A study of the EPR spectrum of manganese 2+ impurity in brucite.

Robert Blaire Waite

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
https://scholar.uwindsor.ca/etd/6878

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.
A STUDY OF THE EPR SPECTRUM
OF Mn$^{2+}$ IMPURITY IN BRUCITE

by

Robert Blaire Waite

A Thesis
Submitted to the Faculty of Graduate Studies through the Department of Physics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario
1970
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
ABSTRACT

The temperature variation of the electron paramagnetic resonance spectrum of Mn$^{2+}$ impurity in the natural crystal brucite, Mg(OH)$_2$, was studied in the temperature range 77°K - 295°K at K-band frequencies. The spectrum was fitted to the spin-Hamiltonian

$$\chi = \beta \left[g_{||} H_{z} S_{z} + g_{\perp} (H_{x} S_{x} + H_{y} S_{y}) \right]$$

$$+ \frac{1}{3} b_{2}^{0} S_{2}^{0} + \frac{1}{60} b_{4}^{0} S_{4}^{0} + \frac{1}{60} b_{4}^{3} S_{4}^{3}$$

$$+ A S_{z} I_{z} + B (S_{x} I_{x} + S_{y} I_{y})$$

At room temperature (295°K) the following values were obtained for the parameters:

$$g_{||} = 2.0010 \pm 0.0005 \quad g_{\perp} = 2.0010 \pm 0.0005$$

$$A = -90.74 \pm 0.25 \text{ G} \quad B = -89.69 \pm 0.25 \text{ G}$$

$$b_{2}^{0} = -5.85 \pm 0.50 \text{ G} \quad b_{4}^{0} = -4.31 \pm 0.50 \text{ G}$$

$$b_{4}^{3} = 0 \pm 150 \text{ G}$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The variation with temperature of the parameters followed similar trends as those observed by Quick9 for the same impurity in the isomorphic crystal, Ca(OH)\textsubscript{2}. Discrepancies between the parameters at X-band, as found by Pieczonka et al.17, and at K-band were found.
ACKNOWLEDGEMENTS

The author wishes to thank Dr. N. E. Hedgecock for his guidance and encouragement during the course of the work. Appreciation is due to Dr. F. Holuj for supplying the crystals and facilities used in the research. Thanks are due to Mr. R. Wilson and Dr. W. Barry for many helpful suggestions. The typing of this thesis by Mrs. Joan King is gratefully acknowledged.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION AND PURPOSE OF THE EXPERIMENT</td>
<td>1</td>
</tr>
<tr>
<td>II. THEORY</td>
<td>4</td>
</tr>
<tr>
<td>Resonance Condition for a Free Ion</td>
<td>4</td>
</tr>
<tr>
<td>The General Hamiltonian</td>
<td>6</td>
</tr>
<tr>
<td>The Crystal Field</td>
<td>9</td>
</tr>
<tr>
<td>The Spin-Hamiltonian</td>
<td>13</td>
</tr>
<tr>
<td>Eigenvalues of the Spin-Hamiltonian</td>
<td>18</td>
</tr>
<tr>
<td>III. PROPERTIES OF CRYSTAL</td>
<td>19</td>
</tr>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Crystallography</td>
<td>19</td>
</tr>
<tr>
<td>Specimens</td>
<td>21</td>
</tr>
<tr>
<td>IV. INSTRUMENTATION</td>
<td>23</td>
</tr>
<tr>
<td>V. EXPERIMENTAL PROCEDURE</td>
<td>28</td>
</tr>
<tr>
<td>Orientation of the Crystal</td>
<td>28</td>
</tr>
<tr>
<td>Temperature Variation</td>
<td>29</td>
</tr>
<tr>
<td>Measurement of Magnetic Field</td>
<td>30</td>
</tr>
<tr>
<td>Use of Magnetic Field Marker</td>
<td>31</td>
</tr>
</tbody>
</table>

- vi -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
VI. CALCULATIONS AND RESULTS

Calculation of Magnetic Fields at which Resonance Occurs 33
Fitting the Spin-Hamiltonian Parameters 34
Results at X-Band 39
Results at K-Band 41

VII. DISCUSSION AND CONCLUSIONS 54

REFERENCES 56

APPENDIX A. Computer Program 'Fit' 58
APPENDIX B. Computer Program Subroutine 'HNTRIG' 60
APPENDIX C. Computer Program Subroutine 'LLSQ' 62
APPENDIX D. Comparison Between Parameters at X-Band and at K-Band 67

VITA AUCTORIS 68
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>V_n^m in terms of Cartesian Coordinates</td>
<td>13</td>
</tr>
<tr>
<td>II.2</td>
<td>B_n^m in terms of A_n^m</td>
<td>13</td>
</tr>
<tr>
<td>II.3</td>
<td>O_n^m in terms of Spin Operators</td>
<td>18</td>
</tr>
<tr>
<td>II.4</td>
<td>Relationship Between Parameters of Eqs. (II.22a), (II.24), and (II.25)</td>
<td>18</td>
</tr>
<tr>
<td>VI.1a</td>
<td>Theoretical Resonant Fields at Constant Microwave Frequency</td>
<td>36</td>
</tr>
<tr>
<td>VI.1b</td>
<td>Corrected $a_n^{m\uparrow}$</td>
<td>38</td>
</tr>
<tr>
<td>VI.2</td>
<td>Position of Resonant Field at Room Temperature and for Microwave Frequency 23.4 GHz</td>
<td>48</td>
</tr>
<tr>
<td>VI.3</td>
<td>Best Fit Data of Spin-Hamiltonian Parameters $A, B, b_2^o, \text{ and } b_4^o$</td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1.</td>
<td>Structure of Brucite Showing Hexagonal Arrangement of Ions</td>
<td>20</td>
</tr>
<tr>
<td>III.2.</td>
<td>Structure of Brucite Projected on (0 0 0 1) Plane</td>
<td>20</td>
</tr>
<tr>
<td>IV.1.</td>
<td>Block Diagram of Spectrometer</td>
<td>24</td>
</tr>
<tr>
<td>IV.2.</td>
<td>Diagram of Cavity</td>
<td>26</td>
</tr>
<tr>
<td>V.1.</td>
<td>Correction Frequency due to Inhomogeneity of Field</td>
<td>32</td>
</tr>
<tr>
<td>VI.1a.</td>
<td>Typical Recording of Spectrum at $T = 77^\circ K$ for $H</td>
<td></td>
</tr>
<tr>
<td>VI.1b.</td>
<td>Typical Recording of Spectrum at $T = 4.2^\circ K$ for $H</td>
<td></td>
</tr>
<tr>
<td>VI.2.</td>
<td>Typical K-Band Recordings of Spectrum at Room Temperature</td>
<td>42</td>
</tr>
<tr>
<td>VI.3.</td>
<td>Typical K-Band Recordings of Spectrum at Liquid Nitrogen Temperature</td>
<td>43</td>
</tr>
<tr>
<td>VI.4a.</td>
<td>Angular Variation of Spectrum for Rotation of H in (1010) Plane</td>
<td>44</td>
</tr>
<tr>
<td>VI.4b.</td>
<td>Angular Variation of Spectrum for Rotation of H in (1210) Plane</td>
<td>45</td>
</tr>
<tr>
<td>VI.4c.</td>
<td>Angular Variation of Spectrum for Rotation of H about a Cone at 45° to the c-Axis</td>
<td>46</td>
</tr>
<tr>
<td>VI.5.</td>
<td>Ion Site Projection on (0 0 0 1) Plane</td>
<td>47</td>
</tr>
<tr>
<td>VI.6a.</td>
<td>A and B vs. Temperature</td>
<td>50</td>
</tr>
</tbody>
</table>
VI.6b. \(b_2^o \) vs. Temperature
VI.6c. \(b_4^o \) vs. Temperature
CHAPTER I

INTRODUCTION AND PURPOSE OF THE EXPERIMENT

The first investigations into magnetism were carried out in 600 B.C. by the father of Greek science, Thales of Miletus. He experimented with the mineral magnetite and found it attracted ordinary iron, which itself became magnetized by touching the magnetite. Minerals which exhibit the properties of iron have since been classified as ferromagnetic. Minerals which are attracted to magnetite or other magnetic materials, but do not become permanently magnetized are called paramagnetic. Magnetism has been studied throughout history and found its first significant application in the field of navigation. The modern investigation of magnetism begins just before the turn of the century with the work of such people as Weiss, Curie, and Langevin.

Further major developments awaited the new quantum theory of the early nineteen hundreds, which was founded upon the empirical results of such works as the Stern-Gerlach, Zeeman, and the photoelectric experiments. Out of the quantum theory came speculation about dynamic phenomena which should be expected in magnetic materials and paramagnetic materials in particular. Two dynamic phenomena, which were predicted about paramagnetic materials, are paramagnetic relaxation, and resonance.

The attempts to observe paramagnetic relaxation preceded the work on paramagnetic resonance and were pursued extensively in the

- 1 -
mid nineteen thirties by predominantly scientists from the Netherlands. Two early review articles on the relaxation investigations are by Gorter\(^1\) and Cooke\(^2\).

Paramagnetic resonance with which the experiment dealt, was first observed successfully by Zavoisky\(^3\) in 1945. His initial experiments used a 25-meter wavelength to observe absorption as a function of magnetic field in substances whose line widths were about 50 gauss or larger. A resonance line was scarcely discernible at such low frequencies, which corresponded to a resonance 'peak' at about 4 gauss.

The second series of experiments by Zavoisky\(^4\) found a maximum for Cu\(^{2+}\) ion at 47.6 gauss, using a frequency of 133 Mc sec\(^{-1}\).

The first work on Mn\(^{2+}\) was completed shortly after in the United States by Cummerow and Halliday\(^5\). The results consisted of a resolved spectrum of Mn\(^{2+}\) in 173 g. of MnSO\(_4\).4H\(_2\)O placed in a resonant cavity excited at 2930 Mc sec\(^{-1}\). Then followed a period of very productive work at the Clarendon Laboratory at Oxford. The early developments in the field are chronicled in two reports by members of the Oxford group\(^6\),\(^7\).

According to Russel-Saunders coupling iron group ions with d\(^5\) configurations eg. Mn\(^{2+}\) and Fe\(^{3+}\) and the rare earth group ions with f\(^7\) configurations, have S ground states. Any degeneracy in the ground state must be due to spin only. Bethe, in 1929, had predicted that the presence of a crystal field would remove the S-state degeneracy, and resonance studies verified this prediction. The S-state splittings can be described using a spin-Hamiltonian, which takes into consideration the crystal field interactions, hyperfine interactions, and
sometimes, superhyperfine interactions. The interactions will be discussed and the spin-Hamiltonian derived in Chapter II. To determine the amount of splitting which is due to each interaction one must determine the value of the parameter or tensor in the spin-Hamiltonian associated with that interaction.

In recent years interest has been shown both experimentally and theoretically in the temperature dependence of the parameters of the spin-Hamiltonian. Walsh et. al.8, in 1965, studied experimentally the temperature dependence of the spin-Hamiltonian parameters in cubic crystals such as MgO. The axial crystal field parameters' variation with temperature can be explained on the effect of thermal expansion on a rigid lattice model. The hyperfine parameters' variation could not be explained by a rigid model, however. It was proposed that the hyperfine parameter variations were due to lattice vibrations. Quick9, in 1969, carried out a thorough temperature study of Mn2+ in a trigonal crystal field in an effort to apply the present dynamic and static models to a slightly less symmetric field than cubic.

The purpose of this experiment, which was a temperature dependence study of Mn2+ in Brucite, a Mg(OH)_2:Mn2+ system, was to supply additional empirical parameter measurements for a trigonal field. The hope was to provide more data to correlate with others working in temperature dependence studies, so that present models could be validated or modified in light of these new results.
II.1 Resonance Condition For a Free Ion

In a free ion, obeying Russel-Saunders's coupling, the total electronic angular momentum \(J \) is given by

\[
J = L + S \tag{II.1}
\]

The \(L \) is the orbital electronic momentum

\[
L = \sum_k \vec{l}_k \tag{II.2}
\]

and \(S \) is the electronic spin angular momentum

\[
S = \sum_k \vec{s}_k \tag{II.3}
\]

where \(\vec{l}_k \) and \(\vec{s}_k \) are summed over all electrons in the unfilled orbital of the ion.

In the presence of a magnetic field \(H_\parallel \), quantization of the total electronic angular momentum in the direction of \(H_\parallel \) takes place. The values of the projection \(M_J \) that are allowed by quantum theory are:
With each value of M_j is associated an energy given by

$$E = g \beta H_o M_j,$$ \hspace{1cm} (II.5)

where g is the Lande g factor given by

$$g = 1 + \frac{J(J + 1) + S(S + 1) - L(L + 1)}{2J(J + 1)},$$ \hspace{1cm} (II.6)

and β is the Bohr magneton given by

$$\beta = \frac{e \hbar}{4mc}.$$ \hspace{1cm} (II.7)

If now an alternating magnetic field of frequency ν is applied at right angles to the fixed magnetic field H_o, magnetic dipole transitions of energy $\hbar \nu$ may be induced. Magnetic dipole transitions satisfy the selection rule

$$\Delta M_j = \pm 1.$$ \hspace{1cm} (II.8)

The energy $\hbar \nu$ absorbed from the alternating magnetic field must equal the difference in energy between two levels for which $\Delta M_j = 1$. Hence the condition for absorption to take place is

$$\hbar \nu = g \beta H_o.$$ \hspace{1cm} (II.9)
The energy of induced emission would satisfy the same relation.

The probabilities for emission and absorption are equal, and if the two states were populated equally no net absorption would occur. Generally, the upper levels are populated less than the lower levels according to Boltzmann statistics and a net absorption of energy takes place. If sufficient power is supplied by the alternating field, the levels will be populated equally, and no more net absorption will occur. Saturation takes place.

II.2 The General Hamiltonian

The Hamiltonian operator of a system is a quantum mechanical operator whose eigenvalues are the energies of the states of the system. To find the energy levels of an ion placed in a crystal field it is necessary to first formulate the Hamiltonian considering all possible interactions.

Abragam and Pryce10 express the Hamiltonian for an iron group ion or Mn2+ in a crystal placed in a magnetic field as

\[\mathcal{H} = V_F + V + V_{LS} + V_{SS} + V_H + V_N + V_Q + V_{NH}. \] (II.10)

The terms have been arranged in decreasing order of importance.

The first term \(V_F \) represents the interaction associated with the free ion, considering only electrostatic interactions, and may be written as
\[V_F = \sum_{i=1}^{N} \left(\frac{p_i^2}{2m} - eV(r_i) \right) + \sum_{i<k} \frac{e^2}{r_{ik}} \]

(II.11)

The summation is over \(N \), the total number of electrons in the ion.

\(eV(r_i) \) gives the electrostatic energy due to attraction between the \(i \)th electron and the nucleus, \(\frac{p_i^2}{2m} \) the linear momentum of the \(i \)th electron, and \(\frac{e^2}{r_{ik}} \) the electrostatic energy due to the repulsion between the \(i \)th and \(k \)th electron. When we consider the electrons in the unfilled 3d orbital, we find that the electrostatic interaction causes the electron levels to be grouped into states called 'terms', characterized by \(L \) and \(S \). \(L \) and \(S \) are given in equations (II.2) and (II.3). This method of coupling electron states is known as 'L - S' or Russell-Saunders coupling. Each term is \((2J + 1) \) degenerate, where \(J \) is given by Eq. (II.1). For an ion with 3d\(^5\) configuration, Mn\(^{2+}\), there are many allowed terms including \(^6S \), \(^4G \), \(^4P \), \(^4D \) etc. The left superscript refers to the \(S \)-degeneracy and equals \((2S + 1) \). The capital letter refers to the \(L \)-value of the term, where \(S \), \(P \), \(D \), \(F \), \(G \), --- correspond to \(L = 0, 1, 2, 3, 4, --- \). For Mn\(^{2+}\) the lowest energy term is \(^6S \), which corresponds to one electron in each of the 3d orbitals and all spins aligned parallel, giving an \(L \) of 0 and \(S \) value of 5/2. The level separations of \(V_F \) are usually of the order of \(10^4 \) cm\(^{-1}\).

The next term \(V \) is the electrostatic interaction with the field of the neighbouring ion. In the case of the iron group, \(V \) causes splittings of the order \(10^4 \) cm\(^{-1}\). The term \(V \), commonly called the crystal field term, will be discussed further in II.3.
The term V_{LS} is the spin-orbit interaction and is given by

$$V_{LS} = \sum_{j,k}^{N} a_{jk} \mathbf{l}_j \cdot \mathbf{S}_k + b_{jk} \mathbf{l}_j \cdot \mathbf{l}_k + c_{jk} \mathbf{S}_j \cdot \mathbf{S}_k \quad (II.12)$$

where a_{jk}, b_{jk}, c_{jk} are constants. The spin-orbit interaction gives rise to splittings of the order 10^2 cm^{-1}.

The term V_{SS} represents the magnetic dipole-dipole interaction between electrons. It is written

$$V_{SS} = \sum_{j,k} \frac{\mathbf{S}_j \cdot \mathbf{S}_k}{r_{jk}^2} - \frac{3(\mathbf{l}_j \cdot \mathbf{S}_j)(\mathbf{l}_k \cdot \mathbf{S}_k)}{5r_{jk}^5} \quad (II.13)$$

where the summation is over all pairs of electrons. Spin-spin interactions give rise to splittings of the order 1 cm^{-1}.

The interaction with the external magnetic field H_o is given by

$$V_H = \sum_k \beta (\mathbf{l}_k + 2 \mathbf{S}_k) \cdot H_o$$

$$= \beta (\mathbf{L} + 2 \mathbf{S}) \cdot H_o \quad (II.14)$$

These Zeeman splittings are of the order 1 cm^{-1}.

The V_N term represents the magnetic interaction between unpaired electrons and the nuclear magnetic moment I.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
V_N = 2 \gamma \beta N \left[\sum_k \left(\frac{I_k - S_k}{3} \cdot I \right) + 3 \left(\frac{I_k \cdot S_k}{5} \cdot I \right) \right] + \frac{8\pi}{3} g (r_k) (S_k \cdot I) \]

(II.15)

Here \(\beta_N \) and \(\gamma \) refer to the nuclear magneton and the nuclear gyromagnetic ratio. The \(V_N \) term is commonly called the hyperfine term and gives rise to splittings of the order \(10^{-1} \) to \(10^{-3} \) cm\(^{-1} \).

The term \(V_Q \) describes the electrostatic interaction with the quadrupole moment \(Q \) of the nucleus, and \(V_{NH} \) the interaction of the nucleus with the external magnetic field \(H_0 \). The last two terms cause perturbations of the energy levels of the order \(10^{-2} \) to \(10^{-3} \) cm\(^{-1} \) and since their effect is so small will be disregarded in the following and since their effect is so small will be disregarded in the following.

III.3 The Crystal Field

When a paramagnetic ion is placed in a crystal environment, it is now subject to a non-spherical electric potential arising from its immediate environment, and the free ion energy levels are modified to a great extent. Three theories have been developed to account for these modifications: the crystal field, the ligand field, and the molecular orbital theories. The difference among them arises from assigning to chemical bonding and purely electrostatic effects different relative importance.

In crystal field theory, the paramagnetic ion is considered as being affected only by electrostatic effects. The unpaired electrons
are described by atomic orbitals which are considered not to overlap those of the surrounding ions. The influence of the environment is then reduced to evaluating the form of the electrostatic potential produced by the immediate-neighbour ions treated as point charges. In ligand field theory and molecular orbital theory the bonds between the paramagnetic ion and its nearest-neighbours are assumed to have a partial or total covalent nature respectively. The actual bonds in the crystal we consider are not purely ionic and orbitals do overlap to a certain degree. The crystal field approach will be used, however, because it is simpler and explains the results sufficiently well.

Experimental data reveals that the strength of the crystalline field falls into one of three groups: strong, medium and weak fields. The notations strong, medium, or weak refer to the order of magnitude of the crystalline field relative to the other terms in the Hamiltonian. The relative order of magnitude will decide at what point in the calculations the crystalline field will be used as a perturbation.

The assumptions made in crystal field theory imply that the electrostatic potential ρ_c at the paramagnetic ion due to its surrounding nearest-neighbours is a solution of Laplace's equation.

$$\nabla^2 \rho_c = 0 \quad (\text{II.16})$$

The term due to the crystal field term V will be
\[V = \sum_i -e \phi_c(r_i, \theta_i, \phi_i), \]

(II.17)

where \(\phi_c(r_i, \theta_i, \phi_i) \) is the potential at the \(i \)th electron, and the summation is over all the electrons in the unfilled orbital. The electron orbitals are generally expressed in terms of spherical harmonics, and it becomes especially useful to expand the potential \(\phi_c \) in a series of them also:

\[\phi_c(r, \theta, \phi) = \sum_{n,m} A_n^m r^n y_n^m(\theta, \phi) \]

(II.18)

or

\[\phi_c(r, \theta, \phi) = \sum_{n,m} U_n^m \]

(II.19)

in which

\[U_n^o = A_n^c Y_n^o(\theta, \phi) \]

(II.19a)

and

\[U_n^m = [A_n^m Y_n^m(\theta, \phi) + A_n^{-m} Y_n^{-m}(\theta, \phi)] \]

(II.19b)

The normalized harmonics \(Y_n^m(\theta, \phi) \) are defined as

\[Y_n^m(\theta, \phi) = (-1)^n \frac{1}{\sqrt{4\pi}} \frac{(2n+1)(n+|m|)!}{(n-|m|)!} \frac{1}{2} P_n^m(\cos \theta) e^{-im\phi}. \]

(II.20)
It is not necessary to consider all the terms in the expansion of the ψ_c, since symmetry properties of the ion site in the crystal and the configuration of the ion involved reduce the number of terms considerably. The wave functions ψ^m_ℓ of the d electrons are expansions in spherical harmonics of order 2. The matrix elements of the potential terms are of the form

$$\int \psi^m_\ell \ U^m_n \ \psi^m_\ell \ \text{d} \tau ,$$

which integrals vanish for $n > 2 \ell$, where in the case of d electrons $\ell = 2$. This occurs because the expansion of $(\psi^m_\ell)^2$ involves spherical harmonics of order not exceeding 2ℓ, and the orthogonality of spherical harmonics then assures zero matrix elements if $n > 2 \ell$ or $n > 4$ in the case of d-electrons. All matrix elements of U^m_n for which n is odd vanish because the electron wave functions are invariant under an inversion transformation, but the U^m_n for odd n change sign. The matrix element for U^m_0 is just a constant which shifts all levels equally. Further reductions can be obtained if one takes into account the symmetry of the crystalline field. In the particular case of trigonal symmetry studied, the only terms included are $m = 0$ and $m = \pm 3$. Hence the crystal field potential is given by

$$\Phi_c(r, \theta, \phi) = U_2^0 + U_4^0 + U_4^3 ,$$
where

\[U_n^m = B_n^m V_n^m \] \hspace{1cm} (II.22a)

The \(V_n^m \) in Cartesian coordinates and the \(B_n^m \) in terms of the \(A_n^m \) are given by Al'tshuler and Kozyrev\(^{11}\), and are listed in table II.1 and II.2 respectively.

TABLE II.1

\[V_2^o = 3 z^2 - r^2 \]
\[V_4^o = 35 z^4 - 30 r^2 z^2 + 3r^4 \]
\[V_4^3 = (x^2 - 3y^2) x z \]

TABLE II.2

\[B_2^o = \frac{1}{4} \sqrt{\frac{5}{\pi}} A_2^o \]
\[B_4^o = \frac{3}{16\sqrt{\pi}} A_4^o \]
\[B_4^3 = \frac{3}{4} \sqrt{\frac{35}{\pi}} |A_4^3| \]

II.4 The Spin-Hamiltonian

The Hamiltonian, in the general form given in Eq. (II.10)
is exceedingly difficult to work with. Abragam and Pryce10 arrive at a much simpler expression by applying perturbation theory. First the crystal field potential is expressed in Cartesian coordinates using table II.1. Next we apply the Wigner-Eckart Theorem, which states that if two vector operators transform in the same way under rotations, then the matrix elements are proportional. This allows us to replace the coordinate operators with equivalent angular momentum operators; thus $x \rightarrow L_x$, $y \rightarrow L_y$, $z \rightarrow L_z$, etc.; and products such as xy are replaced by $\frac{1}{2}(L_x L_y + L_y L_x)$, because of the commutation rules for angular momentum operators. It is only necessary to evaluate the constant of proportionality for one matrix element. The remaining terms in the Hamiltonian (II.10) are transformed into expressions involving the appropriate angular momentum operators L, S and J.

One is primarily interested only in the lowest level and levels removed from it by no more than a few hundred wave numbers, for higher levels are not occupied at the usual experimental temperatures. This means that one need only consider those levels which arise from the lowest levels of the first two interactions $V_F + V$ by the remaining perturbations in (II.10). Abragam and Pryce did second order perturbation calculations, working out matrix elements between the ground state and excited states. An expression involving S and I is obtained which is called the 'Spin-Hamiltonian' and takes the form

$$\mathcal{H}_S = \beta H_0 \cdot \mathbf{g} \cdot S + S \cdot D \cdot S + S \cdot A \cdot I + \text{other nuclear terms and constants}$$

\text{(II.23)}
\(g, A \) and \(D \) are second-rank symmetric tensors, and \(S \) is now the 'effective spin operator' whose value is determined by putting the multiplicity of the ground state equal to \((2S + 1) \).

The first term in Eq. (II.23) is the Zeeman term. The \(g \), which now takes the place of the usual spectroscopic splitting factor, is a symmetric tensor whose elements are composed of the free-electron \(g \)-value plus an anisotropic correction due to spin-orbit coupling. The second term arises from the zero-field splittings of the ground state in the noncubic crystal field. The splitting is caused in part by the spin-orbit coupling and spin-spin contributions in an unsymmetrical crystal field. This term gives rise to what is generally called the fine structure. The third term gives rise to the hyperfine structure.

A difference in the principal values of \(A \) or \(D \) indicates an anisotropy of the hyperfine or fine structure respectively. In most cases, the symmetry of \(g \) and \(A \) is intimately related to the symmetry of the environment. In some cases \(g \) and \(A \) are diagonal in the same system of co-ordinates, but this may not always be the case. A system of co-ordinates can always be found in which \(g \) and \(D \) are both diagonalized simultaneously.

Usually it is only necessary to take perturbation calculations to second order to find a spin-Hamiltonian which describes the experimental observations. In the case of \(S \)-state ions, in which \(L = 0 \), second order calculations predict that the crystal field will not split the orbital degeneracy. However, experiments show there is a splitting.
spin-orbit interactions simultaneously, that the splitting of the orbital degeneracy in S- state ions can be accounted for. To account for the anomalously high hyperfine splittings found in Mn\(^{2+}\), it is necessary to consider configuration interactions which admixes to the \(3s^2 3d^5\) some \(3s 3d^{10} 4s\).

A spin-Hamiltonian which describes an S- state ion in an electric field of axial symmetry is given by Pryce\(^{12}\).

\[
\mathcal{K}_s = \beta \left[g_\perp \frac{H_z S_z}{2} + g_\perp (H_x S_x + H_y S_y) \right] \\
+ D \left(S_z^2 - \frac{3S(S+1)}{12} \right) + \frac{a}{6} \left(S_u^4 + S_v^4 + S_w^4 - \frac{707}{16} \right) \\
+ A I_z S_z + B (I_x S_x + I_y S_y) \tag{II.24}
\]

Here for a trigonal case \(u, v, w\), are mutually perpendicular axes, with respect to which the \(z\)-axis is positioned in the [111] direction.

Another suitable spin-Hamiltonian for the system studied is the one used by Vinokurov et al.\(^{13}\) in the study of Mn\(^{2+}\) in Apatite.
\[\mathcal{H}_s = \beta \left[g_\parallel H_z S_z + g_\perp (H_x S_x + H_y S_y) + \frac{1}{3} b_2^\circ 0_2^\circ + \frac{1}{60} b_4^\circ 0_4^\circ + \frac{1}{60} b_4^3 0_4^3 + A S_z I_z + B (S_x I_x + S_y I_y) \right] \] (II.25)

The \(O_{n}^{m} \) are functions of the spin operators listed by Orbach\(^{14}\), and the \(O_{n}^{m} \) needed for substitution in Eq. (II.25) are given in table (II.3). The relation between the various parameters in Eqs. (II.25), (II.24) and (II.22a) are given in table (II.4)

II.5 Eigenvalues of the Spin-Hamiltonian

The spin-Hamiltonian to which the experimental data has been fitted in this work is Eq. (II.25). To determine the eigenvalues of this Hamiltonian exactly it would be necessary to solve a secular equation of order 36. By applying perturbation theory, however, the problem can be considerably reduced. A transformation is first made to a coordinate system whose \(Z \) axis, oriented at \((\beta, \alpha)\) relative to the crystal field axes, is the quantization axis of the electron spin. The Zeeman term will then be diagonal in this new system, see Vinokurov et al.\(^{13}\). The remaining terms in (II.25) are then applied as perturbations. The eigenvalues resulting from second order perturbation calculations are listed by Quick\(^{9}\).
\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
0_2^o & $3 S_z^2 - S(S + 1)$ \\
\hline
0_4^o & $35 S_z^4 - [30 S(S + 1) - 25] S_z^2$ \\
& $- 6 S(S + 1) + 3 S^2(S + 1)^2$ \\
\hline
0_4^3 & $\frac{1}{4} [(S_z^3 + S_-^3) + (S_+^3 + S_-^3) S_z]$ \\
\hline
\end{tabular}
\caption{Table II.3}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
b_2^o & $3 B_2^o = D$ \\
\hline
b_4^o & $60 B_4^o = - \frac{8}{3}$ \\
\hline
b_4^3 & $60 B_4^3 = \frac{20 \sqrt{3}}{3} a$ \\
\hline
\end{tabular}
\caption{Table II.4}
\end{table}
CHAPTER III
PROPERTIES OF CRYSTAL

III.1 Introduction

At first attempts were made to grow synthetic Mg(OH)₂ crystals by the slow diffusion method. The apparatus was the same as that described by Quick⁹. The method proved unsuccessful, however, because the high insolubility of Mg(OH)₂ caused it to precipitate instead of crystallize. Dr. F. Holuj kindly supplied some brucite, natural Mg(OH)₂, which originated in Quebec. A preliminary E.P.R. investigation revealed a characteristic thirty line spectrum of Mn²⁺ suitable for more detailed studies.

III.2 Crystallography

The crystal structure of brucite was first determined by Aminoff¹⁵, in 1919, to be of the hexagonal (CdI₂) type, with space group P 3m 1. The unit cell is trigonal and contains one formula unit. As shown in Fig. III.1, brucite consists of hydroxyls arranged in hexagonal close-packed type of arrangement, with Mg ions occupying slightly distorted octahedral sites only between alternate layers of hydroxyls. It was not until 1956 that the location of the hydrogen ions associated with each oxygen ion was determined by Elleman and Williams¹⁶.
Fig. III.1. Structure of brucite showing hexagonal arrangement of ions

Fig. III.2. Structure of brucite projected on (0 0 0 1) plane —— gives outline of a unit cell
The distance \(C \) between successive Mg planes, which are perpendicular to the \(c \)-axis, is 4.73\(\text{Å} \), as shown in Fig. III.1. The O ions are arranged in hexagonal patterns in planes perpendicular to the C-axis. There are 0 planes located 1.04\(\text{Å} \) above and below each Mg plane. With each O ion is associated a H ion, lying on a line through the O ion parallel to the \(c \)-axis and at a distance of 0.98\(\text{Å} \) removed from it. The adjacent hydroxyl layers are held together by weak Van der Waal's forces.

In a given Mg plane, the six nearest Mg ions surrounding a Mg ion are located at the corners of a regular hexagon, as shown in Fig. III.2. The distance between adjacent Mg ions is 3.12\(\text{Å} \). As shown in Fig. III.1, an Mg ion is surrounded by six O ions situated at the corners of a near-perfect octahedron, compressed slightly along [0 0 0 1]. The Mg-O distance is 2.08\(\text{Å} \). The Mn\(^{2+}\) ions substituted in place of the Mg\(^{2+}\) ions will have point symmetry \(D_3d \).

III.3 Specimens

Brucite is a relatively soft mineral that cleaves readily to form plates, which, if thin, are colourless. The cleavage plane corresponds to the breaking of the weak Van der Waal's forces between adjacent hydroxyl layers, and thus the \(c \)-axis is perpendicular to the plates.

The crystals examined were from the same site in Quebec as those used by Pieczonika et al.\(^{17}\) in their earlier study. According to their analysis, the crystal contained 100 parts per million
manganese impurity. All crystals studied exhibited a strong Mn$^{2+}$ spectrum, indicating a high concentration.
The E.P.R. spectrometer was a straight bridge type, using a magic T. A block diagram is shown in Fig. IV.1. The microwave power was supplied by a Varian Model VA 98 M klystron. The static magnetic field was generated with a 12 inch Varian magnet, with 3.5 inch gap, whose power supply was controlled by a Fieldial Model V-FR2503 control unit.

Magnetic field modulation at 100 KHz was generated by an oscillator built into the Princeton Applied Research (P.A.R.) Model JB-5 Lock-in Amplifier. This signal was amplified externally and applied to two coils connected in series and mounted external to the cooling cryostat. The magnetic resonant absorption signal from the cavity was detected by the crystal detector. The resonant signal was pre-amplified and then fed into the P.A.R. Lock-in Amplifier, which compares the phase and frequency of the resonant signal with the original 100 KHz modulation signal. The result is a derivative signal proportional to the resonant signal, which can be displayed on the oscilloscope or chart recorder as a function of magnetic field. To allow display on the oscilloscope the magnetic field is modulated at 60 Hz, in addition to 100 KHz.
FIG. IV.1 BLOCK DIAGRAM OF SPECTROMETER
Fig. IV.2. Cavity
The klystron frequency was stabilized to the cavity resonant frequency using a Teltronic Model KS LP Klystron Stabilizer. The stabilizer works on the principle of automatic-frequency control (A.F.C.). A sine wave modulation of approximately 70 KHz was impressed on the reflector voltage, thus causing a small amount of frequency modulation. If the klystron frequency is tuned at or near the cavity resonant frequency, the output detected by the A.F.C. detector will contain a 70 KHz component. The A.F.C. signal is amplified and then applied to the phase-sensitive detector (P.S.D.), built into the stabilizer, which compares the signal with the original modulation signal. The result is a D.C. error voltage with a polarity and magnitude proportional to the difference between the klystron oscillator frequency and the resonant frequency of the cavity. The error voltage is applied to the reflector of the klystron in such a manner that the klystron frequency is pulled back to the frequency of the cavity.

The cavity, which operated in the TE011 mode, had been used successfully in this laboratory before, and is illustrated in Fig. IV.2. It was constructed out of pyrex glass. The glass was first coated with a baked-on layer of silver oxide, and then a thin layer of gold was sputtered on. An outer cup of plastic, sealed with glycerine, was used to exclude the cooling liquid nitrogen from the cavity. Heat was applied to the cavity by a coil of chromel heating wire at the base of the cavity, inside the outer cup. An Electro Model B Filtered D.C. Power Supply was used to energize the heater.
coils. The crystal was glued by epoxy on a quartz glass pin, which in turn was glued to the crystal rotation device at the side of the cavity. A copper-constantan thermocouple ran up from the base of the cavity and was glued to the bottom of the crystal. The temperature was monitored with a Leeds and Northrup 8686 Millivolt Potentiometer.
V.1 Orientation of the Crystal

A major problem which had to be overcome, before the study of the temperature variation of the spectrum could begin, was orientation of the crystal on the quartz pin. It was desirable to take precise measurements of the resonant fields along the magnetic z-axis, perpendicular to the z-axis and at an intermediate orientation in a symmetric magnetic plane. The three symmetric magnetic planes in the crystal are planes through the z-axis, which are related by rotations of only 60° (rather than 120°) about the z-axis for magnetic fields at an arbitrary angle with the z-axis. To permit the precise measurements to be made, it was necessary to orient the crystal on the pin in such a manner that the three desired orientations could be reached by a rotation of the magnet and, at most, a very small orientation of the crystal inside the cavity. This was found to be necessary because, once the thermocouple was glued onto the crystal, use of the crystal rotation device was limited to approximately 15° to 20°. If rotations greater than this were attempted, the 'Q' of the cavity was reduced and klystron frequency stabilization became impossible, or the quartz pin fractured due to stresses applied to it by the thermocouple. It was possible by visual
observation to estimate the c-axis of the crystal, which was perpendicular to the cleavage plane. However, there were no other distinguishable surfaces to aid orientations.

From the earlier work of Pieczonka et al., it had been determined that the magnetic z-axis corresponded to the crystallographic c-axis. The crystal was glued temporarily with the z-axis perpendicular to the pin, alignment being done visually. An angular variation study was carried out to locate exactly the z-axis, which corresponded to the direction in the crystal along which the applied magnetic field causes maximum spread of the observed spectrum. Using a stereographic plot to determine magnet and crystal rotations, an angular variation was carried out in which the applied magnetic field formed a cone, 45° relative to the z-axis. This study allowed a determination of the magnetic symmetric planes. Once these had been determined relative to the temporary alignment, the crystal was permanently glued with a new alignment such that the three desired orientations could be reached with a minimum of crystal rotation. The new alignment was verified to be satisfactory by a new angular variation study and then the thermocouple was glued to the crystal.

V.2 Temperature Variation

Precise measurements of specific lines at all three orientations were taken at approximately 20 K intervals from liquid nitrogen to room temperature. The current through the heater wire was adjusted to an arbitrary value and the apparatus allowed to come
to equilibrium for about an hour to hour and one half. Once equilibrium was reached, it was found that as long as the current was maintained constant the thermocouple readings indicated a temperature fluctuation of no greater than \(\pm 1 \, \text{K} \). The current was monitored closely throughout a set of readings and adjusted if necessary. No attempt was made to accurately calibrate the thermocouples and an estimated error due to the thermocouples is \(\pm 1 \, \text{K} \). The reference temperature used was liquid nitrogen.

V.3 Measurement of Magnetic Field

As in most E.P.R. studies the frequency of the incident microwave radiation was held constant and the applied magnetic field \(H \) was swept slowly through the resonance absorption spectrum. To calculate the spin-Hamiltonian parameters, it is necessary to know accurately the frequency of the microwave radiation and the strength of the applied magnetic field at which an absorption takes place.

The value of the magnetic field was measured using a proton resonant probe, commonly called an N.M.R. probe, attached to one poleface of the magnet. The outputs of the N.M.R. probe and the P.A.R. Lock-in Amplifier were fed through an electronic switch and superimposed on an oscilloscope screen. When the two signals were properly aligned on the screen, the frequency of the N.M.R. probe could be read off the frequency counter. Due to the inhomogeneity of the magnetic field between the poleface and the location of the specimen at the center of the gap, a correction
must be made to obtain the frequency the N.M.R. probe would read if placed at the specimen location. The corrected frequency is obtained by taking away from the frequency at the poleface a correction, given in Fig. V.1. The condition of resonance for the protons in the N.M.R. probe is

\[h \nu_p = \gamma \beta_N H \]

(V.1)

where \(\nu_p \) is the proton resonant frequency, \(\gamma \) is the gyromagnetic ratio of the proton and \(\beta_N \) is the nuclear magneton. Rearranging Eq. (V.1) and making numerical substitutions for the constants, the magnetic field at the specimen is given by

\[H(\text{K-gauss}) = \frac{1}{4.25759} \frac{\nu (\text{mc/sec})}{\nu_p (\text{mc/sec})} \]

(V.2)

where \(\nu \) is the corrected frequency. An estimate of the error due to inhomogeneity of the magnetic field is approximately \(\pm 0.2 \) gauss.

V.4 Use of Magnetic Field Marker

The frequency of the microwave radiation supplied by the K-band (~ 23.4 GHz) klystron determines the magnetic field at which the resonant signal of the diphenyl picryl hydrazyl (DPPH) free radical occurs. DPPH was used as a magnetic field marker because its g-factor, 2.0036, is independent of temperature and direction of the applied magnetic field.
Fig. V.1. Correction Frequency due to Inhomogeneity of Field
CHAPTER VI
CALCULATIONS AND RESULTS

VI.1 Calculations of Magnetic Fields at which Resonance Occurs

The equations for the energy levels, as explained in Sec. II.5, are given by Quick. For resonance to occur the equation

$$\Delta E = E(M, m) - E(M - 1, m) = h\nu$$ \hspace{1cm} (VI.1)

must be satisfied. Here M, the spin quantum number, and m, the nuclear quantum number, have the values $-5/2, -3/2, -1/2, 1/2, 3/2, 5/2$. Only allowed electronic transitions were considered, for which $\Delta m = 0, \Delta M = \pm 1$. For a given transition ΔE takes the form

$$\Delta E = E(M, m) - E(M - 1, m) = g\beta H(M, m \rightarrow M - 1, m) + C(\text{in ergs})$$ \hspace{1cm} (VI.2)

Here C is an expression in units of ergs, which involves the spin-Hamiltonian parameters, the transition energy, and depends on the direction but not the magnitude of the applied magnetic field. The resonant condition Eq. (VI.2) has been given in units of energy (ergs) and our measurements were taken in terms of the magnetic field positions (gauss) of the absorption signals. Combining the resonant condition for DPPH and Eqs. (VI.1) and (VI.2) we obtain

- 33 -
\[\varepsilon_d \beta H_d = \Delta E = g \beta H(M, m \to M - 1, m) + C(\text{ergs}) \]

(VI.3)

where \(\varepsilon_d \) is the \(g \)-factor of DPPH. Dividing both sides of Eq. (VI.3) by \(g \beta \) and rearranging we obtain

\[
H(M, m \to M - 1, m)(\text{gauss}) = \frac{\varepsilon_d H_d}{g} - \frac{C(\text{ergs})}{g \beta} = \frac{g_o - \varepsilon_d H_d}{g o \beta} - \frac{C(\text{ergs})}{g \beta}
\]

(VI.4)

where \(g_o \) is the \(g \) of the free electron. The division of \(C(\text{ergs}) \) by \(g_o \beta \) just converts this expression to one in units of gauss. The term \(\frac{\varepsilon_d H_d}{g o} \) is denoted by \(H_o \), the magnetic field at which the absorption for the free electron occurs. Therefore Eq. (VI.4) becomes

\[
H(M, m \to M - 1, m) = \frac{g_o}{g} [H_o - C(\text{gauss})]
\]

(VI.5)

The equations for the magnetic fields at which the various resonances occur are given in Table VI.1a. The constants \(a_n^{m+} \) have been listed by Vinokurov et al., however, errors appear in the publication. Corrected \(a_n^m \) appear in Table VI.1b. These formulas were used in a computer program, given in Appendix B, to generate the resonant fields.

VI.2 Fitting the Spin-Hamiltonian Parameters

It was hoped in the experiment to fit the seven spin-Hamiltonian parameters \(g ||, g \perp, A, b_2^0, b_4^o, b_4^3 \). To accomplish
this, a least squares process, as outlined by Malchikov et al., was used.

The principle involved was to minimize the expression

$$\sum_{j=1}^{NHX} [HX(j) - HC(j)]^2 = \sum_{j=1}^{NHX} W_j^2$$ \hspace{1cm} (VI.6)$$

where NHX was the number of experimental lines fitted, HX(j) was the experimental field measured, and HC(j) was the field calculated using a set of trial parameters P(i), i = 1, 7. If \(\sum_{j=1}^{NHX} W_j^2 \) was to be a minimum, then the partial derivative of Eq. (VI.6) with respect to each of the parameters must equal zero. If we expand HC in a Taylor's series in terms of the P(i)'s before we differentiate, the result is a set of NHX linear equations with respect to seven unknowns. The seven unknowns are the corrections, COR(j), to be made to the seven trial parameters to reduce \(\sum_{j=1}^{NHX} W_j^2 \) to a minimum. The coefficients of the corrections involved partial derivations, Dl(j, i), of the HC(j) with respect to each of the parameters. In operator notation, the equations take the form

$$W = D \cdot COR$$ \hspace{1cm} (VI.7)$$

Since Eq. (VI.7) is not a set of exact equations, the 'best' solution involved a least squares problem. This necessitated minimizing the Euclidean norm of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE VI.1a

Values of magnetic field at which resonance occurs for constant frequency

\[H(\pm \frac{5}{2}, m \to \pm \frac{3}{2}, m) = \frac{g}{\hbar} \left[H_0 \mp 4a_2^o + 4a_4^o \right] \]

\[- \frac{1}{8} \left\{ \frac{8}{9} a_2^1 \right\}^2 - \frac{4}{9} a_2^2 \right\}^2 - \frac{1}{40} a_4^1 \right\}^2 + \frac{1}{20} a_4^2 \right\}^2 \]

\[+ \frac{1}{120} a_4^3 \right\}^2 + \frac{1}{2} a_2^1 \left(a_4^1 - a_4^2 \right) \]

\[+ \frac{1}{2} a_2^2 \left(a_4^1 + a_4^2 \right) \pm [2a_4^1 + (a_4^1 - a_4^2)] \cdot m \left(\frac{B^2 - A^2}{2K} \right) \sin 2\beta \]

\[+ \frac{1}{4} \left(\frac{35}{4} - m^2 \right) \left(\frac{A^2B^2}{K^2} + B^2 \right)^2 \frac{1}{2} \cdot m^2 \left(\frac{B^2 - A^2}{2K} \right)^2 \sin^2 2\beta \]

\[\mp 2m \left(\frac{AB^2}{K} \right) \}

\[H(\pm \frac{3}{2}, m \to \pm \frac{1}{2}, m) = \frac{g}{\hbar} \left[H_0 \mp 2a_2^o \mp 5a_4^o \right] \]

\[- \frac{1}{8} \left\{ - \frac{1}{9} a_2 \right\}^2 + \frac{5}{9} a_2 \right\}^2 + \frac{1}{5} a_4 \right\}^2 + \frac{9}{80} a_4 \right\}^2 - \frac{1}{120} a_4 \right\}^2 \]

\[+ \frac{1}{20} a_4 \right\}^2 - \frac{1}{2} a_2 \left(a_4^1 + a_4^2 \right) \pm \frac{1}{4} a_2 \left(a_4^1 - a_4^2 \right) \]

\[\pm \left[a_2^1 - \frac{5}{4} \left(a_4^1 - a_4^2 \right) \right] \cdot m \left(\frac{B^2 - A^2}{2K} \right) \sin 2\beta \pm \frac{1}{4} \left(\frac{35}{4} - m^2 \right) \]

\[\times \left(\frac{A^2B^2}{K^2} + B^2 \right) + \frac{1}{2} \cdot m^2 \left(\frac{B^2 - A^2}{2K} \right)^2 \sin^2 2\beta \pm m \left(\frac{AB^2}{K} \right) \}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[H(\frac{1}{2}, m - \frac{1}{2}, m) = \frac{g_0}{g} \left[H_0 - \frac{1}{\mathcal{H}} \left\{ - \frac{4}{9} a_{1/2}^2 + \frac{8}{9} a_{2/2}^2 \right\} \right. \]

\[\left. - \frac{1}{4} a_{4+}^2 - \frac{1}{10} a_{4-}^2 + \frac{1}{60} a_{6+}^2 + \frac{1}{3} a_{2}^2 (a_{4+} + a_{4-}) \right\} \]

\[\left. - a_{2}^2 (a_{4+}^2 + a_{4-}^2) + \frac{1}{4} (\frac{35}{4} - m^2) (\frac{A^2 B^2}{K^2} + B^2) \right\} \]

\[+ \frac{1}{2} m^2 \left(\frac{B^2 - A^2}{2K} \right)^2 \sin^2 \theta \]

Here

\[g^2 = g_\parallel^2 \cos^2 \theta + g_\perp^2 \sin^2 \theta \]

\[K^2 g^2 = A g_\parallel^2 \cos^2 \theta + B g_\perp^2 \sin^2 \theta \]

\[\alpha = \delta \]

\[\tan \beta = \frac{g_\perp}{g_\parallel} \tan \theta \]

where \(\theta \) and \(\delta \) are the spherical coordinates describing the direction of the magnetic field with respect to the crystal axes.
Corrected a^m_n, used to calculate resonant fields.

\[a^4_{1}^+ = \frac{1}{4} \left[20 b^o_4 \sin \beta \cos \beta (3 - 7 \cos^2 \beta) \right. \]

\[+ b^3_4 \left\{ \sin^2 \beta (4 \cos^2 \beta - 1) \cos 3 \alpha \right\} \left\{ \right. \]

\[+ i 3 \sin^2 \beta \cos \beta \sin 3 \alpha \right\} \right] \]

\[a^4_{3}^+ = \frac{1}{4} \left[-140 b^o_4 \sin^3 \beta \cos \beta + b^3_4 \left\{ \cos 3 \alpha (4 \cos^4 \beta \right. \right. \]

\[+ 3 \cos^2 \beta - 3) \]

\[+ i \cos \beta (5 - 9 \cos^2 \beta) \sin 3 \alpha \right\} \right\} \]

\[a^4_{-4}^+ = \frac{1}{8} \left[35 b^o_4 \sin^4 \beta + b^3_4 \left\{ - \sin \beta \cos \beta (3 + \cos^2 \beta) \cos 3 \alpha \right. \right. \]

\[+ i \sin \beta (\cos^2 \beta + 1) \sin 3 \alpha \right\} \right\} \]
The program used to accomplish this was 'Subroutine LLSQ', from the Scientific Subroutine Package of the I.B.M. 360 computer. A printout of the program is given in Appendix C.

In practice, it was found necessary to repeat this procedure several times. After each iteration, the fit improved and the corrections to the parameters became smaller. In most cases, no further improvement was obtained after four iterations. The program which accomplishes the iterations is given in Appendix A.

VI.3 Results At X-Band

A qualitative room temperature angular variation study performed at X-band confirmed the results published previously by Pieczonka et al.17. An investigation at liquid nitrogen temperature revealed that the spectrum was signigicantly different than that at room temperature. A typical recording for H parallel to the crystallographic c-axis, [0 0 0 1], at liquid nitrogen temperature is shown in Fig. VI.1a. A reduction of the temperature to that of liquid helium failed to alter the spectrum appreciable from that of liquid nitrogen temperature, as revealed by comparing Fig. VI.1a and Fig. VI.1b. The slight variation in the observed spectrum indicates that the spin-Hamiltonian parameters change little below liquid nitrogen temperature.
Fig. VI.1a. Typical recording of spectrum at $T = 77^\circ$K for $H \parallel [0 0 0 1]$ at X-Band

Fig. VI.1b. Typical recording of spectrum at $T = 4.2^\circ$K for $H \parallel [0 0 0 1]$ at X-Band
VI.4 Results at K-Band

In the K-band study precise measurement of resonant fields were made at three orientations in the temperature range from liquid nitrogen to room temperature. Typical recordings of the spectrum for \(\mathbf{H} \) parallel and perpendicular to the crystallographic \(c \)-axis are shown in Fig. VI.2 and Fig. VI.3, for room and liquid nitrogen temperatures respectively. A typical spectrum for brucite can be thought of as consisting of 6 groups of 5 lines, one group corresponding to each of the nuclear spin states. The five lines correspond to the 5 possible electron spin transitions with \(\Delta M = \pm 1 \). The variation of the spectrum with temperature is primarily due to the change of the spacing of the 5 lines in each group. Angular variations of the spectrum are given in Fig. VI.4. The spectrum was isotropic for rotations of \(\mathbf{H} \) in the (0 0 0 1) plane, and was symmetrical about the [0 0 0 1] axis for rotations of \(\mathbf{H} \) in the (1 0 1 0) plane. The angular variation taken in a cone about the \(c \)-axis, as given in Fig. VI.4c, illustrates the 60° separation of the symmetric magnetic planes. Fig. VI.5 shows the relationship between the symmetric magnetic planes and the actual ion site. No other arbitrary planes through the \(c \)-axis exhibit symmetry for rotations of \(\mathbf{H} \) in the plane.

The resonant fields for a set of measurements taken at room temperature are given in Table VI.2. An estimated error in the measured resonant fields is \(\pm 2.0 \) G due to poor resolution of the spectrum. The calculated values in Table VI.2 are generated by the parameters that have been fitted, as described in Sec. VI.2.
Fig. VI.2 Typical K-band recordings of the spectrum at $T = 295^\circ K$ (a) Recording $H||[0 0 0 1]$ (b) Recording $H||[1 0 1 0]$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. VI.3 Typical K-band recordings of the spectrum at $T = 77^\circ$K (a) Recording $H \parallel [0 0 1]$ (b) Recording $H \parallel [1 0 1 0]$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. VI.4a. Angular variation of spectrum for rotation of H in (10T0) plane $T = 295^\circ K$. The crosses are experimental measurements which were obtained for microwave frequency 23.4 GHz. The data is listed in Table VI.1. The solid resonant field calculated using the values of the parameters given in Table VI.1.
Fig. VI.4b. Angular variation of spectrum for rotation of \(H \) in (12T0) plane obtained by plotting the theoretical resonant fields calculated using the values of the parameters given in Table VI.1.
Fig. VI.4c. Angular variation of spectrum for rotation of H in a cone at 45° to c-axis, obtained using parameter given in Table VI.1. Note that at 30°, 60°, 150°, and 210° the spectrum repeats itself. These correspond to the symmetric planes S' given in Fig. VI.5. All other planes are asymmetric and repeat themselves every 120°.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. VI.5. Ion site projected on (0 0 0 1) plane. S relates to symmetric planes given in Fig. VI.4c.
Position of Resonant Fields at Room Temperature (295°K) and for Microwave Frequency 23.4 GHz. 'Calculated' fields were computed for the Spin-Hamiltonian parameters $g_1 = 2.0011 \pm 0.0005$, $g_2 = 2.0010 \pm 0.0005$, $A = -90.74 \pm 0.25G$, $B = -89.69 \pm 0.25G$, $b_2 = -5.85 \pm 0.50G$, $b_4 = -4.31 \pm 0.50G$, $b_4 = 0 \pm 150G$.

<table>
<thead>
<tr>
<th>Direction of H</th>
<th>Transition</th>
<th>Magnetic fields in Gauss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>M</td>
</tr>
<tr>
<td>[0001]</td>
<td>-3/2</td>
<td>-5/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>-3/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>3/2</td>
</tr>
<tr>
<td></td>
<td>-3/2</td>
<td>-5/2</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>-3/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>3/2</td>
</tr>
<tr>
<td>[1010]</td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>-1/2</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-3/2</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-3/2</td>
</tr>
<tr>
<td>$\theta=45^\circ$ in</td>
<td>-1/2</td>
<td>-3/2</td>
</tr>
<tr>
<td>(1010) plane</td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-3/2</td>
</tr>
<tr>
<td></td>
<td>5/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>3/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Graphical presentation of the variation with temperature of the parameters A, B, b^0_2 and b^0_4 appears in Fig. VI.6. The data from which these graphs were plotted appears in Table VI.3. It was found that the g values remained constant, at $g_\| = 2.0011 \pm 0.0005$ and $g_\perp = 2.0010 \pm 0.0005$, over the temperature range studied. As shown in Fig. VI.6c the results obtained for b^0_4 do not appear to follow a consistent trend of increasing or decreasing with temperature. Variations in b^3_4 of as much as ± 150 G had no significant effect on the root mean square (RMS) error of fit.
Fig. VI.6a. A and B vs. temperature
Fig. VI.6b. b_2^o vs. temperature
Fig. VI.6c. b_4 vs. temperature
TABLE VI.3

Best fit data of spin-Hamiltonian parameters A, B, b_2° and b_4°

<table>
<thead>
<tr>
<th>$T(\circ k)$</th>
<th>A</th>
<th>B</th>
<th>b_2°</th>
<th>b_4°</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>-92.22</td>
<td>-90.18</td>
<td>-13.39</td>
<td>-3.74</td>
</tr>
<tr>
<td>92</td>
<td>-92.24</td>
<td>-90.16</td>
<td>-13.01</td>
<td>-3.33</td>
</tr>
<tr>
<td>120</td>
<td>-92.21</td>
<td>-90.19</td>
<td>-12.49</td>
<td>-3.12</td>
</tr>
<tr>
<td>144</td>
<td>-92.05</td>
<td>-90.22</td>
<td>-12.90</td>
<td>-2.64</td>
</tr>
<tr>
<td>162</td>
<td>-92.06</td>
<td>-90.13</td>
<td>-12.52</td>
<td>-2.50</td>
</tr>
<tr>
<td>176</td>
<td>-91.96</td>
<td>-90.22</td>
<td>-11.81</td>
<td>-2.74</td>
</tr>
<tr>
<td>204</td>
<td>-91.83</td>
<td>-90.09</td>
<td>-12.07</td>
<td>-2.22</td>
</tr>
<tr>
<td>218</td>
<td>-91.65</td>
<td>-90.05</td>
<td>-10.98</td>
<td>-1.97</td>
</tr>
<tr>
<td>249</td>
<td>-91.51</td>
<td>-89.84</td>
<td>-10.04</td>
<td>-2.30</td>
</tr>
<tr>
<td>273</td>
<td>-91.75</td>
<td>-89.93</td>
<td>-8.17</td>
<td>-3.03</td>
</tr>
<tr>
<td>295</td>
<td>-90.74</td>
<td>-89.69</td>
<td>-5.85</td>
<td>-4.31</td>
</tr>
</tbody>
</table>
A significant difference between the parameters found by Pieczonka et al.17 at X-band appeared as shown in Appendix D. To verify that the discrepancies were not due to the different formulation of the spin-Hamiltonians or method of calculation, Pieczonka's resonant fields were fitted using our routine. Within experimental error the values of the parameters calculated at X-band were the same by both methods. Although the validity of the perturbation theory should be better for the K-band results, it seems unlikely that inclusion of higher order terms for the X-band calculations would significantly reduce the discrepancy. It is possible that the spin-Hamiltonian used was inadequate. It may be necessary to use a generalization of the spin-Hamiltonian method, as given for example by Grant and Strandberg19, which includes nonlinear terms in H. It would be of interest to investigate the Mn2+ in Ca(OH)$_2$ at K-band to see if similar discrepancies appear between the K and X-band results for the isomorphic crystal.

The temperature variation in the parameters found for Mn2+ in brucite exhibits the same trends as observed by Quick9 for the same ion in the isomorphic crystal Ca(OH)$_2$. It was found that the spin of b_2^0 changed above approximately 450°K for Ca(OH)$_2$. From Fig. VI.6b it appears that a similar sign change might occur in brucite; a further
study of the spectrum above room temperature is required to verify the sign change and to provide a more complete set of experimental data to compare with theoretical curves. b_2^o is a measure of the axial component of the crystal field. It would be of interest to study the dependence of b_2^o on mechanical stress in samples of brucite subjected to pressure along the C-axis.

An examination of deuterated samples of Ca(OH)$_2$ would supply additional data for comparison with the isomorphic Ca(OH)$_2$ and Mg(OH)$_2$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
PROGRAM FIT

PURPOSE
TO CARRY OUT ITERATIONS IN ORDER TO FIT SPIN-HAMIL-TONIAN PARAMETERS, P(I), TO A SET OF EXPERIMENTAL RESONANT FIELDS, HX.

DESCRIPTION OF PARAMETERS
DELTA(I)-INCREMENT OF P(I) TO CALCULATE THE PARTIAL DERIVATIVES NEEDED IN SUBROUTINE LLSQ(GAUSS)
P(1) - G PARALLEL
P(2) - G PERPENDICULAR
P(3) - A
P(4) - B
P(5) - b8
P(6) - b8
P(7) - b8
NTEMP - NUMBER OF TEMPERATURES AT WHICH READINGS WERE TAKEN
NANGLE - NUMBER OF ORIENTATIONS AT A GIVEN TEMPERATURE AT WHICH MEASUREMENTS WERE MADE
NHX - NUMBER OF RESONANT FIELDS MEASURED AT A GIVEN TEMPERATURE
P(I)'S - TRIAL PARAMETERS(GAUSS)
HC - CALCULATED RESONANT FIELDS
HX - EXPERIMENTAL RESONANT FIELDS
D(I,J) - PARTIAL DERIVATIVES
W(J) - DIFFERENCE BETWEEN HX'S AND HC'S
THETAD - ANGLE(DEGREES) DESCRIBING ORIENTATION OF THE MAGNETIC FIELD RELATIVE TO Z-AXIS
PHI - ANGLE(DEGREES) DESCRIBING ORIENTATION OF THE MAGNETIC FIELD RELATIVE TO X-AXIS
DPPHF - PROTON RESONANCE FREQUENCY AT WHICH DPPH ABSORPTION OCCURS

SUBROUTINES REQUIRED
(1) SUBROUTINE HNTRIG
(2) SUBROUTINE ARRAY
(3) SUBROUTINE LLSQ

METHOD
THE TRIAL PARAMETERS ARE USED IN SUBROUTINE HNTRIG TO CALCULATE A SET OF CALCULATED RESONANT FIELDS. THE TRIAL PARAMETERS AND AN INCREMENT ARE USED TO FIND A SET OF PARTIAL DERIVATIVES NEEDED IN SUBROUTINE LLSQ. LLSQ IS USED TO FIND THE CORRECTIONS, COR(I), TO THE TRIAL PARAMETERS IN ORDER TO MINIMIZE THE EUCLIDEAN NORM BETWEEN THE CALCULATED FIELDS AND THE EXPERIMENTAL RESONANT FIELDS.
PROGRAM FIT

DIMENSION THETAB(5), PHID(5), THETA(5), PHI(5), BETA(5), ALPH(5), DOPPHF(5), G(5), CX(5), P(7), PI(7), DXF(5, 5, 5), HX(5, 5, 6), HC(5, 5, 6), HD(5, 5, 6), CD(7), CR(7), W(30), S(30, 7), D1(210), IPIV(7), AUX(14), P2(7), DELTA(37), SUM(17), ST(7)

READ (5, 1) (DELTA(I), I=1, 7)
READ (5, 3) (PI(I), I=1, 7)
READ (5, 72) NTMP

KN=0

73 READ(5, 2) MANGLE, NHX
P1(7)=10.0

DO 60 NA=1, MANGLE
DO 60 I=1, 5
DO 60 K=1, 6
60 HXF(NA, I, K)=0.00

DO 4 J=1, MANGLE
READ(5, 5) THETAB(J), PHID(J), DOPPHF(J)

THETA(J)=THETAB(J)*3.141592/180.
PHI(J)=PHID(J)*3.141592/180.

DOPPHF(J)=DOPPHF(J)/4.2577

READ IN THE MEASURED FIELDS GIVEN IN TERMS OF THE PROTON RESONANT FREQUENCY.

INDEX J IDENTIFIES THE ORIENTATION
INDEX KL IDENTIFIES THE ELECTRON SPIN TRANSITION
INDEX NL IDENTIFIES THE NUCLEAR SPIN

7 READ(5, 6) K1, N1, HXF(J, K1, N1), K2, N2, HXF(J, K2, N2), K3, N3, HXF(J, K3, N3), K4, N4, HXF(J, K4, N4), K5, N5, HXF(J, K5, N5), K6, N6, HXF(J, K6, N6), K7, N7, HXF(2(J, K7, N7), N)

IF(N.EQ.0) GO TO 7
DO 4 I=1, 5
DO 4 K=1, 6
4 HX(J, I, K)=HXF(J, I, K)/4.2577
N=0

DO 50 I=1, 7
50 CONT(I)=0.00

8 DO 9 I=1, 7
P(I)=P(I)4CONT(I)
9 P(I)=P(I)+I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WRITE (6,10)
WRITE (6,11)
WRITE (6,12) (P(I),I=1,7)
CALL HNTRIG(P1,NANGLE,THETA,PHI,DPPH,HC)
WRITE (6,13)
J=0
DO 14 NA=1,NANGLE
DO 14 MN=1,6
DO 14 MS=1,5
IF(HX(NA,MS,MN)-0.2) 14,15,15
15 J=J+1
W(J)=HX(NA,MS,MN)-HC(NA,MS,MN)
WRITE (6,16) NA,MN,MS,HX(NA,MS,MN),HC(NA,MS,MN),W(J)
14 CONTINUE
SUM=0.0
DO 17 K=1,NHX
SUM=SUM+W(K)**2
WRITE (6,18) SUM
17 IF(SUM-25.0) 19,20,20
19 WRITE (6,21)
N=10
GO TO 33,20
20 DO 22 I=1,7
J=0
DO 51 K=1,7
P2(K)=P1(K)
P2(I)=P1(I)+DELTA(I)
CALL HNTRIG(P2,NANGLE,THETA,PHI,DPPH,HC)
SUM(I)=0.0
DO 22 NA=1,NANGLE
DO 22 MN=1,6
DO 22 MS=1,5
IF(HX(NA,MS,MN)-0.2) 22,23,23
23 J=J+1
D(I,J)=HO(NA,MS,MN)/DELTA(I)-HC(NA,MS,MN)/DELTA(I)
SUM(I)=SUM(I)-D(I,J)**2
22 CONTINUE
SUM1(I)=SUM1(I)+D(I,J)**2
DO 75 I=1,7
STC(I)=SORT(SUM/(SUM1(I)*NHX))
75 CONTINUE
C ARRANGES PARTIAL DERIVATIVES IN LINEAR FORM IN ORDER THAT
C THE SCIENTIFIC SUBROUTINE LLSQ MAY BE ENTERED
C
C CALL ARRAY(2,NHX,7,20,7,0,0)
C CALL LLSQ(D1,W,NHX,7,1,IP1V,0.00000002,IERF,NHX)
IF (IERF) 24,25,26
24 WRITE (6,27)
N=10
GO TO 33,26
26 WRITE (6,29) IERF
25 WRITE (6,29)
WRITE (6,41) (HUX(J),J=1,14)
WRITE(6,40)
WRITE(6,11)
WRITE (6,41) (SUM(I),I=1,7)
WRITE (6,71)
WRITE (6,11)
WRITE (6,41) (STD(I),I=1,7)
WRITE (6,31)
WRITE (6,11)
WRITE (6,3) (CP(I),I=1,7)
33 N=N+1
IF (N.LT.4) GO TO 8
KN=KN+1
IF (KN.LT.NTEMP) GO TO 73
1 FORMAT (7F8.4)
2 FORMAT (213)
3 FORMAT (1HO,7F10.5)
5 FORMAT (2F5.1,F8.2)
6 FORMAT (7(2I2,F7.1),12)
10 FORMAT (45H1)
11 FORMAT (67HO GPAR GPER A B B20 B
140 P43)
12 FORMAT (1HO,7F10.5)
13 FORMAT (60HO NA MN MS HX HC
16 FORMAT (1HO,310,3F15.2)
18 FORMAT (5HO SUM=,F10.4)
21 FORMAT (34HO FIT COMPLETE)
27 FORMAT (42HO IERR NEGATIVE PROGRAM TERMINATED)
28 FORMAT (36HO RANK=,12)
29 FORMAT (36HO AUX MATRIX)
40 FORMAT (60HO SUM OF SQUARES OF PARTIAL DERIV
1IVES)
41 FORMAT(1HO,1P7E10.3)
31 FORMAT (53HO)
71 FORMAT (57HO)
1S)
72 FORMAT (13)
CALL EXIT
END
SUBROUTINE HNTRIG

PURPOSE
TO GENERATE A SET OF RESONANT FIELDS, H(I,J,K),
USING A SET OF TRIAL PARAMETERS, P(I), SUBSTITUTED
INTO THE SPIN-HAMILTONIAN. THE TRIAL PARAMETERS
ARE EXPRESSED IN GAUSS AND THE ANGLES IN RADIANS.
THE CALCULATED FIELDS ARE IN GAUSS.

SUBROUTINE HNTRIG(P,NANGLE,THETA,PHI,DPPH,H)
DIMENSION P(7),H(5,5,6),DPPH(5),ALPHA(5),BETA(5),THETA(5),PHI(5),GAUSS(5)
DO 500 NA=1,NANGLE
G(NA)=SORT((1.*COS(THETA(NA)))*2+(P(2)*SIN(THETA(NA))))**2
ALPHA(NA)=PHI(NA)
THETA(NA)=THETA(NA)*180.0/3.141593
IF (ABS(THETA(NA))>90.0) GO TO 502
501 BETAN=THETA(NA)
GO TO 503
502 BETAN=ATAN(P(2)*TAN(THETA(NA))/P(1))
503 GE=.0003
GX(NA)=GE/G(NA)
CH=COS(BETA(NA))
SH=SIN(BETA(NA))
CA=COS(ALPHA(NA))
SA=SN(THETA(NA))
CA3=COS(3.*ALPHA(NA))
SA3=SN(3.*ALPHA(NA))

A20=P(5)*(-1.*CH**2-1.)/2.
A21=-3.*P(5)*SA3
A22=-3.*P(5)*SH**2/2.
A40=(1.*P(6)*(-3.*CB**4*4.**3.**CB*CA3))/8.
A41RE=(P(6)*S*B+P(7)**3.*CB**4*3.**CA3)/6.
A42R=-(1.0.*P(4)**2.*C**2.**CB**4*3.**CA3)/14.
A41I=P(7)*S**8.*CB**4*3.**CA3/4.
A42I=P(4)**2.*C**2.**CB**4*3.**CA3)/14.
A43E=-(1.0.*P(4)**2.*S**4.*CB**4*3.**CA3)/14.
A43I=-(1.0.*P(4)**2.*S**4.*CB**4*3.**CA3)/14.
A44E=-(1.0.*P(4)**2.*S**4.*CB**4*3.**CA3)/8.
A44I=-(1.0.*P(4)**2.*S**4.*CB**4*3.**CA3)/14.
A45E=(P(6)**2.*C**2.**CB**4*3.**CA3)/8.
A45I=P(6)**2.*C**2.**CB**4*3.**CA3)/14.

A20=0
A21=0
A22=0
A40=0
A41R=0
A42R=0
A41I=0
A42I=0
A43E=0
A43I=0
A44E=0
A44I=0
A45E=0
A45I=0

RETURN
END
SUBROUTINE LLSQ

PURPOSE
TO SOLVE LINEAR LEAST SQUARES PROBLEMS, I.E. TO MINIMIZE
THE EUCLIDEAN NORM OF B-AX, WHERE A IS A M BY N MATRIX
WITH M NOT LESS THAN N. IN THE SPECIAL CASE M=N SYSTEMS OF
LINEAR EQUATIONS MAY BE SOLVED.

USAGE
CALL LLSQ (A, B, M, N, L, X, IPIV, EPS, IER, AUX)

DESCRIPTION OF PARAMETERS
A - M BY N COEFFICIENT MATRIX (DESTROYED).
B - M BY L RIGHT HAND SIDE MATRIX (DESTROYED).
M - ROW NUMBER OF MATRICES A AND B.
N - COLUMN NUMBER OF MATRIX A, ROW NUMBER OF MATRIX X.
I - COLUMN NUMBER OF MATRICES B AND X.
X - N BY I SOLUTION MATRIX.
IPIV - INTEGER OUTPUT VECTOR OF DIMENSION N WHICH
 CONTAINS INFORMATIONS ON COLUMN INTERCHANGES
 IN MATRIX A. (SEE REMARK NO.3).
EPS - INPUT PARAMETER WHICH SPECIFIES A RELATIVE
 TOLERANCE FOR DETERMINATION OF RANK OF MATRIX A.
IER - A RESULTING ERROR PARAMETER.
AUX - AUXILIARY STORAGE ARRAY OF DIMENSION MAX(2*N,L).

ON RETURN FIRST L LOCATIONS OF AUX CONTAIN THE
RESULTING LEAST SQUARES.

REMARKS
(1) NO ACTION BEHINDS ERROR MESSAGE IER=-2 IN CASE
M LESS THAN N.
(2) NO ACTION BEHINDS ERROR MESSAGE IER=-1 IN CASE
OF A ZERO-MATRIX A.
(3) IF RANK K OF MATRIX A IS FOUND TO BE LESS THAN N BUT
 GREATER THAN 0, THE PROCEDURE RETURNS WITH ERROR CODE
 IER=K INTO CALLING PROGRAM. THE LAST N-K ELEMENTS OF
 VECTOR IPIV DENOTE THE USELESS COLUMNS IN MATRIX A.
 THE REMAINING USEFUL COLUMNS FORM A BASE OF MATRIX A.
(4) IF THE PROCEDURE WAS SUCCESSFUL, ERROR PARAMETER IER
 IS SET TO 0.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
HOUSEHOLDER TRANSFORMATIONS ARE USED TO TRANSFORM MATRIX A
TO UPPER TRIANGULAR FORM. AFTER HAVING APPLIED THE SAME
TRANSFORMATION TO THE RIGHT HAND SIDE MATRIX B, AN
APPROXIMATE SOLUTION OF THE PROBLEM IS COMPUTED BY
BACK SUBSTITUTION. FOR REFERENCE, SEE
G. GOLUB, NUMERICAL METHODS FOR SOLVING LINEAR LEAST
SQUARES PROBLEMS, NUMERISCHE MATHEMATIK, VOL.7,
ISS.3 (1965), PP.206-216.
SUBROUTINE LSOLVE(A,B,N,L,X,IPIV,EPS,IEP,AUX)
C
DIMENSION A(1),B(1),X(1),IPIV(1),AUX(1)
C
ERROR TEST
IF(H-N)30,1,1
C
GENERATION OF INITIAL VECTOR S(K) (K=1,2, ...,N) IN STORAGE
C
LOCATIONS AUX(K) (K=1,2, ...,N)
1 PIV=0.
 IEMD=0
 DO 4 K=1,M
 IPIV(K)=K
 H=0.
 IST=IEMD+1
 IEND=IEMD+M
 DO 2 1=IST,1END
 2 H=H+A(1)*A(1)
 AUX(K)=H
 IF(H-PIV)4,4,3
 PIV=H
 KPIV=K
 4 CONTINUE
C
ERROR TEST
IF(PIV)31,31,5
C
DEFINE TOLERANCE FOR CHECKING RANK OF A
5 SIG=SQRT(PIV)
 TOL=SIG*ABS(EPS)
C
DECOMPOSITION LOOP
L=M
 IST=-M
 DO 21 K=1,N
 IST=IST+M+1
 IEND=IST+M-K
 I=KPIV-V
 IF(1)3,3,6
21
C
INTERCHANGE K-TH COLUMN OF A WITH KPIV-TH IN CASE KPIV.GT.K
6 H=AUX(K)
 AUX(K)=AUX(KPIV)
 AUX(KPIV)=H
 TD=1/H
 DO 7 J=1+ID
 7 A(J)=A(J)
C
COMPUTATION OF PARAMETER SIG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
IF(K-1)11,11,9
SIG=0.
DO 10 I=1ST,1END
SIG=SIG+A(1)*A(I)
SIG=SORT(SIG)
C
C TEST ON SINGULARITY
IF(SIG-TOI.132,32,11
C
C GENERATE CORRECT SIGN OF PARAMETER SIG
11 I=A(1ST)
1F(H)12,13,13
12 SIG=-SIG
C
C SAVE INTERCHANGE INFORMATION
13 IPIV(KPIV)=IPIV(K)
IPIV(K)=KPIV
C
C GENERATION OF VECTOR UK IN K-TH COLUMN OF MATRIX A AND OF PARAMETER BETA
BETA=H*SIG
A(1ST)=BETA
BETA=1./(SIG*BETA)
J=N+K
AUX(J)=-SIG
IF(K-N)14,19,19
C
C TRANSFORMATION OF MATRIX A
14 PIV=0.
10=0
JST=K+1
KPIV=JST
DO 18 J=JST,N
10=10+M
H=0.
DO 15 I=1ST,1END
11=I+10
15 H=H+A(I)*A(I)
H=BETA*H
DO 16 I=1ST,1END
11=1+10
16 A(I)=A(I)-A(I)*H
C
C UPDATING OF ELEMENT S(I.J) STORED IN LOCATION AUX(I.J)
II=1ST+1D
H=AUX(I.J)-A(I)*A(I)
AUX(I.J)=H
IF(H-PIV)18,18,17
17 PIV=H
KPIV=J
18 CONTINUE
TRANSFORMATION OF RIGHT HAND SIDE MATRIX B

19 DO 21 J=K+1,M+1
H=0.
IEND=J*K
II=IST
DO 20 1=J,IEND
H=H+AI(II)*R(I)

20 II=II+1
H=H+R
II=IST
DO 21 1=J,IEND
R(I)=B(I)-A(II)*H

21 II=II+1

END OF DECOMPOSITION LOOP

BACK SUBSTITUTION AND BACK INTERCHANGE
IER=0
I=N
J=NN+1
PIV=1./AUX(J)
DO 22 K=N,1,L
X(K)=PIV*R(T)

22 I=I+1
IF(N-J)26,27,23
JST=(N-1)*NN+1
II=25 J=2,N
JST=JST-N-1
K=N+NN+1-J
PIV=1./AUX(K)
KST=K-N
ID=1PIV(KST)-KST
IST=2-J
DO 25 1=1,L
II=IST
IF(IST)26,27,23

25 KST=KST+M

COMPUTATION OF LEAST SQUARES

26 IST=N+1
IEND=0
DO 29 J=1,L
IEND=IEND+M

29 IST=IST+1

H = 0

IF (M-N) > 29, 29, 27
27 DO 28 J = 1ST, IEND
28 H = H + R(1) * R(J)
 1ST = 1ST + 1
29 AUX(J) = H
RETURN

C
C ERROR RETURN IN CASE M LESS THAN N
30 IEP = -2
RETURN

C
C ERROR RETURN IN CASE OF ZERO-MATRIX A
31 IEP = -1
RETURN

C
C ERROR RETURN IN CASE OF RANK OF MATRIX A LESS THAN N
32 IEP = K - 1
RETURN
END
APPENDIX D

Comparison Between Parameters at X-Band and at K-Band

<table>
<thead>
<tr>
<th>Parameters</th>
<th>K-Band Parameters (G.)</th>
<th>X-Band Parameters (G.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parameters Calculated using Pieczonka's published resonant fields in our routine</td>
<td>*</td>
</tr>
<tr>
<td>Room Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g\parallel$</td>
<td>2.0011 ± 0.0005</td>
<td>2.0000 ± 0.0005</td>
</tr>
<tr>
<td>$g\perp$</td>
<td>2.0010 ± 0.0005</td>
<td>2.0005 ± 0.0005</td>
</tr>
<tr>
<td>A</td>
<td>-90.74 ± 0.25</td>
<td>-91.78 ± 0.25</td>
</tr>
<tr>
<td>B</td>
<td>-89.69 ± 0.25</td>
<td>-89.98 ± 0.25</td>
</tr>
<tr>
<td>b_2°</td>
<td>-5.85 ± 0.50</td>
<td>-6.98 ± 0.50</td>
</tr>
<tr>
<td>b_4°</td>
<td>-4.31 ± 0.50</td>
<td>-3.39 ± 0.50</td>
</tr>
<tr>
<td>Liquid Nitrogen Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g\parallel$</td>
<td>2.0011 ± 0.0005</td>
<td></td>
</tr>
<tr>
<td>$g\perp$</td>
<td>2.0010 ± 0.0005</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-92.22 ± 0.25</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-90.18 ± 0.25</td>
<td></td>
</tr>
<tr>
<td>b_2°</td>
<td>-13.39 ± 0.50</td>
<td></td>
</tr>
<tr>
<td>b_4°</td>
<td>-3.74 ± 0.50</td>
<td></td>
</tr>
</tbody>
</table>

† Spin-Hamiltonian used Eq. II.25
* Spin-Hamiltonian used Eq. II.24
‰ Calculations were not carried out due to lack of published resonant fields at X-band.
VITA AUCTORIS

I was born in Hamilton, Ontario, Canada, on June 20, 1943. I graduated from Memorial Public School, Saltfleet, in 1957, and Waterdown District High School in 1962. In 1967 I received a B.Sc. from McMaster University, Hamilton, Ontario, where I studied undergraduate physics. In the summer of 1968 I completed secondary school teacher training at the Ontario College of Education, Toronto.