratitude to Dr. M. Shridhar for his valuable
advices and encouragements. I express ray sincere thanks to Dr. M. Ahmadi,
Dr. M. Sid-Ahraed, and Dr. J. J. Soltis for their constructive comments
and criticisms. I am also thankful to Mrs. S.A. Ouellette and Mrs. L.J.
Kennedy for their invaluable assistance.

I sincerely acknowledge the support provided by the American-Nepal
Education Foundation, Oregon, U.S.A. In particular I am grateful to
Dr. Hugh B. Wood, Executive Director of the Foundation, for his personal
interest in me.

I am especially grateful to Mr. Carl M. Glos and Mrs. Viola Glos
whose guidance has been a perennial source of inspiration for me in my
personal life throughout my degree at Windsor. I also thank Mr. Edwin D.
Reimer and Mrs. Elfrieda Reimer for being my wonderful friends at Windsor.
I express my sincerest thanks and gratitude to my parents for their help,
love and patience. I also wish to mention my gratefulness to Dr. K.K.
Aggarwal, my professor at Regional Engineering College, Kurukshetra, India,
who motivated me for graduate studies and research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A B S T B A C T ...ii
ACKHOULEDGENENTS .. iv

TABLE OF C O N T E N T S vi
TABLE OF F I G U B E S .. Tii
LIST OF T A B L E S ... ix
LIST OF A B B R E V I A T I O N S .. xi

Chapter . page
I. INTRODUCTION .. 1

Objective and outline of the Research work . . . 1
Thesis Organization 8

II. DIGITAL FILTERING USING FAST NUMBER THEORETIC
TRANSFORM TECHNIQUES 10

Introduction 1 0
Definition of Number Tneoretic Transform 12
Modular Arithmetic 1 J

An Example of convolution using NTT when M is
a prime 2 1

Practical Considerations in choosinq &,N and M
for an N T T 23

Design consideration tor NTT used in Convolver . 2h
cnoosinq M 2 5
choosing N and 8 2 7

ORDERED-INPUT-OSDEBED-OUTPUT-NIT alqorithm . . . 28
Residue to Binary Conversion 29

Use of MHC in obtaining the final result . . 30
conclusion 3 1

III. IMPLEMENTATION OF BUTTERFLY AND ANALYSIS ON THE
C O N V O L V E R ... 33

Introduction - 3 3
Efficient Implementation of Butterfly 3h

- xii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementing Multiplication using the sub-
modular approach 36

calculating the entries in the Look-up tables 38
memory saving by the use o£ sub-modular

approach40
furtner reduction in memory reguirements . . 43

timing consideration for the butterfly . - . . . 44
Throughput Rate Considerations (0100-algorithm) 46

serial seguential processing 4 6
Speed consideration in tne Convolver 49
Cascade Processing 5 1

three-memory structure for faster processing . . 52
usrng a complete butterfly for faster speed . . 54
A brief Comparison of FFT and FNTT butterfly

implementations 5 6
Comparison of 1-D-radix-2 and 2-D-radix-2

butterflies 5 8
Comparison of R/B conversion methods 60
Conclusion 6 2

IV. HARDWARE AMD FUNCTIONAL DETAILS OF THE CONVOLVER . 69
introduction.. 6 9
Overview of the Hardware 7 0
System Clocxs and Reset Logic 7 5
HSD/convolver interface 7 6

Line Drivers/Receivers 7 8
NTT stage/ butterfly counter 7 8

Interface control logic 7 9
LDIMG o p e r a t i o n 8 1
LDCOF o p e r a t i o n81
CL8MCNT operation 8 2
SDFILDT operation 8 2
S DC A HOT operation 8 2

MEMORY BUFFERS 84
Memory Write Address Generator 8 4
Memory Read Address Generator 8 5
Twiddle Factor/Trans, of Filter Coefr. Audr.

Genrator 8 5
Memory Address Multiplexer 8 6
Memory Butter MEM 1 and M E M 287
Memory Buffer TCOFMEM 87
Twiddle Factor EPRGMs 8 8

The Butterfly U n i t 8 8
Pipeline Timing 9 2

Residue to Binary Converter 9 2
using the convolver 95

V. FILTERING APPLICATIONS AND FILTERING OF LARGE
M A T R I C E S ... 98

Introduction 9 8
Filtering using Transform Techniques 99
A simple technique to design 2D-FIR filters . 100

- xiii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determination of cut-off based on enerqy
transmissions [1 6] 100

Low Pass F i l t e r i n q 10 1
Hiqh Pass F i l t e r i n q 104
Homo-morphic Filterinq 106
Examples of the Imaqe Filterinq 107

Filterinq or Imaqes of larqer dimensions . . . 112
Block-mode filterinq 113
Block-Mode Filterinq Alqorithm 115

Wrap-around Error Consideration for First
3 1 o c k 119

Number or Blocks to be Processed 120
Timinq Consideration in Processinq Larqer

Imaqes 120
conclusions 123

VI. C O N C L U S I O N S ...124

Appendix paoe
A. DEVELOPMENT OF 0I00-NTT ALGORITHM 128
B. PROCEDURE TO USB AN HSD DEVICE ON SEL MINI­

COMPUTER ... 132
C. DIRECTORY OF AVAILABLE SOFTWARE RELATED TO THE

C O N V O L V E R ..138

R E F E R E N C E S ... 139
VITA A U C T O R I S ... 142

- xiv -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OP FIGURES

Figure

3.1 A 2-D radix-2 Butterfly in OIOO
alqorithm

3.2 Sub-modular Index Tables

3.3 A modulo 19 ROM array multiplier
(sub-moduli 7 and d)

3.4 The Butterfly computation unit

3.5 Timing Diagram and tleqister Contents
m the Convolver butterfly

3.6 Graphical representation of 0100-alqorithm
for the case of N=d (1-0-raaix-2)

3.7 A Three Memory Buffer Structure for
Improved speed of processing

3.8 Timing Consideration in the use of Memory
Configuration snown in F i q . (3.7)

3.9 Interconnections in the use of a
"Complete1' butterfly

3. 10 Implementation of the Chinese ttemainder

- vii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem

J.11 Implementation ◦£ the nixed Radix
Conversion Method

4.1 Overview of the Convolver hardware

4.2 The Filter Interface and I/O Control
Unit

4.3 The Memory Buffer Organization

4.4 The Butterfly Computation Unit

4.5 The pipeline timing diagram

4.6 The Residue to Binary Convesion Unit

5. 1 The radial cross-section of Low Pass Filters

5.2 The radial cross-section of High Pass Filters

5. 3 A cross-section of a Homo-tnorphic Filter

5.4 to 5.20 Examples of the filterinq
through the use of the convolver
and other algorithms in software.

- viii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table

3.1 Memory Requirements by Direct and
Submodular approach of Multiplication
and the Memory Savinq Ratio (MSH)

3.2 Comparison of Time required for
convolution by different methods of
Processinq

3.3 Comparison of butterfly computational
requirement (1-D-radif-2 and
2-D-radix-2)

3.4 Comparison of CRT and Mac implementation

4.1 Main features of the convolver

4.2 Main IC's and their usaqe in tae Convolver

5.1 Approximate Computation time usinq
different methods or convolution

5.3 Processinq Time by the use of different size
of Basic block for larqer imaqes
M= N= 10 24, J=K=25, 1 1= 1 usee, t2=5 usee

5.4 Processinq time by the use of different size
- ix -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of Oasic block for larqer imaqes
M=N=256, J=K=17, t1=1 usee, t2=5 usee

- x -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS

A/0 Aualoq to Diqital
B / R Binary to Residue Conversion
CRT Chinese Remainder Theorem
FIR Finite Impulse Response
FNT Fermat Number Transform
USD Hiqn Speed Device
MEM Memory Buffer
MRC Mixed Radix Conversion Method
NTT Number Theoretic Transform
OIOO Ordered Input ordered output
R/B Residue to Binary Conversion
RNS Residue Number System
RI Rader Transform
d Generator used in definition of NTT
PL i ch prime moduli
ri i th resxdue
|. | m operation modulo H
* Siqn to represent multiplication
** Siqn to represent exponentiation

- xi -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter X
INXBODOCTIOM

1-1 OBJECTIVE AND OUTLINE OF THJ RESEARCH WORK
High speed digital filterinq of two-dimensional signals

is an essential element of contemporary research on siqnal
processinq. The application areas include imaqe processinq,
pattern recognition, digital communication and robotic vi­
sion. The pre-processinq of siqnals is also important for
images obtained from space exploration photoqraphs, radio-
qraphs, nuclear medical imaqes, and geophysical data. The
filtering, or the convolution of imaqes with a filter ker­
nel, can be achieved eitner by direct computation or indi­
rectly, by the use of a transrorm havinq the cyclic convolu­
tion property.

One of the indirect tecnniques for tne convolution is
use of the Discrete Fourier Transform (DFT). The use of DFT
ror convolution became popular when Cooley and Tukey [23 1
introduced the efficient Fast Fourier Transform (FFT) algor­
ithm to compute DFT resulting in a significant savinq in
computation and performance improvement over the direct
method. The FFT uses the cyclic property of the complex e x ­
ponential function to reduce the number of multiplications.
The speed of the FFT and therefore the maximum data-process-

- 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
ing speed still remains proportional to the (complex) multi­
plication time. Attempts were made to reduce the multipli­
cation time, for example, Liu and Peled f 25) proposed to use
a bit-slxcinq alqorithm and table look-up scheme to replace
the conventional multiplier. Also, tnere xs a definite
drawback in the use of DPT for machine implementation, that
there xs finite precxsion representation or the transcenden­
tal multiplier functxons. These approximations contribute to
the error noise in the output.

An alternative transform domain technique which has at­
tracted consideraole interest in last few years is the use
or the Number Theoretic Transform (NTT). Fermat Number
Transforms (FNT) and Rader Transforms (RT), which are spe-
cxfic NTT's have been implemented [7,1U). A very attractive
method of implementation or NTT's for convolution is, howev­
er, over the riaqs that are isomorphxc to direct sums of
Galoxs Fields £13 1. Thxs implies the use of the Residue Num­
ber System (RNS) , which itself is of particular interest in
liqital signal processinq £311 oecause of the parallel na­
ture or its arithmetic. The RNS was extensively xnvestxqated
by Szabo and Tanaka [3] in 1967 for use in the desiqn of a
qeneral purpose computer. Resxdue techniques, however, did
not receive wide-spread attention because tne xerrite core
raeraorxes used at that time were too expensive and bulky to
■justxfy their use to store the needed tables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
With the current advances in semi-conductor memory

technoloqy, the implementation of NTT's for siqnal process­
inq is a viable alternative to conventional methods I" 7 1-
Thouqh the transform domain representation of NTT sequences
nas no known practical interpretation, its implementation
for convolution is meaninqful. The only restriction to be
observed is that the data points are small enouqh (scaled)
so that the final result does not produce a data point
qreater than the rtnq modulus. Also, since the transform is
defined over a finite rinq, the results are exact. Further,
in RNS arithmetic implementation, a multiplication can be
replaced by a taole lqok-up operation, and thus the throuqh-
put rate can ue expected to be hiqh with relatively low
nardware cost. Tne number of bits used for data representa­
tion, nowever, should be small so that memories required for
look-up tables are commercially available. Jullien f 51 suq-
qested a method to implement multiplications which results
m tremendous memory savinq and reduces memory requirement
to a viable size, still usinq look-up tables.

The transform domain techniques are only attractive
when one or the fast alqorithms are employed in their compu­
tation. Fast Fourier Transform type alqoritnms can be ap­
plied to compute the NTT. The heart of sucn fast alqorithm
is a computational unit called a "Butterfly". One or multi
dimensional butterrlies have oeeu used to compute the trans­
forms £10 1. The urdered-Input-Ordered-Output (OI00) alqor-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
ithm £4] is or particular interest since it eliminates the
data pre-shufflinq. This further requires unity twiddle
factors at the last staqe of the butterrfly coaputation.
Hence, the transform of the coefficients can be multiplied
by the transform of the data points at the last staqe of
butterfly computation instead of the multiplication by tne
twiddle factors. This results in savinq in the total number
of computations.

for its practical use, any RNS arithmetic structure re­
quires Binary to Residue (B/R) and Residue to Binary (R/B)
converter units. Several hardware techniques [3] are availa­
ble ror a B/R converter. The separate need of such a B/R can
be avoided if the A/D converter used qives the binary output
which also is a residue. This can be a case when the rinq
modulus is larqer than the possible maximum value of any
data point. The tinal outputs obtained from a two or more
moduli, however, have to ne combined to obtain the result.
The Chinese Remainder Theorem (CRT) is one of tne methods
[3], but it suffers from the disadvantaqe that it needs a
mod M adder, where M is tne dynamic ranqe. The other method
is via the use of a Mixed Radix Conversion (MRC) technique.
The multiplication needed in this method can be implemented
usinq look-up tables. This method has computational advan-
taqes over the CRT wnen fewer moduli are used.

Hardware realizations are normally fixed for a specific
size of imaqe operated on by a particular alqorithm. Multi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pie use of the same piece of hardware and use of over-lap
techniques can be used ia processinq of imaqes of larqer di­
mensions £ 18 1 than that of the basic block size. Such alqor-
ithms are attractive when workinq in a limited memory sys­
tem, such as tnat of a mini-computer.

A special purpose diqital siqnal processor is a dedi­
cated piece of hardware whose function is to perform a spe­
cific set of processinq alqorithms (in real time) as a self
contained subsystem. Obviously all the siqnal procesinq al­
qorithms can be implemented on a qeneral purpose computer,
however the speed of such implementations on qeneral purpose
computers are not particularly attractive. Many industrial
needs have only one application in mind, for example, faul­
ty pact detection in an assembly line. Secondly, most qen­
eral purpose computer architectures can not normally handle
simultaneous computations. A dedicated piece of hardware,
however, is desiqned to handle a larqe number of computa­
tions, and employs a parallel processinq and pipelininq to
achieve speeds several ordecs of maqnitude faster than qen­
eral purpose computers.

This research is an extensive investiqation
into the processor architecture of a Fast 2-diaensional Di­
gital Convolution Filter using Number theoretic transform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

techniques. The processor was built by Dr.H.K.Naqpal for the
Signals and Systems qroup, Dept. of Electrical Engineering
at the University of Windsor [29 1. Although different hard­
ware structures for the realization of Fast Fourier Trans­
forms have been proposed, processinq images and other inhe­
rently two-dimensional siqnals using a Fast Number Theoretic
Transform (FNTT) with a two-dimensional butterfly structure
is a relatively recent method. The various components which
make up the complete processor are examined in this thesis.

In the realization of digital systems usinq special
purpose hardware, the concepts of parallelism, multiplexing,
and pipeling are ox great importance in achieving a maximum
value of performance-cost ratio for the particular applica­
tion being considered. The theoretical considerations use­
ful with respect to 'speed and cost trade-offs' are reviewed
in this work.

The memory architecture needed for implementation of
two-dimensional Ordered-Input-Ordered-Output NTT algoritnm
is investigated in lignt of the speed/cost trade-off. The
implementation of such a butterrly is descriDed in detail.
The use of table look-up lor mathematical operations, in
particular multiplication, by a sub-modular approach, is in-
ves tiqated.

Several desiqu aspects used in implementation of the
processor are compared to establish the efficiency of the
convolver. For example, computation saving by the use of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two-dimensional butterfly is compared with that of one-di­
mensional butterfly. Several other comparisons are made to
support the architecture used in tne convolver. For ins­
tance, the use of the Mixed Radix Conversion method is just­
ified compared to the Chinese Remainder Theorem in the im­
plementation of Residue to Binary converter. The
implementation of multiplication ny sub-modular look-up ta­
ble and by the use or direct ROM multipliers is compared.

Timinq considerations are made for serial sequential
procesinq (used in the convolver) and cascade processinq,
and speed/cost (efficiency) consideration for these methods
are investiqated £oj; video-rate processinq speed. Two
structures, namely, a three-memory buffer structure and use
of a 'complete' butterfly structure, have been proposed to
improve the processinq speed. The timinq diaqrams with re­
spect to reqister contents in the butterfly of the convolver
are presented.

Several examples or imaqe filterinq are presented to
illustrate tne application of the processor. The examples
are taken from well defined imaqes. k simple and approximate
method to obtain the coefficients of a two— aimesnsional fi­
nite impulse response filter is described. Several standard
filters are used tor Imaqe Smoothemnq, Imaqe Enhancement
and other feature extraction on imaqes. The results ob­
tained from three different methods in software, namely di­
rect use of convolution, usinq the FFT and usinq the FNTT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
The use of block-mode filterinq is investiqated in fil­

terinq of very larqe sequences, in a limited main-memory
system. The choice of the basic-block size is a trade-off
with speed. Theoretical comparisons for this trade-off are
presented.

1.2 XHESIS o r g a n i z a t i o n

Chapter-2 provides the theoretical backqround on the
application of Fast Number Theoretic Transform techniques in
diqital filterinq of tvo dimensional sequences. It details
the modular arithmetic, alqebraic constraints to be observed
in the use of the NTT and the restrictions imposed from
practical point of view. Further it describes the concepts
of the 2-diraensional OIOO-NTT alqorithm, and the method of
Mired Radix conversion used in the residue to binary conver­
sion. Tne desiqn considerations used in the convolver are
detailed in this chapter.

The implementation of the transform computational ele­
ment, the nutterfly, and the multiplication in the butterfly
usinq the sub-modular approach, are described in Chapter-3.
A number of comparisons vita respect to speed, cost and me­
mory storaqe are included in this part to describe the per­
formance of tne processor. Various timinq diaqrams are also
included in tnis part.

Chapter-4 deals with the hardware and the functional
details of the imaqe processor. In particular, both the me­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mory architecture and tne butterfly operation are described.
The Hiqh Speed Device (HSD) interface of the Pilter with the
mini-computer SEL and the control loqic are examined. The
discussion on the software of the HSD is included in the ap­
pendix. The steps for the use of the convolver are described
in this chapter.

In the next part, Chapter-5, we detail the results of
filterinq by the use of several standard filters on test ia-
aqes. The applications in mind were Imaqe Smootheninq and
Edqe Enhancement. This final part considers the processinq
of larqe arrays (larqer than can be processed in one block)
uy block-mode filterinq. The time of processinq, which de­
pends on block size has been compared. Chapter-6 presents
the conclusions of this research work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter II
DIGITAL FILTERING USING FAST NUMBER THEORETIC

TRANSFORM TECHNIQUES

2,1 INTRODUCTION
In digital imaqe processing, as well as in other areas,

it is desirable to filter a two-dimensional discrete signal
x(i#1) by convolving that signal with the two-dimensional
digital pulse response of applied filter h(i,j) producing an
output signal y(i,j).The two-dimensional convolution is de­
fined as

y (i,i) = x * n
= £ X x(k,l) .h(i-k,j-l) (2-1)

K90
i# 1= 0,1,....... M-1

where the sequences x, h and y are assumed to have
square shape of dimension (NxN) , (LxL) and (iixa) respective­
ly, M ^ N+L-1.

Processing signals with a digital computer or with spe­
cial purpose digital hardware involves the implementation of
computational schemes on sequences of numbers. For example,
Eqn.{2.1) can be implemented hy actually takinq the sum of
products as defined or by indirect methods. The indirect
method consists of talcing the transforms of sequences x and

- 10 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

h, multiplying the tvo transforms and taking an inverse
transform of the product. The indirect methods are attrac­
tive, because vith viable restrictions on the lenqth of se­
quences, computationally efficient algorithms can be devel­
oped which have advantaqes over direct methods in terms of
speed and thus the cost of filtering. The most common tech­
nique to reduce the computational cost of convolution is by
the use of the Discrete Fourier Transform computed via use
of Fast Fourier Transform (FFT) alqorithm.

It is interesting to note that the FFT has been used to
compute convolutions and many hardware structures have been
implemented [4,24] wifh sliqht variations to the basic al­
qorithm suggested by Cooley and Tuckey [231. Each structure
looks at the hardware/speed trade-off associated with both
the computational elements and the supporting structure.
However, this procedure is time-consuming on mini-computers
even with multiplication nardware installed, due to the
larqe numoer of complex multiplications required. Further
there is considerable build-up of round-off error because of
the finite precision in representinq real numbers on dxqital
computers. Filter designs usinq ROM oriented HNS arithmetic
units [11] and implementation of the FFT vitn the use of Re­
sidue Number System [311 have been suqgested for improved
efficiency, since for convolution we are only interested in
the Cyclic Convolution Property (CCP) of the transform, it
is natural that alternatives to complex multiplications in­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
volved in FFT twiddle factors have been investigated. Humber
Theoretic Transforms (NTT), which are defined as part of
Generalized Discrete Fourier Transforms (GDFT) , use integer
twiddle factors and have gained considerable interest for
several years as a class of signal processing algorithms.
The hardware of the Image convolver uses Humber Theoretic
Transform for employing the indirect method of filtering.

2.2 DEFINITION OF MIJHBBB TBBQBBTIC IBABSFQBH
Number Theoretic Transforms are defined as part of a

class of Generalized Discerete Fourier Transforms and are
computed over finite fields [13],

*k
r nk) x en M

-nk (2.2)
M

where N is the sequence length and M represents the modulus
of the field arithmetic; the generator 5 is an Nth root of
unity (S**N= 1; S**N1j^1 mod M for 1£NKN) and N exists. It
has been suggested that NTT*s be implemented in rings which
are isomorphic to a direct sum of Galois fields:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13
where the pi are prises and r represents the deqree of the
extension fields. The results of the operation can be recov­
ered by either usinq the Chinese Remainder Theorem or a mix­
ed radix conversion [3 1 alqoritnm. This amounts to imple-
mentinq the NTT usinq the Residue Number System (RNS) and
the inherent parallelism of RNS implementation can be made
to advantaqe to obtain faster speed of processinq. We
rirst discuss some of the basic concepts of RNS from number
theory relevant to the NTT in the next section.

2.3 MODULAR ARITHMETIC

DEFINITION-2.1: Two inteqers a and b are said to be conqr-
uent mod a if

a = b + k.H (2.4)
where k is some inteqer and H is the modulus. The b is resi­
due of a mod M when

0 < b < a
and is written as

a = b (mod i1)
DEFINITION-2.2: All inteqers are conqruent mod M to some

inteqer in the finite set (0,1,2,.......#M-1) and let the set
of elements be combined by two different operations '+ 1 and

both mod a . Then tnis set is called the rinq of inteq­
ers mod H and is denoted by 2m. Sucn a rinq is a commutative
rinq with identity [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14
DEFINITIOH-2.3: If in d cinq of inteqers multiplicative

inverses exist for all nonzero inteqers, this rinq is known
as a Field . It can he shown that Zm is a field if and only
if a is a prime. The set of all invertible elements of a
rinq is a qroup with respect to the operation of multiplica­
tion and is called a "multiplicative qroup".

The followinq basic arithmetic operations are defined
in modular arithmetic.

1. Addition: Example, 7+12=2 (mod 17)
2. Neqation: Example, -7=10 (mod 17)
3. Subtraction: Example, 7-12=7+(-12)=7 + 5=12 (mod 17)
4. Multiplication; Example, 7x12=16 (mod 17)
5. Multiplicative Inverse: Multiplicative Inverse of an

inteqer b rn Zm exists if and only if b and W are re­
latively prime. In tnat case b is an inteqer such
that bxb' -1 (mod M). It oay be however noted that
when M is a non-prime inteqer, not ail members of the
set nave multiplicative inverses.

-iExample: 7 =5 (mod 17)
for 7xb-1 (mod 17)

3 1 =5 (mod 14) as 3x5 = 15=1 (mod 14)
but 2 1 (mod 14) does not exist.

6. Divison: x/y exists if and only if y has an inverse
and x/y is contained in the rinq. In that case x/y
= x. y~*.

Example: 12/6=12x3=2 (mod 17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
DEFINITION-2.4: It pi is a prime, the elements
fO, 1, 2,.. - - pi-1) form a field with addition and multiplica­
tion modulo pi. In any finite field the number of elements
must be a power of a prime (pi**ri), where ri is a positive
inteqer and an element (primitive root) must exist, powers
of which can qenerate all the non-zero elements of the
field. Such a n e l d is commonly denoted by the symbol
GF(pi**ri) and is called a Galois Field r 9].
DEFINITION-2.5: The Residue representation of an inteqer in

the BNS takes the rorm of an L-tuple
X = (x 1 ,x2,..... . xl)

of the least positive residues with respect to the set of
moduli

(m1,m2,-......ml)
Tne ranqe of numbers which can be uniquely coded in RNS are

L
0 s< X < rr mi = N

A siqned inteqer system can be developed attachinq a posi­
tive siqn to numbers in the ranqe (0,1, N/2-1) for H

even or {0,1,.... (N- 1)/2} for d odd, and a neqative siqn to
the number in the ranqe (d/2,M/2+1,... N-1} or
{(M+1)/2,......M-1} respectively. The operations in RNS can
be carried independently for eacu of the moduli. The correct
answers would be obtained reqardless of intermediate over­
flows of an arithmetic computation if tne result is witnin
the ranqe of the numoer system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
As mentioned in introduction, for the existence of

transforms with the DPT structure given in Sqn. (2-2) and
having the Cyclic Convolution Property (CCP), it is neces­
sary that an integer exist that is an Nth root of unity. He
will consider this problem usinq modular arithmetic.

First Euler's function a) {M) is defined as the number of
inteqers in 2m taat are relatively prime to ti. Obviously
then for M a prime number <D(H)=M-1. If M is a composite num­
ber and its prime factored form is denoted by

r1 r2 rl
tl=(p1) • (P2) (pi)

. i
K

then the qeneral expression for i is [9 1

u) (M) =d (1-1/ p D . (1-1/p2)----(1- 1/pl) .
= fl (pi-1) (2.5)

tM
IHEOaEN-2.1: Euler's theorem states that for every S prime

to M

(M)
6 =1 (mod M)

For M prime this reduces to Fermat's theorem.
THEOQEM-2.2: Fermat's theorem states that for M a prime

number,

(M-U
6 =1 (mod :i)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17
which holds for all nonzero elements of Zm since they are
all relatively prime to H if M is a prime.

There are certain roots of unity that are of particular
interest.If N is the least positive inteqer such that

N N 1
& =1 (mod N) ; 3 £1 (mod d); 1 ̂ N 1 < N (2.7)

then o is said to oe a root of unity of order N, or & is a
primitive Nth root of unity.

It the order of & is equal to u»(M) , then & is called a
primitive root. If M is a prime and 8 is a primitive root,
tne set of inteqers

k
X = {& (mod a) , k = 0 , 1 , 2 , . . . , a - 2] (2 . 8)

is the total set or nonzero elements in Zm, and all nonzero
elements in Zm can i»e qenerated by powers of the primitive
root.Tnis, thus cnaracterizes the entire field. The nonzero
classes of Zm form a cyclic multiplicative qroup of order
M-1 {1,2, a-1) , with multiplication modulo M, isomorphic
to the audition qroup {0,1,..... H-2) wrth addxtion modulo
a - 1 .

Euler's theorem implies that if & is of order N then N
must dxvide tf(M), denoted by N|u)(M). If a is a prime it can
be shown that roots of order N exist if and only if N| (M-1)
and the roots are qiven ny

(M-1) /N
&=&o (2.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
where So denotes a primitive root, More generally if & is a
root of order N then

&**k is of order N/k if k|H
&***. is of order N if N and k are

relatively prime.
This implies that the number of roots of order N is

qiven by d)(N) and, therefore, the number of primitive roots
is d>(d(M)). These relations allow one to calculate all of
the coots of all possible orders from one primitive root.

Example:
Let d=7, Zm={0,1,2,3,4,5,6:• +
j>(U=1 i) (2) = 1 <h (3) =2
0)(4)=2 a) (5) =4 cfi(6)=2
1) (7) =6

Consider raising eacn element of Z7 to powers from 1 to 6
(mod 7) , Tab- (2. 1) .

T a ble-(2.1)

0 1 2 3 4 6 6
1 I 1 1 1 1 1 1 1
2 I 1 2 4 1 2 4 1
3 1 1 3 2 6 4 5 1
4 I 1 4 2 1 4 2 1
5 I 1 5 4 6 2 3 1
6 I 1 6 1 6 1 6 1

This illustrates several very interesting features. Consider
the various roots of order N, Tab- (2. 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
Table-(2.2) Boots of order N

N roots of order N
1 1
2 6
3 2,4
6 3,5

Only those N that divide <i (tf) - S (7) =6 have roots that belonq
to them. Tne nurnoer of roots is qiven by a) (N) and the num­
ber of primitive roots is 3(td{tt))=2 and they are 3 and 5.
Note that both of the primitive roots qenerate all the non­
zero elements.

o> (H) - 1

For a nonprime M, 6 nas an inverse qiven by & if 5 and
H are relatively prime. It can be noted tnat for N a compo­
site rather than a prime number, Zm is not a field since all
elements will not have inverses. There is no primitive root
that will qenerate the entire rinq, only subsets with i(i!)
elements. Let a nave tne followinq unique prime factoriza­
tion.

r 1 r2 rl
d = IP 1) - (p2) (pi)

Hhen the arithmetic has to be performed mod M, it can
be performed modulo eacn prime power (pi)**ri separately £9 1
and the final result mod a can be obtained usinq the Chinese
Bemainder theorem £ 3 1. When the arithmetic mod (pi**ri) is
performed in rinite fields, then every field with N ele­
ments is isomorphic to every other field with N elements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
Now we return to the discussion on the desiqn of the

NTT processor. He notice the follovinq requirements for the
CCP to exist and the NTT to be defined over the finite
field.
THEOREM-2.3: A lenqth N transform having the DFT structure
will implement cyclic convolution if and only if there ex­
ists an inverse of N and an element S, a root of unity of
order N, i.e.,N is the least positive inteqer such that

&**N =1
This is a very qenecal result applyinq to both rinqs

and rields that are finite or infinite and it has been de­
veloped from a variety of points of view [25 1. For M a com­
posite number as represented in Eqn. (2-5) , we can obtain the
results of opeation mod rt by combininq the results obtained
from the operation mcdulo each (pi**ri).

Therefore, the lenqth N number theoretic transform hav­
ing the CCP in Zm must also have the CCP in 2fpi**ri} for
i=1,2,....l. Tnis requires that & (mod pi**ri) be an inteqer
of order N and must exist in Z (pi**ri), i.e.,N is the least
positive inteqer such that

&**N =1 (mod pi**ri), i=1,2,....l.
Furthermore, since the inverse transform requires N ; the
inverse of N should exist in Z {pi**ri}, or, N should be re­
latively prime to M. Now we fiad that by Euler*s theorem

N| a) (pi**ri) , i=1,2,...... 1.
ri-1 ri-1

or N|pi (pi-1) because <3 (pi**ri) = pi (pi-1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21
Since N is relatively prime to a (or its factors)

N| (pi-1) i=1,2,...... 1.
N|q cd(p1-1,p2— 1,pl-1)

We define 0(M) as the greatest common divisor (qcd) of the

(Pi-D
0 (H) =qcd (p1-1,p2-1,....pl-1)

therefore, N|0(M)
This qives us
THEOREM-2.4: A lenqth N transform having the DPT structure

will implement cyclic convolution mod M if and only if
NIO (M)

and this establisnes the maximum transform lenqth in Zm as
Nmax=0 (M)

This is a very important theorem that states exactly what
the possible transform lenqths for a qiven modulus are.

2.3.1 Afl Example of convolution using NTT when M is a
prime

Consider two sequences
x= (2,-2, 1,0)
h — (1,2,0,0)

whose convolution is desired. From overflow consideration,
it is sufficient ir we define the transforms over GF(17)

tt= 1 7 N=4
Now since M=17, the inteqer 2 is of order 8
therefore [2 * * 2)= 4 is an o of order 4.

The transformation matrix T is qiven by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

or,

1 1 1 1
1 4 4**2 4**3

T = 1 4**2 4**4 4**6
1 4**3 4**6 4**9

~1 1 1 1
1 4 16 13

T = 1 1b 1 1b (mod 17)
1 13 16 4

=-4 (mod 17) = 13 (mod 17) and
Transformation Hatrix is

1 1 1 1
1 13 16 4

= 13 1 16 1 16
1 . 4 16 13

The Transforms of x and h are qiven by

1 1 1 1 2
1 4 16 13 15= 1 16 1 16 1

1 13 16 4 0

= t 19 10, 3, 9 1 (mod 17]

similarly H = [3,9,16,101
and thus Y = X.H

= T 3,5,12,5 1 (mod 17)
Takinq the inverse transform of y,

y = (2,2,14,2) (mod 17)

inverse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23
According to our assumption, integers are supposed to lie
between -8 and 8- Therefore

y = (2,2,-1,2)
which is the correct answer.

2.4 PRACTICAL CONSIDERATIONS IN CHOOSING &,N AND M FOB AN
NTT

Although the class of all possible number theoretic
transforms seems very large at first consideration (in fact,
infinite), closer examination shows that very few seem to be
attractive for use in signal processing. Agarwal and Burrus
f 6] summerise the criteria which would make a particular NTT
to be attractive in comparison to other implementations of
convolution. They list that for NTT to ne computationally
efficient three reguirements are:

1. (a) N should be highly composite (preferably a power
of 2) for a fast tFT-type algorithm to exist and
(b) N snould be large enough for practical seguence

lenths
2. since complex multiplications take most of the compu­

tation time in calculating the FFT, it is important
that multiplication by powers of S be a simple opera­
tion. For machine implementation, this is possible
if the powers of & have binary representations with
very few bits; preferably also a power of two, where
multiplication oy a power & reduces to a word shift.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. In order to facilitate arithmetic mod ii for machine
implementations, H should have a binary representa­
tion with a very few bits and should be large enouqh
to prevent overflow.

Unfortunately the conditions given by above theorems in
s e c - (2.3) do not qive a systematic way of determining the
"best" cnoices. Usually M nas to be selected first and N
and & are determined suitably. When the modulus fl is chosen
to be a Fermat Number as

t
2

M = Ft =2 + 1 (2. 10)
b

= 2 + 1 , b=2**t

then a promisinq class of NTT's can be obtained £8]. Such
transforms are called Fermat Number Transform (FNT)- A spe­
cial class of such transform is when the value of S is cho­
sen t>=SQHI (2.) . These transforms are described by Bader and
are known as Rader Transforms £9],

2.5 DESIGN CONSIDERATION FOR NTJ USED IB CONVOLVER
As we mentioned in section-(2-h) , it is usually but not

always the case that a value of M is chosen first and suita­
ble transform lenqth N and the generator & is determined. We
will follow the same approacn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25
2-5-1 choosing 3

In the rinq of inteqers mod M, conventional inteqers
can be unarabiquously represented only if their absolute va­
lue is less than M/2. If the input inteqer sequences x (n)
and h (n) are so scaled that |y(n) J never exceeds M/2, ve
would qet the same results by implementing convolution in
the rinq of inteqers modulo H as that obtained with normal
arithmetic. In most diqital filterinq applications, h(n)
represents the impulse response and is known a priori; also
the maximum maqnitude of the input siqnal is usually known.
In this case, we can bound the peak output maqnitude f7] by

|y(n) I . ^ U(n) |max * ”2 |h(n) |
Uto

One possible solution to this overflow problem involves
seqmentinq the words into shorter blocks and convolvinq them
separately [8 1. Another approach to solvinq the sequence
lenqth vs word lenqth constrain is to use block processinq
where the sequence of lenqth N is broken into smaller blocks
and the results are combined. However a better alternative
to this problem can be arqued when hardware implementation
of diqital filters usinq the FNTT is desired. The method
works as follows:

The convolution is implemented modulo two different
primes p1 and p2 where p1 ana p2 are chosen such that cyclic
convolution in Zp1 and Zp2 is easily implemented on the same
machine. By exploiting the inherent parallelism of RNS ar-
ithmatic, the processinq mcdulo p1 and p2 can be performed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

in parallel and the results combined to qive the correct and
exact solution by use ot either the Chinese Remainder Theo­
rem or a Mixed Radix Conversion method .

In our implementation this latter technique has been
employed; the value or pi and p2 nave chosen to be 6h1 and
769 which are prime numbers. The operations with respect to
prime moduli are qenecally represented by pi and we will
follow the same convention. The prime moduli chosen are of
the form pi=Mi=q.2**p +1, where (2**p) =128. These numbers are
chosen for several reasons. First, both the numbers, 6<+1 and
769, support 128 point transforms and are the larqest two
primes (><; 10-bits) , tnat support this transform lenqth.
Secondly, the desiqn or the Convolver was aimed for Iraaqe
processinq where 128 or 256 levels are sufficient for iraaqe
representation. Tnus the input data array will have no num­
ber qreater than 255 and hence the residues with respect to
mod pi is same as the data itself. This will save us the
hardware cost in the sense that a binary to residue convert­
er can be avoided. Further since,

M= J"[pi i=1,2,....l
t

in our case we ootain N=6h1x769 < 2**19 (19-bits). Also by
simulation results operated over several imaqes usinq the
Fast Number Theoretic Transform, it was found that the con­
volution result never exceeded a 17-bit binary representa­
tion. In a sense, we have thus provided a 'cushion1 of
2-bits which is reasonably sufficient. Also, it was essen­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
tial from the point of view of Euler's Tneorem (sec-2.2)
that Nmax = 0 (M) = qcd {p1-1,p2-1,-....,pi-1} and since the
sequence lenqth was decided as N= 128 for 2-D processinq of
(128x128) imaqes, the choice of p1=6h1 and p2=769 was most
suitable for hardware implementation.

2.5-2 choosing N an£ S
For the implementation of NTT's for diqital image pro­

cessinq, it is essential that an FFT-type alqorithm be uti­
lized to compute the NTT of sequences in order to achieve
the best speed/cost ratio. This requirement implies that
the sequence lenqth N should be a hiqhly composite number,
preferably a power of two. Gonqalez [16] descibes that for
almost all imaqe processinq applications images represented
by dimensions in the ranqe (128x128) to (5 12x512) are suffi­
cient when 8-bit representation is used for each data-point
(qray level) . Tnus the choice is limited to have N= 128,
25o or 512. Now since the prime moduli 6h1 and 7b9 support
a 126-point transform, tne sequence lenqth was chosen to be
128. The hardware cost was another factor in decidinq the
size of the basic block to be (128x128). Further this com­
plies with the requirement of Euler's Theorem.

Once the value of d and N have been fixed the value of
& is determined by findinq an Nth root of unity in each
field as described previously. The main restriction on the
parameters is the value of N so that a FNTT can be utilized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
The other parameters are chosen based on N. Since the imple­
mentation of multiplication is through the use of look-up
tables, the restriction on Si is an alqebraic rather than
hardware related.

2.6 ORDBBED-INPgT-OBDERED—OUTPUT-HTT ALGORITHM
The traditional FFT-type algorithms require pre-shuf-

flinq or post-ordering of the data which results in a re­
duced througnput rate and increased hardware cost. Osinq a
hardware implementation, various structures have been sug­
gested [1 "] where pre-shu± £1 inq is performed at the host-com-
puter or by providing.additional logic circuitry. The con­
volver, however, uses an Ordered-Input-Ordered-Output (0100)
algorithm for implementing the FNTT. The algorithm was pro­
posed by Corintnios [bl and was originally described for a
1D-radix-2-FFT employing use of seria1-sequencial pipelining
usinq a single Butterfly Unit (BU). In our implementation,
the original idea was extended and modified f10]. For exam­
ple, we utilize a 2D-radix-2 Butterfly for the FNTT and the
operations are performed in parallel for the two moduli.
The development of the two-dimensional 0I00-NXT algorithm is
outlined in Appendix- (A).

It is seen from the Eqn. (A-6) that the computation of
the NTT of the vector 1 can be divided into n-staqes where
each staqe performs the operations specified by the opera­
tors YiR.c . The operators of any stage operates on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

output of the previous staqe and the operator of the
first stage operate on the vector f. since the two-dimen­
sional operators and of a staqe have been defined as
the Kronecker product of the 1-d operators, p , q , s±
, the output of a staqe can be computed by sequential appli­
cation of the opeators along each dimension of the input to
the staqe. Thus a staqe consists of the sequential applica­
tion of an r-point NTT, permutation and twiddle factor mul­
tiplication operations to the points in each dimension of
the two-dimensional representation of the input to the
staqe. An analysis of memory orqanization and savinq in
computation is qiven in the next chapter (sec-3.5).

2.7 RESIDUE TO BINARY CONVERSION
The use of an NTT computed over several Galois fields

allows us to use Residue Number System concepts. The input
data is converted to the correspondinq residues before com­
putation with tne NTT processor. By the use of a siqned re­
presentation, numbers in the ranqe {-p/2, p/2-1} can be uni­
quely coded. A combinatorial loqic circuit for such
conversion is qiven in {3 1. However, the input array can be
suitably scaled so that numbers are in the ranqe 0 and 255
(8-bit). Since the moduli are larqer than the maximum possi­
ble value in the input data, the residues of the sequence is
the sequence itself. Thus we avoid the need of a binary to
residue converter unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
The siqnals ootained after processinq are the residues

too, and have to be converted to their correct binary repre­
sentation. This is done by either the Chinese Remainder
Theorem or by the use of a Mixed Radix conversion Method.
For the reasons descrioed in s e c - (3.9) it was preferred to
use the Mixed Radix Conversion (MRC) to obtain the final re­
sult from the residues.

2.7.1 Use of MRC in obtaining the final result
The mixed-radix system is a veiqhted number system whe­

re a number x is represented as <an,.....,a2,a1> where
n - l

x = an T1 Rif....... + a3.R2.a1 + a2.R 1 *a 1i.= I
where the ui's are the radices and ai's are the mixed radix

*
diqits ai<Ri. Numbers in the ranqe £ 0 , T T Ri-1] can be

Lit

represented by this manner. By c n o o s m q the radices to be
the moduli (pi=ai) when pi are prime numbers,

n-1
x = an fl pi + +a3.p2p 1 + a2.p 1 + a 1 (2-25)£ = l

which is also equivalently represented by
x = <rn,.......r2,r1>

= residue of x w.r.t. different moduli
The ai‘s can be determined sequentailly in the followinq
manner, startinq with a1, since

a1 = x (mod pi) =residue of x w.r.t. p1 =r1
a2 = ((x-a1)/p1) (mod p2) = | £ x/p 1] 1 (mod p2)
a3 = ((x-a1-a2.p1)/p1.p2) (mod p3)

= I f x/p 1. p2] | (mod p3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
ai = |[x/p1.p2....pi-11| (mod pi)

Once the mixed diqits are known, then by application of
Eqn-(2.25) the value of x can be determined.

Example: Let p1=13 p2=17
then p1 (mod p2)= 4
if the qiven x= <r1,r2> = <8,9>

then x would be obtained as follows:
Moduli 13 17
x=<r1,r2> 8 9 a1=8
x-a1 0 1
f (x-a 1) /p 1)
mod p2 4 a2=4

nence
x = a2.p1+a1

= 4 . 1 3 + 8
= 60
which is the correct result.

The method of Mixed-radix conversion thus can be uti­
lized to find the binary representation by performinq opera­
tions in a serial pipeline fashion and is advantaqeous over
the Chinese Remainder Method of conversion in our case.

2.8 COMCLUSION
In this introductory chapter, we have presented the

theoretical backqround necessary to understand the processor
architecture used in the convolver. The modular arithmetic
necessary to develop tne concepts for use in the implementa­
tion of Fast Number Theoretic Transforms for diqital filter-
inq nas been discussed. The theoretical and practical con­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

siderations to choose an NTT are outlined. The
Ordered-Input- Ordered-output (0100) alqorithra has been con­
sidered. Finally the use of a Mixed Radix Conversion method
for Residue to Binary conversion is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter III
IMPLEMENTATION OF BUTTERFLY AND ANALYSIS ON THE

CONVOLVER

3. 1 INTRODUCTION
In the previous chapter we developed the theoretical

backqround necessary tor implementation of Fast Number
Theoretic Transform techniques to use them in diqital fil-
terinq of two-dimensaonal sequences. In particular, an
0100-NTT alqorithm wgs considered for the 2-D-radix-2 but­
terfly structure.

This chapter has two parts. The tirst part discusses
the structure and implementation of the butterfly unit. In
particular, the implementation of multiplication in tne but­
terfly unit by the use of a sun-modular look-up table ap­
proach is discussed in detail. Next, this chapter describes
various topics related to the convolver as part of the ana­
lysis. This part includes the taming diaqrams, throuqhput
rate considerations, and various comparisons in terms of
computational requirements. Two design extensions are also
sugqested to achieve a higher processinq rate. Finally, the
two popular methods of residue to binary conversion imple­
mentation are compared.

- 33 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
3-2 EFFICIENT IMPLBHEMTATION OF BUTTEBFLY

As stated in s e c - (2.2) NTT's could be implemented over
a rinq which is isomorphic to a direct sum of Galois fields.
This amounts to implementinq the transform usinq the RNS.
Since in RNS arithmetic the number of different elememts and
the result of any operation (+,.) is bounded by a maximum
number (the modulus of the operation), it is possible to
precompute the results of all possible operations and store
them in RON arrays. Whenever an operation has to be per­
formed on two operands, the operands are concatenated as a
sinqle address to a ROM and the result obtained as a table
look-up. This results in tremendous speed, limited only by
the access time of the ROM. As memory prices continue to
decrease and as the advances in semiconductor hiqh density
memory systems multiply, the loos-up table approach for
mathematical operation m HNS becomes more and more attrac­
tive. In fact, tne table-look up appraoach by use of ROM (or
EPROM) arrays could be considered as the "best" solution
r21] for hiqh speed realization and hence lor hiqh throuqh-
put cates.

Implementation of multiplication is particularly at­
tractive by this method, since implementation of mod M mul­
tiplication is difficult with tne conventional binary multi­
pliers. The multiplication in the butterfly unit is
implemented throuqh the table-look up approach for faster
operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
The basic idea of implementinq an efficient Butterfly

Operation (BO) was described by Jullien [5] for a 1D-radix-2
by substitutinq the conventional multiplier by the use of
LooX-up Tables and thus achievinq increased throuqhput rate

Since the outterfly operation is basic to any transform
domain implementation, the desiqn suqqested in T5] was im­
plemented in the convolver with little modification. The ac­
tual implementation was extended to a 2-D-radix-2 structure
and data were pre-multiplexed to obtain an efficient hard­
ware confiquration and to ensure an OIOO-NTT alqorithm.

A butterfly operation can be performed havinq either a
Decimation in Time (DIT) or Decimation in Frequency (DIF)
structure. The DIF structure suqqests [1,2] that the multi­
plication by twiddle factors is applied after the addition/
subtraction operation over the data points participatinq in
the butterfly. A 1D-radix-2-DIF butterfly is described by

A= (a+b)
B = (a-o) .&*** (3. 1)

where a and b are the inputs to the butterfly at staqe n-1,
A and B are the outputs (input to staqe n), and the index X
depends on the location of the butterfly. Similarly, in the
case of a 2-D-radix-2 butterfly [2] there are four data
points aoo,ao1,a1o,d as input aud the output A,B,C,D is as
qiven below:

A= (a+b+c+d)
3= (a-b+c-d).&**i
C= (a+b-c-d).&**j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a

b

c

d

x (s . t) A = X (s , t)

x(S + t)
r

B = X(s + t)
r

x (s , t +
r

C = X(s, t +
r

x(s + ^ t +
r r

D = X(s + t +
r r

Fig. (3 .1) A 2 -D -rad ix -2 B u t t e r f ly (OIQO-algorithm).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36
D= (a-b-c+d).&**(i+j) (3-2)

where the input/output relations hold for a complete staqe
of butterflies and the indeces, 1 and j, depend on the exact
location of the butterfly in a particular staqe of the oper­
ation (Fiq-3.1). There are two basic arithmetic operations
in such an implementation, namely, multiplication and addi­
tion . The use of QOM-array structure over conventional ad­
ders for addition does not siqnificantly improve the compu­
tation efficiency. For example, a 16-bit addition can be
performed in less than 100 nsec by the use of fast adder
circuits. The memories used in look-up tables have the same
order of access time. . However, multiplication can be made a
faster process throuqh the use of look-up tables.

3.2.1 Implementing Jijlti^iication using the subrmodular
approach

By the use of look-up tables, tne multiplication can be
performed as simple and as fast as the addition. The compu­
tation time is qiven ay the sura of ROM-access time (ta) plus
latch settlinq time (tl). For example the throuput rate of
operation throuqh currently available 8Kx8 bit PROM's (such
as the Intel 2732) is in excess of b MHz. Sucn a multiplier
scheme was considered in £211 f°r butterfly pipelininq fre­
quently used in signal processinq. To add further to the
speed, and to decrease the net memory requirements for larqe
dynamic ranqe, a Sub-modular approach to multiplication was
suggested a y Jullien [5]. He will show the tremendous saving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
obtained through this approach. first, let us consider the
algorithm.

It was shown in s e c - (2.3) that if S is a primitive root
of the prime, pi, then a mapping given by

xn = &**kn
kn=0, 1,2,..... - ,pi-1

will generate all the non-zero elements of the set given by
Zpi. Also there exists an isomorphism between a multiplica­
tive group x having elements fxn}= {1,2,3,.........pi-1}
with multiplication modulo pi, and the additive group k hav­
ing elements fkn}= {0,1,2,...... pi-2] with addition modulo
pi-1 when pi is a prime. Thus,

x x . n j = e
Pi

k + k. n j pi-l C3.4)

which suggests that multiplication can be performed in three
steps:

1. Find the index ki for each number
2. Add indices, mod (pi-1)
3. Perform the inverse index operation

The above steps can be implemented directly using an
all hOM-array structure with a pipe-lining arrangement. The
memory reguirement of order {(pi**2) xN-bits) in the second
step, when addition is performed mod (pi-1), is eguivalent
to directly performing look-up for multiplication and it
seems that no improvement results. however substantial sav­
ing accrue because we can perform addition in a modulus oth-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38
er than the prime modulus. We can compute addition by de­
composing the modulus into two relatively prime (sub-)moduli
u and v, and performing the addition in Zu and Zv. The re­
sult is reconstructed using a look-up table which incorpo­
rates the submodular reconstruction, modulus overflow cor­
rection and inverse index-look up. The choice of u and v
should satisfy u.v > 2.pi. We here describe the steps in­
volved in sub-modular approach or multiplication with an ex­
ample.

3.2.2 calculating the entries in the Look— up tables
The steps in calculating the entries in the look-up table
are as follows:

1. Generating Submodular Index Tables:
Once the primitive root & is decided for the mo­

dulus pi, a table based on x=|&**k|pi is constructed.
By inverting the table with respect to its address
and contents of this table, we have a table of indic­
es which is reduced to two index tables modulo u and
v. For example, for pi=19 with fu,v=7,Q) and & = 2 we
form a table of mapping x=J2**k|(mod 19) and rear­
range it to obtain |kj (mod 7) and |k| (mod 8) ,
Fig- (3.2) .

2. Submodular Addition Table Construction:
The addresses of these tables are found by con-

catening the two-input sub-moduli residues to be ad-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

X 1 2 4 8 16
*

13 7 14 9 18 17 15 11 3 6 12 5 10

Ca)

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

k 0 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 10 9

k 7 0 1 6 2 2 0 6 3 1 3 5 1 5 0 4 4 3 2

k 8 0 1 5 2 0 6 6 3 0 1 4 7 5 7 3 4 2 1

CBJ
Fig. (.3-2J Submodular Index Tables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

ded. The contents of the table address is the submo­
dulo addition of the input residues, Fiq-(3.3). At
certain locations corresponding to unused addresses
in the table we store a code (say, 8) to represent
the invalid operation of iindinq the inuex of zero.

3. Reconstruction Table:
As indicated above, the reconstruction table

will incorporate the followinqs:
(a) Submodular Reconstruction: This is obtained us-

inq the Chinese Remainder Theorem for the residues r1
and r2 with respect to u and v and the table entries
are computed tg correspond to a value r,- qiven by

•>•1 1_ + r_.u. 1
1 V 2u u V

(b) Modulus Overflow Correction: Tue overflow of
the modulus (pi-1) can be corrected by the followinq
operation on r as

ri= |ri((mod pa-1) (3.5)
(c) Inverse Index Look-up: An inverse mappinq cor­

responding to
yi= |S**ri| (mod pi) (3.6)

is employed on the corrected value of ri to obtain
the entries for the table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

r> in m

m mHH
in

m in m

«H
in

CM ry in

m in m in

in M n in CM

m m m PO
in m <n in

CM m in

pH pH in

in m in

<n

cm I in in in

CM

in in

H

CM
CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

(3.
3)

A
mo
du
lo

19
ROM

ar
ra
y

mu
lt
ip
li
er

Su
b-
mo
du
li

7
and

8.

40
Let us take, for example, (pi=19} , fu,v=7,8}, then u-v

> 2.pi. Let us multiply 7 by 10 (mod 19). We find

1. 1 = 1; 1_ = 1
V u 8 7 u V 7 8 = l

= 2; r2 = 7 (from step 2)

. . r = r^.8.1 + r2 -7.7 56 = 116 + 343 56

= 23

and y = 12 23 18
19 2 19 = 13

The interconnection employed in this all "ROM11 struc­
ture for multiplication is shown in Fiq. (3.3) and the in­
termediate results for the example just worked out are cir­
cled.

3.2.3 memory saving by tfae use pjj sub-modular approach
It is observed that the memory requirements usinq the

submodular approach are qreatly reduced. To calculate the
memory requirements and to make a comparison of memory sav­
ing by the sun-modular approach of multiplication as com­
pared to the direct table look-up, we define the Memory Sav-
inq Ratio (MSR) as,

Mem (dir)
MSR = (3.7)

Mem (sub)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41
where Mem (dir) represents the memory requirement by direct
multiplicatiooa usinq look-up and Mem (sub) represents the
memory requirement by use of sub-modular approach. Here we
consider a case when one modulus is broken into two sub-mo­
duli.

Let N be the number of bits by which each of the moduli
is represented, c is the number of bits by which each of two
sub-moduli is represented, and b is the number of bits at
the output of the result.

1. a direct implementation of multiplication by ROM-look
up would require (for each modulus),

Mem (dir) = (2**N) x (2**N) xb bits (3.8)
In case of convolver, this will be

= (2**24)x 10 bits
= 160 Meqa bits !

which is impractical and the cost unjustified.
2. an implementation usinq sub-modular approach would

require (for each modulus),
In step a) for qeneratinq submodular residues of indices

Mem (sub-a) = (2**N) x c bits/sub-modulus
In step b) for performinq the index addition

Mem (sub-b) = (2**c)x (2**c)x c bits/sub-modulus
In step c) the reconstruction of the result is obtained.

The memory required is
Mem (sub-c) = (2**c)x(2**c)xb bits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42
Thus the total memory requirement usinq the sub-modular ap­
proach is (for each modulus) ,
Mem (sub) = 2xMem (sub-a) +2xMem (sub-b) *Mem (sub-c)

= 2x(2**N)xc + (2**c) x (2**c) x2c + (2**c) x (2**c) xb
and the Memory Savinq Ratio (MSR) is

(2**N)x (2**N)xb
MS R = --------------------------------

2c. (2**N+2**2c)+ b.(2**2c)

b. (2**2 N)
= (3.g}

(2**2c) (2c+b)+2c. (2**N)
which for N=2c=b approximates

MSfl = (l/3) . (2**N)
The MSR for various values of b corressponding to N=2c

is listed in Table-(3.1). A memory savinq ratio of about 341
is obtained in case of the convolver (for each modulus). It
is observed that larqer the dynamic ranqe, niqher is MSR.
This is an expected result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
Table- (3.1) Memory Bequirements by Direct and
Submodular approach of Multiplication and the
Memory Savinq Ratio (MSB) ; 1K= 1024, 1M= 1024x1024

| Memory Requirements (bits) | MSB
h=2c | direct method | sub-modular appr. 1-----------

1
for I o

r
I l
l

I 0
0

I 1

8 | 384 K 1 6 K | 64
10 I 8 M 1 28 K | 292.57
12 I 128 M I 128 K | 1024

for i
oII

8 J 512 K 1 6.5 K | 78.77
10 1 10 M 1 30 K | 341.33
12 | 160 M 1 136 K | 1204.70

for b= 12
8 | 768 K I 7 K I 109.71

10 I 12 M I 34 K | 361.41
12 | 192 M I 144 K i 1365.30

3-2-4 further reduction in memory requirements
We can further reduce the memory requirement by provid-

inq an obvious simplification when the objective is to per­
form NTT where a multiplication by a twiddle factor of the
form 6**1 is involved. Since multiplication in Eqn-(3-2)
is between some arbitary data and (6**1) where 1 depends
upon the position of the butterfly m a staqe, the sequence
{6**1} can be prestored with the mappinq already applied-
Tnis will reduce the memory requirement in step a) of sub­
modular approach by half. This excludes the memory required
to store the reduced sequence (&**1). The memory required to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

store the twiddle factors in any case is small and depends
simply on the number of points involved in the transform at
a time ,e.q, in our case 128-different twiddle factors would
require 128xcx2= 128x12 = 1536 bits/modulus =
1.5 K-bits/modulus.

3.3 TIMING CONSIDERATION FOR THE BUTTERFLY
Next, we describe various topics which are related to

the convolver as part of its analysis. In this section, the
timinq diaqram for the outterfly unit is considered.

The workinq of the butterfly has been described in de­
tail in s e c - (4.7 J and the staqe-wise description is qiven
there. Here we present a timinq-analysis of the butterfly so
that we can estimate the throuqh- put rate. Fiq-(3.4) shows
the butterfly computational unit. The reqister-contents of
the butterfly is shown in Fiq-(3.5). SJith the first clock
[pipclKS] reqister R1 1 receives the first data point (a1),
which is buffered in HI2 when the next data (b1) is latched
in R22 at the second half of [pipclk5]. The result of the
addition, (a1+b1), is then moved to R13 at the next clock
when data (c1) arrives in H11. The next half of the clock
allows fourth data sample (d1) in R22 while (a1-b1) is
latched to R23. The next clockpulses allow addition,
(c1+d1), and subtraction, (c1-d1), while data points (a2 and
b2) for the second butterfly are received in the unit.The
results (c1♦d 1) and (c1-d1) are latched in R34 and R44 in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

EPROM EPROM

Frc&Ki
INDEX INDEX

LOOK-UP *16 A00 *17
LOOK-UP

U •

TWIDOLE FAC./COEFF.

INDEX INDEX
*26 ADO *27LOOK-UP

r-t LOOK-UP
V

TWIDDLE FAC./COEFF.

Fig. (3.4) The Butterfly Computation Unit

EPROM

RECON­ D18
STRUCTION

t o

REG
IST

ER
CON

TEN
TS

AT
SUC

CES
SIV

E
CLO

CK
PUL

SES

(CLR
 ■=

 C
LEA

R)

CJ*

1 ; Ou
tpu

t
B1

co Out
put A1

Out
put 0

eg
CSJu

“ CM< Rec
on. D Out
put C

CMU Add Ind
ex

. R
eco

n. C Out
put &

CM
-O

CM
(9

Xa>•oc «c

X 0) -o
3 c

X s.R
eco

n
B Out
put A

CM
UI o

-O <t II «1
a>

.■O CS
1 c <

TO
-o c Rec

or A

T3

(J
rs
■+*
u

.a
CN

< Ind
ex Ai
... TO

c

TO
TO

U
-s.

n ~ £
+ i
TJ IT

TJ
i
u
g-
.at
ITS

<II

#
a/*o
c

- -c T

(0

.o -ai i
f9 U

•o*+•u
-Q
R3

c<
II

-

m

2 M ri i
19 U

c/d

JD
t

JQ
+
19

u
oc
-J

-o
(9

to

PIP
ELI

NE
REG

IST
ERS

c T

CM
CM

as
CM

aT *

n
CM

a :
CO

if of
U)

cST

to
CM
&

to
aT~

fs.
CM

Sp>.»*•
OS

COosT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig
.

13.
5)

The
Tim

ing
 D

iag
ram

 a
nd

Reg
ist

er
Con

ten
ts

In
the

Con
vol

ver
 B

utt
erf

ly.

45
sequential fashion. When [pipclkl] occurs, the result of
the second addition (a1+b1+c1+d1) and (a1+b1-c1-d1) are se­
quentially stored in Bib. The other two data points, c2 and
d2, are received in the unit. The operations after B15 for
each of the butterflies are straiqht forward and occur with
each basic clock pulse. The data is divided into two chan­
nels correspondinq to two sub-moduli. The data qoes to next
reqister (Hi6, i=1,2) after error correction and index
look-up. The added indices are then latched in B17 and R27
at the next clock pulse. Meanwhile, (a1+b1+c1-d1) and
(a1-b1-c1+d1) are calculated and input for next butterfly
computations are received in the pipeline. At the next
clock pulse, the result from the index add look-up table is
sent to the Reconstruction EPROMs and are latched in R18.
Thus a rate of (1/t) data per sec is maintained where ' t'
is basic c Io c k . period or half of the period of fpipckl51.

It is noticed that a delay of 9-cycles is introduced
(fiq-3.4) between an input and the correspondinq output of
the butterfly of that staqe. The butterfly operation pro­
ceeds for 14 staqes t a k m q into account the forward and the
inverse transforms. At the final staqe of the forward trans­
form, the NTT of the filter coefficients is used as multili-
er instead of multiplication by unity twiddle factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46
3.4 THHOUGHPDT BATE COMSIDEBATIOHS fOIOQ— ALGOBXTH HI
3.4.1 serial sequential processing

The Ordered-Input-Ordered-Output (OIGO) alqorithra has
.been discussed in sec-(2-6) . The mathematical development of
the algorithm is qiven in Appendix-(A). The algorithm can be
characterized by the followinq:

1. Let NxN be the size of the input matrix and r be the
radix of the butterfly operation. Then the input ma­
trix is divided into r**2 blocks and each block is
further divided into r**2 sub-blocks. If the data
is accessed sequentially, then the address seperation
between the data points at any staqe of operation,
alonq any dimension, is always (N/r**2), except at
the first staqe. The data must be seperated by (N/r)
words for the first staqe of operation. A 8-point
transform structure is shown in Fiq-(3.6). To use
the same hardware configuration for the first stage
as that of other staqes, the input matrix is permuted
while loadinq the matrix into the input memory buf­
fer.

2. A butterfly computation (0100-alqorithm) consists of
preweiqhtinq (addition/subtraction) followed by
weiqhtinq (multiplication by twiddle factors). At the
nth staqe of operation, the twiddle factors are all
unity and the weiqhtinq is not required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 - ^ — A-B

CaJ

*»
h
h
h
u
k
k
b

(b)

F1g. C3.6) ' (a) Graphical Representation o f the O rdered-input Ordered
output algorithm fo r the case N = 8 (l-D -ra d ix -2)

(b) F ig . U 1 w ith Permutation o f Sequence While Loading
in the Memory B u ffe r.

Ltqt«rt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The above characterizations can be used to calculate
the throughput rate.

MAXIMUM THEOUGHPUT-flATE POSSIBLE:

Let tp be the time of performing preweighting and tm be
the time of performing preweighting followed by weighting.
Since the n-th iteration involves only preweighting, the to­
tal time reguired in the forward transform is

Tc = (n-1) . (N.N/r.r) - tm ♦ (N.N/r.r).tp (3.10)
where n is the number of stages. In hardware implemen­

tations, the multiplication by the twiddle factors can be
made as fast as audition through the use of a look-up table.
In that case, we can simplify egn- (3.10) by substituting tm
= 2.tp, and

Tc= (N.N/r.r). (n-1/2)-tm (3.10a)
Using the relation (3.10a), it is possible to calculate the
time reguired in computing a forward transform. If addition
can be performed in 300 nsec. (i.e. tm= 300 nsec.), then tne
transform of a matrix of size (128x128) can be performed in

Tc= 7.98 msec. (3.10b)
which implies a sampling rate of 2.051 MHz. If fast adders
are employed in tne circuitary (say tra= 70 nsec) then the
time for a transform would be given by,

Tc= 1.86 msec. (3.10c)
which supports a sampling rate of 8.2 MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
To compute the convolutions, the filter coefficients is

multiplied to the preweighted output from the final stage of
the forward transform, and the inverse transform of the re­
sulting sequence is obtained. The multiplication by the fil­
ter coefficients can assumed to be equivalent to veightinq
at the final stage of the forward transform. Since, there is
no need of weiqhtinq at the final stage of the inverse
transform, the total time to compute convolution is given

T(conv)= (N.N/r.r) . {n.tm + (n-1).tm + tp} (3.11)
Assuminq tp = 2.tm as above, we have

T(conv) = (N. N/r. r) . (2n + 1). tm (3.11a)
Usinq tm = 300 nsec for a matrix of size (128x128), the time
required to compute Convolutions is

T (conv) = 17.8 msec. (3.11b)
indicating a samplinq-rate of .9 19 MHz. The use of fast ad­
ders and memories (usinq tm = 70 nsec) will give a process­
ing time of

T (conv) = 5 msec (3.11c)
which supports a sampling rate of 3.76 MHz.
VIDEO-BATE PROCESSING:

In siqnal processing, a process is said to operate in
real-time if the data-processing rate is higher than or
equal to the data sampling (input) rate. Thus, depending on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
the particular application, the "real-time processinq time"
may be different.

In many applications, it is desired that the processinq
speed supports a video rate. Such hiqh speed procesinq re­
quirement is essential in diqital tele-vision transmission.
Many Robotics applications also require a very hiqh process­
inq rate. The video-rate is

Vr= 30 pictures per sec (3.12)
= 1 picture every (1/30) sec
= 33.3 msec per picture
= .492 MHz, for a 128x128 pixel picture.

Rased on the calculations (eqn.3-11), it appears that the
application of tne 0100-alqorithm, with the basic time of a
mathematical operation as tm = 300 nsec, supprots a video
rate.

3.4.2 Speed consideration in the Convolver
The use of a 2-D-radix-2 0100-alqorithm requires that

the four data points participate in any butterfly computa­
tion (Fiq-3.1). The mathematical operations required by tne
butterfly computation (eqn-3.2) can then be implemented by
the use of 8 adder/subtracters and 3 multipliers. These re­
quirements can be simplified if a sacrifice in speed is
aqreed. In that case, a "quarter" of the butterfly is used
to process the data. The data input to the butterfly is in a
sequential fashion, one data at the occurrence of every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
clock pulse. This type of arranqement saves the hardware
cost required to implement a "complete" butterfly unit. In
fact, the convolver desiqu uses only a quarter of the but­
terfly and the data flow is in a sequential fashion. The use
of pipeline arranqement lets a data with every clock pulse,
and there is delay of 9 clocks between the input and the
correspondinq output at every staqe of computation. Thus,
the total time of convolution depends on

1. the total number of data points
2. the time of a basic clock
3. the delay oetween the input and the correspondinq

output
Tne total time of convolution is then qiven by,

T (conv) = 2. n f(N.N).t + 9. t] (3.13)

where t is the basic clock period. The basic clock used in
the convolver is of 300 nsec.. Thus an imaqe of size
(128x128) is processed in a total time of

T (conv)= 68.8 msec. (3.13a)
which implies a saraplinq rate of 0.24 HHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
Table-(3.2) Comparison of Time required for
convolution by different methods of Processinq.

t= 300 nsec
J Time Reqd. for Convolution (msec)Method

Pic.Size = 64x64 I 128x128 | 256x256
Serial Seq.
Processinq

4. 60

Processinq
in Convolver
7-staqe Cascade
Processinq

0.62

18.43 73.72

68.8

2. 63 10.53

Ser.Seq.Process. |
t= 70 nsec

1. 07

Proc. in Convolv.)* ♦

4.30
16. 05
0.62

17.20

7-st.Cascade
Processinq

0. 15 2.45

3.4.3 Cascade Processing
A cascade processor may prove to be prohibitively ex­

pensive. Neverhteless, instead of usinq an input buffer me­
mory and oscillatinq data successively betweeen two memo­
ries, if we provide a number of memory arrays and
butterflies equal to the number of staqes, then the process­
inq speed can be increased by a factor of n, where n is the
number of staqes. The convolution computation time, in that
case, is qiven by,

T (conv) = 2. f (N.N/r.r).t + D 1 (3.14)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
where D represents the delay between the input and the cor­
responding output data point. This delay is very small and
can he neglected in calculation of speed of the processor.
With t= 300 nsec., the convolution time for a matrix of size
(128x128) is 2.45 msec. (a sampling rate of 6.5 MHz). A
further gain in speed by a factor of h can be achieved
through the use of a ’'complete" butterfly.

The convolution time obtainable through the different
methods of processinq is qiven in Table-(3.2). The I/O time
between the SEL computer and the convolver for a picture of
size (128x128) bytes (throuqh the use of HSD interface) is
approximately 15 msec. and requires an overhead time of 5
msec.. Since the use of convolver was intended in conjunc­
tion with the SEL mini-computer, efforts to use very hiqh
processinq rates may not be supported. Thus the use of cas­
cade processinq is not recommended.

3.5 T HREE— MEMOBY 5TBDCTDRE FOB FASTBE PROCESSING
In this section and in the next section we consider two

of the design improvements for faster processinq. The I/O
rate between the SEL minicomputer and the convolver is 1.2
usec/32-bit word (throuqn the use of the High Speed Data In­
terface) . An imaqe of (128x128) bytes is transferred from
the computer to the filter in 5 msec, by multiplexing h data
points to form a word. The filtered imaqe is received in an
array of 16-bit per data point, and thus the data transfer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coeff.
Hem.

Hem 1
2-D-Radix-2
Butterfly

Unit
Distri­
butor Output

Mux

Hem 3

Fig. (3.7) A Three Hemory Buffer Structure for Improved Speed of Processing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
time is 10 msec.. The total I/O time, including the overhead
of about 5 msec., is 20 msec.. The processing time to filter
an image is 68.8 msec.(sec-3«4) . In processing of an image,
the two times do not over-lap. This is because, the convol­
ver desiqn does not allow any communication between the host
computer and the filter while the processing is in progress.
Also, there are only two memory buffers, MEM1 and MEM2, in
the filter. The data oscillates back and forth between these
two buffers at the various staqes of operation to compute
the convolution. A three-memory structure is suqqested
(Fig.3.7) which can reduce the I/O rdle time.

Whether the data.is sent from a video-digitizer camera
or from the host computer where the images have been stored,
two of the buffers store the input and output of the in­
termediate NTT stages. The third buffer can be employed to
collect the sampled input for a second image while the fil­
ter processes the first image. Similarly, the final result
can be collected in one of the two buffers involved in the
processing of that image and can be transferred through the
I/O channel while the processing of the second rmaqe is in
proqress. All three memory structures are required to be
identical. Assume that MEM 1 stores the input for the first
image. Now MEH1 and MEft2 are used to store all the intermed­
iate results or the outterfly stages for that imaqe and the
final result is available in MEM2. While the first imaqe is
being processed, the second imaqe is written into memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O.P. (Previous)

Input Convolution
 1 1 1
Mem 1 Mem 3 Mem 1 - Mem 2

ConvolutionInput ^Output ̂
Mem 3 Mem 2 Mem 3 - Mem 1

I Input OutputI I - I-
Mem 2 Mem 1

Fig. (3.8) Timing Consideration in the Use of Memory Configuration Shown in Fig. (3

Convolution

Mem 2 - Mem 3

.7).

54

MEM3. At the completion of filtering of the first imaqe,
MEM3 and MEN 1 are used to store the intermediate results for
the second imaqe. At the time when the processing of the
second imaqe begins, the output multiplexer gates the al­
ready processed image through the output channel. This is
possible because the input and output of the NTT alqorithm,
as given by the OIOO-NTT algorithm, have the same addresses.
At the begining of a new computation, the buffer selection
is chanqed and durinq the computation of convolution, the
I/O channel is utilized to perform the input and output op­
erations.

As noted earlier, the total time required for the input
and output of an image (through the use of a BSD interface)
is approximately 20 msec., and the actual processing time
for an imaqe of size (128x128) is 68.8 msec.. Throuqh the
use of three-memory structure outlined above, it is possible
to have 100 % over-lap of I/O time with the processing time
(Fig.3-8). This implies that if imaqes are processed in suc­
cession, then the processing time can be reduced to about 48
msec.. This is an improvement in speed by 28 %.

3-6 USING A COMPLETE BUTTERFLY F0£ FASTER SPEED
The convolver implements a 2-D-radix-2 butterfly

(0100-alqorithm) for the computation of transforms. In Hard­
ware, the processing is performed in a serial sequential
fashion. It was observed in s e c - (3.3) that we use a multi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DELAY
ADDRESS

GENERATION
LOGIC

BUFFER 1

MEMORY MEMORY

BUFFER 2

. A "COMPLETE

BUTTERFLY

UNIT

(a)

Chi
F1g. C3.9) Interconnections in the use o f a "complete" B u tte rfly .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55
plexed "quarter" butterfly to compute the transform of the
sequence. We can, instead, use a "complete" butterfly
structure to obtain a four-fold increase in speed. The pos­
sible structure or a scheme to use a complete butterfly is
shown in Fiq-(3.9).

The implementation of a 2-D-radix-2 butterfly requires
the implementation of e q n . (3.2). The (preweiqntinq) opera­
tions of addition and subtraction can be obtained throuqh
the use of eiqht adder/subtracters, each with two data as
input. The method will involve two levels of operation to
avoid the use of d inputs adders. The implementation also
requires 3 multipliers as shown in Fiq. (3.7). This is be­
cause the multiplication by unity may not be performed. The
data flows back and forth between the two memory buffers.
Once the input sequence has been permuted, the addresses re­
quired for the input and the correspondinq output are the
same. This means tuat the same address qeneration loqic cir-
cuitary can be used for the control of data flow by the use
of a delay equal to the time required for processinq of one
data point.

This is an arranqement wnere there is a simultaneous
processinq of d data points toqether in a pipeline flow. The
time of convolution by this method is qiven by,

T (conv) = 2-n [(N.N/r.r).t + D 1 (3.17)
where D is the delay between the input and the correspondinq
output and r=2, tne radix of operation. The time required to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
compute convolution by this method (for an imaqe of 128x128
pixels) is 18.45 msec.. This supports the video rate.

It is interestinq to note that the hardware requirement
for the butterfly increases ny a factor of more than 3
(nearly 4). However, at the same time it is possible to use
the rest of loqic circuitary with little modifications. This
implies that the total cost of the entire filter structure
does not increase by a factor of 4, while the speed qain is
four-fold.

3.7 A BRIEF COMPARISON OF FFT AND FNTT BUTTERFLY
IMPLEMENTATIONS

A comparison of FFT and FNTT butterfly implementation
involves several variables. Here we make a brief comparison
between a FFT and a FNTT butterfly implementations takinq
into account the followinq variables only:

1. Speed
2. Hardware complexity
3. Accuracy

There are two distinct operations in a butterfly compu­
tation: addition (or subtraction) of the data points and
multiplication by the twiddle factors. A FFT buttefly re­
quires complex arithmetic. When the arithmeitc unit is of
qeneral purpose nature, a complex audition takes twice the
time that of a real addition and, a complex multiplication
takes four times the time required by a real multiplication

Use can be made of the fact that the input data are real.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

This results in a savinq or 50 percent if one neqlects the
overhead involved. Thus, the additions in the butterfly in
the two implementations can be made equivalent in terms of
speed. The multiplication by the twiddle factors throuqh
the use of a FNTT outterfly will be efficient on a qeneral
purpose arithmetic unit. However, the mathematical computa­
tions in the use of FNTT require mod H operations. A mod fi
operation on a qeneral purpose computer is computed by per-
forminq inteqer division, which is a time consuminq process.
Thus the efficiency of a FNTT implementation over a FFT im­
plementation is doomed.

Aqain, it is possible to use special purpose hardwares
[19 1 to handle the Dutterfly computations. The hardware com­
plexity increases in case of FFT butterfly because of tne
complex nature of tne arithmetic involved in the computa­
tion. The need or binary to residue and residue to binary
converters in the use of the FNTT butterfly increase the
hardware requirement. Also, it is possible to use a table
look-up approach to implement multiplication for a faster
processinq. The look-up tables entries required by the FFT
butterflies are subjected to error due to the finite preci­
sion representation of the transcedental multiplier: func­
tion. In qeneral, these tables require more memory [251 than
the correspondinq look-up tables in the FNTT butterfly im­
plementation .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Further, the results obtained through the use of a FNTT
alqorithm are exact if the dynamic ranqe of the machine is
larqe enough so that no number in the final result is great­
er than the the machine dynamic ranqe. flut in case there is
an overflow, the resulting sequeuce does not represent the
transform. Because of the error due to finite precision re­
presentation of the transcedental multiplier functions, the
results obtained throuqh the use of a FFT alqorithm are ap­
proximate. Thus it is difficult to establish the superiori­
ty of one implementation over other. Several other factors,
such as the type or data to be processed etc., must also be
considered to compare. the two implementations.

3.8 COHPABISON OF 1-D-BADIX-2 AND 2-D-BADIX-2 BOTTEBFLIBS
For this comparison, we will define the complexity

based on the numoer of multiplications required in the im­
plementation of a 1-D-radix-2 and a 2-D-radix-2 butteflies
to process a matrix. The multiplications involved in the
implementation of butterflies are the multiplications by the
twiddle factors.

For an m-dirnensional-radix-r butterfly, it was shown
[10] that the total number or multiplications with twiddle
factors is

[(r) **ra -1]
as it combines fra. (r)** (m-1) 1 composite twiddle factor mul­
tiplications. If a one dimensional radix-r transform opera—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

tion were performed alonq all m dimensions in a sequential
fashion, then the number of twiddle factor multiplications
would be equal to [m.[(r)**m- (r)** (m-1)]} . Thus the total
number of multiplications is qiven by,

M = C (n) **m-1]. (n) - (M.ti/r.r)
Where 'a* is tne number of staqes. Hence the ratio of mul­
tiplications (HM) between 1-D-radix-r and m-D-radix-r but­
terfly implementation is

m.[(r) **m - (r) ** (m-1)]
H« = -------------------------- (3.15 a)

(r) **m - 1
and the percentaqe sayinq in computation is equal to

ra.r (r) **ra-(r) ** (m-1) 1 -[r**m-1]
--x 100 1%)

m.[(r) **m- (r) ** (m- 1)]
(3.15b)

To compare a 1-D-radix-2 and a 2-D-radix-2, we substitue m=2
and r=2 in eqn- (3. 15). We obtain

SM = (4/3) = 1.3333
and a savinq in computation of 25 % is obtained, Ta­
ble- (3.3).

It is interestinq to note a 2-D-radix-2 structure is
computationaly tne same as a 1-D-radix-4 structure, which
has been described as optimum [1,2 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fa
A

m.

F ig . (3 .101 Implementation o f the Chinese Remainder Theorem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60
Table-(3.3) Comparison of butterfly Computational

acquirements

Method | no. of complex multiplications
| (in thousands)

Pic.Size,N= 64 128 256
I 1-D-radix-2 |
I I

24.57 114.68 524.28 |

| 2-D-radix-2 |
I I

18.43 86. 01 393.21 I

3-9 COMPARISON OF B/B CONVERSION METHODS
Hesidue to Binary (B/B) conversion is implemented uy

either the Chinese Remainder Theorem (CRT) or by the use of
«

the Mixed Radix conversion (MRC) method, s e c - (2.7). The
Chinese Remainder Theorem expresses the relationships bet­
ween the number and its aNS representation as.

X.ItK 1 1 Am.i m.i M

where xi are tae residues (mod pi) and M= Tf Pi- On the oth-•c
er hand, the dixed-Radix conversion method requires two
steps. In tue first step, the residues are transferred to
Mixed-Radix (weighted) digits. The second step converts
these digits into a fixed radix form (e-q- Binary). Repeat­
ing the relations from s e c - (2. 7) ,

<rn,....,r3,r2,r1> — x ^an,....,a3,a2,a1^
n-i

=an.n pi+--..+a3.p2.p1+a2.p1+a1l-l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

£D—
1 i 1

h Pi p2 p1 Pn-1 Pi

Fig. (3.11) Implementation of Mlxed-Radlx Conversion Method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
(3-16)

where ri's are the residues (mod pi), ai's are the mixed di­
gits and pi's are the prime moduli. The block diagrams for
the methods are shown P i g - (3-10)and F i g - (3-11). The number
of computational elements required by the two methods are
can be compared. Let a(n) represent the number of adder/sub­
tracters, and b(n) represent the number of multipliers. Then

1. For a (n) *n' moduli representation, the CRT requires
2n multipliers and an adder (mod M).

2. For a (n) 'n' moduli representation, the MRC requires
a (n) = (n-1). (n/2)+1 adder/subtracters
b(n) = b(n-1) + b (n-2) multipliers

where b(i) is an operator, b(0) = 1 and b(1) = 1 and n > 1.
The requirement tnat a modulo M adder be used in the CRT al­
gorithm, restricts its use in nardvare implementations. Ta­
ble- (3.4) shows the requirements of adders and multipliers
for various values of 'n'.

Tanle-(3.4) Comparison of CRT and MRC implementation
(a) Number of adders (b) Number of multipliers

I no. of moduli
1 n=2 | n=3 I 11=4 | n=8
1 Method (a) (b) 1 (a) (b)l 1 (a) (b) 1 1 (a) (b) |1--------------- ------ 1------ 1---- 1 ,---- - 1---- 1 i---- r
| Chinese 1 I 4 1 1 I 6 11 1 1 8 |1 1 I 16 |
1 Rem.Theo. mod M) (2) 1 modMJ (3) 11 mod M| (4)1 1 modMJ (8) 1
1 I 1 1 1 i 11 1
1| Mixed 2 I 2 1 4 1 5 I1 7 1 9 i1 29 | 35 J
j Radix-Conv I (1) 1 1 (3) I1 1 (6) 11 i (2d) |
1 1 I 1 I 1 I1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62
It will be noticed that for small n (n<4), it is beneficial
to use the Mixed-Radix-conversion method to compute the re­
sults of Residue to Binary operation. Also, it is possible
to combine various fixed arithmetic operation for a particu­
lar implementation. The requirements after such combination
is indicated by puttinq the numbers in brackets in the ta­
ble.

3-10 c o n c l u s i o n

In this chapter we have discussed various aspects of
tne convolver. The main focus was the butterfly unit. First
we discussed the efficient implementation of butterfly and
then we evaluated the performance of the filter with respect
to speed, memory requirements and computation cost. This
was followed by a comparison between the implemented filter
and other techniques of diqital filterinq, in terras of com­
putational efficiency. The tirainq considerations in the
pipe-line structure was evaluated, and the throuqh-put rate
determined. Two desiqn improvements for faster processinq
were suqqested. Finally, the two methods of implementation
of Residue to Binary conversion were compared.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter IV
HARDWARE AMD FUNCTIONAL DETAILS OF THE CONVOLVER

4.1 INTRODUCTION
For several problems in Imaqe Processing, linear fil­

tering of imaqes prior to the applications of other alqor­
ithm is extremely important. Filterinq of discrete siqnals
can be implemented on a qeneral purpose diqital computer of
reasonable size. This is a time consuminq process, and when
speed of filterinq is more important a hardware implementa­
tion is the only viable solution. The speed and cost con­
siderations are basic to filter hardware desiqn and a com­
promise has to re achieved between tne two depending on the
particular application m mind. For example, the speed of
filterinq is tne main consideration when real-time process­
inq of siqnals is desired [4 1.

In this chapter we describe the hardware and functional
details of the convolver. It is suqqested that the user of
the convolver refers to reference [2^1 for specific details
about the hardware circuitary.

- sy -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

4.2 OYEHVIEH OF THB HABOHABB
The Convolver hardware has been assembled on four Auqat

Wire Wrap boards. One of the boards contains the interface
betweem the HSD and the convolver, and the control loqic;
two boards support the memory buffers and the 2-D-radix-2
Butterfly unit; and the fourth board has the Residue to Bi­
nary (R/D) conversion unit. A conceptual diaqram of the
Convolver organization is given in Fiq-(4.1). The main com­
ponents of the hardware are described in detail in the fol­
lowing sections. An overview is presented here.

The convolver implements a 2-D-radix-2 Fast Number
Theoretic Transform (ENTT) usinq an Ordered-Input-Ordered-
Output alqorithm fol where the multiplications in the but­
terfly are performed usinq the sub-modular approach [51- The
host computer sends the imaqe input and the indices of the
transformed coefficients and the necessary control siqnals
to start the filterinq operation. The data stored in the me­
mory buffers are processed with tne butterfly unit for a
7-staqe sequential implementation. When the input to the
butterfly is from the memory butfer-1 then the output is
written to the memory butfer-2 and vice versa. At the final
stage of the forward transform, the output is multiplied by
the transform of the filter coeificients usinq the twiddle
factor multiplier. At the end of the inverse NTT staqe the
data is processed by a Residue to Binary converter, which
then transmits the data back to the host computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aT
l— I

«r

V t
u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig
.

(4.
1)

Ove
rvi

ew
of

t!>e
Con

vol
ver

72

TABLE (4.1)
THE IMAGE PROCESSOR (BASIC BLOCK)

INPUT DATA ORGANIZATION: 128 x 128 (BYTES) FOR IMAGE

128 x 128 x 24 BITS FOR COEFFS.

MODULI: 641, 769

ALGORITHM FOR BUTTERFLY: 2D-RADIX-2

0 I 0 0 - NTT ALGORITHM

DECIMATION IN FREQUENCY

OUTPUT: 128 X 128 x 16 BIT-BLOCK OF

FILTERED SECTION OR IMAGE

TIMING: BASIC CLOCK 300 ns

I / O ’TIME = 5 msec + 10 msec = 15 msec.

BUTTERFLY COMPUTATION TIME = 6 8 . 8 msec

TOTAL PROCESSING TIME = 8 5 . 0 msec

TECHNOLOGY: MSI and SSI Standard TTL and MOS S ta t ic Memory,

EPROMs

PHYSICAL: PACKAGED ON 4-AUGAT WIRE WRAP BOARDS 9 x 16 x 1.5 INCH

POWER CONSUMPTION: 5V DC

L—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

TABLE 4.2 Main Integrated Circuits

IC TYPE MANUFACTURER

74S124 Texas Instrument (TI)

745138 TI

745139 TI

75138 TI

74S74 TI

74S175 TI

LM311 National

74S163 TI

74S253 TI

74S257 TI

' 74S163 TI

74S283 TI

Used in the Convolver

FUNCTION/USAGE

Dual Voltage Controlled
Oscillator (1 Hz-60MHz);
Generation of Clock

Decoder/Demultiplexer
Cl of 8) ; Stage Decoder

2 to 4 line Decoders/Demultiplexer;
Stage Decoder

Quadruple Bus Trans-receiver
(8-line); Trans-receiver driver.

Dual D-Type .
Positive Edge Triggered
Flip-Flop; Delay

Quadruple D-Type
Flip-flop with clear delay.

Voltage Comparator;
In control of circuitary
for Interface; Reset Logic.

Synchronous 4-bit counter;
Butterfly and stage counter

Dual 4 to line Data Selectors/
Multiplexer with 3-state output;
In control circuitary for
address generation.

Quadruple 2 line to 1 line
Data Selectors; Multiplexing
of Data at output of residue
to binary converter.

4-bit Sync, counter;
Memory address generation for
data input

4-bit Full Adder with Fast
carry; Adder-subtractor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

IC TYPE MANUFACTURER
2118 Intel

AM2964B AMD

AM 2966 AMD

2732A Intel

AM2517 AMD

9319 Fairchild

96SQ2 TI

FUNCTION/USAGE
RAM Memory (.16384 x 1 bit)
16KX1; Memory Buffers;
Coefficient Memory

Dynamic Memory Controller
Cfor 16 K and 64K MOS RAM)
R/W address control

Octal Dynamic Memory Drivers
with 3-state output; Tristate
buffer for memory

EPROM (4KX8 bit)
Twiddle Mem/Look-up tables

Arithmatic Logic Unit
Butterfly - ALU, Function
Generator Aĵ B, A+B, A*B, etc.

Decode Sequencer Cl of 10
sequential output)
Generation of different clock
from the main clock

Dual retriggerable
monostable multivibrator;
In correct sequencing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75
The basic block for filterinq by this method is an im­

aqe of (128x128) bytes. The various components of the fil­
ter are described nelow. The main features of the filter are
suwmerised in T a o l e - (4. 1) . The main Inteqrated Circuits
(IC's) used in the convolver and their functions are ex­
plained in Table-(4.2).

4.3 SYSTEM CLOCKS AMD BBSBT LOGIC
The filter desiqn is based on a synchronous architec­

ture and is driven by the system master clock. A dual vol-
taqe controlled oscillator IC-74S124 has been used to qener-
ate a 20-MHz clock wuich is divided by the Decade Sequencer
IC-9319 to qenerate six non-overlappinq clocks with a period
of 300 nsec. These clocks are inverted to qenerate two sets
of system clocks: One set of the system clocks is used by
the Interface 3oard and the other set is used to qenerate
memory and pipe-lininq timinq siqnals.

Tne Voltaqe Comparator IC-LM311, drivinq a dono-stable
circuit has been used to qenerate a power-on reset pulse.
This pulse is loqically Od-ed with the I/O-reset pulse
[selior] from the HSD to qenerate three different Resets
[filreset, filresetl, filreset2 1 which are used to clear
various reqisters and to initialize the interface loqic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
4.4 HSD/COMVOLVBH IMTEHPAC3

The HSD/convolver interface is an esseutial component
of the convolver as veil as the Image Processing system.
The Hiqh Speed Device (HSD) interface loqic links the HSD
handler (in S3L-32/27 computer) and the filter. The HSD in­
terface logic is very general in nature and apart from con­
volver, devices such as the video digitizer can use the same
HSD-interface logic. Tne HSD-interface (Pig-4.2) has the
follovinq main components:

1. Line Drivers/rieceivers
2. Multiplexers (Accumulators)
3. I/O data counter (NTT stage/ butterfly counter)
4. control logic for I/O operations
5. Control logic tor data input from Video-digitizer

The interface loqic is controlled by the siqnals from
the HSD handler. The Filter function reqister is loaded from
the HSD to specify the uext filter function (sec-4.5) - iihen
an I/O filter-iunction is specified tne data transfers at a
rate of 1.2 us (1200 nsec) per 32-bit word. Four pixels are
transferred at a time from the SEL to the convolver as input
data, and tnese are demultiplexed at the basic system clock
rate of 300 nsec before writing the pixels byte into the me­
mory buffer. This ensures a continuous transfer of data.
The I/O data counter keeps the record of the number of data
transfer and once the specified number of data-transfer has
taken place, it resets and is then available for other
counting functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

EEL

Drivers/

Receivers

HSD V

I/O Control
end

Counter

SEL
Input

Registers

Filter
Functlo

FILINRDY
FILINACK
FILFUNC3

Filter
Input

Registers

Filter

Filter
Control
Status
Res.___

Filter
Output

Reglstei

FILOUTRDY
FILOUTACK
FILSTATRDY
FILSTATACK
FILON

R/B -
Caaera

Hint

NOP
LDIMG
LDCOFF
LDDSP
NOP
SDFILDT
SDCAMDT
CLRMCNT

TO HEM 1

TO COEFF. MEM.

Froa R/B
Converter

Froa
Camera

Fig. (4.2) The Filter Interface and I/O Control Unit.

78
4.4.1 Line Privers/Beceivers

The Line Drivers/Beceivers consist or 12 TI-75138 IC's
and are connected to the HSD via two 50 pin flat cables. The
driver part is controlled by the strobe siqnal [selinstbl,
and is enaoled whenever the data-status is to be sent to the
HSD.

4.4.2 NTT stage/ bntterflv counter
The NTT Stage/ Buttefly Counter (NSBC) serves a dual

purpose. Durxnq tne data-transfer between convolver and HSD,
it counts the number of pixels and durinq the convolution
operation it serves as a stage and butterfly counter. This
is also referred to as tne I/O Data Counter.

This Id-bit NSBC is a synchronous counter and is made
up of five IC-74S163. Durinq an I/O transfer this counter is
controlled by tne interface loqic and indicates when the
specified number of data have transferred. When the filter
is set to perform the convolution, i.e., wnen [filon=11, the
butterfly counter is used to qenerate the count for the
14-staqes (7 lor forward and 7 for inverse) a of 123x128
transform.

When used as the NSBC, it generates a 6-bit column ad­
dress, a 6-bit row address- and a 2-bit word audress. These
address oits are used to compute the fiead/Write addresses of
data items from and to MEH 1 and M EM 2 for the current but­
terfly operation. The remaining 4-bits are used for the
stage count (1-14).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
The NSBC forms a modulo (2**14*9) counter, and

qenerates the addresses in a serial fashion such that data
are always (N/r**2) apart as required by the OIOO-NTT alqor­
ithm. The additional count of 9 is required to complete the
Head/Write operation at each staqe. Out of the 4-bits used
for the staqe count the dSB determines whether the forward
(0) or the inverse (1) operation is beinq performed. At the
end of the filterinq operation, a siqnal [clrrunif] is qen-
erated to clear tne [rilstart] rlip-flop and to terminate
filterinq [filon=0 1. At this time the filtered imaqe is
available in HEd1,to be transrerred to the SEL via the HSD.

Durinq the transcer of either Imaqe data or Coefficient
data between the HSD and the convolver, the counter qener­
ates the address of MEH1/ TCOFMEM to store or retrieve the
data from dEfll/TCOFSEd. This process proceeds in a sequen­
tial rashion and at tne end or the data transfer of
(128x128) points a siqnal ffilinaatacomp 1 is qenerated which
inhibits furtner transfer operations between the HSD and the
convolver. Tne NBSC is cleared at the beqininq of each
transfer operation from the siqnal supplied by HSD.

4.5 INTEHFACE CONTROL LOGIC
The interrace control loqic qenerates the siqnals re­

quired for data transfer between the HSD and the convolver.
Two Kinds of siqnais are recoqnized: FILFONCRDY, PI1FUNCACK,
FILINRDY and FI LI HACK control the data transfer from the HSD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

to convolver while FILOOTHDY, FILOUTACK, FILSIATHDY and
FILSTATACK control the transfer of data from the convolver
to USD.

Whenever a new filter function is specified, the
[filfuncrdy1 qoes uiqh and with the next [mclk50] the six-
bit function is loaded in the filter-function reqister.
Tnree of the six Dits specify one of eiqht possible func­
tions:

No Operation
Load Imaqe data in (Buffer 1)
Load transfer of filter coeff in

Load memory for displayinq imaqe
Send filtered imaqe to USD
Send diqitized imaqe from camera

Clear butterfly Counter and send
Filter status to USD
left for future use

The fourth bit Cliifunc3] determines whether or not the
convolution process has been requested and, at the end of
the filterinq operation, clears [filstart] at which a new
filter-function may be loaded to the til-func-reqister.
There is no provison ror external Interrupts, and once the
filterinq beqins, there is no data transfer between the USD
and the convolver until the end of the filterinq operation.

1. NOP (000)
2. LDIMG (001)
3. LDCOF (010)

(Tcoeff dem)
h. LDDSP (011)
5. SDFILDT (100)
6. SDCAMUT (101)

to HSD
7. CLRNCNT (110)

8. NOP (111)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81
This ,however, does not affect LDOSP and SDCAMDT since the
operations they control can be performed independently.

4.5.1 LDIBG operation
Wnen LDIHU is true, the sequential loadinq or the imaqe

data is enabled. After the [filinrdyl siqnal is active,
and if no previous function is beinq served, then a 40 nsec
pulse is qenerated whicn enables asynchronous data transfer.
The data from the SEL-bus are transfered to the filin-reqis-
ters (32-bit) and from there the data is demultiplexed and
written into MEM1. The counter starts countinq at the beqin-
inq of the data transfer and is sychronised with the rate of
data transfer. Tne demultiplexing and w n t i n q into memory is
completed berore the next data arrives. The 4-byte data is
always written to memory in the sequence Most Significant
Byte to Least Significant Byte (bits 31-24 to bits 07-00).
The siqnal f filinack] is sent to tne HSD to acknowledge the
completion ordata transfer.

4-5.2 LDCQF operation
When LDCOF is true, the least significant 24-bits of

the data are transfered in the same fasnion as above for
LDIMG. The 24-oit word is formed by reducing the indices of
the transform of coefficients corresponding to the set of
sub-moduli 62 and 63, as indicated in s e c - (4.6.6).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82
4.5.3 CLBHCHT operation

This is a special type of function performed by the
filter to inform the HSD status of the filter. Whenever sta­
tus information is requested the CLRMCNT siqnal is made true
by sendinq the siqnals from the HSD. The filter then tran­
smits a 5-bit data pacK on 32-bit lines indicatinq FILON,
NTTB,ISTAGR0,ISTAGR1,ISTAGR2. This informs tne HSD as to
whether or not an I/O operation is to performed.

4.5.4 SDFILDT operation
When SDFILDT is active low, the data from the MEH1 is

sent to the HSD. T h e .riltered output for each data point is
a 16-bit word and is multiplexed to form a 32-bit word for
fast I/O operation. The counter keeps track of the number of
pixels sent to the HSD.

4.5.5 SDCAMDT operation
This function implies a transfer of data from the fil­

ter to the HSD when the data is obtained from a camera (Vi-
deo-diqitizer). Tne camera output is a 8-bit word. The cam­
era multiplexer [rocaramux] multiplexes four 8-bit outputs to
form a 32-bit word for fast I/O operation throuqn the HSD.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

4 .6 HBHOBT BOFFBBS

The block diagram of the memory buffer arranqement used
in the convolver is shown in Fiq- (4.3). The fiqure shows the
main memory buffers (MEM1 and HEM2), The Twiddle Factor Me­
mory (TFMEM) EPROMs, the transform of the coefficients memo­
ry (TCOFMEM), and the associated logic for the generation of
Read/write addresses.

1. MEM 1 and MEM2 are organized in 16Kx20 bits each and
store tne input data and the intermediate results of
the butterfly operations.

2. TFMEM EPROMs store the indices of 128 residues of
(t>**k) for k=0,1,2, 127 corresponding to the
set of sub-moduli, 62 and 63.

3. TCOFMEM is orqanized as 16KX24 bit and stores the
128x128 indices of NTT of the given filter xernel
corresponding to the set of sub-moduli 62 and 63.

4.6.1 Memory Hrite Address Generator
The output of the Butterfly counter is also used to

generate addresses for Read/Write operation from and to
MEM 1, MEM2 and TCOFMEM. Because of the pipelining structure
of the Butterfly unit, there is delay of pulses between
the input and tne corresponding output. This means that out­
put of the butterfly counter must subtract 'J to qenerate
correct memory addresses. As required by tne OICO-NTT algor­
ithm, data are always written in a block of 64x64 with a

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

From 18r i u H /
Stage/Butftei
fly Counter

He story

Write

Address

Cencrator

Memory

Read

Address

Generator

TF/COFF

Address

Generator

14
-/■

14
V -

HEMl
Address
MUX/
Control

MEM2
Address
MUX/
Control

TF
EPROHs

CDFHKM

I

I

Fig. (4.3) Memory Organization In tiie Convolver

~t— HEM1 DO

DI

20

20

14
DO

MEH2

DI

20

HEMOUT

REG.
20

TFCOF

-/■— From Interface
Logic

Data From
Interface
logic

8

20

MEH1
DATA
MUX

To Butterfl:
UNIT

To Butterfly
Unit

Data From
Butterfly
UNIT

85

configuration [((0,0) , (0,64), (64,0), (64,64)}, {(0,1) ,
(0,65),(64,1),(64,65)} 1 and this configuration is ob­
tained by.......... using the signals
[I30N5—IROSfO ,ICOL5-ICOLO, IWORD1-IWORD0 1«

4.6.2 Memory Head Address Generator
The addresses of the data points participating in a

butterfly computation depends on the block address within
the imaqe (there are 4 blocks) and a sub-block address
within the specified blocic. The stage-decoder and the but­
terfly counter are used to control the Hemory-aadress gener­
ator. The f utem-ad-qenl multiplexes the output of tne But­
terfly Counter in sucn a way that a correct memory read
address is generated during each stage of the NTT and the
INTT operations.

4.6.3 Twiddle Factor/Trans, of Filter Coeff. Addr-
Genrator

The TF/TFCOF Address generator generates three types of
addresses:

1. TCOEMEM address required for storing tne NTT of the
filter coefficients into TCOFMEM

2. Address required for accessinq the twiddle factors
from tne memory durinq tne NTT and the INTT opera­
tions

3. Address required for accessing the transform of tne
filter coefficients from TCOFMEM durinq the final
stage of the forward NTT computation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Due to the pipeline implementation of the Butterfly
unit, a delay of 6 clock cycles between the output of the
counter and the output required by the address qenerator for
TCOFMEM must be introduced. Also, due to the the access tine
of the TF EPROMs, the TF address must be qenerated one cycle
ahead of tne TCOFMEM address. The transform of the coeffi­
cients is pre-shuffled and is loaded in TCOFMEM in such a
fashion that they can be addressed sequentially for multi­
plications by the transform of the imaqe.

The OIOO-NTT alqorithm requires three different values
of tne Twiddle factors for each butterfly operation depend­
ing on the row index .i, the column index i, and the sum
(i+i) and the stage of tne butterfly. These indices are qen­
erated by masxinq the output of the staqe decoder and are
then multiplexed to qenerate the correct addresses for the
Twidule Factors.

4.6.4 Memory Address Multiplexer
while MEM 1 stores the input image, tne filtered output and
the intermediate staqe results, MEM2 only stores the results
from intermediate stages. The Memory-add-multiplexer selects
the memory bufrer and the operation (Read or Write) itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87
4.6.5 Bemorv Buffer HBB1 and BBH2

The memory buffers MEM1 and MEM2 are orqanized as
16Kx20 bits where bits (19-10) are reserved for residues
corresspondinq to tne modulus 641 and bits (9-0) are re­
served for residues corresponding to the modulus 769. The
Dynamic Memory Controller (DMC1) qenerates the row/column
addresses tor MBM1 and maintains the proper timinq siqnal
durinq read/write and refresh operations. Since only one of
the two memories, MEM 1 or ME M2, gives the output at any
time, the two outputs are wire Ofled to [mem-req]. The input
data to MEM1 is written oyte oy byte throuqh the [filin-mux]
from the HSD at the .beqininq of the convolution process.
MEM2 is controlled oy DMC2 and the necessary addresses for
this buffer are generated by the [mem-add-mux1-

4.6.6 Memory Buffer TCOPMBH
Tne memory ouffer TCOFMEM is orqanized as 16Kx24 bits

and stores the indices of the residues of the NTT of the
coefficients. The indices of each residue are computed with
respect to sub-moduli 62 and 63 in software and combined to
form a 24-bit word as snowu below:

The TCOFMEM is also controlled by the dynamic memory
controller. Tae data input to this buffer is throuqh
ftilin-mux 1 from the HSD. The output of this buffer is con­
nected to the TFCOF Register and is wire ORed with the TF
EPROMs, since only one of the two is enabled at any time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

residue of 7b9 | residue of 6 m
23 18|17 12|11 6 |5
index with I I index | index
respect to | index w.r.t.| w.r.t. I w.r.t.

63 | o2 | 63 | 62
I I I

4-6.7 Twiddle Factor B PBOHs
The TF EPROMs store the indices of the powers of the

generator for the set or moduli 641 and 769. The format for
storinq these indices is same as that for indices in
TCOFMEM. Tne EPROMs used are IC-2732A. The addresses 0-127
and 128-255 store the indices correspondinq to the various
values of 6**k and S**-K respectively.

4.7 THE BUTTERFLY OMIT
The Butterfly Unit (3U), F i q - (4.4), consists of binary

adders/substracters (Am2517), Look-up tables (EPROMs), and
standard 8-bit Schottxy TIL reqisters. The transform opera­
tions, correspondinq to moduli 641 and 769, are performed in
parallel. The residue representation and tne operations of
addition and subtraction are perxormed in 2's complement bi­
nary. Thus, a residue between fO, (pi-1)/2) has the same
representation as binary and the values between {(pi*1)/2}
and {(pi-1)} are represented as (2**10-Xi) where Xi is the
residue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

As discussed in sec-(3.2), the implementation of the
butterfly requires the implementation of the xollowinq equa­
tions:

A(i,i) = r a(i,x)+d (i, j)+a (j.i)+a (j, j) 1
A (i,.1) = [a (i, i) - a (i # j) +a (-j ,i) - a (j , 1)]• (&**m)
A(j,i)= [a (i#i)+a(i, 1)-a (j,i)-a(j,j)]. (S**n)
A (1# i) = [a (i,i)-a (i, i)-a (i,i) +a (j,j)]. {&** (m+n) }

i = 0 ,1,2,-..63; 1=64,65,___127
where m and n depend on the staqe and the loca­

tion of the butterfly beinq performed.
The butterfly operation is performed in 8 staqes and

these can be reduced to three basic steps:
1. Pipeline staqe 1 and 2

Staqe one (reqister K11) is used to buffer the
input to the 1st adder/subtracter and staqe two (re­
qister K 12) delays the first data by a clock pulse
while the second data is stored in reqister R22. The
result of acidition/substraction is computed (11-bits)
and is stored into 3rd staqe reqisters R13 and R23.

2. Pipeline staqe 3, 4 and 5
These pipeline staqes provide buiferinq of the

data between the 1st and 2nd adder/subtractor. Staqe
3 and 4 store the result of the pair or additions and
suntractions. The reqisters (R14-R44) in staqe 4 act
as buffer and the desired output is obtained by con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
nectinq the inputs at this staqe to two inputs of the
2nd adder/subtractor unit. The output of these opera­
tions is obtained in staqe-5 reqister (R15) which, in
turn, feeds staqe 6.

3. Pipeline staqe 6,7 and 8
These staqes fora the aain computation unit

(multiplier) usinq the submodular looK up approach.
In staqe 6, the EPBOMs perform the error correction
and compute the index correspondinq to the sub-modu­
li 62 and 63. The data for these EPROMs have been
qenerated usinq tne software on the SEL -32/27.These
indices are added to the indices of either the Twid­
dle Factors or of the Transform of the coefficients
in staqe 7 throuqh the use of Index-add-look-up ta­
bles. The output of these EPROMs is stored in reqis­
ters (R17 and R27) at staqe 7 and is fed to staqe 8
to obtain the reconstruction throuqh the use of the
Reconstruction/correction table. The EPROMs at these
staqes nave been proqrammed usinq the software pro-
qratns (ECILUT,TABLE, and REC0N1).

At the risinq edqe of the HCLKOO the BU output Decomes
available at staqe-8 reqister (R18) which is then stored in
either MEM1 or MEM2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PIPCLXI

I*— 300 na-<|* 900 na <1

PIPCLK2

PXPCLK3

PIPCUC4

PIPCLKS

P IP C L X 5

L

r
L

PIPCLXl PXPCLK12
prpcxja

£ >PXPCLK3 ,
-* PXPCXX34

PXPCXX4

Fig. (4.5) Tha Pipalina Timing Diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

4.7.1 Pipeline Timing
The basic timing siqnals and tne pipeline clocks are

derived iron the system clock MCLKOO. The MCLKOO is buffered
and tne delayed clocics are obtained as MCLK010 through
MCLK050. These clocks are used to stobe the data into pipe­
line staqes 8,7,b, and 5. The MCLK050 is used to qenerate 4
non-over lappinq clocks PIPCLK1,PIPCLK2 , PIPCLK3 and PIPCLK4
havinq a period of 1200 nsec throuqh the use of a decade se­
quencer and delay units. The PIPCLK's are also used to qen­
erate two other clocks PIPCLK5 and PIPCLK5 which are used to
select different pipeline reqisters in staqes 3 and 4, and
also to control the 1st and 2nd adder/subtractor staqes. A
timinq diaqram of these clocxs i s shown in Fiq.-(4.5).

4.8 RESIDUE TO BIMABY CONVERTER
The output obtained from the nutterfly unit is in the

RNS representation {nod 641 and mod 7b9) with each residue
represented in 2's complement form. A Residue to Binary
(n/B) converter, Piq-(4.6), is used to obtain the final re­
sults. It utilizes the flixed-Radix conversion method [3 1
for R/B conversion (sec-2.7). The desiqn uses a pipeliniuq
approach such that the final result can be transferred to
the HSD at the maximum possiole rate (1.2 usec/32-bit word).
The auders/ subtractors used are binary adders and the fixed
multiplication is performed via look-up tables. The output
of the R/B is a 16-bit number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with

U

V

<N

O

UOuu
>aa>*w
(9S

913■O
OSa A

V 0) H3 ** 3 sr■O 3 n g •4 3a *3a 3ctf x

ON 0)sO 3 3 3 r*

«

pennission o f ,he copyright owner. Further reproduction prohibited without permission.

10
us

de
la
y

el
en

en
t

The R/B converter unit is made up of 4 pipeline staqes
and it receives input from the butterfly unit output stored
in MEM1. The pipeline timinq pulses are qenerated from the
delayed clock MCLKOO. The staqe 1 reqisters (R11,R21) are
used to buffer the output of MEM1. In staqe 2, the residue
mod o41 is substracted from the residue mod 769. The result
is then stored in staqe 2 reqister (B12). Also an EPROM is
used to convert the 2's comlement representation of the re­
sidue, a1, for modulus 6h1 into a positive binary represen­
tation (1b-bit). The result is stored in reqister (H22). In
staqe 3, a look-up table is used to convert the 2's comple­
ment output of the previous staqes into a positive residue
with respect to the modulus 769. This residue, a2, is then
multiplied by 6h1 to qenerate a 19-bit product. The most
siqniricant 15-bits are taken as the result (in reqister
R13). These staqe 3 steps are combined toqether and the
result is obtained from the EPROMs. The EPROMs are proqram—
med usinq the software proqram RSBCN on the SEL computer-
Also, the content of reqister R22 is transferred to the re­
qister R23 in staqe 3.

Staqe h of the S/B converter computes tne value of
(a2*p1+a1) by addinq the output of staqe 3 via the adders.
The addition is performed by addinq the 1b-bit output for a1
to the 15-bit output from a2*p1. The result is then sent to
frbcam-muxl to multiplex two consecutive 16-bit words into a
32-bit word and is finally sent to the HSD. The final result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a positive numuer in the ranqe {0, 769*641/4} and a cor­
rection is applied in software to obtain the true 2's coa-
pleaent representation.

4.9 USING THE CONVOLVER
He have described the nardware and functional details

of tne convolver in this cnapter. This section describes the
steps in usinq the filter. The explaination of the various
software available is qiven in Appendix-(C) The follovinq
steps must be carried out:

1. Desiqn a two-dimensional Finite Impulse Response
(FIR) filter .with a relatively smaller kernel size
than the dimensions of tne imaqe to be filtered, fit
was mentioned in s e c - (2.2) that to avoid the wrap-a­
round error, the transform lenqth must be chosen to
be d ^ N+L-1, where N and L are dimensions of the in­
put sequence and the filter kernel respectively. In
the use of the convolver, which performs a 128-point
transform, the wrap-around error can be completely
eliminated if and only if, the sum of non-zero se­
quence lenqths at the input is less than or equal to
129. However, if the use of the convolver is intend­
ed on an imaqe of size (128x128), then it is advanta-
qeous to have a filter kernel as small as possible
(to have smaller wrap-around error). Alternatively,
the actual imaqe must be reduced to a smaller size by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

substitutinq appropiate number of rows and columns by
zeros.] Store these coefficients in a file. Let us
call tnis file as COfiPP. Mote that the available
software is written for an imaqe size of (128x128)
and an filter size of (17x17). The software can be
modified to include other sizes of the filter kernel.

2. Use the proqram SCLCOF to achieve a proper scalinq
factor and multiply the coefficients with this scal­
inq factor so that the NTT of the coefficients is
represented by 12-bits or less.

3. Use the proqram NTCOEF to find the NTT of the coeffi­
cients usinq the moduli 62 and 63 and store the out­
put in a file, say NTTCOF.

4. Use the proqram CONFIL to do the followinq:
a. Transmit the imaqe to the filter
d . Transmit tne NIT of coefficients to the filter
c. Receive the filtered imaqe after processinq

5. Use the proqram DSPSIrtG to display tue oriqinal and
the filtered imaqe on the Aydin Graphic terminal.

We have combined all these steps in a s m q l e Command
File ’’FILTER" and a new user can simply type the followiuq
on the console (when in FILTER directory) to use the convol­
ver:

TSM> FILTER IdAGE CCEFF OUTPUT <cr>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where IMAGE is the name of the imaqe to be filtered, COEFF
is the coefficient-file name, and OUTPUT is the output file
name in which the filtered imaqe is stored- The processinq
takes place as described above. The software referred above
is available in directory ‘FILTER1 on the SEL hard-disk, and
the hardcopy of the proqrams is available in [29].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter V
FILTERING APPLICATIONS AND FILTERING OF LARGB

MATRICES

5.1 INTRODUCTION
The filterinq of Imaqes and other inherently two-dimen­

sional siqnals is an important part of imaqe processinq and
pattern recoqnition. In most applications, filterinq is
used tor pre-processinq of the imaqes from which certain
features have to be extracted. For example, by the use of a
boundary enhancement filter, certain reqions in an imaqe can
be isolated and the features such as area, centroid, etc.
can be calculated for that particular reqion. Similarly, in
the case of detection or a faulty part in an auto-assembly
line, a template matchinq alqorithm is applied to the fil­
tered imaqe. The filterinq of the imaqes, thus, plays an
impottant role in imaqe processinq and pattern recoqnition.

In this chapter, we illustrate the application of fil­
terinq on test imaqes. We present a simple and approximate
frequency domain desiqninq tecnnique for Finite Impulse Res­
ponse filters. We also obtain filtered imaqes usinq the
same filter Kernel by three different software alqorithms,
namely, direct convolution, filterinq usinq the FFT and fil­
terinq usinq the PNTT. Next, we describe the filterinq of

- 98 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

imaqes of dimensions larqer than the basic block size in a
limited memory system- This block-mode filterinq alqorithm
is discussed in detail. The choice of the basic block size
affects the filterinq speed and theoretical comparisons for
this trade-off are presented.

5.2 FILTEBIMG OSIMG TflAMS FORM TECHNIQOES
The use of transform domain techniques in diqital fil­

terinq is attractive only when a fast alqorithm is employed
to compute tne transform. The transform must have the Cyclic
Convolution Property (CCP). The use of transrorm technique
for filterinq involves tne follovinq steps:

1. Takinq the transform of the qiven sequence
T: X(k1,k2) = 1 1 x(n1,n2) . {W** (n1k1+n2k2) } (5.1)

2. Takinq the transform of the qiven tilter-coeffi-
cients, h (n 1 , n 2) ------> H(k1,k2).

3. Multiplyinq the two transform domain representations
point by point to octain

1 (k1, k2) = X (k1,k2) .U (k1,k2) (5.2)

4. Takinq the inverse transform of the result X(k1,k2)
to obtain the filtered output
T ' : y (n1 ,n2) =-!£LX (k1,k2) . {w** (-n 1 tc 1-n2k2) } (5.3)

The sequence lenqths in above calculations must be
larqe enouqn to avoid wrap around error (sec-2.1). We em­
ploy a filter kernel of (17x17) size on tne pre-stored imaq­
es or (128x128) and obtain the results of processinq throuqh
the convolver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

5.3 1 SIBPLB TBCHMIQOB TO DBSIGH 2D-FIB FILTBBS
In this section we consider a technique to desiqn sim­

ple FIR filters in the frequency domain. The desiqn assumes
"bricK-wall'1 type filters with a cut-off based upon the re­
quirement of transmitted or reqected siqnal enerqy [17].
Whenever a time domain representation is required we find
this by invertinq the frequency domain desiqn. We stress
here that this would only qive an approximate filter kernel
(truncated to a certain size). We choose such an appoach be­
cause the purpose in this thesis is to show the application
of filterinq ratner than desiqn techniques.

5.3.1 determination of cut-off based ofl energy
transmissions f 161

It is possible to compute the Enerqy content of an im—
aqe by takinq its fourier transform, and computinq the maq-
nitude square of tne coefficients,

E(ic1,k2) = | I(x1,k2) |**2 (5.4)
= f Re {1}]**2 + r Im (X) 1**2

so that the total enerqy (Parseval's theorem) would be pro­
portional to

Et = 2, ? £ (k 1, k2) (5.5)K| Kx
Assuminq that the transform has been centered, a circle of
radius r with oriqin at the center of the frequency square
encloses q(X) of total enerqy, where

q(X) = 100*f]>}£E{k1,k2)/Et1 (5.6)
K| *2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

and the summation is taken over the values of (k1,)c2) which
lie inside, or on the boundary of the circle.

Convecsely, if the desired amount of filtered enerqy
(pass or stop) is specified, it is possible to determine the
radius r which encompasses tnat amount of enerqy. This radi­
us can be used as the cut-off frequency to desiqn a stan­
dard filter. We define a standard filter such as a Butter-
worth Hiqn Pass filter (sec-5.3.3) throuqh an explicit
mathematical expression. The time domain representation is
obtained by takinq the inverse Fourier transform of tne
coefficients. This filter is truncated to a reasonable size,
which introduces some error (Gibb's oscillation). For the
purpose of illustratinq the use of the filter, this error is
acceptable.

Also, in all cases described below, the filters are
functions which affect the correspondinq real and imaqinary
components of the Fourier transform in exactly tne same man­
ner. Such filters are referred to as Zero Phase Shift fil­
ters because they do not alter the phase of the transform.

5.3.2 Low Pass Filtering
Edges and other sharp transitions (such as noise) in

the qrey levels of an contribute heavily to the hiqh fre­
quency content of its Fourier transform. It follows, there­
fore, that blurriuq can be achieved via the frequency domain
Dy attenuating a specified range of hiqn-frequency compo-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

nents in the transform of a qiven imaqe (passinq the low
frequency components). The filter coefficients can be ob­
tained by specifyrnq the cut-off and the nature of the curve
(Fiq.5-1) to fit in one of the followinq standard filters:

1. Ideal Low Pass
'1 if D(k1,k2) ^ Do

H{k1,k2) = J
J) if D (k 1,k.2) > Do (5-7)

where Do is the distance from the center to
cut-off frequency locus, D{k1,k2) is the distance
from point (k1,k2) to the oriqin of the frequency
plane, i.e.,

D(it1,k2) = s/{k 1**2 + k2**2)
This is a filter with sharp cut-off.

The sharp cut-off frequencies of an ideal low-
pass filter cannot be realized with electronic compo­
nents, althouqh they can be simulated The choice
of a small Do results in pronounced blurrinq and
rinqinq.

2. Butterworth Low Pass
1

H (k 1,k2) ------------------------------------ (5.8)
1 + 0.U1U * fD (k1,k2)/Do 1**2n

where n is the order of the filter, and the cut-off
xs defined at (1/ 2) of the maximum value of
H(k1,k2). This is a smootn filter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. (5.1) Radial Cross-section of Low Pass Filters
(a) Ideal 0E>) Butterworth (c) Exponential

/ * 3

HOc^ka) H0clfk2)

-*■ D

Do

H(klfk2)

Do

HCk

1“

0.5 0.5

D D

Fig. (.5.2) Radial Cross-Section of High Pass Filters
(a) Ideal Chi Butterworth (c) Exponential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104
3. Exponential Low Pass

H(k1,k2) = exp [- {(D (k 1 ,k2)/Do} ** n 1 (5.8a)
This is smooth falter and the n controls the rate of
decay of the exponential function.

5.3.3 High Pass Filtering
Since edqes and other abrupt chanqes in gray levels are

associated with hiqh-frequency components, imaqe sharpeninq
can be achieved in the rrequency domain by a hiqh pass fil­
terinq (Fig.5-2). The method of qeneratinq the coefficients
for a hiqh pass filter is same as in the case of low-pass
filtering:

1. Ideal High Pass

1 ♦ 0.414 * [Do/D (k1,k2) 1**2n
3. Exponential Hiqh Pass

H(k1,k2) = exp [- (Do/D ()c1,k2) } ** n 1 (5.10a)
where the symbols have tne same meaninq as in the last sec
tion.

if D {x1 , k2) > Do (5.9)
2. Butferwortn Hiqh Pass

1

H (k 1, k.2) (5.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106
5-3-4 Homo-morphic Filtering

The illumination-rerlectance model [16 1 of an imaqe can
be made the basis foe a frequency-domain procedure that is
useful for improving the appearance of an imaqe by simulta­
neous brightness ranqe compression and contrast enhancement.
The illumination component of an imaqe is qenerally charac­
terized by slow spatial variations. The reflectance compo­
nent, on the other hand, tends to vary abruptly, particular­
ly at the junctions of very dissimilar objects- These
characteristics lead to associate [17] the low frequencies
of the Fourier transform of the alqorithm of an imaqe with
illumination, and tî e hiqh frequencies with reflectance.
Althouqh this is a rcuqh approximation, it can be used to
advantaqe in imaqe enhancement.

The cross-section of the filter function for use in ho­
momorphic filtering is shown in Piq-(5.3). Tne mathematical
characterization of the alqorithm is as follows:

1. Find the natural loqarithm of tne input imaqe
2. Compute the transform of the imaqe
3. Multiply the transform with the filter coefficients
4. Compute the inverse transform
5. Find the exponential of the result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H(k1(k2)

D0t1 >*21

Fig. (5.3) Cross-section of a circularly symmetric
filter function for use in homomorphic filtering.

Fig. (5.4) The convolver hardware unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107
5.3.5 Examples of the I wage Filtering

The examples of Image filterinq included in this thesis
are obtained by the application of the following filters on
the original imaqes shown in F i g - (5.5) to Fiq-(5.8):

1. Fig - (5.9) to Fi g - (5.11) have been obtained by the use
of a Buttervorth high pass filter.

2. Fig-(5.12) nas been obtained using the filter coeffi­
cients of a high Fass filter available in the depart­
ment £ 29 1.

3. Fig-(5.13) to F i g - (5.15) show the result obtained by
applying tne same filter coefficients throuqh the use
of the convolver, the FNTT alqoritnm in software and
the FFT algorithm in soxtware.

h. Fig-(5.16) to F i g - (5.18) show the result of low-pass
filtering a y the application of a Butterworth low
pass filter. These fiqures also include the filter­
ing obtained through the use of other algorithms in
sof tware.

5. F i g - (5.19) shows the result obtained using a Homo­
morphic filter whose transfer function is shown in
F i g - (5.3); fi1= 1.2, H2= 0.5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

♦
A

Fig. (5.5) Image I. Fig. (5.6) Image 2.

Fig. (5 .7) image 3. Fig. (5.8) Image 4

Fig. (5.5) to Fig. (5.8) Original Computer Images.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ o f

Fig. (5.91 Fig. (5.10)

- 'V ' * * > • ■ C* > V * “ i ' *-, \ . v , ’v. o* £ . %’t ;■*•
rv v , -tvv '.£>*>??.; - -

*Y ■ r * ’ * .> ^ v
J. • T *- ^ ’ ** *" \ ~ - *., *

-1 ■
V T 1H 8 M M

H

' >
W '-<• '. '’ *

*

Fig. (5.11) Fig. (5.12)

Fig. (.5.91 to Fig. (5.12) Processed Images (High Pass Filtering)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / o

Fig. (5.13) Fig. (5.14)

Fig. (5.13) to Fig. (5.15) Original [Right top] and Processed Images
(High Pass Filtering) through the use of the
convolver [Left top], FNTT algorithm in software
[Right bottom] and FFT algorithm in software
[Left bottom].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p i

Fig. C5.18) Fig. (5.19)

Fig. (5.16) to Fig. (5.18) Original [Right top] and Processed Images
(Low Pass Filtering) through the use of the
convolver [Left top], FNTT algorithm in soft­
ware [Right bottom], and FFT algorithm in
software [Left bottom].

Fig. (5.19) Application of a filter function for use in
homomorphic filtering as specified in
Fig. (5.3) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

The time of processinq of an imaqe of size (128x128)
with a filter kernel of size (17x17) by three different
methods (applied throuqh software) is qiven in Table- (5.1).

Table-(5.1) Approximate Computation Time *
usinq different metnods of convolution in software
for imaqe-size of (128x128), 256 levels.

| Method | Processinq Time, sec |
t direct convolution I 1500 |I
I convolution usinq
| FFT

I 70 |
I I

| convolution using
I FNTT (in software)
1 #

I 193 |
I I ----------------------------------- ,I * I* Reported usinq SEL computer (Programming in FORTRAN-77

and excludinq File-I/O time)

5.4 FILTERING OF IMAGES OF LARGER DIMENSIONS
Next we consider the filterinq of larqer imaqes. A

common problem in sxqnal filterinq is that of filterinq a
siqnal of very lonq or indefinite length by an impulse res­
ponse that is of a short length. For image processing in a
limited main memory system, such as a mini-computer, it is
necessary to employ special techniques to improve the corapu-
taional efficiency when the whole imaqe to oe transformed
can not be accomodated in the main memory. A straignt for­
ward method is to store the data on a disk, find the trans-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113
form of rows, transpose the result and then find the trans-
fora of columns usinq the same computational element. Since
the processinq is performed takinq one array at a time from
the disk such a method is I/O bound and is very slow owinq
to the relatively slow disk access time. A more efficient
method is to section the input imaqe into smaller blocks
that can be accomodated in the memory of the computational
element and then either use the overlap-save or overlap-add
technique. This method, referred to as block-mode filterinq
[18], provides a very erficient means to compute two-dimen­
sional convolutions wnen the dimensions of the filter kernel
are small. An alternate .method has recently been proposed
by Kraats and Venetsanopculos [19 1 that is computationally
more efficient in certain instances, specially when the fil­
ter kernel size is comparable to the oasic block of the in­
put data. Since almost all cases of two-dimensional filter­
inq employ a much smaller filter kernel (N>>L), block-mode
filterinq is preferred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.S. b l o c k -m o d e f i l t e r i n g

The two-dimensional convolution is defined (eqn.2-1) as

j j
y(j» k) = £][h(j - m , k - n) f(m, n) (5.12)

n=0 m=0

We begin by proving a fundamental property of~two-dimensional

transforms and convolutions.

LEMMA. Given two matrices f(m, n) and h(j, k) , both of dimensions

D. by letr-the transforms of these matrices be X *
D 2~1 D l~1

F(r, s) = £][f(m, n) exp
n = 0 m = 0

D 2"l Dl_1
H (r, s) = I I h (j , k) exp

k = 0 j = 0

- i 2tt [rm sn
I d T d 7'•l 2 J

Then the inverse transform of the product of these transforms, that is
d 2 - i d x - i

y(j, k) =
°1 ° 2 s = 0 j = 0

I I H(r, s) F(r,s) exp

is equivalent to the convolution form

y (j , k) = I i M j -ra, k - n) f(m, n)
n=0 m=0

-D -1 D--1
+ I £ h(j + — m, k + D 2 - n) f (m, n)

n=k+l m=j+l
(5.13)

PROOF. The proof is similar to the proof for t-o We

substitute for H(r, s) and F(r, s) in the relation defining k) an^ have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d 2-i d x - i d 2 -i d 1 -i
y(j/k) I I I £ M p , 1) f (m, n)q =* 0 p*--0 n = 0 m = 0

d 2- i d x - i
r V i iU 1 2 s = 0 r = 0

exp . fr <j12TT --- - m - p) s (k - n - q) '

(5.14)

However, the double sum on the exponential can be written as

Di-1
I

D. D1 2 r =* 0
exp i.2ir r (j - m - p)

D 2-l
I

s - 0
exp i2ir s (k - n - q)

This is a product of two finite sums. Both sums have the orthogonality

property demonstrated by Helms [22], that is,

Dr 1
I exp

r = 0
i27T

r (j - m -p)
if j - m - p = tD_

0 otherwise,

V 1
I exp

s = 0
i27T s (k - h - q)

if k - n - q = tD.

otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115
All the indices in the first summation above are de­

fined over [0 rD1-11 ; all the indices in the second summa­
tion are defined over fO,D2-1l. As a result, in the two
summations we see that t=0 or t=-1 are the only possible va­
lues of t. As a result we can use (j-m-p=0) or (i-m-p)=-D1
to eliminate the summation on p in Eqn. (5-14); we can also
use (k-n-q)=0 or (k-n-q) =-D2 to eliminate the summation on
q in Eqn-(5-14). Eqn- (5-13) is the result, and the theorem
is proved.

Eqn. (5-13) shows a convolution summation with two
terms- The first term on the riqht-hand side is the desired
convolution in the form of Eqn. (5-12). The second term is
the so-called wraparound-error term, the term that results
from the inherent periodicity in the use of discrete Fourier
transforms. The problem of convolution with discrete Fouri­
er transforms is to force tne wraparound error to be aero.
The problem of block-mode filterinq is to decompose the con­
volution of Eqn. (5-13) into a larqe number of smaller convo­
lutions.

5.6 BLOCK-MODE FILTERING ALGORITHM
The followinq is the alqorithm for block mode filter­

inq.
1. Choose two numbers D1> J and D2> K-
2. The matrix n(i,k) is extended by the addition of rows

and columns of zeros to form a matrix hc(1,k), de­
fined as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J. Let b(m,n) be a block that is composed of the first
D 1 rows and D2 columns of i(m,n), that is,

b{a,n) = f(m,n) for 0<a,n<D1-1,D2-1
4. Compute the transforms of size D1 by D2 of he (1,1c)

and b(m,n). Fora the product of the transforms and
then compute the inverse transform of the products.
Call this inverse transform a matrix c(1,k) of size
D 1 by D2.

5. Part of c(j,k) .contains the vrapround error. We save
as valid data the submatrix of c(~j,k) defined by the
ranqe of indices

"j = d* 11J |. .. ,D1— 1 .
k = K-1,K,...,D2-1. This is a subma­

trix of size D1-J+1 by D2-K+1. The rest of c(j,k) is
discarded.

6. The procedure now splits into two alternative choices
for the construction of the next block.

Form a new olocn b(m,n) from f(m,n) of size D1
by D2 and such that the first J-1 rows of the new
block are the same as the last J-1 rows of the old
blocx. That is, cow D1-J+1 of the old block is row
0 of the new block, row D1-J+2 of tne old block is
row 1 of the new block,
and so on; or,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P 7

D-.

D,

M

Fig . (.5.211 Construction o f Blocks, tn Block-Mode F ilte r in g A lgorithm .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118
Form a new block b(m,n) from f (o,n) of size D1

by D2 and such that the first K-1 columns of the new
block are the same as the last K-1 columns of the old
block. That is, column D2-K+1 of the old block is
column 0 of tne new block, column D2-K+2 of the old
block is column 1 of the new block, and so on.

7. Repeat steps 4 throuqh 6 until either one of the fol-
lowinq conditions arises.

Row M— 1 of the picture f(m,n) is included in the
new block. Add rows of zeros to the new block, if
necessary, to make it of size D1 by D2 and repeat
steps 4 throuqn o. Now discard the first D2-K+1 co­
lumns of the picture x(m,n) and redefine the column
indices of the picture by subtractinq D2-K+1 from the
column index n of f(m,n). This defines a new picture
of size a by N-D2+K-1. Go back to step 3 and pro­
ceed. Or,

Column N - 1 of the picture x(m,n) as included in
the new block. Add columns of zeros to the new
block, if necessary, to make it of size D1 by D2 and
repeat steps 4 throuqn b. Now discard the first
D1-J+1 rows of the pacture f(m,n) and redefine the
row indices of the picture by subtractinq D1-J+1
from the row xndex m of f(m,n). This defines a new
picture of size M-D1+J-1 by N. Go back to step 3 and
proceed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119
8. Steps 3 throuqh 7 are repeated as directed until the

entire picture has been processed with the overlap­
ping blocks. The juxtaposition of all the submatric-
es saved in step 5, where the juxtaposition is formed
in the same sequence as the construction of the over­
lapping blocks, constitutes the filtered picture.

5-6-1 Wrap-around Error Consideration for First Block
It the first J-1 rows and the first K-1 columns of the

picture contain important information that must be filtered,
then the picture must be enlarged by 'padding* so that the
discard operations of .step 5 would not result in discarding
information that it was desired to filter. For example, a
new picture can be constructed by the following procedure.
Let f (m,n) oe tne extended (or padded) picture of size
J-1+M by K-1+N. The picture fc(m,n) is constructed as

where C is any constant. This extended picture is now used
in the eight-step procedure above, that is, whenever f (m,n)
is stated above, we replace it by tc (m,n). Similarly, we
would replace a and N in the eiqht steps above by rt'=J-1+M
and N'=K-1+N, respectively.

f(m,n) J-1,K-1<m,n<J— H-M,K-1+N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

5.6.2 Humber of Blocks to be Processed
Because the blocks must be overlapped, the picture is

not processed in blocks of size D1 by 02 • Successive
blocks are overlapped in both rows and columns. From tne
construction in step 6a, 6b, and 7a, 7b, we can see that the
total subset of the picture that is processed on any one it­
eration throuqh the eiqht steps is a submatrix of size
D 1-J + 1 by D2-K+1. Therefore, the total number of blocks to
be processed is qiven by

a*N
f a 1 = ---

(Dl-J+1)* (D2-K+1) (5.15)
The symbol Lai stands for the smallest inteqer qreater

than a. We use the smallest inteqer qreater than the ex­
pression shown because a iraction of a block must be pro­
cessed as one null block by paudinq out the fractional block
(step 7a or 7b). If we had used an extended picture, as
discussed in the previous section, then we would replace M
and N in Eq. (5) oy M'=D1-J+1+M and N ,=D2-K+1+N.

5-7 TIMING COMSIDERATION IN PROCESS IMG LARGER IMAGES
The number of arithmetic operations required in the

processinq of eacn block is proportional to the number of
computation involved in the 2-D transform domain technique
of filterinq. The total time for processinq depends upon the
number of blocks to be processed multiplied by time required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121
f o r e a c h b l o c x - p r o c e s s i n g . A l s o t h e n u m b e r o f o p e r a t i o n s

r e q u i r e d d e p e n d s u p o n t h e r a d i x o f t h e a l q o r i t h m a n d t h e n a ­

t u r e o f t h e b u t t e r f l y .

We derived relations between a 2-D-radix-2 and a
1-D-radix-2 transform alqorithm in se c - (3.8) and it was
shown that a saving of approximately 25* occurs when the
former implementation is used. The derivation in this sec­
tion are for a 1-D-radix-2 structure and the correction fac­
tor can be applied to obtain the computational efficiency
with respect to other butterfly structures.

Assuminq a 1-D-radix-2 alqorithm for fast transforms, a
sequence of D1 pornts.can.be transformed with a total of

N (fl) = (D1/2).log D 1 multiplications
N (A) = (3. D 1/2) -loq D1 additions

where multiplications and additions are complex when the FFT
structure is considered and are of real type when the FNTT
structure is considered for a single modulus. Use can be
made of the fact tnat the data are real, and thus in the use
of the FFT structure a 50 percent savinq in trme can be ob­
tained. Tne transform of an imaqe of srze D1xD2 requires,

N (d) = (D1.02/2) . {loq D1 ♦ loq D2)
N (A) = (J.D1.D2/2) . (loq D1 + loq 02}

S i n c e t o r c o n v o l u t i o n r e s u l t s , t h e r e a r e t w o t r a n s f o r m s (n -

s t a q e) a n d o n e p a i r w i s e p r o d u c t o f m a t r i c e s (o f t r a n s f o r m o f

c o e f f s w i t h i m a q e t r a n s f o r m) , t o t a l n u m b e r o f c o m p u t a t i o n

w o u l d be

Nc (d) = 0 1 . 0 2 . { l o q 01 + l o q 0 2 + 1}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122
Nc (A)= 3. D 1 • D2.(loq D1 + loq D2 + 1/3}

If (t1) is the time for an addition and (t2) is the time for
a multiplication then tne total time for processinq is,

t (b) = Oc (d) . (t2) + Oc (A) . (t 1)
and since there are B such blocks, the total convolution
time is,

T (conv) = B. t (b)
= D1.D2-C (loq D 1 * loq D2+1).(t2)

+3. (loq Dl+loq D2+1/3) . {1 1) 1
♦Intqf (M.H)/(D1-J + 1). (D2-K + 1) 1

(5.16)
This estimation only .considers the computation time. The
time required in retchinq tne data is not taken into account
xn this calculation.

It can be seen from the relation that it is possible to
vary D1 and D2 such that total filterinq time may be cont­
rolled. However D1 and 0 2 must be inteqer power of 2. Final­
ly, 01 and 0 2 must De cnosen such that matrxx (D1xD2) fits
into computer memory as a basic block. The best way to
choose D 1 and D2 is then to evaluate Eqn. (5.1b) for various
combinatxons and to choose (D1xD2) such that T (conv)• xs min­
imized subject to the condition tnat the data fits into some
allowable amount of computer memory. Such a tabulation is
presented in Table-(5.3) for (t1)= 1 usee., (t2) = 5 usee. ,

= (256 and 1024), and J=K= (17 and 25). It is observed,
as expected, tnat the larqer the size (D1xD2), the smaller
the time T (conv).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123
Table-(5.3) Processinq Tiae by the use of
different size of Basic Block (time in sec)
M=N=1024, J=K=25, t1=1 usee, t2= 5 usee

I
I
1 D1

D2 I
32 64 128 256 512 1024 |

j-----------
| 32 1442 630 526 509 519 541 |
J 64 630 274 227 218 221 230 |
| 128 526 22 7 187 179 181 187 J
| 256 509 218 179 171 172 177 |
| 512 519 22 1 181 172 173 177 |
| 1024
I

541 23 0 187 177 178 182 |
1

Table-15.3b) Processinq Time by use of Different
size of Basic Block (time in sec)
M=N=256, J— K = 17, 1 1 = 1 usee, t2= 5 usee

1 02 I
1| D 1 32 64 123 256

----1
I

| 32 22.5 16.4 15.3 15.4 I| 64 16.4 1 1.9 1 1.0 11.0 (
| 128 15.3 11.0 10. 1 10. 1 I
| 256 15.4
I

11.0 10. 1 10.0 I
I

5-8 COMCLOSIOH5
In tnis chapter, we have first described a simple and

approximate method of 2-D Finite Impulse Response filter de-
siqn. The test imaqes have been processed by four different
methods to obtain imaqe smoothinq and imaqe enhancemnt. The
steps in the use of block- mode filterinq alqorithm, used
for iilterinq of larqe imaqes, have been described and the
processinq time for typical cases have been tabulated with
reference to different sizes of the basic processinq block.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter VI
CONCLUSIONS

The objective of the research work described in this
thesis was to present an elaborate explaination of the
theory, hardware implementation, use and analysis of a two-
dimensional diqital filter. The filter hardware utilizes a
fast number tueoretic transform alqorithm for hiqh speed
processinq of two-dimensional siqnals. The main area of ap­
plication of this filter is in Imaqe Processinq.

The conclusions of this study are summarised oelow:
1. Desiqn considerations of a two-dimensional convolu­

tion filter has been described.
This includes the followinq:

a) Tne theoretical background necessary to un­
derstand the arcnitecture of the convolver (topics of
interests from the Residue Number System, the Number
Theoretic Transform, Fast alqorithm for the NTT,
2D-0rderea-In put- Ordered-Output NTT alqorithm for
butterfly implementation) has been described in de­
tail.

b) The nardware implementation of the filter has
been described. Particular attention has been paid to
the i up le mentation of the butterfly unit.

- 124 -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125
c) Tiie functional detail of each of the units in

the convolver has been described.
d) A s y s t e m a t i c w a y t o w r i t e t h e i n t e r f a c i n q

s o f t w a r e h a s b e e n d e s c r i b e d t a k i n q t h e e x a m p l e o f t h e

H i q h S p e e d D e v i c e (HSD) i n t e r f a c e t o t h e m i n i - c o m p u -

t e r SEL-32/27. A l s o , t h e u s e r h a s o e e n r e f e r r e d t o

t h e a v a i l a b l e s o f t w a r e t o o b t a i n t h e p r o c e s s i n q

t h r o u q n t h e f i l t e r .

2. The steps in the use of the convolver filter has been
described. A new user can desiqn his own 2-D FIR fil­
ter, store the coefficients in a file and can operate
this filter over any imaqe of size (128x128) pre­
stored in a file. Further all the steps in use of the
convolver have been combined toqether so that a new
user can use the n i t e r throuqh a simple command in
the format (in FILTER directory):

T3M> FILTER IMAGE COEFF OUTPUT <cr>

where IMAGE is input imaqe file, COEFF is the
coefficient file and OUTPUT is the output file.

The software has been written and modified to
make the convolver a user friendly device. A airecto-
ry of the available software is included in the ap­
pendix. The use of the convolver has been illustrat­
ed throuqh various examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126
3. Various efficiency analysis on the convolver have

been presented. This includes the iollowinq:
(a) 1 - D - r a d i x - 2 a n d 2 - D - r a d i x - 2 b u t t e r f l i e s h a v e

b e e n c o m p a r e d i n t e r m s o f t h e i r c o m p u t a t i o n r e q u i r e ­

m e n t s

(b) T n e m e m o r y r e q u i r e m e n t i n m u l t i p l i c a t i o n b y

t h e s u b - m o d u l a r l o o k - u p t a b l e a p p r o a c h h a s b e e n c a l ­

c u l a t e d .

(c) T h e C h i n e s e R e m a i n d e r T h e o r e m a n d t h e M i x e d

R a d i x C o n v e r s i o n m e t h o d f o r i m p l e m e n t a t i o n o f a R e s i ­

d u e t o B i n a r y C o n v e r t e r h a v e b e e n c o m p a r e d i n t e r m s

o f t h e i r h a r d w a r e r e q u i r e m e n t s .

4.
(a) T i m i n q d i a q r a m s t o i l l u s t r a t e t h e w o r k i n q o f

t h e n u t t e r f l y i n a p i p e l i n e i m p l e m e n t a t i o n h a v e b e e n

p r e p a r e d .

(b) T n r o u q n p u t r a t e s o b t a i n a b l e b y t h e u s e o f

s e r i a l s e q u e n t i a l a n d c a s c a d e p r o c e s s i n q (0 1 0 0 - a l q o r -

i t h m) w e r e c o m p a r e d . T h e p r o c e s s i n q s p e e d o f t h e c o n ­

v o l v e r h a s a l s o b e e n c a l c u l a t e d .

(c) T w o d e s x q n s c n e m e s t o i m p r o v e t h e s p e e d o f

f i l t e r i n q h a v e b e e n p r o p o s e d .

(d) A t a b l e o f m a i n I C ' s a n d t h e i r u s a g e i n t h e

c o n v o l v e r h a s b e e n p r e p a r e d .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

(a) A simple and approximate technique tor de­
sign of a 2-D Finite Impulse Response filter has been
discussed.

(b) The block-mode filterinq alqorithm used for
processinq of larqe matrixes has been described in
detail. Theoretical comparisons are made to illus­
trate tne trade-oif between speed and the size of a
basxc block when larqe matrixes are filtered throuqh
the use of block-mode alqorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

TWO-DIMENSIONAL o i o o -n t t a l g o r i t h m

In [lo]'a multi-dimensional algorithm for computing a cla»» of unitary

transforms is derived, following the development suggested m [*•«, 1 2).

Since tee NTT has the same structure as the DFT, the general ‘orivation [10]

can be applied when the'transforms are defined, in a ring 2 {Ml of integers

modulo M for a two (or multi-) dimensional array for (n^, n^l of size N

in each dimension.

F ^ , k2)
N-l N-l
I I

. y O n2-0
f(n1# n2) a

I n.k.
i=l 1 i

M
(A.l)

tilwhere a is the primitive N root of unity in Z(M). When the elements of

input and output arrays f and F are arranged in a lexicographical order,

the NTT of eqn. (A.l) can be written as

F » |t • f|M (A. 2)

2 2 * where T is a (N x N) matrix jperforming a Number Theoretic Transrormation

on the (N2 x 1) input vector f and yielding a (N2 x 1) output vector ?.

The transformation matrix T can be factorized into Kronecker

products of one-dimensional transformation matrix T^ D ° 1 oqn. (A.2)

could be written as

F = (tn 0 g • f|M (A. 3)

where 0 represents the Kronecker product and T^ is of size (N x N) with

XTelements t „ = a ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When N 3 rn is a composite number conditions [] hjlB »hown

that the transformation matrix can further be express^ -is : re Met of

submatrices as,
n

TN - T T u i(r) s*>
i=l

(A.4)

where r is the radix of factorization for T„.N
drop the super-script r to write

When radix—r is implied, we

n
rN TT S.

1=1
and then eqn. .(A.3) is expressed as

f %n
F =' IT RiI 1"! J

• f

where

R, = S. 0 S.i i i

M

(A. 5)

(A.6)

(A.7)

and r, the radix of factorization is implied.
To see what eqn. (A.6) implies, let us define [id] -i ^-^-dimensional

permutation operator 5^ as,

and % “ 1 n-i 8 P i r r (A.SI

where I denotes the identity matrix of dimension K'and ? is the ideal shuffleK

base-r permutation matrix operating on a vector of dimension X. *n eqn. (A.*l)
to (A.7) / ^ ^he weighting or twiddle operator spedfyir.c “ «lt;plica-

tions by the twiddle factors and is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 0

ui(r> = yi ” 1 n-i 0 D i ' 1 * 2. 3, n (*•»>

where

and

V k " qUiSl dia9(Vrk’ V L2k -,r-!iv'

I* a dia (Of nif 2m, . . . , ^ / —i, ■,) ®) m rx-i.

where an element t of the diagonal matrix represents the ictual

t (r)element, a , and S is a pre-weighting r-point transform operator given by

(r) S ■ 0 TN/r r (A.1Q)

T = r

0 0 0 --------- 0

0 N/r 2 N / r --------- (r-1) N/r-

0 2n/r 4 N / r ----- ■---- 2 (r-1) N /r

0 r-1)~ 2 (r-1) | - - (r-1) N / r

(A.11)

where an element of t or represents the matrix element, d

now si-i ■ s • q i i =• 2. 3, •••, n

S = S n

and

then for i / 1

1*1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thus

~ ^ ~ ^ 3| n
when

s ' - IH/r2 0 T r 0 Jr
and, R i _ 1 = S j,_1 Q s ±-1 i = 2, 3, . .., n

- Cq± s') 9 (q± s')
= (q ± x q ±) (s ' 9 s ')

6 i * *S# ® i = 2, 3, ..., n (A.13)

Rn “ 3n 0 Sa
= S 0 S (A.14)

which shows that the operator . R. 1 (i / 1) always operates over data which are1*" «1»
N/r2 words apart. In the first iteration, however, the operator R operatesn

on data which are N/r words apart.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B
PROCEDURE TO USE AM HSD DEVICE OM SBL

MIVI—COMPUTER

EXAMPLE: NTT-Convolver
The two-dimensional NTT-Convolution filter is inter­

faced with tne SEL-32/27 Mini-computer through a High Speed
Data (HSD) interface. The data I/O rate through the use of
the HSD are considerably high (1.2 usee/ 32-hit word) and
the interfacing procedure is different than that of an
RS-232 port.

The HSD handler is a software component which provides
qeneral device support for user devices connected to MPX-
based series-32 computers. The handler design is based on
the notion that the HSD (hardware) acts as a controller. The
HSD handler provides a software interface between MPX-32
Tasks and the HSD. Tne I/O requests could be accepted in
either of two formats:
a) File Control Block (FCB) Format
b) STAHTIO Format

FCB Format
The FCB interface is designed to permit a device com­

mand and/or a data transfer to be initialized as a result of
a user reguest. An FCB is created with the address of data

- 132 -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133
and the transfer count is mentioned in the FCB. EXPANDED FCB
mast be used and such could be done usinq M.DFCBE in-built
subroutine. A call is qiven to IOCS H.EXEC module in form of
•Service Call (SVC)*. The handler constructs first con­
structs loqical IOCL, takes care of crossinq of map blocks
and then converts them to physical IOCL. An example is il­
lustrated below:

Makinq an FCB Format I/O request to HSD handler

EXECUTE ASSEMBLE (in assembly lanquaqe)

BOUND 4 . FCB to start at word boundary
M.DFCBE HSDFCB,NAME,0,XARRAY,,,NUT,,DFI,,,,,,,,, HMNWT,EBN WT

LA 1,HSDFCB Load address of label in Req-1
S7C 1,X'nn' Service call number

w here
HSDFCB is the label qiven to expanded FCB
NAME is the Loqical File Code (LFC) to which I/O

is to be performed
XABRAY is tne name or data array
NUT,...etc are the available options for NOMAIT, EREOB PROCESSING,. . e

STARTIO Format
In this format the user can create his own IOCL by me­

ans of data statements. Information can be stored into these
IOCL * s later by separate instructions. Usinq his own IOCL,
the user creates an FCB and uses EXECUTE CHANNEL PROGRAM
format for this FCB. The address of IOCL is qiven as input
in the FCB. A STARTIO nas to be issued then to request Ser­
vice Call. An illustrative example is qiven below:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134
EXECUTE ASSEMBLE

IOCL GEN 8/X'A2*,8/X'30*,16/0 (1010 0010 0011 C000 00...)
GEN 32/M(DATA)
DATAD 0

BOUND 4
H.FCBEXP HFCB,NAME,IOCL,0 #,,,,,EBHOR

LA 1,HFCB Load add. of HFCB
SVC 1,X'25‘ Channel prcqram no.25 is for EXECUTE

CHANNEL PROG NAM Request of the Handler.

Tnese calls also can he made usinq FORTRAN statements
'CALL H.IOCS,n' vnere n stands for the operation process
number.

A Sample procedure for Data-transfer between
SEL and Convolver

The various possible transfers are :
1. Transfer of NTT of Filter Coefficients to the Convol­

ver
2. Transfer of Imaqe data
3. Transfer of Command
4. Transfer of Filtered imaqe or Camera input from Con­

volver to SEL
We will describe the above transfer and tne handler di­

rectives. These interfacinq proqrams have been written in
Assembly Lanquaqe.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

1-TKANSPEB OP NTT OP FILTEB COEFFICIENTS

It may be noted that the filter coefficients are multi­
plied by a proper scalinq factor and are made inteqers. Tue
NTT of the filter coeff. is taicen and is reduced to modulo
62 and 63 (6-bits each) and a 12-bit word for each moduli
(total 24-bit) is sent to Coefficient Memory of the Filter
throuqh the subroutine LDCOEF. The follovinq is the descip-
tion where a word of 32-bit (with d-MSBs as zero) is sent to
the convolver.

CALL LDCOEF(IDAT,I2H1,IER2,IOCM)
4

where IDAT is name of the Data-array
IEK1 is the status of the handler posted in FCB
IER2 is the status of device posted by handler in

I0C1
IOCM is tne parameter to indicate I/O operation com­

pletion

The IOCL used for this purpose is qiven as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 3 6

EXECUTE ASSEMBLE
IOCL GEN 8/x'A2',8/x'30»,16/0

GEN 32/W (DATA)
DATAD 0
GEN 8/x'02',8/x'20',16/x'4000'
GEN 32/0
DATAD 0
GEN 8/x'A8',8/x'00‘,16/0
GEN 32/W (DATA)
DATAD 0

v here
HSD command 'A2' means INPUT TUANSPER , DEVICE STATUS BEQUEST

and COMMAND CHAIN
UDD command '30' means CLEAH MAIN COUNTER OF FILTER
GEN 32/W (DATA) is to generate dummy data address
HSD command '02' means OUTPUT TRANSFER and COMMAND CHAIN
UDD command '20' means LOAD COEFF. INTO FILTER
GEN 16/x'UOOO* gives data count in HEX (16K words)
HSD command 'A8‘ means INPUT TRANSFER, DEVICE STATUS REQUEST

and INTERRUPT AFTER COMPLETED PROCESSING IOC
UDD command '00' means NOP

2-TRANSFER OF IMAGE TO THE CONVOLVER
The subroutine used for this purpose is LDIMG and is called

as follows:
LDIMG (IDAT,IER1,IER2,IOCM)

the parameters have same explaination as above. It may be noticed
that the transfer of NTT of coeffs. and that Image data is very much
the same. There are two differences, namely, the number of total
words to be transferred is '1000' (HEX) i.e. 4K words, and UDD
command is '10' instead of '20* to load the IMAGE in the proper
memory location ('20' describe a FILTER FUNCTION to load COEFFs.).
Thus the IOCL would be:

IOCL GEN d/X'A2',8/X'30*,16/0
GEN 32/W (DATA)
DATAD 0
GEN d/X»02',d/X'10',16/X'1000'
GEN 32/0
DATAD 0
GEN 8/X'Ad',8/X'0 0',16/0
GEN 32/W (DATA)
DATAD 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

3-TRANSPER OP CON HAND AND STATUS
This is achieved throuqh the use of subroutine

CALL CLSRT
which is used for clearinq the aain counter of the filter
and starting the convolver processinq and for readinq the
status of the convolver.

The IOCL posted in this case are similar in part
as used for above two data transfer. This time there is no
continuous data transfer, rather only the UDD command transfers

4-TRANSFER OF FILTERED IHAGE FROM THE CONVOLVER TO SEL
The subroutine used for this purpose is called as

CALL 3TFIMG (IDAT,IER1,IER2,IOCM)
with the parameter description as described above. The IOCL used in

this subroutine is as follows:
EXECUTE ASSEMBLE

IOCL GEN 8/X»A2',8/X'30»,16/0
GEN 32/W (DATA)
DATAD 0
GEN 3/X' 82 ' , 8/X' 10', 16/X'200 0*
GEN 32/0
DATAD 0
GEN d / X * A 8 8 / X ' O U * ,16/0
GEN 3 2/W (DATA)
DATAD 0

The HSD and UDD commands are similar as in the previous cases
with the followinq differences:

HSD command '82' means READ DATA and COMMAND CHAIN
UDD command '10' means READ FILTERED IMAGE FROM CONVOLVER
and the transfer count is '2000' (HEX) which is 8K words.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX - CC1

FILE
CONFIL
CONTMP
ECILUT
FILRTD

FILTSK

FLTSK1

FLRESD

GTOPRM
HXTOIN

INSBLK

LOGBOOK

NORMAL

NTFLCF
OULPWORD

SCLCOF

DIRECTORY FILTER

DESCRIPTION
Program to filter a given image using the NTT convolver.
Program for template matching using the NTT convolver.
Program for error correction and index look-up table.
Program for two dimensional convolution using number theoretic
transform. (A simulation of the hardware.1
A separate task for NTT convolution. Can be activated by
another task in a multi-task environment.
A sample task to activate the task for convolution using
NTT convolver.
Program to store the input and output to the butterfly unit
at each stage.
Program for reading data from the PROM programmer.
Program for converting hexadecimal values into integer values
used in transfer of data from NOVA TO SEL.
Program to insert a blank in the first column. used in transfer
of data from SEL to NOVA.
This file gives us the name and description of all the programs
in the DIR filter.
This program normalizes the output of the convolver between
levels 0 and 255.
Program to find the NTT of filter coeffs.
This program filters 256 * 256 image using overlap-save method
of convolution and the NTT convolver.
To scale the given filter coeffs. so that no overflow occurs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX - (C) (Continued)

SDOPRM

XFERHXNS

XFERNS

FALFA

FMINU

FFTTMP

NTTTMP

RIDCAL

Program to send data to the PROM-Programmer.

Program for transferring HEX data from NOVA to SEL.

Program to transfer ASCII data from NOVA to SEL.

To find the cyclic group generator Alpha for a given
modulus.

To find the multiplicative inverse of a given number with
respect to a given modulus.

Program for template matching using fast fourier transform.

Program for template matching using number theoretic transform
(Software).

Program for an iterative thresholding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX (D)

A User Session With the Convolver

A user of the convolver is assumed to be familiar with SEL-32/27

computer and how the programs are executed. An image of size (128 x 128)

with 8-bit representation is assumed to be prestored in SEL computer

in Directory "IMAGE". Based on the specific requirement, a two-dimen­

sional filter of relatively smaller kernel (say, 17 x 17 size) is

designed and stored in a file in Directory "FILTER". Let us call the

image file as "IMAGEA" and the coefficients file as "COEFFA".

When SEL computer is logged-on it prompts with Task System Manager

(TSM). The user must change the directory by executing

TSM^> DIRE = FILTER

Now the user is in "FILTER" Directory. A program named "FILTER"

is a command processing file in this directory. If this command processing

file is to be used to obtain the filtered image, one must issue the

following command - TSM> FILTER IMAGEA COEFFA OUTPUTA ̂

The processing follows the following steps:

1) The filter coefficients are scaled by execution of program "SCLCOF".

The input to this program is file "COEFFA" while the output file is

"SCOEFF".

2) The NTT of the filter coefficients is obtained by the execution

of program "NTTCOF". The input to this program is the file

"SCOEFF" and the output file is "NTCOEFF".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/St<L

The files "SCOEFF" and "NTCOEFF" are temporary files and are scratched

at the end of their use. One may not need to worry about them.

3) The filtering operation is achieved by executing the program

"CONFIL". The files "IMAGEA." will be taken as input image and

the file "NTCOEFF" will be taken as the file containing NTT of the

filter coefficients. The IMAGE and NTT of c o e ff ic ie n ts are sent

to the convolver, and at the end of processing the filtered image

is sent back to computer where it is stored in a file named

"OUTPUTA".

The above steps can also be executed in a serial fashion without

the use of the command processing file "FILTER". In this case one

must be in directory "FILTER".' This could be done by executing

T S M > DIRE = FILTER)

One must then create files "SCOEFF" and "NTCOEFF" by issuing the

following command.

TSM y CREATE SCOEFF

TSM> CREATE NTCOEFFJ

Next the file "COEFF" is assigned as logical file Code = 1 and

the program "SCLCOF" is executed as:

TSM> AS 1 - COEFFA).

TSM> SCLCOF),

Now, the NTT of the coefficients is obtained by issuing the following

command:

TSM> NTTCOF \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m j

The filtering is obtained by execution of program "CONFIL". The

file having the image to be filtered and the output file are assigned

and filtering command is issued:

T S M > AS 1 TO @ DPI (IMAGE) IMAGEA)

TSM> AS 2 - OUTPUTA)

T S M > CONFIL)

Note that since the image was stored in "IMAGE" directory (which

is different than the current default directory), it was necessary

to represent it by 0 DPI (IMAGE) IMAGEA where "0 DPI (IMAGE)" lets

the computer use "(IMAGE)" Directory. The file "OUTPUTA" is stored

in "FILTER" Directory. This file is the filtered output.

The f i l t e r e d image can be displayed by issuing the

following command:

TSM > AS 1 = OUTPUT)

TSM > DISPIMG }

The program "DISPIMG" displays an image o f size (128x128) on the

Aydin Color Monitor. To display the input image, which was assumed to be

"IMAGE" d ire c to ry , the following commands have to be issued:

TSM y AS 1 TO 0DP1(IMAGE)IMAGEA)

TSM > DISPIMG)

As described e a r l i e r , the f i r s t command le ts the computer search

the input f i l e in "(IMAGE)" d ire c to ry .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R E F E R E N C E S

1. L.R.Rabiner and B.Gold 1 Theory and Applications of
Digital Signal processing1 Prentice-Hall, Englewood
Cliffs, New Jersey, 1975

2. A.V.Oppenheim and R.i.Schafer 'Digital Signal
Processing' Pretice-Hall Inc., Englewood Cliffs, New
Jersey, 1974

3. N.S.Szabo and R.I.Tanaka 'Residue Arithmetic and its
Applications to Computer Technology1 dc-graw Hill Book
Company, New York, 19b9

4- A.Peled and B.Liu 1 Digital Signal Processing' John-
Wxley and Company, New York, 1979

5. G.A.Jullien 'Implementation of rt ultiplication. Modulo £
Prime Huaioer, with Applications to Number Theoretic
Transforms' IEEE Trans, on Computers, Vol.C-29,
pp.899-905, Oct 1980

6. d.J.Corintnios ,1A Past Fourier Transform for High Speed
Signal Procesing' IEEE Trans, on Computers, Vol.C-20,
pp.843-047, Aug 1970

7. R.C.Agarwal and C.S.Burrus 'Number Theoretic Transforms
to implement Fast Digital Convolution' Proc.IEEE,
Vol.63, pp.550-560, April 1975

8. R.C.Aqarwal and C.S.Burrus 'Fast Convolution using
Fermat Number transforms with applications to digital
filtering' IEEE trans.Acous.,Speech and
Sign.Proc.,Vol.ASSP-22, pp.b8-97,Apr.1974

9. J.H.McClellan and C.M.Radar 'Number Theory in Digital
Signal Processing* Prentice-Hall Inc., New Jersey, 1979

10. H.K.Nagpal, G.A.Jullien and W.C.Miller
'Multidimensional Algorithms and Processor
Architectures for Computing a class of Unitary
Transforms'

11. G.A.Jullien and H.C.Hiller ± \ Hardware Realization of
an NTT Convolver using ROM arrays' Proc.IEEE.ICASSP—
Vol.3,pp.788-791,19 80

- 139 -
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140
12. H.J.Corinthios 1 The Design of £ class of Fast Fourier

Transform Computers» IEEE Trans, on Computers,
Vol.C-20, pp.617-623, June 1971

13. J.M.Pollard 1 The Fast Fourier Transform in a Finite
Field * Math.Coaput., Vol.25, pp.365-374, April 1971

14. C.M.Radar 1 On application of the Number Theoretic
Transform methods of high speed convolution to 2-D
filtering' IEEE Trans. Ciruxts and Systems, Vol.CAS-22,
June 1975

15. G.A.Jullein and W.C. Miller J HNS based FFT processor
Hardware Implementation*

16. R.C.Gonqalez and P.Wintz * Digital Image Processing*
Addison-Wesley puolishing Co., 1977

17. E.L.Hall »Computer Imgae Processing and Kecogni tion*
Academic Press, 1979

18. B.R.Hunt 1Block-mode Filtering of Pictures'
Math-Biosc., Aaer.Elsevxer Publ. Co., Vol.11,
pp.343-354, 1971

19. R.fl.Vander Kraats and A.N.Venetsanopoulos * Hardware for
two-dimensional Digital Filtering using Fermat Number
Transform' IEEE Trans, on Acous.Speecn and
Siqn.Processxnq, Vol.ASSP-30, April 1982

20. G.A.Jullien and W.C.Miller 'An RNS Arithmetic unit for
2-D Digital convolution*

21. A.Baranxecka ' Digital Filtering usinq Number Theoretic
Tecnnigues' pn.D.Thesis, University of Windsor,
Wxndsor, Ont.,Canada, June 1980

22. H.Helms 1 Fast Fourier Transform metnod of Computing
Difference Eguations and Sxmulatinq Filters' IEEE
trans.,Vol.AO-15,pp.85-90,1967

23. J.i.Cooley and J.W.Tukey 1An algorithm for tne Machine
Calculatxon of Complex Fourier Series' Math.Comp.,
Vol.19, pp.297-301, 1965

24. C.S.Joshi, J.F.McDonald and R. H. Steinvor th _VA Video
Rate Two Dimensxonal Fast Fourier Transform Processor'
IEEE trans.,19 79

25. B.Liu and A.Peled new Hardware Realization of High
speed Fast Fourier Transformers' IEEE Trans, on Acous.
Speech and Sxqn.Processinq, Vol.ASSP-23, pp.543-547,
Dec 1975

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141
26. H.K.Hagpal ' Processor Architectures for Fast

Computation of Multi-Dimensional Unitary Transforms*
Ph.D.Thesis, University of Windsor, Windsor,
Ont.,Canada,19 81

27. G.A.Jullien 1 Residue n umber Scaling a fid other
operations using ROM arrays* IEEE Trans, on Computers,
Vol.C-27, pp.325-336, April 1978

28. D.L. Dietmeyer * Logic Design of Digital Systems * Allyn
and Bacon, Boston, 1978

29. 'Project and Research Applicable in Industry
fPBAI) Grant Report* University of Windsor, Windsor,
Ontario, Canada, 1982 (Project no.-7908, NSERC File no.
612-14/79)

30. ----- 'SEL-32/27 Manuals*
31. Chao-Huan Huanq 'On the RMS and its Application to

Computer Architectures and Fast Spectral Transforms'
Ph.D.Thesis, University of Cincinnati, 1979.

32. R.J.Karvoski * An Int roduc tion to Digital Analysis
including a nigh speed FfT Processor Desiqn' TRW LSI
Product, El Sequndo, Calif., June 1980.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rajendra Prasad Rathi
(B. - 29 Mov. 1959)

VITA AUCTORIS

EDOCATIOl
1974 Graduated froa S.S.N. High School, Blratnagar, Napal (School Leaving

Certificate Exaainatlon conducted by the Board of Education, Govt, of
Nepal, Kathaandu).

1976 Graduated froa H.H.A. College with Merit in Certificate Level in
Science Exaainatlon conducted by the Trlbhuvan University (T.U.),
Kathaandu, Nepal.

1982 Graduated with B.Sc. (Engineering) (Hons,) Degree in Electronics and
Coaaunicatlon Engineering froa the Kurukshetra University, Haryana,
India with the First Rank in the University.

1984 Candidate for Master in Applied Science (M.A.Sc.) Degree in Electrical
Engineering at the University of Windsor, Windsor, Ontario, Canada.

PROFESSIONAL AFFILIATION
Associate Meaber of Institution of Engineers (AMIE), India.
Student Meaber of Institution of Eleotrical and Electronics Engineers (IEEE),
New Jersey, USA.
Meaber of Association of Students Council, Toronto, Ontario, Canada.

MAJOR HONORS AND AWARDS

1983-1985 University of Windsor Merit Scholarship.
1982-1984 A.N.E. Foundation (Oregon), USA, Scholarship Award.

1983 Associate Meaber of Institution of Engineers (AMIE) as an Honor to
Gold Medalist in B.Sc. (Engineering).

1982 Gold Medal froa the Kurukshetra University given to First Rank
holder in professional education.

1977-1982 TSC of Coloabo Plan Scholarship for undergraduate study In elec­
tronics and coaaunicatlon engineering (Governaent of Nepal).

CO-CURRICULAR ACTIVITIES

1982-1983 Graduate students representative at the University of Windsor.
1981-1982 Secretary of the Students Chapter, Institution of Engineers

(Electronics and Telecoaaunlcation)
1980-1981 Associate Editor of the Monthly College Magazine "THE VOICE".
1979-1982 Editor of the Annual College Magazine "THE VULCAN".

PROFESSIONAL WORK EXPERIENCE
1982-1984 Teaching and Research Assistant at the University of Windsor,

Windsor, Ontario, Canada.
1984- A aeaber of Electrical Engineering Analytical Design Analysis group

at Buick Motor Division, GMC, Flint, Michigan, USA.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Image processing using a two-dimensional digital convolution filter.
	Recommended Citation

	tmp.1506712331.pdf.R9_O3

