A level-crossing approach to waiting times in M/M/C queues with priorities.

Mado Bachan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Bachan, Mado, 'A level-crossing approach to waiting times in M/M/C queues with priorities.' (1986). Electronic Theses and Dissertations. 6803.
https://scholar.uwindsor.ca/etd/6803

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000 ext. 3208.
A LEVEL-CROSSING APPROACH TO WAITING TIMES
IN M/M/C QUEUES WITH PRIORITIES

by

Mado Bachan

A Thesis
submitted to the
Faculty of Graduate Studies and Research
through the Department of
Industrial Engineering in Partial Fulfillment
of the requirements for the Degree
of Master of Applied Science at
the University of Windsor

Windsor, Ontario, Canada

1986
UMI Number: EC54792

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EC54792
Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
I hereby declare that I am the sole author of this thesis.
I authorize the University of Windsor to lend this thesis to other institutions or individuals for the purpose of scholarly research.

M. Bachan

I further authorize the University of Windsor to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

M. Bachan

- iv -
The University of Windsor requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date.
ABSTRACT

This thesis deals with a variant of an M/M/2 queue using a level-crossing approach to model the virtual waiting time process. The queueing system considered in detail consists of two types of customers arriving independently and demanding service from either server, with priority given to one class. The service-time distribution is different for each class of customers; a situation not previously dealt with in the literature.

Two "system-point" processes are defined; one for each customer-type. Typical sample paths are developed to illustrate the modelling technique. Accurate estimates are computed for the virtual waiting time probability density function and cumulative distribution function for each unit-type using a system-point Monte Carlo computation approach. A discussion is presented as to how larger systems can be modelled to obtain similar information.
To my wife,
RADICA,
and daughter,
MALINI
ACKNOWLEDGEMENTS

I am deeply indebted to Prof. Percy H. Brill for his astute guidance during all phases of this thesis. My sincere thanks go out to him for the numerous contributions, suggestions, criticisms and for helping to provide a stimulating environment, all of which were instrumental in the successful completion of this work.

I would also like to thank Dr. R. S. Lashkari and Dr. M. Hlynke for reviewing this thesis.

My sincere appreciation is extended to my wife, Radica who has been inspirational in her understanding, encouragement and patience during the many long days and nights that were spent completing this work. A special thanks go out to Mr. & Mrs. M. Lutchmeesingh for motivating me to pursue graduate studies and their constant support.

Finally, I am most grateful to the Canadian Commonwealth Scholarship and Fellowship Committee for providing financial support during my M.A.Sc. program.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Example of an $S_P(1)$ Sample Path</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>Generating an Ordinary Type-(1,1) Busy Period-B_{11}^{0}</td>
<td>46</td>
</tr>
<tr>
<td>3.</td>
<td>Generating a Delayed Type-(1,1) Busy Period $-B_{11}^{\delta}$</td>
<td>47</td>
</tr>
<tr>
<td>4.</td>
<td>Generating a Delayed "mixed" Busy Period $-B_{12}^{\delta}$</td>
<td>48</td>
</tr>
<tr>
<td>5.</td>
<td>$SP(2)$ Sample Path with Jump Sizes Distributed as B_{11}^{0}, $e(\mu_1+\mu_2)$, $e(\mu_1+\mu_2) + B_{11}^{\delta_{12}}$, $e(\mu_1+\mu_2) + B_{12}^{\delta_{12}}$</td>
<td>49</td>
</tr>
<tr>
<td>6.</td>
<td>$SP(2)$ Sample Path with Jump Sizes Distributed as $e(2\mu_2)$, $e(\mu_1+\mu_2)$ and $e(2\mu_2) + B_{12}^{\delta_{22}}$</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>Probability Density Function for $SP(1)$ $(T=1000 \text{ min.})$</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Cumulative Distribution Function for $SP(1)$ $(T=1000 \text{ min.})$</td>
<td>59</td>
</tr>
<tr>
<td>9.</td>
<td>Probability Density Function for $SP(2)$ $(T=1000 \text{ min.})$</td>
<td>65</td>
</tr>
<tr>
<td>10.</td>
<td>Cumulative Distribution Function for $SP(2)$ $(T=1000 \text{ min.})$</td>
<td>66</td>
</tr>
<tr>
<td>11.</td>
<td>Theoretical and $SP(1)$ Estimated pdf's for an Approximated Simple M/M/2 Queue</td>
<td>73</td>
</tr>
<tr>
<td>12.</td>
<td>Theoretical and $SP(2)$ Estimated pdf's for an Approximated Simple M/M/2 Queue</td>
<td>75</td>
</tr>
</tbody>
</table>
13. Bounds on Type-\(k \) CDF for an \(N \)-Class Priority System .. 90

14. Bounds on Type-2 CDF for an \(M/M/2 \) 3-Class Priority Queue 91
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Results from the $\text{SP}(1)$ Monte Carlo Computation ($T=1000$ min.)</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Results from the $\text{SP}(2)$ Monte Carlo Computation ($T=1000$ min.)</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>Theoretical Values and S-P Estimates for an Approximated Simple M/M/2 Queue</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Theoretical and $\text{SP}(1)$ Estimates of pdf for an Approximated Simple M/M/2 Queue</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Theoretical and $\text{SP}(2)$ Estimates of pdf for an Approximated Simple M/M/2 Queue</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>Theoretical Values and S-P Estimates for a Non-Preemptive Priority M/M/2 Queue ($\lambda_1=15$, $\lambda_2=20$, $\mu_1=\mu_2=20$)</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>Theoretical Values and S-P Estimates for a Non-Preemptive Priority M/M/2 Queue ($\lambda_1=6$, $\lambda_2=12$, $\mu_1=\mu_2=24$)</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>System Simulation Results with Model Parameters $\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>M/M/2, 2-Class Priority Model Results</td>
<td>85</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview of the Priority Queueing</td>
<td>1</td>
</tr>
<tr>
<td>Discipline</td>
<td></td>
</tr>
<tr>
<td>1.2 Importance of Waiting-Time Distribution</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Motivation for this Study</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Various Approaches for Studying</td>
<td>5</td>
</tr>
<tr>
<td>Priority Queueing Systems</td>
<td></td>
</tr>
<tr>
<td>1.5 The System-Point Method</td>
<td>9</td>
</tr>
<tr>
<td>II.</td>
<td></td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>13</td>
</tr>
<tr>
<td>III.</td>
<td></td>
</tr>
<tr>
<td>SYSTEM-POINT THEORY</td>
<td>18</td>
</tr>
<tr>
<td>3.1 The Virtual Waiting Time Process</td>
<td>18</td>
</tr>
<tr>
<td>3.2 The System-Point Process for Single-Server Queues</td>
<td>19</td>
</tr>
<tr>
<td>3.3 The System-Point Process for Multiple-Server Queues</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Methods of Solution</td>
<td>22</td>
</tr>
<tr>
<td>IV.</td>
<td></td>
</tr>
<tr>
<td>SYSTEM-POINT MODELS FOR THE DIFFERENT</td>
<td>24</td>
</tr>
<tr>
<td>PRIORITY CLASSES</td>
<td></td>
</tr>
<tr>
<td>4.1 System-Point Process for Type-1</td>
<td>25</td>
</tr>
<tr>
<td>Customers - SP(1)</td>
<td></td>
</tr>
<tr>
<td>4.1.1 Illustration of a Typical SP(1)</td>
<td>29</td>
</tr>
<tr>
<td>Sample Path</td>
<td></td>
</tr>
<tr>
<td>4.2 System-Point Process for Type-2</td>
<td>35</td>
</tr>
<tr>
<td>Customers - SP(2)</td>
<td></td>
</tr>
<tr>
<td>4.2.1 The System-Point Process Definition for Type-2 Customers</td>
<td>35</td>
</tr>
<tr>
<td>4.2.2 Kinds of System Busy Periods</td>
<td>38</td>
</tr>
</tbody>
</table>

- xii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER I

INTRODUCTION

Many real-life queueing systems involve customers with priorities based on some external characteristic, such as, length of service required, importance of customer demanding service, etc. These characteristics are assumed to be independent of the state of the system. Therefore the use of priority-discipline models would provide a welcome refinement over the more usual non-priority queueing counterparts because they would distinguish between waiting times and other measures of performance for the different types of customers. Unfortunately, the inclusion of priorities makes the mathematical analysis sufficiently complicated, so that only limited results are presently available; the majority being for single server queues.

1.1 Overview of the Priority Queueing Discipline

There are two general situations in first come first served priority queueing disciplines. In the first, called preemptive, an arriving customer with a higher
priority is allowed to enter service immediately, possibly interrupting a customer with lower priority who is already in service when the higher priority customer enters the system. There are two possible variations; the preempted customer's service when resumed can either continue from the point of preemption or start anew. In the second general priority situation, called non-preemptive, (also known as head-of-the-line [Kleinrock (1976)])3), the highest priority waiting customer goes to the head of the queue but cannot interrupt the customer presently in service, even though this customer may have a lower priority.

1.2 Importance of Waiting-Time Distributions

The waiting time in a queue as a measure of performance can be used to design and control queueing systems when the objective is to minimise the cost of delay [Gross & Harris (1985)]. Depending on the context, this cost may be thought of as disutility, penalty cost, loss of goodwill, opportunity cost, postponement of revenue, customer dissatisfaction, storage cost, poorness of service, or some equivalent [Greenberger (1966)]. If the cost for each customer waiting in line is some constant per unit time, then the average waiting time can be used as input to these optimization problems. In the event of non-linear or step-function cost functions it would be necessary to know
the entire probability density function of the waiting time in order to compute expected cost of waiting.

The available analytical approaches generally provide the average measures of performance of a queueing system. Thus, if the cost structure of delay for a queueing system is non-linear we cannot attempt to optimize the system with respect to the cost of delay using the results from analytical approaches.

This thesis examines exponential multi-server, non-preemptive priority queueing systems. The model will consider systems where each customer-type demanding service has its own service-time distribution; this variant has not been solved analytically in the literature to date. The first (or main) objective is to compute the waiting time probability density function (pdf) for each customer-type in a two-server two-class priority system using a system-point Monte Carlo computation approach, Brill (1983). Having computed the pdf we then proceed to find the cumulative distribution function (cdf) and expected wait for each unit-type. Additional information in the form of Pr(an empty system) and Pr(a single unit of either type in the system) will be generated by virtue of the modelling approach adopted. The thesis also considers the question of generalizations of the two-server two-class priority system.
1.3 Motivation for this Study

As stated earlier, there are many real-life situations where customers of different priorities demand service from the available server(s).

A few real-life examples of queueing systems involving priorities are:

i) service and maintenance systems; where short jobs are given priority over long jobs,

ii) communication systems; where emergency messages are given priority over routine messages,

iii) health systems; where the condition of the patient determines the priority in which he/she is serviced,

iv) manufacturing (job-shop) systems; where work-orders from a particular customer are given priority over work-orders from another customer.

v) airport systems; where landing aircraft are given priority over departing aircraft.

All the above queueing applications can be modelled as M/M/C systems with priority queueing discipline. Here it is assumed that priority is externally determined and is independent of the state of the system. For example, consider the following scenario of a job-shop: A turret lathe department with two machines, receives two kinds of
jobs, namely government jobs and commercial jobs. Whenever a turret lathe finishes a job, it starts a government job if one is waiting; if not, it starts a commercial job if any is waiting. Jobs of the same type are taken on a first-come, first-served basis. Both types of jobs arrive at the department with independent Poisson arrival rates and the service times appear to be exponential with independent means [Hillier & Lieberman (1980)].

1.4 Various Approaches for Studying Priority Queueing Systems

The techniques used to study queueing systems can be broadly divided into the following:

1) analytic
2) numerical/computational (with approximations)
3) simulation

The analytic approach has been primarily used to study single server priority queueing systems. Explicit formulas are available for the measures of performance in the case of M/M/1 and M/G/1 [Cobham (1954), Jaiswal (1968)]. The analysis for mean values in the M/M/1 system is relatively straightforward but for the M/G/1 priority system extensive use is made of the Laplace transformation and the inversion procedure can be complex [Jaiswal (1962)]. Obtaining the
waiting time pdf for either the M/M/1 or the M/G/1 priority system is not a simple task since the method relies heavily on integral transforms.

Neuts' (1978) theory of matrix-geometric invariant probability vectors provides significant computational improvements over the analytic approach. Miller (1981) demonstrated that the special structure of this process yields explicit recursive formulas for the steady-state probabilities in an M/M/1 priority system.

Another approach that is commonly used to study queueing systems is to simulate the actual operation. For this simulation approach, a model is developed which is made to represent the system as closely as possible. The model is then driven with certain inputs so that the system operates as it would in real-life. By observing the corresponding outputs, inferences can be made about the true characteristics of the system.

We can broadly classify systems into two types, discrete-time and continuous-time. A discrete-time system is one for which the state variables change only at a countable (or finite) number of points in time, whereas a continuous-time system is one for which the state variables change continuously with respect to time [Law & Kelton (1982)]. Queueing systems are commonly modelled as
discrete-time systems since events which cause a change in the state of the system occurs at only a countable number of points in time. There are three alternative ways of building discrete-time models [Kiviat (1967)]. The event scheduling approach emphasizes a detailed description of the steps that occur when an individual event takes place. Each type of event naturally has a distinct set of steps associated with it. The activity scanning approach emphasizes a review of all activities in a simulation to determine which can be begun or terminated each time an event occurs. The process interaction approach emphasizes the progress of an entity through a system from its arrival event to its departure event.

In a discrete-time simulation model it is necessary to keep track of the current value of the simulated time and to advance simulated time from one value to another. Two approaches are used, next-event time advance and fixed-increment time advance [Law & Kelton (1982)]. The next-event time advance approach advances the simulation clock to the time of the next event, at which the state of the system is updated. The fixed-increment time advance method advances the simulation clock by a fixed time \(\Delta t \) at which point a check is made on the system state to see if an event has occurred. Gafarian & Ancker (1966), have given a procedure for determining the value of the fixed time \(\Delta t \).
Simulation as a tool for studying complex systems has its advantages and disadvantages; a list is provided in Law & Kelton (1982). The major advantage of this approach is that it can be used to solve problems which are not analytically tractable and can produce any of the desired measures of performance for priority queueing systems. The main disadvantage of the system simulation approach is that it often requires a detailed model which can be expensive and time-consuming to develop. Also, such models can be incorrectly verified and validated. Because a simulation model is driven by random numbers, the output from a simulation run is only an estimate of a model's true characteristic for a given set of input parameters. Hence, due to the stochastic nature of the output we need a number of replications for a given set of input parameters if we are to estimate the various measures of performance with some level of statistical confidence. On the other hand, an analytical model produces the actual true characteristics of that model for a given set of input parameters and is preferable to a simulation model when available. Based on the replications, a histogram can be constructed for a given measure of performance and the data fitted to a probability density function. Again, due to the stochastic nature of the output this may prove quite cumbersome and costly.
1.5 The System-Point Method

The system-point method (or level-crossing technique) [Brill (1975)] allows for computing the stationary probability density function of the virtual waiting time or number in the system in a broad class of queueing systems using either an analytic or Monte Carlo computation approach. To date this technique has been successfully applied in an analytic manner to the following: variations of the M/M/1 queue [Brill & Posner (1977)], variations of the M/M/R queue [Brill & Posner (1981a)], variants of the M/M/2 queue [Brill & Posner (1981b), Brill & Green (1984)] and the GI/G/1 queue [Brill (1979)].

Brill (1983) introduced a Monte Carlo computation approach, based on system-point theory for computing accurate estimates of the stationary probability density function (pdf) and cumulative distribution function (cdf) of the virtual waiting time. Using this approach, Covert (1985) successfully modelled and solved for the waiting time distribution in an M/G/1 priority queueing system with two classes of customers. The estimates were found to be close approximations to the analytical values.

Brill (1975) and Brill (1983) demonstrates that the system-point analytic approach and the system-point Monte Carlo computation approach, respectively, approximate the
true probability density function and cumulative distribution function as $t \to \infty$, with probability one. Thus, in one sample path generation we can evaluate the entire probability density function (pdf) and cumulative distribution function (cdf), expected waiting time, and the probability that a customer will wait zero time. (Depending on the nature of the system other probabilities can be determined; for example, in the M/M/2 priority system the probability of a single customer in the system can also be found). In exponential models, usually the pdf of the number in the system can also be computed. The effect of altering the initial seed is minimal on the computed probability density function, the cumulative distribution function and the expected values of other measures of performance, since results hold with probability one.

In the system-point Monte Carlo computation approach adopted in this thesis a system-point model is constructed for each customer-type in a k-class system. Thus, the time required for modelling, validation, verification and computation may become substantial as the number of customer-types increases. On the other hand, since each class of customer has its own associated system-point model once verification and validation is completed for that class there is no need to be concerned about that model's correctness any more, and the class can be analysed.
independently of the others. Another benefit of building a system-point model for each class of customer is that it forces an improved understanding of what is really happening as far as the dynamics and structure of the system is concerned.

In this thesis, a system-point model will be developed for each customer-type and the corresponding waiting time density function and cumulative distribution function computed via a system-point Monte Carlo computation. After constructing a typical sample path (Virtual waiting time vs. Time), the method explicitly connects the stationary probability density function of the virtual waiting time evaluated at any level \(w \), with the number of times the sample path crosses level \(w \).

The following is a brief outline of the topics to be dealt with in the remainder of this thesis. Chapter 2 presents a review of the relevant literature and illustrates the importance of this research. Chapter 3 briefly outlines some aspects of System-Point theory which are applicable to this study. In Chapter 4 the two-server two-class priority system under study is modelled by a system-point process for each customer-type. Examples of typical sample paths for the respective system-point processes illustrate the main ideas of the modelling approach adopted in this study. Chapter 5 concerns the
illustration of the system-point Monte Carlo computation approach to obtain the waiting time pdf (and other information); and verification of the computer programs written to generate sample paths for the respective processes. Making use of these verified computer programs, Chapter 6 contains "steady-state" results for the priority system modelled in Chapter 4. The results are checked against those obtained from a system simulation model. The final chapter discusses generalizations of the two-server two-class priority system to a case with three servers and a case with more than two customer-types.
Though there are many examples of multi-server non-preemptive priority queueing systems in real-life, there is relatively little literature on their analysis. The literature survey given in this section serves two important purposes: (i) to provide a framework for verification and validation of the system-point models to be formulated and their subsequent solutions and (ii) to show where the proposed work fits into the general picture of non-preemptive priority queueing systems. With this as our objective, the literature review will deal specifically with M/M/1, M/G/1 and M/M/C non-preemptive priority queueing systems.

Cobham (1954) was the first to derive formulas for the expected waiting times for units of each priority level in a non-preemptive priority queueing system. He considered both single and multiple channel systems; for the single server case the system was M/G/1, whilst for the multi-server case the system was M/M/C. For the multiple channel system, assuming that each priority class has the
same exponential service time probability distribution
function with mean $1/\mu$, Cobham derived the expected waiting
time for a customer from any priority class (but not the
entire pdf). The results of Cobham's analysis for the
multiple channel system (assuming a finite number of
channels and priority) are given below.

The expected waiting time of a unit of priority p is
given by:

$$\bar{W}_p = \frac{E[T_0]}{1 - (1/(c\mu)) \sum_{k=1}^{p-1} \lambda_k} \frac{(1/(c\mu)) \sum_{k=1}^{p} \lambda_k}{1 - (1/(c\mu)) \sum_{k=1}^{c} \lambda_k}$$

where,

$$E[T_0] = \frac{(c\mu)^p}{c!(1-p) \left[(c-1) \sum_{j=0}^{c-1} (c\mu)^j/j! + (c\mu)^c/c!(1-p) \right]}$$

$p = \lambda/(c\mu)$

$p = \text{priority of unit (smaller the integer } p, \text{ higher}
\text{ the priority; } p = 1, 2, \ldots)$

$\lambda_k = \text{Poisson arrival rate of } p\text{-th priority unit}$

$\mu = \text{exponential service rate (hazard rate of service}
\text{time pdf})$

$c = \text{number of service channels}$

Equation 2.1 for \bar{W}_p is valid when $\sum_{k=1}^{p} \lambda_k < 1$.

Intuitively this says that the aggregate arrival rate of
customers of priority p or higher, must be less than the
capacity service rate of the servers, for the stationary
distribution to exist.

Morse (1958) considered a single exponential channel
where arriving units are designated to be a member of one
of two priority classes. Starting with balance equations,
Morse derived the number-in-the-system-probability
generating function for two cases: (i) both classes of
customers have the same service time distribution and (ii)
priority one customers are served at rate μ_1 and the
priority two customers at rate μ_2.

Miller (1960) derived number-in-the-system-probability
generating functions and Laplace transforms for the waiting
time and busy period distributions for the non-preemptive
M/G/1 priority queue by using the imbedded Markov chain
technique. On assuming an exponential service time
distribution, (M/M/1), the results obtained are different
from the results of Morse (1958). Jaiswal (1968) observed
that the probability distribution obtained by considering
the queueing process in continuous time (as in Morse) is
different from the one obtained by considering the queue
length at those points at which a customer departs (as in
Miller).

Jaiswal (1968) applied the supplementary variable
technique to obtain expected waiting times and expected
number in the queue for a variety of systems. The introduction of supplementary variables makes the queueing process Markovian in continuous time. The measures of performance were evaluated for priority models with k customer classes, various service time distributions, finite and infinite sources and preemptive and non-preemptive disciplines. The measures of performance are expressed in terms of the Laplace transforms of the density functions of the busy period and the occupation time of the server.

Marks (1972) analysed two queueing models, one with preemptive and the other with non-preemptive priority for the M/M/1 system, each model assuming two levels of priority. For both models a set of recursion formulas were derived that allow exact calculation of the equilibrium state probabilities.

Davis (1966) extended Cobham's work (M/M/C priority queue) by deriving the equilibrium waiting time distribution function for the same model. Making use of
balance equations, Laplace transform and contour integration, Davis obtains an equation for the waiting time distribution. It should be noted that the result given by Davis is for a system where the service rates are the same for all classes.

The review of the literature presented above, indicates that although much work has been done on single-server priority queueing systems [Jaiswal (1968)], little work has been carried out on their multi-server counterparts. This can be attributed to the mathematical complexities involved in the analysis of such queueing systems. Most of the available results are for the average values of the measures of performance. It would be more useful to obtain the probability density (or distribution) function on which a measure of performance is based, since a mean value hardly captures and summarizes response, especially when the response distribution is highly skewed. The entire density (or distribution) function is most useful in cases where the cost of delay is non-linear. By knowing the distribution one can more accurately analyse a priority queueing system than just using the first and/or second moments. At this point it should be noted that for the M/M/C non-preemptive priority system, results are available only for exponential service time distributions with equal means [Cobham (1954), Davis (1966)]. Thus this research has theoretical as well as practical significance.
CHAPTER III

SYSTEM-POINT THEORY

This chapter reviews and summarizes some basic concepts and results of System-Point theory which is used to model and analyse the queueing system considered in this thesis. The material presented here is not intended to give an in depth coverage of System-Point theory. The reader interested in delving into this relatively new methodology for analysing stochastic systems is referred to Brill (1975), (1979), (1983) and Brill et al. (1977), (1981a), (1981b), (1984). Section 3.1 introduces the important concept of the virtual waiting time process which is generalized by the system-point method. This generalization is discussed in Sections 3.2 and 3.3. In the final section of this chapter we discuss methods of solving for the probability density function of the generalized virtual waiting time.

3.1 The Virtual Waiting Time Process

The time a potential customer would have to wait in queue before starting service were he to arrive at time t.

- 18 -
is called the virtual waiting time, denoted by $W(t)$. For single-server queues this can also be defined as the unfinished work to be done by the server at time t. A sample path of the virtual wait process $\{W(t), t \geq 0\}$ decreases with slope -1 over time until it hits level zero, or until the next arrival. At an arrival epoch T_n, it jumps by an amount equal to the service time requirement of the arriving customer. If it hits level zero, it remains there until the next arrival [Takács (1962)]. This stochastic process is a continuous-state continuous-time Markov process subject to discontinuous jumps [Kleinrock (1975), Takács (1962)]. These jumps are at arrival epochs or possibly at other essential time points, depending on the model treated.

For multiple server queues, in sample paths of the virtual waiting time, the jumps sizes are equal to the "inter start-of-service departure" time. This is the time measured from the start of service epoch until the first departure from the system, thereafter.

3.2 The System-Point Process for Single-Server Queues

A generalization of the standard virtual waiting time process leads to the modelling of queues by what is called the System-Point process. For single server queues, with first-come, first-served discipline the system-point
process sample functions are identical to those of the usual virtual wait process. Brill (1975) introduced the following theorem which forms the basis of System-Point theory for single server queues and simple multiple server queues. For theorems which apply to more complex queues see Brill (1975).

Basic System-Point Theorem for Single-Server Queues

With probability 1

\[\lim_{t \to \infty} D_t(w)/t = g(w); \quad w > 0. \]

\[\lim_{t \to \infty} I_t/t = \lim_{w \to 0} g(w) = g(0^+) = \lambda P_0 \]

where

- \(D_t(w) \): the number of system-point (sample path) downcrossings of level \(w > 0 \) during time interval \([0, t]\)
- \(I_t \): the number of system-point (sample path) impacts (level-zero hits) during \([0, t]\)

This theorem essentially relates the limiting waiting time density function, \(g(w), w > 0 \) to the long-run average rate at which the system-point crosses level \(w \). Balancing the long-run average rates of downcrossings and upcrossings of level \(w \) yield an equation, usually a Volterra integral equation, that will involve the density function.
3.3 The System-Point Process for Exponential Multiple-Server Queues

For exponential multiple server queues the sample functions of the system-point process take values in a more general state space. Here, the system-point process is a Markov process denoted by $\{<W(t),M(t)>, t \geq 0\}$, where $W(t)$ is the virtual wait and $M(t)$ is a random vector with countably many possible states. Brill (1975) referred to $M(t)$ as the system configuration and introduced the concept of "lines", and "pages" to describe possible states of the system. For a further explanation of system configuration see Brill & Posner (1981a) and for applications see Brill & Posner (1981a, 1981b) and Brill & Green (1984).

The system-point method explicitly connects the stationary probability density function of the generalized virtual waiting time evaluated at $w > 0$, with the number of times that sample function crosses level w in the state space per unit time. The geometric point which traces out the sample function over time is called the "system-point".

The basic theorem given in Section 3.2 now becomes

For $m \in M$ (all possible configurations for which the waiting time is or can be greater than zero), with probability one

$$\lim_{t \to \infty} \frac{E[D_t(w,m)]}{t} = f(w,m) \quad w > 0$$

$$\lim_{t \to \infty} \frac{E[I_t(m)]}{t} = \lim_{w \to 0} f(w,m) = f(0^+,m)$$
The above theorem relates the joint limiting density
\(f(w,m) \), \(w > 0 \), \(m \in M \) to the long-run average rate at which
the system-point crosses level \(w \) in the co-ordinate system
 corresponding to configuration \(m \) in the state space.
Balancing the expected entrance and exit rates of sets
whose boundary is level \(w > 0 \) for each possible configuration
yields Volterra type integral equations involving the
density function of the waiting time. These theorems have
several corollaries and implications discussed in Brill
(1975) or Brill & Posner (1981a).

3.4 Methods of Solution

Brill (1975) and Brill & Posner (1981a) shows that
application of the basic system-point theorem yield
mathematical functions of the probability density function
evaluated at level \(w \). This gives rise to two distinct
possible solution methodologies viz. analytical and via a
Monte Carlo computational approach.

In the analytical approach, the above-mentioned
integral equations for the pdf are solved to yield
analytical solutions (see for example, Brill & Posner
(1981a)). However, for models that yield equations which
are difficult to solve, the system-point Monte Carlo
computational approach may be used to compute the
probability density function. Brill (1983) proved the
following theorem: For any sample-path

\[D_t(w) = P_t^{>w} - T_t^{>w} \]
\[I_t = P_t^{>0} - T_t^{>0} \]

In words, this says that for a sample path the number of
downcrossings of a level \(w > 0 \), is equal to the number of
peaks minus the number of troughs above that level. A
similar result holds for level-zero hits. Making use of
the above theorem followed by the basic system-point
theorem allows for an estimate of the pdf to be obtained.

By utilizing random numbers, a sample path for \(W(.) \) on
a finite interval \([0, t]\) is generated. The heights of peaks
and troughs are obtained dynamically as the sample path is
generated over time. Direct application of the above
theorems then yield estimates of the probability density
function of the waiting time. From the estimated density
function, and formulas in Brill (1983), estimates for
moments of the waiting time and the cumulative distribution
function can be found.

In this thesis, we adopt a Monte Carlo computational
approach to compute the probability density function of the
waiting time for each customer-type. In the next chapter
we define a system-point process for each customer-type and
construct typical sample functions for the respective
processes.
CHAPTER IV

SYSTEM-POINT MODELS FOR THE DIFFERENT PRIORITY CLASSES

The queueing system considered is a variant of the M/M/2 queue in which two types of customers arrive independently with Poisson arrival rates $\lambda_j (j=1,2)$ and require an exponentially distributed amount of service time with mean $1/\mu_j (j=1,2)$ from either server. The queueing discipline within each class is first-come, first-served (FCFS); type-1 customers having service priority over type-2 customers and service of either class, once started, is never interrupted (non-preemptive). Customers arriving when the system is empty go into either server with equal probability.

To analyse this queueing system we use two stochastic processes: system-point processes for type-1 (SP^1) and type-2 (SP^2) customers, respectively. Section 4.1 defines the type-1 process, which is used in Chapter 5 to calculate the probability density function and cumulative distribution function of the waiting time of the type-1 customers. Similarly, Section 4.2 defines the type-2 process, which is used in the next chapter to compute the...
corresponding type-2 characteristics. Typical sample paths are illustrated for both processes. Understanding the construction of sample paths is essential for being able to write a computer program to generate sample paths.

4.1 System-Point Process for Type-1 Customers—SP(1)

This section treats the waiting-time characteristics for type-1 customers. The system-point process for the type-1 customers is the stochastic process

\[\{ \langle W(1)(t); M(1)(t) \rangle, t \geq 0 \} \]

where;

- \(W(1)(t) \) is the virtual wait of a type-1 customer arriving at time \(t \).
- \(M(1)(t) \) is the system configuration at time \(t \) defined by the vector \(M(1)(t) = (n_S, n_W, k) \) if a type-1 customer arriving at time \(t \) would "see" \(n_S \) type-2 customers in service, and \(n_W \) type-2 customers waiting (\(n_S = 0, 1, 2; n_W = 0, 1, 2, ... \)). Variable \(k \) may assume the value 0, 1 or 2. If \(k = 1 \) or 2, it represents the unit-type in the other server at the time-\(t \) arrival's (possibly future) service-starting epoch; if \(k = 0 \), the time-\(t \) arrival would enter service alone. Recapitulating,

\[n_S = \text{number of type-2 customers in service at the arrival epoch } t \text{ of a potential type-1 customer}, \]

\[n_S = 0, 1, 2 \]
\[n_w = \text{number of type-2 customers waiting (not in service) at the arrival epoch } t \text{ of a potential type-1 customer, } n_w = 0, 1, 2, \ldots \]
\[k = \text{unit-type in the other server at the (possibly future) service-starting epoch of a type-1 customer arriving at time } t, \quad k = 1, 2; \quad k = 0 \text{ indicates the other server is empty when the type-1 time-} t \text{ arrival enters service.} \]

Possible states for the system configuration:

\((0, 0; 0)\) - type-1 starts service as the only customer in the system

\((n_s, n_w; 1)\) - type-1 starts service with a type-1 customer in other server; arrives when \(n_s = 0, 1, 2; \quad n_w = 0, 1, 2, \ldots\)

\((n_s, n_w; 2)\) - type-1 starts service with a type-2 customer in other server; arrives when \(n_s = 1, 2; \quad n_w = 0, 1, 2, \ldots\)

States \((n_s, n_w; 0)\), with \(n_s = 1, 2; \quad n_w \geq 0\) and \((0, n_w; 2)\), with \(n_w \geq 0\) are infeasible. The reason for the infeasibility is as follows. For state \((n_s, n_w; 0)\), with \(n_s = 1, 2; \quad n_w \geq 0\); if an arriving type-1 went into service alone, the system must have been empty when he arrived. No type-2 customers can be in the system when the system is empty. State \((0, n_w; 2)\), with \(n_w \geq 0\) is not possible since
in order for a type-1 customer to have as his neighbor in service a type-2 customer, due to the priority discipline the type-2 must be in service at the type-1’s arrival epoch.

The system is said to be in state \(<w; (n_S, n_W; k)> \) at time \(t \) if the virtual wait is \(W^{(1)}(t) = w \), and the system configuration is \((n_S, n_W; k) \). State \(<0; (0,0;0)> \) indicates an empty system. If the system is in state \(<w; (n_S, n_W; k)> \) at time \(t \), the SP\(^{(1)}\) process sample path may be pictured as having planar Cartesian co-ordinate \((t, w) \) corresponding to the particular configuration \((n_S, n_W; k) \). For a system with \(N \) distinct configurations there will be up to \(N \) co-ordinate systems, called “pages” in SP theory [Brill & Posner (1981)]. The “pages” correspond to configurations for which \(W^{(1)}(t) \) can have positive values. \(N \) may be countably infinite – as in this model. Some configurations may be represented by “lines”. The “lines” correspond to configurations for which \(W^{(1)}(t) \) can have the value zero only. The “system-point” (the leading point of the sample path) moves from page to page at arrival events and possibly at service completions of customers, tracing out a sample path with time - thus describing the state of the system at any time \(t \geq 0 \). The virtual waiting time \(W^{(1)}(t) \), is defined as the time that a potential type-i arrival to the system at...
time t would have to wait in queue before starting service. Thus it is a continuous-time process, $t \geq 0$. The system-point process is a generalization of the virtual waiting time process.

We now introduce the following definitions of the stationary partial cumulative distribution function and probability density function of the waiting time for the type-1 customers.

$F^1(w, (n_s, n_w; k))$ = partial waiting time distribution associated with configuration $(n_s, n_w; k)$

$= \Pr\{ \text{a type-1 arriving customer waits} \leq w, \text{and the configuration is} (n_s, n_w; k) \}, w \geq 0$

$= \lim_{t \to \infty} \Pr\{ W^{(1)}(t) \leq w, M^{(1)}(t) = (n_s, n_w; k) \}, w \geq 0$

$f^1(w, (n_s, n_w; k))$ = "mixed" joint density function of the waiting time associated with configuration $(n_s, n_w; k)$

$= dF^1(w, (n_s, n_w; k))/dw, w > 0$, whenever the derivative exists.

$G^1(w) = \text{total waiting time distribution}$

$= \sum_{\text{all} (n_s, n_w; k)} F^1(w, (n_s, n_w; k)), w \geq 0$

$g^1(w) = \text{total waiting time probability density function}$

$= \sum_{\text{all} (n_s, n_w; k)} f^1(w, (n_s, n_w; k)), w > 0$
Let \(P^{1000}, P^{1001}, \) and \(P^{1102} \) denote the probabilities that an arriving type-1 customer does not wait and the configuration is \((0,0;0), (0,0;1), \) or \((1,0;2)\) respectively at the time of arrival. Hence

\[
P^{10} = \Pr\{ W^{(1)}(t) = 0 \text{ in steady-state } \}
\]

\[
= \lim_{t \to \infty} \Pr\{ W^{(1)}(t) = 0 \}
\]

\[
= S^{1}(0)
\]

\[
= P^{1000} + P^{1001} + P^{1102}
\]

\(P^{10} \) is the probability of zero waiting time in queue for a type-1 customer. It is the sum of all the probabilities of a zero waiting time state for the system. \(P^{1000} \) is the probability that the system is empty and can be found by the use of balance equations (to be done in Chapter 5).

4.1.1 Illustration of a Typical \(SP^{(1)} \) Sample Path

We now demonstrate the construction of a typical sample path for the type-1 customers. Throughout the following description, tacit use is made of the memoryless property of the exponential distribution and the independence of the service times in the two servers. Let \(\tau_n, n \geq 1 \) be the arrival epochs of the customers (either type).

The following description is for the sample path shown in
Figure 1. Its purpose is to show how an arbitrary sample path for $SP^{(1)}$ can be constructed.

τ_0 - At $t=0$, the system is empty and so the leading point of the sample path, denoted by $SP^{(1)}$, is on line $(0,0;0)$.

τ_1 - First arrival to the system; a type-1 customer. The system-point jumps to $(\tau_1^+,0)$ on page $(0,0;1)$. This new arrival goes into service immediately. Any newly arriving customer would go into service immediately, and his neighbor in service would be a type-1.

τ_2 - A type-1 customer arrives before the first customer ends service. He goes into service immediately. $SP^{(1)}$ stays on page $(0,0;1)$ and jumps by an amount denoted by $\exp(2\mu_1)$, since any newly arriving type-1 would have to wait a time exponentially distributed with mean $1/2\mu_1$.

τ_3 - Say another type-1 customer arrives. This customer must wait until one of the previous two customers complete service. $SP^{(1)}$ stays on page $(0,0;1)$ and jumps by an amount $\exp(2\mu_1)$, for the reason as at τ_2.

τ_4 - A type-2 customer arrives. The system-point jumps to page $(0,1;1)$, but maintains the same height above zero since any newly arriving type-1 customer must wait before entering service and this wait is unaffected by the type-2's presence due to the priority discipline employed.

τ_5 - Another type-2 customer arrives. The system-point jumps to page $(0,2;1)$ but remains at the same height.
above zero, for the same reason given previously at T_4.

A - Assume no new type-1 arrivals occur between the time T_5 and A. At $t = A$, there would be a single type-1 customer in service since an arriving type-1 would wait zero time. One of the waiting type-2's would start service.

At $t = A^+$, the jump is to page $(1,1;1)$ with co-ordinate $(A^+, W(1)(A^+))$, where $W(1)(A^+)$ is exponentially distributed with mean $1/(\mu_1 + \mu_2)$.

(The jump would be to page $(1,1;1)$ or page $(1,1;2)$ with probabilities $\mu_2/(\mu_1 + \mu_2)$ and $\mu_1/(\mu_1 + \mu_2)$ respectively since a potential type-1 customer arriving at time A^+ would "see" a waiting type-2 and a servicing type-2 and would start service with a type-1 or a type-2 as his neighbor, depending on whether the type-1 or type-2 jointly in service, completes service earlier. In Fig.1 it is assumed that the type-2 service was less).

T_6 - A type-1 customer arrives. Since $W(1)(T_6) > 0$, the type-2 customer that arrived at T_5 is waiting in queue, whilst this type-1 customer will go into service at time $T_6 + W(T_6)$. $S^{(1)}$ remains on page $(1,1;1)$ and jumps up an amount $\exp(2\mu_1)$ for a similar reason as at T_2 or T_3.

B - At $t = B$, the type-2 customer that started servicing at $t = A^+$ completes its service. Any newly arriving type-1 would "see" a waiting type-2 and would enter service some time later with his neighbor being a type-1. Hence, at
t=B, \(S^P(1) \) jumps to page \((0,1;1)\) but remains at the same height above zero.

C - Assume no new type-1 arrivals occur between \(t=B \) and \(t=C \). At \(t=C \) there would be a single type-1 customer in service. The waiting type-2 would start service. At \(t=C^+ \), the jump is to page \((1,0;2)\) with co-ordinate \((C^+,W(1)(C^+))\), where \(W(1)(C^+) \) is exponentially distributed with mean \(1/(\mu_1+\mu_2) \). This jump to page \((1,0;2)\) occurs with probability \(\mu_1/(\mu_1+\mu_2) \) - the probability that a type-1 completes service before a type-2. Any potential type-1 arrival would "see" a type-2 in service and would start service with a type-2 as his neighbor.

D - Assume no new type-1 arrival occur between \(t=C \) and \(t=D \). At \(t=D \), the type-1 jointly in service with a type-2 completes its service. The \(S^P(1) \) stays on page \((1,0;2)\). A newly arriving customer would go into service immediately with its neighbor being a type-2 customer. This represents a zero-waiting state for type-1 customers.

\(\tau_7 \) - A type-2 customer arrives before service completion of the type-2 presently receiving service and goes into service immediately. \(S^P(1) \) jumps to page \((2,0;2)\) with co-ordinate \((\tau_7^+,W(1)(\tau_7^+))\), where \(W(1)(\tau_7^+) \) is exponentially distributed with mean \(1/(2\mu_2) \).

\(\tau_8 \) - A type-1 customer arrives. At \(t=\tau_8^+ \), the jump is to
page (2,0;1) with co-ordinate \((\tau_8^+, W^{(1)}(\tau_8^+))\), where

\[W^{(1)}(\tau_8^+) = W^{(1)}(\tau_8) + \text{an amount which is exponentially distributed with mean } 1/(\mu_1+\mu_2). \]

The shown jump to page (2,0;1) occurs with probability \(\mu_2/(\mu_1+\mu_2)\), for any newly arriving type-1 at \(\tau_8^+\) would "see" two type-2's in service when he arrived but would start service in the future with a type-1 in the other server.

E - At \(t=E\), a type-2 customer departs. Any newly arriving type-1 would "see" one type-2 in service, zero type-2's waiting and would enter service with a type-1 as his neighbor. Thus at \(t=E^+\), \(SP^{(1)}\) jumps to page (1,0;1) but maintains the same height above zero.

F - The last type-2 customer in the system completes service leaving a single type-1 customer in the system. \(SP^{(1)}\) jumps to page (0,0;1) with co-ordinate \((F^+,0)\). Any newly arriving customer would go into service immediately, and his neighbor would be a type-1.
Figure 1: Example of an $SP^{(1)}$ Sample Path

$\text{Line}(0,0,0)$

Page $(0,0,1)$

Page $(0,1,1)$

Page $(0,2,1)$

Page $(1,1,1)$

Page $(1,0,1)$

Page $(2,0,1)$

Page $(2,0,2)$

Page $(1,0,2)$

$e(2\mu_1)$

$e(2\mu_2)$

$e(\mu_1+\mu_2)$

$e(\mu_1+\mu_2)$

$e(\mu_1)$

Customer Arrivals by Types

t: Time

\circ: $SP^{(1)}$ exit,

\ast: $SP^{(1)}$ enter,

$e(\ast)$: exponential(\ast)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
4.2 System-Point Process for Type-2 Customers—SP(2)

This section treats the waiting time characteristics for type-2 customers. Due to the priority discipline employed, the appropriate process requires a definition different from that used for type-1 customers (SP(1)).

4.2.1 The System-Point Process Definition for Type-2 Customers

The system-point process for the type-2 customers can be represented by the stochastic process

\[\langle W^{(2)}(t); M^{(2)}(t) \rangle, \ t \geq 0 \]

where;

- \(W^{(2)}(t) \) is the virtual waiting time of a type-2 customer arriving at time \(t \), and
- \(M^{(2)}(t) \) is the system configuration at time \(t \) defined by \(M^{(2)}(t) = k \); \(k \) is the type of customer the time-\(t \) type-2 arrival "sees" in the other server when he enters service at time \(t + W^{(2)}(t) \), \(k = 1, 2 \); or \(k = 0 \) if the system is empty when the type-2 arrives.

Based on this definition of the system configuration at time \(t \), the SP(2) process can be fully described by a line and two pages. The line represents the configuration which occurs at arrival epochs of customers who find the
system empty while pages 1 and 2 depicts the system configurations when a type-2 customer starts service with a type-1 or a type-2 as his neighbor respectively. The \(\text{Sp}(2) \) process is said to be in state \((w; k)\) at time \(t \) if the virtual wait is \(W(2)(t) = w \), and the system configuration is \(M(2)(t) = k \). State \((0; 0)\) is the empty system and is represented by a line. As in the case of \(\text{Sp}(1) \), the system-point process sample path for the type-2 customers (\(\text{Sp}(2) \)) can be pictured as having planar Cartesian co-ordinate \((t, w)\) corresponding to the particular configuration \(k = 1, 2 \).

Define for \(\text{Sp}(2) \), the following:

- \(F(2)(w, k) \) = partial waiting time distribution associated with configuration \(k \), \(k = 1, 2 \)

 \[F(2)(w, k) = \Pr \{ \text{type-2 unit waits} \leq w, \text{and the configuration is} \ k \}, \quad w > 0, \ k = 1, 2 \]

- \(f(2)(w, k) \) = "mixed" joint density function for the waiting time associated with configuration \(k \)

 \[f(2)(w, k) = dF(2)(w, k)/dw, \quad w > 0, \text{ for } w > 0 \text{ for which the derivative exists.} \]

- \(G(2)(w) \) = total waiting time distribution (stationary cumulative distribution function)

 \[G(2)(w) = \sum_{k=1,2} F(2)(w, k), \quad w \geq 0 \]

- \(g(2)(w) \) = total waiting time density function (stationary probability density function).
\[
\sum_{k=1,2} f^{(2)}(w,k), \quad w > 0
\]

\[
f^{(2)}(w,1) + f^{(2)}(w,2), \quad w > 0
\]

Let \(P_{200}^2\), \(P_{201}^2\) and \(P_{202}^2\) denote the probabilities that an arriving type-2 customer does not wait and the configuration is 0, 1, or 2 respectively, at the time of arrival. Further, let \(P_{20}^2\) be the probability that a type-2 customer will not wait on arrival to the system. Thus,

\[
P_{20}^2 = \Pr(W^{(2)}(t) = 0 \text{ in steady-state})
\]

\[
= \lim_{t \to \infty} \Pr(W^{(2)}(t) = 0)
\]

\[
= G^{(2)}(0)
\]

\[
= P_{200}^2 + P_{201}^2 + P_{202}^2
\]

Due to the non-preemptive priority queueing discipline under which the system operates, newly arriving or waiting type-2 customers (low priority) are required to wait until all but one of any type-1 customers in the system complete servicing, before they can start being serviced. This is apparent in the construction of the \(SP^{(1)}\) sample path shown in Figure 1. There an arriving or waiting type-2 may only start service during periods when there is at most one type-1 present (if any) in the system, or if he (an arrival) "sees" an empty system. Hence, type-1 customers
serve as interference to the \(\text{SP}^{(2)} \) system. In the next section, the possible kinds of "system busy periods" will be defined.

4.2.2 Kinds of System Busy Periods

Three different kinds of system busy periods need to be considered since jump sizes of the \(\text{SP}^{(2)} \) sample path will be distributed like them. The scenarios giving rise to the three kinds of busy periods are now described.

(a) A type-1 customer is in the system alone and another type-1 arrives at time \(\tau \) say, before this first unit completes service. These two type-1's in service initiate a "type-(1,1) busy period"; the first time from \(\tau \) until there is exactly one type-1 in the system again. This time is distributed like an ordinary busy period in an M/M/1 queue except that the hazard rate is \(2\mu_1 \). Such a busy period is denoted by \(B_{11}^0 \). Figure 2 demonstrate a \(B_{11}^0 \) busy period and the jump size due to \(B_{11}^0 \) is illustrated by Example 1 in 4.2.4.

(b) A type-1 customer is in the system alone and a type-2 arrives at time \(\tau \) say, before the type-1 completes service. These two units jointly in service initiate a "mixed busy period"; the first passage time from \(\tau \) until a server becomes free and there are no type-1's
waiting. (The reverse arrival order yields the same "busy period"). The distribution of the jump size due to this kind of busy period is denoted by B_{11}^δ or B_{12}^δ and will be discussed in 4.2.3 and illustrated by Examples 1 & 2 in 4.2.4.

(c) A type-2 customer is in the system alone, followed by another type-2 before the initial type-2 completes its servicing. This initiates a busy period denoted by B_{12}^δ; the distribution of which is given in 4.2.3 and illustrated by Example 2 in 4.2.4.

The "system" busy periods (which are jump sizes in the $SP(2)$ sample path) described above will be simulated during the generation of the $SP(2)$ process sample path. The following section defines the sizes of the jumps in terms of the possible system busy periods.

4.2.3 Possible Jump Sizes for $SP(2)$ Sample Path

Consider the following definitions:
\[\exp(h) = \text{an exponential random variable with hazard rate } h \]
\[\text{(or mean } 1/h), \]
\[\delta_{ij} = \exp(\mu_i + \mu_j) - \exp(\lambda_1), \]
\[B_{11}^0 = \text{an ordinary busy period in an } M/M/1 \text{ queue with hazard rate } 2\mu_1, \]
A delayed busy period in an M/M/1 queue with hazard rate $2\mu_1$, and delay δ, if $\delta > 0$,
(see Figure 3),
$B_{11}\delta = 0$, if $\delta < 0$,

A delayed "mixed" busy period, if $\delta > 0$,
$B_{12}\delta = 0$, if $\delta < 0$.

The distribution of the delayed "mixed" busy period,
$B_{12}\delta$ can be one of the following three cases,

Case (1) : All jumps that propagate this busy period are $\exp(\mu_1+\mu_2)$, with a type-1 in service at the end of the busy period.

Case (2) : Same as Case (1), except that a type-2 remains in service at the end of the busy period.

Case (3) : The jumps are a combination of $\exp(2\mu_1)$ and $\exp(\mu_1+\mu_2)$, the first string of jumps being $\exp(\mu_1+\mu_2)$, followed by a string of $\exp(2\mu_1)$ jumps. Hence a type-1 will remain in service at the end of the busy period.

Cases (1), (2) and (3) are illustrated in Figure 4.

The jumps of the virtual waiting time for the $SP(2)$ sample path will be one of the following six possible sizes.

1) B_{11}^0 (special case is $\exp(2\mu_1)$)
2 \) \exp(u_1+u_2) + B_{11}^\delta_{12} \\
3 \) \exp(u_1+u_2) + B_{12}^\delta_{12} \\
4 \) \exp(u_1+u_2) \) (special case of (2) or (3) when \delta_{12}<0) \\
5 \) \exp(2u_2)+ B_{12}^\delta_{22} \\
6 \) \exp(2u_2) \) (special case of (5) when \delta_{22}<0).

In order to consolidate the foregoing concepts, two typical sample paths for the SP\(^{(2)}\) process will be constructed and described in the next section. The jump sizes of the SP\(^{(2)}\) sample path generated will be a reflection of the unit-type(s) of the first two customers initiating the "busy periods". Making use of the concept of the ordinary type-\((1,1)\) busy period, delayed type-\((1,1)\) busy period and delayed "mixed" busy period, typical sample paths of the virtual waiting time for the type-2 customers can be constructed as described next.

4.2.4 Examples of Typical SP\(^{(2)}\) Sample Paths

Example 1: An SP\(^{(2)}\) Sample Path with Jump Sizes Distributed as \(B_{11}^0, \exp(u_1+u_2), \exp(u_1+u_2) + B_{11}^\delta_{12} \exp(u_1+u_2) + B_{12}^\delta_{12} \) and the SP\(^{(2)}\) moving from page 1 to page 2, (Figure 5).

\(\tau_0\) - At \(t=0\), the system is empty and so the leading point of the sample path, denoted by "SP\(^{(2)}\)" is on line 0.
\(\tau_1 \) - A type-1 unit arrives and goes into service immediately. The system-point jumps to page 1 from line 0 and has coordinate \((\tau_1^+, 0)\). Any newly arriving customer would go into service immediately and his neighbor in service would be a type-1.

\(\tau_2 \) - Another type-1 arrives before the previous type-1 completes service. The jump size generated is an ordinary type-(1,1) busy period, \(B_{11}^0 \) as defined in 4.2.2(a) and illustrated in Figure 2. \(B_{11}^0 \) happens to be \(\exp(2\mu_1) \) in the case illustrated. Any newly arriving type-2 would go into service at A. The system becomes empty at \(t=\beta \) and the system-point jumps to line 0.

\(\tau_3 \) - A type-1 arrives to an empty system and enters service immediately. \(\text{SP}(2) \) jumps from line 0 to page 1 with coordinates \((\tau_3^+, 0)\).

\(\tau_4 \) - Say a type-2 arrives during the previous type-1 service time. Suppose the type-2 service time is less than the type-1 service and that \(\delta_{12} = \exp(\mu_1+\mu_2) - \exp(\lambda_1) > 0 \). Then a jump of size \(\exp(\mu_1+\mu_2) + B_{11} \delta_{12} \) occurs. The system becomes empty at \(t=F \); \(\text{SP}(2) \) jumps to line 0.

\(\tau_7 \) - A type-1 unit arrives and enters service immediately with \(\text{SP}(2) \) jumping from line 0 to page 1 and having coordinate \((\tau_7^+, 0)\).

\(\tau_8 \) - Another type-1 unit arrives during the service time of the previous type-1. The sample path jumps up by an amount \(B_{11}^0 \) again.
\(\tau_9 \) - A type-2 unit arrives. The SP(2) jumps up by an amount \(\exp(\mu_1+\mu_2) + B_{12}^0 \delta_{12} \) since in this realization the type-1 jointly in service with the type-2, left first. SP(2) stays on page 1 in this realization (any newly arriving type-2 would enter service in future and "see" a type-1 as his neighbor, Case (1) or (3) of \(B_{12}^0 \delta_{12} \)).

\(\tau_{12} \) - A type-2 unit arrives. The sample path jumps up by an amount \(\exp(\mu_1+\mu_2) \) and stays on page 1. This occurs with probability \(\mu_2/(\mu_1+\mu_2) \) since there are no type-1 arrivals between \(t=J \) and \(t=K \). The system becomes empty at \(t=L \). SP(2) jumps to line 0.

\(\tau_{13} \) - A type-1 arrives and starts service immediately. SP(2) jumps from line 0 to page 1 having coordinate \((\tau_{13}^+,0) \).

\(\tau_{14} \) - Another type-1 arrives during the service time of the type-1 at \(\tau_{13} \), and enters service. The sample path jumps up by an amount \(B_{11}^0 \) once more.

\(\tau_{15} \) - A type-2 unit arrives. The sample path jumps by an amount \(\exp(\mu_1+\mu_2) + B_{12}^0 \delta_{12} \) and moves to page 2 in this realization. Case (2) of \(B_{12}^0 \delta_{12} \).

\(\tau_{18} \) - A type-2 unit arrives. The sample path jumps up by an amount \(\exp(2\nu_2) \) since in this realization his neighbor is a type-2 when he starts service at \(t = P \) (no type-1's arrive between \(t=P \) and \(t=Q \)). At \(t = R \) the system becomes empty once more; SP(2) jumps to line 0 and remains in this configuration until a new arrival occurs.
Example 2: An $SP(2)$ Sample Path with Jump Sizes Distributed as $\exp(2u_2)$, $\exp(2u_2) + B_{12}^{\delta_{22}}$, $\exp(u_1 + u_2)$ and $SP(2)$ moving from page 2 to page 1, (Figure 6).

τ_0 - At $t=0$, the system is empty and so the leading point of the sample path, denoted by "SP(2)", is on line 0.

τ_1 - A type-2 unit arrives and starts service immediately. The system-point jumps to $(\tau_1^+,0)$ on page 2 since any newly arriving unit would have to wait zero time and his neighbor in service would be a type-2.

τ_2 - Another type-2 arrives before the previous type-2 completes service, and starts service immediately. $SP(2)$ stays on page 2 in this realization (since no type-1’s arrive during $\exp(2u_2)$) and jumps by an amount $\exp(2u_2)$. The system becomes empty at $t=B$ and $SP(2)$ jumps to line 0.

τ_3 - Say another type-2 arrives. The $SP(2)$ behaves as at τ_1 and for the same reason.

τ_4 - Another type-2 arrives during the previous type-2 service time. The jump size at τ_4 is $\exp(2u_2) + B_{12}^{\delta_{22}}$ and stays on page 2 in this realization. Case (2) of $B_{12}^{\delta_{22}}$.

τ_5 - A type-2 arrives. The jump size at τ_5 is $\exp(2u_2)$ since no type-1’s arrive during $t = D$ and $t = E$. The system is empty at $t=F$; $SP(2)$ jumps to line 0.

τ_7 - A type-2 arrives and starts service immediately.
SP^{(2)} jumps from line 0 to page 2 since any newly arriving unit would enter service having zero wait and his neighbor would be a type-2.

\(\tau_8 \) - Another type-2 arrives during the service time of the type-2 at \(\tau_7 \) and starts service. \(SP^{(2)} \) jumps to page 1 at \(\tau_8^+ \) with co-ordinate \((\tau_8^+, W^{(2)}(\tau_8^+)) \), where \(W^{(2)}(\tau_8^+) \) consist of \(\exp(2\mu_2) + B_{12} \delta_{22} \)

Case (1) or (3) of \(B_{12} \delta_{22} \).

\(\tau_9 \) - Say another type-2 arrives. The jump size of \(SP^{(2)} \) at \(\tau_9 \) is \(\exp(\mu_1 + \mu_2) \) and stays on page 1 in this realization. (This occurs with probability \(\mu_2 / (\mu_1 + \mu_2) \), since no type-1's arrive during \(t = H \) and \(t = I \)).

If a type-1 unit had arrived between \(t = H \) and \(t = I \) a delayed "mixed" busy period would have to be added to the peak at \(\tau_9 \), i.e., \(\exp(\mu_1 + \mu_2) + B_{12} \delta_{12} \) and the page on which the jump terminates depends on the unit-type ending the \(B_{12} \delta_{12} \) busy period, i.e., Case (1), (3) - type-1 or Case (2) - type-2.
Figure 2: Generating an Ordinary Type-(1,1) Busy Period - B_{11}^0
Figure 3: Generating a Delayed Type-(1,1) Busy Period - B_{11}
Figure 4: Generating a Delayed 'Mixed' Busy Period - B_{12}^{\delta}

- Ends with either a type-1 or a type-2 in service
- Ends with a type-1 in service

\[e^{(\mu_1 + \mu_2)} \]
\[e^{(\mu_1)} \]
\[e^{(\mu_2)} \]

Time t

Customer Arrivals by Types

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 5: $SP^{(2)}$ Sample Path with Jump Size Distributed as B_{11}^0, $e(\mu_1+\mu_2)$, $e(\mu_1+\mu_2)B_{11}^{\delta_1}$, $e(\mu_1+\mu_2)B_{12}^{\delta_2}$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 6: $\text{SP}^{(2)}$ Sample Path with Jump Sizes Distributed as $e(2\mu_2), e(2\mu_2) \cdot B_{12} \delta_{22}$ and $e(\mu_1 + \mu_2)$

- : $\text{SP}^{(2)}$ exit, *: $\text{SP}^{(2)}$ enter, e(•): exponential(•)
CHAPTER V

SYSTEM-POINT MONTE CARLO COMPUTATION

The objective of this chapter is twofold: firstly to demonstrate the application of the system-point Monte Carlo computation technique used to evaluate the probability density function and cumulative distribution function of the virtual waiting time for each class of customer, and secondly to check on the correctness of the computer programs written.

Two FORTRAN programs were written to generate sample paths for the SP\(^{(1)}\) and SP\(^{(2)}\) processes, respectively. Recall that the SP\(^{(1)}\) and SP\(^{(2)}\) processes, model the waiting time characteristics of the high priority customers (type-1 units) and low priority customers (type-2 units), respectively. The computer programs were written in a modular manner to facilitate easy debugging and tracing. Appendix B provides a flowchart and the computer program listing for SP\(^{(1)}\) while Appendix C contains similar information for SP\(^{(2)}\). Using the output from either program, a third program computes the probability density function and cumulative distribution function for the
respective waiting times, and plot the resulting
functions. A listing of this program is given in Appendix
D.

To test the system—point computer programs written for
the M/M/2 two—class priority system the following
hypothetical parameters were assumed:

\[\lambda_1 = 15 \text{ customers/hour} \]
\[\lambda_2 = 12 \text{ customers/hour} \]
\[\mu_1 = 20 \text{ customers/hour} \]
\[\mu_2 = 15 \text{ customers/hour} \]

In addition to the probability density function and
cumulative distribution function, the following values will
be computed:-

1) \(P_0^S = \Pr(\text{an empty system}) \)
2) \(P_1^S = \Pr(\text{a single customer in the system of}
\text{either type}) \)
3) \(E(W_{q1}) = \text{expected waiting time for a type—i (i=1,2)
customer in queue.} \)

where, the superscript "s" refers to the system.

During the validation and verification process the
above three values will be used to check against known
analytic results or those obtained via the "usual" system
simulation approach. A brief outline of the system
simulation approach for the queueing system under study is
provided in Appendix E.
5.1 Illustration of the System-Point Monte Carlo Computation Approach

The purpose of this section is to illustrate how the system-point Monte Carlo computation approach is used to obtain the virtual waiting time probability density function and the cumulative distribution function for the M/M/2 non-preemptive priority queueing system. The approach is due to Brill (1983) and only the relevant aspects are illustrated here. Since this section is merely for illustration purposes, with no intention of achieving steady-state results, the system-point computer programs (SP(1) and SP(2)) were run for an arbitrary time of $T = 1000$ minutes.

The approach adopted in this study is to first select a set of waiting time values denoted by $\{w_j\}$. Let $P^{>w_j}$ and $T^{>w_j}$, $w_j > 0$ denote the number of "peaks" and "troughs" above level w respectively, for the sample path generated. The number of downcrossings of level $w_j > 0$ in time t is given by

$$D_t(w_j) = P^{>w_j} - T^{>w_j} \quad \ldots \text{Brill (1983)}$$

and an estimate of the density function by

$$\hat{g}(w_j) = D_t(w_j)/t \quad \ldots \text{Brill (1983)}$$

In order to compute the cumulative distribution of the virtual waiting time there are two nonzero probabilities
that the wait of a type-i customer will be zero, that must be evaluated. This will be done individually for the respective system-point model.

5.1.1 SP(1) Monte Carlo Computation

Table 1 gives the results for the generation of the SP(1) sample path. Using the theory in Brill (1975) and Brill (1983), the following balance equations can be written for the SP(1) process (the left side and right side are the SP(1) exit and entrance rates of the state).

State:

000 : \(\lambda P_{000} = \mu_1 P_{001} + \mu_2 P_{102} \)

001 : \((\lambda + \mu_1)P_{001} = f_{001}(0^+) + f_{101}(0^+) + \lambda_1 P_{000} \)

\(\hat{\lambda} I_{001}(t)/t + I_{101}(t)/t + T_{000\to001}(t)/t \)

102 : \((\lambda + \mu_2)P_{102} = f_{102}(0^+) + f_{202}(0^+) + \lambda_2 P_{000} \)

\(\hat{\lambda} I_{102}(t)/t + I_{202}(t)/t + T_{000\to102}(t)/t \)

where,

\(P_{000} = \Pr(\text{an empty system}) \)

\(P_{001} = \Pr(\text{a single customer in the system and it's a type-1}) \)

\(P_{102} = \Pr(\text{a single customer in the system and it's a type-2}) \)

\(I_{ijk}(t) = \text{number of sample path level zero hits for configuration (i,j;k) during a simulated time } t \)

\(f_{ijk}(0^+) = \text{estimated probability density function of the} \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
waiting time at level 0+ for configuration (i,j;k).

\(T_{000 \rightarrow ijk}(t) \) = number of system-point transitions from configuration (0,0;0) to configuration (i,j;k) during a simulated time \(t \)

\[\lambda = \lambda_1 + \lambda_2 \]

\(t = \) simulated time

On applying the above balance equations and making use of the results available in Table 1, we can estimate the probabilities of interest. Thus

\[\hat{P}_{001} = \frac{(0.021 + 0.021 + 0.036)}{(0.45 + 0.3333)} \approx 0.0995748 \]

\[\hat{P}_{102} = \frac{(0.038 + 0.027 + 0.029)}{(0.45 + 0.25)} \approx 0.1342857 \]

\[\hat{P}_{000} = \frac{0.3333(0.0995748) + 0.25(0.1342857)}{0.45} \approx 0.1483615 \]

The above estimates which are based on the SP(1) process sample path can now be used to determine measures for the system. Thus an estimate of the probability of an empty system, \(P_{0}^{S} \), is \(\hat{P}_{000} = 0.1483615 \). The probability of a single customer in the system of either type, \(P_{1}^{S} \), is \(\hat{P}_{001} + \hat{P}_{102} = 0.2338605 \) and the probability that a type-1 unit would wait zero time in queue before entering service is \(\hat{P}_{000} + \hat{P}_{001} + \hat{P}_{102} = 0.3822222 \).
Table 1: Results from the SP(1) Monte Carlo Computation

\(T = 1000\) min.

\(\lambda_1 = 15, \lambda_2 = 12, \mu_1 = 20, \mu_2 = 15.\)

<table>
<thead>
<tr>
<th>(w)</th>
<th>(p^w)</th>
<th>(T^w)</th>
<th>(g(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0+</td>
<td>376</td>
<td>147</td>
<td>0.2290</td>
</tr>
<tr>
<td>0.5</td>
<td>309</td>
<td>126</td>
<td>0.1830</td>
</tr>
<tr>
<td>1.0</td>
<td>258</td>
<td>105</td>
<td>0.1530</td>
</tr>
<tr>
<td>1.5</td>
<td>225</td>
<td>93</td>
<td>0.1320</td>
</tr>
<tr>
<td>2.0</td>
<td>195</td>
<td>72</td>
<td>0.1230</td>
</tr>
<tr>
<td>2.5</td>
<td>156</td>
<td>56</td>
<td>0.1000</td>
</tr>
<tr>
<td>3.0</td>
<td>133</td>
<td>48</td>
<td>0.0850</td>
</tr>
<tr>
<td>3.5</td>
<td>104</td>
<td>37</td>
<td>0.0670</td>
</tr>
<tr>
<td>4.0</td>
<td>83</td>
<td>30</td>
<td>0.0530</td>
</tr>
<tr>
<td>4.5</td>
<td>70</td>
<td>25</td>
<td>0.0450</td>
</tr>
<tr>
<td>5.0</td>
<td>55</td>
<td>19</td>
<td>0.0360</td>
</tr>
<tr>
<td>5.5</td>
<td>46</td>
<td>16</td>
<td>0.0300</td>
</tr>
<tr>
<td>6.0</td>
<td>41</td>
<td>12</td>
<td>0.0290</td>
</tr>
<tr>
<td>6.5</td>
<td>33</td>
<td>10</td>
<td>0.0230</td>
</tr>
<tr>
<td>7.0</td>
<td>28</td>
<td>9</td>
<td>0.0190</td>
</tr>
<tr>
<td>7.5</td>
<td>24</td>
<td>9</td>
<td>0.0150</td>
</tr>
<tr>
<td>8.0</td>
<td>19</td>
<td>7</td>
<td>0.0120</td>
</tr>
<tr>
<td>8.5</td>
<td>15</td>
<td>6</td>
<td>0.0090</td>
</tr>
<tr>
<td>9.0</td>
<td>14</td>
<td>5</td>
<td>0.0090</td>
</tr>
<tr>
<td>9.5</td>
<td>11</td>
<td>5</td>
<td>0.0060</td>
</tr>
<tr>
<td>10.0</td>
<td>9</td>
<td>3</td>
<td>0.0060</td>
</tr>
<tr>
<td>10.5</td>
<td>4</td>
<td>1</td>
<td>0.0030</td>
</tr>
<tr>
<td>11.0</td>
<td>3</td>
<td>1</td>
<td>0.0020</td>
</tr>
<tr>
<td>11.5</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>12.0</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>12.5</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>13.0</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>13.5</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>14.0</td>
<td>2</td>
<td>0</td>
<td>0.0020</td>
</tr>
<tr>
<td>14.5</td>
<td>2</td>
<td>0</td>
<td>0.0020</td>
</tr>
<tr>
<td>15.0</td>
<td>1</td>
<td>0</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
From the results given in Table 1, a graph of the probability density function for the $SP^{(1)}$ ($T = 1000$ min.) can be constructed. Brill (1983) shows that the estimate of the probability density function, $\hat{g}(w)$, is a step-function in variable w ($w > 0$). Figure 7 shows the plot for the density function of the waiting time for the $SP^{(1)}$ system.

Having estimated the probability that a type-1 unit would wait zero time in queue when he arrives and the probability density function, the cumulative distribution of the waiting time for the high priority customers can now be obtained using the relevant formulas from Brill (1983), as illustrated in Figure 8.

The estimated probability density function of the waiting time for type-1 customers, namely its a step-function [Brill (1983)] can be used to find the expected wait for this class of units. For the results presented in Table 1 the expected wait in queue for the type-1 units, $\hat{E}(W_{q1})$ works out to be 0.0315603 hrs.
Figure 7: Probability Density Function for $SP^{(1)}$
($T=1000 \text{ min.}$)

$\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$.
Figure 8: Cumulative Distribution Function for $SP(1)$
(T=1000 min.)

$\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$.
5.1.2 SP^2 Monte Carlo Computation

As in the case of SP^1, before computing the cumulative distribution function of the virtual waiting time for the type-2 customers, the two nonzero probabilities that the wait of a type-2 customer will be zero must be evaluated. The required probabilities can be computed from the following set of balance equations for the SP^2 process.

State:

$00 : \lambda P_{00} = \mu_1 P_{01} + \mu_2 P_{02}$

$01 : (\lambda + \mu_1)P_{01} = f_{01}(0^+)^{+} + \lambda P_{00}
\quad \hat{=} I_{01}(t)/t + T_{00\rightarrow 01}(t)/t$

$02 : (\lambda + \mu_2)P_{02} = f_{02}(0^+)^{+} + \lambda P_{00}
\quad \hat{=} I_{02}(t)/t + T_{00\rightarrow 02}(t)/t$

where,

$P_{00} = \Pr(\text{an empty system})$

$P_{01} = \Pr(\text{a single customer in the system and it's a type-1})$

$P_{02} = \Pr(\text{a single customer in the system and it's a type-2})$

$I_{0k}(t) = \text{number of sample path level zero hits for configuration } k, k = 1, 2 \text{ during a simulated time } t$

$f_{0k}(0^+) = \text{estimated probability density function of the waiting time at level } 0^+ \text{ for configuration } k$
ToQ_>(t) = number of system-point transitions from configuration (0,0) to configuration (0,k) during a simulated time t.

\[\lambda = \lambda_1 + \lambda_2 \]

\[t = \text{simulated time} \]

Application of the above balance equations, together with the results presented in Table 2, allows for the estimation of the non-zero probabilities. Thus

\[\hat{P}_{01} = \frac{(0.041 + 0.031)}{(0.450 + 0.333)} = 0.0919188 \]

\[\hat{P}_{02} = \frac{(0.058 + 0.032)}{(0.450 + 0.250)} = 0.1285714 \]

\[\hat{P}_{00} = \frac{(0.333(0.0919188) + 0.250(0.1285714))}{0.450} = 0.1395097 \]

Making use of the above estimates based on the SP\(^{(2)}\) process sample path, the following values for the system can be determined. \(P_0^S \), the probability of an empty system is \(\hat{P}_{00} = 0.135097 \). The probability of a single customer in the system of either type, \(P_1^S \), is \(\hat{P}_{01} + \hat{P}_{02} = 0.2204902 \) and the probability that a type-2 unit would wait zero time in queue before its start of service is \(\hat{P}_{00} + \hat{P}_{01} + \hat{P}_{02} = 0.359999 \).

Table 2 is a listing of the results for the generation of the SP\(^{(2)}\) sample path (T = 1000 min.) from which a
Table 2: Results from the SP(2) Monte Carlo Computation
(T = 1000 min.)

\[\lambda_1=15, \lambda_2=12, \mu_1=20, \mu_2=15. \]

of Type-1 Impacts = 41
of Type-2 Impacts = 58
of 00 ---\> 01 Transitions = 31
of 00 ---\> 02 Transitions = 32

<table>
<thead>
<tr>
<th>(w)</th>
<th>(p\geq w)</th>
<th>(t\geq w)</th>
<th>(\hat{g}(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0+</td>
<td>241</td>
<td>145</td>
<td>0.0960</td>
</tr>
<tr>
<td>0.5</td>
<td>207</td>
<td>145</td>
<td>0.0620</td>
</tr>
<tr>
<td>1.0</td>
<td>193</td>
<td>141</td>
<td>0.0520</td>
</tr>
<tr>
<td>1.5</td>
<td>183</td>
<td>132</td>
<td>0.0510</td>
</tr>
<tr>
<td>2.0</td>
<td>175</td>
<td>125</td>
<td>0.0500</td>
</tr>
<tr>
<td>2.5</td>
<td>161</td>
<td>115</td>
<td>0.0460</td>
</tr>
<tr>
<td>3.0</td>
<td>152</td>
<td>108</td>
<td>0.0440</td>
</tr>
<tr>
<td>3.5</td>
<td>148</td>
<td>100</td>
<td>0.0480</td>
</tr>
<tr>
<td>4.0</td>
<td>139</td>
<td>94</td>
<td>0.0450</td>
</tr>
<tr>
<td>4.5</td>
<td>134</td>
<td>86</td>
<td>0.0480</td>
</tr>
<tr>
<td>5.0</td>
<td>123</td>
<td>82</td>
<td>0.0410</td>
</tr>
<tr>
<td>5.5</td>
<td>116</td>
<td>79</td>
<td>0.0370</td>
</tr>
<tr>
<td>6.0</td>
<td>109</td>
<td>77</td>
<td>0.0320</td>
</tr>
<tr>
<td>6.5</td>
<td>99</td>
<td>75</td>
<td>0.0240</td>
</tr>
<tr>
<td>7.0</td>
<td>94</td>
<td>73</td>
<td>0.0210</td>
</tr>
<tr>
<td>7.5</td>
<td>90</td>
<td>69</td>
<td>0.0210</td>
</tr>
<tr>
<td>8.0</td>
<td>87</td>
<td>66</td>
<td>0.0210</td>
</tr>
<tr>
<td>8.5</td>
<td>84</td>
<td>62</td>
<td>0.0220</td>
</tr>
<tr>
<td>9.0</td>
<td>81</td>
<td>61</td>
<td>0.0200</td>
</tr>
<tr>
<td>9.5</td>
<td>75</td>
<td>57</td>
<td>0.0180</td>
</tr>
<tr>
<td>10.0</td>
<td>72</td>
<td>56</td>
<td>0.0160</td>
</tr>
<tr>
<td>10.5</td>
<td>69</td>
<td>54</td>
<td>0.0150</td>
</tr>
<tr>
<td>11.0</td>
<td>68</td>
<td>53</td>
<td>0.0150</td>
</tr>
<tr>
<td>11.5</td>
<td>63</td>
<td>51</td>
<td>0.0120</td>
</tr>
<tr>
<td>12.0</td>
<td>61</td>
<td>51</td>
<td>0.0100</td>
</tr>
<tr>
<td>12.5</td>
<td>60</td>
<td>50</td>
<td>0.0100</td>
</tr>
<tr>
<td>13.0</td>
<td>60</td>
<td>48</td>
<td>0.0120</td>
</tr>
<tr>
<td>13.5</td>
<td>58</td>
<td>45</td>
<td>0.0130</td>
</tr>
<tr>
<td>14.0</td>
<td>57</td>
<td>42</td>
<td>0.0150</td>
</tr>
<tr>
<td>14.5</td>
<td>54</td>
<td>41</td>
<td>0.0130</td>
</tr>
<tr>
<td>15.0</td>
<td>51</td>
<td>40</td>
<td>0.0110</td>
</tr>
<tr>
<td>15.5</td>
<td>48</td>
<td>39</td>
<td>0.0090</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Samples</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0</td>
<td>45</td>
<td>38</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>43</td>
<td>37</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>43</td>
<td>37</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>43</td>
<td>36</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>43</td>
<td>35</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>40</td>
<td>33</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>39</td>
<td>33</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>38</td>
<td>33</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>38</td>
<td>31</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>38</td>
<td>30</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>38</td>
<td>29</td>
<td>0.0090</td>
<td></td>
</tr>
<tr>
<td>21.5</td>
<td>36</td>
<td>29</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>35</td>
<td>28</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>35</td>
<td>28</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>34</td>
<td>27</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>23.5</td>
<td>34</td>
<td>27</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>31</td>
<td>27</td>
<td>0.0040</td>
<td></td>
</tr>
<tr>
<td>24.5</td>
<td>31</td>
<td>27</td>
<td>0.0040</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>31</td>
<td>26</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>31</td>
<td>25</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>31</td>
<td>25</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>26.5</td>
<td>31</td>
<td>25</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>31</td>
<td>25</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>30</td>
<td>23</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>30</td>
<td>22</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>30</td>
<td>22</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>30</td>
<td>21</td>
<td>0.0090</td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>29</td>
<td>21</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>29</td>
<td>21</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>30.5</td>
<td>29</td>
<td>19</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>28</td>
<td>16</td>
<td>0.0120</td>
<td></td>
</tr>
<tr>
<td>31.5</td>
<td>28</td>
<td>15</td>
<td>0.0130</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>24</td>
<td>12</td>
<td>0.0120</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>22</td>
<td>12</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>19</td>
<td>10</td>
<td>0.0090</td>
<td></td>
</tr>
<tr>
<td>33.5</td>
<td>17</td>
<td>9</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>15</td>
<td>7</td>
<td>0.0080</td>
<td></td>
</tr>
<tr>
<td>34.5</td>
<td>14</td>
<td>7</td>
<td>0.0070</td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>13</td>
<td>7</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>35.5</td>
<td>13</td>
<td>7</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>11</td>
<td>7</td>
<td>0.0040</td>
<td></td>
</tr>
<tr>
<td>36.5</td>
<td>9</td>
<td>4</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>9</td>
<td>4</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>37.5</td>
<td>9</td>
<td>4</td>
<td>0.0050</td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>8</td>
<td>4</td>
<td>0.0040</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38.5</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>39.0</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>39.5</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>40.0</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>40.5</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>41.0</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>41.5</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>42.0</td>
<td>7</td>
<td>3</td>
<td>0.0040</td>
</tr>
<tr>
<td>42.5</td>
<td>6</td>
<td>3</td>
<td>0.0030</td>
</tr>
<tr>
<td>43.0</td>
<td>6</td>
<td>3</td>
<td>0.0030</td>
</tr>
<tr>
<td>43.5</td>
<td>6</td>
<td>2</td>
<td>0.0040</td>
</tr>
<tr>
<td>44.0</td>
<td>6</td>
<td>2</td>
<td>0.0040</td>
</tr>
<tr>
<td>44.5</td>
<td>6</td>
<td>2</td>
<td>0.0040</td>
</tr>
<tr>
<td>45.0</td>
<td>6</td>
<td>2</td>
<td>0.0040</td>
</tr>
<tr>
<td>45.5</td>
<td>3</td>
<td>1</td>
<td>0.0020</td>
</tr>
<tr>
<td>46.0</td>
<td>3</td>
<td>1</td>
<td>0.0020</td>
</tr>
<tr>
<td>46.5</td>
<td>3</td>
<td>1</td>
<td>0.0020</td>
</tr>
<tr>
<td>47.0</td>
<td>3</td>
<td>1</td>
<td>0.0020</td>
</tr>
<tr>
<td>47.5</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>48.0</td>
<td>3</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>48.5</td>
<td>2</td>
<td>0</td>
<td>0.0020</td>
</tr>
<tr>
<td>49.0</td>
<td>1</td>
<td>0</td>
<td>0.0010</td>
</tr>
</tbody>
</table>
Figure 9: Probability Density Function for $SP^{(2)}$

$T=1000 \text{ min.}$

$\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$
Figure 10: Cumulative Distribution Function for $SP(2)$
(T=1000 min.)

$\lambda_1 = 15$, $\lambda_2 = 12$, $\mu_1 = 20$, $\mu_2 = 15$.

$G(2)(0)$
graph of the probability density function is constructed as illustrated in Figure 9. Using a similar approach to that for \(\text{SP}^{(1)} \), the cumulative distribution of the waiting time for the low priority customers can be obtained as shown in Figure 10. Using the results given in Table 2 the expected wait in queue for the type-2 units, \(\hat{E}[W_{q2}] \) is found to be 0.140059 hrs.

Some interesting observations can be made on the basis of the results obtained from \(\text{SP}^{(1)} \) and \(\text{SP}^{(2)} \). A higher value of \(\hat{E}[W_{q2}] \) was obtained as is expected since newly arriving or waiting type-2 units (low priority) are required to wait until all but one of any type-1 units in the system completes servicing, before they can start being serviced. Estimates of \(P_{0s} \) and \(P_{1s} \) by either system-point models are close together in value as expected since they both represent system probabilities for all unit-types (despite lack of steady-state). Also, estimates of the \(\text{Pr}(\text{zero wait}) \) for both unit-types are quite close together in value as might be expected since this probability is equal to \(P_{0s} + P_{1s} \) which is independent of the unit-type. The \(\text{Pr}(\text{type-1 unit wait zero}) = P_{0s} + P_{1s} \), since a newly arriving type-1 to the system will have to wait zero if the system is empty or if there is a single unit of either type in service when he arrives. Similarly, \(\text{Pr}(\text{type-2 unit waits zero}) = P_{0s} + P_{1s} \),
since a newly arriving type-2 unit to the system will have a zero wait if there are no units in service (empty system) or a single unit of either type in service.

Finally, it must be emphasized here that the estimated values of $E[W_{q_1}]$, $g^i(w)$, $G^i(w)$, P_0^S, and P_1^S are not "steady-state" values since the time duration of the sample path generation was limited to $T = 1000$ minutes. The next chapter will be concerned with establishing "steady-state" results for the system-point models.

5.2 Verification of the System-Point Priority M/M/2 Computer Programs

The intention of this section is to verify the system-point Monte Carlo computation computer programs written for the system under consideration. The approach taken is to adjust the model parameters so that it represents very closely a system with known analytical solution and compare this with the model results. Based on the literature review we undertake two tests in the verification process.

In the first instance, the model parameters are selected so that the SP(1) and the SP(2) models have to handle only a small proportion of type-2 customers (low
priority) and type-1 customers (high priority), respectively. The service-time distribution is made the same for both classes. Hence the models will operate almost as non-priority M/M/2 queueing systems for the respective customer-type. For such non-priority M/M/2 systems there are known analytic results.

Using this approach, the $SP^{(1)}$ was checked with the following parameters:

\[
\begin{align*}
\lambda_1 &= 15 \text{ units/hour} \\
\lambda_2 &= 0.01 \text{ units/hour} \\
\mu_1 &= 15 \text{ units/hour} \\
\mu_2 &= 15 \text{ units/hour}
\end{align*}
\]

and the $SP^{(2)}$ with

\[
\begin{align*}
\lambda_1 &= 0.01 \text{ units/hour} \\
\lambda_2 &= 12 \text{ units/hour} \\
\mu_1 &= 15 \text{ units/hour} \\
\mu_2 &= 15 \text{ units/hour}
\end{align*}
\]

Sample paths were generated over a time duration of $T = 1000$ minutes. Table 3 shows both the theoretical and estimated values for $SP^{(1)}$ and $SP^{(2)}$ of expected wait in queue, probability of an empty system and the probability of a single customer in the system of either type. The results given in Table 3 indicates that the $SP^{(1)}$ model produces an extremely accurate estimate of the average waiting time in queue and only slightly overestimates the probability of an empty system and the probability of a single customer in the system of either type.
type. The difference between $E(W_{q1})$ and \bar{W}_{q1} (within 0.05%) is almost negligible whilst the values of P_0^S and \hat{P}_1^S are close to \bar{P}_0^S and \bar{P}_1^S (within 2.56%).

As for the results produced by $SP^{(2)}$, we notice that the estimate of the average waiting time for type-2 customers differ from the theoretical by 5.49%. A possible explanation for this is the fact that $T = 1000$ minutes is too small a simulated time for the $SP^{(2)}$ process to attain "steady-state". On the other hand, the estimates of the probability of an empty system and the probability of a single unit in the system of either type are extremely accurate.

As a further means of checking the $SP^{(1)}$ and $SP^{(2)}$ modelling, we can make use of the well known equation for the pdf of the waiting time in the simple M/M/2 queue [Gross & Harris (1985)] by comparing it with the system-point estimated pdfs. Tables 4 and 5 shows a set of $t > 0$ values with the corresponding theoretical and $SP^{(i)}$ ($i = 1, 2$) estimated pdfs, respectively. Plots of the data are shown in Figures 11 and 12. Both plots indicate that the estimated pdfs lies closely on either sides of the theoretical values, which is expected since $\hat{E}(W_{q1})$ values are very close to the theoretical, \bar{W}_{q1}, discussed above.
Table 3: Theoretical Values and S-P Estimates for an Approximated Simple M/M/2 Queueing System with Parameters $\lambda_1=15$, $\lambda_2=0.01$, $\mu_1=\mu_2=15$ for Type-1 (SP(1)) and $\lambda_1=0.01$, $\lambda_2=12$, $\mu_1=\mu_2=15$ for Type-2 (SP(2)) (Unit of Time = 1 hour)

<table>
<thead>
<tr>
<th>Method of Analysis</th>
<th>Measure of Performance</th>
<th>Customer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type-1</td>
</tr>
<tr>
<td>Analytical*</td>
<td>\bar{W}_{qi} (hrs.)</td>
<td>0.022222</td>
</tr>
<tr>
<td>Eqs. (a.1.1)</td>
<td>P_0^S</td>
<td>0.333333</td>
</tr>
<tr>
<td>(a.1.2), (a.1.3)</td>
<td>P_1^S</td>
<td>0.333333</td>
</tr>
<tr>
<td>System-Point</td>
<td>$\hat{E}(W_{qi})$ (hrs.)</td>
<td>0.022233</td>
</tr>
<tr>
<td>Computation</td>
<td>\hat{P}_0^S</td>
<td>0.341658</td>
</tr>
<tr>
<td>T =1000 mins.</td>
<td>\hat{P}_1^S</td>
<td>0.341886</td>
</tr>
</tbody>
</table>

* The theoretical calculations are performed in Appendix A.
Table 4: Theoretical and $SP^{(1)}$ Estimates ($T = 1000$ min.) of PDF for a Simple M/M/2 Queue with Parameters $\lambda_1=15$, $\lambda_2=0.01$, $\mu_1=\mu_2=15$ (Unit of Time = 1 hour)

<table>
<thead>
<tr>
<th>t (min.)</th>
<th>Probability Density Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theoretical*</td>
</tr>
<tr>
<td>1</td>
<td>0.0649</td>
</tr>
<tr>
<td>2</td>
<td>0.0506</td>
</tr>
<tr>
<td>3</td>
<td>0.0394</td>
</tr>
<tr>
<td>4</td>
<td>0.0307</td>
</tr>
<tr>
<td>5</td>
<td>0.0239</td>
</tr>
<tr>
<td>6</td>
<td>0.0186</td>
</tr>
<tr>
<td>7</td>
<td>0.0145</td>
</tr>
<tr>
<td>8</td>
<td>0.0113</td>
</tr>
<tr>
<td>9</td>
<td>0.0088</td>
</tr>
<tr>
<td>10</td>
<td>0.0069</td>
</tr>
<tr>
<td>11</td>
<td>0.0053</td>
</tr>
<tr>
<td>12</td>
<td>0.0042</td>
</tr>
<tr>
<td>13</td>
<td>0.0032</td>
</tr>
<tr>
<td>14</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

* Values obtained using Eq. (a.1.4) in Appendix A.
Figure 11: Theoretical and $S^{(1)}$ Estimate for Simple M/M/2 Queue ($T=1000$ min.)
Table 5: Theoretical and $SP(2)$ Estimates ($T = 1000$ min.) of PDF for a Simple M/M/2 Queue with Parameters $\lambda_1=0.01$, $\lambda_2=12$, $\mu_1=\mu_2=15$ (Unit of Time = 1 hour)

<table>
<thead>
<tr>
<th>t (min.)</th>
<th>Probability Density Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theoretical*</td>
</tr>
<tr>
<td>1</td>
<td>0.0509</td>
</tr>
<tr>
<td>2</td>
<td>0.0377</td>
</tr>
<tr>
<td>3</td>
<td>0.0279</td>
</tr>
<tr>
<td>4</td>
<td>0.0207</td>
</tr>
<tr>
<td>5</td>
<td>0.0153</td>
</tr>
<tr>
<td>6</td>
<td>0.0114</td>
</tr>
<tr>
<td>7</td>
<td>0.0084</td>
</tr>
<tr>
<td>8</td>
<td>0.0062</td>
</tr>
<tr>
<td>9</td>
<td>0.0046</td>
</tr>
<tr>
<td>10</td>
<td>0.0034</td>
</tr>
<tr>
<td>11</td>
<td>0.0025</td>
</tr>
<tr>
<td>12</td>
<td>0.0019</td>
</tr>
<tr>
<td>13</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

* Values obtained using Eq. (a.1.4) in Appendix A.
Figure 12: Theoretical and $SP^{(2)}$ Estimate for Simple $M/M/2$ Queue (T=1000 min.)
In the second instance, the model parameters are selected so that the service rates for both classes are the same. The resultant model is a non-preemptive priority queueing system with the same service time distribution for either class. This queueing system was solved analytically by Cobham (1954) and Davis (1966).

Thus, (see Table 6) for the purpose of verification, both system-point models were run with the following parameters:

- \(\lambda_1 = 15 \) customers/hour
- \(\lambda_2 = 12 \) customers/hour
- \(\mu_1 = 20 \) customers/hour
- \(\mu_2 = 20 \) customers/hour

For the model parameters given above, the sample path generations were performed for \(T = 1000 \) minutes. Table 6 below illustrates the theoretical and system-point estimated values for \(SP(1) \) and \(SP(2) \) of expected wait in queue, probability of an empty system and the probability of a single unit of either type in the system. From the entries in Table 6, it is clearly obvious that the \(SP(1) \) and \(SP(2) \) models produce an accurate estimate of the average waiting time in queue, \(P_0^S \) and \(P_1^S \), respectively.

Table 7 present results for another set of model parameters in which the arrival rate of the type-2’s is twice that of the type-1’s. Similar conclusions can be made for the results in this table as were stated for Table 6.
Table 6: Theoretical Values and S-P Estimates for a Non-Preemptive Priority Queueing System with Parameters $\lambda_1=15$, $\lambda_2=12$, $\mu_1=\mu_2=20$ (Unit of Time = 1 hour).

<table>
<thead>
<tr>
<th>Method of Analysis</th>
<th>Measure of Performance</th>
<th>Customer type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type-1</td>
</tr>
<tr>
<td>Analytical*</td>
<td>\overline{W}_{qi} (hrs.)</td>
<td>0.021761</td>
</tr>
<tr>
<td>Eqs. (a.2.1),</td>
<td>P_0^S</td>
<td>0.194029</td>
</tr>
<tr>
<td>(a.1.1), (a.1.3)</td>
<td>P_1^S</td>
<td>0.261940</td>
</tr>
<tr>
<td>System-Point</td>
<td>$\hat{E}[W_{qi}]$ (hrs.)</td>
<td>0.022279</td>
</tr>
<tr>
<td>Computation</td>
<td>\hat{P}_0^S</td>
<td>0.189107</td>
</tr>
<tr>
<td>T=1000 mins.</td>
<td>\hat{P}_1^S</td>
<td>0.255319</td>
</tr>
</tbody>
</table>

* The theoretical calculations are performed in Appendix A.
Table 7: Theoretical Values and S-P Estimates for a Non-Preemptive Priority Queueing System with Parameters $\lambda_1=6$, $\lambda_2=12$, $\mu_1=\mu_2=24$ (Unit of Time = 1 hour).

<table>
<thead>
<tr>
<th>Method of Analysis</th>
<th>Measure of Performance</th>
<th>Customer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type-1</td>
</tr>
<tr>
<td>Analytical</td>
<td>\bar{W}_{qi} (hrs.)</td>
<td>0.004673</td>
</tr>
<tr>
<td></td>
<td>\bar{P}_0^S</td>
<td>0.454545</td>
</tr>
<tr>
<td></td>
<td>\bar{P}_1^S</td>
<td>0.340909</td>
</tr>
<tr>
<td>System-Point</td>
<td>$\hat{E}[W_{qi}]$ (hrs.)</td>
<td>0.004730</td>
</tr>
<tr>
<td>Computation</td>
<td>\hat{P}_0^S</td>
<td>0.449524</td>
</tr>
<tr>
<td>T=1000 mins.</td>
<td>\hat{P}_1^S</td>
<td>0.337143</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
This section attempted to verify the system-point computer programs written to generate sample paths of the stochastic processes designed to model the queueing system under study. Based on the two tests performed in this section it is obvious that the system-point computer programs produce accurate estimates of the measures of performance of interest. Since the estimates are very close to the analytical values this gives us some degree of confidence in the correctness of the computer programs and our system-point model definitions. In the next chapter the verified computer programs will be used to establish "steady-state" results for the queueing system which concerns us.
CHAPTER VI

SYSTEM-POINT MODEL RESULTS

The preceding chapter was concerned with illustrating the system-point Monte Carlo computation technique and verification of the computer programs written to generate sample paths for the stochastic processes. Our objective in this chapter is to provide "steady-state" results of the M/M/2 two-class non-preemptive priority system having different service-time distribution for each customer-type (the main model treated in this thesis). A check was performed to demonstrate that the system-point approach accurately models the priority queueing system under study. Since for such a system theoretical results are non-existent, to do this check we resort to a large-scale system simulation model to verify our results obtained using the system-point Monte Carlo computation approach.

6.1 Check on the System-Point Priority M/M/2 Results

As stated above, the verification involves the comparison of the system-point results with those obtained via a system simulation modelling approach. For this
purpose a large-scale discrete-event system simulation model was written to simulate the M/M/2 priority system with two classes of customers. A brief discussion of this modelling approach is provided in Appendix E. Average waiting time of each customer-type and the probability that a given server is idle, are the measures of performance analysed. Antithetic sampling was used as a variance reduction technique. Five independent replications were made, independence between runs being accomplished by using a different seed each time for the random number generator. For each replication, the simulation was also performed using its complementary random numbers. Thus, five pairs of simulation runs were performed, each pair being correlated. Since we are interested in long-run measures, the system simulation was run for an arbitrary long time of $T = 10000$ minutes using the hypothetical model parameters $\lambda_1 = 15, \lambda_2 = 12, \mu_1 = 20, \mu_2 = 15$ (unit of time = 1 hour).

6.1.1 Check on the Waiting Time Estimates

Table 8 below shows the mean value of the waiting time, its standard error and a 95% confidence interval of the mean waiting time for each customer-type. All calculations for the system simulation are performed in Appendix E. A difference of means test was conducted on the output of the
simulation and the conclusion is that type-1 and type-2 mean waiting times are significantly different at $\alpha = 0.05$. This difference in waiting time is expected because of the priority discipline under which the system operates. Further, with 95% confidence we can conclude that type-1 mean waiting time is smaller than type-2 mean waiting time, the difference is within a range of 0.075080 to 0.115999 hours.

Initially the system-point models were allowed to operate for $T = 5000$ minutes with the assumed model parameters. Estimates of the average waiting time values, $\hat{E}[W_q]$, $Pr(\text{an empty system})$, \hat{P}_0 and $Pr(\text{a single customer of either type in the system}) = \hat{P}_1$, generated by the system-point method for the priority system are given in the first row of Table 9. A comparison of row one with row three (which contains the system simulation estimates), reveals that the average waiting time values generated by the system-point method for both customer-type fall within the 95% confidence interval produced by the system simulation model. Thus the system-point Monte Carlo computation approach generates an accurate estimate for the virtual waiting time probability density function for both type-1 and type-2 units.
To further observe the behavior of the system-point models, the time duration was increased to \(T = 10000 \) minutes. In so doing, the system-point computer programs now handle a greater number of customers of either type. The second row of Table 9 provides the results for this case. It demonstrates that the average waiting time value generated by the system-point method for the type-1 units fall outside the 95% confidence interval of the system simulation model. However, there is only a 0.81% difference between the value of \(\hat{E}[W_q] \) and the upper 95% confidence interval point. With regards to the type-2 units, the average waiting time value generated by the system-point method falls within the 95% confidence interval generated by the system simulation.

From Table 9 we observe that there are no significant changes in the estimates produced by either \(\text{SP}^{(1)} \) or \(\text{SP}^{(2)} \) by increasing the time duration under which the system-point models operate. This suggest that the models are operating under "steady-state" conditions and consequently our estimates of average waiting times are "steady-state" values.
Table 8: System Simulation Results \((T = 10000 \text{ min.})\) with Model Parameters \(\lambda_1=15, \mu_2=12, \mu_2=20, \mu_2=15\)
(Unit of Time = hours).

<table>
<thead>
<tr>
<th>Customer Type</th>
<th>Type-1</th>
<th>Type-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Waiting Time (hrs.)</td>
<td>0.030127</td>
<td>0.125667</td>
</tr>
<tr>
<td>Standard Error of the Mean Waiting Time (hrs.)</td>
<td>0.000895</td>
<td>0.007332</td>
</tr>
<tr>
<td>Confidence Interval for Mean Waiting Time (hrs.) (\alpha = 0.05)</td>
<td>([0.027643, 0.032611])</td>
<td>([0.105314, 0.146019])</td>
</tr>
<tr>
<td>Confidence Interval of the Difference Between Type-1 & Type-2 Waiting Times (hrs.) (\alpha = 0.05)</td>
<td>([0.075080, 0.115999])</td>
<td></td>
</tr>
<tr>
<td>Difference of Means Test (\alpha = 0.05)</td>
<td>table (t = 2.770)</td>
<td>test (t = 12.9351)</td>
</tr>
</tbody>
</table>
Table 9: M/M/2, 2-Class Priority Model Results.
(Model Parameters are $\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$, (Unit of Time = 1 hour)).

<table>
<thead>
<tr>
<th>Method of Analysis</th>
<th>Measure of Performance</th>
<th>Customer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type-1</td>
</tr>
<tr>
<td>System-Point Computation</td>
<td>$\hat{E}[W_q]_{ij}$ hrs.</td>
<td>0.032370</td>
</tr>
<tr>
<td>$T = 5000$ min.</td>
<td>P_0^S</td>
<td>0.129595</td>
</tr>
<tr>
<td></td>
<td>P_1^S</td>
<td>0.204176</td>
</tr>
<tr>
<td>System-Point Computation</td>
<td>$\hat{E}[W_q]_{ij}$ hrs.</td>
<td>0.032876</td>
</tr>
<tr>
<td>$T = 10000$ min.</td>
<td>P_0^S</td>
<td>0.126477</td>
</tr>
<tr>
<td></td>
<td>P_1^S</td>
<td>0.197967</td>
</tr>
<tr>
<td>System Simulation</td>
<td>95% Confidence Interval for Average Waiting (hrs.)</td>
<td>[0.027643, 0.032611]</td>
</tr>
<tr>
<td>$T = 10000$ min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95% Confidence Interval for $Pr(\text{any server idle})$</td>
<td>[0.2331, 0.2462]</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
6.2 Estimates for the Pr(any server idle)

Whilst comparing the system-point estimates obtained for Pr(0 units in the system) to that obtained via another method would be interesting, the unavailability of such a result forces us to resort to the following measure. For the two-server queueing system considered, a given server is idle if there are no customers in the system or if there is one customer (of either type) in the system and that customer is being served by the other server. That is

\[\Pr(\text{any server idle}) = P_0^S + \frac{1}{2} P_1^S \]

From the system simulation, a 95% confidence interval for \(\Pr(\text{any server idle}) \) lies in the range 0.2331 to 0.2462. Estimates of \(P_0^S \) and \(P_1^S \) generated by the system-point method for both SP(1) and SP(2) are given in Table 9 for the two simulated time periods viz., \(T = 5000 \) and \(T = 10000 \) minutes.

Consider the case when \(T = 5000 \) minutes:
For SP(1) an estimate of \(\Pr(\text{any server idle}) = 0.23168 \) and for SP(2) it is 0.24873. Whilst both estimates fall outside the 95% confidence interval generated by the system simulation, they are quite close to each other (as they should, since they are both probability estimates of the same event). Also it is worth noting that one system simulation replication produced a value lower than while two replications produced values greater than those.
generated by $\text{SP}^{(1)}$ and $\text{SP}^{(2)}$, respectively.

Now consider the case when $T = 10000$ minutes:

In this case $\text{SP}^{(1)}$ estimates the $\Pr(\text{any server idle})$ as 0.22546 while $\text{SP}^{(2)}$ produces a value of 0.24404. Here a similar type of result is obtained for $\text{SP}^{(1)}$ as for $T = 5000$ min. It is interesting to note however that $\text{SP}^{(2)}$ estimate of $\Pr(\text{any server idle})$ falls within the 95% confidence interval given by the system simulation.
CHAPTER VII

GENERALIZATIONS AND SUMMARY

In this chapter we discuss extensions of the system-point model for the two-server two-class priority system analysed in the previous chapters. It is not uncommon for a priority system of the type considered in this thesis to have more than two servers and/or more than two customer-types. Thus it will be of significance if some insight can be provided as to how modelling these more complex cases can be accomplished. In Section 7.1 we present an approximation for the waiting time distribution of customers of any priority level in an M/M/2 queue with an arbitrary number of priority levels. In 7.2 we model an M/M/3 queue with two customer-types. The final section presents a summary of the work undertaken in this thesis and results obtained.

7.1 Approximation of the CDF in an M/M/2 N-Class System

Use can be made of the M/M/2 2-class priority model analysed in this thesis to obtain both upper and lower bounds for the cumulative distribution function of the
virtual waiting time of type-\(k\) units for an M/M/2 \(N>2\) class model. Suppose there are \(N\) Poisson arrival rates \(\lambda^{(1)}, \ldots, \lambda^{(k)}, \ldots, \lambda^{(N)}\) and \(N\) exponential service rates \(\mu^{(1)}, \ldots, \mu^{(k)}, \ldots, \mu^{(N)}\). To obtain an upper bound for the virtual waiting time cumulative distribution function of type-\(k\) units consider the above system as a "two-class" priority system as follows.

Let type-1 to type-\(k\) comprise high priority customers. The arrival rate of the high priority customers is then the sum of the type-1 to type-\(k\) arrival rates, that is,

\[
\lambda^{(1)} = \lambda^{(1)} + \ldots + \lambda^{(k)} \tag{7.1.1}
\]

The expected service rate of the high priority units is taken to be the maximum value of type-1 to type-\(k\) service rates, that is,

\[
\mu^{(1)} = \max\{\mu^{(1)}, \ldots, \mu^{(k)}\} \tag{7.1.2}
\]

Further, let type-(\(k+1\)) to type-\(N\) comprise the low priority customers. Thus,

\[
\lambda^{(2)} = \lambda^{(k+1)} + \ldots + \lambda^{(N)} \tag{7.1.3}
\]

\[
\mu^{(2)} = \max\{\mu^{(k+1)}, \ldots, \mu^{(N)}\} \tag{7.1.4}
\]

Based on this approximation the type-\(k\) waiting time will be stochastically less than the true type-\(k\) waiting time in the actual model since type-\(k\)’s will now wait less. Hence the approximate cumulative distribution function of the virtual waiting time will lie above the true distribution function as depicted in Figure 13.

To derive a lower bound for the cumulative distribution
Figure 13: Bounds on Type-k CDF for an N-Class Priority System

$G(W_{q_k})$

Waiting Time
Figure 14: Bounds on Type-2 CDF for an M/M/2 3-Class Priority Queue.

\[\lambda_1 = 4, \lambda_2 = 5, \lambda_3 = 3, \mu_1 = 18, \mu_2 = 15, \mu_3 = 20. \]
function of the virtual waiting time we proceed in the following manner. Let type-1 to type-(k-1) comprise the high priority units and type-k to type-N the low priority units. Also, let

\[\mu(1) = \min(\mu(1), \ldots, \mu(k-1)) \]
\[\mu(2) = \min(\mu(k), \ldots, \mu(N)) \]

(7.1.5)
(7.1.6)

In this case the type-k waiting time will be stochastically larger than the type-k waiting time in the actual model since type-k’s will wait longer. Thus the approximate cumulative distribution function of the virtual waiting time will lie below the true distribution function as shown in Figure 13.

The above approach gives us a procedure for finding bounds on the distribution function for any unit-type in an M/M/2 queue with any number of priority levels using the S-P models formulated in Chapter 4. An actual case is presented in Figure 14 for N=3 and k=2. It can provide useful information for one interested in a good (not necessary exact) idea of the distribution for a given unit-type. The possibility of obtaining sharper bounds will be investigated in future work.

7.2 M/M/3 Priority System with Two Customer-Types

In this section an outline is given of the model
definitions necessary for analysing a priority system with three independent servers and two classes of customers via a system-point approach. In Sections 7.2.1 and 7.2.2 we model the type-1 and type-2 virtual waiting time processes, respectively.

7.2.1 System-Point Process for Type-1 Units

Define the system-point process for the type-1 units by the stochastic process

\[\left\{ \left(W(D(t)), M(1)(t) \right), t \geq 0 \right\} \]

where

- \(W(1)(t) \) is the virtual wait of a type-1 unit arriving at time \(t \).
- \(M(1)(t) \) is the system configuration at time \(t \) defined by the vector \(M(1)(t) = (n_s, n_w; k) \), where
 - \(n_s \) = number of type-2's in service at time \(t \), \(n_s = 0,1,2,3 \).
 - \(n_w \) = number of type-2's waiting at time \(t \), \(n_w = 0,1,2,\ldots \).
 - \(k = (k_1, k_2) \) where,
 - \(k_1 \) = number of other servers with type-1 in them at service starting epoch of the time-\(t \) type-1 arrival \(k_1 = 0,1,2 \).
 - \(k_2 \) = number of other servers with type-2 in them at service starting epoch of the time-\(t \) type-1 arrival \(k_2 = 0,1,2 \).

Thus \(0 \leq k_1 + k_2 \leq 2 \). If \(k_1 + k_2 = 0 \), then a newly arriving
type-1 enters an empty system. Notice that this is similar to the $\text{SP}^{(1)}$ process for two servers, except that k is now a vector. Clearly this is generalizable to any finite number of servers.

7.2.2 System-Point Process for Type-2 Units

Define the system-point process by

$$\{(W^{(2)}(t); M^{(2)}(t)), t \geq 0\}$$

where

- $W^{(2)}(t)$ is the virtual wait of a type-2 unit arriving at time t.
- $M^{(2)}(t)$ is the system configuration at time t defined by the vector $M^{(2)}(t) = k$. Vector $k = (k_1, k_2)$, represents the number of each unit-type occupying the other two servers respectively, when a time-t type-2 arrival enters service at $t + W^{(2)}(t)$.

Possible configurations k for $\text{SP}^{(2)}$ include:

- $(0,0)$ — arrives to an empty system.
- $(1,0)$ — starts service with a type-1 in service.
- $(2,0)$ — starts service with two type-1's in service.
- $(1,1)$ — starts service with types 1 and 2 in service.
- $(0,1)$ — starts service with a type-2 in service.
- $(0,2)$ — starts service with two type-2's in service.
The \(\text{SP}^{(1)} \) and \(\text{SP}^{(2)} \) sample paths can be constructed in a similar manner as illustrated for the M/M/2 2-class priority system discussed in Chapter 4. By increasing the number of servers from two to three while keeping the number of unit-types constant at two, the size of the system-point model definitions increases. For example, to model the virtual waiting time of the type-2 units would require three "lines" and three "pages". Despite the increase in model size, the fundamental structure for the system-point processes allows this modelling approach to remain a viable option.

7.3 Summary

In this thesis the virtual waiting time of each customer-type in an M/M/2 non-preemptive priority queueing system with 2-classes of customers was computed. To do so a system-point model was developed to describe the virtual waiting time process for the respective unit-type. Examples of typical sample paths for the respective system-point processes illustrate the main ideas of the modelling approach adopted in this study. By adopting a system-point Monte Carlo computation approach, the virtual waiting time probability density function, cumulative distribution function and expected waiting time for each customer-type were derived. Also computed were some important system probabilities. Various checks were performed to ensure correct modelling of
the system; these checks generally proved to be satisfactory. Computational results obtained via the system-point models were validated by comparing them with a large-scale system simulation developed for this purpose. The estimates were found to be quite close in value to the system simulation results.

The modelling approach presented in this thesis is useful since it allows for the computation of the entire probability density function of the waiting time for each customer-type. This is a necessary input to the solution of optimization problems where the cost of waiting is non-linear. The model developed here can be easily extended to include cases where the service time depends on waiting time and/or the servers are heterogeneous. Other areas for future research using the system-point Monte Carlo computation approach includes:

a) a k-class preemptive priority M/G/1 and M/M/c queueing system,

b) priority queueing systems where priorities are state dependent, for example, selection of a unit-type for service depends on the number of units of that type waiting.
REFERENCES

- 97 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SAMPLE CALCULATIONS BASED ON ANALYTICAL MODELS
This Appendix provides sample calculations based on known analytical results that are used to verify the system-point computer programs written.

A.1 M/M/2 Non-Priority Queue

(Refers to Table 3, Table 4 and Table 5)

In this case the system-point model parameters are adjusted so as to represent an M/M/2 non-priority queueing system for either class of customers. For such a queueing system it is well known that the probability of an empty system is

\[P_0 = \left[\sum_{n=0}^{c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu} \right)^n + \frac{1}{c!} \left(\frac{\lambda}{\mu} \right)^c \left(\frac{c\mu}{c\mu-\lambda} \right) \right]^{-1} \]

(a.1.1)

\[w_q = \frac{(\lambda/\mu) c \mu}{(c-1)! (c\mu-\lambda)^2} P_0 \]

(a.1.2)

\[P_1 = \frac{(\lambda/\mu)}{P_0} \]

(a.1.3)

\[f(w) = \frac{(\lambda/\mu) c \mu e^{-(c\mu-\lambda)w}}{(c-1)!} P_0 \quad (w > 0) \]

(a.1.4)

... Gross & Harris (1985)

A.1.1 Analytic Results to check on SP(1) Computer Program

Parameters used:
\(\lambda_1 = 15 \text{ units/hour} \)
\(\lambda_2 = 0.01 \text{ units/hour} \)
\(\mu_1 = 15 \text{ units/hour} \)
\(\mu_2 = 15 \text{ units/hour} \)

The theoretical measures of performance are:

\[
\bar{P}_0^S = \left[\frac{1}{0!} \left(\frac{15}{15}\right)^0 + \frac{1}{1!} \left(\frac{15}{15}\right)^1 + \frac{1}{2!} \left(\frac{15}{15}\right)^2 \left(\frac{30}{15}\right) \right]^{-1}
= 1/3
= 0.33333
\]

\(\bar{P}_1^S = \left(\frac{15}{15}\right) \left(\frac{1}{3}\right) \)
\(= 0.33333 \)

\[
\bar{W}_{q1} = \frac{\left(\frac{15}{15}\right)^2 \left(\frac{15}{15}\right)}{(2-1)! \left(30-15\right)^2} \left(\frac{1}{3}\right)
= 0.022222 \text{ hrs.}
\]

A.1.2. Analytic Results to check on SP\(^{2}\) Computer Program

Parameters used:

\(\lambda_1 = 0.01 \text{ units/hour} \)
\(\lambda_2 = 12 \text{ units/hour} \)
\(\mu_1 = 15 \text{ units/hour} \)
\(\mu_2 = 15 \text{ units/hour} \)

The theoretical measures of performance are:

\[
\bar{P}_0^S = \left[\frac{1}{0!} \left(\frac{12}{15}\right)^0 + \frac{1}{1!} \left(\frac{12}{15}\right)^1 + \frac{1}{2!} \left(\frac{15}{12}\right)^2 \left(\frac{30}{18}\right) \right]^{-1}
= 0.428571
\]
\[P_{1s} = \frac{12}{15} \left(\frac{1}{2.3333} \right) \]
\[= 0.342857 \]

\[W_{q2} = \frac{15(12/15)^2}{(2-1)!(30-12)^2} (0.42857) \]
\[= 0.012698 \text{ hrs.} \]

A.2 M/M/2 Priority Queue

(Refers to Table 6, Table 7)

In this approach the system point model parameters are adjusted so that the service rate for either class is the same. For this non-preemptive priority queueing system with the same service time distribution for either class Cobham (1954) has derived the expected waiting time in queue for each class as follows:

The expected waiting time of a unit of priority \(p \) is given by:

\[W_p = \frac{E[T_0]}{1-(1/\mu_1) \sum k=1 \lambda_k \left[1-(1/\mu_1) \sum \lambda_k \right]} \]

where,

\[E[T_0] = \frac{(c \rho)^{c/c \mu}}{c!(1-\rho) \left[c \sum_{j=0}^{c-1} (c \rho)^{j/j!} + (c \rho)^{c/(c!(1-\rho))} \right]} \]

\[\rho = \lambda/c \mu \]

\(p \) = priority of unit (smaller the integer, higher the priority)
\(\lambda_k = \text{poisson arrival rate of } p\-\text{th priority unit} \)

\(\mu = \text{exponential service rate} \)

\(c = \text{number of service channels} \)

\(\lambda = \lambda_1 + \lambda_2 \)

Equation 2.1 for \(\bar{W}_p \) is valid when \((1/c\mu) \sum_{k=1}^{p} \lambda_k < 1 \).

To compute \(P_0^S = \Pr(\text{an empty system}) \) and \(P_1^S = \Pr(\text{a single unit of either type in the system}) \), we make use of equations a.1.1 and a.1.3 respectively from Section A.1

Using this approach (Table 6) the system-point models were run with the following parameters:

- \(\lambda_1 = 15 \text{ customers/hour} \)
- \(\lambda_2 = 12 \text{ customers/hour} \)
- \(\mu_1 = 20 \text{ customers/hour} \)
- \(\mu_2 = 20 \text{ customers/hour} \)

Hence the theoretical results of interest are:

\[
\bar{w}_{q1} = \frac{E[T_0]}{[1-0][1-15/40]}
\]

where,

\[
E[T_0] = \frac{[2(27/40)]^{2/40}}{2(1-27/40)[1 + 2(27/40) + 2(27/40)/2(1-27/40)]}
\]

\(= 0.0136007 \)

\[
\bar{w}_{q1} = (0.0136007/0.625)
\]

\(= 0.0217611 \text{ hrs.} \)
\[\bar{w}_{q2} = \frac{E[T_0]}{[1-15/40] [1-27/40]} \]

\[= \frac{0.0136007}{0.2030312} \]

\[= 0.0669575 \text{ hrs.} \]

\[\bar{P}_0^S = \left[1 + 2(0.675) + \frac{(2*0.675)^2}{2(1-0.675)} \right]^{-1} \]

\[= 0.1940298 \]

\[\bar{P}_1^S = \frac{27}{20} \bar{P}_0^S \]

\[= 0.2619402. \]
APPENDIX B

\(\text{SP}^{(1)} \) FLOWCHART AND

COMPUTER PROGRAM LISTING
Figure B.1: Flowchart for SP\(^{(1)}\) Sample Path Generation

Start

- Read and Initialize Parameters

Generate arrival and its type

- is it a type-1?
 - yes: Generate a type-1 departure epoch on page (0,0;1)
 - no: Generate a type-2 departure epoch on page (1,0;2)

Generate next arrival and its type

- Is arrival a type-1?
 - yes: Is arrival epoch < departure epoch?
 - yes: Generate jump of size \(\exp(\mu_1+\mu_2)\)
 - no: System becomes empty, line (0,0;0)
 - no: Is arrival epoch < departure epoch?
 - yes: Generate jump of size \(\exp(2\mu_1)\) on page (0,0;1)
 - no: System becomes empty, line (0,0;0)

System becomes empty, line (0,0;0)
Figure B.1 (continued)

- Generate next arrival and its type

- Is arrival a type-1?
 - Is arrival epoch < departure epoch?
 - yes: Generate jump of size \(\exp(\mu_1 + \mu_2) \)
 - no: System becomes empty line \((0,0;0)\)
 - no: Is arrival epoch < departure epoch?
 - yes: Generate jump of size \(\exp(2\mu_2) \)
 - no: System becomes empty line \((0,0;0)\)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Which customer type completes servicing first?

- type-2
- type-1

Jump is to page (1,0;2)

Generate next arrival and type

Is arrival epoch < departure epoch?

- no
- yes type-1

Generate an \(\exp(U_1+U_2)\) jump

Jump to page (1,n;2) at the same ht.

Generate an \(\exp(2U_2)\) jump on page (2,n;2)

Is there any waiting type-2's?

- no
- yes

Jump to page (1,0;1)

Generate next arrival and type

G

E

D

F
Figure B.1 (continued)

Is arrival epoch < departure epoch?

Type-1?

Generate an \(\exp(2\mu_1) \) jump on page \((0,n;1)\)

Generate an \(\exp(\mu_1+\mu_2) \) jump

Is there waiting type-2's?

Generate an \(\exp(\mu_1+\mu_2) \) jump

Jump to page \((1,n;1)\) at the same ht.

System becomes empty, \((0,0;0)\)

Generate a type-1 departure epoch

Is the previous arrival epoch < departure epoch?

Type-1?

Generate an \(\exp(\mu_1+\mu_2) \) jump

Generate an \(\exp(2\mu_1) \) jump

Generate an \(\exp(2\mu_1) \) jump

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
THE FOLLOWING ARE THE MAJOR NOTATIONS TO BE USED:

- \(\Lambda_{1} \) = ARRIVAL RATE OF TYPE-1 (1=1,2) CUSTOMERS.
- \(\mu_{1} \) = SERVICE RATE OF TYPE-1 (1=1,2) CUSTOMERS.
- \(P_{1} \) = PROBABILITY THAT A TYPE-1 ARRIVES BEFORE A TYPE-2.
- \(D_{1} \) = PROBABILITY THAT A TYPE-1 DEPARTS BEFORE A TYPE-2.
- \(CL\) = LENGTH OF SIMULATION RUN (MINS.)
- \(AT \) = INTERARRIVAL TIME OF A CUSTOMER.
- \(SEED \) = INITIAL VALUE FOR RANDOM NUMBER GENERATOR.
- \(YFL \) = UNIFORMLY DISTRIBUTED RANDOM NUMBER BETWEEN 0-1.
- \(P \) = ARRIVAL EPOCHS OF CUSTOMERS.
- \(Z \) = DEPARTURE POINTS OF CUSTOMERS.
- \(TAIIS \) = VARIABLE TO KEEP TRACK OF SIMULATED TIME TO DATE.
- \(TYP \) = INDICATE CUSTOMER TYPE.
- \(NPAG \) = # OF TYPE-2 CUSTOMERS WAITING IN QUEUE.
- \(NPKK(W) \) = # OF PEAKS ABOVE LEVEL W.
- \(NTRR(W) \) = # OF TROUGHS ABOVE LEVEL W.
- \(PKK(W) \) = ASSIGNED HEIGHT OF LEVEL W TO CHECK & RECORD PEAK HT.
- \(TRR(W) \) = ASSIGNED HEIGHT OF LEVEL W TO CHECK & RECORD TROUGH HT.
- \(DIFF(W) \) = # OF PEAKS - # OF TROUGHS ABOVE LEVEL W.
- \(DWX(W) \) = DOWN-CROSSING RATE OF LEVEL W = DIFF(W)/CL\.
- \(IMPK \) = # OF LEVEL ZERO HITS.
- \(NT \) = # OF SYSTEM-POINT TRANSITIONS.

DECLARATION AND INITIALIZATION OF VARIABLES.

```
INTEGER FLAG, SEED, NPKK(1000), NTRR(1000), DIFF(1000), TYP
REAL PKK(1000), TRR(1000), SI(1000), LAMDA1, LAMDA2
REAL DX(1000), CLOCK, DJ(1000), TT(1000)
READ LAMDA1, LAMDA2, AMU1, AMU2, CLOCK, SEED, W, NN
I=SEED
TAIIS=IMPK1=IMPK2=IMPK3=IMPK4=NPAG=HTRR=NT1=NT2=0.
PROBT=LANH(1)/(LAMDA1+LAMDA2)
PRODEP=AMUI/(AMUI+AMU2)
DO 5 J=1,1000
```
PKK(J)=(J-1)*W
NPKK(J)=0
TRR(J)=(J-1)*W
NTRR(J)=0
DIFF(J)=0
DWX(J)=0
5 CONTINUE
C
C *** GENERATE AN ARRIVAL, CHECK FOR CUSTOMER TYPE AND GENERATE
C *** ITS SERVICE TIME.
C
EXECUTE RANDOM
AT=TAXIS + (-1./(LAMDA1+LAMDA2)) ALOG(YFL)
TAXIS=AT
EXECUTE RANDOM
IF(YFL.LE.PROBT1) THEN
 NT1=NT1+1
 EXECUTE RANDOM
 Z=TAXIS+(-1./AMU1)*ALOG(YFL)
ELSE
 NT2=NT2+1
 EXECUTE RANDOM
 Z=TAXIS+(-1./AMU2)*ALOG(YFL)
GO TO 100
ENDIF
C
C *** GENERATE AN ARRIVAL WITH A SINGLE TYPE-1 CURRENTLY IN SERVICE
C *** AND CHECK WHETHER OR NOT A JUMP OCCURS.
C
10 EXECUTE ARRIVAL
IF(P.GT.CLOCK) GO TO 99
IF(TYP.EQ.1.AND.Z.GE.P) THEN
 HTRR=0.
 EXECUTE JUMP11
 FLAG=1
ELSEIF(TYP.EQ.1.AND.Z.LT.P) THEN
 NT1=NT1+1
 EXECUTE OLEV1
 GO TO 10
ELSEIF(TYP.EQ.2.AND.Z.GE.P) THEN
 HTRR=0.
 EXECUTE JUMP12
 FLAG=2
ELSEIF(TYP.EQ.2.AND.Z.LT.P) THEN
 NT2=NT2+1
 EXECUTE OLEV2
 GO TO 100
ENDIF
GO TO 200
C
C *** GENERATE AN ARRIVAL WITH A TYPE-2 CURRENTLY IN SERVICE AND CHECK
C *** WHETHER OR NOT A JUMP OCCURS.

C 100 EXECUTE ARRIVAL
 IF(P.GT.CLOCK) GO TO 99
 IF(TYP.EQ.1.AND.Z.GE.P) THEN
 HTRR=0.
 EXECUTE JUMP12
 FLAG=2
 ELSEIF(TYP.EQ.1.AND.Z.LT.P) THEN
 NT1=NT1+1
 EXECUTE OLEV1
 GO TO 10
 ELSEIF(TYP.EQ.2.AND.Z.GE.P) THEN
 HTRR=0.
 EXECUTE JUMP22
 FLAG=3
 ELSEIF(TYP.EQ.2.AND.Z.LT.P) THEN
 NT2=NT2+1
 EXECUTE OLEV2
 GO TO 100
ENDIF

C *** GENERATE AN ARRIVAL WHEN BOTH SERVERS ARE BUSY.

C 200 EXECUTE ARRIVAL

C *** CHECK FOR END OF SIMULATION CONDITION.

C IF(P.GT.CLOCK) GO TO 99

C *** IF A TYPE-1 ARRIVES DURING SERVICING OF PREVIOUS TYPE-1'S

C IF(TYP.EQ.1.AND.Z.GE.P.AND.FLAG.EQ.1) THEN
 HTRR=Z-P
 EXECUTE THROUGH
 EXECUTE JUMP11
 FLAG=1
 GO TO 200

C *** IF A TYPE-1 ARRIVES AFTER SERVICING OF PREVIOUS TYPE-1'S.

C ELSEIF(TYP.EQ.1.AND.Z.LT.P.AND.FLAG.EQ.1) THEN
 EXECUTE CHECK1
 IF(IFLAG.EQ.1) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 210
 210 EXECUTE FCHECK
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.1) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 210
 IF(IFLAG.EQ.5) GO TO 220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
220 EXECUTE DOUBLE
 IF(IFLAG.EQ.6. OR .IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.5) GO TO 220
 IF(IFLAG.EQ.2) GO TO 10

C
C *** IF A TYPE-2 ARRIVES BEFORE SERVICE COMPLETION OF PREVIOUS TYPE-1.
C
ELSEIF(TYP.EQ.2. AND .GE. P. AND .FLAG.EQ.1) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 FLAG=1
 GO TO 200

C
C *** IF A TYPE-2 ARRIVES AFTER SERVICING OF PREVIOUS TYPE-1'S.
C
ELSEIF(TYP.EQ.2. AND .LT. P. AND .FLAG.EQ.1) THEN
 EXECUTE CHECK3
 IF(IFLAG.EQ.7) GO TO 2100
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.8) GO TO 100

C
C *** IF A TYPE-1 ARRIVES DURING THE SERVICING OF A TYPE-1 AND A TYPE-2
C
ELSEIF(TYP.EQ.1. AND .GE. P. AND .FLAG.EQ.2) THEN
 HTRR=I-P
 EXECUTE TROUGH
 EXECUTE RANDOM
 IF(YF.LT.PREDP) THEN
 EXECUTE JUMP12
 FLAG=2
 GO TO 200
 ELSE
 EXECUTE JUMP11
 FLAG=1
 GO TO 200
 ENDIF

C
C *** IF A TYPE-1 ARRIVES AFTER THE SERVICE COMPLETION OF EITHER A
C *** TYPE-1 OR A TYPE-2.
C
ELSEIF(TYP.EQ.1. AND .LT. P. AND .FLAG.EQ.2) THEN
 EXECUTE RANDOM
 IF(YF.LT.PREDP) THEN
 FLAG=13
 EXECUTE CHECK2
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.5) GO TO 260
 EXECUTE DOUBLE
 IF(IFLAG.EQ.6. OR .IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.5) GO TO 260
ELSE
 FLAG=12
 EXECUTE CHECK1
 IF(IFLAG.EQ.1) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 270
 EXECUTE FCHECK
 IF(IFLAG.EQ.1.OR.IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 270
 IF(IFLAG.EQ.5) GO TO 280
270 EXECUTE CHECK
 IF(IFLAG.EQ.1) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 270
 IF(IFLAG.EQ.4) GO TO 310
ENDIF
C
C *** IF A TYPE-2 ARRIVES DURING SERVICING OF A TYPE-1 AND A TYPE-2.
C
ELSEIF(TYP.EQ.2.AND.Z.GE.P.AND.IFLAG.EQ.2) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 FLAG=2
 GO TO 200
C
C *** IF NEXT TYPE-2 ARRIVAL OCCURS AFTER SERVICE COMPLETION OF EITHER
C *** A TYPE-1 OR A TYPE-2 JOINTLY IN SERVICE.
C
ELSEIF(TYP.EQ.2.AND.Z.LT.P.AND.IFLAG.EQ.2) THEN
 EXECUTE RANDOM
 IF(YFLE.PROEP) THEN
 FLAG=13
 EXECUTE CHECK4
 IF(IFLAG.EQ.9) GO TO 290
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.10) GO TO 100
 290 EXECUTE CHECK9
 IF(IFLAG.EQ.6) GO TO 99
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 200
 IF(IFLAG.EQ.5) GO TO 300
 IF(IFLAG.EQ.9) GO TO 290
 IF(IFLAG.EQ.10) GO TO 100
 300 EXECUTE DOUBLE
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
 IF(IFLAG.EQ.5) GO TO 300
 IF(IFLAG.EQ.2) GO TO 10
 ELSE
 FLAG=12
 EXECUTE CHECK3
IF(IFLAG.EQ.7) GO TO 2300
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.8) GO TO 100
ENDIF

C *** NEXT TYPE-1 ARRIVAL OCCURS DURING TWO TYPE-2'S SERVICING.
C ELSEIF(TYPE.EQ.1.AND.Z.GE.P.AND.FLAG.EQ.3) THEN
 HTRR=Z-P
 EXECUTE THROUGH
 EXECUTE JUMP12
 FLAG=2
 GO TO 200
C *** NEXT TYPE-1 ARRIVAL OCCURS AFTER A TYPE-2 COMPLETES SERVICE AND
C WHOSE NEIGHBOR WAS A TYPE-2.
C ELSEIF(TYPE.EQ.1.AND.Z.LT.P.AND.FLAG.EQ.3) THEN
 FLAG=14
 EXECUTE CHECK2
 IF(IFLAG.EQ.3) GO TO 400
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 400 EXECUTE DOUBLE
 IF(IFLAG.EQ.4 OR IFLAG.EQ.6) GO TO 200
 IF(IFLAG.EQ.5) GO TO 400
 IF(IFLAG.EQ.2) GO TO 10
C *** IF A TYPE-2 ARRIVAL OCCURS DURING TWO TYPE-2'S SERVICING.
C ELSEIF(TYPE.EQ.2.AND.Z.GE.P.AND.FLAG.EQ.3) THEN
 NPAGE=NPAGE+1
 TAINS=P
 FLAG=3
 GO TO 200
C *** IF A TYPE-2 ARRIVAL OCCURS AFTER A TYPE-2 COMPLETES SERVICE AND
C WHOSE NEIGHBOR WAS A TYPE-2.
C ELSEIF(TYPE.EQ.2.AND.Z.LT.P.AND.FLAG.EQ.3) THEN
 FLAG=14
 EXECUTE CHECK4
 IF(IFLAG.EQ.9) GO TO 410
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.10) GO TO 100
 410 EXECUTE CHECK9
 IF(IFLAG.EQ.6) GO TO 99
 IF(IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 420
 IF(IFLAG.EQ.9) GO TO 410
IF(IFLAG.EQ.10) GO TO 100
420 EXECUTE DOUBLE
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.5) GO TO 420
ENDIF
C
C *** THIS SECTION OF THE PROGRAM SIMULATE THE SAMPLE PATH WHEN A
C *** TYPE-2 STARTS SERVICE AT THE END OF A TYPE-1 BUSY PERIOD
C *** WITH ITS NEIGHBOR BEING A TYPE-1.
C
2300 IF(Z.GE.P) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 EXECUTE ARRIVAL
 IF(P.GT.CLOCK) GO TO 99
 IF(Z.EQ.P.AND.TYP.EQ.1) THEN
 EXECUTE CHECKS
 IF(IFLAG.EQ.4) GO TO 200
 ELSEIF(Z.LT.P.AND.TYP.EQ.1) THEN
 EXECUTE CHECK6
 IF(IFLAG.EQ.1.OR.IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 240
 IF(IFLAG.EQ.5) GO TO 235
 235 EXECUTE DOUBLE
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.5) GO TO 235
 240 EXECUTE FCHECK
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.1) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 240
 IF(IFLAG.EQ.5) GO TO 235
 ELSEIF(Z.GE.P.AND.TYP.EQ.2) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 EXECUTE CHECK7
 IF(FLAG.GE.5) GO TO 99
 IF(IFLAG.EQ.1.OR.IFLAG.EQ.4) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.3) GO TO 2600
 IF(IFLAG.EQ.5) GO TO 2550
 IF(IFLAG.EQ.7) GO TO 2300
 IF(IFLAG.EQ.8.OR.IFLAG.EQ.10) GO TO 100
 IF(IFLAG.EQ.9) GO TO 2550
 2550 EXECUTE DOUBLE
 IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
 IF(IFLAG.EQ.2) GO TO 10
 IF(IFLAG.EQ.5) GO TO 2550
 2500 EXECUTE FCHECK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
IF(IFLAG.EQ.4.OR.IFLAG.EQ.1) GO TO 200
IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.3) GO TO 2600
IF(IFLAG.EQ.5) GO TO 2550

2650 EXECUTE CHECK9
IF(IFLAG.EQ.6) GO TO 99
IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.5) GO TO 2550
IF(IFLAG.EQ.9) GO TO 2650
IF(IFLAG.EQ.10) GO TO 100
ELSEIF(Z.LT.P.AND.TYP.EQ.2) THEN
EXECUTE CHECK8
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.7) GO TO 2300
IF(IFLAG.EQ.8.OR.IFLAG.EQ.10) GO TO 100
IF(IFLAG.EQ.9) GO TO 250

250 EXECUTE CHECK9
IF(IFLAG.EQ.6) GO TO 99
IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.5) GO TO 255
IF(IFLAG.EQ.9) GO TO 250
IF(IFLAG.EQ.10) GO TO 100

255 EXECUTE DOUBLE
IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
IF(IFLAG.EQ.5) GO TO 255
IF(IFLAG.EQ.2) GO TO 10

ENDIF
ELSE
EXECUTE CHECK8
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.7) GO TO 2300
IF(IFLAG.EQ.8.OR.IFLAG.EQ.10) GO TO 100
IF(IFLAG.EQ.9) GO TO 275

275 EXECUTE CHECK9
IF(IFLAG.EQ.6) GO TO 99
IF(IFLAG.EQ.4) GO TO 200
IF(IFLAG.EQ.5) GO TO 285
IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.9) GO TO 275
IF(IFLAG.EQ.10) GO TO 100

285 EXECUTE DOUBLE
IF(IFLAG.EQ.4.OR.IFLAG.EQ.6) GO TO 200
IF(IFLAG.EQ.2) GO TO 10
IF(IFLAG.EQ.5) GO TO 255

ENDIF
C
99 EXECUTE RESULT
GO TO 999
C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C REMOTE BLOCK LISTING
C **
C
C ------------------------
REMO TE BLOCK RANDOM
C ------------------------
C *** GENERATE 0-1 UNIFORM RANDOM NUMBERS.
C
CALL RANDU(IY,YFL)
IY=IY
ENDBLOCK
C --
REMO TE BLOCK PEAK
C --
C *** INCREMENT BY 1 EACH W WHICH IS LESS THAN HT. OF THE PEAK.
C
J=1
WHILE(PKK(J).LT.HPEAK)
 NPKK(J)=NPKK(J)+1
 J=J+1
END WHILE
ENDBLOCK
C ------------------------
REMO TE BLOCK TROUGH
C ------------------------
C *** INCREMENT BY 1 EACH W WHICH IS LESS THAN HT. OF THE TROUGH.
C
K=1
WHILE(TRR(K).LT.HTRR)
 NTRR(K)=NTRR(K)+1
 K=K+1
END WHILE
ENDBLOCK
C --
REMO TE BLOCK ARRIVAL
C --
C *** GENERATE ARRIVAL EPOCHS OF CUSTOMERS AND CHECK THEIR TYPE.
C
EXECUTE RANDOM
AT=(-1./((LAMDA1+LAMDA2)) ALOG(YFL))
P = TAXIS+AT
EXECUTE RANDOM
IF(YFL.LE.PROB1) THEN
 TYP=1
ELSE
 TYP=2
ENDIF
ENDBLOCK
C ------------------------
REMO TE BLOCK JUMP11
C ------------------------
C *** DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO TYPE-1.
C
TAXIS=P
EXECUTE RANDOM
ST11=-(1./2*AMU1)*ALOG(YFL)
HPEAK=ST11+HTRR
EXECUTE PEAK
Z=TAXIS+HPEAK
ENDBLOCK
C -----------------------------------
REMOTE BLOCK OLEV1
C
C *** DETERMINE THE SERVICE TIME FOR A SINGLE TYPE-1 UNIT.
C
TAXIS=P
EXECUTE RANDOM
Z=TAXIS+(-1./AMU1)*ALOG(YFL)
ENDBLOCK
C -----------------------------------
REMOTE BLOCK JUMP12
C
C *** DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO A
C *** TYPE-1 AND A TYPE-2.
C
TAXIS=P
EXECUTE RANDOM
ST12=-(1./(AMU1+AMU2))*ALOG(YFL)
HPEAK=ST12+HTRR
EXECUTE PEAK
Z=TAXIS+HPEAK
ENDBLOCK
C -----------------------------------
REMOTE BLOCK OLEV2
C
C *** FIND THE SERVICE TIME FOR A TYPE-2 UNIT.
C
TAXIS=P
EXECUTE RANDOM
Z=TAXIS+(-1./AMU2)*ALOG(YFL)
ENDBLOCK
C -----------------------------------
REMOTE BLOCK JUMP22
C
C *** DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO TWO
C *** TYPE-2'S.
C
TAXIS=P
EXECUTE RANDOM
ST22=-(1./(2*AMU2))*ALOG(YFL)
HPEAK=ST22
EXECUTE PEAK
I=TAIXS+ST22
ENDBLOCK

C --

REMOTE BLOCK CHECK1
C --

C *** ANY WAITING TYPE-2 GOES INTO SERVICE ON A FCFS BASIS.
C

IF(NPAGE.GE.1) THEN
 TAIIS=Z
 NPAGE=NPAGE-1
 EXECUTE RANDOM
 ST12=(-1./AMU1*AMU2))*ALOG(YFL)
 HPEAK=ST12
 EXECUTE PEAK
 Z=TAIXS+ST12
 FLAG=2
 IFLAG=3
ELSE
 IF(FLAG.EQ.1) IMPK1=IMPK1+1
 IF(FLAG.EQ.12) IMPK2=IMPK2+1
 EXECUTE RANDOM
 ST1=(-1./AMU1)*ALOG(YFL)
 Z=Z+ST1
 IF(Z.GE.P) THEN
 HTRR=0.
 EXECUTE JUMP11
 FLAG=1
 IFLAG=1
 ELSE
 NTI=NTI+1
 EXECUTE OLEV1
 IFLAG=2
 ENDIF
ENDIF
ENDIF
ENDBLOCK

C --

REMOTE BLOCK FCHECK
C --

IF(Z.GE.P) THEN
 TAIIS=P
 HTRR=Z-P
 EXECUTE THROUGH
 EXECUTE RANDOM
 IF(YFL.LE.PRDEP) THEN
 EXECUTE JUMP12
 FLAG=2
 IFLAG=4
 ELSE
 EXECUTE JUMP11
 FLAG=1
 ENDIF
ENDIF
ENDIF
ENDBLOCK
IFLAG=4
ENDIF
ELSEIF(I.LT.P) THEN
EXECUTE RANDOM
IF(YFL.GT.PRSA) THEN
FLAG=12
EXECUTE CHECK1
ELSE
FLAG=13
EXECUTE CHECK2
ENDIF
ENDIF
END BLOCK
C ------------------------------
REMOTE BLOCK DOUBLE
C ------------------------------
IF(I.GE.P) THEN
TAXIS=P
HTRR=I-P
EXECUTE THROUGH
EXECUTE JUMP12
FLAG=2
IFLAG=6
ELSE
FLAG=14
EXECUTE CHECK2
ENDIF
END BLOCK
C ------------------------------
REMOTE BLOCK CHECK2
C ------------------------------
C *** INITIATE SERVICING OF A TYPE-2 WITH ITS NEIGHBOR BEING A TYPE-2
C *** AND NEXT ARRIVAL IS A TYPE-1
IF(NPAGE.GE.1) THEN
TAXIS=Z
NPAGE=NPAGE-1
EXECUTE RANDOM
ST22=(-1./(2*AMU2))*ALOG(YFL)
HPEAK=ST22
EXECUTE PEAK
Z=TAXIS+HPEAK
FLAG=3
IFLAG=5
ELSE
IF(FLAG.EQ.13) IMPK3=IMPK3+1
IF(FLAG.EQ.14) IMPK4=IMPK4+1
HTRR=0.
EXECUTE RANDOM
ST2=(-1./AMU2)*ALOG(YFL)
Z=Z+ST2
IF(I.GE.P) THEN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
EXECUTE JUMP12
FLAG=2
IFLAG=4
ELSE
 NT1=NT1+1
 EXECUTE OLEVL1
 IFLAG=2
ENDIF
ENDIF
ENDBLOCK

C ----------------------------

REMOTE BLOCK CHECK3

C ■■■ INITIATE SERVICING OF A TYPE-2 IF ONE IS WAITING WITH ITS NEIGHBOR BEING A TYPE-1, NEXT ARRIVAL IS A TYPE-2.
C
C IF(NPAGE.GE.1) THEN
 TAXIS=Z
 NPAGE=NPAGE-1
 EXECUTE RANDOM
 ST12=(-1./(AMU1+AMU2)) ALOG(YFL)
 HPEAK=ST12
 EXECUTE PEAK
 Z=TAXIS+HPEAK
 FLAG=2
 IFLAG=7
ELSE
 IF(FLAG.EQ.1) IMPK1=IMPK1+1
 IF(FLAG.EQ.2) IMPK2=IMPK2+1
 EXECUTE RANDOM
 ST1=(-1./AMU1)*ALOG(YFL)
 Z=Z+ST1
 IF(Z.GE.P) THEN
 HTRR=O.
 ELSE
 NT2=NT2+1
 EXECUTE OLEVL2
 IFLAG=8
 ENDIF
ENDIF
ENDBLOCK

C ----------------------------

REMOTE BLOCK CHECK4

C ■■■ INITIATE SERVICING OF A TYPE-2 WITH ITS NEIGHBOR BEING A TYPE-2, NEXT ARRIVAL IS A TYPE-2.
C
C IF(NPAGE.GE.1) THEN
TAIS = Z
NPAGE = NPAGE - 1
EXECUTE RANDOM
ST22 = (-1. / (2*AMU2)) * ALOG(YFL)
HPEAK = ST22
EXECUTE PEAK
Z = TAIS + HPEAK
IFLAG = 9
ELSE
IF(FLAG.EQ.13) IMPK3 = IMPK3 + 1
IF(FLAG.EQ.14) IMPK4 = IMPK4 + 1
HTRR = 0.
EXECUTE RANDOM
ST2 = (-1. / AMU2) * ALOG(YFL)
Z = Z + ST2
IF(Z .GE. P) THEN
EXECUTE JUMP22
FLAG = 3
IFLAG = 4
ELSE
NT2 = NT2 + 1
EXECUTE OLEV12
IFLAG = 10
ENDIF
ENDIF
END BLOCK
C ------------------------------
REMOTE BLOCK CHECK5
C ------------------------------
C ### DETERMINE HEIGHT OF PEAK WHEN A TYPE-1 ARRIVAL FINDS A TYPE-1 AND A TYPE-2 JOINTLY IN SERVICE.
C
C HTRR = Z - P
EXECUTE THROUGH
EXECUTE RANDOM
IF(YFL .LE. PROD) THEN
EXECUTE JUMP12
FLAG = 2
IFLAG = 4
ELSE
EXECUTE JUMP11
FLAG = 1
IFLAG = 4
ENDIF
END BLOCK
C ------------------------------
REMOTE BLOCK CHECK6
C ------------------------------
C ### DETERMINE WHETHER A TYPE-1 OR A TYPE-2 DEPARTS FIRST WHEN BOTH ARE JOINTLY IN SERVICE AND NEXT ARRIVAL IS A TYPE-1
C
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
EXECUTE RANDOM
IF(YFL.LE.PRDEP) THEN
 FLAG=13
 EXECUTE CHECK2
ELSE
 FLAG=12
 EXECUTE CHECK1
ENDIF
ENDBLOCK

C-----------------------------
REMOTE BLOCK CHECK7
C-----------------------------

1000 EXECUTE ARRIVAL
 IF(P.GT.CLOCK) THEN
 FLAG=5
 ELSEIF(Z.GE.P.AND.TYP.EQ.1) THEN
 EXECUTE CHECK5
 ELSEIF(Z.LT.P.AND.TYP.EQ.1) THEN
 EXECUTE CHECK6
 ELSEIF(Z.GE.P.AND.TYP.EQ.2) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 GO TO 1000
 ELSEIF(Z.LT.P.AND.TYP.EQ.2) THEN
 EXECUTE CHECK8
 ENDIF
ENDIF
ENDBLOCK

C-----------------------------
REMOTE BLOCK CHECK8
C-----------------------------

C *** DETERMINE WHETHER A TYPE-1 OR A TYPE-2 DEPARTS FIRST WHEN BOTH
C *** ARE JOINTLY IN SERVICE AND NEXT ARRIVAL IS A TYPE-2
C
EXECUTE RANDOM
IF(YFL.LE.PRDEP) THEN
 FLAG=13
 EXECUTE CHECK4
ELSE
 FLAG=12
 EXECUTE CHECK3
ENDIF
ENDBLOCK

C-----------------------------
REMOTE BLOCK CHECK9
C-----------------------------

IF(Z.GE.P) THEN
 NPAGE=NPAGE+1
 TAXIS=P
2000 EXECUTE ARRIVAL
 IF(P.GT.CLOCK) THEN
 FLAG=6
ELSEIF(Z .GE. P.AND.TYP.EQ.1) THEN
 HTRR=Z-P
 EXECUTE THROUGH
 EXECUTE JUMP12
 FLAG=2
 IFLAG=4
ELSEIF(Z.LT.P.AND.TYP.EQ.1) THEN
 EXECUTE CHECK2
ELSEIF(Z .GE. P.AND.TYP.EQ.2) THEN
 NPAGE=NPAGE+1
 TAXIS=P
 GO TO 2000
ELSEIF(Z.LT.P.AND.TYP.EQ.2) THEN
 EXECUTE CHECK4
ENDIF
ELSE
 FLAG=14
 EXECUTE CHECK4
ENDIF
END BLOCK

C -------------------------------------
REMOTE BLOCK RESULT
C -------------------------------------
C $$$ CALCULATE AND PRINT RESULTS.
C
SI(1)=O.
DO 1 I =2,NN
 SI(I)=SI(I-1)+W
1 CONTINUE
DO 2 J=1,NN
 DIFF(J)=NPKK(J)-NTRR(J)
 DMX(J)=DIFF(J)/CLOCK
2 CONTINUE
PRINT 11
11 FORMAT(12I,'RESULTS FROM THE MONTE-CARLO SP SIMULATION')
 PRINT,'
 PRINT,'LAMDAI=",LAMDAI,"LAMDA2=" ,LAMDA2
 PRINT,'AMUI=" ,AMUI,"AMU2=" ,AMU2
 PRINT,'SEED=" ,SEED,"CLOCK=" ,CLOCK
 PRINT,'0 OF TYPE-001 IMPACTS =",IMPK1
 PRINT,'0 OF TYPE-101 IMPACTS =",IMPK2
 PRINT,'0 OF TYPE-102 IMPACTS =",IMPK3
 PRINT,'0 OF TYPE-202 IMPACTS =",IMPK4
 PRINT,'0 OF (000---->001) TRANSITIONS=" ,NT1
 PRINT,'0 OF (000---->102) TRANSITIONS=" ,NT2
 PRINT 22
22 FORMAT(11I,'W A I T ' ,6I,'FEAK COUNT',5I,'TROUGH COUNT',8I,'DWI'
)
 DO 33 I =1,NN
 PRINT 44,SI(I),NPKK(I),NTRR(I),DMX(I)
44 FORMAT(6I,F5.1,7I,14I,12I,14I,12I,F6.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CONTINUE
DO 45 I=1,NN
 PRINT 46,I-1,DMX(I)
46 FORMAT(5X,I4,5X,F6.4)
45 CONTINUE
ENDBLOCK
999 STOP
END
ENTRY
0.25 0.20 0.333 0.25 1000 123456789 .5 40
*IBSYS
*STOP
//
APPENDIX C

$\text{SP}^{(2)}$ FLOWCHART AND

COMPUTER PROGRAM LISTING
Figure C.1: Flowchart for SP(2) Sample Path Generation

1. Start
2. Read and Initialize Parameters
3. Generate arrival and its type
4. Is it a type-1?
 - Yes: Generate a type-1 departure epoch on page 1
 - No: Generate a type-2 departure epoch on page 2
5. Generate next arrival and its type
6. Is arrival epoch < departure epoch?
 - Yes: Generate jump of size \(\exp(\mu_1 + \mu_2)\)
 - No: System becomes empty, line 0
7. Is arrival epoch < departure epoch?
 - Yes: Generate jump of size \(\exp(2\mu_1)\) on page 1
 - No: System becomes empty, line 0
Figure C.1 (continued)

A

Generate next arrival and its type

Is arrival a type-1?

Is arrival epoch < departure epoch

yes

no

Generate jump of size \(\exp(\mu_1 + \mu_2) \)

B

no

yes

System becomes empty line 0

C

Generate jump of size \(\exp(2\mu_2) \)

D

System becomes empty line 0

E
Figure C.1 (continued)

Which customer type completes servicing first?

- Type-2
- Type-1

D

Generate next arrival and type

Is arrival epoch < departure epoch?

- Yes
 - Type-1
 - No

- Yes

Generate an exp($\mu_1 + \mu_2$) jump

- No

E

Is there any waiting type-2's?

- Yes

Generate an exp(2μ_2) jump on page 2

- No

F

Jump is to page 1

Generate next arrival and type

G

Jump is to page 2

Generate next arrival and type

Record arrival epoch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure C.1 (continued)

Is arrival epoch < departure epoch?

Type-1 yes no

Generate an exp(2μ₁) jump on page 1

Generate an exp(μ₁+μ₂) jump

Is there waiting type-2's?

yes yes

Generate an exp(μ₁+μ₂) jump

Record arrival epoch

Generate a type-1 departure epoch

Is the previous arrival epoch < departure epoch?

yes

no Type-1 yes

no

Generate an exp(μ₁+μ₂) jump

Generate an exp(2μ₁) jump

System becomes empty, line 0

Type-1 yes

no

C

E

F

H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
THIS PROGRAM IS DESIGNED TO GENERATE THE SYSTEM-POINT PROCESS SAMPLE PATH FOR THE TYPE-2 CUSTOMERS (SP(2)) VIA THE SYSTEM MONTE CARLO COMPUTATION. TYPE-2 CUSTOMERS ARE THE LOW PRIORITY UNITS IN THE M/M/2 PRIORITY QUEUEING SYSTEM UNDER STUDY. THE NOTATIONS USED HERE ARE THE SAME AS FOR THE SP(1).

DECLARATION AND INITIALIZATION OF VARIABLES.

```
INTEGER SEED,NPKK(9000),NTRR(9000),DIFF(9000),TYP,TA(1000)
REAL PKK(9000),TRR(9000),S1(9000),LAMDA1,LAMDA2
REAL DWX(9000),CLOCK
READ,LAMDA1,LAMDA2,AMUI,AMU2,CLOCK,SEED,W,NN
II*SEED
TAIS=IMPK1=IMPK2=HTRR=NA=HPKB1=AR=NT1=NT2=0.
PROBT1=LAMDA1/(LAMDA1+LAMDA2)
PRDEP=AMUI/(AMUI+AMU2)
DO J=1,9000
   PKK(J)=(J-1)*W
   TRR(J)=(J-1)*W
   NPKK(J)=0
   NTRR(J)=0
   DIFF(J)=0
   DWX(J)=0
CONTINUE
```

GENERATE AN ARRIVAL, ITS TYPE AND SERVICE TIME

```
EXECUTE ARRIVAL
IF(TYP.EQ.1) THEN
   NT1=NT1+1
   TAIS=AR
   EXECUTE RANDOM
   DP=AR + (-1./AMUI)*ALOS(YFL)
ELSE
   NT2=NT2+1
   TAIS=AR
   EXECUTE RANDOM
   DP=AR + (-1./AMU2)*ALOS(YFL)
   GO TO 20
ENDIF
```

GENERATE AN ARRIVAL WITH A SINGLE TYPE-1 IN SERVICE
C
10 EXECUTE ARRIVAL
 IF(AR.GT.CLOCK) GO TO 99
 IF(TYP.EQ.1.AND.DP.GE.AR) THEN
 EXECUTE JUMP11
 DP=AR+ST11
 HPKB1=ST11
 TAXIS=AR
 FLAG=1
 ELSEIF(TYP.EQ.1.AND.DP.LT.AR) THEN
 NT1=NT1+1
 EXECUTE OLEV1
 GO TO 10
 ELSEIF(TYP.EQ.2.AND.DP.GE.AR) THEN
 HTRR=0.
 EXECUTE JUMP12
 DP=AR+HPEAK
 FLAG=2
 ELSEIF(TYP.EQ.2.AND.DP.LT.AR) THEN
 NT2=NT2+1
 EXECUTE OLEV2
 GO TO 20
 ENDIF
 GO TO 30
C
C *** GENERATE AN ARRIVAL WITH A SINGLE TYPE-2 IN SERVICE
C
20 EXECUTE ARRIVAL
 IF(AR.GT.CLOCK) GO TO 99
 IF(TYP.EQ.1.AND.DP.GE.AR) THEN
 HTRR=0
 EXECUTE JUMP12
 DP=AR+ST12
 TAXIS=AR
 FLAG=2
 ELSEIF(TYP.EQ.1.AND.DP.LT.AR) THEN
 NT1=NT1+1
 EXECUTE OLEV1
 GO TO 10
 ELSEIF(TYP.EQ.2.AND.DP.GE.AR) THEN
 HTRR=0
 EXECUTE JUMP22
 DP=AR+ST22
 TAXIS=AR
 FLAG=3
 ELSEIF(TYP.EQ.2.AND.DP.LT.AR) THEN
 NT2=NT2+1
 EXECUTE OLEV2
 GO TO 20
 ENDIF
30 EXECUTE ARRIVAL
C *** CHECK FOR END OF SIMULATED TIME PERIOD
C IF(AR.GT.CLOCK) GO TO 99
C
C *** NEXT TYPE-1 ARRIVAL OCCURS DURING A TYPE-1 BUSY PERIOD
C IF(TYP.EQ.1 .AND. DP.GE.AR .AND. FLAG.EQ.1) THEN
 EXECUTE JUMP11
 HPKBPI=HPKBPI+ST11
 DP=DP+ST11
 FLAG=1
 GO TO 30
C
C *** NEXT TYPE-1 ARRIVAL OCCURS AFTER A TYPE-1 BUSY PERIOD
C ELSEIF(TYP.EQ.1 .AND. DP.LT.AR .AND. FLAG.EQ.1) THEN
 EXECUTE LABP
 GO TO 85
C
C *** NEXT TYPE-2 ARRIVES DURING A TYPE-1 BUSY PERIOD
C ELSEIF(TYP.EQ.2 .AND. DP.GE.AR .AND. FLAG.EQ.1) THEN
 NA=NA+1
 TA(NA)=AR
 GO TO 1000
C
C *** IF A TYPE-2 ARRIVAL OCCURS AFTER A TYPE-1 BUSY PERIOD
C ELSEIF(TYP.EQ.2 .AND. DP.LT.AR .AND. FLAG.EQ.1) THEN
 EXECUTE LABP
 GO TO 70
C
C *** NEXT TYPE-1 ARRIVAL DURING A MIXED BUSY PERIOD
C ELSEIF(TYP.EQ.1 .AND. DP.GE.AR .AND. FLAG.EQ.2) THEN
 HPKBPI=HPEAK
 EXECUTE RANDOM
 IF(YFL.LE.PREDP) THEN
 HTRR=HPKBPI
 EXECUTE JUMP12
 HPKBPI=HPEAK
 DP=DP+ST12
 TANTS=AR
 FLAG=2
 ELSE
 EXECUTE JUMP11
 HPKBPI=HPKBPI+ST11
 DP=DP+ST11
 FLAG=1
 ENDIF
GO TO 30

C ### IF A TYPE-1 ARRIVES DURING THE TIME PERIOD WHEN THERE IS A SINGLE
C ### TYPE-1 OR TYPE-1 IN SERVICE
C
ELSEIF(TYP.EQ.1 .AND. DP.LT.AR .AND. FLAG.EQ.2) THEN
 HPKBP1=HPEAK
 EXECUTE LORDBP
 EXECUTE RANDOM
 IF(YFL.LE.PRDPEP) THEN
 GO TO 80
 ELSE
 GO TO 85
 ENDIF

C ### NEXT TYPE-2 ARRIVES DURING A MIXED BUSY PERIOD
C
ELSEIF(TYP.EQ.2 .AND. DP.GE.AR .AND. FLAG.EQ.2) THEN
 NA=NA+1
 TA(NA)=AR
 GO TO 2000

C ### NEXT TYPE-2 ARRIVAL OCCURS DURING THE TIME PERIOD WHEN THERE IS
C ### A SINGLE TYPE-1 OR TYPE-2 IN SERVICE
C
ELSEIF(TYP.EQ.2 .AND. DP.LT.AR .AND. FLAG.EQ.2) THEN
 HPKBP1=HPEAK
 EXECUTE LORDBP
 EXECUTE RANDOM
 IF(YFL.LE.PRDPEP) THEN
 GO TO 90
 ELSE
 GO TO 70
 ENDIF

C ### NEXT TYPE-1 ARRIVES DURING A TYPE-2 BUSY PERIOD
C
ELSEIF(TYP.EQ.1 .AND. DP.GE.AR .AND. FLAG.EQ.3) THEN
 HTRR=HPEAK
 EXECUTE JUMP12
 DP=DP+ST12
 FLAG=2
 GO TO 30
ELSEIF(TYP.EQ.1 .AND. DP.LT.AR .AND. FLAG.EQ.3) THEN
 HPKBP1=HPEAK
 EXECUTE LORDBP
 GO TO 80

C ### IF A TYPE-2 ARRIVES DURING A TYPE-1 BUSY PERIOD
C
ELSEIF(TYP.EQ.2 .AND. DP.GE.AR .AND. FLAG.EQ.3) THEN

NA = NA + 1
T(A(NA)) = AR
HPKB Pl = HP EAK
GO TO 60
ELSEIF (TYP.EQ.2.AND.DP.LT.AR.AND.FLAG.EQ.3) THEN
HPKB Pl = HP EAK
EXECUTE LORDBP
GO TO 90
ENDIF
C
1000 EXECUTE BPTYPl
IF (IFLAG.EQ.3) GO TO 1000
IF (IFLAG.EQ.4) GO TO 40
IF (IFLAG.EQ.5) GO TO 45
IF (IFLAG.EQ.6) GO TO 50
IF (IFLAG.EQ.7) GO TO 55
IF (IFLAG.EQ.8) GO TO 60
IF (IFLAG.EQ.25) GO TO 99
IF (IFLAG.EQ.9) GO TO 100
IF (IFLAG.EQ.10) GO TO 95
40 EXECUTE MIDLAY
GO TO 110
45 EXECUTE SEARCH
IF (IFLAG.EQ.27) GO TO 45
IF (IFLAG.EQ.28) GO TO 110
IF (IFLAG.EQ.15) GO TO 80
50 EXECUTE ORDLAY
51 IF (NA.GE.1) THEN
GO TO 1000
ELSE
GO TO 30
ENDIF
55 EXECUTE CHECK1
IF (IFLAG.EQ.30) GO TO 45
IF (IFLAG.EQ.31) GO TO 55
IF (IFLAG.EQ.32) GO TO 110
IF (IFLAG.EQ.33) GO TO 65
IF (IFLAG.EQ.35) GO TO 51
60 EXECUTE BPTYP2
IF (IFLAG.EQ.11) GO TO 60
IF (IFLAG.EQ.12) GO TO 1000
IF (IFLAG.EQ.3) GO TO 110
IF (IFLAG.EQ.2) GO TO 45
IF (IFLAG.EQ.22) GO TO 100
IF (IFLAG.EQ.26) GO TO 99
90 EXECUTE STYP22
IF (IFLAG.EQ.21) GO TO 30
IF (IFLAG.EQ.22) GO TO 20
70 EXECUTE STYP12
IF (IFLAG.EQ.1) GO TO 30
IF (IFLAG.EQ.2) GO TO 20
EXECUTE STYP21
 IF(IFLAG.EQ.1) GO TO 30
 IF(IFLAG.EQ.2) GO TO 10

EXECUTE STYP11
 IF(IFLAG.EQ.1) GO TO 30
 IF(IFLAG.EQ.2) GO TO 10

EXECUTE CHECK2
 IF(IFLAG.EQ.1.OR.IFLAG.EQ.11) GO TO 30
 IF(IFLAG.EQ.2.OR.IFLAG.EQ.21) GO TO 20
 IF(IFLAG.EQ.40) GO TO 100
 IF(IFLAG.EQ.41) GO TO 95
 IF(IFLAG.EQ.45.OR.IFLAG.EQ.47) GO TO 60
 IF(IFLAG.EQ.46) GO TO 1000

EXECUTE CHECK3
 IF(IFLAG.EQ.21) GO TO 30
 IF(IFLAG.EQ.22) GO TO 20
 IF(IFLAG.EQ.40) GO TO 100
 IF(IFLAG.EQ.47) GO TO 60

EXECUTE RANDOM
 IF(NA.EQ.1) THEN
 IF(YFL.LE.PRDEP) THEN
 GO TO 60
 ELSE
 GO TO 1000
 ENDIF
 ELSE
 GO TO 30
 ENDIF

EXECUTE RANDOM
 IF(YFL.GT.PRDEP) THEN
 HPKBP1=HPEAK
 GO TO 1000
 ELSE
 HPKBP1=HPEAK
 HTRR=HPEAK
 GO TO 60
 ENDIF

EXECUTE RESULT
 GO TO 999

--- REMOTE BLOCK LISTING ----

C ----- REMOTE BLOCK RANDOM ----
C *** GENERATE 0-1 UNIFORM RANDOM NUMBERS.
C
C CALL RANDU(IX,IY,YFL)
C IX=IY
C ENDBLOCK

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C --
REMOTEBLOCK PEAK
C --
C $$$ INCREMENT BY 1 EACH \(w \) WHICH IS LESS THAN HT. OF THE PEAK.
C
J=1
WHILE(PK(J).LT.HPEAK)
 NPKK(J)=NPKK(J)+1
 J=J+1
END WHILE
END BLOCK
C --
REMOTEBLOCK TROUGH
C --
C $$$ INCREMENT BY 1 EACH \(w \) WHICH IS LESS THAN HT. OF THE TROUGH.
C
K=1
WHILE(TRR(K).LT.HTRR)
 NTRR(K)=NTRR(K)+1
 K=K+1
END WHILE
END BLOCK
C --
REMOTEBLOCK ARRIVAL
C --
C $$$ GENERATE ARRIVAL EPOCHS OF CUSTOMERS AND CHECK THEIR TYPE.
C
EXECUTE RANDOM
AT=(-1./((LAMDA1+LAMDA2))#ALOG(YFL)
AR = TAXIS+AT
EXECUTE RANDOM
IF(YFL.LE.PROBT1) THEN
 TYP=1
ELSE
 TYP=2
ENDIF
END BLOCK
C --
REMOTEBLOCK JUMP11
C --
C $$$ DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO TYPE-1.
C
TAXIS=AR
EXECUTE RANDOM
STII=(-1./(2*AMU1))#ALOG(YFL)
END BLOCK
C --
REMOTEBLOCK OLEV1
C --
C $$$ DETERMINE THE SERVICE TIME FOR A SINGLE TYPE-1 UNIT.
TAXIS=AR
EXECUTE RANDOM
DP=TAXIS+(-1./AMU1)*ALOG(YFL)
ENDBLOCK
C --
REMOTE BLOCK JUMP12
C --
C $$$ DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO A
C $$$ TYPE-1 AND A TYPE-2.
C
TAXIS=AR
EXECUTE RANDOM
ST12=(-1./(AMU1+AMU2))*ALOG(YFL)
HPEAK=ST12+HTRR
ENDBLOCK
C --
REMOTE BLOCK OLEV12
C --
C $$$ FIND THE SERVICE TIME FOR A TYPE-2 UNIT.
C
TAXIS=AR
EXECUTE RANDOM
DP=TAXIS+(-1./AMU2)*ALOG(YFL)
ENDBLOCK
C --
REMOTE BLOCK JUMP22
C --
C $$$ DETERMINE THE HEIGHT OF PEAK WHEN THE JUMP SIZE IS DUE TO TWO
C $$$ TYPE-2'S.
C
TAXIS=AR
EXECUTE RANDOM
ST22=(-1./(2*AMU2))*ALOG(YFL)
HPEAK=ST22 + HTRR
ENDBLOCK
C --
REMOTE BLOCK STYP11
C --
C $$$ GENERATE SAMPLE PATH WHEN A TYPE-1 ARRIVAL SEES A SINGLE TYPE-1
C $$$ IN SERVICE
C
TAXIS=DP
IMPK1=IMPK1+1
EXECUTE RANDOM
ST1=(-1./AMU1) * ALOG(YFL)
DP=TAXIS +ST1
IF(DP,EE,AR) THEN
 EXECUTE JUMP11
HPKBP1=ST11
DP=AR+ST11
FLAG=1
IFLAG = 1
ELSE
 EXECUTE OLEV1
 NT1 = NT1 + 1
 IFLAG = 2
ENDIF
ENDBLOCK

C -------------------------------
REMOTE BLOCK STYP12
C -------------------------------
C ### GENERATE SAMPLE PATH WHEN A TYPE-2 ARRIVAL SEES A SINGLE TYPE-2
C ### IN SERVICE
C
TAXIS = DP
IMPK1 = IMPK1 + 1
EXECUTE RANDOM
ST1 = (-1./AMU1)*AL0G(YFL)
DP = TAXIS + ST1
IF (DP .GE. AR) THEN
 HTRR = 0.
 EXECUTE JUMP12
 DP = AR + HPEAK
 IFLAG = 2
ELSE
 EXECUTE OLEV1
 NT2 = NT2 + 1
 IFLAG = 2
ENDIF
ENDBLOCK

C -------------------------------
REMOTE BLOCK STYP21
C -------------------------------
C ### GENERATE SAMPLE PATH WHEN A TYPE-1 ARRIVAL SEES A SINGLE TYPE-2
C ### IN SERVICE
C
TAXIS = DP
IMPK2 = IMPK2 + 1
EXECUTE RANDOM
ST2 = (-1./AMU2)*AL0G(YFL)
DP = TAXIS + ST2
IF (DP .GE. AR) THEN
 HTRR = 0.
 EXECUTE JUMP12
 DP = AR + HPEAK
 IFLAG = 2
ELSE
 EXECUTE OLEV1
 NT1 = NT1 + 1
 IFLAG = 2

ENDIF
ENDBLOCK
C ---
REMOTE BLOCK STYP22
C ---
C ### GENERATE SAMPLE PATH WHEN A TYPE-2 ARRIVAL SEES A SINGLE TYPE-2
C ### IN SERVICE
C
TAXIS=DP
IMPK2=IMPK2+1
EXECUTE RANDOM
ST2=(-1./AMU2) * ALOG(YFL)
DP=TAXIS+ST2
IF(DP.GE.AR) THEN
HTRR=0.
EXECUTE JUMP22
DP=AR+Hpeak
FLAG=3
IFLAG=21
ELSE
EXECUTE OLEV2
NT2=NT2+1
IFLAG=22
ENDIF
ENDBLOCK
C ---
REMOTE BLOCK LORDBP
C ---
C
HPeak=HPKBP1
EXECUTE PEAK
HPKBP1=0.
ENDBLOCK
C ---
REMOTE BLOCK ORDELAY
C ---
C
TAXIS=AR
EXECUTE JUMP11
HPKBP1=Hpeak + ST11
DP=DP+ST11
FLAG=1
ENDBLOCK
C ---
REMOTE BLOCK MIDLAY
C ---
C
TAXIS=AR
EXECUTE RANDOM
ST12=(-1./(AMU1+AMU2)) * ALOG(YFL)
HPKBP1=Hpeak+ST12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HPEAK=HPKBPl
DP=DP+ST12
FLAG=2
ENDBLOCK

C -------------------------------
REMOTE BLOCK UPDATE
C -------------------------------

C NA=NA-1
IF(NA.GE.1) THEN
 DO 26 I=1,NA
 IT=I+1
 TA(I)=TA(II)
 26 CONTINUE
ENDIF
ENDBLOCK

C -------------------------------
REMOTE BLOCK BPTYP1
C -------------------------------

C ### GENERATE THE LENGTH OF AN ORDINARY BUSY PERIOD
C
TAXIS=AR
EXECUTE ARRIVAL
IF(AR.GT.CLOCK) THEN
 IFLAG=25
ELSEIF(TYP.EQ.1.AND.DP.GE.AR) THEN
 EXECUTE JUMPI1
 HPKBPl=HPKBPl+STII
 DP=DP+STII
 FLAG=1
 IFLAG=3
ELSEIF(TYP.EQ.1.AND.DP.LT.AR) THEN
 EXECUTE DLAI
ELSEIF(TYP.EQ.2.AND.DP.GE.AR) THEN
 NA=NA+1
 TA(NA)=AR
 IFLAG=3
ELSEIF(TYP.EQ.2.AND.DP.LT.AR) THEN
 EXECUTE DLAY2
ENDIF
ENDBLOCK

C -------------------------------
REMOTE BLOCK DLAY1
C -------------------------------

C ### GENERATE THE LENGTH OF A DELAYED BUSY PERIOD
C
EXECUTE LORDSP
HTRR=(DP-TA(II))
EXECUTE THROUGH
EXECUTE JUMPI2
DP=DP+ST12
HTRR=HPKBPI
EXECUTE JUMP12
HPKBPI=HPEAK
DP=DP+ST12
EXECUTE RANDOM
IF(YFL.LE.PRDEP) THEN
 IFLAG=11
ELSE
 IFLAG=12
ENDIF
ELSEIF(TYP.EQ.1.AND.DP.LT.AR) THEN
 EXECUTE LOORDBP
 HTRR=DP-TA(1)
 EXECUTE THROUGH
 EXECUTE JUMP22
 DP=DP+ST22
 EXECUTE UPDATE
 IF(DP.LT.AR) THEN
 IFLAG=2
 IND=10
 ELSE
 HTRR=HPEAK
 EXECUTE JUMP12
 HPKBPI=HPEAK
 DP=DP+ST12
 FLAG=2
 IFLAG=3
 ENDIF
ELSEIF(TYP.EQ.2.AND.DP.GE.AR) THEN
 NA=NA+1
 TA(NA)=AR
 IFLAG=11
ELSEIF(TYP.EQ.2.AND.DP.LT.AR) THEN
 EXECUTE LOORDBP
 HTRR=DP-TA(1)
 EXECUTE THROUGH
 EXECUTE JUMP22
 DP=DP+ST22
 EXECUTE UPDATE
 IF(DP.LT.AR) THEN
 IFLAG=22
 ELSE
 HPKBPI=HPEAK
 NA=NA+1
 TA(NA)=AR
 IFLAG=11
 ENDIF
ENDIF
END BLOCK

C ---
REMOTE BLOCK CHECK1
C ------------------------
C *** A WAITING TYPE-2 ENTERS SERVICE AT THE COMPLETION OF A TYPE-1
C *** BUSY PERIOD.
C
IF(NA.GE.1) THEN
HPKBPI=HPEAK
EXECUTE LORDBP
HTTR=DP-TA(1)
EXECUTE TROUGH
EXECUTE JUMP12
DP=DP+ST12
EXECUTE UPDATE
EXECUTE RANDOM
IF(DP.LT.AR.AND.YFL.LE.PRDEP) THEN
IFLAG=30
IND=10
ELSEIF(DP.LT.AR.AND.YFL.GT.PRDEP) THEN
IFLAG=31
ELSEIF(DP.GE.AR.AND.YFL.LE.PRDEP) THEN
HTTR=HPEAK
EXECUTE JUMP12
HPKBPI=HPEAK
DP=DP+ST12
FLAG=2
IFLAG=32
ELSEIF(DP.GE.AR.AND.YFL.GT.PRDEP) THEN
EXECUTE JUMP11
HPKBPI=HPEAK+ST11
FLAG=1
IFLAG=35
ENDIF
ELSE
EXECUTE PEAK
IF(IND.EQ.11) IFLAG=33
ENDIF
ENDBLOCK
C ------------------------
REMOTE BLOCK CHECK2
C ------------------------
C
IF(NA.GE.1) THEN
HPKBPI=HPEAK
EXECUTE LORDBP
HTTR=DP-TA(1)
EXECUTE TROUGH
EXECUTE JUMP12
DP=DP+ST12
EXECUTE UPDATE
EXECUTE RANDOM
IF(YFL.LE.PRDEP.AND.DP.GE.AR) THEN
NA=NA+1
TA(NA)=AR
IFLAG=45
ELSEIF(YFL.LE.PRDEP.AND.DP.LT.AR) THEN
EXECUTE CHECK3
ELSEIF(YFL.GT.PRDEP.AND.DP.GE.AR) THEN
HPKBPI=HPEAK
NA=NA+1
TA(NA)=AR
IFLAG=46
ELSE
IFLAG=41
ENDIF
ELSE
EXECUTE PEAK
EXECUTE STYP12
ENDIF
ENDBLOCK

C REMOTE BLOCK CHECK3

C REMOTE BLOCK SEARCH

C IF(NA.GE.1) THEN
HPKBPI=HPEAK
EXECUTE LORDBP
HTRR=DP-TA(1)
EXECUTE TROUGH
EXECUTE JUMP22
DP=DP-ST22
EXECUTE UPDATE
IF(DP.GT.AR) THEN
HPKBPI=HPEAK
NA=NA+1
TA(NA)=AR
IFLAG=47
ELSE
IFLAG=40
ENDIF
ELSE
EXECUTE PEAK
EXECUTE STYP22
ENDIF
ENDBLOCK

C IF(NA.GE.1) THEN
HPKBPI=HPEAK
EXECUTE LORDBP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HTRR=DP+TA(1)
EXECUTE TROUGH
EXECUTE JUMP22
DP=DP+ST22
EXECUTE UPDATE
IF (DP.LT.AR) THEN
 HPKBP1=HPEAK
 IFLAG=27
ELSE
 HTRR=HPEAK
 EXECUTE JUMP12
 HPKBP1=HPEAK
 DP=DP+ST12
 IFLAG=28
ENDIF
ELSE
 EXECUTE PEAK
 IF (IND.EQ.10) IFLAG=15
ENDIF
ENDBLOCK

C -----------------------------
REMOTE BLOCK RESULT
C -----------------------------
C *** CALCULATE AND PRINT RESULTS.
C
S1(1)=0.
DO 101 I =2,NN
 S1(I)=S1(I-1)+W
101 CONTINUE
DO 102 J=1,NN
 DIFF(J)=NPKK(J)-NTRR(J)
 DWX(J)=DIFF(J)/CLOCK
102 CONTINUE
PRINT 103
103 FORMAT(12X,'RESULTS FROM THE MONTE-CARLO SP SIMULATION')
PRINT,'-'
PRINT,'LAMDA1='LAMDA1,'LAMDA2='LAMDA2
PRINT,'AMU1='AMU1,'AMU2='AMU2
PRINT,'SEED='SEED,'CLOCK='CLOCK
PRINT,'# OF TYPE-1 IMPACTS ='IMPK1
PRINT,'# OF TYPE-2 IMPACTS ='IMPK2
PRINT,'# OF (00->01) TRANSITIONS='NT1
PRINT,'# OF (00->02) TRANSITIONS='NT2
PRINT 104
104 FORMAT(//,7X,'WAIT ',6X,'PEAK COUNT',5X,'TROUGH COUNT',8X,'DWX' 81)
DO 105 I =1,NN
 PRINT 106,31(I),NPKK(I),NTRR(I),DWX(I)
106 FORMAT(6X,F5.1,7X,I4,12X,I4,12X,F6.4)
105 CONTINUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DO 107 I=1,NN
 PRINT 108, I-1, DWI(I)
108 FORMAT(5X, I4, 5X, F6.4)
107 CONTINUE
ENDBLOCK
999 STOP
END

ENTRY
 0.25 0.20 0.333 0.250 1000 364820481 .5 150
#IBSYS
#STOP
//
APPENDIX D

COMPUTER PROGRAM LISTING

FOR PDF & CDF COMPUTATION
//MEAN JOB (R240,SL2), 'BACHAN', CLASS=I
// EXEC WATFIV
//ED.SYSIN DD $
$JOB WATFIV
C
C **
C $ THIS PROGRAM IS DESIGNED TO CALCULATE THE EXPECTED WAITING $
C $ TIME FOR TYPE-I CUSTOMERS USING THE OUTPUT FROM THE SP(I) $
C $ COMPUTER PROGRAMS. IT ALSO PLOTS THE ESTIMATED PDF AND $
C $ CDF FOR TYPE-I CUSTOMERS. $
C **
C
REAL D(500), DX(500), T(500), TT(500), CDF(100), CCDF(100)
INTEGER WT(100)
REAL LAMDA1, LAMDA2
SUM1=SUM2=0
LAMDA1=LAMDA2=IMPK1=IMPK2=IMPK3=IMPK4=TR1=TR2=0
C
C $ READ DATA FROM THE OUTPUT OF SP(I), I =1,2 PROGRAM
C
READ, LAMDA1, LAMDA2, AMU1, AMU2, CLOCK
READ, IMPK1, IMPK2, IMPK3, IMPK4, TR1, TR2, N, W
10 READ(S, T, ENO*500) I, CWX
C
C $ CALCULATE EXPECTED WAITING TIME IN QUEUE USING THE DOWNCROSSING $
C $ RATE AT LEVEL W, W>0 $
C
SUM1=SUM1+I*DWX
SUM2=SUM2+DWX
D(I+1)=DWX
T(I+1)=I
GO TO 10
500 GSUM=0.01*SUM1+0.005*SUM2
PRINT 15, GSUM
15 FORMAT(5X, 'MEAN VALUE OF WAITING TIME = ', F9.6, ' MINUTES')
C
C $ PLOT GRAPH OF THE PROBABILITY DENSITY FUNCTION OF THE WAITING $
C $ TIME FOR TYPE-I CUSTOMERS
C
C
PRINT 20
20 FORMAT(///, 25X, 'GRAPH OF ESTIMATED PDF FOR SP(I); T=1000 MIN.')
DO 25 J=1, N
 DX(J)=D(J)
 TT(J)=(J-1)*W
25 CONTINUE
CALL PLOT3(TT, DX, N)
C
C $ CALCULATE THE PROBABILITY OF ZERO WAIT IN QUEUE
C
SIGMA=LAMDA1+LAMDA2
A=IMPK1/CLOCK+IMPK2/CLOCK+TR1/CLOCK
P001 = A / (SIGMA + AMU1)
B = IMPK3 / CLOCK + IMPK4 / CLOCK + TR2 / CLOCK
P102 = B / (SIGMA + AMU2)
P000 = (AMU1 * P001 + AMU2 * P102) / SIGMA
PO = P000 + P102 + P001

C
C $$$ CALCULATE AND PLOT CDF OF THE WAITING TIME IN QUEUE FOR TYPE-I
C $$$ CUSTOMERS
C
J = 2
CDF(1) = PO
DO 30 I = 1, N, 2
 R = D(I) + D(I+1)
 RR = 0.5 * R
 CDF(J) = CDF(J-1) + RR
 J = J + 1
30 CONTINUE
M = N / 2 + 1
DO 35 J = 1, M
 CCDF(J) = CDF(J)
 WT(J) = (J-1) ** 1
 PRINT 40, WT(J), CCDF(J)
40 FORMAT(5X, I3, 5X, F8.5)
35 CONTINUE
CALL PLOT3(WT, CCDF, M)
STOP
END

ENTRY
0.25 0.2 0.333 0.25 1000
41 00 58 00 31 32 98 0.5

SYSIN
STOP
//

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
E.1 Model Development

For the M/M/2 non-preemptive priority model with two customer types and parameters λ_1, λ_2, μ_1, μ_2 a discrete-event system simulation model was written in FORTRAN using the next-event time-advance approach. To facilitate development and debugging, the FORTRAN model was organized in a modular fashion using Remote Blocks.

The overall structure of the system simulation program is shown by the flowchart given in Figure E.1. The main program controls the flow of the event-scheduling, time-advance algorithm. In addition to a main program, the computer program consists of Remote Blocks and a Function subprogram. A program listing is given below; the listing provides the major FORTRAN variables the program uses (modelling variables include state variables, statistical counters and variables that are used to facilitate the writing of the program).

E.2 Variance Reduction Technique

For each random number stream, the method of antithetic sampling has been used as a variance reduction technique. This technique is applicable since we are dealing with a single system [Law & Kelton (1982)]. In this technique, the random number sequence U_1, U_2, ..., U_n is used to
generate an input sequence on the first run, and \((1-U_1), (1-U_2), \ldots, (1-U_n)\) to generate the corresponding input sequence in the second run. The intuitive feeling here is that some of the negative correlation between inputs finds its way to the corresponding output and hence a variance reduction is realised. Antithetic sampling tries to induce this negative correlation by using complementary random numbers to drive the two runs in a pair.

E.3 Model Verification

Verification is determining whether a simulation model performs as intended [Law & Kelton (1982)]. In order to determine whether the system simulation model is operating as intended, the model was run under simplifying assumptions for which the model's true characteristics are known analytically \(\mu_1 = \mu_2\).

For the proposed system with different service rates for each class of customer, it is not possible to compute the desired system characteristics analytically. Therefore, one must resort to simulation. In order to verify the simulation model, we can run the general simulation model with the same service rate for each class of customers \(i.e. \mu_1 = \mu_2\). The resulting model has known steady-state characteristics [Gross & Harris (1985)] (see Eq. (2.1) or (a.2.1)).
For the purpose of verification, the model was run with the following parameters:

\[
\begin{align*}
\lambda_1 &= 15 \text{ customers/hour} \\
\lambda_2 &= 12 \text{ customers/hour} \\
\mu_1 &= 20 \text{ customers/hour} \\
\mu_2 &= 20 \text{ customers/hour}
\end{align*}
\]

Given the model parameters above, we can calculate the steady-state expected waiting time for each class of customers analytically, using Equation (a.2.1) given in Appendix A. Table E.1 below illustrate the theoretical expected waiting times and also point estimates of this measure of performance from the system simulation run of length \(T = 1000 \) minutes. The table clearly indicates that the system simulation model produces very accurate estimates of the expected waiting times for either class of customers. Since the estimates are very close to the true values this gives us some degree of confidence in the correctness of the computer program.
Table E.1. Theoretical Values and System Simulation Estimates for a Non-Preemptive Priority Queueing System with Parameters $\lambda_1=15$, $\lambda_2=12$, $\mu_1=\mu_2=20$ (unit of time = 1 hour).

<table>
<thead>
<tr>
<th>Method of Analysis</th>
<th>Measure of Performance</th>
<th>Customer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type-1</td>
</tr>
<tr>
<td>Analytical Eq. (a.2.1)</td>
<td>\bar{W}_{q_1} (hrs.)</td>
<td>0.021761</td>
</tr>
<tr>
<td>System Simulation T=1000 mins.</td>
<td>$\hat{E}[W_{q_1}]$ (hrs.)</td>
<td>0.022190</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
E.4 Statistical Estimation

The simulation was run for five independent random number streams; for each stream antithetic sampling was applied. In order to avoid having to deal with autocorrelation, the technique of independent replications was used. Each replication began with the same initial conditions, independence of replication being accomplished by using different random numbers for each replication (i.e. using different initial seeds). Now, for each replication, using its complementary random numbers we performed the simulation. Thus, five pairs of simulation runs were performed, each pair being correlated.

E.4.1 Output Analysis

Using the model parameters $\lambda_1=15$, $\lambda_2=12$, $\mu_1=20$, $\mu_2=15$, the queueing system was simulated for a total of $T=10000$ min. on each replication for the purpose of estimating long-run mean waiting time in queue for each customer type. The simulation results of five statistically independent pairs of runs (each pair is correlated) are shown in Table E.2. The overall point estimate for the mean waiting time in queue for type-1 and type-2 units are 0.030127 and 0.125667 hr. respectively. The average value of the \Pr (any server idle) is 0.2396.
Table E.2: System Simulation Output Summary

\((T = 10000 \text{ min.})\)

<table>
<thead>
<tr>
<th>seed</th>
<th>sequence</th>
<th>Mean Waiting Time (min.)</th>
<th>Pr(idle server)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456789</td>
<td>U</td>
<td>1.6294</td>
<td>5.6183</td>
</tr>
<tr>
<td></td>
<td>1-U</td>
<td>1.7562</td>
<td>7.1216</td>
</tr>
<tr>
<td>364820481</td>
<td>U</td>
<td>1.7725</td>
<td>7.0813</td>
</tr>
<tr>
<td></td>
<td>1-U</td>
<td>1.7509</td>
<td>7.8483</td>
</tr>
<tr>
<td>764928413</td>
<td>U</td>
<td>1.7722</td>
<td>8.1945</td>
</tr>
<tr>
<td></td>
<td>1-U</td>
<td>1.7527</td>
<td>5.7949</td>
</tr>
<tr>
<td>284756873</td>
<td>U</td>
<td>1.8926</td>
<td>9.3860</td>
</tr>
<tr>
<td></td>
<td>1-U</td>
<td>1.7327</td>
<td>6.3936</td>
</tr>
<tr>
<td>475638471</td>
<td>U</td>
<td>1.8879</td>
<td>8.5881</td>
</tr>
<tr>
<td></td>
<td>1-U</td>
<td>2.1288</td>
<td>9.3735</td>
</tr>
<tr>
<td>Mean Value</td>
<td>(\bar{X}_i)</td>
<td>1.80761</td>
<td>7.5400</td>
</tr>
<tr>
<td>(\hat{\sigma}^2(\bar{X}_i))</td>
<td>0.0028825</td>
<td>0.1935112</td>
<td>5.6526E-06</td>
</tr>
<tr>
<td>(\hat{\sigma}(\bar{X}_i))</td>
<td>0.0536887</td>
<td>0.4398991</td>
<td>2.3775E-03</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Consider a 95% confidence interval for each measure of performance. In general for small sample sizes the confidence interval of the mean is given by

\[\bar{X} \pm \left(t_{\alpha/2, f} \right) \hat{\sigma}(\bar{X}) \]

where \(\bar{X} \) and \(\hat{\sigma}(\bar{X}) \) are the mean and standard error of the point estimate \((X_i) \), respectively and \(t_{\alpha/2, f} \) is the value of the t distribution with \(f \) degrees of freedom, leaving an area of \(\alpha/2 \) to the right.

mean waiting time in queue (min.):

- **type-1 units:**
 \[\bar{X}_{q1} \pm t_{0.025, 4} \hat{\sigma}(\bar{X}_{q1}) \]
 \[
 1.80761 \pm 2.776(0.0536887) \\
 1.80761 \pm 0.14904 \\
 1.65856 \leq W_{q1} \leq 1.95665
 \]

- **type-2 units:**
 \[\bar{X}_{q2} \pm t_{0.025, 4} \hat{\sigma}(\bar{X}_{q2}) \]
 \[
 7.5400 \pm 2.776(0.439899) \\
 7.5400 \pm 1.2211596 \\
 6.31884 \leq W_{q2} \leq 8.76117
 \]

mean Pr(any server idle):

\[\bar{p} \pm t_{0.025, 4} \hat{\sigma}(\bar{p}) \]

\[
 0.2396 \pm 2.776(0.0023775) \\
 0.2396 \pm 0.0065999 \\
 0.2331 \leq p \leq 0.2462
 \]
E.4.3 Confidence Interval for the Difference Between Waiting Times of Type-1 and Type-2 Units

Here we are dealing with a small sample and unequal population variances. The confidence interval of the difference between the mean waiting times, \(W_{q1} - W_{q2} \) for such properties is given by

\[
(\overline{x}_{q1} - \overline{x}_{q2}) \pm (t_{a/2, f}) \sqrt{\frac{s^2(X_{q1}) + s^2(X_{q2})}{n_1 + n_2 - 2}}
\]

where \(\overline{x}_{qi} \) and \(s^2(\overline{x}_{qi}) \) are as defined in Section E.4.2, and \(t_{a/2} \) is the value of the t distribution with \(f = (\overline{x}_{q1} - \overline{x}_{q2})^2 / \left[(s^2(\overline{x}_{q1}))^2 / (n-1) + (s^2(\overline{x}_{q2}))^2 / (n-1) \right] \) degrees of freedom, leaving an area of \(a/2 \) to the right. Thus

\[
f = \frac{(0.00288248 + 0.1935112)^2}{[(0.00288248)^2/4] + [(0.1935112)^2/4]}
\]

\[= 4.12\]

C.I. = \((7.540 - 1.80761) \pm t_{0.025, 4.12}(0.196394)^{1/2} \)

\[= 5.73239 \pm 2.770(0.443163)\]

\[= [4.504829, 6.9599515]\]

Since the confidence interval for \(W_{q2} - W_{q1} \) is totally to the right of zero, there is a strong evidence for the hypothesis that \(W_{q2} > W_{q1} \). This will be tested formally in the next section.
E.4.4 Hypothesis Testing

At this point it would be interesting to test statistically, if there is a significant difference between the mean waiting time of the two classes of customers. Intuitively, due to the queueing discipline by which the system operates, one expects a difference between the waiting times.

Let

\[H_0 : \bar{W}_{q1} = \bar{W}_{q2} \]
\[H_1 : \bar{W}_{q1} \neq \bar{W}_{q2} \]

Choose \(\alpha = 0.05 \)

Critical region: \(T < -2.770 \) and \(T > 2.770 \)

where

\[T = \frac{\bar{x}_{q1} - \bar{x}_{q2} - 0}{s^2(\bar{x}_{q1}) + s^2(\bar{x}_{q2})}^{1/2} \]

with \(f = 4.12 \) (degrees of freedom)

Computations:

\[t = \frac{(7.5400 - 1.80761) - 0}{(0.00288248 + 0.1935112)^{1/2}} \]

\[= 12.935167 \]

Conclusion: Since \(t > T \), \(H_0 \) is rejected and conclude that there is a significant difference between the waiting times of each customer type.
Figure E.1: Flowchart for the Overall Structure of the System Simulation

1. Start
2. Read input parameters
3. - Set simulation CLOCK = 0
 - Initialize system state and statistical counters
 - Initialize events list
4. - Call the Time-advance routine
 - Call event routine
5. - Determine the next event type, i
 - Advance the simulation CLOCK
6. - Update system state
 - Update statistical counter
 - Generate future events and add to the event list
7. Is the simulation run completed?
 - no
8. - Compute estimates of the average waiting time
 - Print statistics
9. Is this the first run with current seed?
 - yes
10. Replace Random # generator 'U' by (1-U)
 - no
- Compute estimate of the average waiting time for the complementary sequence
- Print statistics

Is this the last run?

no
- Go to top of program and read new seed

yes
- Perform confidence interval calculation from the average waiting times
- Print summary of statistics

Stop
//CHECK JOB (R240,SL2,,5), 'BACHAN', CLASS=A, REGION=4028K
// EXEC WATFIV
//S0.SYSIN DD *
$JOB WATFIV
C
C **
C * THIS PROGRAM IS DESIGNED TO SIMULATE A VARIANT OF THE M/M/2 QUEUE *
C * IN WHICH TWO TYPES OF CUSTOMERS ARRIVE INDEPENDENTLY WITH POISSON *
C * ARRIVAL RATES AND REQUIRE EXPONENTIALLY DISTRIBUTED AMOUNT OF *
C * SERVICE RESPECTIVELY FROM A SERVER. *
C * THE QUEUEING DISCIPLINE WITHIN EACH CLASS IS FIRST-COME FIRST *
C * SERVED (FCFS); TYPE-1 CUSTOMERS HAVING SERVICE PRIORITY OVER *
C * TYPE-2 CUSTOMERS. *
C * SERVICE OF EACH CLASS, ONCE STARTED, IS NEVER INTERRUPTED *
C * (NON-PREEMPTIVE DISCIPLINE). *
C **
C
C THE FOLLOWING ARE THE MAJOR NOTATIONS THAT WILL BE USED:
C
C MIAT(I) = MEAN INTERARRIVAL TIME OF CLASS-I, I=1,2
C AMU(I) = MEAN SERVICE TIME OF CUSTOMERS OF CLASS-I, I=1,2
C ST(I) = SERVICE TIME OF CLASS-I, I=1,2
C TNE(I) = TIME OF NEXT EVENT-I, I=1,...,5
C TIME = CURRENT CLOCK TIME.
C ATIQ(I) = AVERAGE TIME IN QUEUE FOR CLASS-I, I=1,2
C AWQ(I) = AVERAGE TIME IN QUEUE FOR CLASS-I FOR THOSE WHO WAIT
C PROBIT = PROBABILITY OF AN IDLE TELLER.
C STATUS(I) = STATUS OF TELLER-I, I=1,2 (1=BUSY, 0=IDLE)
C TNA(I) = TOTAL # OF ARRIVAL OF CLASS-I.
C TNAWQ(I) = TOTAL # OF ARRIVAL OF CLASS-I WHO WAIT IN QUEUE
C NIQ(I) = TOTAL # IN QUEUE OF CLASS-I.
C SEED = INITIAL SEED TO DRIVE THE R.N. GENERATOR.
C RATIQ(I) = AVERAGE TIME IN QUEUE FOR CLASS-I FOR EACH ANTITHETIC
C REPLICATION.
C RAWQ(I) = AVERAGE TIME IN QUEUE FOR CLASS-I FOR THOSE WHO WAIT
C FOR EACH ANTITHETIC REPLICATION.
C RPROB = AVERAGE PROBABILITY OF AN IDLE TELLER FOR EACH
C ANTITHETIC REPLICATION.
C ULJ(I) = UPPER LIMIT OF THE CONFIDENCE INTERVAL OF PARAMETER-I
C LLJ(I) = LOWER LIMIT OF THE CONFIDENCE INTERVAL OF PARAMETER-I
C TARRVL(I,J) = TIME OF ARRIVAL OF J-TH CUSTOMER OF TYPE-I
C YFL = UNIFORM 0-1 RANDOM NUMBER
C
C ------------------------------
C
C *** MAIN PROGRAM ***
C ------------------------------
C
C ------------------------------
C
C REAL MIAT(5),AMU(5),TARRVL(5,2000),T0TDEL(5),ST(5),LL2(9),LL3
C REAL TNE(5),DELAY(5),AWQ(5),AQL(5),ATIQ(5),UL1(9),UL2(9),LL1(9)
C REAL RATIQ(5,2000),SMAHQT(5),SMAWQ(5),RATIQ(5,10),RAWQ(5,10)
C REAL RAWQ(5,2000),APROB(2000),RPROB(10),ATIQST(9),AMQT(10)
C
C Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REAL ATIQ(9), AWOQ(9), B1(9), B2(9), SSQ1(9), SSQ2(9), YY1(9), YY2(9)
INTEGER STATUS(2), NIQ(S), SEED
INTEGER TNA(S), TNAQ(5), IDEN(2)
COMMON SEED, IX, IY, IND
C
C *** SPECIFY THE NUMBER OF EVENT TYPES FOR THE TIMADV ROUTINE
C
NEVNTS=5
NM=0
C
C *** EVENT 1 = DEPARTURE FROM SERVER-1
C *** EVENT 2 = DEPARTURE FROM SERVER-2
C *** EVENT 3 = ARRIVAL OF A TYPE-1 CUSTOMER
C *** EVENT 4 = ARRIVAL OF A TYPE-2 CUSTOMER
C *** EVENT 5 = SCHEDULE THE END OF THE SIMULATION
C
C *** READ INPUT PARAMETERS
C
READ, (HIAT(I), I=3,4)
READ, (AMU(I), I=3,4)
READ, TEND
4000 READ(5,4,END=5000) SEED
 IND=1
 DO 3 I=3,4
 SMATI(I)=SMAWQ(I)=SMPROB=0.
 3 CONTINUE
C
C *** INITIALIZE THE SIMULATION
C
5 EXECUTE INITAL
C
C *** DETERMINE THE NEXT EVENT
C
10 EXECUTE TIMADV
C
C *** EXECUTE THE APPROPRIATE EVENT ROUTINE
C
IF(NEV.EQ.3 .OR. NEV.EQ.4) THEN
 EXECUTE ARRIVAL
 GO TO 10
ELSEIF(NEV.EQ.1 .OR. NEV.EQ.2) THEN
 EXECUTE DEPART
 GO TO 10
ELSE
 GO TO 15
ENDIF
15 EXECUTE FTADV
 IF(IFLAG.EQ.2) THEN
 GO TO 20
 ELSE
 EXECUTE DEPART

GO TO 15
ENDIF

20 EXECUTE STAT
EXECUTE RESULT
IF(IND.EQ.1) THEN
 IND=2
 EXECUTE ANTIT
 GO TO 5
ELSE
 EXECUTE ANTIT
 EXECUTE REPLI
 GO TO 4000
ENDIF

5000 EXECUTE CONCAL
EXECUTE STARES
GO TO 99

C -----------------------------
C -----------------------------
C *** REMOTE BLOCK LISTINGS ***
C -----------------------------
C *** REMOTE BLOCK 'INITIAL' INITIALIZES THE SIMULATION CLOCK, SYSTEM
C *** STATE AND OTHER VARIABLES TO BE USED IN THE SIMULATION.
C -----------------------------

REMOTE BLOCK INITIAL
C -----------------------------
C *** INITIALIZE THE SIMULATION CLOCK
C
TIME=0.
IFLAG=NFLAG=0
C
C *** INITIALIZE THE STATE VARIABLES
C
IX=SEED
TBT=0.
DO 110 J=1,2
 STATUS(J)=0
110 CONTINUE
DO 120 I=3,4
 NIQ(I)=0
 ST(I)=0.
120 CONTINUE
C
C *** INITIALIZE THE STATISTICAL COUNTERS.
C
DO 130 J=3,4
 TNA(J)=0
 TOTDEL(J)=0.
 TNAWQ(J)=0
130 CONTINUE
C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
C *** INITIALIZE THE EVENT LIST. SINCE NO CUSTOMERS ARE PRESENT, THE
C *** TIME OF THE NEXT DEPARTURE IS SET AT A LARGE VALUE
C
 DO 150 K=3,4
 TNE(K)=TIME+EXPON(MIAT(K))
150 CONTINUE
 DO 160 J=1,2
 TNE(J)=1.E+30
160 CONTINUE
 TNE(5)=TEND
ENDBLOCK
C
C *** REMOTE BLOCK 'TIMADV' DETERMINES THE TIME OF OCCURRENCE OF
C *** NEXT EVENT TYPE.
C
C REMOTE BLOCK TIMADV
C--------------------
 RMIN=1.E+29
 NEXT=0
C
C *** DETERMINE THE EVENT TYPE OF THE NEXT EVENT TO OCCUR.
C
 DO 210 I=1,NEVNTS
 IF(TNE(I).GE.RMIN) GO TO 210
 RMIN=TNE(I)
 NEXT=I
210 CONTINUE
C
C *** ADVANCE THE SIMULATION CLOCK
C
 TIME=TNE(NEXT)
ENDBLOCK
C
C *** REMOTE BLOCK 'FTMADV' DETERMINES THE TIME OF DEPARTURE OF NEXT
C *** EVENT TYPE WHEN THE SIMULATION RUN LENGTH IS REACHED.
C
C REMOTE BLOCK FTMADV
C--------------------
 RMIN=1.E+29
 DO 49 J=3,4
 TNE(J)=1.E+30
49 CONTINUE
 NEXT=0
 DO 59 I=1,4
 IF(TNE(I).GE.RMIN) GO TO 59
 RMIN=TNE(I)
 NEXT=I
59 CONTINUE
 IF(NEXT.NE.0) THEN
 TIME=TNE(NEXT)
 ELSE
IFLAG=2
ENDIF
ENDBLOCK

C
C *** REMOTE BLOCK 'ARRIVAL' EXECUTES THE ARRIVAL EVENT WHEN IT OCCURS.
C ---
C REMOTE BLOCK ARRIVAL
C ---
C TNA(NEXT)=TNA(NEXT)+1
C
C *** SCHEDULE THE NEXT ARRIVAL
C
DO 310 J =3,4
 TNE(J)=TIME+EXPON(MIAT(J))
310 CONTINUE

C *** IF SERVERS ARE BUSY, ADD ONE TO THE NUMBER OF CUSTOMERS IN THE
C *** PARTICULAR QUEUE AND STORE THE TIME OF ARRIVAL OF THE ARRIVING
C *** CUSTOMER IN THE ARRAY 'TARRVL'
C
EXECUTE SERVER
 IF(STATUS(1).EQ.1.AND.STATUS(2).EQ.1) THEN
 NIQ(NEXT)=NIQ(NEXT)+1
 TNAW0(NEXT)=TNAW0(NEXT)+1
 TARRVL(NEXT,NIQ(NEXT))=TIME
 ELSE
 C
C *** IF A SERVER IS IDLE START SERVICE ON THE ARRIVING CUSTOMER
C
 DELAY(NEXT)=0.
 TOTDEL(NEXT)=TOTDEL(NEXT)+DELAY(NEXT)
C
C *** MAKE A SERVER BUSY AT RANDOM BY EXECUTING THE ASSIGN BLOCK
C
EXECUTE ASSIGN
 STATUS(JJ)=1
C
C *** SCHEDULE A DEPARTURE
C
 Y=EXPON(AMU(NEXT))
 TNE(JJ)=TIME+Y
 ST(NEXT)=ST(NEXT)+Y
ENDIF
ENDBLOCK

C
C *** REMOTE BLOCK 'DEPART' EXECUTES THE DEPARTURE EVENT WHEN IT OCCURS
C ---
C REMOTE BLOCK DEPART
C ---
C *** IF QUEUE IS EMPTY MAKE SERVER IDLE AND SET THE TIME OF THE NEXT
C *** DEPARTURE TO A LARGE VALUE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
IF(NIQ(3).EQ.0.AND.NIQ(4).EQ.0) THEN
STATUS(NEXT)=0
TNE(NEXT)=1.E+30
ELSE

C *** IF QUEUE IS NOT EMPTY, SCHEDULE A DEPARTURE; TYPE-1 CUSTOMERS HAVING
C *** PRIORITY OVER TYPE-2'S
C
DO 425 J=3,4
IF(NIQ(J).GE.1) THEN
NIQ(J)=NIQ(J)-1
DELAY(J)=TIME-TARRVL(J,1)
TOTDEL(J)=TOTDEL(J)+DELAY(J)
Y=EXPON(AMU(J))
ST(J)=ST(J)+Y
TNE(NEXT)=TIME+ Y
K=NIQ(J)
IF(NIQ(J).GE.1) THEN
DO 430 I=1,K
II=I+1
TARRVL(J,II)=TARRVL(J,II)
430 CONTINUE
ENDIF
GO TO 435
ENDIF
425 CONTINUE
435 CONTINUE
ENDIF
END BLOCK

C
C REMOTE BLOCK 'RANDOM' GENERATES 0-1 RANDOM NUMBERS USING IBM
C REMOTE SUBROUTINE RANDU.
C ---------------
C REMOTE BLOCK RANDOM
C
CALL RANDU(IX,IY,YFL)
IX=IX
IF(IND.EQ.2) YFL=1-YFL
END BLOCK

C
C REMOTE BLOCK 'SERVER' CHECKS FOR THE CURRENT STATUS OF THE SERVERS
C ---------------
C REMOTE BLOCK SERVER
C
NIT=0
J=0
DO 510 I=1,2
IF(STATUS(I).EQ.0) THEN
NIT=NIT+1
J=J+1
510 CONTINUE

IDEN(J)=1
ENDIF
510 CONTINUE
IF(NIT.EQ.0)THEN
 DO 505 I=1,2
 STATUS(I)=1
 505 CONTINUE
ENDIF
END BLOCK
C
C ***REMOTE BLOCK 'ASSIGN' RANDOMLY ASSIGN AN ARRIVAL TO A FREE SERVER
C ________________________________
REMOTE BLOCK ASSIGN
C ________________________________
IF(NIT.EQ.1) THEN
 JJ=IDEN(I)
ELSEIF(NIT.EQ.2) THEN
 EXECUTE RANDOM
 IF(YFL.LE.0.5) THEN
 JJ=IDEN(I)
 ELSE
 JJ=IDEN(2)
 ENDIF
ENDIF
END BLOCK
C
C ***REMOTE BLOCK 'STAT' CALCULATES THE RELEVANT STATISTICS.
C ________________________________
REMOTE BLOCK STAT
C ________________________________
DO 610 J=3,4
 TBT=ST(J)+TBT
 610 CONTINUE
DO 620 K=3,4
 ATIQ(K)=TOTDEL(K)/TNA(K)
 AWQ(K)=TOTDEL(K)/TNAWQ(K)
 620 CONTINUE
PROBIT=(TIMEI2-TBT)/(TIMEI2)
END BLOCK
C
C ***REMOTE BLOCK 'ANTIT' FINDS THE SUM OF THE MEANS OF EACH PAIR
C ***ANTITHETIC REPLICATIONS.
C ________________________________
REMOTE BLOCK ANTIT
C ________________________________
DO 980 K=3,4
 SMATIQ(K)=SMATIQ(K)+ATIQ(K)
 SMAWQ(K)=SMAWQ(K)+AWQ(K)
 980 CONTINUE
SMFROB=SMFROB+PROBIT
END BLOCK
C
C *** REMOTE BLOCK REPLI FINDS THE MEAN FOR EACH PAIR OF REPLICATION
C --
 REMOTE BLOCK REPLI
C --

 NM=NM+1
 DO 981 J=3,4
 RATIQ(J,NM)=SMATIQ(J)/2.
 RAWQ(J,NM)=SMAWQ(J)/2.
 RPROB(NM)=SMPR0B/2.
 981 CONTINUE

END BLOCK
C
C *** REMOTE BLOCK CONCAL CALCULATES THE CONFIDENCE INTERVAL FOR THE
C *** MEASURE OF PERFORMANCE.
C --
 REMOTE BLOCK CONCAL
C --

 DO 982 I=3,4
 ATIQGT(I)=ANQGT(I)=PR0BST=0.
 982 CONTINUE

 N=5
 DO 983 J=1,N
 DO 984 L=3,4
 ATIQGT(L)=ATIQGT(L)+RATIQ(L,J)
 AWGT(L)=AWGT(L)+RAWQ(L,J)
 984 CONTINUE

 PROBST=PROBST+RPRCBIJ)

 DO 985 L=3,4
 ATIQM(L)=ATIQGT(L)/N
 AWQM(L)=AWGT(L)/N
 985 CONTINUE

 PROBM=PROBST/N
 DO 1599 I=3,4
 B1(I)=B2(I)=B3=0.
 1599 CONTINUE

 DO 1600 I=1,N
 DO 1601 L=3,4
 B1(L)=B1(L)+(RATIQ(L,I)-ATIQM(L))**2
 B2(L)=B2(L)+(RAWQ(L,I)-AWQM(L))**2
 1601 CONTINUE

 B3=B3+(RPR0B(I)-PR0BM)**2

 DO 1600 L=3,4
 SSQ1(L)=B1(L)/(N-1)
 SSQ2(L)=B2(L)/(N-1)
 SSQ3=B3/(N-1)
 1600 CONTINUE

 F=2.776
 DO 1603 L=3,4
YY1(L) = F*SQRT(SSQ1(L)/N)
YY2(L) = F*SQRT(SSQ2(L)/N)
YY3 = F*SQRT(SSQ3/N)

1603 CONTINUE
DO 1604 I=3,4
UL1(I)=YY1(I)+ATIQM(I)
UL2(I)=YY2(I)+AWQM(I)
UL3=YY3+PROBM
LL1(I)=ATIQM(I)-YY1(I)
LL2(I)=AWQM(I)-YY2(I)
LL3=PROBM-YY3

1604 CONTINUE
END BLOCK

C
C $$$ REMOTE BLOCK 'RESULT' PRINTS THE DESIRED PARAMETERS
C ----------------------------
C REMOTE BLOCK RESULT
C ----------------------------
C $$$ PRINT HEADING AND INPUT PARAMETERS
C
C
PRINT 710
710 FORMAT(/15X,'NON-PREEMPTIVE PRIORITY QUEUEING MODEL')
PRINT 715
715 FORMAT(15X,'--------------------------------------')
PRINT 720
720 FORMAT(/10X,'INPUT PARAMETERS TO THE SIMULATION MODEL')
PRINT 725
725 FORMAT(/10X,'')
PRINT 730
730 FORMAT(/5X,'CUSTOMER TYPE',5X,'MEAN INTERARRIVAL TIME(MIN)',5X,'MEAN SERVICE TIME(MIN)')
DO 740 I=1,2
PRINT 735,I,MIA(I+2),AMU(I+2)
735 FORMAT(5X,I8,20X,F6.1,20X,F6.1)
740 CONTINUE
PRINT 745,SEED
745 FORMAT(/5X,'INITIAL SEED FOR RANDOM NUMBER GENERATOR =',I9)
PRINT,
IF(IND.EQ.2) PRINT,' COMPLIMENTARY RANDOM NUMBER SEQUENCE USED'
PRINT 750,TIME
750 FORMAT(/5X,'SIMULATION RUNLENGTH =',F8.1,3X,'MINUTES')
PRINT 750
750 FORMAT(/15X,'RESULTS FROM THE SIMULATION')
PRINT 755
755 FORMAT(15X,'--------------------------------------')
PRINT,
PRINT,
PRINT,
PRINT,' STEADY-STATE MEASURES OF PERFORMANCE'
PRINT,
PRINT 805
805 FORMAT(/5X,'CUSTOMER TYPE',5X,'AVERAGE TIME IN QUEUE BEFORE SERVIC
E BEGINS (MINS')
DO 810 I=1,2
PRINT 815,1,ATIQ(I+2)
815 FORMAT(5X,I9,20X,F8.4)
810 CONTINUE
PRINT 820
820 FORMAT(5X,'CUSTOMER TYPE',5X,'AVERAGE TIME IN QUEUE FOR THOSE WHO
WAIT (MINS')
DO 825 I=1,2
PRINT 830,I,AWQ(I+2)
830 FORMAT(5X,I9,18X,F8.4)
825 CONTINUE
PRINT 835,PROBIT
835 FORMAT(5X,'PROBABILITY THAT A TELLER IS IDLE =',F7.4)
END BLOCK

C
C ### REMOTE BLOCK 'STARES' PRINTS THE RESULTS OF THE STATISTICS.
C ---------------
REMOTE BLOCK STARES
C ---------------

PRINT 1312
1312 FORMAT(//)
PRINT,' SUMMARY OF STATISTICAL RESULTS'
PRINT,' -------------------------------'
PRINT,' THE REPLICATION TECHNIQUE WAS APPLIED TO ESTIMATE THE'
PRINT,' CONFIDENCE INTERVALS FOR THE MEASURES OF PERFORMANCE.'
PRINT,' TO REDUCE THE VARIANCE OF THE ESTIMATORS ANTITHETIC'
PRINT,' SAMPLING WAS APPLIED.'
1314 FORMAT(' REPLICATIONS TYPE-1 TYPE-2')
1315 FORMAT(5X,I9,7X,F8.5,14X,F8.5)
1318 FORMAT(5X,'OVERALL POINT ESTIMATE FOR A TYPE-',I1,'=',F9.5)
PRINT 1312
PRINT,' ANTITHETIC AVERAGE TIME IN QUEUE '
PRINT 1314
DO 1326 J=1,N
PRINT 1315,J,(RATIO(J),I=3,4)
1326 CONTINUE
DO 1327 J=3,4
I=J-2
PRINT 1318,I,ATIQ(J)
PRINT 1330,LL1(J),UL1(J)
1330 FORMAT(5X,F9.5,'<== 95% C.I. FOR AVERAGE TIME IN QUEUE ==>',
#F9.5)
1327 CONTINUE
PRINT 1312
PRINT,' ANTITHETIC AVERAGE TIME IN QUEUE FOR THOSE WHO
#WAIT'
PRINT 1314
DO 1331 J=1,N
PRINT 1315,J,(RAWQ(J),I=3,4)
1331 CONTINUE
 DO 1332 J=3,4
 I=J-2
 PRINT 1318,I,AWMQ(J)
 PRINT 1333,LL2(J),UL2(J)
 1333 FORMAT(5i,8.4,'*** 95% C.I. FOR AVERAGE TIME IN QUEUE FOR THOSE
 & WHO WAIT ***',F8.4)
 1332 CONTINUE
 PRINT 1312
 PRINT,' ANTITHETIC REPLICATION PROBABILITY OF IDLE TELLER'
 DO 1334 J=1,N
 PRINT 1340,J,PR0B(J)
 1334 CONTINUE
 PRINT,' OVERALL POINT ESTIMATE FOR PROBABILITY OF IDLE TELLER=
 *',F8.4)
 PRINT 1337, LL3,UL3
 1337 FORMAT(5I,F8.4,'*** 95% C.I. FOR PROBABILITY OF IDLE TELLER***
 *',F8.4)
 PRINT 1312
 ENDBLOCK
C
C *** THE FUNCTION EXPN GENERATES EXPONENTIAL INTERARRIVAL AND SERVICE
C *** TIMES (EXPONENTIAL RANDOM VARIATES) USING THE IBM RANDOM NUMBER
C *** GENERATOR. FOR THIS GENERATOR, WE NEED AN ODD SEED WIDTH NINE
C *** OR LESS DIGITS.
REAL FUNCTION EXPN(P)
 INTEGER SEED,IX,IY
 COMMON SEED,IX,IY,IND
 CALL RANDU(IX,IY,YFL)
 IX=IY
 IF(IND.EQ.2) YFL=1-YFL
 EXPN =-P*SALOG(YFL)
 RETURN
END

ENTRY 4 5
3 4
1000
123456789
346820481
784928413
284756873
475638471
18SY
STOP
VITA AUCTORIS

1959 Born in Trinidad, West Indies, on September 25th.

1979 Completed secondary education from ASJA Boys' College and Naparima College, Trinidad.

1982 Graduated from the University of the West Indies, St. Augustine, Trinidad, with a Bachelor of Science degree in Chemical Engineering (First Class Honours).

1982 Worked as a Petroleum Engineer at Trinidad-Tesoro Petroleum Company Ltd., Trinidad.

1984 Awarded a Canadian Commonwealth Scholarship to pursue a Master's degree in Industrial Engineering at the University of Windsor, Canada.

1986 Currently a candidate for Master of Applied Science in Industrial Engineering at the University of Windsor, Windsor, Ontario, Canada.