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ABSTRACT

Thin gold films, vacuum deposited onto a beryllium substrate,
have been irradiated with lH+,’+He+,7Li+, and l]B*'progectiles in the
energy range 50-110 keV., The backscatter intensity at a laboratory
scattering angle of 136.4 degrees was measured. The intensity is
not exactly proportional to film thickness but increases more rapidly.
This effect has been attributed to multiple small-angle collisions,
Using estimates for the angular divergence of an ion beam as it traverses
a thin film, the backscatter intensity has been corrected for compound

scattering, The observed scattering cross sections are in good agreement

with theory for scattering in a shell=shielded Coulomb potential,
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CHAPTER 1
INTRODUCT | ON
The energy loss of atomic projectiles in solids can be

attributed to two separate processes: nuclear recoil and electronic
excitation, In a nuclear collision the target nucleus together with
its orbital electrons recoils, and the projectile is deflected,
In general slow ions lose energy primarily to target atoms and their
trajectory consists of a devious path, while fast ions dissipate energy
mainly through electronic excitation and travel, therefore, in nearly
straight lines. Although the major energy loss mechanism for light
atomic projectiles above about 10“ eV is the electronic one, some nuclear
collisions occur and backscattering of incident ions can result, At

6~107 eV, such interactions are almost purely

energies above 10
Coulombic for the lightest atomic projectiles, and the scattering,
therefore,exhibits Rutherford behaviour. At lower energies the incident
particle at its point of maximum potential energy in the collision sees
a weakened Coulomb potential, due to electronic screening between the two
nuclei. One of the aims of this investigation is to study the interaction
potential for nearly head-on collisions of light atomic projectiles with
gold, In such collisions the incident ions can be scattered back through
the surface of the target sample into the surrounding vacuum,
Backscattering of light atomic projectiles is used to investigate
the location of impurity atoms in crystals (Mayer et al. 1968), and to

explain sputtering (Behrisch 1969; Signund 1968 and 1969; van

Wijngaarden et al, 1970). McCracken and Freeman (1969) have studied
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the energy distribution of hydrogen ions backscattered from thick heavy
targets. They assumed a model for the process in which '"the incident
jon slows down in the target material without undergoing any scattering,
that it is then scattered [in a pure Coulomb potential:l through a large
angle and that it returns to the surface without further scattering.'
The energy dependence of their observed backscatter intensity agrees
fairly well with predictions based on their model, but the intensity is
high by a factor of about 4, A normalization by 3.1 is required to fit
Behrisch's angular distribution of H*'backscattered from copper, They
therefore concluded that a single~collision model was inadequate, To
determine the significance of multiple small-angle collisions in this
work, an analysis of the dependence of backscatter yield on target

thickness has been made,
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CHAPTER 11
THE ORY

Consider an ion beam incident on a target film of several atomic
layers thickness, If the ion mass m, is less than the target atom mass
m,, single-collision backscattering can occur, In such a violent collision
only the target atom and the projectile needkbe{considered. This is so
because the target atom is nearly free (Bergstriom and Domeij 1966) since
bond energy of neighbouring atoms is small for keV projectiles, The
projectile does not see the target atom's neighbours since the transit

time across the interaction region of the target atom (typically about

10716 0"13 1o~

sec) is much shorter than normal vibrational periods (1
sec) in the solid, Multiple scattering results whenever the projectile
sufficiently penetrates the electron clouds of more than one atom, and
occurs therefore in all thick target media, The two-body scattering
problem, however, must be understood before we can proceed to study
multiple scattering effects,

The scattering of keV projectiles from atoms is not strictly
elastic, since electronic excitation of both the incident ion and the
target atom usually results. The energy loss to electrons, however, is
a small fraction of the incident ion energy and the single scattering
event can be considered elastic.

Because of electronic screening, the actual potential energy of
two interacting atoms is unknown., At high energies, when the colliding
nuclei interpenetrate each other's electron clouds, electronic screening

is small and the potential energy is almost purely Coulombic:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V(R) =2,2,e2/R (1)
The scattering is described by the familiar Rutherford cross section
- 2 L .
(d(r/dn)R_ (b/4)° csc'(6/2) % (2)

where b is the collision diameter, the distance of closest approach of

two unscreened nuclei in a head-on collision:
b=2,2,e2/($uv?) . @)

Here u is the reduced mass of the projectile-target system, and v is

their initial relative velocity., The Rutherford cross section is accurate
only as long as the minimum distance of approach % b (1+csc 6/2) is much
less than the effective screening radius of the interacting particles.

"H backscattered from Au at OE:I36.h°, for example, we find

For
deviations from Rutherford behaviour at energies as high as 100 keV,
For more massive projectiles and or smaller scattering angles, the lower
energy bound for Rutherford behaviour increases,

Several interatomic potentials have been proposed to allow for
the electronic screening of the nuclear Coulomb field. Bohr (1948)

suggested that the interaction between two atomic structures is given

by the screened Coulomb potential energy

V(R):I(lezezlk) exp(=R/a_). (4)

% All Center-of-Mass (CM) quantities will be written without
a subscript., Laboratory {(lab) quantities will be denoted

by the subscript £ .
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The range of the screening, and hence a measure of the overall size of

the two interacting particles, is given by the Bohr screening length

a=ag/ 28/3+22/3 (5)

Here a,=0.529 K, the Bohr radius. Firsov (1958) employs a screening

factor calculated from the Thomas-Fermi statistical model of the atom
a=0,8853 ag. (6)

We shall refer to and use this latter value exclusively as the screening
parameter in the remainder of this thesis.

For R < a, the Bohr potential energy is approximately given as
V(R)= (2,2,6* /R) (1-R/a) H(1-R/a) (7)

where H(x) is the Heavi side step function

1 if x>0
H{x) =
0 if x<0.

Eq. 7 represents the interaction energy between a charge Z;e and a
charge Z,e when the latter is surrounded by a spherical shell of

An important advantage of the shell-shielded potential is that the
corresponding cross section has a simple analytic form:

2

= “_a_.(__a_l!_.fé.i_b.Lz(l_)____ :k(é_ﬁ_") (8)
ta (a+b) sin2(8/2)+ b? g

ola
19
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where the correction factor k is

k = I'*'%b/a 2 (9)
1+b/a+b2/(baZsin?30)|

(See Appendix 11),

Eq. 8 is readily integrated to give the classically expected finite

total cross section

T (10)

In the limit of high incident energy (small b) and large screening

radius, b/a is small, and (ggf)(ﬁq. 8) approaches (Qg{)(ﬁq. 2).

Smith et al, (1967) have used variational methods to obtain the

best empirical fit of the functional form
V(R) =Ae/R exp(-R/C) ()

to experimental data for scattering of He on Ne and Ar in the energy

range of 10 eV to 100 keV, 1In Eq, 11 the variational parameters are

A and C, The empirical values for C are about twice as large as the
corresponding Thomas-Fermi screening parameters (Eq. 6). Furthermore
Abrahamson (1963) has calculated Thomas~Fermi-Dirac potentials for the
interaction of noble-~gas atoms, and has found good agreement with experiment
at small R, In Figure | Abrahamson's results for Ne-Ne, Kr-Kr, and

Rn-Rn interactions are shown, along with the analytic potentials of Eqgs,

1, 4 and 7, for both screening lengths a and 2a, Curve number 3,

representing. the shell-shielded Coulomb potential energy
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Figure 1. Various potentials as a function of internuclear distance R.
The points are Abrahamson's (1963) calculations for interactions between
like noble~gas atoms in the Thomas-Fermi-Dirac theory,
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V(R) = (Z,2,62/R) (1-R/2a) H(1-R/2a) (12)

gives the best fit for R{a, The corresponding cross section is given
by Eqs. 8 and 9 with a replaced by 2a,

Cross sections for Bohr's screened potential have been calculated
numerically for several values of b/a (Everhart et al. 1955). For
/2 £06<m and b/a £1, the Rutherford cross section is as much as a factor
of 2,5 larger than Everhart's values, whereas the shell-shielded cross
section (Eq. 8) always lies within 10% of the numerical results,

Our experimental scattering cross sections (to be discussed
below) for lH, uHe, 7Li and I]B on Au for a fixed laboratory scattering
angle of 136.4° and at laboratory energies from 50 to 110 keV are
presented as circles in Fig, 2. The Rutherford cross sections (dash-dot
lines) lie well above the shell-shielded (dashed lines) and Everhart's
exponentially-screened Coulomb values (O 's). The good agreement between
the shell-shielded and exponentially-screened Coulomb cross sections is
evidence that backscattering is governed primarily by the potential at
distances R <a., This is so because the former interaction is zero for
R>a while the latter is not, The solid curve, presenting the cross
sections of the shell-shielded Coulomb potential with the screening radius
doubled, agrees fairly well with the reduced experimental data (Chapters

V and V1) both in energy dependence and absolute value,
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Figure 2, Energy dependence of lab cross sections at 6.=136.4 for various
projectiles on gold, =--- Rutherford; shell-shielded Coulomb a—2a;

-===- shell~-shielded Coulomb; & screened Coulomb; © experimental,
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CHAPTER 111
EXPERIMENTAL
Figure 3 is a schematic diagram of the apparatus. Monoenergetic

ion beams at energies below 120 keV are obtained from a magnetic
analyzer (van Wijngaarden et al. 1970). The angular divergence of the
emerging beam is limited to within 0.2° by a circular slit system,
After collimation the ion beam enters the target chamber which is
maintained at a pressure of the order of IO“7 Torr. Regularly spaced
thin target films of Au, vacuum deposited onto a thick Be plate, can be
moved across the path of the ion beam as indicated by the arrows. A
Faraday cup connected to a bellows can be moved into the path of the
ion beam. The absolute value of the current is measured to within
Z, by a Keithley 410 electrometer, An Ortec Model E-013-025~100 surface
barrier detector, subtending a solid angle A Q2=(5.25+0.03) xlo-“
sr, is positioned at 136.4° with respect to the incident ion beam, The
pulses from the detector are fed through a preamplifier (Ortec Model 109a),
a main amplifier (Ortec Model 485), a single channel analyzer (Ortec Model

ho6a), and are recorded by a digital ratemeter (Ortec Model 434),

3:1 Detector Efficiency
Any ion which is detected has passed through the Au electrode

(228 R thickness) of the surface barrier detector, and then produced
sufficient ionization to create a pulse discernible above the noise of
the detector., To find the minimum energy for 100% detection, the
detector was placed directly in the path of monoenergetic TH*and Yhe t

beams, With the lower discriminator level of the single channel analyzer

10
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Schematic diagram of the apparatus.

Figure 3,



12

fixed just above the detector noise level, the detector efficiency
(number of counts per incident projectile) was observed to be essentially
perfect for protons at primary energies E > 40 keV and for “He at E 2, 50
keV., As the primary energy decreased below these values, so did the
efficiency of the detector. Below 10 keV no particles could be detected.

It is the counting efficiency for the backscattered projectiles
which is of interest in the present experiment, The energy loss for these
projectiles in the thin target films is quite small (Chapter V), and 100%
backscattered-projectile counting efficiency was expected for primary
energies down to about the same limits. To verify this, only incident
energies were used for each projectile and each film for which the
counting rate of the backscattered ions into the detector (eL::136.4°)

remained constant for a small range of the lower discriminator settings,

3:2 Film Thickness

Five thin Au films were vacuum deposited simultaneously onto Be
and glass substrates using an Edwards Coating Unit (Model 12EA/722). The
thicknesses of the Au films on the glass substrate were measured using
optical techniques (Marton and Schlesinger 1969)., To check that
corresponding Au films on the two substrates were of equal thickness, the
following experiment was performed, The glass~backed and Be-backed Au
films were successively irradiated with AHe projectiles and the intensities
of the backscattered projectiles from the various thin films and the two
substrates were measured, The backscatter yield (number of backscatter
counts per incident projectile) from the Be substrate was 0,2% of
that from the thinnest Be-backed Au film, while that of the glass was

about 15% of the yield from the thinnest glass-backed film, After
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subtraction of the substrate backscatter yields from those of the
thin films, the resulting corrected yields were equal, within experimental
error of about 2%, for corresponding films on glass and Be., This agreement
was found over the primary energy range 50-110 keV and for various film
thicknesses in the range 75-350 R, 1t was, therefore, concluded that
(1) corresponding films on glass and Be had the same thickness, and (2)
the observed backscatter yields could be corrected by subtraction of the
substrate yield,

The measured thicknesses of the five Au films are 75, 120, 170,

265, and 350 R. These are estimated to be correct to within 5 .
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CHAPTER 1V
RESULTS

L:1 Backscatter of lﬂ

The five Au films and the Be substrate were bombarded in succession
by proton beams of the order of IO'm A at various fixed primary energies
in the range 50~110 keV, The total backscatter counts during 10 sec
intervals were recorded for each film and the substrate at each primary
energy. Just prior to and immediately after each counting interval the
incident ion current was measured to an accuracy of better than 2%. |If
these two ion current measurements differed by more than 5%, the data were
discarded. In order to minimize statistical errors a minimum total of
3000 backscatter events were recorded for each film at each energy. The
gross backscatter yield, B', was obtained by dividing the backscatter
counts per second by the projectile particle current,

For a given film B' includes contributions from both the Au film
and the substrate, At the highest primary energy the B' value of the
substrate reached a maximum and equalled about 5% of the B' value of
the thinnest Au film, The corrected backscatter yield, By, was calculated
(Sec 3:2) by subtracting the substrate yield from each recorded film yield.
The energy dependence of the observed backscatter yield, By» for the
various Au films is presented in Fig, & by the solid curves through
the points marked as circles, The dashed curves, which represent the
same data corrected for energy loss in the films and for multiple

small-angle scattering effects, will be discussed in Chapter Vi,

4
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Figure 4. The solid curves through the experimental points (circles)
show the dependence of the observed backscatter yield on primary energy
for 1H impinging on various gold films. The dashed curves, without
experimental points, are plots of the corresponding backscatter yields
corrected for multiple scattering effects versus the average energy.
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L:2 Backscattering of _He, Z_I._._j_, and ‘_lg__
The five Au films and the Be substrate were also irradiated

uHe+, 7Li+, and “B+ ions, With these

with monoenergetic beams of
projectiles the substrate yield was either zero, or negligible, being
three orders of magnitude smaller than the thinnest film yield in the
case of uHe. The observed B, values for the various thin films are

presented as circles in Figs, 5-7 as a function of primary energy. As

the projectile mass increased, the primary energy for which 100% detection

could be obtained increased rapidly, limiting the energy range of our

investigations,
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Figure 5, The solid curves through the experimental points (circles)
show the dependence of the observed backscatter yield on primary energy
for “He impinging on various gold films, The dashed curves, without
experimental points, are plots of the corresponding backscatter yields
corrected for multiple scattering effects versus the average energy.
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Figure 6, The solid curves through the experimental points (circles)
show the dependence of the observed backscatter yield on primary energy
for TLi impinging on various gold films. The dashed curves, without
experimental points, are plots of the corresponding backscatter yields
corrected for multiple scattering effects versus the average energy.
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Figure 7, The solid curves through the experimental points (circles)
show the dependence of the observed backscatter yield on primary energy
for 1B impinging on gold films of 75 A and 120 R thickness, The dash-

ed curves, without experimental points, are plots of the corresponding
backscatter yields corrected for multiple scattering effects versus the

average energy.
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CHAPTER V
ENERGY LOSS IN THE FILM

The observed B, value consists of projectiles backscattered
anywhere inside the film material, Since the ifon continually loses
energy as it traverses the target medium, there is a range of energies
over which the main scattering event can occur, In the absence of
multiple scattering, the backscatter yield is directly proportional
to film thickness, and on the average all violent collisions can be
considered to occur at the centre of the thin film, To each By
value we assign an average energy of interaction E=Eg~ oE, where E,
is the primary energy and AE is the energy loss in one~half of the film
thickness, The AE values have been computed using the energy-loss
theory of Lindhard and Scharff (1961) (Lindhard et al. 1963), We shall
now summarize some of the important aspects of this theory.

The total stopping power of a target material for a projectile
is related to the total stopping cross section S by

dE = NS (13)
dr

where N is the atomic density of the target medium, Although an
energetic atomic projectile is deflected only by nuclear collisions
(Bohr 1948), the energy of the projectile is dissipated to both electrons
and recoiling atoms in the stopping medium, Thus the total stopping cross
section consists of the stopping cross section §1 for less in energy in
nuclear collisions and the stopping cross section S, for loss in
energy to electrons:

20
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S=8e+ S, ()

From Eqs. 13 and 14 we see that

£ = (i) + ()

dR {dR dr (15)
where (_c_l_E_} =NSp and (gg_) = NSg. (16)
dR n dR e

To obtain a universal description for energy loss, which is valid for
all atomic projectile-target combinations, Lindhard et al. introduced

the dimensionless variables

= E amg ('7)
zlzzez(m,+mz)

d ? = R Nm ‘irraz
and (TN (18)

for energy and range respectively, In terms of these variables Egs,

16 can be written as
2
8- e ) ®
2
and (%E_)e: "l'“a:‘th;z%u (%_%)e . (20)

Lindhard et al, present a universal curve (Fig. 8) for (Q;) versus
d¢

n
G%which is based on the Thomas-Fermi statistical model of the colliding
atoms. In terms of the new variables the electronic stopping power is

given by
(de) = KeZ (21)
e
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23
where k-2/00.0703 2% 72 (a,+ 0?2 (22)
zI2I3+ Zila 3’+Ai/2 A'zlz

in which A] and A2 are the atomic numbers of the projectile and target

hﬂe, 7Li and 11B on Au are

atoms respectively., The values of K for ‘H,
15,13, 3.00, 1.71, and 1,216 respectively, Thus using Fig. 8 for

Gg% and Eqs. 21 and 22 for [de), one can compute the dE values from
d€¢/n de/e dR

Eqs. 15, 19 and 20,
The energy loss aE in a thin stopping region of thickness aR (much

smaller than the range of the projectile) is then found from the relation-

ship
AE a(g%) 8R (23)

where oE =oF +4E, , (24)
o, @

and AE, = (%E_}e aR. (26)

The simple analytic form (Eq. 21) applies only for projectile
velocities vs\q::va$/3where Vo is the velocity of an electron in the
first Bohr orbit of 'H. Only at these low velocities (v<v,) is the
electronic stopping nearly proportional to v, The upper limit for the
validity of the Lindhard and Scharff theory therefore increases with
projectile mass, being ~ 25 keV for protons and ~ 250 keV for “He.

For protons travelling in Au, however, the theory is in agreement with

experiment (see Whaling 1958, and references contained therein) up to
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energies of 120 keV, allowing us to compute 2~E for protons as well as
for heavier projectiles over the entire energy range investigated,

2/3

For velocities v>v= vQZl electronic stopping completely
dominates; but it is no longer proportional to v. For vy, electronic
stopping still dominates for Zl< Z,. For heavier projectiles and or
decreasing energy, nuclear stopping gradually overtakes electronic stopping
to become the major mechanism of energy loss. However even for our heaviest
projectile (”B), AEe remains a factor of 4 larger than aE,. For this
reason the model described by McCracken and Freeman (1969), where the
incident ion travels in straight lines except for violent collisions,
should be correct to a first approximation for light ions.

The average «E values in the thinnest film are 0.7 keV for protons,
~1 keV for uHe and 7Li and ~ 1,8 kev for ”B. Even large uncertainties

in these small energy corrections still allows us to obtain the average

energy of interaction, E=Ey- oE, to a sufficiently high degree of

precision,
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CHAPTER VI
MULTIPLE SCATTERING EFFECTS

If the incident ions travelled straight-line paths in the target
material until they suffered a single violent interaction and were
scattered, and then proceeded rectilinearly out of the stopping medium,
only particles scattered into 40=5,25 x IO-A sr about 9L=136.’+°
would reach the detector, As a consequence of multiple small-angle
scatterings before the violent collision, the beam gradually spreads out
about the direction of initial incidence, In any infinitesimal time in-
terval dT, there is a probability c(0,E)dT for each particle to be
scattered back, where 0 is the scattering angle with respect to the
dirvection of motion immediately preceding scattering and E is the
projectile energy at that instant. The projectile density in the
diverging beam is azimuthally isotropic. Because the Rutherford cross
section is highly preferred in the forward direction, particles
travelling at angles e-<eL=:|36.h9 with respect to the detector are

more likely to enter the detector than those with 6>6 Con~-

L.
sequently more particles are multiply-scattered into the solid angle

of the detector than out of it, resulting in an enhancement of the
backscatter yield. Backscattered particles also suffer small deflections,

further enhancing the backscatter yield. To compare the observed

backscatter yield with the theoretically predicted one for a single

scattering event, a correction must be applied to B,,

25
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6:1 Angular Divergence

To find the correction factor by which the observed backscatter
yield must be divided in order to correct for multiple small-angle
deflections, an estimate of the angular divergence of the beam in
travelling through a thin stopping region is required, Suppose the
projectile encounters several scattering centers on its passage through
the stopping medium, Since the individual deflections are completely
random, the average deflection is zero, The root-mean-square (mms)
deflection will not vanish, however, since there exists a random walk
in angle away from the direction of jnitial incidence., The total mms
deflection associated with the projectile penetrating a depth aR into
the medium can be estimated as follows, Consider an elastic collision
between two atoms in which the particles are deflected through the common
angle of scattering © in the CM system, From Appendix 111 the projectile

(m,) transfers an amount of energy to the recoiling target (m,) equal to
1 2

T = bmm, E sin2(e/2), (27)
(m] + mz)z

where E is the impact energy. For light projectiles (m, &m,), the
lab and CM systems are almost identical,and 026), Since the vast

majority of collisions are small-angle ones Eq, 27 reduces to

T k(m, /m,)E(6/2). (28)

When a swift fon traverses a thin stopping region, it undergoes
several small deflections from its original direction of motion,

losing an amount of energy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AE,= .Z T (29)

in atomic recoils, where the summation includes all scattering events,

Substituting for T; from Eq. 28, the nuclear energy loss becomes
2 2
& En=(my/my) T ;0 = (m/mp)E 36 (30)
i

h collision, In a

where E; is the projectile energy prior to the it
thin film the projectile energy remains nearly constant and has, there=-
fore, been taken outside the summation sign, If all scattering angles

are small, the resulting angular distribution is approximately gaussian

(Bohr, 1948) with a root-mean-square width

brms = (T 0F 21 % o (31)
i Em

The calculation of 4 E, has been described in the previous Chapter.

Because all scattering events are not small angle ones, the actual

angular distribution will differ from a gaussian, Eq. 31 is, there-

fore, considered to be only a rough estimate of the angular divergence.

6:2 Correction Factor
The correction factor (CF=B,/B) is the factor by which the

observed backscatter yield, enhanced by the effects of multiple small-
angle scattering, must be divided to obtain the yield that would be

observed at a laboratory scattering angle 6L22136.h° in the absence of
multiple deflections, The correction factor was estimated, by means of

a computer program, using the following assumptions:
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(1) The Rutherford cross section gives the form of the

backscattered angular distribution, Since for large scattering angles
the shape of the angular distribution is but little affected by electronic
screening, this assumption introduces only small errors,

(2) A1l backscatter events occur at a film depth aR=1t/2 where
t is the film thickness,

(3) Just prior to backscattering the incident ions are distributed
over an angular distribution of gaussian form, centered about the incident
direction, whose rms width is given by Eq, 31 with aR=1t/2,

() As the backscattered ions travel out of the film they
again spread out in a gaussian angular distribution about theif original
scatter directions, with an rms width at the film surface again given
by Eq. 31 but with o R=(t/2) V2, the average distance the ions travel
through the film after being scattered from the film center towards the
detector,

The resultsof the computation are presented in Fig, 9 as a plot
of the correction factor versus ¢, the predicted s width of the
-angular distribution for aR=t/2, The correction factor was found to
be slightly small, A better one was obtained by replacing 0, as
calculated from Eq, 31, with 1,10 ¢ and reading the correction factor
from the same curve (Fig., 9). The new values were found to be adequate
(See Section 6:3) for all film thicknesses and all projectiles at all
energies investigated,

The dependence of B (the B, value corrected for multiple
scattering effects) on the average energy of interaction (the primary

energy corrected for energy loss in the film) is represented by the
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Figure 9, Correction factor for multiple scattering as a function

of ¢rms evaluated at half the film thickness.
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dashed curves in Figs. 4=7. Both axes in each of these diagrams have
a dual meaning, The abscissa represents the primary energy E, for the
solid curves, and the average energy E=zE_~AE for the dashed curves,
The ordinate represents the observed backscatter yield B, for the solid

curves, and the corrected yield B=B,/CF for the dashed curves.

6:3 Dependence of Backscatter Yield on Film Thickness

The dependence of the observed backscatter yield B, on the
measured film thicknesses at an average interaction energy of 100 keV
is shown by the dashed curves through the experimental points marked as
squares in Fig. 10, Since smooth curves can be fitted quite nicely through
these points, the film thickness measurements appear to be accurate well
within the uncertainty of + 5 &,

In the absence of multiple scattering the backscatter yield should
be proportional to film thickness for t values much smaller than the
range of the projectile in the film, The circles in Fig. 10 represent
the same data as the squares, but the ordinate now represents the yield
corrected for multiple deflections (B=B,/CF). Straight lines (the
solid curves) passing through the origin provide good fits to the B
values, Indicating that the correction factor for multiple deflections
may be fairly accurate. It will be noticed that multiple scattering
effects increase rapidly with increasing projectile mass. The reason
for this is that the ratio AE./m, (See Eq. 31) increases with projectile
mass,

The error in the correction factors is difficult to estimate,
but the deviations from unity of these factors appear to be accurate

to, at least, within 20%. For the thinnest film the average correction
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Figure 10, Each of these diagrams is a composite showing (1) the
thickness dependence of the experimental backscatter yield (squares)
for the indicated projectile on Au, at an energy E = 100 keV, and
(2) the thickness dependence of the corresponding backscatter yield
(circles) corrected for multiple scattering effects,
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factors in the energy range investigated are 1.02, 1.03, 1.05 and 1.12
for ‘H, uﬂe, 7Li and '8 respectively, A 20% error in the deviations
from unity of these numbers results in a change in B of less than 1% for
the three lightest projectiles and less than 3% for the fourth. We
conclude, therefore, that the uncertainties in B introduced by multiple

scattering are practically negligible for the thinnest film,
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CHAPTER V11
DISCUSS I ON
Because the data for the thinnest film are the most certain,
only the 75 R film results will be compared with theory. The laboratory

backscatter cross section is given by (See Appendix 1V)

~__B (32)

oo
»19

where aa is the solid angle subtended by the detector and N is the

atomic density of the stopping medium, The cross sections for the various
projectiles were calculated at each energy investigated by substitution

of numerical values into Eq, 32, The cross sections for lH near 100 keV
were found to be 1,03 times the values predicted by the shell-shielded
Coulomb potential with a replaced by 2a (Eq. 12). Since the conversion
from B value to cross section involves the measured value of the film
thickness and its uncertainty, and the statistical error in B (less than
Z%), no physical significance can be attributed to such a factor., The
observed cross sections for all projectiles have been divided by 1.03,
This nommalizes the theoretical and experimental values for ‘H at 100 keV,
The normalized cross sections are presented as circles in Fig. 2, The
solid curves provide fairly accurate fits to the data, both in magnitude
and energy dependence. The shell-shielded Coulomb potential, therefore,
quite accurately describes the Interaction involved in backscattering of

light atomic projectiles in the energy range investigated,

33
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Figure 2, Energy dependence of lab cross sections at 6.=136.4° for various
projectiles on gold, =+-- Rutherford; shell=shielded Coulomb a—»2a;

==== shell-shielded Coulomb; & screened Coulomb; o experimental,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX 1
THE SHELL SHIELDED COULOMB POTENTIAL

Consider a potential
9(R) = (@/R) (1-R/a) H(1-R/a) 7

where H(x) is the Heav i side step function,
Define U(R)=R §(R) =Q (1-R/a) H(1-R/a).
The charge distribution @ (R) giving rise to this potential Q(R) is given

by Poisson's equation
24
V0= -bre(R).

For R >a, v2¢ vanishes since @ does,
For R<a, vaq): ~4rQ 8(—ﬁ)

For R=a, v0=1 d? [R ¢(R)]‘ u(R)
R dR2

=1d?
R=a R dR® R=a

Here & (R) is the Dirac delta function.

Therefore the total v2¢(R) =1 U'(a)=4mQ §(R)
R

Note: U'(R) =0 everywhere except at R=a,
To find U"'(a), let x=(1~R/a).
Then d2 _1 d°

dR2™ a2 dx2

and 1 d%2 U=0_ d* [xH(x)]
R dR? Ra? dx?

=%_ [28(x)+x 6'(x)] since H'(x) =48(x).
aZ

34
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-8 §x) since f(x) §'(x) =~ &§(x) F'(x)
Ra?

-9 &(i-rR/a)
Ra2

-9 S(r-a) since §(x)=a § (ax)
Ra

and §(x)= §(-x)

-9 &(R-a) since §(x)=0 unless R—a,
=33
Therefore v2y(R) =9 5(R-a) = 4w Q S(R)
a

=~k C,
and the charge distribution is
e = QsR)-amra?) §(R-a),

corresponding to a point charge Q at the centre of a spherical shell

(radius a) of surface charge density -Q(lrrraz)-l.
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APPENDIX 11
THE CLASSICAL CROSS SECTION FOR THE SHELL~-SHIELDED COULOMB POTENTIAL
The validity of the classical calculation has been discussed
by Bohr (1948) and by Mott and Massey (1965). For a classical treat-

ment to be valid, two conditions must be satisfied:

(1) A&a, \&b where \ is the de Broglie wavelength of the projectile,
b is the collision diameter ,

and a is the screening length,
(2) 6 >X/2wa (See Bohr).

For the cases treated in this thesis ( H, He, Li, and B at 50~110 keV on
Au), the classical calculation is valid at all scattering angles 0>0.1°,

The classical differential scattering cross section,

-1
do_ 2wpdp -3 d(p?) _% | d(sin’e/2 (33)
da2nsinG do dicoso)' ding

for a central potential, can be calculated from the relationship between
the Center-of-Mass (CM) scattering angle 6 and the impact parameter p,

From the conservation of energy Goldstein (1959) finds
Yo
R de/ V1-V(p/y)/E-y 2 (34)

[+

where y=p/R and y, = p/R,. Here R, is the turning point of the orbit,

determined by

E = L°/2uR2+V(R,) = Ep?/R + V(R,) (35)

36
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where E is the CM energy, u is the reduced mass and L is the angular
momentum,

In terms of the new variable y and the parameter Q=leze?’ the
potential (Eq. 7)

V(R) =Q/R (1-R/a), O<R<a

(7)
=0 , R>a
becomes v(p/y) =Qy/p (1-p/ya), y>p/a
=0 s Y<P/a
Substitution of this potential into Eq. 34 yields
vla Yo
8= =2 de/ Vi-y? -2 de/ \[l-Qy(l—plya)/(pE)-yT.
o P/a

With w=Ea/Q, and c —p/a, we obtain

Y,

c o
8 =Tr=2 de/ \;‘l--y2 -2 de/ Vit (1=y/Ze) 17w -yf
° e N AYT Ve
=T-2 Arcsin y| =2 Arcsin{(2y+ 1/we)/ \f(wc:)’2 + ln-h/w] c
[~} y:

Using Eq, 35, the upper limit y, becomes

2y, = =1/wc + \/(wc.:)‘2 + 4 +li/w'

On substitution of this value into the previous equation, we find

6=2 Arcsin{(l + 2wc?)/ \/I + (2we)2(1 + I/w)’] -2 Arcsin ¢
=2 (A-B)
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where sin A= (1+2wc)/ 1+ (2we)2 (1 + 1/w)

cos A=2wc (1=-c2 / \/l + (2we)* (1 + l/w)'

sinBz=c

cos B = yl=c?

From the previous equations it follows that

sin 0/2 =sin(A-B) = sin A cos B - cos A sin B

- 1~ , (36)
\/1 +(2we)* (1 + 1/w)

and d(sin’6/2) . | d(sin’e/2)
d(p?) a*d(c?)

2
=1 1+ 2w
a?[] + (2we)? (1 + llw):l

Sl {u_gy_} sin (6/2).
a

2 1=c2

The last step is easily verified by substituting for sin“(e/z) (Eq. 36).

Thus the differential scattering cross section (Eq. 33) becomes

2 2 1% W
do_a (l.:s__] csc (6/2). (7
da bk |1 2w

In terms of the quantities Q (= Z,Z?_ez) and w (= Ea/Q), the
collision diameter is given by b= a/w, and the Rutherford cross section

becomes
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(g_g_‘) - (b/8)% csct(e/2) - (37)2 esc H(0/2)
iy

which allows us to rewrite Eq, 37 in the form
do _ 4 [1=c? wz(g_@’)
da 1+2w d</p

=k (9..".“)
d.rzk

where k“2=2w(l~c2)/(l + 2w) (38)

}

With the aid of Eq, 36, the k value becomes

2
k= 1+ b/(2a) (9)
1 +b/a+b*/(ka?sin 6/2)

and the differential cross section is

éf:k(gs‘>=[__e.t’_ia_+_.b.lzl___}z. ®)
i ““/r | lha sin%0/2) (a+b)+ b>
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APPENDIX 111
TRANSFORMATION FORMULAE BETWEEN LAB AND CM FRAMES
Because the experimentalist takes measurements in the laboratory
(1ab) system, and the theoretician finds it simpler to make his calculations
in the Center-of-Mass (CM) system, conversion formulae from one frame of
reference to the other are necessary,
Consider a nonrelativistic binary elastic collision which

asymptotically appears in the lab system as In Fig. 11,

Vog
m Q>

Vem 7 Vem

CM -1- - - - - - - CM f——
o g
m,
m, o
2
v2$l
(a) before collision (b) after collision

Fig. 11, Asymptotic views of an elastic collision in the lab system,

Initially a particle of mass m, is moving with velocity v,, and

impact parameter p towards a particle of mass m, at rest in the lab
frame, After scattering through angles 8, and ¢2’ m, and m, have velocities

v and v,, respectively. In the lab frame the center of mass of the

ko
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two particles moves with constant velocity ch » The magnitude and direction
of VCM are determined by the conservation theorem for total linear

momentum
(m1+ mz)\fcm = m|_v-01

The CM system moves with respect to the lab system so that the
origin of the CM system is always coincident with the center of mass of
the colliding particles. In the CM frame the total energy is

2 _ m
E =E, -%(m1+ m )V = 02 Ep
My + My
Because the total linear momentum is zero at all times in this frame,
the particles are travelling in opposite directions to one another before

and after the collision., Hence they share a common angle of scattering,

e (Fig. 12),

voR‘VCm
(%]
o
m o——>
XCM
(a) before collision (b) after collision

Fig. 12, Asymptotic views of an elastic collision in the CM system,
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From a vector addition diagram relating the final velocities
in the CM and lab frames, the relationship between the CM and lab

scattering angles can be obtained,

Fig. 13. A vector addition diagram of the velocities of the particles

in the CM and lab frames,

tan 8, =_(%a “Vem) sin® _  sing
ch-b—(vu-\lcm)cos & my/m,+cos 0

The second step follows by the definition of the center of mass velocity:

m Vo= m (v, =V, ). Note that if m,<<{m,, 82268, and the lab and CM

systems are almost identical. For the case 6,=0 = 136.4°, the CM

scattering angles are 136.60, 137.2?, 137.80, and 138.60 for IH, l}He.

11

7Li and ' 'B respectively, if m2=l97.
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Also from Fig, 13 we see that
V= 2V, sin(m/2-0,)
and 2 4),2: -0,
Hence V=2 V., sin(6/2)

and the kinetic energy transferred to the target if the incident

projectile is elastically scattered through @ is

Te= %tnzvzzﬂ = bmm, QE sin2(6/2). (27)

m +m,)

111:1 _Relationship of the Cross Sections

in an actual experiment the counting rate of a fixed detector

is independent of the reference frame of the observer,

i.e. (%_G_;)dn - (%%)x dog

For scattering by spherically symmetric potentials, the scattering
distribution is independent of the azimuthal angle, so that

do._sin 6, d8,
dn " sin 6 dé

Substituting in = 0 = 136.h° and the CM scattering angles determined

L

above, the ratios (d.,/da) for 'H, He, 7i and '8 on Au are found
to be 1.0074, 1,0302, 1.0538 and 1.0956 respectively. The cross sections
calculated in the CM system are converted to the lab system by dividing

by these factors.
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APPENDIX 1V

EXPERIMENTAL DIFFERENTIAL SCATTERING CROSS SECTION

Consider a thin target film of thickness t and density N atoms
per unit volume, In a thin film no target atom is blocked by any other.
Suppose a collimated beam of monoenergetic projectiles and cross-sectional
area A strikes the film at normal incidence. The number of scattering
cente‘rs in the path of the beam is given by the product AtN, Denoting
the differential cross section per target atom for scattering into a
unit solid angle in the direction 8, in the laboratory system by

do (e, .Es), the effective target area presented to the beam for such
d2
scattering is
AtN dg (0 ,.Es)
dco
where Eo is the lab energy., The fraction of the incident particles

backscattered into the unit solid angle is

Nt do E
d

If a detector subtends a lab solid angle A 1, and the fraction of the

incident ions detected is denoted by B (the backscatter yield), then

BNt dG“dIGg .ER) AN ¢ 2
Lo

The lab differential scattering cross section is then

do‘(eg,ﬁg)g B . (32)
d N{an)t
Ly
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