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ABSTRACT
This thesis contains preparatory work for treating the 

problem of zero-point energy rigorously from the point of view 
of quantum mechanics. In order to realize this we have constr­
ucted and analyzed the Green's tensor of the electromagnetic 
field equations with homogeneous boundary conditions. The 
causal and retarded Green's tensors were considered and it is 
shown that the zero-point energy obtained from the causal 
tensor is the same as that obtained from the results of 
statistical mechanics by Casimir, Fierz and Boyer. The method 
used, employing the Green's tensor, allows a much more 
general treatment of the problem than that of statistical 
mechanics.

In the last section it is shown that the realistic case 
of a sphere which is partly penetrable by the radiation can 
be described by a model which is analytically identical to 
that of a fermion gas at finite temperature, so that the ap- . 
paratus of statistical mechanics may be used to treat the 
problem. The resulting forces on the enclosing body in our 
model arise from the deviation of the energy density from 
Planck's law for limited extension of the enclosing body and 
this fact suggests a method by which the problem can be 
solved.

I l l
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CHAPTER I 
INTRODUCTION

The idea that inertia is ultimately an electromagnetic 
phenomenon and that inertial mass is basically an induc­
tive effect had its origin in the study of the electro­
dynamics of charges in motion. Although Maxwell's 
electromagnetic stress tensor, as the spatial part of the 
energy-momentura tensor of the electromagnetic field, 
contained implicit ideas conducive to this new conception - 
as is known today but was unknown before the rise of 
relativity - it was only in 1881 that Joseph John Thomson 
envisaged the possibility of reducing inertia to electro­
magnetism. Following his lead, men such as G. P. FitzGerald, 
Oliver Heaviside, L. Boltzmann, W. Wien, W. Kaufmann,
Max Abraham, Fritz Hasenohrl, and H. A. Lorentz tackled 
the problem.

These investigations were challenged by what was 
called the substantial concept of physical reality, and 
sparked a competition between the science of mechanics and 
the science of electromagnetism for primacy in physics. The 
era of mechanical interpretations of electromagnetic 
phenomenon initiated by William Thomson ( Lord Kelvin ) 
and Maxwell in their search for mechanical models of the 
ether was still at its peak and was the first attempt at a 

conceptual unification of physics. A physical body,
1
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according to the substantial concept of physical reality, is 
first of all what it is; only on the basis of its intrinsic, 
invariable, and permanent nature, of which mass was the 
physical expression and inertial mass the quantitative 
measure, did it act as it did. The electromagnetic concept 
proposed to deprive matter of its intrinsic nature.

Neither of the above two points of view is held as
valid in modern physics. However, the electromagnetic
concept of mass expressed fully a fundamental tenet of
modern physics and of the modern philosophy of matter:
"matter does not do what it does because it is what it is,

1
but it is what it is because it does what it does”.

The various electromagnetic theories of the electron 
were beset by numerous difficulties. The most perplexing 
problem presents itself in the so-called Abraham-lorentz 
model of the electron. Abraham regards the electron as a 
rigid sphere with a homogeneous distribution of charge.
Such an assumption leads to the undesirable result of 
electromagnetic forces from the distinct parts of the 
charge distribution tending to expand the structure. Ad-hoc 
stresses were postulated by Poincare in order to stabilize 
the particle's finite charge configuration. Since all the 
effects of classical electromagnetism seemed to have been 
already incorporated in the model, the Poincaré stresses

 ̂M. Jammer, Concepts of Mass in Classical and Modern 
Physics, Harper and RôwTTTëWlTôrin
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were presumed to be mechanical, non-electrcmagnetic.
Further investigations of this problem were not very con­
vincing until quite recently. Quantum mechanics and notably 
quantum electrodynamics have succeeded in shedding new 
light on the problem of electron structure.

In 1953» Casimir, encouraged by his successful calcu­
lations of the attraction of two conducting parallel plates 
due to quantum electromagnetic zero-point energy,^ suggest­
ed that Poincare's stresses could be viewed as a quantum 
electromagnetic effect due to zero-point energy.3 His idea 
is quite simple, and has the added virtue that now the 
electron model is filled out entirely by electromagnetic 
effects.

The Abraham-lorentz model is extended by Casimir as 
follows. In its rest frame, a charged particle is regarded 
as a conducting spherical shell carrying a homogeneous 
surface charge of total magnitude e. Taking the radius of 
the shell as a in the intermediate calculations, we find 
the electrostatic energy of the configuration is, in 
Gaussian units,

E = ê  ( 1-1 )
2a

with a corresponding tension e / S ' H a ^ tending to expand the 
sphere. On the other hand, the presence of the conducting 
boundary alters the zero-point energy of the universe.

^ H. B . G. Casimir, Koninkl. Ned. Akad. Wetenschap, 
Proo. 51, 793 ( 1948 ).

3 H, B . G, Casimir, Physica, 19» 846 ( 1956 ).
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Arguing by analogy with the parallel plate calculations, 
Casimir suggested that the zero-point energy might tend to 
collapse the sphere giving an energy

E = -K;&o ( 1-2 )
2a

where K is a constant, and hence a corresponding tension 

8T7a'̂
This tension would supply the Poincare stress, making
the configuration stable - independent of the value of the
radius a provided that

^  = K-ho ( 1-3 )
SWa'' 8^*

ie., provided that the total charge on the sphere is such 
that

e^= K ( 1-4 )
6c

The condition ( 1-4 ) is independent of the radius a of 
the configuration so that after calculating the constant K 
for a sphere of finite radius, we may allow a to go to zero 
so as to avoid any further questions of electron structure. 
This suggests that, if by some chance, the model did 
represent an approximation to nature, it might be possible 
to calculate the value of the fine structure constant as 
the Casimir constant appearing in the zero-point energy of 
a conducting spherical shell. This constant K is dimension-

less, following uniquely and unambiguously from the 
electromagnetic normal modes of a sphere.
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Encouragement for the above suggestions can be obtained 

using the exact results of the parallel plate calculations. 
( Casimir’s results for this case were confirmed in an in- 
dependent calculation by Fierz^ and have been confirmed 
experimentally by Sparnaay^ and van Silfhout.^) If we take 
the parallel plate result for the zero-point energy of two 
conducting plates of area A and separation d

A E  = -nVicA (1-5 )
720d3

and very roughly approximate a sphere of radius a as two 
parallel plates of area a a distance a apart, then we 
get from ( 1-5 )»

= -0.09^ ( 1-6 ) 
2a

giving a value for Casimir's constant K only about ten 
times as large as that of the fine structure constant. We 
might regard this as relatively good agreement for such a 
rough approximation.

Intrigued by the above considerations, Boyer carried 
out a detailed calculation for the force on a spherical 
conducting shell hoping to confirm Casimir's conjectures.
A description of Boyer's method and results is presented
below.

^ M. Fierz, Helv. Phys. Acta., 33, 855, I960.

M, J. Sparnaay, Physica, 24, 751, 1958.
 ̂A. van Silfhout, Dispersion Forces Between Macro­

scopic Objects, Drukkerij, Holland, H.V. ,Amstefdam,T^6.
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The formulation of the problem of the zero-point energy 

of a conducting spherical shell can be carried out in 
direct analogy with Casimir*s calculation for the force 
between two parallel plates.? As shown in Fig. I, a large 
conducting spherical shell of radius R is considered, which 
is the quantization universe. The problem is then to 
evaluate the difference in the zero-point energy of a 
spherical conducting shell when the shell is changed in 
radius from a size some fixed fraction ^  ( for example^=|-)
of the radius of the universe down to radius a, the size 
of physical interest. Divergent series occur, just as in 
Casimir's calculations, and Boyer, following Fierz, 
suggests that the physically appropriate cutoff parameter 
is the wave-length. The final physical situation corresponds 
to a universe of radius R, very large compared to the 
radius of the electron. Thus the quantum zero-point energy 
of a conducting spherical shell is given in terms of the 
nodes of standing waves.

Both Casimir and Boyer evaluate the zero-point energy 
of their respective configurations in the same way. The 
first step is to form the expression for the energy 
difference with the cutoff parameter included in the expres­
sion and expressed for a finite quantization universe. Next 
the limit of an infinitely extended quantization universe 

is taken,the subtraction of the series performed, and then

? T. H. Boyer, Physical Review, 1?4, No. 5» 1764, 1968.
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Fig. I. Spherical configurations for a finite 
quantization universe of radius R.
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8
the cutoff allowed to go to zero. In both cases, finite 
results are obtained.

Boyer obtains the following expression for the 
potential due to the zero-point energy.

A E (a )= (iM )

where
E-x (a iP =X̂ c ̂  2  (a)eM  K tf (a) exio(--> Jo i

2. /-! «=< '

with

(g H£s Ùx))-'0  ai^d r/ o- ^

( 1-8 )

( 1-9 )

Cc(,K.?.) = l ^ c  ̂ C ? I EesexfoC-'KÏta^a.fi:^] ( l-lO)
Î. l=<

with
ÿ (a Rx, Ca,A))/tl^ (aEes Et,n)) - ĵg (.flK us fa^))/C K R xs Ca,/̂ )) = o

C-J/Jy)lyjf Cy R̂>.i fa,̂ ))Jx=cc — Q/Jx)L?{'̂ e C w = o 
Q /d y ) ! X/)g CyKxj Ca,A))]r-a f c/Ẑ /̂jlx hf Cx Hex « J ) Î K

( 1-11)

and Ejij and Ejy are found by setting a-» R/^ in E% and Ejj 
respectively. ( j/(x) and n/(x) are respectively the 
spherical -Bessel and -Neumann functions, which are defined 
in terms of the ordinary Bessel functions as, j/(x)=y®J^+i(x)

After a complicated analysis of the roots of the 
equations ( 1-9 ) and ( 1-11), Boyer is able to transform 
his expression for the zero-point energy into.
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=; // /"  ^  X

with

X r(/ySgW-f SfW+ ̂  w  - !
J ( 1-12)

% W  = --L a^cftih/jrÇW j ( 1-13)
^ \ hf W/

L c - X ? = /-./ qrc&yW/Wy)(y]< M ! I

and F(x) any suitable cutoff function, such as F(x)=exp(-x), 
and A  is the wavelength. The notation I 3 denotes a step 
function which occurs in the following form of the Euler 
summation formula.
« / r"
^  f(xP = \ f ( ^ ) d x  + J ( y -  L x J  -■ ■f- ^  [ - f U )  ]
Yri n I
The expression on the right in ( 1-12) can be evaluated 
numerically. Boyer's evaluation of this expression led him to 
the final result

> / ( 1-15)E W =  -h 0.093 h c A a

The corresponding forces are outward, tending to expand the 
shell.

Boyer's result has the opposite sign to the qualitative 
formula suggested by Casimir, and hence, seems to rule out 
the possibility of explaining Poincare stresses by quantum 
zero-point energy. It should also be noted that the Casimir 
constant obtained by Boyer is about twelve times larger 
than the fine structure constant o( .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0

Boyer has completed an analysis of certain other aspects 
of quantum zero-point energy connected with both microscopic 
and macroscopic phenomena.  ̂He evaluates the zero-point 
energy of a long conducting cylinder with a piston and finds 
an attractive force in this case. His calculations are 
performed using the same formal procedure as in the case of 
the sphere.

Following a suggestion by Dr. Halpern, v/e view the 
Casimir problem (for the sphere) as one of quantum field 
theory. The fields considered are a quantized photon field 
and an external field (one whose values in all space-time 
points can be governed by macroscopic devices and is thus 
a given quantity) given in the local limit by the sphere. By 
such a consideration, one obtains an expression for the zero- 
point energy, which is of some interest as a source of 
gravitational fields. This procedure actually gives the 
energy-momentom density of the zero-point energy, which, as 

in most problems of quantum field theory, is divergent. It 
is shown that the divergent expression for the total energy 
(energy integral over all space) corresponds to that of the 
zero-point energy calculated by conventional means. (The 
removal of the divergence by conventional methods will not 
be treated in this thesis, but is left to a future paper.)

The configurations chosen for the calculations of the 

zero-point energy done in connection with this thesis differ

G T. H. Boyer, thesis. Harvard University, 1968,
( unpublished ).
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from those of Boyer shown in Fig. 1. A differential change 
in the radius of the inner sphere was considered in the 
belief that such a change would give more dependable inform­
ation than the finite but very large change in the radius of 
the inner sphere considered by Boyer. This procedure leads to 
expressions involving the zeros of the radial functions and 
the derivatives of these functions that do not, as in Boyer's 
work, vanish in the limit of a very large outer sphere. 
Numerical evaluation of the final expressions was not attempt­
ed since a suitable convergence factor was unavailable. The 
subtraction of divergences is a major problem in itself and 
beyond the scope of this thesis.

Following another suggestion by Dr. Halpern, a cutoff 
function is introduced which makes the total energy equiv­
alent to that of a Fermi gas of unlimited particle number.
This reduces the problem to that of a mathematical model of 
such a gas.
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CHAPTER 2 
STUDY OF THE GREEN'S TENSOR

The energy density discussed is expressed in terms of a
Green's tensor of the electromagnetic field inside and out­
side the sphere. We are able to give the 4x4 Green's tensor 
for both cases with given boundary conditions on the surface 
of the sphere.

We begin by considering Maxwell's equations in the 
Coulomb gauge.

5 C 2-1 )
^  A o  ~  - j/ t t T o

~  A = — R 'i' R  do Ao  ̂2-2 )

and define - // 2, ? .
L o o =

T+r«HSverî«/ = J  -  ̂ d o A o / ^ T T

Y* = TframS’J r'iol I l o  —  To

Then we can rewrite ( 2-1 ) and ( 2-2 ) as

L ^ a A ^ ~  - U T T l d i .  , -  o. 1.1,2 . ( 2-3 )

We find the solution of ( 2-1 ) ao^

= f - . . d/ i y L
J 117-ÿ'i ?'l ( 2-4 )

9 J.D. Jackson, Classical Electrodynamics, John Wiley 
and Sons, Inc., New York, 1962, p.42.

12
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where a is the radius of the sphere.

In determining ( 2-3 ) using ( 2-1 ) and ( 2-2 ) we 
have used the fact that a vector can always be separated 
into a longitudinal and a transverse part. Doing this in 
the Coulomb gauge, we obtain the familiar relations

( 2-5 )

CZ - O ( 2-6 )

V- Tf = ( 2-7 )

( 2-8 )
J lx-%'1

T.r.± V  X V  X f f (xV d Y  , ( 2-9 )
^  J l-yx‘\

vd.A.Cy) = -V  ÇV-rCx,V/J^̂ 7' ( 2-10)
J

The Green's tensor (spatial part) is constructed using 
an eigenfunction expansion^® for each component of the 
tensor. Formally, this expansion has the form

= 2 Cx; ( 2-11)

All that is assumed is the existence of the complete system 
of eigenfunctions and eigenvalues for the vector Helmzholtz,

equation
A^(x,y,z;«^)+ w^n(x,y, z;«J)=0

for the spherical region considered.

10 A. Soramerfeld, Lectures in Theoretical Physics, VI, 
Academic Press, New YorET 19'54Tp'7TB3I
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Then, using the solutions of ( 2-3 )* we obtain, in the 

Coulomb gauge, the following 4x4 symmetric Green's tensor.

= I ( y . < 2-12)
l y -  ’x l  x'lIX/*

(Xo^(^X',x') ~ (y.vV S» o ( 2-13)

' ( y. x 'J ^  j  J  ITo e.yjc> (-  Cr.~rJ)) x

, Enn") ZrfjtW E n )  "h A , (X/ Eten) Ei-ttt)l.lU.n ~  *  ** ^ ---------    —------------ZlA - Y  RIih -
( 2-l4)

lin
where are the components of the magnetic multipole field

e
solution to ( 2-3 ) and Â  are the components of the electric 

multipole field solution. The significance of the kz« and 

liLn. will be discussed later in connection with the exact 

form of the multipole solutions.

It should be noted that in ( 2-14), both A^ and A«. 

are transverse vector components, and no longitudinal 

components enter the spatial portion of the Green's tensor.

( Note that (x,x) is written for G^(x,x]^ . )

The components of the Green's tensor given above satisfy

_  — J/TT S  ̂ Ya~ XojÇ^tY ( 2 3  5)
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where is a projection operator for the longitudinal field, 
given by

ifll /y-5r7 ( 2-16)

and G*y(x,x)=0 on the boundary of the sphere.
This is the complete Green's tensor which can be used to 

find solutions to Maxwell's equations in a sphere for any 
given 4-current density. In a later section the explicit form 
of the Green's tensor for the annular region contained 
between two concentric spherical shells will be given as 
well as that for the single spherical shell.

The Green's tensor as given contains an integral which 
must be evaluated along a specified contour in the complex 
k. plane. Depending on the contour chosen, one obtains 
either an advanced, retarded, or causal Green's tensor. The 
contours for the causal and retarded functions are shown 
in Fig. 2 and Fig. 3 respectively. The difference between 
the two functions will be shown explicitly later when the 
Green's tensor is written in terms of the normal modes of 
the sphere.

We now turn to the question of how the Green's tensor 
for the interior of the sphere behaves under gauge trans­
formations, recalling that it is written in the Coulomb 
gauge above.

We note that any two-point function F^/ (x,x) of the 
form &  when added to G/r̂ '(x,x) ( written in the
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tu

Fig, 2. Path of integration for the function Gco<7j«/ in 
the complex plane.

Jm to

Fig. 3» Path of integration for the function G r oiar^e^ in 
the complex k, plane.
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Coulomb gauge ) will give rise to the same electric and 
magnetic fields, but will, in general, no longer satisfy the 
equations for the vector potential in the Coulomb gauge.

Adding such a two-point function to the Green's tensor, 
we get, in order to satisfy the condition B*̂ Ĝ /=0, the 
requirement

where G**(x,x) is given by ( 2-12). Thus

=  ~  ( - - ^ o - r o A - J L - a A ÿ ‘ \

( 2-17)

( 2-18)

The solution of ( 2-18) is

D Cr- w r y / ;  J ___ A ^ ' ï U V
/f

m''

( 2-19)

where D (x-x) is a retarded:, advanced or causal Green's 
function.

Notice that F/r/'(x,x") given in the above with given 
by ( 2-19) does not make the Green's tensor symmetrical.
Since symmetry is one of the requirements for any Green's 
function, we look for a way to symmetrize our tensor.

As a consequence of the equation of continuity,2Kj*=0, 
we can add any line to the Green's tensor which is a gradient; 
ie. '̂«'7̂ (x,x"). Thus, we add the terms ^  where
is given by ( 2-19), which symmetrizes the tensor.
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In the Lorentz gauge, the Green's tensor is
CditfScil M C'

with V2r (and ̂  ) given by ( 2-19). This is the correct 
Green's tensor in the Lorentz gauge. It is relativistically 
invariant and symmetrical.

An alternative way of writing the symmetric Green's 
tensor in the Lorentz gauge without having to refer to the 
conservation of the current is to multiply the tensor in the 
Coulomb gauge on the left and on the right with a projection 
operator which, contracted with a vector of vanishing four- 
divergence, gives no contribution.

For the purpose of constructing the Green's tensor for 
the sphere using the vector potential of the electromagnetic 
field, we consider the Helmholtz equation

V  -h ~ o  ( 2-21)

The unnormalized multipole solutions are, in the Coulomb 
11gauge

At. (.yŷ l ~  ~  S l T ^ u  ( 2-22)

f,", * j s r t : -  < 2-23)
n-i-H h^H

Â i œ ,  - /zg:/„, 7::,. n z  ( 2-2 )̂
* iXUi

11 M.E, Rose, Multipole Fields, John Wiley and Sons, Inc., 
New York, 1955*
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where the I I are suitable linear combinations of the spherical 
Bessel and Neumann functions, and the are the vector
spherical harmonics defined as

(r) = 2  CC/.I
The Aihi(e), A i m (m), and A:M (1) form a complete set of three 
vector fields which fulfill the electromagnetic field 
equations. In the Coulomb gauge the potentials A^ (m) and 
At (e) form a complete set.

The boundary conditions for the problem are that the 
solution be finite at the origin and the tangential 
components of A^ (m) and (e) vanish at the boundary. The 
latter condition is a consequence of the boundary conditions 
that the tangential field vanish on the conducting sphere. We 
saw that the Green's tensor in the Coulomb gauge is transverse 
and so we make no further use of the longitudinal solution. 
Decomposing the electric and magnetic multipole solutions 
into tangential and radial parts, the boundary conditions 
lead to the following relations.

magnetic field: — o ( 2-25)

electric field: c l ]>■ " o  ( 2-26)

The normalized tangential solutions that satisfy the 
boundary conditions and the finiteness condition at the 
origin are given as 

T ( 2-27)jc 11., I. (
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> T

Jt-t! 28)

where â ,» and b/..̂ are normalization factors derived in the 
appendix.

Using these solutions, the normalized Green’s tensor can 
be written as follows.

a

L.M,n ■

L̂M,Y>y

oZ

1.1-il

- ILCUFF) J,-; jw, ( i ^ L » , £ ) % Z , ^ ^  C r ^ Z a n /  I
Xl-f! ^  J

( 2-29)

rr^zv ( 2-30)

The components GyX(x,x) have been given by Morse and 

F e s h b a c k l 2 .  Their expression differs only in the normalization

P.M. Morse and H, Feshback, Methods of Theoretical 
Physics, McGraw-Hill Book Co., New York, 1953» pp.l870-72.
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of the vector spherical harmonics and the inclusion of a 
factor to account for finite conductivities. Their express­
ion does not include any time dependence.

To obtain the causal Green’s tensor, the integration will 

be performed over the contour of Fig. 2. This is a general­
ization of the method known in the case of unbounded space. 
For t > t, the contour is closed in the lower half plane, and 
the integration performed in the clockwise direction. For 
t < t̂, we close the contour in the upper half plane and 
integrate counter-clockwise. The integrand has poles of 
order one at (magnetic), or^=-^Va (electric).
The residue at the negative pole is

- e a. ^

and the residue at the positive pole is

( 2-32)

te ,Then, writing z=re , with z= td, z, =(4ya, and integrating,
/

we get, for t ?t,

, Ç  - L r a - r )  ^
of2-e___________   \ e A'c +  c K J ô

 ^ ji ___________ _
-K ̂ 2o+‘C+i-X?o~c<'-r) ^ J
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The reason for choosing to close the contour in the 

bottom half plane is now obvious. In the bottom half plane 
sin 6 is always negative, so that when we take the limit 
the term e and the Integral over ô vanishes, which is
required.

Thus, after taking the limits R - * a n d  £-> o , we obtain 
Jü]& ^ _ - 0(̂ --i')77cue.

In order to obtain the retarded Green’s tensor, v/e employ 
the contour of Fig. 3. After performing the integration we 
obtainCO

_o« %r-
This illustrates the basic difference between the causal and 
retarded Green’s tensors.

The causal Green’s tensor can now be written as

--*ĉ -Och 7
Q C i ^ f i G ST  ̂e c r - i ) e  ^  X

Mf A//,.

■t
li-H

LiiL. ^l-l tPj y~t H  J
Xy-y-/ ^ ^
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( 2-33)
The other components are given by ( 2-30).

Now suppose that we have two concentric spherical shells, 
radii r=a and r=b, with b>a. The solutions for the vector 
potential (in Coulomb gauge) are given by ( 2-22) and ( 2-23) 
for the magnetic and electric modes respectively. The radial 
functions § l are suitable linear combinations of spherical 
Bessel and Neumann functions, chosen to satisfy the boundary 
conditions and normalization.

For the magnetic mode, the boundary conditions lead to

+  A Y \ l (<yJÇL) =  o  r= A ( 2-34)

or

At r=b, we obtain

/^ht- ^  ) j  L ToOii^ J =
 ̂ vj () U A ( 2-35)

where are the roots of this expression.
For the electric mode, the boundary condition at r=a 

leads to

/A=> -jji. +  u > ^  C o o ^  j J  /f^i^ C o o a j  -f- u O q  n / f c j ^ ) ]
( 2-36)
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At r=b we obtain
j/. Aoim ) y j ^  ( 2-37)

(iŷ Lth ̂3 ^ f)

where ^4. are the roots of this expression.
The solutions for the vector potential become in this

case

Ci /A;/;, h^J ( 2 38)
nUu>,„f)

AlHi^ Ce) -
_ j4,/Ao/̂ fy+ y ( 2-39)

Ht-t! -t iy)t.i*< ̂ ï i i - n /* ~)

with the normalization factors given by

~ ^  [ ~^ if/ f/_, ^ ) 1

The Green’s tensor is now constructed using the same 

prescription as before.

( x - x ' ) = X  ^  ~  f u C u ) i ^ x l ) 7 ^ ^ 2 ^  iy')~G,i,^'Cx) +J - txl ° ^
r

^ ^ i L o C i ' ) ' )  r  ^  ^  ^
'*' — r^j ̂J  oOlî  - uO / ° 0

-* yÂ flXj J L  fj.-/ AuOitf^X) fi.-^/ iu)luyjt') 4,/%, (< Cv') , .
4/V/ 4 4 J ( 2-40)
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tt. il

and (ŵ h r/b) and ( A)i.r/b ) are given by the radial parts

h
( 2-41)

of ( 2-38) and { 2-39) respectively.
It is worth noting that the Green’s tensor for the 

annulas, namely ( 2-40), approaches that for the sphere, 
namely ( 2-33), for large values of the radius b. This is 
most easily seen from the radial expressions which indicate 
the presence of the two boundaries for the annular region. If 
in ( 2-35) and ( 2-37), we take the limit b-?00,with a fixed, 
we recover the expressions ( 2-25) and ( 2-26) with a-»b. Thus 
for large values of b, the Green's tensor for the annulus 
behaves almost like that for a large sphere of radius b, and 
satisfies the boundary and finiteness conditions, as required.

It is known from the mathematical theory of partial 
differential equations that a solution of the wave equation 
with suitable boundary conditions is unique. Since the Green's 
tensors given here are just the solution operators for the 
wave equation, they must also be unique (up to gauge trans­
formations). However, there are many ways of formally 
constructing such expressions, and some resulting tensors may 
be more amenable to analysis than others.

It is now shown that the following Green's tensor, which 
was suggested by Dr. Halpern, satisfies the requirements of

the problem, although it does not introduce in an obvious way 
any significant simplification in the analysis.
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For a particular value of L we get

Gj^[yC,x‘) ~  At-Cko) 11 rk> Cc ) ! I j. (k'oO^ — X
e(̂' M--1. I ^LC/r,>a) \

where A,.(ko) is a normalization factor and ko is any number 
which is not an eigenvalue of our problem. This expression 
contains only the contribution from the magnetic mode.

The differential equation satisfied by the spherical Bessel 
functions is

This equation has the form of the self-adjoint equation

The mathematical theory of ( 2-44) predicts that p(x)W=B, 
and B is a constant. W is the Wronskian determinant of jc 
and ji-Ck.r) . Specifically, we have

^  W  ill - wj ” a f x )

and the radial Green's function is

f C l / t i l  - n ^ C y ! ) ]  -X

G  Ck , x 'J -  'I
4 Cl/l^) y C / J  - Alcdr; J x ~ ^ x '

Since the Wronskian is proportional to l/p(x) for all 
values of x, it does not matter where we evaluate it. V/e will
use the limiting forms of jc and n,_ for this.
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//tn

K-^o
ji w  =

l ï m
X-'O

j A ;  =

/(> n
y-^o

ÜL W  -

l i m  
y -»-o

///W =

i-d s'- ■ •

 2_ K ± _ _ _
/■ 3 S- - CO.L-̂J)

l i s  ■■ L i t - J ?  
-yy-1'i

/■ 3 S ■ ■ ■ c
y

lira W _ Ckfor) Cto!') -  fXù^) ill Cjtüi')']

Since p(x) in our case is / f o ' ^ » we get 

B  -  JCo

and Aifk'o) ( 2-45)

With ÂL(ke) given by ( 2-45) we have a Green's tensor for 
the magnetic mode which is normalized and satisfies the given 
boundary conditions.

For the annular region between two concentric spheres 
of radii a and b respectively,we get, for the magnetic mode

Gi. = 2  Cico) [ jL  rc ' )  t i i . c J h > a ) ^  n t C C r o r ^ ) ] X
fjTa a }M--Z.

X ~~ ^ ^ C k o  k ? ) ! ( p ) ^  ( 2-46)
, \ L (Ko hi d

lim W = k>\ IJi- (koo') __ iO/. { k o U
Y -»t> J/- (ko») ^L- (

y. r n L ( k o o ) _ jrij. ( k o ï )
J I  L k o a )  Ckùk)

jh fkoi')ri/(ko}') -ji-Ykôi^) n i C k o r ) ^
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I fkoc)  ̂ 1.( ko^)

and |g,,7W= - /(:> f -------  7 ( 2-47)
Jt rk o h ) p L  (koc*! —  yiL{kok) 1̂. (koo>)^

It is hoped that further investigation of this form of 
the Green’s tensor, when the electric modes are included, 
will prove more useful than the eigenfunction expansion 
which was used to obtain the Green’s tensors given earlier in 
this chapter. It is also nov/ thought that this form can be 
made simpler by reducing the Bessel function expressions, 
with the sum over L, to a finite number of trigonometric 
expressions. Work is continuing in this direction.
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CHAPTER 3
QUANTUM ELECTRODYNAMICAL RELATIONS INVOLVING 

THE CAUSAL GREEN'S TENSOR
In this chapter several relations from quantum theory 

will be discussed in an attempt to connect the basically 
classical Green’s tensor given in the previous chapter to 
the more advanced theory of quantum electrodynamics. The 
discussion is, for the most part, concerned with the 
chronological product of field operators, and this concept 
will be considered first. It is then shown that a portion 
of the Green’s tensor given previously satisfies a 
relation involving the chronological product. An expression 
for the zero-point energy-momentum density is then derived, 
again using the chronological product, and the total zero- 
point energy of a sphere is evaluated with this relation. 
The expression which results will be seen to be the same as 
one would expect using the simple quantum mechanical 
arguments of Casimir, Fierz and Boyer.

The chronological product (or the T-product) of two 
Boson field operators is,^^

~ r ( A n  ( k ) ~  S y  ̂3“1 )
Aiy y<> ̂  (jo

13 N.N. Bogoliubov and D.V. Shirhov, Introduction to
the Theory of Quantized Fields, trans. by G.M. Volkoff,
Tntërsclence Publishers, Inc., New York, 1959» p.l42.

39
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The T-product is thus just the ordinary product of these 
operators taken in a definite order which corresponds to the 
decrease of the time components of the arguments of the 
factors from left to right. It can he shovm that the defin­
ition ( 3-1 ) of the T-product is c o v a r i a n t . 14

The causal Green's tensor for the free electromagnetic 
field in unbounded space has the following connection to 
the T-product for the electromagnetic field operators.

— ̂ C ~  -Otxh' ( 3"*2 )

where 'C X  means the vacuum expectation value of the 

T-product.
The relation ( 3-2 ) can be derived from the commutation 

relations for the electromagnetic field operators and the 
following relation between the positive and negative fre­
quency commutation functions and the causal Green's function.

c e-)J) (y.) ~ OLX) D (y) — ôC-x") C) (x) ( 3"3 )
In order to connect the theory of the previous chapter 

to quantum theory, it is now necessary to show that the 
Green's tensor ( 2-33) satisfies the relation ( 3-2 ) with 
the appropriate electromagnetic field operators.

14 Ibid., p.143.

13 Ibid., pp.216-217.

16 Ibid., p.142
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Consider, the electromagnetic field operator

T /  !---- r _ f- ItOin't
Al t )  -  f XÏÏ WhOOtnLM tn 6 ( 5 - 4  )

1
Mwith Qt.u>u„L/y — ClLu>t.„ (oJct, I") kJ

and
Ù

Substituting ( 3-4 ) into the left-hand side of ( 3-2 ), we 
get

/ ■ ^ nVj P /  -< //L̂ ZZ—  V e y
\cy>l.n OOi_'„i) I 

f , X * ~ * X  1

= 2. /^  r?; x
7'ŴW \  6/.w / L

Mt-ÿ , , ( 3-5 )

7>0Oi.nl.M

A ̂ h(Ot.„ LM.̂ Ik) -t e(4-i?e -̂rvout, Z/M.J Ck) C Cx)j

Now, consider

/ < P )  . - I X  e c r ^ i > r - ‘*'*'C V

X  ( k )  oJut yyf'.j CxJ

//'/V f //-/y
y- & ( - f ' i ) e  j X^  [m ] "'5 o i r - i ) X ^  "■''4

—  —  (  3“ 6 )

 ̂ .. J

17 A, Messiah, Quantum Mechanics, trans. by J. Potter, 
North Holland Publishing Co., Amsterdam.;, 1966, II, p.1037.
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and we have used for of ( 2-33)* The index ̂  is
summed over A =m, 7\ =e for magnetic and electric modes 
respectively.

By performing the sum over M, it is easily seen that

since the only complex part of is in the vector
spherical harmonic term. Thus, ( 3-5 ) is equal to ( 3-6 )
and the quantum mechanical relation ( 3-2 ) holds for the
Green's tensor ( 2-33)•

The connection of the energy-momentum tensor for the
electromagnetic field to the chronological product is now
given and an expression for the zero-point energy -momentum
density obtained.

In analogy to the introduction of the vacuum expectation
value of the current vector in quantum electrodynamics we
introduce the vacuum expectation value of the energy-

1 8momentum tensor. By a variational procedure, one obtains, 
in the bound interaction representation, the following 
relation.

The T is given by

18 B.S. DeWitt, Physical Review, 85» 653-61, 1952.
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with r '  -  d A x  / d r :  - O A i .  / d k k  ( 5.9 )

In order to obtain the zero-point energy density, we 
evaluate T a n d  obtain

y-y .w ̂ 7 ^  ( 3-10)

using ( 3-9 ) and ( 3-8 ) in ( 3-7 ).
The above procedure is much more general than the simple 

counting of states which was employed by Boyer in his 
evaluation of the zero-point energy, as well as by Casimir. 
One obtains not only the energy density, but also the 
momentum density,whereas the above two authors both evalu­
ated only the total energy of the configurations with which 
they respectively dealt.

It is now possible to evaluate the zero-point energy for 
a sphere of radius a. We apply the relation ( 3-10) to the 
causal Green's tensor, and note that the scalar product 
indicated in ( 3-10) is obtained by taking the spur of the 
3x3 Green’s tensor ( 2-33).

The energy density is

z a / D c r r A  d C K i ' F
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^ I L j  w/ (oJptr, cŷ i-n (lyky-tK L ) 71,///., (x) * 7 /,/// Lx ) -t- 
1:6//

-f. i - j ! J/-"/ 7'̂/-/'’r^ Jt-< C o O i f „ j 2  J  ~72^i.-i ' 7 % , 3
;2Y//

- {l T Z T T T  (cx>iinr\iL-i(ooi^jz) 5_ 2c/

J T T E T T  , y u j i ^ r ) ^ i + i / 2  (x ) - T l Z- ii <-x )XZ// '' '

and
^ c ) _ \ r <pfr \ c/tA? 5'i*i Ô <r ^

= la f  + (3-11)

Use has been made of the fact that the vector spherical 
harmonics are orthonormal and the spherical Bessel functions 
are normalized.

This expression for the total zero-point energy is 
obviously infinite as can easily be seen by noting that the 

and 67/H, are t?ie real positive roots of the spherical

Bessel functions, which are infinite in number and form a 
monotonie increasing sequence with all of the terras greater
in absolute magnitude than one.
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The same calculation, performed for the annulus using 

( 2-40) gives, for the total energy,

ECaX) ~ J~ ^  Cxu/)[ i ̂  J
where and A7/>, are the roots of ( 2-35) and ( 2-37) 
respectively. This expression is also divergent.

By adding together the Green's tensors for the inner 
and outer regions, differentiating the resulting tensor with 
respect to the radius a ( which is equivalent to subtracting 
the Green's tensor for a second configuration with the 
radius a increased to a+da ) and evaluating the result 
according to ( 3-10), a finite value of the energy density

was expected. However, as remarked before, this procedure 
cannot be carried out without the introduction of a
suitable convergence factor.
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CHAPTER 4
THE EQUIVALENCE OP THE ZERO-POINT ENERGY TO THAT OF 

A NEUTRINO GAS OP UNLIMITED PARTICLE NUMBER
The partition function for a gas of fermions of vanish­

ing rest mass and unrestricted particle number is^^

Z  = ff ( / / j ( 4-1 )h

where is the energy of the n̂  ̂ state and ̂  is commonly 
identified as l/kT. In our case the same formal expression 
gives us the zero-point energy of the sphere with A  ^  cutoff 
parameter determining the penetrability of the sphere for 
different particle energies. We shall see that in the limit 

we obtain the full zero-point energy of an impenetrable 
sphere, namely, ĥu) per degree of freedom.

It must be stressed that there is no implication here of 
a physical connection between photons and the Fermi-Dirac 
statistics. This particular model has been introduced as a 
preliminary to a further study which will be a comparison of 
the results of quantum field theory and statistical mechanics 
when applied to similar problems in physics.

The mean energy is given by

19 F, Reif, Fundamentals of Statistical and Thermal 
Physics, McGraw-Hill Book Co., Inc., New York, I965, p.350*

36
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/ET = - O A z  = %  6-,, )
D/g "

In the case of the sphere considered before, the energy 
of the n state is given by

(6̂ - ^ ( 4-3 )
where 6̂*, is a zero of a Bessel function. In what follows we
choose units such that h=c=l.

Now consider the change in the mean energy with a small
change in the radius of the sphere.

3 Ë  /da. - ^  rTT^e» —  ÆlÊ.  7

Prom ( 4-3 ),

cl Cv, / J a  = — <5%, A  ( 4-4 )

From ( 4-2 ) and ( 4-4 ) we see that, in the case of
the s p h e r e , a n d y ^ * ^  are functions of ) only.t)Ct

We now evaluate the mean value of the total energy of
the gas in a volume V. In order to do this we will make use
of the formula

which gives the number of states in the volume V between 
the frequencies K) and . C \jol<j\o^es o h i y )

Ç E J x / = .  X ( 4-6 )

where we must multiply by 2 to take account of the two 
possible polarizations. Then ( 4-6 ) becomes

_V_ C co'̂dco _ V, f y/Jr i-f co-y.
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u y 4  //e-^

Let y=#x: 
A)Vw

::'y ff6

ÏÏ>Ŝ h=, C5

= A{ 5  izT"' C 2 W z  /'/ MW
V^/S^' n=, I

= y  2t22l- = A y  f  t i " " '
7ï53̂  m-i

The sum over n is approximately 0.94?6,
E  = C y  CO- 9^769 _  Co. 9F7li) y y A ( 4-7 )f-f-/ - 77*y3V
for a sphere of volume

The change in mean total energy when the volume is 
changed infinitesimaly is now considered. Denoting the 
energy obtained by using Weyl's formula (dW=4Pv^Vd-o ) for 
the number of states by Uwe// , v/e obtain

cfy^/A/a ~ f — ^ ZX Vy,,y/ / Z W a  dojty / -  cA AC y»/(Aa ~)

The function X is a correction factor included to take 
account of any deviations from Weyl's formula in the actual 
number of states. It can be seen from ( 4-8 ) that if the 
sign of dX(a)/da were known, it would be possible to 
determine the direction of any stresses acting on the sphere.

It has not been possible as yet to determine the 
functional dependence of X(a) on the radius, and thus the
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direction and magnitude of the resulting stresses could not 
be deduced with any degree of precision.

The fact that Weyl's formula does indeed deviate from 
the true number of states can be seen from the Table. Only the 
magnetic mode is considered here as zeros of the expressions 
involved in the electric mode were not known precisely 
enough to enable us to draw a conclusion. FOr simplicity, 
a sphere of unit radius is considered. The same sort of 
table can be constructed for arbitrary radii if enough zeros 
are known for jt .

It is hoped that a computer program can be developed to 
determine the zeros of the spherical Bessel functions for 
large order and large argument. Once a large number of such 
zeros is known, the Table can be extended and an analytic 
expression obtained for X(a) by curve fitting. This problem 
is being pursued.

We have obtained an expression for the causal and 
retarded Green's functions of a perfectly conducting sphere 
and are therefore able to derive the expression for the 
energy density as prescribed by quantum field theory. This 
energy, as is well known, is divergent, and it is a problem 
that goes beyond this thesis to remove these divergences.
The method outlined in this chapter, will then allow us to 
compare the results obtained by quantum field theory with 

those obtained by statistical mechanics.
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Table

4 0

No. of states from True no. of states
Weyl formula (T. M. mode only)

J u O = TT d u > =0.5 d i F  ^  Tf ^ 6) =0.5

10 6? 4 80 7
15 149 24 168 45
20 265 42 294 50
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APPENDIX
NORMALIZATION OP SPHERICAL BESSEL FUNCTIONS

The problem of normalizing the vector potential solu­
tions on the interval zero to a, reduces to the problem of 
normalizing the spherical Bessel functions, since the vector 
spherical harmonics which are employed are normalized to 
unity.

Consider only Bessel functions of the first kind. Then 
J%(Ax) satisfies

[axTj, t CTs-y-k/ ) T h  (-yy) - o ( A-l )
X

Multiply by 2xJ„(7vx).

i i i T k *  ( y ! - x - h ' ' / y c ) i x r / T H  = o

o, U / J O  ( X x ' - O i U / J O T O  = o  ( A-2 )

Integrating ( A-2 ) we get,

Jo( C - h X T n ' / f d C t A )  = o

A
Using J*(0)=1; Jn(0)=0, n=l,2,... , we get,

O
Suppose Ahj are the positive roots of J„(Aa)=0. Then

41
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.a

or J x ITv, T7>»,j x;]'-̂ y = ( a -$ )
o

Replacing x by ̂ , and 7>.; by 7»; /a, we get 
Jh(7b^)=0,

^ f L T n  ( a-6 )
o

Using the recurrence relation 
X J n  ( x )  ~  h  J*1 ( x? ~ 7C ln+f 

we get
Dh Chh, ) = — k h H  C~yt>i)

and thus
jCK

^  ̂  r Jh c!Ÿ  - ^  L  Jyxi-I Cx*tj)J ^ A“7 )
o

Now suppose that 67̂ , are the positive roots of 
l ^ T h  C c o a ] - h  c o a T d y o o a )  =  o

and use this relation in ( A-4 ) to get
X ̂ a* rïïj.'/7Ui,j ftjj V Coodi a"̂- iTty Cu}i,jA)l̂
O4

or C ̂  Xj*i CoOi,jx)J dy = ^ LCfn k I*» AiOhj a )~J h C H  (uJn̂x>-)~J

But f%, f"6c?nj'A)} ~ _ J l - £ 7 ^ C i O y , ^ a ) J

Thus
-CLÇ xl Jŷ CcOnjXJj'cJy =: 0:̂ [_ll. j/koÔj a) i j/(00̂,;a)] - jA I Jyi CcĴj ûl)H
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4 "  =' ■“ %w.^ ( a -9 )

Now, the roots of Jn ( 7hj)=0 are the roots also of 
jh(Wh;)=0, and the roots of iJh(x)txJk(x)=0 are the roots 
of j„(x)+xjrt(x)=0. The normalization conditions are then

a ^
J *̂̂ 0̂ /)T - h!?i3u f - f o r  =0  ̂ A-10)

U oc A Wh, ="o

From ( A-11) we can easily deduce the two other conditions 
required. They are

f" fhf, 6w/„f)]\7r- [co/ -xCi-i)4U-é/)c/ fjL ( A-12)-A
XUXiki

\ Câ ly,k)Edt- = 6w A  -lL(L-Û4y-4^)a  ̂Aj/ (cOl^)E ( A-13)
0 ItUcA
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