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ABSTRACT

Recent research in temperate, humid environments has
indicated that groundwater 1is a much more important and
active factor in the precipitation-runoff process than was
previously thought. The main. objective of this research
project has been to determine the importance of groundwater
in snowmelt and rain runoff in a catchment underlain by
permafrost. In order to meet this objective, isotopic ( 1%0)
and chemical (EC, Mg and Ca) parameters were used for
hydrograph separations of snowmelt and rain runoff and
standard hydrologic analyses were run on streamflow data for
the_Apex River watershed near Frobisher Bay, N.W.T. This
basin is a small (60 km?) watershed situated in the
continuous permafrost 2zone where the bedrock is mostly
Precambrian gneiss and glacial overburden is sparse.

Peak flow frequency analysis for the Apex River yielded
results similarq_gofthose of comparably sized watersheds in
southern Canada. Flow duration curves for 1982 and 1983
suggest that runoff in the Apex River watershed is dominated
by overland flow. The recession analyses (1982 and 1963)
resulted in large recession constants. The long recessions
are likely a result of the increased storage capacity of the
thawing active layer during the summer.

The groundwater is characterized by higher ionic
concentrations and enriched isotopic ratios relative to the

other sources which contribute to runoff. During snowmelt

144 .
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runoff there 1is a dilution of most of thé‘ éhemical
parameters. The chemical and isotopic <character of the
waters which contribute to runoff in the Apex River
watershed can be summarized for the 1983 season as follows:
baseflow- EC= 32.2 uS/cm, Na= 0.59 mg/l, K= 0.12 mg/l,

Mg= 0.64 mg/l, Ca= 4.84 mg/l, §'%= -17.5% ; snow- EC= 8.1
uS/cm, Na= 0.45 mg/l, K= 0.36 mg/l, Mg= 0.1l1, Ca= 0.20 mg/1,
§1%0= -23.1% ; snowmelt- EC= 15.8 uS/cm, Na= 0.42 mg/1l,

K= 0.15 mg/l, Mg= 0.34 mg/l, Ca= 1.71 mg/l, 63°0= -24.5% ;
rain- EC= 11.6 us/cm, Na= 0.39 mg/l, K= 0.32 mg/l, Mg= 0.24
mg/l, Ca= 0.40 mg/l, &!°%0= -18.0% ; springs- EC= 40.7
us/cm, Na= 0.65 mg/l, K= 0.31 mg/l, Mg= 0.96 mg/l, Ca= 3.92
mg/l, 6'%0= -=17.9% .

The hydrograph separation results indicate that "old"
groundwater makes up approximately 50% of the peak stream
discharge during snowmelt runoff and about 60% of the total
discharge from June 16 to August 10, 1983. The groundwater
response must have been rapid. When calculated by the 6160
hydrograph separatioh meﬁhod, the peak groundwater discharge
occurred approximately one day after the peak stream
discharge and on the same day as peak stream discharge when
calculated by EC, Mg and Ca. Mg was found to be the most
conservative chemical parameter, relative to 150, for use in
hydrograph separation. It diqd, however, consistently
underestimate the o0ld water contribution by an average of
10%.

Based . on the hydrograph separation results, the

v
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mechanism responsible for the major o0ld water input |is
probably a displacement of suprapermafrost groundwater from
the melting active layer by infiltrating snowmelt and rain
water. Visual observations provided evidence of partial
area overland flow in areas downslope from major snow
accumulations. Interflow aléng the vegetation-bedrock
interface was also observed in some areas. These results
are not totally in agreemeng with the interpretations
derived from hydrologic analysis of the streamflow data.
This discrepancy may be another example of why hydrograph
analysis by standard methods cannot yvield reliable
information on sources and pathways in the precipitation-

‘'runoff conversion process.

v
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1. INTRODUCTION

Approximately one-half of Canada as well as large areas
of other parts of the world lie in Arctic regions (Brown,
1974). These are some of the only areas of the world where
the environment has remained relatively undisturbed by man's
activities.

Since the late 1960's considerable interest has been
shown 1in developing northern Canada in search of minerals
and oil. Unfortunately, very 1little is known about the
delicate northern environment when compared to our knowledge
of the more populated south. Thus, the impact of any major
development such as pipeline construction, road building,
mining and urbanization, is difficult to assess.

One oﬁ the problems in development of northern regibns
is that hydrologic engineering techniques nébessary for
prudent development are not as well tested as those of more
temperate regions. The unique factors which dictate the use
of specialized hydrologic techniques are the climate and the
presence of permafrost. Both of these factors are very
important influences on the hydrologic cycle (Ferris, 1975).

In more temperate, humid environments, recent research
has indicated that groundwater is a much more important and
active factor in the rainfall-runoff process than previously
acknowledged (e.g. Dincer et al., 1970; Martinec, 1975;
Sklash et al., 1976; Sklash, 1978). This study is an
extension of a similar type of reseafch: to determine the

role of groundwater in storm and snowmelt runoff in a small

1
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Arctic watershed.

Because of the unique features and their effect on the
hydrologic cycle in Arctic regions, it is important that
research in this area be carried out so that we may
understand the natural processes which take place. Once we
understand the natural processes, we may be able to predict
the consequences of man's activities on the quantity and
quality of water resources. The increased knowledge of the
mechanics of streamflow in an arctic environment will also
permit engineering that will minimize the disruption of the

natural environment.

1.1 Objectiv?s and Scope of the Study

Field studies during July and August, 1982 and June,
July and August, 1983 on the Apex River watershed éear
Frobisher Bay, N.W.T., were conducted to determine the
importance of groundwater in the precipitation-runoff
process in a permafrost environment.

The main objectives of the research program were to
determine the magnitude and timing of groundwater
contributions  to the Apex River during snowmelt and summer
storm events and to achieve a better understanding of
runoff-generation mechanisms in a permafrost watershed. 1In
order to achieve these goals, the following secondary
objectives were to:

(i) determine how groundwatéi chemistry affects

surface-water chemistry during runoff events;
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(il) characterize the chemical and isotopic nature of
the waters which contribute to runoff; and to,
(iii) examine the areal and temporal variations in water
chemistry of the Apex River watershed.

To meet these objectives, samples of water were taken
from the sources which contribute to streamflow in the Apex
River watershed. These samples were later analyzed for
various chemical and natural isotopic constituents. The
water sources included: rain, | snowbanks, snowmelt,
groundwater springs, ponds, lakes, tributaries and the main
stream channel of the Apex River "at the gauging station.

. Nearly 1000 samples were collected and analyzed for calcium,
magnesium, sodium and potassium. Electrical conductivity
and pH were measured for all samples in the field or
immediately on return to the laboratory. Selected samples
were analyzed for oxygen-18.

' These chemical and isotopic parameters were inserted
into the appropria%g:mass balance equations to determine the
relative contribuﬁions .of the various components of
streamflow. Standard engineering methods of hydrograph
analysis were also performed on stream discharge data for
the Apex River and these results were compared to those
obtained from the chemical and isotope mass balance

techniques.
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l.2 Study Area
1.2.1 Location

The watershed chosen for study was the Apex River
watershed which is situated at approximately 63°48'N
latitude and 68°31'w longitude. The basin is located at the
intersection of NTS map sections 25 N/9, 25.N/10, 25 N/15,
and 25 N/16 at a scale of 1:50 000.

The .river is immediately adjacent to the town of
Frobisher Bay, N.W.T., on the southern part of Baffin Island
(Figure 1l.l). This location was chosen becuase it is in an
area of continuous permafrost with negligible man-made
disturbance. Of equal importance is the easy access from
Frobisher Bay which has daily jet service to southern
Canada. Other reasons for bhoosing the Apex River watershed
include:

(i) the availability of runoff data since 1973 obtained

‘ from the Water Survey of Canada stream gauge located
near the mqugh:pf_the river.

(ii) the'availabilty of chemical analysis data from the
Frobisher Bay reservoir which gave an indication of
the chemistry of the surface waters in the area.

(iii) the availability of laboratory and living facilities
provided by the Department. of Indian and Northern

Affairs.
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Figure l1l.l: Location of the Apex River watershed.
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1.2.2 Physiography and Drainage

The Apex River, draining an area. of approximately 60
km 3, discharges into Koojesse Inlet, near the head of
Frobisher Bay. The study area is located 1in part of the

. Hall Upland near its western boundary with the Foxe Lowland.

The Hall Upland is one of two uplands which form part of the
Baffin Upland physiographic province (Blackadar, .1967)
(Figure 1.2). |

The Hall Upland is a southwesterly-inclined area with
elevations exceeding 600 m in most areas but decreasing to
less than 300 m near the settlement of Frobisher Bay where
it merges with the Foxe Lowland (Blackadar, 1967). The
elevation within the Apex River watershed ranges from about
365 m at the headwaters to about 35 m at the gauging
station. PFigure 1.3 shows typical relief in the study area.

Rivers in the upland form deeply incised valleys near
the coast. The Apex River 1is no exception. It £flows
through two gorges which cover about 4 km of its final 8 km.
The hydrological régime is typical of permafrost areas. The
impermeability of the frozen grbund results in the
occurrence of many small, shallow ponds and lakes as well as
other poor-drainage features such as muskeg. Figure 1.4

shows typical drainage characteristics in the study area.

A ]
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Figure 1l.2: Physiographic regions of southern Baffin Island
(after Blackadar, 1967).
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¢ Photograph showing typical relief of the
River watershed.

I, R

Figure 1l.4: Photograph showing typical drainage of the Apex
River watershed.
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l1.2.3 Geology

Most of the southern part of Baffin Island is part of
the geologic region known as the Canadian Shield. The
Precambrian bedrock of the area around the Apex River
consists of quartz-feldspar gneﬁss (Blackadar, 1967).

The bedrock surface has been extensively modified by
Quaternary glaciation (Blackadar, 1967) 1leaving glacial
drift over the northern and eastern portions of the
watershed (Figure 1l.5). The drift material within the
watershed is mainly end moraines and moraine veneer
(Ssquires, 1984), and is composed of material ranging from
sand-sized particles to boulders. Figure 1.6 shows
boulder-sized surficial material which typically covers the
valleys in the northern part of the watershed. Other
surficial deposits, including colluvial, fluvial,
glaciofluvial and 1lacustrine types (Squires, 1984), are
found in the rest of the watershed (Figure l1l.5). The
rolling bedrock bﬁyls have been smoothed by glacial action
and appear as a succession of parallel ridges trending
northwest.

Southern Baffin Island lies in the continuous
permafrost zone (Figure 1.7). Brown (1974) defines
permafrost as the thermal condition of earth materials when
the temperature remains below 0% continuously for more than
one year. In the continuous 2zone permafrost occurs
everywhere beneath the ground surface and roughly

corresponds with the -5°% isotherm of mean annual ground
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Figure 1.5: Surficial geology of the Apex River watershed
(after Squires, 1984).
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Figure 1l.6: Photograph of boulder cover in the northern part
of the watershed.
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temperature (Brown, 1970).
Permafrost and its effects on hydrology are discussed

in detail in a later section.

1.2.4 Climate

The Frobisher Bay area is, as is much of the Canadian
Arctic, a cold, dry region. 1Its mean daily temperature and
mean annual precipitation are -9.3°¢c and 432.6 mm,
respectively (Environment Canada, 1984). Other
climatological data are summarized in Table l.l. From these
data it can be seen that approximately 60% of the total
annual precipitation falls in the form of snow. The
remaining 40% falls as rain, essentially during the four
summer months: June, July, August and September. These same
four months are also the only months of the year £for which
the daily mean temperature is above freezing.

The amount of water made available to tbe hydrologic
system is likely to. be even greater than the data in Table
l.1 suggest. Studies by Walker and Lake (1975) and Woo and
Marsh'(1978) indicate that winter snowfall in the Arctic may
be significantly underestimated by as much as 50% according
to Woo and Marsh, and from 200-400% according to Black
(1954; referenced in Maxwell, 1980). The main problem in
obtaining accurate measurements of snowfall is dealing with
wind-blown snow. In many instances it 1is difficult ¢to
distinguish between a period of falling snow and a period of

blowing snow (Maxwell, 1980).
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The cold temperatures of the Frobisher Bay area result
in a short runoff season. Snowmelt usually begins in 1late
May or early June. Lakes in the area usually are ice free

by mid-July and freeze up by mid-October (Maxwell, 1980).

1.2.5 Vegetation

The se?ere climate of the arctic is mainly responsible
for the dearth of vegetation around Frobisher Bay. The mean
frost-free period is only fifty-nine days (Hare and Thomas,
1979). As a result, vegetation is limited to that
classified as tundra vegetation (Maxwell, 1980). Included
in this group and found in the Apex River watershed are
lower plants such as mosses and lichehs and numerous
varieties of low-lying grasses, herbs and shrubs such as

dwarf birch and willows (Hebert, 1982; Maxwell, 1980).

1.3 Structure of This Report

The next chapters will provide some background on the
different streamflow generation hypotheses, permafrost
hydrology and techniques used in streamflow analysis.
Following these chapters, the methods used in this study
will be outlined and the results, discussion, conclusions

and recommendations of the study will be presented.
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2. MECHANISMS OF STREAMFLOW GENERATION

The increased discharge of a stream as a result of
precipitation or snowmelt appears to be a reasonably simple
relationship. However, the exact way in which precipitation
is converted to streamflow is not well understood.
Contrasting theories have been proposed éb describe the
mechanisms of streamflow generation with considerable
disagreement surrounding the relative contributions of "new"
rain or snowmelt water and "old" groundwater to the storm
hydrograph (Pearce et al., 1985).

According to Fontes (1980), one of the most important
problems of hydrology is the determination of the relative
contributions of input waters to flood discharge. He sees
this information as having applications to predicting
surface water chemistry, to determining residence times of
groundwater and to the evaluation of snowmelt to runoff.
Sklash (1978) sees Fpis knowledge as part of a solution to
what he calls tﬁégihiee problems facing hydrologists today:
the forecasting of storm runoff peaks, the maintenance of
acceptable stream water quality standards, and the
prediction of the effect of runoff quantity and quality
brought about by watershed modifications.

Traditional theories used‘ to ékplain storm runoff
include: overland flow (Horton, 1933), partial area
overland flow (Betson, 1964), variable source area
saturation overland £flow (Dunne and Black, 1970a,b), and

variable source area subsurface flow (U.S. Forest Service,
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1961). Pearce et al. (1985) have put together a good
summary chart of studies supporting the variable source area
mechanisms of storm runoff generation (Figure 2.l1l). Freeze
(1974) dismisses groundwater contributions simply as
sustaining streamflow between periods of storm runoff. Other
researchers, however, have used natural. ionic* and
environmental isotope tracers to demonstrate the dominance
of the groundwater component to storm runoff (Table 2.1).

Sklash and Farvolden (1979) proposed a mechanism known
as 'the groundwater ridging hypothesis' to explain the
significant contribution of groundwater to storm and
snowmelt runoff. Further work by Wilson (198l), Attanayake
(1983), Gillham (1984), and AaAbdul and Gillham (1984) has
supported this hypothesis.

The mechanisms mentioned above are described in more

detail in the following sections.

2.1 Hortonian Overland Flow

Horton's (1933) concept of streamflow generation was
based on surface runoff resulting from precipitation at an
intensity greater than the rate at which the ground could
absorb it. The infiltration capacity, as he termed it,
decreased with time to a steady rate as pores were filled
and the surface was compacted by the force of the falling
raindrops. Excess rainfall then accumulates on the
compacted surface and flows overland in sheets to streams at

speeds and in quantities sufficient to cause the rapid rises
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Table 2.1:

AUTHOR(S)

Nﬂ'bu:y !_E &00
1969

Pinder and Jones,
1969

Crouzet et al.,
1970 -

Dincer et al., 1970
Visocky, 1970
Nakamura, 1971

Martinec et al.,
1974

Cherry et al., 1975
Holecek and
Noujaim, 1978

Fritz et al., 1976

Sklash et al., 1976

Sklash and
Farvolden, 1579

HRermann and
Stichler, 1980

Sklash and
Farvolden, 1980

Rodhe, 1981

Sklash and
Farvolden, 1982

.-

Stichler and
Hermann, 1982

Duysings et al.,
1983

Rodhe, 1983a
Rodhe, 1983b

Bottomley et al.,
1988

Hooper and
Shoemaker, 198S

Kobayashi, 198S%
Pearce et al., 1985
Sklash et al., 1985

Vreeland et al.,
1983

LOCATION

Manitoba

Nova Scotia

France

22
6.5,13.5

5- 7-91

Czechoslovakia 2.63

Illinois
Japan
Switzerlanad
Manitoba
Ontario
Alberta
Manitoba
Ontario
Ontario

Ontario
Quebec

Germany

Alberta
Ontario
Sweden

Quebec

Ontario

Germany

Netherlands

Sweden
Sweden -
Ontario

New Hampshire

Japan
New Zealand

New Zealand

Virginia

Events R=Rain S=Snowmelt
Type of study: C=Chemical I=Isotopic R=Radiocactive Tracer T=Temperature

246
10.3
43.3

22
1.8-700
0.06

.22
1. 8-700
73-700

1
1.2

18.7

9.2

1
4.0,6.6
3.9
1

18.7

" 0.118

0.03-0.04

0.03-6.6
3.0,10.5%

o.‘

13
5.9

19

EVENT

o w ® » @

L]

TYPE OF
STUDY

- 0 0D W 2]

[ o X

Mass balance hydrograph separation studies.

GROUNDWATER

CONTRIBUTION (W)
TO TOTAL TO PEAK

PLOW PLOW
$50-70
- 32-42
$4-99
major 60
2s
2%
60 64
80 60
S0 $0-70
54-64
90 60
40-45
70 52-7%
60-80
65~-80
70-80
65-7%
>80
70-90
>8S
>80
78 54-90
59
67-95
41-100
40-90
60~-7%
80~-89%
97
74-86
>60
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in streamflow in response to storm events (Freeze, 1974).
The theory, as proposed by Horton, presumed that most
rainfall events exceeded the infiltration capacity and that
overland flow occurred over large areas of a watershed.
Field studies have demonstrated that overland flow is a rare
occurrence in humid, vegetated areas (Betson, 1964; Ragan,
1968; Dunne and Black, 1970a,b; Freeze, 1972b). Ward (1982)
described” Horton's work as being, "based on a number of
false premises...", and having had, "...a significant and
stifling influence on the development of hydrology for three

or four decades...".

2.2 Partial Area Overland Flow

Betson (1964) developed a non-linear mathematical model
to equate the difference between rainfall and runoff to
hydrologic variables. The results of his model concluded
that overland flow only occurs on small but relatively
consistent parts .of a watershed; as little as 5% of the
area. This concept, known as the partial area overland flow
theory, is illustrated in Figure 2.2.

The generating mechanism for partial area overland flow
is the same as that for Hortonian overland flow. That is,
surface runoff is produced in areas where the rainfall
intensity is greater than the infiltration capacity of the
soil. According to Betson (1964) this wusually occurs in
areas with a shallow A soil horizon or exposed bedrock, and

these areas may be widespread throughout a basin.
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Overland flow occurs on areas of the watershed
where the input of rain or snowmelt water
exceeds the infiltration capacity of the
watershed ‘materials.

Figure 2.2: Partial area overland flow concept.
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2.3 Variable Source Area Subsurface Flow

Hewlett (U.S. Forest Service, 196l1l) and Hewlett and
Hibbert (1967) proposed the variable source area subsurface
flow concept when their field evidence indicated that no
overland flow occurred even during heavy storms. They
maintained that most precipitation even during- intense and
prolonged storms is infiltrated into the soil surface. Then,
as a result of infiltration and throughflow in the soil
profile, the near stream and 1lower valley slopes become
saturated as the groundwater table reaches the surface.
Hewlett and Hibbert (1967) suggested that much of the water
transmitted to the stream may be groundwater which has been
displaced by the infiltrating precipitation.

Hewlett and Nutter (1970) described this process as an
expanding channel network where the stream channel "reaches
out"™ to tap the subsurface flow systems (Figure 2.3). They
suggested that the rapidly expanding channel is capable of
transmitting subsugface flow to the stream fast enough to
sustain the upland storm hydrograph.

Other researchers (e.g. Pilgrim et al., 1978; Beven,
1978; Mosley, 1979, 1982) have suggested that infiltrated
rainfall may flow to the stream through "macropores"™ (Pearce
et al., 1985) resulting in storm runoff dominated by event
water.

The variable source area subsurface £flow concept
differs from the partial area concept in that the partial

areas are thought of as being fixed in size and location"
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Lower valley slopes become saturated as groundwater is
displaced to the stream during storm events.

Figure 2.3: Variable source area subsurface flow (Hewlett
and Nutter, 1970).
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while the variable source areas can expand, and contract,
into near stream areas (Freeze, 1974). Also, partial areas
transmit water in a manner similar to Hortonian overland
flow; the so0il 1is saturated from above and subsequent
rainfall flows overland to the stream. 1In the variable
source area concept, subsurface flow is the mechanism by
which the water is transmitted to the channel (Freeze,
1974). ~

While Hewlett, Hibbert, Nutter and others maintained
that the variable source area subsurface flow concept is the
main source of storm flow, other researchers have questioned
whether sufficient quantities of water can be transmitted
fast enough to produce the observed response (Freeze, 1974).
Dunne and Black (1970a,b) contended that subsurface inputs
are, "too small, too late and too insensitive to
fluctuations of rainfall intensity to add significantly to
stormflow in the channel ...". Dunne (1978) acknowledged
the occurrence,_;bf, _subsurface stormflow, however, he
considered that ofher mechanisms such as variable source

area overland flow could provide runoff more quickly.

2.4 Variable Source Area Overland Flow

Many recent studies (Ragan, 1968; Dunne and Black,
1970a,b; Freeze, 1972a,b; Dunne et al., 1975) have
identified the variable source area overland flow mechanism
as the primary source of storm flow. This type of overland

flow is generated by precipitation falling on small portions
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of the watershed which have become saturated during rainfall
events (Figure 2.4).

Unlike the partial area concept where saturation of the
soil is from infiltrating precipitation, the soil 1in the
variable source areas |is satu;ated by rising groundwater
(Freeze, 1974). The location of these variable sources is a
function of topography and hydrogeologic conditions, and are
often wetland areas usually located near the stream (Ragan,
1968; Freeze, 1974). The size of the variable source areas
can grow or shrink in response to climatic conditions.

The source of the runoff is unclear. Freeze (1974)
felt that it is totally a result of rainfall falling onto
the wetlands, with groundwater only controllihg the size of
the wetland area. Dunne and Black (1970b), on the other
hand, said it is a combination of rain falling directly on
the wetland surface and water coming out of the ground. 1In
any case, both agree that this‘ mechanism can transmit
sufficient quantities of water fast enough to account for

the rapid hydrograph response.

2.5 Channel Interception

Channel interception is a comparatively minor
contributor to the storm flow system. It is simply the
precipitation which falls directly into the stream. It |is
seen as a minor input because of the relatively small areal
extent of the stream surface in comparison with the entire

watershed.
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According to Sklash (1978) channel interception may be
important during brief storms following 1long periods of-

drought when other mechanisms may not be operative.

2.6 Groundwater Flow -

Freeze (1974) defined groundwaterlflow“as water from
the permanent saturated subsurface water flow system that
discharges 1into the stream channel. It can be discharged to
the stream through near-stream springs or seeps, through the
seepage face or directly through the stream bed.

Much of the streamflow research has not considered
groundwater as a major contributor to the storm runoff
process (Betson, 1964; Dunne and Black, 1970; and others).
Freeze (1974) stated that, "...true groundwater flow is
seldom the cause of the major runoff during storms ...".

Numerous workers have, however, determined groundwater
to be a significant source of storm runoff. Pinder and
Jones (1969) used” chemical mass balances to determine that
groundwater constituted between 32 and 42% of peak discharge
in three small Nova Scotia watersheds. Dincer et al.
(1970), Martinec et al. (1974), Fritz et al. (1976), Sklash
et 'al. (1976), Sklash and Farvolden (1979, 1980) and others
have used environmental isotope studies involving oxygen-18,
deuterium and tritium as tracers in rain and snowmelt runoff
to indicate groundwater dominance. O'Brien (1980), using
hydrometric data, showed that about 93% of the total annual

discharge of two wetland controlled basins in Massachusetts
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was derived from groundwater.

These studies all concluded that groundwater was a
significant factor in the storm runoff process but the exact
mechanism which allowed the groundwater to appear so quickly
in the stream was unclear (Martinec, 1975). Sklash and
Farvolden (1979) presented a possible solution to this
uncertainty with the introduction of their groundwater
ridging hypothesis. This hypothesis suggests that
surrounding perennial and transient discharge areas, the
water table and associated capillary fringe 1lie near the
ground surface. With the addition of infiltrating rain or
snowmelt, the tension saturated capillary fringe is
converted to a ridge-shaped pressure-saturated zone of
groundwater (Figure 2.5). The formation of this groundwater
ridge provides an increased hydraulic gradient and a larger
discharge area which allows for a 1larger discharge of
groundwater to the stream.

This phenomendh:was noted earlier by Ragan (1968) who
found, "... a ridge 1in the groundwater table ... formed
along the 1length of the ... stream.". Hewlett (1969)
observed, "... an ephemeral rise in the groundwater table
ee. (which) helps produce the storm hydrograph.". O'Brien
(1980) reported a rapid rise in both the groundwater table
and stream levels in response to precipitation. Abdul and
Gillham (1984) used laboratory experiments to examine the
role of the capillary fringe in the runoff process and

concluded that the response of the water table to
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precipitation can result in a rapid increase in groundwater
discharge to the stream. Other recent studies by Wilson
(1981), Sklash and Wilson (1982) and Attanayake (1983)
supported the hypothesis of Sklash and Farvolden (1979) that
groundwater ridging is a reasonable explanation of ‘the

mechanism of groundwater flow during storm runoff.
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3. PERMAFROST HYDROLOGY
3.1 The Nature of Permafrost

Permafrost is a term used to describe perennially
frozen ground. Brown (1974) defined permafrost as the
thermal condition of earth materials such as rock and soil
when the temperature remaing below 0°C continuously for more
than one year.

One-half of Canada's land surface is wunderlain by
permafrost (Brown, 1970, 1974) which can be subdivided into
two principal zones: the continuous and discontinuous
permafrost zones (Figure 1l.7). In the discontinuous =zone,
permafrost exists together with unfrozen ground. 1In the
continuous permafrost zone, permafrost exists everywhere
beneath the earth's surface in varying thicknesses.
Unfrozen zones which can exist within the permafrost are
known as taliks. Discontinuous permafrost ranges in
thickness from a few centimetres near the southern limit to
about 60 m at-the boundary with the continuous zone. The
continuous zone varies in thickness from approximately 60 m
to 1000 m in the northern Arctic Islands (Brown, 1974).
Figure 3.1 is a schematic diagram which illustrates the two
principal zones and their variation in thickness; generally
increasing from south to north.

A third zone of permafrost, alpine permafrost, occurs
in areas of high altitude (Brown, 1970). Alpine permafrost
tends to be more extensive on north-facing slopes than on

south facing slopes owing to the angle of incoming solar
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Figure 3.1l: iongitudinal cross section of permafrost
zones in Canada (Brown, 1970),
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radiation. The extent of the alpine permafrost zone is
shown in Figure 1.7.

In permafrost areas, the uppermost part of the groﬁnd
is called the active zone. The active layer (Figure 3.1l) is
the layer of ground above the permafrost table which thaws
in the summer and freezes in the winter. Thicknesses of the
active zone vary locally (Brown et al., 1981) but they are
generally within the range of 0.3 - 1.0 m in the continuous
permafrost zone and 0.5 - 3.0 m in the discontinuous zone
(Brown, 1974). At Frobisher Bay, the active layer thickness
ranges frdm 0.6 - 1.8 m (Maxwell, 1980). -

Minor alterations to the ground thermal regime of
permafrost areas can drastically change the physical
stability of the system. These alterations may be natural,
such as: changes in. climatic conditions, landslides and
fires; or man-made: cleariké of surface vegetation or snow,
altering of drainage systems and the building of structures.
These changes can result in a thickening of the active zone,
which Brown et al. (1981) indentify as, "... one of the most
dangerous of the disruptive human activities in northern
engineering projects ...". Another possible result of
changes to the ground thermal regime 1is the formation of
thermokarst topography. Thermokarst features are
depressions such as thaw lakes, sinkholes and beaded streams
which form by the thawing of ground ice (Brown et al.,
l981).
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3.2 Surface Water

Church (1974a) defined four different runoff regimes
found in permafrost regions based on the source and timing
of runoff: subarctic .nival, arctic nival, proglacial and
muskeg. Figure 3.2 compares typical hydrograph shapes for
the four different runoff regimes. The subarctic nival
regime is characterized by a snowmelt flood in the spring
followed by low 1levels of flow through the rest of the
summer which are punctuated by periodic rain events. The
arctic nival regime occurs in continuous permafrost zones
where groundwater baseflow is not likely to be important.
The spring snowmelt flood 1is the most severe because
rainfall intensities in the arctic are usually 1light. The
proglacial regime occurs where streams derive most of their
flow from glacial meltwaters. Rather than an early, intense
peak discharge as in the nival regimes, discharge continues
to rise during the summer as more of the glacier contributes
to flow. The muskegﬁfegime is characterized by poor drainage
because of the hiéh water retaining capacity of muskeg and
its resistance to runoff. As a result, flood flows are
attenuated.

The unique hydrograph shapes of the nival regimes
(Figure 3.2) are the result of the thermal conditions
associated with extreme latitudes. The distribution of flow
is concentrated during the summer months because of the
effect of snow storage (Church, 1974a). Much of the year's

precipitation remains on the ground as snow and during the
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brief summers it is released to the stream as snowmelt.

Ground thermal conditions also affect streamflow
characteristics in northern basins. Williams and van
Everdingen (1973) have suggested considering frozen ground
(permafrost) as a confining bed of 1low but finite
permeability. A  number of studies have used the
impermeability of frozen ground to explain the response of
northern streams to runoff events. Dingman (1973)
identified overland flow as one of the principal sources of
rainfall runoff in a small watershed in the discontinuous
permafrost zone. Overland flow was said to occur because
the thin active 1layer saturated quickly thus preventing
further infiltration of rainfall. This rainfall excess ran
off as overland flow. The other principal source of
rainfall runoff according to Dingman (1966; 1973) was stored
water in the moss cover which flowed along the impermeable
(frozen) soil surface to the stream. He used this mechanism
to account for thé'éééwn out streamflow recessions he noted
in his study watershed. Decay constants (see Chapter 4) for
Dingman's study area were of the order of 22 h/km?2.

McCann and Cogley (1972; Cogley and McCann, 1975) used
the rapid basin response and short duration of flood flow to
conclude that streamflow was a result of surfa;e runoff of
rainfall or snowmelt. Newbury (1974) used runoff ratios
(the ratio of runoff to rainfall) to illustrate the low
capacity of permafrost watersheds for interflow or

groundwater storage.
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The overland flow deséribed by Dingman (1973) and Brown
et al. (1968) 1is consistent with the variable source area
overland flow concept of Freeze (1972b). That is, overland
flow originates in near stream source areas which can vary
in size. Woo (1976) and Lewkowicz an@ French (1982a),
however, determined that overland flow occurs in areas with
heavy snow accumulation, and these areas are topographically
controlled. Only areas downslope of these areas produced
overland flow. The occurrence of surface flow in the form
of overland flow or rill runoff is also controlled by slope
material and slope profile (Woo and Steer, 1982).

The importance of subsurface flow was raised by Woo and
Steer (1982) who indicated that it dominates during most
summers.. Steer and Woo (1983) used surface and subsurface
collection devices to detgrmine the relative inputs of
surface and subsurface flow. Subsurface flow was found to
be about 40% of the surface runoff. The studies by
Lewkowicz and French (1982a,b) portray subsurface f£flow
through the active layer as a significant contributor to
streamflow. They noted in the second study that there was a
very rapid decline in subsurface flow following the end of
snowmelt, indicating that snowmelt was the major source of
subsurface water.

Lewkowicz and French (1982b) used electrical
conductance as an estimate of solute concentration to study
variations in water chemistry in the active layer. They

found an increase of solute concentration with depth and in
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general, these values were high (200-240 mg/l). They also
noted relatively low values of solute concentration during
snowmelt and increasing at low subsurface flow discharges.
Brown et al. (1968) measured major cation concentrations and
conducti#ity of stream discharge and noted an inverse
relationship between chemical concentration and discharge.
Church (1974b) presented water quality data from surface
waters in wvarious environments on Baffin Island. He
concluded that in a non-glacial environment, waters carry
very little dissolved load (5 mg/l) which probably reflects

the composition of precipitation inputs.

3.3 Groundwater

‘Tolstikhin and Tolstikhin (1974) have identified three
types of groundwater in permafrost areas which they
classified according to their 1location relative to the
permafrost layer. Suprapermafrost groundwater is found
above the permafrost :in the active zone and originates from
meltwater, = rain and surface water seepage. Since
suprapermafrost water is in the active 2zone, it undergoes
annual freezing and thawing. 1Intrapermafrost groundwater is
found in taliks within the permafrost layer and originated
from above or below. Subpermafrost groundwater is found
beneath the permafrost layer.

Groundwater flow in permafrost zones has historically
been regarded as an insignificant contributor to streamflow

because of the 1low hydraulic conductivity of frozen soils
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(Figure 3.3) (Williams and van Everdingen, 1973). However,
as early as 1963, Brandon (1963) presented evidence of
~groundwater flow in a permafrost environment. He cited the
existence of springs and data from drilled wells as part of
his argument. He also metioned that baseflow in rivers, and
the 1inverse relationship between conductivity and discharge
was proof of groundwater input. Van Everdingen (1974)
presented the same evidence to support the existence of
groundwater flow. Kalanin (1968) used water balance data
for a permafrost basin in the U.S.S.R. to show that the
formation of floods fed by groundwater are comparable in

size to those produced by surface flow.

Dingman (1966) suggested the possibility that melting
of the active 1layer may be capable of supporting small
baseflows. Later, however, he concluded (Dingman, 1973)
that water from the thawing active layer does not contribute
to streamflow. Lewkowicz.and French (1982b) acknowledged
the possibility,Aof_ active layer melt to sustain 1low
baseflows, but dismissed this source of flow as unimportant.

The melting of ground 1ice was considered by Woo and
Steer (1982) to be of 1local importance only, with the
majority of water in the subsurface flow system originating
from snowmelt or rainfall. They later noted (Woo and Steer,
1983), however, a hydrograph rise during a snow-free,
rain-free period. This rise was attributed to the formation
of a groundwater "pocket"™ due to uneven melting of the

active layer, and this pocket eventually melted some sills
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in the frost table, releasing the water downslope to the
stream. Since the area had been snow-free for over two
weeks and without rain for over one week it was felt that
the water could not be from either source. They concluded
from a dye tracer study that the source of groundwater’was
partly from outside the topographical divide due to the
uneven melting of the active 1layer. They felt this
mechanism could also operate durf%g the rain and snowmelt

periods to contribute tb stream flow.
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4. METHODS OF STREAMFLOW ANALYSIS

Early methods of stream flow analysis have centred on
predicting runoff extremes such as flood peaks and low
flows. Many of the techniques developed were statistically
derived using historical records of high and low flows to
predict the likelihood of flows of specific ﬁaghitudes. Two
examples of this type of technique which are discussed in
the following section are peak (or 1low) flow frequency
analysis and flow duration analysis. These analyses are
still used in assessing risk in the design and construction
of large engineering structures.

Other early methods of étreamflow analysis have focused
on examining the discharge record or hy@rograph of a stream.
Analysis of the falling limb of the hydrograph, known aé
recession analysis, has been used to obtain a variety of
information. It has been used to estimate groundwater
recharge (Meyboom, 1961), to predict 1low £flows (Raudkivi,
1979) and as a“.éﬁmparative characteristic of watersheds
(Holtan and Overtoh, 1963). Another approach to streamflow
analysis has been the separation of the components which
contribute to streamflow. Historically, methods used for
hydrograph separation were purely arbitrary and relied on
graphical separation to distinguish "direct runoff and
baseflow components (Gray and Wigham, 1970). Direct runoff
encompasses surface runoff and . interflow (subsurface
stormflow) while baseflow is dominantly composed of

groundwater (Linsley et al., 1958).
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More recently, techniques have been developed which use

the distinct chemical and/or isotopic characteristics of the

different sources of streamflow to separate them into "old"
groundwater and "new" direct runoff components.

The following sections describe the various procedures

used in this study: peak flow frequency, £flow duration,

recession analysis and hydrograph separation by graphical

and chemical/isotopic mass balance.

4.1 Peak Flow Frequency Analysis

Frequency analyses are methods of estimating
streamflows using runoff records. They are usually directed
towards the prediction of maximum (flood) and minimum
(drought) flows.

In the design of hydraulic structures, it is standard
practice to design on the basis of discharge rates of a
specified return period. The return period (or recurrence
interval) is the number of years on average during which a
specified discharge is likely to be equalled or exceeded (or
less than) (Gray and Wigham, 1970). The return period is
determined from

T =1/p =(n+l)/m (4.1)
where: T 1is the return period, p . is the probability of
occurrence of a flow of specified magnitude, n is the number
of years of discharge records and m is the rank of a
particular flow with rank m=1 being the highest flow. T |is

obtained by studying the entire record of stream discharge
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and picking out annual peaks and ranking them in order of
highest to 1lowest. The return periods are then plotted on
arithmetic probability paper (Dunne and Leopold, 1978)
against the corresponding discharge and a line is fitted to
the points. PFrom this plot, the return period of a
specified discharge can be read off.

A limitation to this type of analysis is that the
return period does not indicate exactly when a specific
flood will occur. For example, the 20-year return period
flow does not mean that this flow will occur every 20 years.
Instead, it indicates the probability of its occurrence in a
particular year (i.e. p = 1/T ), in this case a 5% chance.
On the average, the flow will occur every 20 years.

The return period analysis is not very useful in water

quality studies.

4.2 Flow Duration

Flow duratioﬁ;énalysis is a type of frequency analysis
that shows the proportion of time that a stream's discharge
is greater or 1less than a particular value (Dunne and
Leopold, 1978). The analysis is performed by plotting the
cumulative distribution of the number of days a particular
flow is exceeded (or lower than) against the discharge.

Flow duration curves can be prepared for any period but
the most important is for an entire year using daily average
flows as the basis for determining the frequency (Raudkivi,
1979). Raudkivi (1979), suggests using log=-probability
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paper for hydrological studies because this type of paper
provides good definition of the extremities. The
extremities are important because they provide information
about the hydrological characteristics of the watershed.

A steep slope of the entire flow duration curve
indicates a stream with highly variable discharge which 1is
typical of conditions where flow is mainly from surface
runoff (Raudkivi, 1979). A shallow slope at the 1lower end
of the curve suggests a relatively steady baseflow from
groundwater storage (Figure 4.1)(Sibul, 1969). A shallow
slope ﬁear the top end of the curve is characteristic of
streams that have a large surface storage 1like 1lakes or
swamps, or where high flows are mainly due to snowmelt
(Sibul, 1969; Raudkivi, 1979).

The curves are also used to compare flow
characteristics of different streams or to predict the
distribution of future flows for water supply or pollution
studies (Sibul, 1969) s

4.3 Recession Analysis
The recession 1limb of a hydrograph represents the
withdrawal of water from storage following the cessation of
precipitation. The rate of decline of discharge has been
described by the recession coefficient:
K=0Q3,/Q (4.2)
where: Q, is the average discharge on a certain day and Q ,,

is the discharge 24 hours later and
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K = exp(-1/m) (4.3)

where: t 1is the time interval and m is variously known as

the basin constant, reservoir coefficient or mean 1life
(Martinec, 1985).

The basin constants have been used by various authors
as a comparative tool to describe runoff characteristics in
different watersheds (Holtan and Overton, 1963; Dingman,
1966; Anderson, 1974; Church, 1974a; Ingenkamp, 1984). A
drawback to these comparisons 1is that many northern
watersheds are fed by snowmelt until late in the summer so
their recession 1limbs are not entirely the result of
baseflow as is the case in most southern watersheds.

Recession analysis can be a very useful technique
especially in northern watersheds where much of the year's
precipitation is stored as snow. Since the distribution of
snowfall is so variable, early summer discharges can be used

to predict flows later in the summer.

)
-

4.4 Graphical Techniques

There are numerous graphical techniques of hydrograph
separation which have been developed to suit the needs or
models of their developers. They all, however, have one
thing in common: they are all artificial and arbitrary
techniques (Gray and Wigham, 1970).

Figure 4.2 1illustrates three techniques €for simple
hydrograph separation (Gray and Wigham, 1970). Methods 1

and 3 use the baseflow recession curve as a basis for
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Figure 4.2: Three graphical methods of hydrograph separation
(Gray and Wigham, 1970).
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separation. In method 1, the baseflow recession following
the peak discharge is extended back to a point wunder the
peak. This point 1is then joined to the point representing
the beginning of runoff. Method 3 requires the extension of
the baseflow recession curve prior to the peak to a point
beneath the peak. This point is then Jjoined- to a point
representing the end of direct runoff, determined by an
empirical relationship:

N = A0"2 (4.4)
where: N is in days and A is the drainage area in square
miles (Linsley et al., 1958). 1In method 2, the hydrograph
is separated by Jjoining the points representing the
beginning of runoff and the end of direct runoff with a
straight line.

Complex or multiple peaked hydrographs are separated
using techniques similar to methods 2 and 3 (Figure 4.3). In
this method, the effects of the individual events are
separated by extending the total runoff recession curve
(line AB 1in PFigure 4.3). N is determined for both events
and the points are connected as shown in Figure 4.3. For
more complete descriptions and variations, the reader is
referred to Gray and Wigham (1970) and Raudkivi (1979).

Hewlett and Hibbert (1967) proposed a graphical
technique to be used for separating all hydrographs on all
small watersheds (<50 km?) into "quick" and "delayed" flow.
Their technique involved constructing a straight 1line from

the beginning of any stream rise at a constant slope of
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Figure 4.3: Graphical technique for separating complex
hydrographs (Gray and Wigham, 1970).
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0.00055 m3/s/km3/h to where it intersects with the falling
limb of the hydrograph.

4.5 Chemical Mass Balance Hydrograph Separation

The relationship between +the chemical quality and
discharge of a stream has 1long been established (Durum,
1953; Hem, 1959). Most ionic species found in stream water
have concentrations which are inversely related to the
discharge; that is, at high flows concentrations are low and
at low flows concentrations are high (e.g. Hem, 1970; Glover
and Johnson, 1974). This relationship has been described
as, essentially, a dilution effect of storm flows whose
input waters have low dissolved ion concentrations (Hem,
1970). Some species, like potassium, however, often show a
direct relationship between concentration and discharge
(Foster, 1978). Since there 1is a well known positive
relationship between total dissolved solids and electrical
conductivity (Rainwater and Thatcher, 1960; Hem, 1970; Singh
and Kalra, 1975), electrical conductivity shows a similar
relationship as individual ions with stream discharge.

A number of studies have used the concentration-
discharge relationship to separate different hydrograph
components (Voronokov, 1963; Zekster, 1963; Kunkle, 1965;
Toler, 1965; Newbury et al., 1969; Pinder and Jones, 1969;
Visocky, 1970; and many others). The baéis of these studies

. is the simultaneous solution of two mass balance equations

describing the flux of water and any particular chemical
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species in the stream (Sklash and Farvolden, 1979):
QT = QN+Qo (4.5)
and, CTQTB CNQN+COQO (4.6)
where: Q is the discharge, C is the ionic concentration and
subscripts T, N, and O refer to the total discharge, new
water and old water, respectively. These equations simplify

to:

o= o, ecp/tecol (4.7)

This method of analysis 1is based on the following
assumptions (Sklash and Farvolden, 1978; Vreeland et al.,
1985):

(1) concentrations of selected species in the o0ld and
new water components must be significantly
different;

(ii) concentrations of old and new waters must be
constant both areally and temporally:

(iii) vadose water and old water are chemically equivalent
or the contribution of vadose water is negligible;
and,

(iv) surface water storage contributions are minimal.

The first criterion is usually easily satisfied. The
second, however, often 1is not. Nakamura (1971) noted a
strong relationship between electrical conductance and flow
distance of surface runoff. Pilgrim et al. (1979) were more
blunt, referring to simple chemical mass balance methods for
hydrograph separation as "misleading" because they fall to

consider the relationship between chemical concentration (or
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electrical conductivity) and time of contact with soil.

Since concentration-contact time relationships are not
well known or easy to determine, other data must be used to
eliminate the uncertainties which simple chemical mass
balance methods may raise. Conservative tracers, unlike
chemical parameters, are unaffected by contact with soil or
rock. They are only affected on mixing with waters of
different isotopic content.

Pearce et al. (1985) used a combination of electrical
conductivity, chloride and 1isotope data to present strong
evidence that new water 1is not what constitutes storm
runoff.

The isotope method is discussed in more detail in the

following section.

4.6 1Isotopic Mass Balance Hydrograph Separation

Recently, environmental isotopes have been used as the
tracer in mass balance studies similar to those described in
the previous section (Dincer et al., 1970; Mook et al.,
1974; Martinec et al., 1974; Martinec, 1975; Fritz et al.
1976; sklash et al., 1976; Sklash and Farvolden, 1979;
Herman and Stichler, 1980; Rodhe, 198l; Sklash, 1983;
Bottomley et al., 1985; Pearce et al., 1985; and many
others). Environmental isotopes are naturally occurring
isotopes whose natural abundance variations may be applied

to hydrological studies (Payne and Halevey, 1968). The most

Commonly used isotopes in hydrologic studies are oxygen-18,
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deuterium and tritium ¢°, D, T). They are convenient to
use because they are isotopes of the constituent atoms of
water; oxygen and hydrogen. Because of this they are not
affected by contact with soil like other chemical species
dissolved in water at temperatures found in shallow and
intermediate flow systems. The environmental isotope
content of waters is only altered by physical processes such
as mixing with isotopically different waters (Sklash, 1978).

Natural waters are made up of approximately 2000 ppm
Hzeo and 997 680 ppm H;so (Dansgaard, 1964). Samples are
analyzed by using a mass spectrometer, the details of which
are avallable 1in, for example, Hoefs (1973). The
concentration 1is expressed as a ratio (R) of the heavy to
light isotope and reported in delta units (68) as per mil

differences (% ) relative to a known reference standard:

(180/150) _(130/150)
5180 = sample standard X 1000 (4.8)
(130/!80)
standard
Rsampié'~'-
5% = = 1} X 1000 (4.9)
‘ Rstandard |

The internationally accepted standard is known as SMOW, an
acronym for Standard Mean Ocean Water (Craig, 1961).
Isotopic fractionation is any process which causes the
isotopic ratios (e.g. !%°0/'®0) in particular phases or
regions to differ from one another (Drever, 1982). The most
important physical process causing fractionation 1in the

hydrologic c¢ycle 1is the change of state during evaporation
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and condensation. The basic reason for the fractionation in
water is that the vapour pressure of H,!%0 is slightly higher
than that of H,!D because of the difference in mass. The
different vapour pressures result in an enrichment of
heavier molecules in the liquid phase and lighter molecules
in the vapour phase in both the condensation and evaporation
processes (Drever, 1982).

The isotopic content of precipitation is strongly
controlled by temperature. Dansgaard. (1964) reported a
linear relationship between 6'* 0 and the surface air
temperature over a wide range of temperatures~(Figure 4.4).
Other effects, related to temperature, which control the
isotopic content of precipitation are: 1latitude effect,
altitude effect, amount effect, seasonal effect and the
distance from source effect (Sklash, 19833 Fontes, 1980;
Dansgaard, 1964). 1In general, precipitation becomes
progressively more depleted in 6&'% from the coast inland
and from the equator towards the poles (Figure 4.5) (Drever,
1982).

The characteristics which make environmental isotopes
such as oxygen-18 suitable for use as a tracer in storm
runoff studies are that the isotopic content of groundwater
within a watershed is generally uniform areally and that the
isotopic contents of periodic precipitation events are often

Very different from that of the groundwater (Sklash, 1978).
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Figure 4.5: §'%0 (%, SMOW) content of precipitation in North America (after
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5. METHODS OF STUDY

In order to obtain solutions to the mass balance
equations introduced in Chapter 4, a field sampling program
was initiated 1in early July,‘ 1982 lasting 26 days. The
program was continued the following summer, from mid-June to
mid-August, 1983. The first summer turned out to be
primarily an orientation period, learning what could be done
based on a number :;f factors: the physical nature of thé
watershed, local transportation and a;cess to the watershed,
and the typical response of the watershed both in terms of
discharge and chemical variability. For example, initially
several transects of piezometers were to be installed by
hand near the stream. This plan was abandoned because of
the many large boulders that covered the area or because
bedrock was near the surface. |

To obtain values for the ionic concentration inputs in
the mass balance equations, stream water samples were taken
approximately ever§.=2 hours‘at the Water Survey of Canada
gauging site near.the outlet of the Apex River (Figure 5.1).
Samples were obtained using a Cygnus Automatic Liquid
Sampler (Figure 5.2). During the 1983 field séason, samples
were measured for pH and electrical conductivity at the site
or immediately on return to the 1lab. These measurements
were not taken in 1982 since both the pH and the
conductivity meters failed. The meters used in 1983 were a
pHox mbdel 42 pH meter and a pHox model 52 conductivity

meter. The pH meter was calibrated daily at the 1lab while
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Figure 5.1: Location of instrumentation used in the study.
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the conductivity meter was checked daily and periodically
adjusted using a KC1l standard solution.

The sampling frequency at the stream gauge site varied
from about 2 to 6 hours with the more frequent sampling
early in the snowmelt season and following rainstorms, and
less frequent sampling 1a£er in the season and during 1long
dry periods. Normally, two samples were taken in 60 or 125
ml Nalgene bottles, one to be used for later isotope
analysis and the other to be used for later chemical
analysis. The chemical samples were preserved by adding
nitric acid to lower the pH to 1less than 2 (U.S.
Environmental Protection Agency, 1974). The isotope samples
were left untreated. Both sample bottles were then sealed
by dipping the tops in melted paraffin wax.

Precipitation was collected using plastic buckets near
the gauging site and at the laboratory. The same sampling
and preservation procedures were used as for the stream

,§amp1es were taken and prepared as above.

-

samples: i.e., two

Snow samples' were taken daily from snowbanks near the
gauge. Sampling continued until very little snow remained
on the ground. Samples were obtained by using a 30 cm long
by 4 cm diameter plastic tube inserted into the snow bank
(Figure 5.3). The snow from the tube was placed in plastic
bags, melted at room temperature in the lab and then placed
in bottles as above.

Snowmelt samples were taken daily from runoff

originating at melting snowbanks near the stream gauge.
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Figure 5.3: Photograph of the snow sampling procedure.
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Discharge data necessary for solving the mass balance
equations and for historical streamflow analysis (e.g. peak
flow frequency) wére obtained from the Water Survey of
Canada. This data consisted of mean daily flow rates for
the period of record 1973-1983.

Climatological data were obtained from the Environment
Canada Meteorological Station at the Frobisher Bay airport.
This information consisted of daily temperature and
precipitation data. The precipitation data were compared
with that obtained from a standard collecting rain gauge
located at the stfeam gauging site. This gauge was
monitored daily. The stream temperature was also recorded
daily at the gauge site.

To determine if there was any areal variation in
chemistry, samples from various éources were taken over the
length of the main stream and parts of other tributaries.
These samples included: stream, snow, snowmelt, incoming
tributary, grouqdwgter spring, lake and pond samples. This
survey was perform;d three times: once in 1982 and twice in
1983 to see if there was any variation of chemistry with
discharge. The two surveys performed in 1983 took place
under different streamflow conditions. The first was made
early in the runoff season during a period of high discharge
and the second was performed during a low flow period. The
1982 survey took place at low discharge. pH, electrical
conductivity and temperature measurements were made in the

field and samples were collected for later chemical and
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isotope analysis.

All of the samples brought back to the University of
Windsor were analyzed for Na, Ca, Mg, and K and some samples
(1982) for Fe. The analysis was principally done using the
Department of Geology's Varian AA-175 series atomic
absorption spectrophotometer using standard methods (Varian
Techtron, 1971). Some samples were analyzed in the
Department of Geography using the Great Lakes Institute's
Instrumentation Laboratories IL351 spectrophotometer.
Selected samples were analyzed for oxygen-18 at the
University of Waterloo by mass spectroscopy using the carbon

dioxide equilibrium method (Hoefs, 1973).
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6. RESULTS AND DISCUSSION
6.1 Physical Studies
6.1.1 Historical Hydrograph Data

For comparison purposes, hydrographs for all the years
of record (1973-83) are illustrated in Appendix I along with
the mean daily temperature and precipitation conditions
during these periods. The 1975 hydrograph 1is particularly
interesting. The peak daily flow occurred relatively late,
on July 18, which is unlike any other year in which the
peaks occurred earlier. The reason for this late peak flow
is apparent upon examination of the temperature and
preéipitation data. Mid-June was relatively warm and July
was very wet. The peak flow was a result of an 1ll-day
period during which measureable rain fell every day
totalling over 86 mm.

From an examination of the historical hydrographs in
Appendix I, the Apex River can be classified as an Arctic
Nival regime using .Church's (1974a) classification system

(see Section 3.2).

6.1.2 Peak Flow Frequency

Figure 6.1 is a peak flow frequency curve for the Apex
River using annual peak daily aischarges for the period
1973-1983, inclusive. Streamflow data has only been
recorded at the Apex River since 1973. The irregular trend

of the peak flow frequency curve may be attributed to two
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possible sources. Firstly, the period of recorded
streamflow is relatively short. Viessman et al. (1977)
suggest that frequency curves from short term records yield
results of limited reliability. The other reason, and
probably most important, is that the period of recorded
streamflow is not the same from year to yearl Peak flows
normally occur sometime in June, but for five of the eleven
years, discharge measurements began on June 23 or later with
three years' record beginning on July 1. It is likely that
the peak daily flows were missed for these years. A more
complete record would, therefore, likely yield a straighter
flow frequency curve.

Sangal and Kallio (1977) presented peak flow frequency
curves for numerous streams in southern Ontario. Curves for
watersheds comparable in size to the Apex River (area=60
km? are remarkably similar in both magnitude and shape.
Table 6.1'compares watershed characteristics of two southern
Ontario streams ta'fhé Apex River.

The peak flow frequency curve can be used to
characterize a particular year's flow. For example, the
1983 peak flow (10.9 m?3/s) was the third highest in the 11
Years of record, while the 1982 peak flow (4.5 &IVB) ranked
ninth. Therefore, any results obtained from hydrologic
studies for these two years cannot be dismissed as resulting
due to extraordinary conditions not likely to be repeated

often.
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Table 6.1: Comparison of Apex River peak daily flow to
similar sized watersheds in southern Ontario
(data from Sangal and Kallio, 1977).

Watershed Number of Area(km?) Maximum

Years of Daily

Record Flow (m3/s)
Laurel Creek 12 60 17.4
at Waterloo
Ganaraska Creek 12 67 19.8
near Osaca
Apex River 11 60 15.6
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6.1.3 Flow Duration
Flow duration curves constructed for 1982 and 1983 are
shown in Figure 6.2. The percentage of time a particular
discharge was equalled or exceeded was calculated based on
the number of days in the discharge record. For 1982, the
discharge was recorded for 153 days and in 1983 for 116
days. This difference makes the curves difficult to
compare. The curves are dquite different (note different
scales for 1982 and 1983) because the 1982 data includes
very low flow values (< 0.06 m3/s) for October while the
1983 data ends on September 30. In any case, the steepness
of the middle part of the curves illustrates highly variable
discharge, which is typical of conditions where flow is
maiﬁly from surface runoff (Raudkivi, 1979). A similar
interpretation (Dunne and Leopold, 1978) suggests that the
steep curve reflects the impermeable nature of the ground in
the watershed (see Figure 4.1). The shallow upper slopes
(especially for 1982) illustrate a large input from surface
storage, where the high flows are mainly due to snowmelt.
The absence of a shallow sloping low end of the flow
duration curve indicates the absence of large groundwater

Storage inputs to baseflow.

6.1.4 Recession Analysis
Recession analysis (Figure 6.3) yielded a recession
coefficient of about 0.86 for 1983 and 0.90 for 1982. 1In

other words, during recession (on the falling 1limb of the
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hydrograph) the average daily discharge is about 86-90% of
the preceding day's discharge.

Martinec (1977) states that if direct meltwater runoff
corresponds to immediate runoff and subsurface runoff to the
recession flow, then the proportion of subsurface runoff
(Q 4 /Q f corresponds to the recession coefficient, k. 1In
this case, 86 % of the Apex River flow would be made up of
subsurface flow.

The reservoir coefficient ('m' in Equation 4.3) for the
Apex River is very high fm = 165 h) compared to those values
presented by Holtan and Overton (1963) for much larger
basins in the United States which get most of their
recession flow from groundwater storage. It is small,
however.when compared to the results reported by Anderson

'(1974), who obtained reservoir coefficients in the range of
8-16 h/km? for a small watershed near Inuvik. He attributed
the large reservoir coefficients and drawn out recessions to
the increased storage capacity of the thawing active 1layer

in June and July.

6.1.5 Graphical Hydrograph Separation

Attempts were made to use various graphical techniques
to separate the discharge hydrograph of the Apex River for
the 1983 runoff season. Problems were encountered in
lapplying all of the techniques because it appears that these
techniques were developed for more temperate conditions for

short term runoff events associated with rainfall. No
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studies were found in the literature which used graphical
methods for snowmelt hydrograph separation. The case of a
prolonged snowmelt event, such as that which occurs in the
Apex River and elsewhere in the north, is not adequately
dealt with by graphical techniques.

The slope of the quickflow-delayed flow separation line
proposed by Hewlett and Hibbert (1967) is much too steep for
the Apex hydrograph. This is due to the long drawn out
snowmelt recession (k = 0.86). Hewlett and Hibbert (1967)
suggested their method be used only in basins smaller than
approximately 50 km? (20 mi » and only in basins which flow
for most of the year. The Apex River has an area of
approximately 60 km?, slightly above the suggested size, and
is frozen for up to 7 months of the year.

The graphical technique proposed by Gray and Wigham
(1970) also does not work for the Apex River hydrograph

because of the long snowmelt recession. .

R
. - .
-
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6.2 Chemical and Isotopic Studies
6.2.1 Hydrochemical Characteristics

Chemical data for water samples from various sources
are listed 1in Appendices II (1983 samples) and III (1982
samples). To illustrate the temporal variability in water
quality at the gauge site, plots were made of the individual
ion concentrations versus time for 1983 (Figure 6.4). In
general, it appears that the highest concentrations of most
ions occurs late in the summer. There also appears to be a
correlation between ionic concentration and discharge, with
higher concentrations occurring at low discharges and vice
versa.

Streamflow is considered to consist of a baseflow
fraction made up of groundwater that discharges into the
stream channel and a direct runoff fraction which enters the
stream during and soon after precipitation or snowmelt
periods (Hem, 1970). Precipitation or snowmelt inputs
generally are low in .total dissélved solids (TDS). TDS can
be computed, in mg/l, by multiplying the recorded electrical
conductivity values by a factor of 0.55 to 0.75 (Hem, 1970).
The'direct runoff component, while having a short contact
time with the watershed material, has enough contact to
increase the TDS of the direct runoff over that of the
original precipitation or snowmelt input. The longer the
water is in contact with the watershed material, the higher
the TDS will be since the water has more time to dissolve

the minerals in the underlying rock or soil. The baseflow
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(groundwater) component has an even higher TDS than the
direct runoff because of its much longer contact time. This
information is summarized for the 1983 season in Table 6.2
in terms of electrical conductivity values for the various
sources of streamflow.

The chemical analyses (Appendices II and: III) yielded
results similar to those obtained by Church (1974b) on
Baffin Island and from analyses of the municipal reservoir
for Frobisher Bay (Health and Welfare Canada, 1981) (e.g.
Table 6.3). In general, they found that the waters were low
in TDS. The low characteristic TDS of Baffin Island waters
was ascribed by Church (1974b) to be due to the Precambrian
bedrock terrain, which weathers slowly when compared to
consolidated and unconsolidated .sediments (Hem, 1970), and
the fact that the source of much of the water, namely rain
and snow, 1s characteristically low in TDS.

To illustrate more clearly the relationship between ion
concentration and.q;sgharge; the concentrations of the 1ions
in the water aré plotted‘against mean daily discharge for
1983 (Figure 6.5 a-f). Electrical conductivity (EC), Mg and
Ca all illustrate strong inverse relationships, not
necessarily 1linear, between ionic concentration and
discharge. Na shows a similar, though not as dramatic,
relationship to discharge. Values for pH and K do not
exhibit any strong relationship with discharge.

EC, Mg and Ca all show similar behaviour with what

appears to be two separate responses to changes in
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Table 6.2: Summary of Electrical Conductivity and pH Values
from Various Sources.

Source EC (uS/cm) pH
Baseflow x 32.2 6.2
s 1.6 0.8

n 242 242
High Flow X 21.8 6.5
s 3.3 0.3

n 337 337
Snow X 10.1 5.7
s 7.6 0.7

n 24 24
Snowmelt x 15.8 5.6
s 11.1 0.9

n 27 27
Rain X 11.6 5.6
s 9.0 0.5

n le6 le
Spring_ . X 40.7 6.0
: s 9.2 0.6

n 6 6

NOTE: Baseflow period = Day 35 to Day 56
High flow period = Day 1 to Day 34.
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Table 6.3: Results of Water Analysis (Health and Welfare
Canada, 1981)

Date of sample: November 9, 1981

Sample location: Raw water tank, water treatment plant,
Frobisher Bay, N.W.T.

Parameter mg/1l
Calcium 8.3
" Magnesium 0.8
Total Hardness 24
Total Alkalinity 11
Sodium 0.8
Potassium 0.1
Chloride 1.4
Sulphate 2.9

Nitrate/nitrite 0.26
Arsenic (total) <0.01

Cadmium <0.01

Iron 0.08

Lead <0.01

Zinc 0.03

Manganese <0.01

Chromium <0.02

Mercury (ug/l) 0.04
pH 7.0
Specific Conductance (umho/cm) 32
Colour (colour units) 5
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Figure 6.5: Plots of chemical parameters versus discharge for 1983.
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discharge. At discharges greater than about 1l m’/s, there
is a gradual increase in ion concentration with decreasing
discharge (Figure 6.5). At discharges less than 1_m3/s, the
curve gets steeper, showing a sharper rise .in
concentrations. This segment (<1 ms/s) appears to
characterize baseflow conditions while the ofher segment
represents the variable snowmelt period.

The source of the different chemical parameters in the
waters is the dissolution of various minerals from the
watershed materials. The dominant minerals which make up
the Precambrian bedrock in the Apex River watershed are:
quartz, plagioclase feldspars, potash feldspars, pyroxene
and biotite (Blackadar, 1967). In the Apex River, as in
most natural settings, Ca is the dominant cation (Appendices
IT and 1III)(Hem,1970). The differences in the cation
concentrations arise because some minerals are more easily
weathered than others. This explains the low K
concentrations relative to the Ca, Mg, and Na results. All
of the cations do n;t'behéve similarly in solution (Figure
6.5). While Ca, Mg, and Na have similar relationships with
respect to discharge, K does not. The reason for this |is
that once in solution, K tends to react with other solids,
sSuch as clays, in the water (Hem, 1970; Foster, 1978). K
may also be preferentially taken up by vegetation
(Bottomley, 1974).

The stream pH values (Figure 6.4) exhibit a depression
during the low flow period (after about Day 30). There |is
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no "acid pulse" during the peak runoff resulting from the
rapid input of acidic rain or snowmelt as is seen in many
watersheds in southern Canada (Bottomley et al., 1985).
Table 6.2 summarizes the pH values of the different sources.
The reason for the absence of a pH depression during the
peak flow is unclear. Bottomley et al. (1985) experienced a
similar response. Their explanation was that much of the
first meltwater from the acidic snowpack (in the Apex River
snow pH=5.7) infiltrates into the subsurface displacing the
higher pH groundwater to the stream. In the Apex River
watershed, however, the pH of groundwater does not appear to
be high enough (Table 6.2) to produce stream pH values such
as the average high flow pH. A more likely explanation is
the one reported by Zeman and Slaymaker (1975). They noted
a substantial pH increase (1.3 pH units) between snow in
place and snow runoff over the watershed surface a short
distance away.

The pH depres§iop later in the runoff season may be
explained by an increase in the acidity of the runoff water
due to organic decay of vegetation. This produces gaseous
CO, which reacts with water to increase the hydrogen ion
concentration (i.e. lowers the pH)(Stumm and Morgan, 1970).

Figures 6.6 (a-e), illustrate the temporal and spatial
variability of the chemical constituents measured for

- various locations in the watershed at two different times in
1983 and the spatial variability for one period in 1982.

These sample analyses are listed in Appendix II using the
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prefix B (e.g. B-24) for the 1983 samples and in Appendix
IIT . using the prefixes BP, CP and DP. The temporal

" variations shown by this series of figures appears to agree
with those measured at the gauge site, that |is,
concentrations are generally higher during 1later summer
which corresponds to periods of 1low flow. Table 6.4
summarizes the temporal variations; wvalues for all of the
constituents measured showed an increase between June 20-21
and July 13, 19, 1983. Values for pH were not determined on
July 13 and 19 because of a problem with the meter.

The stream water chemistry changes in response to
different sources of inflow. For much of the summer (to
late July), most of the stream's discharge 1is probably
related to snowmelt, either directly or by its displacement
of groundwater. Later in the summer, most of the flow
probably comes from groundwater. Other changes in stream
chemistry may be linked to changes in the hydrogeology of
the basin. For. example, at the outlet of the lake at the
extreme north end of the watershed was dry when visited on
July 13, 1983. This indicates that the small lake was not
contributing to the stream discharge at low flows. A sample
taken from this 1lake on July 13 showed very high solute
concentrations relative to the rest of the watershed (Figure
6.6 a-e). This may indicate stagnant water being
concentrated by evaporation.

Spatially, there does not appear to be any obvious

pattern to the ionic concentration data shown in Figures 6.6
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Table 6.4: Comparison of chemical parameters averaged over
the entire watershed between June 20,21 and July
13,19, 1983.

Parameter June 20,21 July 13,19
EC (uS/cm) X 11.2 24.8
s 2.5 4.2
n 17 16
Na (mg/l) X 0.40 0.50
s 0.08 . 0.10
n 17 16
K (mg/l) X 0.12 0.14
s 0.06 0.09
n 17 16
Mg (mg/1) X 0.24 0.47
8 - 0.06 0.07
n 17 16
Ca (mg/l) x 1.85 4.35
s 0.71 1.51
n 17 16
. 92
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a-e., Figure 6.7 1illustrates this by showing no apparent
relationship between electrical conductivity of stream
samples and distance from the gauge at high flow (June
20-21) or low flow (July 13, 19). The geology of the
watershed (Figure 1.5) does not appear to affect the
distribution of solute concentraﬁions. The drift material
of the northern part of the watershed is largely composed of
quartz-feldspar gneiss boulders, the same rock type as the
exposed bedrock in the southern part of the watershed, so
one would not expect any significant concentration

variations due to geology.

6.2.2 1Isotopic Hydrograph Separation

A total of 43 water samples from the Apex River
watershed obtained during the summer of 1983 were analyzed
for oxygen-18 in order to separate the hydrograph into new
and old water components. A list of these analyses is given
in Appendix 1IV. .Thgshydrograph separation (Figure 6.8) is
the result of the éslﬁtion of the two mass balance equations
(Equations 4.5 and 4.6). The basis of the solution 1is the
assignment of oxygen-18 values and discharges to the
appropriate variables in the equations using various
assumptions or generalizations to estimate them. All of
these values are illustrated in Figure 6.8.

Values for QT are from the mean daily discharge record
from the Water Survey of Canada gauge near the outlet of the

Apex River. The values for C,, come from averaging, on a

T
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daily basis, stream water samples obtained at the gauge
using the automatic sampler. co values are approximated
using values obtained from the stream when baseflow was
assumed to be the only input. This 1is a commonly used
estimate (Sklash, 1978; Rodhe, .1981l; 1983a,b; Hooper and
Shoemaker, 1985) since it has been generally found that
isotopic contents of groundwater samples are the same as
those of low flow stream samples. One major advantage d%
using stream samples is that they are wusually much more
easily obtained and thus, more plentiful. 1In this
particular case, much of the watershed consisted of exposed
bedrock or large boulders making hand installation of
piezometers or wells impossible. Another advantage of using
baseflow samples over groundwater samples is that the
baseflow samples represent an integrated sample of all 1low
flow inputs upstream of the sample site while the
groundwater may show variation from one site to another
(sklash et al., 1985).

To aid in determining the most accurate baseflow
estimate for C

o
on the chemical and isotopic data; one wusing all of the

» cluster analyses (SAS, 1982) were performed

chemical variables (EC, pH, Na, K, Mg, Ca), and another
using only 6'%0. Cluster analysis is a procedure used to
group together large numbers of samples into smaller numbers
of groups. Members of one group are more similar to each
other than they are to members of another group. Schwartz

(1979) used cluster analysis to determine the origin of
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streamflow in a watershed 1in northeastern Alberta by
grouping streamwater samples from various times with muskeg
water or groundwater samples.

The first cluster analysis (Figure 6.9; Appendix V)
showed two distinct groups: one group consisted of samples
at relatively high discharges which correspond to the period
from Day 1 to about Day 35 of the discharge record; and, the
other group was comprised of 1low flow samples from
approximately Day 35 to the end of the study period (Day
56). On the basis of the 1983 discharge hydrograph, this
second group appears to be baseflow. The average §2% for
this period (Table 6.5) is similar to the value obtained
from the groundwater spring sample analyzed. The second
cluster analysis (Figure 6.10), using only oxygen-18 data,
showed a grouping very similar to the first analysis. 1In
this analysis, the two groups of stream samples were divided
between Day 31 and Day 35. As a result of this cluster

analysis, the 5180 value for Co was taken as the average of

-
-

the same six saﬁpies -noted as baseflow from the first
Ccluster analysis.

Finally, the value for Cy Was assumed to be a constant
value and was obtained by averaging oxygen-18 contents of
melted snow samples. Hooper and Shoemaker (1985) state that
the use of snowcores ignores the contribution of any rain
that falls during melt, however there was little evidence
that 6!'% values of stream samples were significantly

affected by rainfall (see PFigure 6.8). Rodhe (1981;
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Table 6.5: Summary of Oxygen-18 Values from Various Sources.

Source 6190 (%)
Baseflow X -17.5
s 0.3
n 6
High Flow x -19.5
s 0.9
n 20
Snow X -23.1
s 0.6
n 5
Snowmelt X -24.5
s 1.9
n 4
Rain X -18.0.
s 2.7
n 7
Spring _ x -17.9
- s 0.0
n 1l

NOTE: Baseflow period = Day 35 to Day 56
High flow period = Day 1 to Day 34.
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1983a,b) assumes that the isotopic content of snowcores |is
the same as that of snowmelt water. This assumption has
been disputed by Hooper and Shsemaker (1985) who found that
snowmelt samples were isotopically heavier in terms of D,
than snowcore samples. Similarily, Krouse (1974; referenced
in sSteppuhn et al., 1975) noted an enrichment in &'% in
melting snow.

The use of snow sample §'°0 for C should be considered
valid for a number of reasons. First, snow samples were
taken daily throughout the melt season. While they were not
all analyzed owing to cost considerations, those that were,
were spaced throughout the summer and included any effects
of the 1isotopic content of rain falling on the snow.
Secondly, since the normal summer rainfall intensities are
light, the input of rainfall can be considered to be of
minimal importance relative to the volume of water available
from the snow on the ground during the £first half of the
field season. Finally, the trend of §'% of snowmelt
samples from the Aﬁéx watershed is different from the trends
found by Hooper and Shoemaker (1985) and Krouse (1974). The
average $'°0 content of the snowmelt samples was depleted
relative to that of the snow samples (Table 6.4). Since the
meltwater is depleted in terms of 61°0, then the use of a
constant value of 6!% from snow samples would give a
conservative solution to the hydrograph separation, that is,
the separation could be considered a minimum estimate of the

old water contribution.
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Examination of the hydrograph separation (Figure 6.8)
reveals several interesting points. First, the peak o0ld
water discharge is approximately 50% of the peak stream
discharge, and occurs relatively soon after the peak stream
discharge. Also, early in the season, the o0ld water
contributions are low relative to the total. discharge but
increase 1later in the season. A possible explanation for
this occurrence is the gradual melting of the active layer
which increases the contributing capacity of the subsurface.
Early in the snowmelt season, the ground is still frozen up
to the surface resulting in direct runoff as overland flow
or flow along the vegetation-bedrock surface (Figure
6.11 a-b). Later in the summer, the active layer melting
progresses, resulting in a larger contributing source for
subsurface flow as well as a larger reservoir for storage of
infiltrating snowmelt water. Also later in the summer,
there 1is less snow left on the ground resulting in a higher
proportion of old“;yater in the total stream discharge.
Rains, generally 1light in intensity, also are likely to
infiltrate later in the summer when the active layer has the
capacity to store it.

The overland flow shown in Figure 6.11 a~b is similar
to that described by Dingman (1966; 1973) who noted overland
flow and flow originating in stored water in vegetation
migrating along the frozen ground surface in a discontinous
Permafrost watershed in Alaska. As in the studies by Woo
(1976) and Lewkowicz and French (1982a), tbe overland flow
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in the Apex watershed occurred downslope of substantial
accummulations of snow.

Many northern researchers have presented evidence of
groundwater discharge in permafrost areas, however no
attempts have been made to quantify it (Brandon, 1963;
Kalanin, 1968; Van Everdingen, 1974: See Chapter 3). Others
have empahsized the role of subsurface flow (Lewkowicz and
French, 1982a,b; Steer and Woo, 1983) however they tend to
describe the subsurface flow as originating from
infiltrating meltwaters. In light of the results presented
here, it appears that "old" groundwater 1is a substantial
contributor to the Apex River discharge, making up about 50%
of the peak discharge and about 60% of the total stream
discharge from June 16 to August 10, 1983. This "old" water
is probably water which infiltrated into the active layer
near the end of the previous summer. This presumption can
be made based on the isotopic data in Table 6.5. The
similarity of GIBQ:values for rain and baseflow indicate a
similar origin. Aléo; the estimated average §'%0 value for
precipitation in the area from the literature (approximately
-18% , from Figure 4.5) is similar to the baseflow value.

A possible mechanism to explain the substantial
groundwater contribution 1is similar to the displacement
mechanism described for more temperate environments.
Infiltrating meltwater displaces groundwater already in the
melting active layer towards the stream. A similar

displacement mechanism has been used to explain snowmelt
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runoff in non-permafrost zones (e.g. Dincer et al., 1970;
Sklash and Farvolden, 1979; Rodhe, 1981; 1983a,b; Bottomley
et al., 1985). Infiltration of meltwater into the frozen
soil may provide more water to be displaced to the stream.
Price and Hendrie (1983) have noted the ability of meltwater
to infiltrate frozen soils.

This displacement mechanism contrasts with results
reported by Steppuhn et al. (1975) and Krouse et al. (1978)
who found no groundwater input in their snowmelt runoff
studies in southern Canada. In the Steppuhn study, a
channel formed by snowmelt runoff from a "snow patch" was
analyzed for 8'%0 as were other possible inputs such as
spring discharge and snow. Their isotopic results revealed
that virtually all of the channel's discharge was from
snowmelt, which 1is not surprising since the watercourse is
described as a meltwater channel. Krouse ég al. (1978), on
the other hand, do not dispute the results of Dincer et al.
(1970), and Meiman et al. (1973) who suggest that a large
amount of meltwatef infiitrates. Rather, they explain their
results showing 1little infiltration of meltwater as
occurring because of the basin's high resistance to what
Krouse et al. call "penetration" which is assumed to be
infiltration. These results and explanation are puzzling
Since they describe one of the study basins as a
well-drained agricultural watershed. It is highly likely,
in view of the results of other isotopic studies of

watersheds, that Krouse et al. (1978) and Steppuhn et al.
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(1975) were measuring channelized overland flow from a
melting snowbank rather than a perennial first order stream,

In general, the oxygen-18 data from the Apex River
watershed are consistent with data in the 1literature.
Michel (1976) stated that the §!°0 values for baseflow in
streams in permafrost areas shéuld be somewhere between the
values for rain and snow, or the average of the year's
precipitation. From Table 6.5 it can be seen that the
baseflow values do lie between the measured rain and snow
values. The &'%0 values for rain and snow taken from the
Apex watershed average =-20.6% which is very close to the
estimate of =-20% obtained using Dansgaard's (1964) plot of
8'%0 content of precipitation versus mean annual air
temperature (Figure 4.4). This estimate is obtained using a
mean annual air temperature of -9.3%¢ for Frobisher Bay
(Environment Canada, 1984). From the map of 6!'%
distribution in precipitation (Figure 4.5), a value of
between -~20% and -18% ( -18.5% ) is obtained for Frobisher
Bay which is closef to the value of §!%0 for the baseflow of
the Apex River (-17.5%.).

Temporally, the values of 820 in the stream do not
deviate very much from the general trend of enrichment with
time (Figure 6.8). The relationship between &§!%0 in the
stream and stream discharge (Figure 6.12) is very similar to
some of the chemical constituents mentioned in Section
6.2.1, namely electrical conductivity, Mg and Ca (Figure
6.5).
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6.2.3 Chemical Hydrograph Separation

If one were to use chemical data to solve the mass
balance equation (Equation 4.7), one would £find that the
various chemical species present in the water would not
yield identical separations., The problem with chemical
parameters is that they are not always conservative, that
is, their concentrations change with increased contact time
with geologic materials in the basin (Pilgrim et al., 1979).
Table 6.2 1illustrates this response using electrical
conductivity values. The EC of rain and snow are low
because these waters have little or no contact with the
watershed materials. The snowmelt has a higher EC as a
result of coming in contact with basin material. Finally,
the baseflow samples show a much hfgher EC due to their much
longer contact time. Environmental isotopes, on the other
hand, are considered to be conservative (e.g. Hooper and
Shoemaker, 1985), that is, their concentrations in water do
not change when‘tge'water interacts with basin materials on
the time scale of normal hydrograph response which is on the
order of hours or days (Pearce et al., 1985). As a result,
they are considered to be the most reliable tracers for
hydrograph separations (e.g. Sklash et al., 1976; Hermann
and Stichler, 1980; Bottomley et al., 1985). However,
isotope analyses are expensive by comparison with major ion
analyses or simple electrical conductivity measurements.
Since much more chemical data can be gathered for a much

lower cost than for isotopic data, as was the case in this
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study, it was attempted to determine if any of the chemical
parameters were "conservative enough” to use for a reliable
hydrograph separation.

To determine which chemical parameter was the most
reliable, a predictive model was formulated on the
assumption that the oxygen-18 solution was accurate. Using
the hydrograph separation results in a rearranged mass
balance equatgbn (Equation 4.7), the concentration of a
particular species in the stream water at a particular time
can be predicted. Predicted concentrations at selected
times during the study period can then be compared to the
observed concentration values of stream water from
corresponding times. The chemical parameter which shows the
smallest difference between the predicted and observed
values would then be considered the most conservative.

Chemical data consisting of electrical conductivity
values and Mg and Ca concentrations were inserted in the
rearranged mass balarnce.equation. Na and K concentration
data were not used in the model because they did not satisfy
the criteria mentioned in Section 4.5 for their use as
tracers.

The results of the model are illustrated in Figure 6.13
as plots of calculated values versus observed values. The
1l:1 line on the plots represents the situation where the
observed chemical data correlates exactly with the predicted
values and, thus, will give a separation identical ¢to the

separation obtained with oxygen-~-18. It is likely, though,
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that owing to the variability of the chemical species in
water resulting from contact time relationships , the data
will probably deviate from the 1l:1 1line. If the plotted
‘data lies below the line (i.e. C

c< C ), this indicates

cal obs
that the chemical parameter will underestimate the old water
contribution relative to the oxygen-18 solution. If the
points fall above the line, then the data will result in an
overestimate of the o0ld water contribution. From the
results (Figure 6.13) it appears that electrical
conductivity and Mg will yield the most accurate hydrograph
separation relative to the oxygen—-18 solution since the
points plot nearest to the 1l:1 line.

Another procedure for determining the best chemical
.parameter is illustrated in Figure 6.14. This procedure
compares the hydrograph separations obtained from each of
the chemical parameters (Figure 6.15 a-c) to the oxygen-18
solution. The bars represent the number of points on the
respective hydroggaph ,separations that differ from the
oxygen=-18 separation by a given percentage range of old
water input. Since most of the bars are to the right of 0,
this indicates that, in general, the ionic data
underestimates the old water input relative to the oxygen-18
solution. PFigure 6.14 indicates that Mg will give the most
accurate hydrograph separation relative to the oxygen-18
solution, however the figure also shows that Mg consistently
underestimates the o0ld water contribution by an average of

10%.
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The hydrograph separations illustrated in Figure 6.15
were produced using the same approach as for the oxygen-18
separation. Values of EC, Mg, and Ca for the various terms
in the mass balance equation (Equation 4.7) were assigned
using the same rationale thgt was used for the oxygen-18
solution.

This predictive model is essentially the same type of
analysis done by Hooper and Shoemaker (1985). They compared
oxygen-18 hydrograph separations with those based on major
cations and anions (not specified) and found that silica
(Si) was the most conservative chemical tracer for their
particular watershed. They found that Si underestimated the
proportion of old water by an average of about 4%.

Since all of the chemical parameters consisﬁently
underestimate o0ld water contributions, it is necessary to
examine the possibility that the oxygen-18 solution 1is
incorrect. Since the Mg hydrograph separation was
determined to be the:most accurate relative to the §&'°%
separation, the Mg sdlution will be used to examine the §!°%0
solution.

The only source of error in the stream and baseflow
samples is the analytical error for 8!'%0. Since this error
is the same for all of the samples analyzed, it is assumed
that these are accurate to within the analytical precision
(see next section). This leaves the most likely source of
error as the value of §!°% used for CNin the mass balance

equation (Equation 4.7). Cy was estimated in this study as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.7 Co®0.64 mg/I
0.6
S, 0.5 p
E 0.4 Cy
:Q. 0.3"‘
= 0.2- |
o.d — Cn=0.11 mg/I
1 - ‘
10-
9.
8‘
£ 0
— 6,
QO
o
5 5-
£
a
s 4
3-.
2 T \ o
I Qo
0 L s masan s -

O 5 10 I5 20 25 30 35 40 45 S0 55 60
Day

Figure 6.15(a): Hydrograph separation using Mg. (Day l= June
1, 1983)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Co*32.2 uS/cm

EC (uS/cm)

Discharge (m¥/s)

I"" Qo

od LTI

Cy*10.1}iS/cm

.\Q

O 5 10 I5 20 25 30 35 40 45 50 55 60

HI‘LIH'THU?

Day

Figure 6.15(b): Hydrograph separation using EC. (Day 1= June
1, 1983)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Co* 4.84 mg/I

Ca"* (mg/1)
&

ol Cy*0.20 mg/I

Discharge (m¥s)
O

O 5 10 I5 20 25 30 35 40 45 50 55 60
' Day

Figure 6.15(c): Hydrograph separation using Ca. (Day l= June
: l, 1983)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

the average 6'°0 of snow. According to a number of authors
(e.g. Moser and Stichler, 1980; Hooper and Shoemaker, 1985),
there is an enrichment of &§!°0 in snowmelt water relative to
snow samples. The average value obtained for snowmelt in
this study is depleted in &!%0. relative to snow (Table 6.5),
although the snowmelt value is based on only four samples.
The use of more enriched 6!%0 values for CN in the mass
balance equation would yield lower old water contributions.

To examine if the assumed value of Cy is correct, the
calculated values of Qg (and Qg from the Mg hydrograph
separation.are substituted into a rearranged mass balance
equation to determine values of Cy necessary to make the
6!'%0 data match the Mg separation. The predicted Cn values
are 1listed in Table 6.6. Four of the first five values are
similar to the assumed value of Cy and this indicates that
during the important peak flow period most of the points on
the 8'%0 and Mg hydrograph separations are similar. The
rest of the values are consistent with what might be
expected if enriched snowmelt water was the new water input.
This may indicate a possible introduction of error by using
the 8'°%0 content of snow as an estimate of Cye

While the Mg solution points out certain limitations of
the oxygen-18 solution, the oxygen-18 solution cannot be
simply discarded in favour of the Mg separation. There is a
characteristic of the Mg response that makes its solution
suspect. The predicted Cy values of §'%0 (Table 6.6)

calculated from the Mg hydrograph separation are not
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Table 6.6: Values of §!%0 for C,, calculated from the Mg
hydrograph separatioy (values are insg, ).

Day CN(calculated) CN(assumed)
l -23.3 -23.1
3 -23.5 -

4 -23.0 -~
5 -21.3
7 -23.0
9 -22.0

11 -21.9

13 -21.3

16 -20.8

20 -22.

21 -210

22 -21.7

26 -22.5

27 -22.5

29 -21.9

31 -21.5

35 : -19.0

37 -17.5
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consistent with other available data. For instance,
rainstorms which occurred on Days 20 and 26-27 (Figure 6.4)
had 6'°0 values that were enriched relative to the snow or
Day 20="14:7%, 810, 26,07
-19.3%). The expected response would be an enrichment of

snowmelt samples (6%

the overall CN.value, however Table 6.6 shows a depletion of

the predicted 6'°0 values of Cy on these days.

6.3 Sources of Error
6.3.1 Precision of the isotopic hy@rqgraph separation

The main source of uncert&inty in the isotopic
hydrograph separation is the variation of 6!'® 0 in
groundwater and meltwater, relative to the estimates used in
the mass balance equations. The variation of §!% in the
stream water during baseflow (C,) is ¥0.4% . The variation
about the mean value of 6!%0 content of the snow samples
(CN) is within *0.8% . These variations were used to
perform a sensitivity analysis on the calculated old water
contribution. The results are listed in Table 6.7. From
this table, the accuracy of the hydrograph separations
is estimated to be within f13%. This compares to values of
t15% obtained by Rodhe (1981) and *10% by Hooper and
Shoemaker (1985).

‘The analytical error for oxygen-18 is less than 0.2%.
(Payne and Halevy, 1968). Selected samples, approximately

one in five, were analyzed twice as a check.
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Table 6.7: Sensitivity analysis performed on measured data.

Co CN CT QO/QT(%)
Day 1 -17.5 =-23.1 -21.1 36
-17.1  =22.3 =21.1 23
-17.9  -23.9 -21.1 47
Day 5 -17.5 -23.1 °=19.9 57
-17.1 -22.3 -19.9 46
-17.9 =23.9 =19.9 67
pay 35 -17.5 =-23.1 =17.9 93
-17.1 -22.3 =17.9 85

-17.9 -23.9 -17.9 100

The measured values of C0 and C,, (first line of
each day) were varied by~ 0.4%e gnd 0.8% ,
respectively, to examine the change in proportion
of old water.

.
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The effect that rain events have on the snowmelt
hydrograph separation depends on their isotopic content
relative to that of the snow. If the 6% of the rain is
the same as that of the snow, then the estimate of QO is
correct because the rain has no effect on the isotopic
content of the new water input. If the &8!% of the rain is
greater than that of the snow, then Q4 is overestimated
(Rhode, 198l). During the hydrograph separation period, one
of four rains analyzed was similar in §1%0 to the snow while
the other three were more enriched-in &§!'%0 than the snow.
However, since the snow was analyzed periodically, any
effect the 6'°0 content of the rain had on the overall
isotopic content of the new’ water component would show up in

the 6%0 content of the snow.

6.3.2 Chemical analyses

About 75% of the 1983 samples were analyzed on the
Varian AA-175 series atomic absorption spectrophotometer,
while the rest were analyzed on the Instrumentation
Laboratories 1IL-351. To check the reproducibility of the
two machines, five samples werre analyzed for Ca and Mg on
both machines. The results are tabulated in Table 6.8. From
the table, Mg appears to compare quite well, while C&
appears to be slightly higher on the IL-351, although not
significantly at the 99% 1level of significance when the
results are subjected to a paired sample t-Test (Appendix
IV)(Miller and Freund, 1977).
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Table 6.8: Comparison of Ca and'Mg'aﬁalyses obtained using

Sample

A-377
A-380
A-381

 a-386
A-388

Varian AA-175 and Instrumentation Laboratories
IL-351 atomic absorption spectrophotometers
(values are in mg/l).

IL-351 AA-175

Ca Mg Ca Mg
4.15 0.52 3.45 0.75
3.35 0.91 2.20 0.95
0.95 0.13 0.90 0.14
0.50 0.38 0.35 0.36
4.15 0.54 3.55 0.45
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On both machines, quality control consisted of
analyzing a bench standard (tap water in this case) with
every batch of samples run. Usually, a sample analyzed in a
previous batch was also analyzed and compared to its
previous result.:

All of the chemical data obtained during the study are
presented in Appendices II and II{. When performing mass
balance calculations for hydrograph separation purposes,
daily average values of EC, Mg and Ca were used. Anomalous
values (e.g. "spikes"™ in Na on days 2, 7, and 17) were

disregarded.
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7. CONCLUSIONS AND RECOMMENDATIONS
7.1 Conclusions

The following conclusions are derived from the data and
field observations obtained during the summers of 1982 and
1983 in the Apex River watershed:

(i) "014d" groundwater is a‘major component of the
snowmelt hydrograph, making up approximately 50% of
the peak discharge and about 60% of the total stream
discharge from June 16 to August 10, 1983,

(ii) The groundwater response must have been rapid. When
calculated by 6§'%0 the peakﬂgroundwater discharge
occurred about one day after the peak stream
discharge. When calculated by EC, Mg and Ca, both
peaks occurred on the same day.

(iii) Groundwater chemistry as determined from stream
samples during baseflow is characterized by high
ionic concentrations and enriched iéotopic ratios,
relative to the other sources that contribute to
runoff. During snowmelt runoff, there is a dilution
of the various chemical concentrations. The
parameters which show the best inverse relationship
with discharge are EC, Na, Mg, Ca and !®0. There
is no apparent relationship between K concentration
and discharge probably because of the tendency of K
to react with other solids in the water or to be
taken up by vegetation.

(iv) The chemical and isotopic character of the waters
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which contribute to snowmelt runoff in the Apex
River watershed can be summarized as follows
(units: EC~- uS/cm; Na, K, Mg and Ca- mg/l; 8§ %0=%0)
baseflow- EC=32.2, Na=0.59, K=0.12, Mgco.éd,
ca=4.84, &§'%0=-17.5

snow- EC=8.1, Na=0;45, K=0.36, Mg=0.ll, Ca=0,20
§1°0=-23.1

snowmelt- EC=15.8, Na=0.,42, K=0.15, Mg=0.34,
ca=1,71, ¢§'°%0=-24.5

rain- EC=11l.6, Na=0.39%fK=0.32, Mg=0.24,
Ca=0.40, §!°0=-18.0

springs- EC=40.7, Na=0.65, K=0.31, Mg=0.96,
ca=3.92, §'°0=-17.9

(v) Chemical concentrations throughout the watershed

generally increase with time. Late in the summer,

concentrations are relatively high because this

period coincides with low stream discharge.

Areally, there is no apparent pattern of chemical

concentrations in the watershed.

(vi) Based on the hydrograph separation results, the
mechanism responsible for the major old water input
is probably a displacement of suprapermafrost
groundwater from the melting active layer by
infiltrating snowmelt and rain waters. Visual
observation provided evidence of partial area
overland flow in areas downslope of major

accumulations of snow. Another mechanism delivering
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snowmelt water to the stream observed was interflow
along the vegetation~bedrock interface. Overall,
the streamflow is probably the result of some
combination of the above mechanisms.

(vii) Mg was found to be thg most conservative chemical
parameter, relative to oxygen-18, for use in
hydrograph separation. It did, however,
consistently underestimate the old water
contribution by an average of 10%.

(viii) On the basis of the historical hydrographs of the
Apex River and Church's (1974a) classification, the
flow regime of the Apex River can be classified as
arctic nival.

(ix) The peak flow frequency analysis yielded results
similar to those of comparably sized watersheds in
southern Canada. _

(x) The flow duration curves are difficult to intefpret
because of incomplete discharge data. The steep
central section of the curve suggests an impermeable
watershed, with overland flow dominating the
streamflo;. This interpretation is not consistent
with the findings of the isotope and chemical
hydrograph separations.

(xi) The recession analysis is also difficult to compare
to other watersheds. The recession limb is fed by
snowmelt (directly or indirectly) not by groundwater

as in more tempefate watersheds. The reservoir
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coefficient for the Apex River is larger than those
of southern watersheds and smaller than those of
other permafrost basins. The long recessiéns are
likely a result of the increased storage capacity of
the thawing active layer during the summer.

(xii) Graphical techniques fbr hydrograph separation are
not suitable for use in watersheds éominated by a

prolonged snowmelt runoff.

7.2 Recommendations Coa

This work raises interestiﬂg possibilities regarding
applications of this type of study and further research
ideas:

(i) The fact that Mg was determined to be the most
conservative chemical parameter in the Apex River
watershed does not suggest that this will
necessarily be the case in other wafersheds.

Similar studies should be done on each basin studied
to determine the best parameter.

(ii) Further studies should be directed at smaller
permafrost watersheds underlain by unconsolidated
material. This would facilitate more complete
coverage areally, and would also permit the
monitoring of the progressive melting of the active
layer. "Easy" installation of shallow wells,

piezometers and seepage meters would also be

possible, yielding information which could be used
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to better identify the mechanisms responsible for
streamflow.

(iii) Isotope analyses are rather expensive. It would
have been possible to improve the resolution of the
hydrograph separation.if more samples could have
been analyzed. It is suggested that future studies
ha§e sufficient funding to perform a reasonable
number of isotope analyses.

(iv) Future studies should also consider analyzing some
samples for tritium, espec;ally if piezometer
samples are available. This will aid in determining
the origin of the groundwater. The use of long-term
isotopic data will aid in determining the residence
time of the groundwater.

(v) An interesting future study might be to determine
the effects of groundwater discharge on streams in
perméfrost regions in light of various scenarios
that indicate a global warming trend. Higher
temperatures would likely lead to greater active
layer thicknesses, resulting in a larger
contributing capacity of the subsurface.

(vi) A study such as this one has potential applications
in environmental studies such as those concerned
with acid rain research. Isotopic and chemical
hydrograph separation data can be combined with
historical discharge data such as flow frequency and

flow duration to predict the magnitude and duration
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of future acidic input episodes.

(vii) This type of study also has applications in studies
of non-point source pollution. An example of this
type of situation is pollution from mine tailings.

A study such as this qould aid in identifying the
route taken by pollutants to reach the stream and in

determining remedial measures.
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APPENDIX I

Historical Hydrographs, Temperature and Precipitation
Data for the Apex River watershed 1973-1983.

.
-
v -

NOTES: For all plots Day l= June 1.
Discharges are mean daily flows.
Temperatures are mean daily air temperatures.
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APPENDIX II

Chemical Data for the Apex River Watershed 1983.

" »
-, -
0

NOTES: Sample Type: l= stream at gauge
2= rain
3= snowmelt
4= spring
5= snow
6= stream tributary
7= pond .
Units: EC= uS/cm
pH= pH units
Na, K,oMg, Ca= mg/l
TEMP= " C
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APPENDIX III

Chemical Data for the Apex River Watershed 1982,

-
-,

NOTES: Sample Type: 1l= stream at gauge
2= rain
3= snowmelt
4= spring
5= snow
6= stream tributary
7= pond

Units: Na, K, Mg, Ca= mg/l
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0BS SANPLE
3 1 AE-1
2 CAP=4
3 AP-5
q AE-6
5 AP=7
6 AP-8
7 AP-9
8 AB-10
9 AP=-11
10 AP-12
1 AP=-13
12 AF-14
13 AP-15
14 AP=16
15 AP-17
16 AP-18
17 AP-22
18 AP-23
19 AP-24
20 AP-25
21 Ap-26
22 AP=27
23 AP-28
24 AP-29
25 AP=30
26 ApP-31
27 AP=32
28 AP=33
29 4pP=-35
30 AP-36
Nn AP-137

32 AE=-38
33 AP-39

34 AP=40
3s AP-41
36 AP~42
37 AP-43

38 AP=G4
39 AP-45
* 40 AB=-47
41 AP-48

82 AP=~49
43 AP=50
4y AP-~51
45 AP=52
46 AP=-53
47 AP=-S4 -
48 " AP=55
49 AP=56
50 AP=-57
St AP=-58
52 AP-61
S3 AP-62
54 AP-63
55 AP-6U4

56 AP=-65
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TYPE

N X R R R R R g el o T R IR T R R R R R R R R R I P B R e

BNNNNNUNYNNNNJIC R RO AR R MMMV NNV EEEE E EEE L EE s WWWNNN =

DAY

DATE

820707
820708
820708
820708

. 820709

820709
820709
8206710
820710
820710
820710
820710
820710

" 820710

820710
820710
820710
820910
B20710
820710
820711
82C711
820711
82c711
820711
820711
820711
820711
820711
82071
820712
820712

820712

820712
820712
820712
820712
820712
820712
820712
820712
820712
820712
820713
820713
82C713
820713

- 820713

820713
820713
820713
820713
820713
820713
820713
820714

TINE

1636
1948
2143
2348
148
2022
2222
22
222
422
622
822
1022
1222
1422
1622
1730

-1930
2130 7

2330
130
330
530
730
930

1130

1330

1530

2015

2215

15
215
415
615
815

1015

1215

1415

1615

1712

1912

2112

2312
112
312
512

712
912

1112

1312

1512

1718

1918

2118

2318
318

NA

0. 39
.84
0.75
.71
0.80
.66
0.69
0.72
0.70
0.65
0.74
070
0.73
0.73
0.72
0.79
0,69

'0064

0.66
e
0.69
0.64
0.69
0.67
0.68
0.66
0.69
.78
0,65
0.74
0.64
0.65
0.68
0,71
0.68
0.71
0.65
0. 66
0.64
0.64
0.63
0.68
0.65
0.6b
0.66
0.65
0.68
0.65
0.65
0.63
0.65
0.67
0.65
0.70
0.67

g

0,18
0.17
.18
0,26
0.15
0. 16
0.19
-0e17
0.15
0017
.18
0.16
0a17
D.17
0.18
0.21
0.17
0,17
0. 16
0. 14
0. 16
0.18
0.15
0. 14
0. 14y
0.%7
Q. 14
0.17
0. 14
0.4
0.4
0. 16
0. 16
0.16
0.16
0.15
0. 13
0.13
0. 13
0. 13
0. 15
0.4
0.19
0.15
0. 15
0.15
0. 14
0.13
0.16
014
0. 14
0.4
0. 16
.16

NG

0.90
1.06
1. 06
0.85
1.03
0.82
0.79
0.85
0.77
V.79
0.92
0.73
Q.97
0. 83
0.92
0.84
0.76
C.97
0.76
0.92
1.03
0.72
0.73
0.84
0.75
0.71
0.77
0. 84
0.77

0.77 '

0.76
0.77
0.77
.71
0.92

0.80°

090
0.7y
0.72
1.03
0.83
0. 86
0.95

V. 85"

C.99
.90
0.73
0.94
C.99
Q.74
0.79
0.90
073
0.86
1.01

0.75

172

oF |

8.19
4¢55
874
4.97
759
4,08
4.21
4e43
LR R
437
4.77

. 4a26

4a0d
4.92
464
4459
4.V?
4,22
V.30
4.08
426
G.32
4o 10
4.10°
Ne22
4a 1?7
V.26
459
4o 13

v 3695

$e 20
4ed2
4,138
416
4.28
4.30
4.33
418
8020
4.23
3.83
3.88
4e29
3e92
4.00
4,22
4.10
4.33
4a 20
d4.35
.25
4.25
e 12
4,12
445
4259



! 0BS

57
58

59°

60
61
62
63
64
65
66
67
68
69
70
71
72
73
4
75
76
77
78
79
80
81
82
83
8u
85
36
87
88
89
90
91
92

94
35
96
97
98
99
100
101
102
103
104

105

106
107
108
109
110
"
112
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SANPLE

ApP=66
Ap-67
AP~68
AP-69
AP-70
AP=71
AP=72
AP-73
AP=-74
AP~75
AP=76
AP=-77

- AP-73

AP-79
AP-80
Ap-81
AP-82
AP-83
AP-84
AP-85
AP-86
AP-88
AP=-89
AP=-90
AP=-91
AP-92
AP-93
AP=-94
AP-95
AP-96
AP=-98
AP-99
AP-100
AP~-101
AP-102
AP=103
AP=104
AP-105
AP=-106
AP-107
ApP-108
AP-109
AP=-110
AP=-111%
AP-112
AP-113
AP=-114
AP=-115
AP=-116
AP-118
AP-119
AP=-120
Ap-121
AP=122
AP-123
AP-124

TYPE

DAY

-t ol b np = b b p b b

N od ad o od =P cdod ah v o P b b =D b b
OVVWOVEFWWWWLWNNNNNNNNNNS st 00000 @

[SI V]
(=X~}

)
Po

DATE

820714
820714
820714
820716
820716
820716
820717
820717
820717
820717
820717

-820717

820717
820718
820718
820718
820718
820718
820718
82C0718
820718
820718
820718
820719
820719

‘820719

820719
820719
820720
820720
820725
820725
820725
820726
820726
820726
820726

1820726

820726
820726
820726
820726
820727
820727
820727
820727
820727
820727
820727
820727
820727
820727
820728
820728
820728
820728

TINE

718
1118
1518
1440

. 1840

2240
240
640

1040

1645

1845

2045

2245

45
245
445

645 -

8us
1045
1245
1445
1610
2010
10
410
810
1210
1630
30
830
1425
1825
2225
225
625
825
1025
1225
1530
1930
2130
2330
130
330
530
730
930
1130
1330
1520
1920
2320
320
720
1120
1555

NA

0.73
0.71
0.69
0.70
0.68
0.68
0.71
0.68
0.68
0.70
0.67
0.69
0.68
0.71
Je69
0.73
,".-007‘

: .0.68 -

0.69
0.72
0.68
0.68
0.67
0.69
0.72
0.69
0.68
0.73
0.69
0.67
0.71
0.73
0.73
0.73
0.74
0.70
0.78
0.73
0.74
0.75
0.72
0.76
0.71
0.73
0.73
0.71
0.77
0.74
0.73
0.75
‘0.73
0475
0.68
0.70
0.73
0.63

0.17
0.16
Je 15
0. 18
0.15
0.16
0.17
0.15
Q. 16
Ce17
Ve 15
0.19
Q.16
0.17
0. 16
0.17
0.16
0. 16
0. 16
Ue2b
0. 16
0.16
0. 14
Va16
Qe 16
0. '“'
0614
0216
Je 16
0.4
0. 18
017
0.20
0.17
0.17
0.18
0. 19’
0.17:
0.17.
0. 18
17
0.18.
0.17
Q.18
0.17"
0.17
.18
0.17
0. 18
0.17
0.16
Ve 17
0.15
0. 17.
Ue16
0. 15

neG

0.97
0.76
0.73
0.77
0.88
0.84
1.01
0.90
0.84
.77
0.88
V.77
0.94
0.97
0.90
0.41
0.99
0.86
0.82
0.80
0.82
117
0.86
0.82
1.10
0.84
0.86
0.79
0.82
0.90
0.8S
0.86
0.95
1.05
0.88
0.88
C.90
€.90
0.36
0.68
0.86
1.24
0.95
C.99
0.90
0.90
1.04
0.92
0.97
0.88
0.92
.90
1.03

0.90°

0.88

1.01

173

Ca

413
4447
4o 29
8.36
432
4.50
4,60
417
8.52
4,49
Held7
482
de50
Web7
PR
470
YeobD
4.61
P B |
448
445
458
Neo52
Yol
“.70
Yol
He54

. 435
T3

4.50
4.78
481
10.88
475
4,81
.69
4,72
4.67
4e76
4.91
Yo7y
da 19
500
4.7
479
11.28
4.72
4.93
4,96
4484
4.7
4.%0
4.72
4.63
4063
¥.65



OBS SABPLE

113 AP=125
14 AP=126
115 AE=127
116 AP-128
117 ARP-129
118 AP=130
113 AP=131
120 AP=132
121 AP=134
122 AP=135
123 AP=136
124 AP=-137
125 AP-138
126 AP=-139
127 AP=140
128 AP=-141
129 AP=142
130 AP=-143
131 AP=144
132 AP=145
133 AP=147
134 AP-148
135 AP=149
136 ApP=150
137 AP=151
138 AP=152
139 AP=-153

140 Ap-154
1w AP=155
142 AP-156
143 AP~157

144 AP=-158
s AP-160
146 AP=161
147 ApP=162
148 AP-164
149 AP=-165

TYPE

- o ah ad b b od b od Dtk D b mhad od eh md o ad i ad ad oD oD b b gh D wd b b ad o b b

DATE

820728
820723
820729

820729

820729
820729
820729
820729
820729
820729
820729
820729
320730
820730
820730
820730
820730
820730
820730
420730
820730

.~ 820730

220730
820730
820731
820731
820731
820731
820731
820731
820731
820731
820731
820801
320801
820801

TINE

1955
2355
355
555
755
955
1155
1355
1555
1755
1955
2155
2355
155
355

© 555
755

955
1155
1355
1555
175%
1955
2155

2355

155
355
555
755
955
1155
1355
1600
2000

800
1200

NA

0.69
0.72
0.69
0.69
0.72
0.73
Q.69
0.69
0.569
074
0.68
0.68
0.73

0.73

0.69

" 0.72

0.7
0.71
0.70
0.7V
0.74
0.68
C-70
0.72
0.69
0.70
0.70
0.69
0.7
0.69
0.69
0.73
0.69
0.69
0.69
074
074

0.5
0016
0.17
0. 16
0. 16
0.17

P 1)

0. 15
0.15
0. 18
0.18
.19
0.8
0. 17

0.15

0.16
0. 14
0. 15
0.17
0. 17
0.17
017
0.21
0. 16
0. 15
0. 17

Ve 16

0. 15
0. 15
0.15
0.15
0. 15
0.15
0. 1?7
0.20
0.15
0.15
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L1+

0.97
1.01
c.88
0.99
0. 99
0. 88
1.13
1. 13
1.10
0.99
1.13
1.13
1.08
1.06
1.19

1,08

1.01
.01
1.12
.99
1. 19
1o 17
1. 10
1. 04
1. 08

1.06

0.97
1. 01
1. 03
1« 13
0.99

1. 15,

1. 13
1«19
Te 24
122

174

Ci

4o.68
4. 70
4e?75
de72
4,60
4a65
4a.67
a7V
4.77
4,85
4.83
4.83
4,83
4,80
4.85
473
4,77
“.15
4.73
4.83
4.88
485
490
4.82
4.83
4.83
4.83

A 477

4.75
4e73
4.7d8
9,24
4.73
4,73
4.83
YobY
478



0oBS SAMPLE
1 SN-1
2 AP=-19
3 AP=34
4 Ap-20
5 AP-21
6 BP~1
7 8p=-3
8 BP~-06
9 BpP~16
10 BP-15
" BP-=18
12 EP=-9
13 BP=10
14 8p=13
15 pp-22
16 BP-~29
17 BP=-20
18 BP~23
19 BP=24
20 BP-25
21 B2-26
22 Bp~28
23 BP=-30
24 SN=5
25 SN=6
26 SN=7
27 SN=8
28 SN=%
29 SN=-10
30 SN=11
31 SN=12
32 SN-13
33 SN-14
34 SN=1%
as SN-16
36 Ap=-117
37 SN=17
38 SN=18
39 SN=19
40 SN=20
41 SN=21
42 SN=22
43 SN=23
uy SN~24
4s SN=~25
46 SN=26
47 cp-3
48 Cp=7
49 cp-11
50 CP-1
51 cp=-5
52 CP~10
53 cp=-2
sy CPp-4
55 CP-6
Sé cp-9

ONG‘O\O\NINIQ"-(J’: EUVMVIVMNMIVVV I VUAIN MRV AINTNTNTVNNONICORE N EEOIONNERSTEEFENNG

TYPE

DAY

CCOVUTOV VO RRDODDEDONNL EN

[SE SN SN
[eRoNo o)

[ SN S
[o o]

20

DATE

820708
820710

© 820711

4

820711
8207 11
8207 1u
820714
8207 tu
820714
3207 14
8207 4
820714
8207 1u
820714
820715
820715
8207 1%
3820715
8207 1S
820718
820715

© 8920715

820715
820726

© 820726

820726
820726
820726
820726
820726
920726
820726
820726
820726
820726
320727
820728
820728
820728
820728
820729
820728
B20728
820729
820728
820728
820728
820728
820728
820728
820728
820728
820728
820728
829728

820728

TIMFE

154%
1700
1943
1555
1605

> 8 2 b

150

[T A AR I B R RN N A IS N I A B R - N N R R I N B A 2 I I I I I DN BN D

NA

0.77
0.35
0.32
0.72
0.9y
1.03
.93
NDeS?
0.42
0.63
D.64
1. 00
.60
J.83
0. 48

~1.05
0.93

80.67
J. 91
0.72
0.76
0.80
Q.40
0.35
J.18
.43
.43
0.1
.23
Ja26
0.29
0.4
0.90
0.23
0.30
0.29
0.40
0.38
9.39
Q.48
0.42
0.30
0. 29
1. 15
1. 00
1.27
1. 00
0.90
.92
0. 86
0.87
0.82
0.32

0.84 "

0.20
0.4
0.05
0.06
0.46
O0a 14
0.13
0.18
0.25
Da 27
0.91
0«18
0.76
0.08
012
0.68
0.27
0a17
0. 38
0.18
0.16
o. 1|b
0.29
0.22
0.29
0. 25
Oa43
0.50
0.29
0.5¢
0.07
0.07
Q0. 20
1. 16
0. 36
0.09
0.07
0. 05
0.Q9
0.26
0.23
0.21
0.21
0.12
0.08
0.07
0.11
0.26
0.5%3
0.21
0.8
0. 14
0.17
0. 19
0.21
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MG

Ve 17
Je 06
0.07
Q.49
0.99%
0.05
Ve13
0.31
0.58
0.54
V.56
0.56
0.506
Q.40
0.97
d.56
0.56
0.61
0‘61
0.68
0.74
0079
0.03
0.03
0.05
0.03

Q.05

0.03
0.10
0.10
V.02
0.01

0009

0.1
0.06
0.05
0.04
0.03
0.03
0. M
0.09
Jat3
0.1
0.08
0.06
1.33
1.21
1.22
0.99
1.04
1.06
1.01
0.90
0.85
0.91

-
‘w

- .
CFO000O00O0ODO0TVCOODOOCOOO0OO0OO0OWE W

175

CA

0.20
0.55
0.65
1. 19
5.94
2.98
1.97
153
1.73
5.00
5.27
3.67
3.18
3.67
3.07

2 & 0 0 & 85 & 0 0 0 & o 6 &6 % O & 2 v 2 s 6 b e

MNMANN 2 Nt b d O EFELWNASA Tt NO a0 QOO WO
ENNC WOV a VWO NN CUBUVIVOG OV E

[
N O
[V RV

4.18
4,20
8.64
8.28
4.45
4.49
.33
4.22



176

0OBS SAMPLE TYPE DAY DATE TINKE NA K NG CA
$7 cp-9 6 22 820728 . 0. 81 0. 19 0.81 4.20
58 pp-1 u 23 820729 - 1. 16 J«10 1.51 Ue 22
' 60 oP~9 4 23 320729 - t. 08 0-03 1.26 10.07
61 DP-20 4 23 320729 - 1. 06 0a.26 1.13 3.51
62 Dp=2 7 23 820729 o 1. 07 0.24 1.26 9.00
63 Dp=-23 7 .23 220729 - 1. 02 0.19 1.03 4,11
64 DP=4 7 23 820729 . 1.00 0.04, 0.99 4.16
65 DP=5 7 23 820729 - 1. 05 0n2t - 1.19 4.938
He DP-19 7 23 920729 - 0.87 0«11 O0.74 3.09
67 prP=-10 7 23 820729 . %.89 0.17 0. 97 10.07
68 DP=11 € 23 82072y - 0.82 Ja18 - 1e 04 U.51
69 DP=12 6 23 820729 - .82 0.18 1.04 4,49
70 CP-13 6 23 820729 - J.82 . 0. 18 101 8.56
73 DP-16 6 23 820729 - J.33 0.20 , 1e04 4,62
7€ DP-19 6 23 820729 T - a82 0u18 1.03 4e50
77 AP=-146 2 24 820730 1530 T 8450 .32 V.07 0.23
78 AP-15Y 2 25 320721 1545 Q.69 V.19 0.09 0.20
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APPENDIX IV

Isotope Data for the Apex River Watershed 1983.

.
- .
-,
+

NOTES: Sample Type: l= stream at gauge
2= rain
3= snowmelt
4= spring
5= snow

Units: 6'80=% SMOW

177
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0BS

voJounmswhio

10

SANFLE

a-1
A~2
A-7
A-8"
A-12
A=14
A=-3b
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APPENDIX V

Computer Output of Cluster Analysis of Water
Samples Using Chemical Variables.
(Refer to Figure 6.9)
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APPENDIX VI

Paired Sample t-test Comparing Chemical
Analyses Obtained from the Two Atomic
Absorption Spectrophotometers.
(Refer to Table 6.8)
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Paired Sample t-test (refer to data in Table 6.6)

For Ca : n=5
x=0.53
s=0.40

0.53-0
t= ——————e =2.963
0.40/ 5

to.99=3.474

Since tcalc<t°'99'

values of Ca are not
significantly different
at the 99% level of
significance.

For Mg : n=5
x=0,034
- 5=0.107

.
-
-

0.034-0
tm —mmmmee =0.710
0.107/ 5

t°.95=2.132

Since tcalc<t°"5'

values of Mg are not
significantly different
at the 95% level of
significance.
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