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ABSTRACT

A MgiNi alloy was chosen to investigate the effects o f a ball milling treatment on the 

alloy’s electrochemical characteristics when the alloy was used as an electrode in a Ni-MH 

(metal hydride) battery. The mechanical grinding (MG) treatment was carried out in a Spex 8000 

high-energy mill with ball milling times ranging from 0.5hrs to 80hrs, and ball-to-powder weight 

ratios ranging from 1:1 to 10:1. The structural changes taking place on ball milling were 

determined using X-ray diffraction and SEM (Scanning Electron Microscopy) techniques. 

Electrodes were fabricated from the ball-milled Mg2Ni powders, and electrochemical 

measurements were made in a 6 M fCOH solution using a Solartron 1285 

Potentiostat/Galvanostat. These measurements were used to determine electrochemical 

properties, including exchange current density, i0, polarization resistance, Rp, and 

charge/discharge characteristics.

Ball milling significantly accelerated the hydriding/dehydriding processes for the Mg2Ni 

electrode. It reduced the particle size and correspondingly increased the specific surface area 

(SSA). Ball milling also produced an amorphous structure. As a result, the kinetic and 

thermodynamic parameters (the exchange current density, io, hydrogen diffusion coefficient. Do,

i
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and internal strain, s) increased. Defects, such as dislocations, and the large SSA introduced by 

ball milling were responsible for the acceleration o f hydrogen absorption/desorption. The 

addition o f elemental powders o f either Ni or Cu to the Mg2Ni electrode was beneficial in 

increasing the discharge capacity.

The equivalency o f  P-C-T and E-C-T curves at room temperature was demonstrated for a 

LaNi4  ?Alo 3 alloy. The thermodynamic parameters, AH  and zLS for LaNi4  ?A10  3 alloy, calculated 

from the electrochemical measurements at room temperature are equivalent to the parameters 

determined in a gaseous environment. Based on the equivalency o f the P-C-T and E-C-T curves, 

the P-C-T curve for the MgiNi alloy was constructed from the electrochemical measurements at 

room temperature and latm pressure, rather than from the measurements at high temperatures 

and high pressures in a gaseous environment.

U
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NOMENCLATURE

c the hydrogen concentration at time t
Co the hydrogen concentration at time t=0

do the interplanar spacing
D the crystal size
Do hydrogen diffusion coefficient

f fugacity

F the Farady constant
F the reacted fraction
AG, the standard free energy o f formation o f  the metal hydride
AH enthalpy change

AH, the standard entalphy o f formation o f a metal hydride

id limit current densiy
io exchange current density

K. the Scherrer constant
Kp the equilibrium constant

Q the electrochemical capacity per unit weight o f  alloy (in mAh/g)
r the atomic radius o f element
r’ the radius o f  the sphere
R gas constant
RP polarization resistance
AS,- the standard entropy o f formation

T absolute temperature (K)

W the average molecular weight o f  the alloy
A X h the partial molar enthalpy

E internal strain
M-op the chemical potential o f  the hydrogen in gaseous phase
Peq the chemical potential o f  the hydrogen in hydride phase
e Bragg angle

P the width o f  a diffraction line measured at the full width at its half intensity
A. the wavelength o f the radiation used

n overpotential

5 constant representing the decay exponent

XVI
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CHAPTER 1 INTRODUCTION

Hydrogen storage alloys, which were discovered about 20 years ago, have been widely 

studied for their application as energy storage media and battery electrodes. The hydriding alloys 

(metal hydrides: MH) are used as the negative electrode o f a rechargeable battery, essentially 

replacing the Cadmium electrode in the widely used Ni-Cd battery. The main driving force for 

replacing the Cadmium is environmental, Cd being a relatively toxic material. There are, of 

course, other advantages o f the Ni-MH battery over the Ni-Cd battery, including potentially 

higher energy density, higher charge/discharge rates, low temperature capability and an absence 

of a memory e ffec t[1- 21.

Magnesium and Mg-based alloy as hydrogen storage materials meet two very important 

storage criteria: large amount o f  hydrogen storage (7.6wt% and 3.8wt% respectively), which is 

more than twice as much as either the rare-earth hydrogen-storage alloys (e.g., LaNi5- absorbs 

l.4wt% hydrogen) or the titanium hydrogen-storage alloys (e.g., FeTi absorbs l.9wt% 

hydrogen), and it is inexpensive. Magnesium-based alloys are considered to be the most 

promising materials for hydrogen storage because o f their high hydrogen storage capacity, light 

weight, abundance as a constituent in the earth’s crust [3L O f all the magnesium-based alloys, 

MgjNi is the most remarkable due to its relative high capacity. However, the reaction of 

magnesium alloys with hydrogen requires appreciably high temperatures (200°C to 300°C) and 

pressures (up to lOatm) due to hydriding/dehydriding difficulties. The kinetics o f  hydriding and 

dehydriding are slow. It is almost impossible to absorb and desorb hydrogen for MgjNi at either 

latm  or room temperature in a gaseous environment.

l
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To improve the hydrogen absorbing/desorbing properties o f MgjNi and make the MgjNi 

alloy applicable as a commercial rechargeable-battery negative electrode, work is required in 

three areas namely: I ) understanding the mechanisms o f hydriding/dehydriding in the Mg?Ni 

alloy; 2) improving the thermodynamics and kinetics o f hydriding/dehydriding for the Mg^Ni 

alloy; and 3) developing electrochemical methods to study the hydriding/dehydriding 

characteristics o f  the Mg?Ni rather than the gaseous (manometric) method which requires high 

pressures and temperatures and is time consuming.

Mechanical grinding, alloying and surface modification can be utilized to modify the 

structure and surface properties and thus improve the characteristics of the negative electrode. In 

this investigation, mechanical grinding (MG) and alloying methods were applied. This resulted 

in a marked improvement in the activation and hydrogen storage properties such that hydrogen 

can be absorbed easily and to sufficiently high levels by the MgjNi alloys. Room temperature 

electrochemical measurements, such as, exchange current density, overpotential, polarization 

resistance and the discharge capacity, were conducted to investigate the characteristics o f the 

ball-milled MgjNi alloy.

In this investigation, the mechanical grinding was utilized to prepare the MgiNi alloy 

powders. The electrochemical property measurements were carried out on MG-MgiNi electrode 

and finally the equivalency o f P-C-T and. E-C-T properties were demonstrated.

2
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CHAPTER 2 LITERATURE REVIEW

2.1 The Hydrogen Storage M aterials

Intermetallic compounds (IMCs) are highly ordered (usually brittle) alloys o f two or more 

metallic elements, usually having narrow, integer stoichometries (A jB J and crystal structures that 

are different from either o f  the parent elements (A and B). There are several classes o f IMCs, based 

on composition and crystal structure. The key to all IMCs hydride technology is the combination o f 

strong hydride forming elements, A, with weak hydride forming elements, B, in a natural interger 

ratio to form intermetallic compounds A,Bb that can react reversibly with H, to form an intermediate 

strength hydride A,BbHx|41.

2.1.1 Metal Hydride Systems 

Storage Criteria

For hydrides to be useful as energy storage media, a number o f requirements must be met. 

The hydride should:

(1) Be capable o f  storing large quantities o f  hydrogen;

(2) Be readily formed and decomposed;

(3) Be as safe as other energy carriers;

(4) Have reaction kinetics satisfying the charge/discharge requirements o f  the system;

(5) Have the capability o f  being cycled without alteration in pressure or temperature during the life 

o f the system;

(6) Have low hysteresis;

3
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(7) Have resistance to poisoning from contaminants such as 0 :, H ,0 , CO, etc.;

(8) Have low cost.

Types and Characteristics of Metal Hvdride Systems

The metal hydride systems currently under investigation can be mainly divided into four 

classes, namely, AB5, AB, AB, and Mg-based compounds. Table 2.1 summarizes the properties of 

each alloy class as they relate to the storage criteria151.

ABS Compounds

In the AB5 system, the majority o f  work has been done on LaNi5 This material has a hexagonal or 

orthorhombic structure with a CaCu5 type lattice (Fig. 2.1). Hydrides are formed with plateau 

pressures o f a few atmospheres at temperatures up to 100°C (Fig. 2.216’). The enthalpy change, AH. 

is o f the order -30.1 kJ/'mol H,. Attractive properties include high hydrogen capacity, low hysteresis 

and good tolerance to gaseous impurities, and ease o f  activation in the initial cycle.

■

o«

Fig.2.1 The ABS structure, using both the hexagonal or trigonal (right) and the orthorhombic 
(left) lattices. Also shown are tetrahedral ( • )  and octahedral (□) hydrogen sites and their possible

degeneracy (-)[6].

4
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Table 2.1|J|

Summary of liydriding Alloys and Their Properties

A LL O Y  T Y PE S

Q U A N T IT Y  OF 
H Y D R O G EN  
A B SO R B E D

K IN ETC S
S T A B IL IT Y  OF 

H Y D R ID E
C Y C LIN G

D EG R A D A T IO N
H Y ST E R E SIS

R ESISTA N C E  T O  
PO ISO N IN G C O ST

H/M W t%

I A B*
1 E xam ples 
1 L aN i5 

L aC os 
C eC o s 

L aM n.C o ,

1.0 up 
to 1.5

1.4% 
to max 

1.9%

R apid kinetics, 
o f  the o rder o f  
a few seconds 
due to surface 
segregation. 
H eat transfer 

contro lled . N o 
activation  
required.

R elatively  stable.
AH~ 

-29.26kcal/m ole, 
12.54 kJ/m ole. 

S tability  changes, 
up  o r dow n, w ith 

alloy substitu tions. 
P „~ 2 .2M P a a t R.T. 

for LaN ij.

M ay be 
degradation  after 
300-400  cycles 

due to fom tation  
o f  stable hydrides 

(L aN ij)

M oderate 
hysteresis at 

low 
tem peratures.

G ood resistance to 
H jO  and 02 
poisoning. 

Suscep tib le  to  C O  
poison ing , partia l 

reactivation  
possible.

Q uite 
expensive 

because o f  cost 
o f  La and Ni.

AB
E xam ples

FeTi
Z rN i
T iA l

FC |.,M n,T i

1.0 1.8%
max

M oderate 
kinetics 
partially  

con tro lled  by 
heat transfer.

N eeds 
activation  for 

surface 
segregation.

S tab ility  varies 
from  A l l -  -12.54 
kJ/m ole for FeTi 
based  a lloys to 
A H --45 .98  to - 

79.42 kcal/m ole for 
o ther A B 

com pounds. P ^ —4- 
5 M Pa at R .T.

N o evidence as 
yet, but no high 

cycle  experim ents 
have been done.

P ronounced 
hysteresis in 

FeTi, how ever 
can be 

reduced  by 
addition  o f  

Mn.

G eneral poor 
resistance to 

poisioning for 
FeTi. E specially  

susceptib le to CO. 
Partial reactivation  
possible. A ddition  
o f  M n gives better 

C O  resistance.

R elatively 
inexpensive. Fe 

fairly cheap.
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Table 2.1 (continued)

Summary of Hydriding Alloys and Their Properties

AB,
Exam ples

Z rV ,
|  Z rC r, 

Z rM n 3 
L aN i,

Z r (F e .V  
Z r (C o .C r , ,) ,

F rom  
1.0 up 
to  2.0

From  
l.S lo 
2.0%

R apid  kinetics, no 
activation 

necessary  in m ost 
cases, not m uch 
data  on  kinetics.

G enerally  quite 
stable. AH—75.24 

kJ/m ole for 
binaries, 

pscudobinaries 
decrease stability  

to acceptable 
levels.

No evidence as 
yet, but no high 

cycle 
experim ents 

have been  done.

l.o w  hysteresis 
in b inary 

com pounds.
m oderate 

hysteresis in 
pseudobinaries

N o report 
poisioning 

problem s, but little 
w ork has been done 

in this area.

Q uite 
expensive 
because o f  
cost o f  Z r 

m etal.

1 M g-Based 
Com pounds 

I E xam ples 
M g 

M g,N i 
M g,C u

1.3 up 
lo 2.0

From  
3.5%  
up lo 
6.7%

S luggish  kinetics. 
A ctivation  is 

necessary  and 
difficu lt. Rate 

lim ited by 
d iffusion  o f  H 
atom s (w hen 
ac tiva ted ).If 

segregation  stops 
rate lim ited by 

dislocative 
chem isorption  
and  associative 
desorption . Ni, 

I 'u ,  etc. are added 
as catalysts.

V ery stable. A l l -  

-75.24 kJ/m ole. 
1% -IM P a at

300"C

C ycling m ay 
cause reduction  

in desorption  
rale o f  M g- 

M g,N i.

N one reported.
V ery susceptib le lo 
po ision ing  by O ,, 

11,0, C O , etc.

R elatively 
inexpensive 
because o f  

high M g 
content.
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»-

11-

lydro««n to  N atal R a tio  ( a t  B /aol LaMlj)

Fig.2.2 P-C-T plots for the LaNis-H system at temperatures o f 20,40 and 80°C[6].

LaNi5 also shows good kinetics, the reaction rate being controlled by heat transfer, with nickel 

serving as a catalyst for the hydriding reactions. The major problem associated with these materials 

lies in the area o f  alloy cost and cyclic degradation. Alloy cost can be lowered somewhat by 

substituting Ce, Nd, Gd, Y, Er, Th and Zr for L a 17' 91 and AI, Co, Fe, Cr and Cu for Nir  The 

LaNi5-H: system has been extensively investigated. In many applications, materials are required 

whose plateau pressure is different from those o f  LaNi5H67. The desorption pressure o f LaNi5H6-in 

decomposition pressure without impairing the kinetics or the hydrogen carrying capacities. The 

important new result is that Al substitutions allow a wide range o f  decomposition pressure to be 

spanned in a continuous fashion. In the range 0-20%Al, the plateau pressures o f  the LaNi5-LaNi.AI 

hydride system are reduced by a factor o f -300 .

7
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AB Compounds

The AB alloys store hydrogen at a low cost and exhibit plateau pressures o f  a few atmospheres at 

temperatures up to 100°C. Most o f  the work done on AB compounds has been restricted to FeTi, 

which has a CsCl type crystal structure. Pressure-composition isotherms for the FeTi-H system are 

shown in Fig. 2.3. Reilly et a / . 1' 31 reported that iron and titanium form two known stable intermetallic 

compounds, FeTi and Fe^Ti. It is also generally accepted that a third compound, FeTi:, exists above 

1000°C, decomposing to FeTi and Ti below that temperature. Two hydrides are formed, i.e., a 

monohydride with a tetragonal structure and a dihydride which forms a cubic structure. The AH 

value for the monohydride is -28.0 kJ/mol H,.

■00

N
r ro#
6

55*o
tel

telata.
z
o
K
<
O
o
(A(/I
5

0 .2  0.4 0 .6  0 .8  i.
ATOM RATIO H fC F t^ T i)

Fig.2.3 P-C-T plot for the FeTi-H system.
The initial alloy composition was 53.6%Fe and 46.7%Ti[13].

8
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It is necessary to initially activate FeTi before it will react at a practical rate with hydrogen. 

Reaction kinetics is considerably slower than in the AB5 case and can be affected severely by 

contaminants such as 0 2, H:0  and CO114"161. Other disadvantages o f  the FeTi-H system are 

pronounced hysteresis and the weight o f the alloys. These problems can be alleviated to a degree by 

the substitution o f  various alloying elements, such as Mn and A1 for Fe. Manganese assists by 

reducing hysteresis and providing some resistance to poisoning[14,16', while aluminum lowers the 

overall weight o f the alloy117'.

AB, Compounds

The research on AB; type Laves phase hydrogen storage alloys started early in the 1960’s. Wang'ls| 

worked on ZrEL (B=V, Cr, Mn, Fe, Co, Mo, Al) and found that for B=V, Cr, Mn, the alloys could 

absorb and desorb large quantities o f  hydrogen (H/M=5). In AB: Laves phase alloys, as the atomic 

radius o f  element A is much bigger than that o f B (optimum ratio rA/rB=l.225), the atoms are 

arranged in very compact layered lattice structures with 17 tetrahedral interstitial cavities, which are 

potential sites for storing hydrogen atoms. Due to electrostatic repulsion forces, any two tetrahedral 

cavities with an adjacent surface can not store hydrogen atoms simultaneously. The maximum 

absorbable number o f hydrogen atoms is around 6  for both AB2 and ABS alloys. AB, compounds 

have much higher hydrogen wt.% capacity than AB5 compounds.

The AB, compounds have a high storage capacity, show good resistance to impurities and 

exhibit low hysteresis119*22'. These alloys form one o f two Laves phase structures, either the 

hexagonal C14 structure (Fig. 2.4[23') or the cubic C15 structure (Fig. 2.5'24'). The best sorption 

characteristics have been observed for ZrV2, ZrCr, and ZrMn2 with hydrogen pickups approaching 

- 6  H atoms per formula unit. Hydrided AB, compounds tend to be quite stable, with AH values

9
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Fig.2.4The hexagonal (C14) Laves. The solid circles represent B atoms and 
the open circles are A atoms. The interstitial sites are shown:

(a) B4 sites, (b) AB3 sites,(c) A,B: sites[23].

Fig.2.5 The cubic (C l5) Laves phase. The A atoms are shown as open circles and 
the B atoms as solid ones. The three types o f interstitial sites are given: 

a) B4 sites, b) AB3 sites, c) A,B2 sites[24]
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greater than 50.2 kJ/mol in magnitude. The methods available to lower the stability, while at the

same time maintaining adequate absorption capacity include: (1) substitute some o f  the Mn, Cr, Mo

or V with Fe or Co119 25'271; (2) On the A side, substitute Ti or Ho for Zr, e.g. Zr0 7Ti0 ^ ln ,,

Zr0 :HoagCo:; (3) On the B side, substitute transitional elements Ni, Fe, Co, Mo, Mn, V or Cr, e.g.

Zr0 5 Co0 5 Mn! 2Fe08; (4) Substitute A and B elements simultaneously, e.g. Zr0 ,,Ti0 ,Cr0 (JFe, 4,

Zr0 .7TiojCrFe; (5) Use excess B to form a non-stoichiometric alloy, e.g. ZrCr,Fe0 8, ZrCrFeNi,)S. In

these ways, the stabilities can be reduced to acceptable levels. Partial substitution o f Ti for Zr can

also be employed in order to reduce the cost o f  the hydriding alloy128,29’.

Magnesium and Magnesium-Based Compounds

Magnesium and Mg-based alloys as hydrogen storage materials meet two very important

storage criteria: they can store large amounts o f hydrogen (7.6wt% and 3.8wt% respectively), more

than twice as much as either rare-earth hydrogen-storage alloys (e.g., LaNi5 absorbs l.4wt%

hydrogen) or titanium hydrogen-storage alloys (e.g., FeTi absorbs 1.9wt% hydrogen), and they are

inexpensive. Magnesium-based alloys are considered to be most promising materials for hydrogen-

storage because o f their high hydrogen-storage capacity, light weight, abundance o f  the constituents

in the earth’s crust, and low-cost compared with alternative systems12'. On the debit side, however,

the reactions o f  Mg-and Mg alloys with hydrogen require appreciably higher temperatures (200-

300°C) and pressures (up to lOatm) due to sluggish hydriding/dehydriding kinetics at room

temperature. Additions o f rare earth and transition metals have been somewhat successful in

increasing desorption rates o f hydrogen in magnesium. Reilly and Wiswall120,2' 1 reported successful

hydriding and dehydriding experiments with Mg2Ni and Mg,Cu in the 1960’s. Owing to the relative

stability o f  MgH,, modifications o f  MgMHx (M=transition metal) were made to decrease the

dissociation temperature o f  the hydride1221. Cu and Ni have been added to Mg either as alloying

II
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additions or catalysts. Although the absorption capacity is diminished, these elements can improve 

the reaction kinetics by providing an oxide-free path for hydrogen sorption. The pressure- 

composition isotherms for Mg,Ni-H system and Mg,Cu-H system are shown in Fig.s 2.6[30! and 

2.7f3".

100

3 4 9  *C

2 9 8  *C

M 10

ai 1.4 a« 0.8 >.o
COMPOSITION, M /(M g .  Nil

Fig.2.6 P-C-T plots for the Mg2Ni-H2 system at 298, 322 and 349°C. The initial 
alloy composition is 45.9wt%Mg and 54.6wt%Ni[30].

Oesterricher et al. [331 have suggested that the partial substitution o f Mg in Mg2Ni by an element o f 

a more exothermic heat o f hydride formation, such as Ca, Sc or Y may result in a rise o f equilibrium 

pressure for the substituted Mg2Ni. This would bring Mg,Ni into the range o f reversible room 

temperature hydrogen sorption. The absorption and desorption rates for these alloys are close to 

those obtained with Mg,Ni. Other properties o f  these compounds are listed in Table 2.2134-391. The 

AH value for the Mg,Ni alloy is -64.4  kJ/mol H2.

12
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Table 2.2132'” 1

The Various Properties for the Mg2 Ni|_aM» and Mg2 .,M,Ni alloys (IM=transition and non-transition metals; 0<x<l)

A L L O Y

C O M P O S I T I O N

C E L L  P A R A M E T E R S  

( H E X A G O N A L  

S T R U C T U R E )

H Y D R O G E N  C O N T E N T

H Y D R I D E  

D I S S O C I A T I O N  

T E M P E R A T U R E  

A T  P „ i = l  M P a  

( ”C )

T H E R M O D Y N A M I C  D A T A  F O R  

T H E  H Y D R I D E

( A T O M I C  R A T I O N )
A  (A) c  (A)

H - A t o m s  p e r  

m o l e c u l e

E x p l .

W t %

T h c o .

\ V l %
A H  ( k J / m o l  / H j )

A S

( k J / m o l K / H 2)

M g 3.21 5.21 2.00 7.60 7.65 287 -74.5 -135.0

M g i N i 5.19 13.25 4.20 3.60 3.62 250 -64.5 -122.0

M g iN io .7sV u .js 5.22 13.29 3.17 2.90 3.66 250 -62.2 -119.1

M g jN io .7 5 C r o .js 5.21 13.26 3.29 3.00 3.65 248 -60.0 -114.9

M g j N io .7sP®o.Js 5.22 13.28 3.09 2 .SO 3.62 253 -63.2 -121.0

M g jN i0 .7 5 C o 0 .j5 5.21 13.18 3.45 3.10 3.59 279 -64.5 -123.5

MgjNio.7sCuo.js 5.20 13.43 3.30 227 -53.2 -101.9

M g jN io .7 5 Z n o .j5 5.24 13.46 3.66 246 -61.5 -117.8

M g jN io .75B cn .1s 5.28 13.41 250 -79.9 -153.0

Mg|.ojAlo.o»Ni 5.19 13.25 -70.5 -135.0
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100.0

M'tCu

347 *C

.323 *C

mX
6
o

<A
VIUle4
i

8
VI
V)
o

0 0 .2  0 .4  0 .6  0 .6  l.O 1.2 1.4
COMPOSITION H /(M q*Cu)

Fig.2.7 P-C-T plots for the Mg,Cu-H: system at 295, 325 and 347°C[31].

2.1.2 Thermodynamics and Kinetics of Metai Hydride Formation 

General Considerations

The reaction o f  hydrogen with a metal M to form a stable hydride can be described by the 

following reaction:

W  + (2.1)
2 '

(i.e. a direct reaction o f  metal with hydrogen gas). The transition to MHV is the absorption process,

and in general is an exothermic reaction, with the heat o f formation approaching the heat of

combustion o f  hydrogen compounds. The reverse reaction is the desorption process. Fig. 2 .8 i4Q| is

a schematic showing the charge (hydriding) and discharge (dehydriding) processes.

14
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Ounng hydrogen absorption , heat is . . while the application of heat causes
released . . .  the hydrogen to be driven out of the ^ e ta l

hydride again 
^ .•• •• •C h a rg in g  ^

H2 - Metal = Hydride Heat

‘ •••D ischarg ing ..........

Fig.2.8 Schematic o f charge-discharge process[40].

The behavior o f metal-hydride systems can be best represented by a pressure, composition 

and temperature (P-C-T) diagram. This diagram is a plot o f  pressure or composition at various 

temperatures as shown in Fig. 2.9lJ11. At low hydrogen concentrations there is a strong composition 

dependence o f hydrogen pressure. This region (i.e., the a-phase) corresponds to hydrogen going into 

solid solution without the occurrence o f  a second phase. When the curve starts to change slope on 

the P-C-T diagram this indicates the start o f  the next ‘stage’ which involves a region where the 

pressure is independent o f the hydrogen concentration. In this region the saturated solid solution of 

hydrogen in the a-phase is in equilibrium with a hydrogen-rich hydride phase, the P-phase. As the 

second phase (P-phase) forms, the pressure remains constant and a ‘plateau’ result as more hydrogen 

is added. Further increases in hydrogen concentration after the a-phase has been completely 

converted into the P-phase, give rise to an increase in pressure. An additional hydride phase, the y-

16
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9u9•

C

UV9*
s

Hydrogen to  K ecrl JUclo

Fig.2.9 P-C-T plot showing the relationship between the equilibrium hydrogen pressure
and the hydrogen concentration^ 1 ].

phase, may also be formed, in which case a second, and higher plateau will appear.

The standard enthalphy o f formation, 4 //,, o f  a metal hydride MHV can be calculated from 

the van’t Hoff equation:

d \n K B AH ,
 L -  L  p - n

dT  RT 2

Where R = gas constant

T = temperature (K)

Kp= the equilibrium constant and is given by:

17
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V (23)

Where f  = fugacity

or

(2.4)

In this equation, the activities (a) can be considered to be -1 , since the standard states o f 

hydrogen and metal are taken as the pure solids in each case and Assuming H to be constant

(over a relatively small temperature range), the van’t Hoff equation can be written as:

where C ’ is the constant o f  integration. If the hydride is stoichiometric and the solubility o f hydrogen 

is small in the a-phase, the standard enthalpy o f  formation can be calculated from the slope o f the 

straight line made by plotting lnPH2 vs.l/T .

The standard free energy o f formation AGyof the metal hydride can be determined from the 

equation:

d  In PH ( 2 f )

or

( 2 .6 )

AG , = - R T \n K n = ^-R T\nP HI P « : (2.7)

18
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The standard entropy o f  formation can then be determined as follows:

A H , — AG (
A S ,  =  f- f-  (2.8)

For most metal hydrogen systems where there is appreciable non-stoichiometry, the standard 

enthalpy o f  formation is the sum o f three components, namely: ( 1 ) the integral heat o f solution of 

hydrogen in the a-phase from zero hydrogen content to saturation, (2 ) the heat o f reaction in going 

from the hydrogen saturated a-phase to the non-stoichiometric p-phase, and (3) the integral heat of 

solution o f hydrogen in the hydrogen-poor P-phase up to the stoichiometric value. In the case where 

there are large deviations from stoichiometry, the thermodynamic quantities are usually expressed 

as relative molal quantities (AHh-1/2AX,.c), where AXH is the partial molal enthalpy1421.

The reaction kinetics o f hydrogen absorption and desorption in metal-hydrogen system is an 

important consideration in selecting materials for practical storage applications. Kinetics are hard 

to follow quantitatively because many hydriding reactions have rate constants o f the order o f a few 

seconds and conventional experimental methods can not follow such rapid changes. A temperature 

change o f  a few degrees Celsius is sufficient to alter the kinetics significantly151. According to the 

equation for absorption o f  hydrogen by a metal, i.e. equation (2 . 1 ), if  the concentration o f hydrogen 

is represented by C, and if  the volume of the sample remains essentially constant during the course 

o f the reaction, a first-order rate law can then be written as follows:

—  = - k C  (29 )
dt

If, for the desorption reaction, the hydrogen concentration at time f=0 is C0, and if  at some 

later time t, the concentration has fallen to C, integration gives1431:
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(2.10)

For desorption, (C /Q  is the fraction o f hydrogen remaining in the sample. Thus, the reacted 

fraction F ' can be defined as F '= I-(C /C j, and equation (2.10) can be rewritten as:

When the rate constant is being determined for the forward reaction, it is actually the net rate 

constant that is being measured, i.e . 1441

**« = k a b s -k de3 ( 2 . 1 2 )

At constant temperature and pressure, the thermodynamic driving force for the reaction in 

equation (2.9) must be proportional to free energy change, i.e. difference in chemical potential (nap- 

Meq) between the hydrogen in the gaseous phase and in the hydride phase. This is given by:

In the case o f  absorption, Pap/Peq is identified as the N  value, where Pop is the pressure of 

hydrogen in the gaseous phase and Piq is the plateau pressure o f the hydride phase. For desorption, 

the N  value is defined as Peq/Pop.

AB; Compounds

It is well known that almost all hydriding alloys must be activated in order to absorb H, the 

first time. This is a result o f  natural surface contamination from exposure to the air, usually in the

-  ln(l -  F ') = kt ( 2 . 11)

R T lnP (2.13)
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form o f oxides or hydroxides1-45"*9'. Activation usually consists o f two stages. First, there is the initial 

penetration o f the original contamination layer by H,, at which time the molecular H, can be 

dissociated to atomic H on the metallic substrate before entering the bulk lattice. Secondly, there is 

the fragmentation o f  the alloy particles (decrepitation) resulting from the bulk absorption o f 

hydrogen and the associated embrittlement and volume changes. The first stage is highly dependent 

on the original surface contamination and the second stage creates new, clean surfaces.

The original (air-exposed) surface can be a formidable barrier to H, penetration. The rare 

earth-nickel AB5 compounds fortunately do not have to be heated, but unfortunately require 

substantial overpressures for activation to occur within reasonable times at room temperature. Liu 

and Sandrock'50' developed a powerful new approach for increasing the activation o f LaNi4 -Al()3 

alloys by chemically treating the original particle surface in an F-containing aqueous solution. They 

found that the longer AB5 compounds are stored after crushing, the harder they are to be activated. 

Under the F-treatment, the material can be activated much faster than untreated material.

P-C-T diagrams have been used to determine thermodynamic properties o f  the rare-earth 

nickel hydride. Gruen et al.ll0] examined different compositions o f  the LaNis alloys. Fig. 2.10 is a 

plot o f  lnP against 1 IT  for LaNi5.,Alx hydrides. From the slope and intercept o f  the van’t Hoff plots, 

AH  and AS values for the reaction (2.14) can be calculated and are given in Table 2.3.

LaNi5̂ A l x + n H  = LaNis_xA lxHZn (2.14)

Several workers have pointed to the importance o f  crystal structure and geometrical 

considerations with regards to the stability o f  metal alloy-hydrogen systems. ECisi and Buckley1511 

presented three possible mechanisms for activation o f  LaNi5: (1) the decrepitation exposes large
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amounts o f  clean LaNis surface which is then available for chemisorption and absorption at lower 

pressures; (2 ) decrepitation reduces the diffusion distances, causing faster absorption and facilitating 

stress relaxation in the particles, thus decreasing the pressure o f hydrogen absorption; (3) that defect 

creation (manifested as microstrains) provides easy diffusion paths and facilities motion o f  the a-P 

interface through the alloy.

Kinetic studies o f  the hydriding o f LaNi5 have shown it to be very difficult to obtain reliable 

and consistent kinetic data. Parameters such as temperature, pressure, particle size, surface 

conditions, etc., can change during the course o f a reaction. When this occurs, kinetic data can vary 

substantially. In order to assess accurately the kinetic differences amongst the alloys, it is necessary 

to isolate and standardize all parameters which affect reaction rates. Methods have been developed 

to perform kinetics measurements under carefully controlled conditions1321. First, samples are kept 

at constant temperature. When comparing the kinetics o f two or more samples, it is also necessary 

that each be measured at the same constant pressure driving force. In the case o f  desorption, it is 

accomplished by using the same ratio o f the equilibrium plateau pressure to applied hydrogen 

pressure for all measurements. In the absorption case, the ratio o f  the applied hydrogen pressure to 

the plateau pressure is kept constant.

Table 2.31'01 Thermodynamic Data For the LaNi^A^ + nH2=LaNi5.lAllH2ll Reaction

C O M PO U N D AH0 (K C A L /M O L  H,) AS0 (C A L /M O L K  H ,°C ) T E M P E R A T U R E  (°C ) FO R 
P=2.0 A TM

LaN i, 7.2 ± 0 .1 26 .1± 0.4 -2 5

LaN it8Al02 8.3 ± 0 .1 27.3 ± 0 .4 -5 0

LaNi^jAliu 9.1 ± 0 .2 28.1 ± 0 .7 -7 0

L aN i4AI 12.7 ± 0 .3 29.2 ± 0 .7 -1 8 0

L a N ijjA lu 14.5 ±  0.6 29.6 ±  1.4 -2 4 0
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Fig.2.10 Plot o f  InP (P=dissociation pressure) vs. 1/T for LaNis.,Alx hydrides[lO].

AB Compounds

The intermetallic compound FeTi reacts directly with hydrogen to form, in succession, 

hydrides o f  the approximate compositions FeTiH and FeTiH,. Both hydrides have dissociation 

pressures o f  over 1 atm at 0°C, unlike the very stable TiH;.

The reaction taking place in the lower plateau region (H/M=0.10 to H/M=0.52) may be 

written as1131:

2A3FeTiH0W + Hz = 2.13Fe77tf104 (2.15^

which is followed by:

220FeTiHim + Hz = 220FeTiHi95 (2.16)

The variation o f  the log o f  the equilibrium dissociation pressure with the reciprocal

temperature for several solid compositions is shown in Fig. 2.1 l [l31. The relationship is linear and
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obeys the van’t H offs  equation in the form:

In / > . - = ! + «  (2 1 7 )

Where /I=-3383,5=12.76 and T  is the absolute temperature. Thermodynamic values for the FeTi- 

hydrogen system are given in Table 2.4.

100

N
X
6
o
Ulc3
tfl
UJX&
2O
S
aoV)
(Ac

2.6 2.S 3 .0  3 .2  3 .4  3 .6  3 .6  4 JO
1000/T rKI

Fig.2.11 Equilibrium dissociation pressure vs. 1/T forFeTiHx: (a) FeTiH0 I-FeTiH!T 
(b) FeTiH ,,, (c) FeTiHu , (d) FeTiH, 6[13].

The activation process and the reaction kinetics o f the hydrogenation o f metal are o f 

importance relative to their practical use as hydrogen storage materials. Activation o f the FeTi 

system is particularly difficult and is one o f the fundamental problems that must be overcome. The 

activation mechanism has been discussed by many researchers1331. Although their results are not in 

agreement, they all conclude that the activation process is necessary because o f  the presence o f an
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oxide film which obstructs hydrogen absorption.

Table 2.41'3' Relative Partial Molal Quantities 

Per Gram-Atom of Hydrogen for FeTi Alloys

C O M P O S IT IO N H „-l/2H °„j

kcal

S„-1/2S°,U

eu

A B

FeTiH fl.,-F eT iH 1.M -3.36 -12.7 -3383 12.7612

F eT iH ,,0 -3.70 -14.4 -3728 14.4327

F eT iH ,40 -3.98 -15.6 -4020 15.6610

FeTiH , M -4.03 -15.8 -4057 15.9165

Magnesium-Based Compounds

In the Mg-Ni system, two intermetallic compounds are formed: Mg,Ni and MgNi,. MgNi, 

does not react with H: at pressures up to 2.76 MPa and temperatures up to 350°C; However, Mg,Ni 

reacts readily with H, at 2.07 MPa and 325°C. On the basis o f the stoichiometry o f the system and 

X-ray diffraction studies, the reaction in the plateau region is believed to be:

Mg, Ni + 2 H2 = Mg, NiH, (2.18)

Reilly and Wiswall1303' 1 calculated thermodynamic data by plotting the semilog o f the 

dissociation pressure vs. the reciprocal o f  the absolute temperature, and found a straight line 

LogPam=A/T+B, where M—3360 and 5=6.389 .

If Mg is present in the alloy in excess o f  the composition corresponding to Mg,Ni, the 

pressure-composition isotherm exhibits two plateaus as shown in Fig. 2.12. The lower plateau is due 

to the reaction:
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Mg + H, = MgH2 (2.19)

Reilly and Wiswall also obtained a straight line relationship logPa(m=(-4045/T)+l.224, 

zl//°a 93=-77.33 kJ/mol for reaction (2.19).

100

-j

3 2 3  *C

3 0 3  *C

0  0 2  0 .4  0 .6  0 .8  1.0 1.2 1.4 1.6
COMPOSITION, H /(  Mg »Ni )

Fig.2.12 P-C-T plots for the Mg,Ni-Mg-H, system at 303 and 323°C.
The initial alloy composition is 72.9wt%Mg and 25.2wt%Ni.

The arrow indicates predicated appearance o f upper plateau[30].

Mg forms two intermetallic compounds with Cu, namely Mg,Cu and MgCu;. The latter, 

MgCu:, does not react with H, at temperatures up to 350°C and H, pressures o f 2.28 MPa; However, 

Mg2Cu reacts fairly rapidly at 300°C and H, pressures o f -2 .07  MPa. The reaction is:
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2 Mg2Cu + 3H2 = 3 MgH2 + MgCu, (220)

A plot o f  dissociation pressure vs. the reciprocal o f the absolute temperature gives a straight line for 

l°g Pa'm=(MT) +B, where .4 =-3809 and 5=7.437.

If Mg is present in the alloys in excess o f the composition corresponding to Mg,Cu, the 

pressure-composition isotherm exhibits two plateaus. In this case, the reaction is believed to be 

equation (2.20). They also got a straight line obeying the relationship log Pam=-4049/T+l.299, 

^//®.:m=-78.17 kJ/mol for reaction (2.20). The thermodynamic data for Mg-Ni and Mg-Cu alloys 

are summarized in Table 2.5.

Table 2.5'2*491 Thermodynamic Data for Mg-Ni and Mg-Cu Alloys

M G-BASED A LLO Y S
AH°lwlc 

K C A L /M O L  O F  H : K CA L/M O L O F  H 2

-̂ S°W«K

C A L /M O L  O F  H 2

M g2N i+2H i=M g,N iH 4 -15.4±1.0 -6.7±1.0 -29.2±1.5

M g+H j=M gH j -18.5±1.0 -8.7±I.O -33.0±0.7

2M g,C u+3H j=3M gH ,+M gC u, -I7.4±1.0 -7.3±1.0 -34.0+0.7

M g + H ^M g H , -18.7±1.0 -8.7±l.O -33.4+0.7

2.1.3 Hysteresis

Hysteresis is observed in nearly all metal-hydrogen systems during hydride formation and 

decomposition. This phenomenon occurs when the transition pressure in the P-C-T curve is higher 

for absorption than for desorption. Hysteresis is o f  considerable practical important since it reduces 

the efficiency o f  hydrogen (energy) storage systems. An example o f  hysteresis is shown in Fig.
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2.13'4' 1. The cause o f  hysteresis is not fully understood although many explanations have been 

proposed. However, lattice expansion on hydriding is believed to be o f importance. The hydride 

phase seems to cause an irreversible plastic deformation in the matrix. Desorption o f a small amount 

o f hydrogen primarily relaxes the residual stresses so that the phase is no longer under stress. 

Therefore, desorption should occur at a lower critical transition pressure. Because o f strain 

sensitivity, the amount and size o f impurities, as well as the processing history, have a considerable 

effect on the absorption pressure plateau.

s

Fig.2.13 P-C-T diagram showing hysteresis in a metal-hydrogen system[41].

Qian and Northwood154' developed a model for the hysteresis that is observed in intermetallic 

compounds, such as Zr(FexCr,. J 2. This modei suggested that elastic and plastic strain energies for 

both hydride formation and decomposition will contribute to pressure hysteresis for bulk samples.
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The pressure hysteresis for powder samples varies with aliquot size and is determined by a combined 

effect o f  the energy barrier for nucleation, which is built up by elastic strain energy in the purely 

elastic state, and the interfacial energy and the energy barrier for growth (which is created by elastic 

and plastic energy) in the elasto-plastic state.

Schotus and Hall1” 1 related the hysteresis to plastic deformation during hydride formation. 

They assumed that strain was absent during hydride decomposition and, ac such, the decomposition 

plateau pressure corresponds to true equilibrium. Flanagan and Clewely1561 have proposed a model 

to explain hysteresis, which is based on the requirement for dislocation production during both 

hydride formation and hydride decomposition.

One o f  the better known theories is that originally proposed by Ubbelohde1571 over 50 years 

ago for hysteresis in Pd-H systems. He proposed that the free energy o f  the hydride (P) phase for 

these systems is not determined solely by the temperature, pressure and composition, but is 

dependent on other variables such as mechanical strain for its full determination. In this way, it is 

possible to have more than one pressure for the same concentration o f  hydrogen. The metallic 

hydride phase is assumed to be both disordered and strained, thus giving rise to a greater plateau 

pressure for hydride formation than for hydride decomposition. He suggested that the phase rule has 

to be modified for such systems, and an additional variable such as strain has to be added.

The degree o f  hysteresis in a metal hydrogen system can be affected by the type o f testing. 

Hysteresis is more pronounced in dynamic tests than in conventional static tests1581. This effect could 

be due to deformation disordering o f  the metal lattice by cycling through the high capacity range.

Although the causes o f  hystersis are still not very clearly established, it is generally agreed 

that hysteresis reduces the efficiency o f  hydrogen storage systems.
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2.2 Electrochemical Properties of Metal Hydride Electrodes

Hydrogen storage alloys, which were discovered about 20 years ago, have been widely 

studied for their application as energy storage media and battery electrodes. The hydriding alloys 

(metal hydrides: MH) are used as the negative electrode o f a rechargeable battery, essentially 

replacing the cadmium electrode in the widely used Ni-Cd battery. The main driving force for 

replacing the cadium is environmental consideration, Cd being a relatively toxic material. There are, 

o f course, other advantages o f the Ni-MH battery over the Ni-Cd battery, including potentially 

higher energy density, higher charge/discharge rates, low temperature capability and an absence of 

a memory effect11' 21.

2.2.1 Development History

Hydrogen storage alloys have been studied as potential negative electrodes for alkaline 

rechargeable batteries since 19701591. However, due to various shortcomings including corrosion of 

the hydrogen storage alloy in the electrolyte, short cycle life and poor charge retention1'’0'61'621, 

hydrogen storage alloys electrodes did not find acceptance by industry until a break-through was 

made in 1984 by Willems121 which significantly extended the cycle life o f a LaNis alloy electrode by 

partly substituting Ni with Co and a small amount o f  Si. Since then, the La-Ni-Co-Si (or Al), Mm- 

Ni-Co-Si (or Al) (Mm stands for Ce-rich mischmetal) and Ml-Ni-Co-Si (or Al) (Ml stands for La- 

rich mischmetal) and AB5 type alloys have been systematically studied and have seen rapid 

development in both Japan and China. Also in 1985, AB2 type V-Ti-Zr-Ni electrode alloys were 

developed and claimed to possess satisfactory properties by the Ovonic Battery Co . 1641 in the U.S.A. 

Since 1990, batteries with these alloys as negative electrodes have begun to appear on the market,
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and the market is now growing at a fast rate.

2.2.2 Desirable Properties and Criteria for MH Electrode Materials

In comparison with Ni/Cd batteries, Ni/MH batteries have the following advantages1'81:

(i) MH electrodes have a 1.5 to 2 times higher energy density than Cd electrodes with capacities of 

400 mAh/g or 2000mAh/l;

(ii) they are free from the poisonous metal Cd;

(iii) there is no concentration change in the electrolyte solution during charge/discharge cycling, as 

the cell reaction does not undergo a dissolution/precipitation process;

(iv) there is no memory effect during charge/discharge and they can sustain a high rate of charge and 

discharge;

(v) they have a higher tolerance to over-charging and over-discharging;

(vi) the voltage characteristics o f Ni/MH batteries are very close to Ni/Cd batteries, and hence lend 

themselves to ready substitution.

The following properties are regarded as desirable in MH electrodes:

(i) they should be stable in alkaline electrolyte solutions, with or without cycling (corrosion 

resistant and long cycle life);

(ii) they should have a high electrochemical capacity (in mAh/g);

(iii) they should exhibit a suitable equilibrium hydrogen pressure, generally I O'4-1 O' 1 MPa within 

the working temperature range (-20°C~60°C);

(iv) they should exhibit a good surface activity and kinetic properties (high rate capacity);

(v) they should exhibit a high charge retention (high % charge retained after 14 or 2 1  days);

(vi) low cost.
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2.2.3 Charge-Discharge Processes and Electrode Reactions

A nickel-metal hydride battery is a battery adopting a hydrogen storage alloy as its negative 

electrode, which is able to absorb and desorb reversibly a large amount o f hydrogen at the room

temperature and pressure. The process o f  charge-discharge o f the electrode can be described as

follows:

(a) The movement o f  electrons:

M  + H ,0  + e ' o  M  -  Hadsorpnon + O H ' (221)

(b) The diffusion o f  hydrogen into the bulk and the chemical reaction:

o  M - y H ^  o  MH, (222)

(c) The phase transformation o f  metal hydride:

( x -  y ) H  + M Hv »  M Ht (223)

(d) The charge and discharge reactions in an alkaline electrolyte at the negative and positive 

electrodes can be described as follows:

Positive electrode:

Ni{OH)2 + O H ' <=> NiOOH  + HzO + e ' (224)

Negative electrode:

M  + H-,0 + e ' <=> MHabsorpnon + OH~ (225)

Thus the overall working o f  a Ni/MH battery can be expressed as:
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N i(O H ), + M <=> MWabsorption + M O O // (226)

where M stands for the hydrogen storage alloy and MHlb stands for the absorbed hydrogen alloy 

(metal hydride). Fig. 2.14166' is schematic o f  the charge/discharge mechanisms in a Ni/MH battery. 

The nickel/metal hydride battery is characterized by moving hydrogen from the positive to the 

negative electrode during charging and from the negative to the positive electrode during discharging

I: DmfcifH

,OH
M

NiOOH
Hydrogen Stonge Alloy

o  o  o  
° ] o ; q  
0 . 0 . 0  
0 0 0
Mcul Hydride •  Hydrem *« 

e EJeeNc|Xlve Electrode Nickel Oiide 
PmiiiK Elea rode

Fig.2.14 Charge-discharge reaction mechanism o f Ni/MH battery[6 6 ]. 
with no loss, or gain, o f  the electrolyte.

2.2.4 The Electrochemical Characteristics of Metal-Hydride Electrodes

The performance o f a Ni-MH battery is measured by the discharge capacity, the durability (cycle 

life), the dischargeability (kinetics) and self-discharge. This performance greatly depends on the 

metal hydride (MH) electrode, especially the hydrogen storage alloy in the electrode1671. 

Discharge Capacity

The equilibrium potential o f the negative electrode at 20°C, 1.01 MPa, in 6 M K.OH solution 

in reference to a mercury oxide electrode is related to the hydrogen dissociation pressure, PH2 (in 

atm), by the Nemst equation:

= -0 .9 3 2 4 -0 .0 2 9 1 IOgPff: (227)
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The electrochemical capacity per unit weight o f alloy Q (in mAh/g) is determined by the 

hydrogen atoms absorbed per unit mole o f alloy H/M,

2. 68x10 ^H/ M)  22g)
W

where W is the average molecular weight o f the alloys (in g).

The available hydrogen capacity o f a metal hydride essentially depends on the plateau region, 

i.e. the a  and p phase coexistence region. When the alloy is charged to hydride with a hydrogen 

content at the right end point o f the plateau region in the P-C-T curve, i.e., the alloy is totally 

transformed from the a-phase to the P-phase, further charging results in a dramatic increase in the 

hydrogen equilibrium pressure because o f solid solution behavior168’.

The discharge capacities are determined by a galvanostatic method in an open standard tri­

electrode cell which includes the counter electrode (nickel oxyhydroxide), the reference electrode 

(Hg/HgO/6 mol/L KOH) and the working electrode (hydride alloy). The electrolyte is a 6  moI/L 

K.OH solution. The electrode is fully charged at a given current density for several hours until the 

electrode potential is stable and hydrogen bubbles are generated at the surface o f the electrode, or 

to an overcharge o f  about 20-40% to ensure a complete hydriding o f  the electrode. The electrode is 

then discharged galvanostatically to -0.5V and the discharge curves are recorded by a X-Y recorder 

or a computer169'. The discharge capacity is calculated as:

Q = It (229)

where Q is the discharge capacity, I  is discharge current density and t is the discharge time.

Cycle Life and Capacity Retention

The cycle life (CL) is usually defined as the number o f cycles at which the discharge capacity
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decreases to half o f  the initial capacity1™1. Other researchers, e.g. Chikano et al.u'] define a capacity 

retention ratio as the ratio o f the capacity after 1 0 0 0  cycles against the initial capacity, i.e. 

(Q/00(/2imria/)'

Ye and Sakai1721 studied the cycle life and suggested that the loss o f  cycle life is usually 

caused by a loss o f the electrolyte, resulting in a drying out o f the cells. This is either due to 

corrosion o f the metal hydride that uses up the electrolyte, or by poor recombination reactions which 

leads to venting o f  the cells through the safety valve. In the final stage o f  the life-span o f a hydride 

battery, both processes usually occur, and this is the reason for the fairly rapid decay o f the hydride 

battery capacity when the battery reaches the end o f its life expectancy. A characteristic hydride 

battery initially has a fairly stable capacity over several hundreds o f cycles but eventually reaches 

a point where there is a sudden drop. A third cause for electrolyte dry out. which is common for both 

Ni-MH and Ni-Cd cells, is the incorporation o f  water molecules in the nickel hydroxide, leading to 

a swelling o f  the electrode. Ye and Sakai1721 also suggested that some o f the capacity drop was due 

to overcharging.

The electrochemical capacity o f  a number o f different compounds has been measured in a 

sealed cell as a function o f number o f  cycles1731. The values o f capacity obtained after 3 and 10 

cycles, which are summarized in Table 2.6, show the decay in capacity to be very large for LaNi5 

and a Mn substituted compound (about 25 to 20%), less for Co and Al substituted (10%) alloys and 

no decay was observed for LaNi3S.
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Table 2.6|731 Variation of the Electrochemical Capacity 

as a Function of Number of Cycles in a Sealed Cell

C O M PO U N D

C A PA C IT Y  A FT E R  3 C Y C LES C A PA C IT Y  A F T E R  10 
C Y C LES

LOSS O F  
C A PA C IT Y

m Ah/g H/mol m A h/g %

La.Ni, 350 5.5 260 25

La.N'i45.Vln0J 325 5.2 260 20

L aN I4.jAl0j 330 5.1 300 10

LaN i45C o05 330 5.3 285 13

LaiNijS 320 51 320 0

Percheron-Guegan and Latroche1731 discussed this decay and considered it was essentially due 

to two factors: ( 1 ) self-discharge related to the value o f  the plateau pressure; and (2 ) a corrosion 

effect due to the chemical dissolution o f the surface or passive film formation.

The Influence of Temperature

Nickel-metal hydride batteries are typically charged at high rates when installed in portable 

electronic devices, thus, they are used under comparatively higher temperature conditions than room 

temperature. Thus it is important to improve battery performance at these higher temperatures. The 

decline in battery capacity at higher temperatures is due more to the lowered charge acceptance o f 

nickel electrodes with their smaller oxygen over-potential than the MH negative electrodes. Ye and 

Sakai1721 measured the temperature dependence o f the discharge capacity using a MH electrode with 

a composition o f  85wt% ABS alloy, 10wt% Ni and 5wt% Co, and found that the discharge capacity 

is rather flat between -18°C and 40°C, except for a battery with a 10M KOH electrolyte, where the
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increased internal resistance at low temperatures significantly reduced the capacity at -18°C. On the 

other hand, Chen and Zhang1741 studied the discharge capacities at 20°C, 0°C and -18°C o f batteries 

which used a Ni-coated alloy and showed that the batteries exhibited good performance even when 

discharged at low temperatures.

2.2.5 Approaches Used to Improve Properties of MH Electrode Materials

In view o f  the promising features o f  the Ni-MH batteries, a large amount o f  research and 

development work has been carried out to improve the properties o f these electrode materials. The 

following approaches have been used:

(i) Alloying or multi-componenting which intrinsically determines the structures and properties of 

both the bulk and the surface of the materials;

(ii) Processing control, which guarantees the presence o f the desirable structures and surface 

properties;

(iii) Surface modification, which changes the surface o f  the material to one with more desirable 

characteristics;

(iv) Electrode preparations in which the desirable properties o f the materials are not impaired or 

destroyed.

Main Methods for Decreasine the Capacity Decay on Cycling 

Elemental Substitution

As has been demonstrated by Willems163'751, Lei et al.[76\  Meli and Schlapbach1” 1 and many 

others, a striking decrease in capacity decay can be realized by substituting Co and a small amount 

o f Si or Al for Ni. This approach has made ABs-type alloys a promising electrode material. It is
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believed that since Co greatly reduced the volume expansion on hydriding (AV/V=24% for LaNi5 

and AV/V=13% for LaNi,Co3), the pulverization o f the powder on hydriding is also reduced. Al and 

Si concentrate on the grain boundaries, and in conjunction with segregated La, form a porous 

passivating oxide layer which protects the alloy from further corrosion in the K.OH solution. 

However, too much Al or Si reduces the porosity and thus increases the surface resistance, thus 

degrading the high current rate performance.

Numerous attempts178' 851 have been made to improve the kinetics o f magnesium and 

magnesium-based alloys. The effects o f yttrium additions on the electrode performance of 

Mg, 9A10 ,Ni,.tY, alloys have been investigated by Cui et al.m . Fig. 2.15 shows that the addition of 

yttrium substantially increases the discharge capacity o f the electrodes and effectively improves the 

electrode high-rate dischargeability. On the other hand, the addition o f yttrium has a negative effect 

on the cycling stability for the Mg,Ni-type alloy electrodes.

Control o f  Grain Size

Electrode alloys with a small grain size have longer cycle lives than large grain materials1151. 

Fig. 2.16 shows Sakai et al.m  results on the effects o f solidification and heat treatment of 

MmNi, jCoq tAIo j on the discharge capacity after cycling. The fine grained samples had much longer 

cycle lives. It is believed that the passivating elements are segregated to the grain boundaries on 

solidification and better protective layers are formed on the electrode particles processed from fine 

grained alloys.
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Fig.2.16 Influence o f  casting conditions on capacity decay curves at 20°C for
MmNi3 iCo0 7 Al0 8 [9l].

Zaluski et al.m  found that nanocrystalline FeTi with grain sizes o f  about 6-7 nm showed a 

relatively large solubility region (up to 0.3H/FeTi) and a plateau pressure o f  0.7MPa, which is lower 

than the absorption pressure o f the conventional alloy. Modification o f this alloy by a small amount 

o f  Pd drastically changes the hydrogen sorption properties. Pd modified nanocrystalline FeTi readily 

absorbs hydrogen at room temperature with neither thermal activation nor previous exposure to high
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pressure o f  hydrogen being required. The hydrogen uptake was about 0.5 hydrogen atoms/FeTi at 

pressures lower than 0. IMPa. Further, they also found that nanocrystalline Mg,Ni (with a grain size 

o f 20-30 nm) exhibits significantly improved activity and hydrogen absorption kinetics, as compared 

to the polycrystalline materials. Modification o f  this material by Pd gives further improvement o f 

the hydrogen storage characteristics.

Micro-Encapsulation

The deposition o f a thin coating o f porous Cu or Ni on the surface o f hydrogen storage alloy 

particles by electroless plating is called micro-encapsulation. Fig. 2.17'88' shows the ideal 

microstructure o f  a microencapsulated alloy. Sakai189' and Lei et al.m  found that batteries made 

from micro-encapsulated materials have better high rate capacity, better low temperature 

performance and lower capacity decay than non-microencapsulated ones. It is believed that the Ni 

or Cu coating on the particle forms an anti-oxidation barrier and at the same time acts as a 

microcurrent collector, facilitating electron transfer during charging and discharging.

Hydrogen storage alloy

Porositv

Fig.2.17 Ideal microstructure o f  an encapsulated hydrogen-storage alloy[88].
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Ball-Milling

Recently, some researchers have begun to use ball milling to treat the hydrogen storage 

materials prior to use in battery applications. Dceya et al}1,11 found that an alloy o f  MmNi3 SAL, sCo0 - 

ground for Ih or less showed a higher discharge capacity and longer cycle life than for non-ground 

samples. However, longer grinding times eventually lead to a decrease in the discharge capacity due 

to amorphization

Sridhar Kumar et al.[n] have reported the results o f electrochemical studies on metal hydride 

electrodes containing alloy samples coated with cerium oxide by a ball-milling technique: see Table 

2.7 for a summary o f the results.

Table 2.7 Effect of Cerium Coating and of Ball-Milling on the 

Electrochemical Performance of Metal Hydride Electrodes1921

A LLO Y C O A T IN G
M A T ER IA L S

BALL-
M ILL IN G

T IM E

M A X IM U M
C A PA C IT Y

(m A h/e)

DECAY
(m A h/g.CY C LE)

9h 297 1.19

La-Ni-Sn
5wt% CeO, 3h 317 0.73
5wt% CeO; 9h 315 0.52

9h 292 0.51
La-N i-M n-A l-Co 10wt% CeO, 3h 263 0.39

10wt% CeO; 9h 256 0.39

Coating a La-Ni-Sn alloy sample with 5wt% cerium oxide resulted in a decrease in the 

capacity degradation rate on prolonged charge/discharge cycling. The exact mechanism by which 

cerium or its oxides protect the electrode surface is not very clear. However, studies165' on other 

metals and alloys suggested that Ce formed a protective insoluble oxide film preferentially on certain
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sites thereby preventing a corrosion reaction from occurring.

Methods for Increasing Electrochemical Capacity 

Elemental Substitution for Ni on the B side

In order to increase the electrochemical capacity o f an electrode alloy, the alloy should have 

large hydrogen storage capacity with long and flat P-C-isotherms and the plateau pressure o f  the P- 

C-isotherms should be I O'4-1 O'1 MPa in the -20°C to 60°C temperature range.

LaNi5 is an alloy with a large capacity and favorable P-C-T characteristics for H: storage and 

dehydriding, yet as an electrode material, its plateau pressures are too high. Mn, Al, Cu and Co 

substitution for Ni, all lead to a lowering o f the hydrogen equilibrium pressure1151.

Surface Modifications with Metal Coatings and Organic/Inorganic Compounds

Researchers from the University o f Wollongong183' surface-modified the Mg,Ni type alloy 

by Ni-P microencapsulastion and found that this improved the electrocatalytic activity o f the 

negative electrode and thereby reduced the overpotential o f charge/discharge. This resulted in a 

remarkable increase in electrode capacity and high-rate discharge capability, but had little influence 

on the cycle life.

Iwakura et al.[S2] improved the charge-discharge characteristics, especially discharge capacity 

and cycle lifetime, by ball milling the Mg,Ni together with graphite. Such a remarkable effect for 

the Mg-graphite composite may be caused by an increase in the number o f active sites for hydrogen 

absorption and desorption with the formation o f bonds between Mg and graphite (Fig. 2.18).
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Fig.2.18 Discharge capacity behavior for prototype test ceils with the anode o f MH 
(MmNi35Al08Co07) sample; O : modified by mechanical treatment for lh  with 20w/o added 

cobalt; • :  chemical-coated with I Iw/o Ni; □ :  only metal hydride without any m odification^I].

Composite Formation o f  Magnesium and/or Magnesium-Based Alloys with Other Hydrogen- 

Storage Alloys

Cui et al.m investigated the hydrogen storage characteristics o f  a Mg,Ni-lO%Ti;Ni alloy 

which was synthesized by mixing the prefabricated Ti,Ni with Mg:Ni. The discharge capacity 

increased from 8 mAh/g for an uncoated Mg,Ni electrode to 126 mAh/g for a Mg,Ni-Ti:Ni electrode. 

This may be attributed to the fact that the Ti:Ni alloy has a much higher reaction rate with hydrogen 

than a Mg,Ni alloy, and thus exerts an important catalytic effect on the hydriding/dehydriding rate 

o f the composite alloy, thereby enhancing the discharge capacity.

Measures for Increasing Rate Capacity 

Microencapsulation

The deposition o f  a thin coating o f porous Cu or Ni on the surface o f hydrogen storage alloy 

particles by electrodeless plating is called micro-encapsulation1631. It works as a micro-current 

collector in the electrode and hence it reduces the Ohmic loss and improves the rate capacity o f the
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electrode188'. Sakai'89' tested the electrode made o f micro-encapsulated alloy powders and found that 

the batteries have better high rate capacity, better low temperature performance and low capacity 

decay.

Control o f  Additives

Small amounts o f  Al, Si, Ti or Zr are added to passify the surface. However, if  too much is 

added, the oxide films o f these elements impede hydrogen and current flow, and hence reduce the 

rate capacity'15'.

Measures for Promoting Activation

FeTi is one o f the most effective materials for hydrogen storage. However, the virgin 

compound reacts very slowly with hydrogen at room temperature even at high hydrogen pressures. 

A high temperature heat treatment is required in order to activate the sample to absorb hydrogen at 

room temperature.

To overcome the disadvantages, it has been proposed that iron in TiFe be substituted by a 

third element such as Al, Mn, Ni Cr or S. Fig. 2.19 shows that when a small amount o f  Cr (a) or Mn

(b) is substituted for Fe, activation is promoted and the resistance to impure gas poisoning is 

increased. Although the effects o f this substitution have been widely reported, the reason behind the 

effect is still not well understood. Yang et al.m  proposed that, when TiFe09Mnfl, was heated to 

100°C in a vacuum, surface aggregation o f Mn took place and a second phase was formed. Increasing 

the amount o f Cr and Mn increased the amount o f  the second phase, and the effect became more 

pronounced.

For an AB, alloy, it is generally agreed that the A:B ratio should not deviate too far from 1:2.

Generally, A=Zr or Ti, B=Ni, Mn, Cr, V, Al, Fe or Co. Too large a deviation from 1:2 would reduce

the number o f  tetrahedral interstitial cavities and hence the H-capacity, and thereby lower the
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pressure. Zr, Ti are hydride forming elements and a high Zr% is preferred, since Zr has a bigger 

atomic radius, and thus forms alloys with larger hydrogen capacities. Cr and Mn are used to weaken 

the M-H bond, or to raise the equilibrium hydrogen pressure. Additions o f small amounts o f Al, Mn, 

V or rare earth metals are helpful in promoting activation.

1.

■3>»

10 15

Time (hr}

*

:5

(a) Substitution o f Fe with small amount o f Mn

C
9iJ
C0

3*0

AM

0 . 5

0
2 51 5 20

Time (h r)

(b) Substitution o f  Fe with small amount o f Cr

Fig.2.19 Hydrogen absorption curves for the first cycle for TiFe,.,Crx alloys at room temperature 
and a  hydrogen gas pressure o f  3.92MPa. AM: as melted; H: homogenized[93].
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From the above discussion it can be seen that surface condition o f electrode materials has a 

very important effect on charge/discharge properties. Both activation and decay are related to the 

surface condition. Increased surface area on grain disintegration, the segregation o f  catalytically 

active metal clusters to the surface, the formation o f  porous oxide layers, the corrosion and decay 

of active components, and the increase in contact resistances are all reactions on the surface. Many 

investigators are working on these different reactions and significant progress has been made.

2.3 Ball Milling

Ball milling has recently emerged as a novel technique for alloy formation’94,951. The resulting 

alloy can be either crystalline, amorphous or quasi-crystalline1961. One o f the unique uses of 

mechanical alloying is to make alloys o f entirely immiscible metals, e.g. the Cu-V system1951. In the 

early development o f  the ball milling technique, it has been frequently used to amorphize alloys. 

Recent developments include its use in making several kinds o f alloys, particularly those in which 

the heat o f mixing is negative and therefore a thermodynamic driving force is provided in a natural 

way. Another use o f  the technique is to make nanocrystalline m aterials1971.

In the metal hydride systems, the surface area and particle size o f the material are important 

parameters for the enhancement o f  the hydrogen uptake, reduction in the activation time, temperature 

and pressure, and improvement in the kinetics. Since mechanical alloying by ball milling leads to 

materials in fine particle form, and, as such, may result in a reduction o f  the activation time and 

temperature, it is well suited for the synthesis and formation o f hydrogen storage materials198’.
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2.3.1 Development History

Mechanical alloying (MA) is a high-energy ball milling technique used to prepare alloy 

powders with unique microstructures11” 1. MA had its origin at the International Nickel Company 

(INCO), where Benjamin and coworkers1100,1011 used MA to prepare nickel-based oxide-dispersion 

strengthened alloy powders. These powders were then hot pressed, which reacted the constituents 

into a homogeneous alloy with uniformly dispersed fine oxide particles. Commercial products 

prepared by this technique include the iron-based MA956, the aluminum-based MA952, and the 

nickel-based Inconel MA754 and MA6000 alloys11021.

Mechanical alloying (MA) is a solid-state alloying process by dry ball milling o f elemental 

or pre-alloyed powders. Ball milling o f crystalline elemental powder mixture (Mechanical Alloying, 

MA) or o f  crystalline intermetallic compound (Mechanical Grinding, MG), is o f particular interest 

not only for forming alloys which are dispersion strengthened by a uniform distribution o f  fine, 

stable particles, but for creating nanometer-sized crystalline materials in which the solubility o f some 

elements may be several orders o f magnitude larger than in the case o f  single crystals11031.

2.3.2 Equipment

Laboratory scale equipment includes the Spex shaker mill, planetary ball mills, vibratory

mills, and other specially designed mills. Larger quantities o f powder are typically milled in attritors

or large tumbler ball mills. The mill energy and alloy powder are important in determining the

kinetics o f a given process, and in some cases determine its feasibility for working. In general, the

more highly energetic mills produce the desired end-product (nano-crystalline or amorphous)

material more rapidly. The energy o f  the milling media depends upon the internal mechanics o f  the

specific mill, the power supplied to drive the milling process, and the composition, size, and size
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distribution o f  the balls. Since the kinetic energy o f the balls is a function o f their mass and velocity, 

dense materials (steel or tungsten carbide) provide more energy than light materials (ceramic balls). 

The ball size and size distribution should be optimized for a given mill. Too dense a packing o f the 

balls reduces the mean free path o f  the ball motion, while a ‘dilute’ distribution minimizes the 

collision frequency11041.

2.3.3 Mechanisms in Ball Milling

Mechanical alloying (MA) is a complex process o f fragmentation, deformation, cold welding

and short range diffusion, occurring within a layer o f  powder particles trapped between the surfaces

o f two colliding balls1105*1061. Lee and Shingu11071 have pointed out that investigations o f MA processes

had always been done with elemental or intermetallic powders as starting materials. There had yet

been no experimental data presented with MA characteristics using non-powder material.

Most o f the systems studied have been binary, consisting o f  an early transition metal (Ti, Zr,

Nb, Ha) with a late-transition metal (Fe, Co, Ni, Cu)11081.

The central event in MA/MG is the ball-powder-ball collision. Powder particles are trapped

between the colliding balls during milling and undergo deformation and/or fracture processes which

define the ultimate structure o f the powder. This is illustrated schematically in Fig. 2.20. The nature

o f these processes depends upon the mechanical behavior o f  the powder components, their phase

equilibria, and the stress state during milling. In particular, component powders that are (i) both

ductile, (ii) ductile/brittle, or (iii) both brittle, exhibit different morphologies during milling.

Ductile/ductile components exhibit flattening and cold-welding into a lamellar structure which after

sufficient repeated fracture and rewelding form homogeneous equiaxed particles. In ductile/brittle

powder mixtures, the brittle particles fracture and are trapped at the weld interfaces between ductile
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particles. The continued fracture and cold-welding ultimately results in a  uniform distribution o f the 

brittle particles in the ductile matrix. It might be expected that milling brittle powders would only 

serve to fracture the particles into smaller segments. The morphology o f  the welded powder 

agglomerate does not assume the lamellar structure o f  ductile/ductile components, but an equiaxed 

‘popcorn ball’ appearance.lt has been demonstrated that significant plastic deformation occurs in 

even nominally brittle intermetallics like Nb3Sn under the conditions o f ball milling.

Song11091 pointed out that the principal effects o f mechanical treatment or mechanical alloying 

by planetary milling are to increase both the specific surface area and the number o f  defects on the 

surface as well as in the bulk. Lee and Jang1110’ reported that MA formed many amorphous binary 

metal alloys and provided an intimate mixture o f the elemental components and the severe plastic 

deformation introduces defects which may assist the diffusion process. In this case, the free energy 

o f the amorphous alloy is lower than that o f the mixture o f the crystalline elements. However, 

Schwarz and Koch[m|have prepared amorphous Ni4SNb55 and Ni32Ti6g powders by ball milling the

Fig.2.20 Schematic diagrams ofball-powder-ball collision[l 12].
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respective crystalline intermetallics, Ni6Nb7 and NiTi,. To obtain amorphous material in this case, 

the free energy o f the equilibrium intermetallic compounds must be raised to that o f  the amorphous 

alloy. It has been suggested by Koch and Kirn1"21 that the defects introduced by milling raise the free 

energy o f  the intermetallic compound to that o f the amorphous structure and that at a critical defect 

concentration the transition to the amorphous phase can occur. It has also been shown that the 

milling o f two elemental components can first produce an intermetallic (or intermetallics) before 

subsequently transforming to the amorphous phase.

2.3.4 Factors Affecting the Ball Milling Process

There are various factors affecting the operation o f the milling process such as:

(i) types o f mills (e.g. horizontal rotating ball-mill, planetary ball-mill, stirred ball-mill or vibratory 

ball-mill);

Ahn and his co-workers1"31 used various ball milling methods (Fig.2.21) to obtain 

mechanically alloyed 50Ti-50Al. The microstructural evolution during the milling indicates that the 

mechanical alloying behavior is strongly affected by the milling method, and that horizontal ball 

milling is the most effective method for producing homogeneous metastable powders.

(ii) types o f milling media (balls or rods);

(iii) types o f milling tools (e.g. stainless steel or tungsten carbide);

Since the kinetic energy o f the balls is a function o f  their mass and velocity, dense materials 

(steel or tungsten carbide) provide more energy than light materials (ceramic balls)110’1.

(iv) milling atmosphere (e.g. air, inert gas or nitrogen gas);

(v) milling mode (dry milling, wet milling);

(vi) ball-to-powder size ratio;
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(vii) ball-to-powder weight ratio;

( a  )

W T O

( b )

IQQ •QO-O-O

(c ) Reiibic coupling
.Viol \  \M otor

Spring w ia l  support Rotating shaft

Fig.2.21 Schematic illustration o f  various milling methods: (a) attrition, (b) planetary,
(c) vibratory, (d) horizontal ball milling[l 13].

El-Eskandarany and Aoki1" 4' studied the effect o f  ball to powder weight ratio on the 

amorphization reaction o f A l^Ta^ by ball milling. They concluded that the rate o f amorphization 

depends strongly on the kinetics energy o f  the ball mill charge and this, in turn, depends on the 

number o f opportunities for the powder particles to be reacted and interdiffused. Increasing the ball- 

to-powder weight ratio accelerates the rate o f  amorphization which is explained by the increase in 

the kinetic energy o f  the ball mill charge per unit mass o f  powder.

(viii) milling temperature;

(ix) speed o f  mill;

(x) dwell time o f powders in the mill (milling time);
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(xi) contamination.

2.3.5 Effect of Ball Milling on Hydrogen Storage Materials

Intermetallic compounds for hydrogen storage applications, e.g. Mg,Ni, LaNI5 and FeTi have 

been investigated for about two decades11151. One o f  the most serious problems with these materials 

is that they do not absorb hydrogen under normal conditions and have to be activated prior to 

hydrogenation. The activation process is usually complicated, involving repeated annealing at high 

temperature and/or pressure.

Although LaNi5 is regarded as an activation free alloy, it absorbs hydrogen slowly unless the 

activation treatment is performed. Fig.2.22 shows the hydrogen absorption curves o f LaNi, at 293K 

and 2MPa H, after milling in an argon atmosphere. As the milling time increases, the hydrogen is

2

LaNis 293K, 2MPa H

Ar, Milling time 0 .6ks

0.3ks 0.06ksX

/  0 .015ks

Oks

0
0 0.5 1

Absorption Time, 1 1  ks

Fig.2.22 The hydrogen absorption curves o f LaNi5 powder at 293K and 2MPa H, 
after ball milling for 0 ,0 .015,0 .06,0 .3  and 0.6 ks[l 16].
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absorbed more rapidly. Wasz and Schwarz1" 6' examined the structure and reversible hydrogen 

storage capacity o f alloys based on the LaNi5 intermetallic alloys. Because the surface area is larger 

in the mechanically alloyed powders than in the as cast powders, it is anticipated that hydriding 

/dehydriding will be faster in the powders prepared by MA. For practical applications o f LaNi3-based 

alloys (e.g., electrodes in Ni/metal hydride batteries), it is significant that alloys prepared by MA 

require neither surface activation nor hydrogen cycling to break down the powder to its ‘terminal’ 

particle size. The morphology of the activation or powder prepared by MA is virtually the same 

before and after hydrogen cycling, and hydrogen-induced cracking is minimal. The lack o f hydride- 

induced cracking is partly due to the smaller initial particle size o f the MA powder before hydriding, 

as well as the rounded agglomerate morphology that better accommodates the volume change caused 

by hydriding.

Aoyagi et a/.'79' suggest that the hydrogen absorption alloys FeTi and Mg,Ni require an

activation treatment before use, because their surfaces are covered by oxide layers, absorbed gases,

moisture, etc., which impedes hydrogen absorption. The activation absorption treatment is usually

performed by a number o f  heating-cooling cycles in a hydrogen atmosphere or in a vacuum.

Although the mechanism o f  the activation is not as yet fully understood, the proposed mechanisms

are divided roughly into two groups. The first group considers that the activation treatment o f FeTi

gives rise to Fe-rich clusters close to its surface and these clusters catalyze the dissociation of

hydrogen gas. On the other hand, in powder metallurgy, it is well known that fresh surfaces are

mechanically created by milling. Consequently, if  the alloys are milled in an inert gas atmosphere

and then hydrogenated without exposure to the air, hydrogen is expected to be readily absorbed.

From Fig.2.23, we can see as the milling time increased, hydrogen is absorbed more rapidly,

particularly at the initial stage. Tessier et al.[n7] found that ball milling the intermetallic compound
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Fig.2.23 (a) The hydrogen absorption curves o f  FeTi powder at 283K and 2MPa H: after ball 
milling for 0 ,1 .8 , II  and 86 ks in an argon atmosphere and without exposure to the air[79].

(b) SEM micrographs o f  original FeTi powder and powders the ball-milled for 1.8,1.1 
and 86ks in an argon atmosphere[l 17].
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FeTi leads to progressive refinement o f grain size and increasing chemical disorder o f  the alloy.

For a Mg,Ni alloy, Chen and Doutl181 found that the Mg and Ni powder particles are 

repeatedly cold welded by the colliding balls. Thus, composite powder particles with a 

characteristically layered microstructure (Mg,Ni) are formed. Fig. 2.24 shows the effect o f ball 

milling on the hydrogen absorption curve o f Mg,Ni milled in an argon atmosphere. It is worth noting 

that Mg,Ni absorbs hydrogen even at room temperature after ball milling. Kohno et a/.1" 9,1201 studied 

the hydrogen storage properties o f a novel Mg,Ni alloy powder prepared by a mechanical grinding 

method. The XRD pattern for Mg,Ni alloy (Fig.2.25) showed that after lOOh o f mechanical grinding 

with Ni powder, the characteristic peaks o f  the Mg,Ni phase had disappeared. The peaks o f Mg,Ni 

decreased in intensity and broadened [increased full width at half-maximum (FWHM)].

0.3

Mg2Ni 285K, 2MPa H;

Ar. Milling lime 1 8ks

0 3ks

X

0 06ks

Oks

0 0.5
Absorption Time, t / ks

Fig.2.24 The hydrogen absorption curves o f  Mg,Ni powder at 283K. and 2MPa H: 
after ball milling for 0 ,0 .06 ,0 .3  and 1.8 ks in an argon atmosphere[l 18].

This profile indicated that the mechanically treated Mg,Ni alloy (MG-Mg2Ni) was transformed to 

an amorphous-like state. The discharge capacity o f  MG-Mg,Ni electrodes at 25°C is 750mAh/g on
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the first cycle in contrast to the low discharge capacity o f  untreated Mg,Ni.

>.
'55c®
c

20 40 605 80
26 n

Fig.2.25 XRD patterns o f (a) Mg,Ni and (b) MG-Mg,Ni[l 19].
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CHAPTER 3 EXPERIMENTAL DETAILS

This study had two main focii. The first purpose was to investigate the potential 

beneficial effects o f ball milling a Mg2Ni alloy which is then to be used as the negative electrode 

in a Ni-MH battery. The second purpose was to investigate the viability o f  constructing P-C-T 

curves, and calculating specific thermodynamic parameters, using electrochemical 

measurements, rather than the more conventional manometric (gas phase) experiments.

3.1 Materials

One o f  the more promising hydrogen storage alloys, Mg2 Ni, was chosen as the 

experimental material for the study o f the battery negative electrode properties (such as the 

charge-discharge characteristics and electrochemical properties) and the effect o f ball milling 

treatment o f the alloy powder on these properties. A commercial LaNu 7AI0 .3 alloy was chosen 

for the study o f the relationship between hydrogen-absorption/desorption parameters determined 

from electrochemical parameters and P-C-T curves as determined by manometric methods, 

which are the most commonly used technique for such measurements but are extremely time- 

consuming.

The MgiNi and LaNu.7Alo.3 alloys were manufactured by Ergenics Co. under the HY- 

STOR trade name. They were produced by induction melting o f  elemental powders, analyzed 

chemically and examined metallographically by the Ergenics Division o f  MPD Technology 

Corporation. The alloys had been pulverized into powders o f  -325 mesh size. The chemical 

formula o f  the Mg2Ni is actually MgissNi, which is a Mg-rich version o f  Mg2Ni designed to 

avoid the formation o f  MgNi2 during solidification. The density o f Mg2Ni is 3.2 g/cm'
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(unhydrided) and that o f LaNi4 7Aloj is 8.0 g/cm3.

Pure elemental Ni powder (-325mesh, 99.99% purity) was mixed with Mg2Ni alloy 

during ball milling. Elemental Ni or Cu powders were added to the ball-milled mixture in the 

electrode fabrication process. Figs.3.l and 3.2 illustrate the morphology and X-ray diffraction 

patterns o f  the as-cast Mg2Ni and Ni powders, respectively. The particles are irregular in shape. 

The large particles are Mg2Ni alloy and reminder is Ni powder. The particle size is 

approximately 25pm. The XRD patterns o f  the mixed powders clearly showed sharp peaks o f Ni 

elemental powder and characteristic peaks for the crystalline Mg2Ni alloy.

3.2 Ball Milling Treatm ent

Ball milling was performed in a laboratory high-energy ball mill Spex 8000 (Spex 

Industries, Inc., Edison, NJ), which was equipped with two fans for cooling: see Fig3.3. This 

single-clamp mill/mixer is an efficient, compact laboratory mill capable o f  pulverizing samples 

in the 10-gram range, and is typically used for pulverizing rocks, minerals, sand, cement, slag, 

ceramics, catalyst supports, and many other brittle, hard samples.

The Spex 8000 Mill/Mixer consists o f  a clamp and a vial, into which milling balls and 

samples are charged, as the main components to pulverize the samples. The vial (Fig.3.4) is 

clamped in place and shaken at a speed o f  1200rpm in a complex motion, which combines both 

back-and-forth swings with short lateral movements, such that each end o f the vial describes a 

figure-eight: see Fig.3.5. The milling vial is made o f tungsten carbide and is 6.35cm in diameter 

and 7.62cm long. The milling balls, which are 1.27cm in diameter, are made from 440C 

martensitic stainless steel. Fig.3.6 is a photograph o f  the tungsten carbide container and the 

milling balls, from which the larger balls were used in this experiment.
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Fig. 3.1 SEM morphology o f  as-cast MfeNi and Ni powders
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Fig. 3.2 X-ray diffraction pattern o f as-received Mg2Ni and Ni powders.
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Fig. 3.3 Photograph o f  the Spex 8000 mill/mixer
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Fig. 3.4 Photograph o f  Spex 8000 mill/mixer and its single clamp.
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Fig. 3.5 Schematic drawings o f  the ball trajectories for the Spex 8000 mill/mixer.
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Fig. 3.6 Photograph o f  tungsten carbide container and milling balls
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To minimize oxygen contamination, the vial was sealed with an elastomer O-ring under a 

pure nitrogen atmosphere. The mixture o f  milling balls and the materials, (2.147g Mg2Ni and 

1.174g Ni (mole ratio was 1:1) powder) was charged into the vial, and the vial was sealed. A 

continuous flow o f pure nitrogen was maintained from the upper inlet and out o f  the vial from 

the lower outlet. The vial was saturated with pure nitrogen during the ball milling.

Theoretically, the rate o f amorphization depends on the kinetic energy o f  the ball mill 

charge and this depends on the probability o f  the powder particles being reacted and inter- 

diffusing. Increasing the ball-to-powder weight ratio facilitates the pulverization (attrition) and 

accelerates the rate o f amorphization by increasing the kinetic energy o f the ball mill charge per 

unit mass o f  powder. However if there are too many balls, they will stick together due to space 

limitations in the vial and thus the kinetic energy is reduced. To avoid sticking o f the powders to 

both the balls and the vial walls, the ball-to-powder weight ratios chosen for study were 1:1, 5:1 

and 10:1. The various ball-milling conditions utilized in this study are listed in Table 3.1.

Table 3.1 Ball Milling Parameters for Mg2Ni Alloy

BALL MILLING AT CONSTANT BALL-TO- 

POWDER WEIGHT RATIO (5:1)

BALL MILLING AT CONSTANT 

MILLING TIME (25 HOURS)

Ball Milling Time (Hours) Ball-to-Powder Weight Ratio of

0 0.5 1 5 1 0 25 50 80 1 :1 5:1 1 0 :1
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3.3 M aterials Characterization Techniques

3.3.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) was used to: (i) characterize the microstructures o f 

the as-cast MgiNi alloy, (ii) determine the particle size, and (iii) observe the morphologies o f the 

ball-milled MgjNi powders after different ball-milling times.

The as-cast Mg2Ni was sectioned and then mounted in epoxy thermosetting powder 

(blue) using a specimen mounting press. The specimen was wet polished on silicon carbide 

papers o f  240, 320, 400 and 600 grit followed by polishing on 1.0 micron and 0.5 micron 

alumina wheels. The specimen was etched using 30%wt HNO3 aqueous solution and then placed 

in the SEM for the microstructural observations. Fig.3.7 shows the microstructure o f  as-cast state 

Mg:Ni alloy (Fig.3.7a) and a higher magnification micrograph o f  the interface area (Fig.3.7b). It 

clearly shows the eutectic phase which has formed on solidification o f the alloy.

Because o f their tendency to stick together, the ball-milled Mg2 Ni powders were first de­

agglomerated using ultrasonic methods, and the dispersed particles placed on SEM specimen 

holders (stubs). These specimens were then placed in SEM to determine both the particle size 

and to characterize the morphologies o f  the ball-milled powders.

A JEOL5000-LV Scanning Electron Microscope was used at magnifications ranging 

from 50x to 2 0 0 0 x. The accelerating voltage was !5kV and the images were recorded on 

I Ox 12.5cm sheet film. Qualitative compositional analysis o f  the bulk dendrites and their 

interfaces was performed using a Kevex energy dispersive system that was attached to the SEM. 

Fig.3.8 is the qualitative compositional analysis o f  the eutectic (area A) and their interfaces 

(areas B and C). It demonstrates that Mg and Ni are the major elements in areas A, B and C, but 

a small amount o f K  and Si is present in areas B and C, which could be result o f  polishing using

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Experimental Details

Fig. 3.7 (a) Microstructure o f  as-cast Mg2 Ni alloy

Fig. 3.7 (b) Magnified eutectic structure and interface area
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Fig. 3.8 Qualitative compositional analysis o f  (a) dendrites and (b) interface area
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sand paper and AI2O 3 .

3.3.2 X-ray Diffraction

X-ray diffraction techniques were used for phase identification, lattice parameter 

determination, and the characterization o f  the internal strain and amorphization induced by the 

ball milling.

A Phillips X-ray diffractometer with a proportional counter detection head was used. 

Graphite monochromated CuK a radiation, at a voltage o f 40 kV and a current o f 20 mA, was 

utilized as the diffracting medium, along with a computer to count and display the diffraction 

pattern. The angular range (20) scanned was 5° to 150° with a 0.02° scanning step size.

Phase identification and lattice parameter calculations were accomplished through 

comparison o f  the results with data from the ASTM Diffraction Files. Appendix A contains the 

diffraction file cards that were used to identify the diffraction peaks. The degree of 

amorphization was determined by comparing the number, intensity and width o f the diffraction 

peaks. The broadening and the reduction o f  intensity o f  the characteristic diffraction lines 

illustrate the beginning o f  the amorphous state.

The effects o f strains, both uniform and non-uniform, on the direction o f  X-ray reflection 

are illustrated in Fig.3.9. If  the grain is subjected to a uniform tensile strain at right angles to the 

reflection planes, the spacing becomes larger than do, the equilibrium spacing for an unstrained 

grain in (a), and the corresponding diffraction line shifts to lower angles but does not otherwise 

change, as shown in (b). In (c) the grain is bent and the strain is non-uniform; the non-uniform 

strain due to residual micro-stress is the major cause o f line broadening o f  the diffraction line.
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Fig. 3.9 Effect of lattice strain on Debye-line width and position.
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After ball milling, the initial sharp diffraction lines o f the Mg2Ni powders broadened with 

milling time and the weaker lines disappeared into the background. To analyze these 

observations, the Williamson and Hall method1121* was used to estimate the internal lattice strain 

and crystallite sizes from the diffraction line breadths.

For each peak, defined by its Bragg angle (0), the width (Pexp) o f a diffraction line was 

measured as the full width at half intensity. The instrumental broadening (Pexp) which is due to 

instrumental error, was removed as follows:

PL*=PU-fiL (3.i)

where /3!ampie is the broadening due to the sample itself. The instrumental broadening was 

determined using a pure MgiNi powder sample which had been annealed for 2hrs at 300°C in 

vacuum: see Fig.3.10 for its diffraction pattern. The broadening due to the sample increased with 

Bragg angle, and was separated into a crystal size-dependent term and internal strain term: using 

the Hall-Williamson relationship:

KX
cos8 = —  + le s m d  (3.2)

where K  is the Scherrer constant (value =1), A is the wavelength o f  the radiation used, D is the 

crystal size (grain or dislocation cell size here), and f i s  the internal strain (microstrain).

By examining the broadening o f  the sample powder peaks, fcampieCosQ, using a Hall- 

Williamson plot makes it possible to identify the internal strain from the slope o f the /k o s d -s in d  

plot. Half the slope o f the Psampie-cosO -s in d  plot is the internal strain s. The intercept o f  the 

straight line, (=KA/D), gives the crystal size, £>.
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MgaNi Alloy Powder Annealed 2Hrs@ 300°C
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Fig. 3.10 X-ray diffraction pattern for annealed MgiNi powder.
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3.3.3 Specific Surface Area (SSA)

Specific surface area (SSA, m2/g as the unit) is defined as the total surface area (m2) of 

particles per lgram ball-milled MgiNi alloy. The particle size can be obtained from the SEM 

observations, rp was assumed to be the particle radius after different ball milling times and 

different ball-to-powder weight ratios. The surface area o f one particle can be calculated by:

4

SontPa,mu ~  • The volume o f  one particle is: V = -m -p . As the density p o f Mg2Ni alloy is

3.2g/cm \ the weight o f  one particle is: W -  p - V  and the specific surface area (SSA) is then 

obtained from equation (3.3):

SSA = —  (m2/g) (3.3)
P' f p

3.4 Electrochemical M easurements

Electrochemical measurements (DC) o f the battery negative electrode made o f ball- 

milled Mg2Ni powder were carried out using an automatic charge-discharge unit, Solartron 1285 

Potentiostat/Galvanostat, interfaced with Pentium-PC and Corrview 2.0 software.

The measurement o f the electrochemical properties, such as charge/discharge 

characteristics, capacity, open circuit potential, polarization curves and cyclic voltammetry were 

carried out at room temperature using an open tri-electrode measurement system (Fig.3.11). A 

mercury oxide electrode, Hg/HgO/6 M KOH, was used as the reference electrode (RE). The 

working electrode (WE, i. e. negative electrode o f  the battery) was made from the ball-milled 

Mg2Ni powder. Two sintered NiOOH counter electrodes (CE) measuring 2cmx6cm were set up 

on either side o f  the working electrode. The negative electrode was immersed in 6 M K.OH 

aqueous solution together with counter electrodes and reference electrode, and separated by a
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Fig. 3 .11 Schematic drawing o f  standard tri-electrode measurement system.
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porous filter. The tri-electrode system was connected to Solartron 1285 Potentiostat/Galvanostat 

to conduct measurements. Figs 3.12 and 3.13 are photographs o f the electrochemical 

measurement system and the tri-electrode measurement system, respectively.

3.4.1 Metal Hydride Electrodes

The negative electrodes were made from ball-milled MgiNi alloy powders, nickel and 

copper powders and a 3 wt% polytetrafluoroethylene (PTFE) dispersion (60%). The working 

electrode should be fabricated as soon as possible after ball milling the powders so as to 

minimize any oxidation. First, about 50mg o f  Mg:Ni powder was taken out o f the vial and mixed 

thoroughly with pure nickel or copper powder (same weight as the MgjNi powder). An 

appropriate amount (about 4 drops) o f  PTFE dispersion was then added to the mixture to form a 

paste. The paste was then placed onto both sides o f a porous nickel plate (100mm x 15mm x 

0.04~0.05mm) and mechanically pressed to make a sandwich electrode (Fig.3.14). The 

geometrical area o f  the working electrode was 2.25 cm2. The electrodes were dried at room 

temperature for 24 hours before commencing the electrochemical measurements. Table 3.2 lists 

the various electrodes fabricated for this study.

3.4.2 Measured Parameters 

Discharge Capacity

Discharge capacity is a very important characteristic for measuring the discharge ability 

per unit weight o f  electrode, and is calculated from the discharge current. The unit for discharge 

capacity is mAh/g.
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Fig. 3.12 Photograph o f electrochemical measurement system.
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Fig. 3.13 Photograph o f the tri-electrode measurement system.
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Fig. 3.14 Schematic diagrams o f experimental electrode.
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Table 3.2 Mg2 Ni Electrodes Fabricated for This Study

NO.
TIME OF BALL 

MILLING (HRS)

BALL-TO-POWDER 

WEIGHT RATIO

ELEMENTAL

ADDITIVES

I Different ball milling times at ball-to-powder weight ratio o f 5:1

1 0 5:1 N/A

2 1 0 5:1 N/A

3 25 5:1 N/A

4 50 5:1 N/A

5 80 5:1 N/A

II 25 hours ball milling at different ball-to-powder weight ratios

6 25 1 :1 N/A

7 25 5:1 N/A

8 25 1 0 :1 N/A

m Elemental addition o f Cu and Ni

9 25 5:1 Cu 1:1

1 0 25 5:1 Ni 1:1

The negative electrode was charged under a constant current density o f  100mA/g for 10 

hours and the hydrogen content reached its saturated value. After 10 minutes rest, the discharge 

process was conducted using a current density o f 200mA/g until the potential o f the negative 

electrode reached -0.5V  with respect to the Hg/HgO/6 M K.OH electrode. One electrode made 

from 25hrs ball-milled Mg2Ni powder was discharged at 50mA/g to study the effect o f high/low
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discharge current on discharge capacity. The potential o f the negative electrode was recorded as 

a function o f  time for both the charge and discharge processes. The discharge capacity for each 

cycle was calculated according to the equation (2.30): QDischlste = I t ,  where Q is the discharge 

capacity (mAh/g), /  is discharge current (mA/g), t is discharge time (hrs). A total o f 25 cycles of 

charge-discharge cycles were conducted for each electrode.

Open Circuit Potential

Open circuit potential measurements were made so as to allow for the recovery o f the 

electrode surface to an equilibrium state and thus eliminate the effects o f polarization on the 

electrochemical parameter measurements in the subsequent cycles. The counter electrodes were 

disconnected from the tri-electrode system. The working electrode potential was then recorded 

with respect to the reference electrode as a function o f time until it became stabilized, i.e. until 

the change o f the potential was less than ImV for a period o f lh.

Polarization Curves (Tafel Polarization Curve!

Polarization curves were used to obtain information on the charge-discharge behavior, 

surface film formation, and the thermodynamics and kinetics o f  the hydrogen absorption- 

desorption process.

After the open circuit potential was stabilized, polarization curve measurements were 

conducted at a scanning rate o f 0.l667mV/sec[l221 from -0.15V  to 0.15V vs. open potential. 

Polarization curves (E  vs. log/) were obtained after each charge-discharge cycle.

Exchange Current Density (Linear Polarization Curve!

The electrocatalytic activity for the metal hydride (MH) electrode can be estimated from 

the exchange current density, io. The value o f  io was determined from linear polarization curves 

in the vincity o f the equilibrium potential and can be calculated from the following equation:
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where / and 77 are the discharge current density and corresponding over potential respectively; R 

is the gas constant; T  is the absolute temperature and F  is the Faraday constant.

The linear polarization measurements were conducted using the same technique 112:1 as 

for the Tafel polarization measurements except that the scanning potential was from -0.03 V to 

0.03 V vs. the equilibrium potential.

Cyclic Voltammetrv Measurements

Cyclic voltammetry measurements were used to determine the mechanisms o f  the 

electrochemical reactions and to identify the species present in the solution. Cyclic voltammetry 

measurements were carried out after the open circuit potential measurements at a scanning rate 

o f lmV/sec from -0.2V  to 0.2V and back to -0.2V (vs. open potential) for every 5 charge- 

discharge cycles.

Pressure-Composition Isotherm Measurements

In order to understand the hydrogen absorption characteristics o f  hydrogen storage 

materials, P-C-T curves were generated both in the gas phase and in the ‘electrochemical’ 

environment. A schematic diagram o f the Seivert’s type apparatus used in this investigation for 

the gas phase (manometric) measurement is shown in Fig.3.15. The complete system is made o f 

stainless steel. It is designed so that there are as few connections as possible. The reactor vessel 

was constructed from 304 stainless steel with two tapped parts for the inlet or outlet gas and 

thermocouple connections. An O-ring sealed endplate fastened with four stainless steel bolts, 

provides a good seal and facilitates loading and removal o f  the alloy specimens. The reactor 

volume is 31.6 ±  0.3 ml.

The absorption isotherm measurements are begun with a virgin sample, or a completely
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Fig. 3.15 Schematic diagram o f the experimental Sievert’s apparatus.
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desorbed sample. An aliquot (dose) o f hydrogen is introduced into the reactor. The pressure 

change is measured by a pressure transducer and recorded on a chart recorder until the 

equilibrium pressure is obtained. Additional aliquots are added, and same procedure is repeated. 

Desorption isotherms were obtained by essentially reversing the absorption isotherm procedure.

The amount o f  hydrogen absorbed or desorbed by a sample was calculated using 

pressure-temperature relationships. Since hydrogen behaves very nearly like an ideal gas at 

lower temperatures, the ideal gas law was assumed to apply, namely:

PV  = nRT  (3.5)

where P is the pressure (Pa) in the reactor, V is the volume (m3) o f the reactor, R is the gas 

constant and has the value o f 8.314441J/mol-K, T is the absolute temperature (K) o f  the reactor 

and n is the number o f moles o f  hydrogen gas contained in the reactor. This equation is valid at 

room temperature where the temperature was uniform throughout the reactor.

For a material with a high hydrogen absorbing-desorbing ability at room temperature, the 

conventional P-C-T curve method is a very effective method for studying the hydrogen 

absorption-desorption characteristics. However this technique is not applicable to the Mg:Ni 

alloy, since although its hydrogen absorbing ability is very high, the absorbing and desorbing 

processes are thermodynamically impossible at room temperature. The electrochemical 

measurement technique is a viable alternate method to study the absorbing and desorbing 

processes at room temperature. A LaNUjAloj alloy has been used to evaluate the applicability o f 

translating the electrochemical measurements to an equivalent P-C-T curve. In the 

electrochemical measurements, the negative electrode was charged at a current density o f 

50mA/g for 7 hours and then discharged at a current density o f  20mA/g for 1 hour and rested 30 

minutes. The discharge and rest processes were repeated continuously until the potential o f

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 Experimental Details

negative electrode reached -0.5V vs. the reference electrode. The potentials at every discharge 

and rest cycle were recorded with time.

The equilibrium pressure corresponding to conventional P-C-T measurement was 

calculated according to equation (2.27): E  = -0 .9324-0 .0296LogPH>, where E  (in the unit o f  V) 

is the equilibrium potential after I hour discharge, i.e. the stable potential in the open circuit 

measurement after each discharge process, Ph2 (in the unit o f atm) is the hydrogen equilibrium 

pressure. A series o f  Pm  values were calculated using this equation from a series o f  potentials, £, 

and a P-C-T curve was constructed.
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CHAPTER 4 ELECTROCHEMICAL PROPERTIES OF 

BALL-MILLED Mg2Ni ALLOYS

Mechanical grinding has two main effects on the Mg2Ni alloy. Firstly, it significantly 

increased the specific surface area because o f  the reduction in the Mg2Ni particle size (see 

Chapter 6 ). Secondly, it creates many defects including fine cracks on the surface, which are 

highly permeable to hydrogen, and thus the powder is immediately activated. Thus the 

electrochemical kinetics o f mechanical-grounded Mg2Ni electrodes was highly accelerated.

The electrochemical kinetics properties and transport properties o f  Mg2Ni electrodes, 

such as polarization resistance Rp, exchange current density io and the hydrogen diffusion 

coefficient, Do, are important to characterize the performances o f electrodes and the 

electrochemical capacity.

4.1 Charge/Discharge Capacity o f MG-Mg2Ni Alloy

Electrochemical galvanostatic charge/discharge is a more effective and less time- 

consuming technique to determine the absorbing hydrogen capacity' than gaseous techniques. 

During the charge/discharge processes, a cathodic current was imposed to break down the water 

in 6 M KOH aqueous solution, and atomic state hydrogen was absorbed into the interstitial sites 

o f  Mg2Ni. A positive current was imposed on the hydrogen saturated Mg2 Ni to release the 

hydrogen.
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4.1.1 Charge/Discharge Characteristics

Charge/discharge curves are the basis for the measurement o f specific discharge capacity. 

Fig.4.1 gives the charge curves, i.e. potential vs. charge time, for as-cast Mg2Ni after a different 

number o f charge cycles. In each cycle, the equilibrium potential o f  the electrode depends on the 

hydrogen content in the alloy. At the initial stage o f  charging, the equilibrium potential shifted 

rapidly in the cathodic direction as the hydrogen content in the alloy increased. With further 

increase o f  the hydrogen content in the electrode, the equilibrium potential reached a plateau, 

which is an indication o f hydrogen saturation in the alloy. With increasing number o f charge 

cycles, the plateau potentials became more negative, indicating that the electrode becomes more 

active, i.e. higher hydrogen content. Similar behavior was observed for electrodes made from 

MgiNi alloys which had been subjected to 10 hours (Fig.4.2), 25 hours (Fig.4.3) and 50 hours 

(Fig.4.4) ball milling. The electrochemical activity o f  MG-Mg2Ni increases gradually with ball 

milling times and is much larger than that o f  the as-cast Mg2Ni alloy.

Fig.4.5 shows the charge curves for electrodes made from alloy powder ball-milled 25 

hours at a ball-to-powder weight ratio 1:1. Comparing these curves with those for electrodes 

made from material ball-milled with a ball-to-powder weight ratio o f 5:1 (Fig.4.3) and 10:1 

(Fig.4.6), it can be seen that the plateau potential difference between initial and final stages o f 

charging increased from 20mV to 50mV with increasing ball-to-powder weight ratio. Large ball- 

to-powder weight ratios and longer ball milling times increased the activity o f  the Mg2Ni alloys, 

and hydrogen absorption or oxidation reaction took place easier on the negative Mg2Ni electrode.

The discharge process was terminated at -0.5V  (Hg/HgO). The discharge potential o f as- 

cast Mg2Ni electrodes (Fig.4.7) increased gradually and discharge times decreased with 

increasing number o f  charge/discharge cycles. Similar behavior was observed for Mg2Ni ball-

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Po
te

nt
ia

ls 
(V

olt
s 

vs
. 

H
g/

H
gO

)
Chapter 4 Electrochemical Properties of Ball-Milled Mg2Ni Alloys

-0.90

C5

C10
-0.95

C12

C14

C17

- 1.00

-1.05

- 1.10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Charge Time (Seconds)

Fig.4.1 Charge potential vs. charge time for as-cast MgjNi electrode
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milled for 10 hours (Fig.4.8), 25 hours (Fig.4.9) and 50 hours (Fig.4.10). With increasing ball 

milling time, the discharge time increased, thus indicating a larger discharge capacity. As can be 

seen in Figs.4.8 to 4.10, after a certain period o f  time, there was a sharp increase in potential to 

compensate for the decreasing hydrogen surface concentration and thus maintain constant 

current. Thus, the knee in the discharge curve is assumed to be due to the depletion o f  hydrogen 

atoms on the surface o f the electrode. For longer ball milling times, the potential increased 

gradually in the initial stages and then increased sharply after a critical potential o f  -0.80V 

(Hg/HgO). The time taken to reach a discharge potential o f -0.80V (Hg/HgO) decreased with 

increasing number o f  charge/discharge cycles.

Ball milling at larger ball-to-powder weight ratios (Fig.4.11) resulted in a larger 

discharge time than for milling at a smaller ball-to-powder weight ratios (Fig.4.12). Comparison 

of the discharge curves o f MgiNi ball milled at different ball-to-powder ratios, Figs 4.11 and 

4.12, further confirm that the ball milling treatment increased the hydrogen desorbing ability. 

This can also be seen in the specific discharge capacity measurements reported in Section 4 .1 .2.

4.1.2 Specific Discharge Capacity

The discharge capacity was calculated from the discharge current and the time required to 

reach a potential of-0.5V(Hg/HgO). Fig.4.13 shows the specific discharge capacity as a function 

of number o f cycles for different ball milling times. For a specific time o f  ball milling, the 

specific discharge capacity decreases with increasing number o f  cycles. The largest change in 

discharge capacity occurs in the first few (-5) cycles and then it reaches a saturation value on 

further cycling. The discharge capacity increased with increasing ball-milling time up to 25 

hours, but decreased on longer ball milling times. The negative Mg2Ni electrode fabricated from
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powder ball milled for 25 hours had the maximum specific discharge capacity o f 244mAh/g on 

the first cycle, in contrast to the very low discharge capacity (2.04mAh/g) without mechanical 

treatment. Also, its capacity decay (71.8%) was the smallest o f  the electrodes made from the 

ball-milled powders. Thus, mechanical treatment appears to be an effective way to improve the 

charge/discharge capability o f  the negative Mg2 Ni electrode.

Assuming that 4 hydrogen atoms are absorbed by one formula Mg2Ni o f the alloy, the 

theoretical capacity is calculated to be lOOOmAh/g. Since the experimental capacity o f  the MG- 

MgiNi was at best 244mAh/g, this is only about 25% o f the theoretical capacity. The lower 

measured capacity is a result o f  a number o f factors. First, the surface o f  the MgiNi alloy is 

usually contaminated by oxide and/or hydroxide when it is exposed to the KOH solution. This 

surface layer may prohibit the reduction o f H” ions on the electrode surface. Thus, the oxide 

and/or hydroxide layer on the surface o f the electrode may inhibited the nucleation and the 

growth o f  the hydride phase during charging, and thus block the migration o f hydrogen to the 

solution/electrode interface for discharging. Secondly, the hydride formed at the surface acts as a 

diffusion barrier for hydrogen and the transport o f  hydrogen through the hydride layer is 

therefore slowed down. Since the diffusion o f  hydrogen in Mg2 NiHx (the low temperature phase) 

is extremely slow, the Mg2Ni electrode was only partially hydrided, and thus a very low 

discharge capacity was obtained.

Table 4.1 lists the discharge capacity for ball-milled Mg2Ni electrodes at each 

charge/discharge cycle and for the different ball milling times.

After 25 discharge cycles, the calculated decay o f  specific discharge capacity is:

1 0  hours o fball milling: 1-C2s/C0= l-1 2.67/61.9=l-20.47%=79.5%

25 hours ofball milling: 1 -C25/C0= l -68.77/244.06=1-28.18%=71.8%
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50 hours ofball milling: 1-C25/C0=1-25.51/138.06=1-18.48%=81.5%

Table 4.1 Discharge Capacities of Ball Milled Mg2 Ni Electrodes

at a Ball-to-powder weight Ratio of 5:1

CYCLE AS CAST 10HRS 25 HRS 50 HRS 80 HRS
NO. (mAh/g) (mAh/g) (mAh/g) (mAh/g) (mAh/g)

1 0.99 61.90 244.06 138.06 86.37
2 1.84 43.42 167.45 100.90 71.20
3 2.06 35.60 140.97 85.84 66.80
4 1.95 26.92 126.42 63.90 59.06
5 2.04 23.57 116.19 56.01 57.31
6 1.89 2 1 . 8 8 109.86 50.25 53.80
7 1.62 21.03 106.72 47.57 50.78
8 1.52 19.55 99.12 44.58 47.11
9 1.48 18.93 94.66 43.88 47.25

1 0 1.45 17.63 91.95 40.00 46.95
11 1.32 17.25 90.00 37.50 46.53
1 2 1.31 16.82 93.13 36.00 42.49
13 0.64 16.26 85.33 33.20 42.80
14 0.80 16.04 85.02 30.76 42.94
15 0.80 15.82 79.17 33.02 42.57
16 0.76 14.40 77.56 33.74 38.85
17 0.74 13.40 76.32 31.26 39.54
18 0.72 12.56 73.76 30.59 39.67
19 0.75 13.90 73.63 31.78 39.74
2 0 0.79 13.43 72.75 29.08 36.62
2 1 0.76 13.11 73.46 30.00 37.00
2 2 0.76 12.80 72.09 27.91 33.71
23 0.73 1 2 . 6 8 71.59 28.70 34.54
24 0.72 12.72 69.86 26.24 34.70
25 0.73 12.67 68.77 25.51 34.58

The decay o f  specific discharge capacity obeyed a power law. The corresponding 

equations and error (R2) values are listed in Table 4.2.

The equations describing the specific discharge capacity at different ball milling times are 

o f a power law form, i.e. where k=Q, (the specific discharge capacity o f first cycle) and
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A is a constant which represents the decay exponent. The decay equations for specific discharge 

capacity can thus be rewritten as Q s ^ Q i^ .

Table 4.2 Relationship of Discharge Capacity to Number of Discharge Cycles 

(Different Ball Milling Times at a ball-to-Powder Weight Ratio of 5:1)

TIME 10 HOURS 25 HOURS 50 HOURS 80 HOURS

Equation Qn=57.156N'0'1921 Qn=218.98N-°3678 Qn=135.85N-°5194 Qn=89.136K° 2899

R2 (error) 0.9826 0.9871 0.9848 0.9836

Qi(measured) 61.9 244.06 138.06 86.37

Qi(calculated) 57.156 218.98 135.85 89.136

The specific discharge capacities o f  the ball-milled Mg2Ni electrodes increased 

significantly compared to as-cast state and also increased with increasing ball-to-powder weight 

ratio from 1:1, 5:1 to 10:l(Fig.4.14). The specific discharge capacity for each charge/discharge 

cycle is given in Table 4.3.

The specific discharge capacity for the first cycle at a ball-to-powder weight ratio o f 5:1 

was larger than that for a ball-to-powder weight ratio o f 1 0 : 1 , but for all subsequent cycles it was 

smaller. The power law equations were also used to predict the specific discharge capacities for 

different ball-to-powder weight ratios. Table 4.4 listed the corresponding equations and error, R: , 

values.

The formula for the specific discharge capacity at different ball-to-powder weight ratios 

can be generalized as Qs=QiN"', where Qi and X have the same meaning as previously.
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Table 4.3 Specific Discharge Capacity o f 25 H our Ball Milled MgjNi Electrodes

a t D ifferent Ball-to-Powder W eight Ratios

CYCLE NO. AS CAST 
(mAh/g)

R = l:l
(mAh/g)

R=5:l
(mAh/g)

R=10:l
(mAh/g)

1 0.99 34.40 244.06 2 2 2 . 6 8

2 1.84 28.74 167.45 185.78

3 2.06 27.73 140.97 174.48

4 1.95 27.09 126.42 167.65

5 2.04 26.44 116.19 161.75

6 1.89 25.44 109.86 156.62

7 1.62 25.24 106.72 152.79

8 1.52 24.78 99.12 151.89

9 1.48 24.33 94.66 150.80

1 0 1.45 24.11 91.95 145.00

1 1 1.32 26.64 90.00 142.50

1 2 1.31 25.55 88.30 140.44

13 0.64 22.50 85.33 135.00

14 0.80 23.30 85.02 129.20

15 0.80 23.27 79.17 127.28

16 0.76 23.30 77.56 126.20

17 0.74 23.13 76.32 123.88

18 0.72 23.13 73.76 121.63

19 0.75 23.03 73.63 120.39

2 0 0.79 22.73 72.75 1 2 0 . 2 1

2 1 0.76 22.59 73.46 1 2 0 . 0 2

2 2 0.76 22.36 72.09 118.21

23 0.73 22.18 71.59 117.69

24 0.72 2 2 . 1 0 69.86 117.07

25 0.73 22.53 68.77 115.54
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Table 4.4 Relationship of Discharge Capacity to Number of Discharge Cycles 

(Different Ball-to-Powder Weight Ratios and T=25 Hours)

BALL-TO-POWDER 

WEIGHT RATIO
1 : 1 5:1 1 0 : 1

Equation QN=32.2571sr0"8 QN=218.78brOJ684 Qn=222.98N'0 :o14

R2 0.9053 0.9887 0.9810

Qi(measured) 34.40 244.06 2 2 2 . 6 8

Q,(calculated) 32.257 218.98 222.98

4.2 Electrochemical Kinetics: Polarization Behavior

The charge and discharge curves showed that the hydrogen content in the ball-milled 

MgiNi was related to the potential. Thus, the overpotentials, rj (difference between measured 

potential and equilibrium potential) at charge and discharge are important parameters in 

evaluating the driving force for absorption/desorption o f hydrogen.

4.2.1 Open Circuit Potentials of Charged/Discharged Mg2 Ni Electrodes

The open circuit potential measurements were carried out after the completion o f  each 

charge/discharge cycle. The charge/discharge processes made the ball-milled Mg2Ni electrodes 

more active, and the open circuit potentials decreased rapidly in the first 1 0 0  seconds and then 

slowly became stable. They also decreased with increasing number o f  charge/discharge cycles: 

see Fig.4.15,4.16 and 4.17 for electrodes made from material ball-milled for 10 hours, 25 hours 

and 50 hours, respectively.
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Fig.4.15 Open circuit potential vs. time for MG-Mg2Ni electrode 
(MG 10 hours at a ball-to-powder weight ratio o f 5 :1 )
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Fig.4.16 Open circuit potential vs. time for MG-Mg2Ni electrode 
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4.2.2 Polarization Properties

To determine the kinetics o f the absorption and desorption processes, Tafel polarization 

measurements were made on the MG-MgiNi electrodes. The Tafel polarization measurements 

were carried out at a scanning rate o f lOmV/min after the open circuit potential became stable. 

Fig.4.18 shows the Tafel polarization curves for a 10 hours ball-milled Mg2Ni electrode after 

different number o f  charge/discharge cycles. The anodic current densities increased to a limiting 

value, then decreased in all cases, and the limiting current densities, id, decreased with increasing 

number o f charge/discharge cycles. The existence o f  a limiting current density, /,/, showed that an 

oxidation reaction took place on the surface o f  the negative electrode and a passive film was 

generated which resisted further penetration o f hydrogen atoms. The decrease o f the anodic 

current density on cycling implies that charging was becoming difficult. Thus, the limiting 

current density, id, can be seen as the critical passivation current density and the passive film 

readily forms on the surface o f  the electrode with increasing charge/discharge cycles. In general, 

Eq (equilibrium potential) also decreased with increasing number o f  charge/discharge cycles. 

From a thermodynamics point o f view, a decreasing Eo facilitates the passivation reaction.

It is thus concluded that the critical passivation current density, id, decreased upon 

charging/discharging, and that the peak passivating potential Epp shifted negatively with 

increasing number o f  charge/discharge cycles, indicating an earlier commencement o f the active- 

to-passive transition and passivation, respectively. This suggests that the electrode was more 

easily rendered passive with increasing number o f  charge/discharge cycles. The polarization 

curves o f  ball milled Mg2Ni alloy did not conform to a linear Tafel equation, q=a+blogi. The 

deviation was due to the fact that the charge process has two possible controlling steps:
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Fig.4.18 Polarization characteristics for MG-Mg;Ni electrode 
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activation polarization and concentration polarization. The concentration polarization adds to the 

total overpotential. In the case o f  combined activation and concentration polarization, the anodic 

polarization curve obeys the mixed law:

R T i R T  id 
n = —  ln(—) + — l n ( - ^ - )  (4.1)

aF  iQ aF  id - i

The first term o f the right-hand side o f the equation is the overpotential due to the 

activation polarization, and the second term is the overpotential due to the concentration 

polarization. In the charging process o f a ball-milled Mg2Ni electrode, activation polarization is 

the controlling step at lower overpotentials. With increasing potential, the controlling step 

changes from activation to concentration polarization. Above the limiting current density, id, 

concentration polarization is the predominant controlling step.

The similar behavior was also observed for the Mg2Ni electrodes ball-milled for 25 hours 

(Fig.4.19) and 50 hours (Fig.4.20). The corresponding electrochemical parameters are given in 

Table 4.5. Tafel polarization curves exhibited features similar to those for a mass-transfer- 

controlled process. The current tends to attain a limiting value at higher polarization due to the 

diffusion-limited kinetics o f hydrogen absorption and desorption. The limiting process is likely 

to be solid state diffusion o f hydrogen in the MH alloy, which is relatively slower process than 

the charge-transfer process.

Fig.4.21 is a comparison between the theoretical Tafel linear polarization curve and the 

measured polarization curve (based on sample milled for 25 hours at 5:1 ball-to-powder weight 

ratio). At a large anodic polarization, the Tafel relation did not hold and a limiting current, id, 

was observed. These results suggest that the current density depend not only on the charge 

transfer process but also on the diffusion process.
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Fig.4.21 Experimental and calculated polarization curves for 25 hours 
ball milled Mg2 Ni electrode at a ball-to-powder weight ratio o f  5:1
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Table 4.5 Electrochemical Parameters of Ball-milled Mg2Ni Electrodes 

(Different Ball Milling Times at a Ball-to-Powder Weight Ratio of 5:1)

BALL MILLING TIME 10 HOURS

Cycle No. 5 1 0 15 2 0 25

E«q (V) -0.91985 -0.91284 -0.92114 -0.92845 -0.93140

Id (mA/g) 58.35 44.05 41.03 35.03 33.22

hs (mV) 3.93 3.99 1.9 1.9 2 . 8 8

h3o (mV) 62.19 81.92 91.76 107.18 117.01

BALL MILLING TIME 25 HOURS

Cycle No. 5 1 0 15 2 0 25

E„(V ) -0.90172 -0.90590 -0.90879 -0.91211 -0.91444

Id (mA/g) 134.15 111.83 102.81 94.70 90.70

r\5 (mV) 1.84 0.80 . 1.97 0.92 1.90

Tbo (mV) 7.62 8.54 9.53 9.59 10.57

BALL MILLING TIME 50 HOURS

Cycle No. 5 1 0 15 2 0 25

Eeq (V) -0.91536 -0.90080 -0.91450 -0.91844 -0.92126

Id (mA/g) 86.31 63.01 57.61 54.83 50.56

hs (mV) 0.98 1.97 1.84 1.91 2.09

Tbo (mV) 9.71 12.85 15.48 16.54 18.62

Fig.4.22 shows the polarization curves for electrodes made from a material ball-milled 

for 25 hours at a  10:1 ball-to-powder weight ratio. The polarization curves have the same
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Chapter 4 Electrochemical Properties of Ball-Milled Mg;Ni Allovs

characteristics as already discussed for materials with other ball-milling parameters. The 

corresponding electrochemical parameters are listed in Table 4.6.

Table 4.6 Electrochemical Parameters of Ball-milled MgiNi Electrodes 

(Ball Milling Time 25 Hours at a Ball-to-Powder Weight Ratio of 10:1)

CYCLE NO. 5 1 0 15 2 0 25

E«,(V) -0.87161 -0.91481 -0.91205 -0.91198 -0.91063

Id (mA/g) 129.38 143.5 136.91 129.56 124.02

ns(mV) 0.93 0.92 0 . 8 6 1.04 0.82

n» (rnV) 9.65 7.62 7.56 8.78 8.54

The polarization curves will now be discussed in terms o f the generally accepted 

mechanisms for HER (Hydrogen Evolution Reaction) for hydrogen absorbing alloys, which 

involves the following steps:

M  +  H , 0  + e <» M H ads + O H - (4.2)

x  H y d rid e
(4.3)

M H ads + H l O + ee>  H 2 + M + O H  ‘ (4.4)

-{ .M H x)n y d n tte o  2 M  +  x H (4.5)

(M H X)Hydride+ O H ~ - e e >  H 20 + (M H X_X)x-\'Hydride (4.6)
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The electro-reduction o f water with hydrogen absorption (reaction 4.2) is followed by 

two competing processes, namely, electrochemical desorption (reaction 4.4) or hydrogen 

diffusion into the bulk, with hydride formation (reaction 4.3). The hydride can be decomposed 

by either recombination (reaction 4.5) or electrochemical oxidation (reaction 4.6).

The dependence o f  overpotential on log/ showed two distinct regions, namely: (i) At very 

low current densities, the dependence o f f] on log/ is linear. This is consistent with a completed 

discharge-electrochemical desorption mechanism for HER with charge-transfer (reaction 4.2) 

being the rate determining step. In this region, there is practically no hydrogen bubbling on the 

cathode surface, so it is reasonable to assume that the diffusion o f hydrogen atoms in the bulk o f 

the alloy occurred faster than reaction 4.4, i.e. vi<v3<V2 . (ii) At a larger current density, intense 

H2 bubbling occurred on the surface. The dependence o f rj on log/ changed from linear to a 

curve relationship and the slope o f E  vs. log/ increased. Such a change o f  slope indicates a 

change in mechanism for HER. The slope increase is ascribed to a change in the rate-determining 

step from charge-transfer to a mixed process o f  charge transfer (reaction 4.2) and hydrogen 

diffusion (reaction 4.3) in the bulk o f  the sample.

At very large cathodic current densities, the HabS concentration reached a high value 

which is determined by the hydrogen solubility in the alloy, and the overpotential thus increases 

rapidly. Thus, the rate-determining step o f  HER becomes the diffusion o f absorbed hydrogen 

from the surface into the bulk.

4.3 Oxidation of MG-Mg2Ni Electrodes

Cyclic voltammograms were to obtain information on the rate-determining step during 

hydrogen oxidation.
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The polarization measurements had shown there was an oxidation reaction occurring on 

the surface o f  the ball-milled MgzNi electrodes. Fig.4.23 is a plot o f anodic peak current for 

different number o f  charge/discharge cycles for a material ball milled 25 hours at a 5:1 ball-to- 

powder weight ratio. The anodic polarization current reachs a maximum value at approximately 

the same potential, about -0.8V  (Hg/HgO), regardless o f the number o f  charge/discharge cycles. 

This is the specific potential for the oxidation reaction. The cyclic voltammograms for ball 

milled MgzNi and Mg2 Ni + Cu for 25 hours (Fig.4.24) showed the same value for the oxidation 

reaction potential. The specific potentials determined from the anodic polarization curves are 

given in Table 4.7.

Table 4.7 The Oxidation Potentials for MgzNi Alloy 

( Ball Milling for 25 Hours at a Ball-to-Powder Weight Ratio of 5:1)

Cycles 5 10 15 20 25

Potentials (V, Hg/HgO) -0.794 -0.799 -0.796 -0.806 -0.804

The anodic peak current decayed with increasing number o f charge/discharge cycles. 

This suggests that the catalytic reactivity for hydrogen oxidation decrease rapidly because o f the 

formation o f  a new oxide layer on the powder surface during charge/discharge cycling. This is 

consistent with the fact that the capacity decay o f  the electrode had been attributed to oxidation 

and pulverization o f the alloy powder.

This potential, i.e. about -0.80V, corresponds to the reaction potential for the following 

reaction:

+ OH~{\M) o  Ni(OH)2 o  NiOOH  (4.7)
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Fig.4.23 Anodic peak current change vs. number o f charge/discharge cycles for 
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where £° = -0.78V. Based on the Nemst equation, the reaction potential at Cqh = 6 M can be

calculated. The activity o f  6 M K.OH solution was calculated as follows:

Log(aQH_) = -0.0225m + 0.001434m2 +
(1.38m -0.9254m 2) 

T
(4.8)

(T=298K, m=6 M), and oqh- is calculated to be 0.68018 M.

The reaction potential was then calculated as follows:

OH

(4.9)

and found to be -0.793V (Hg/HgO). Comparing the calculated potential with the experimental 

value, we can conclude that the oxidation reaction during the discharge process was the 

formation o f Ni(OH)2 , and that the Ni(OH ) 2  continued to oxidize to NiOOH and precipitated on 

the surface o f negative electrode. Thus the escape rate o f hydrogen from the bulk to the surface 

o f the electrode was gradually decreased and thus there was a corresponding decrease in 

discharge capacity.

4.4 Electrochemical Kinetics: Exchange C urrent Density i0

The kinetics o f hydrogen absorption/desorption is o f  primary concern in such 

applications as rechargeable electrodes in high energy density batteries.

Minimization o f the overpotential rj (to increase kinetics) with increasing current density 

is related to two principal factors, namely: (i) the exchange current density, io, and (ii) the Tafel 

slope. Thus the exchange current density is an important kinetic parameter for the 

charge/discharge reaction. It is the rate o f  hydriding/dehydriding at the equilibrium state and can 

be used to evaluate the reversibility o f the reactions.
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In electrochemical reactions at lower overpotentials, the relationship between the 

polarization current and overpotential can be expressed by the Butler-Volmer equations:

i a =  *'o [exp( t j j r  r j a ) ~  exp( -  7a)] (4.10)

ic = / 0 [exp( ~ r n c) -  exP( (4-11)

At very small overpotentials, equations (4.10) and (4.11) can be expressed as:

7  R T  1
^  (4.12)

i n F  i0

Rp is defined as the polarization resistance and can be calculated from the slope o f the 

curves o f  overpotential vs. polarization current at the equilibrium potential. The exchange current 

density, io, can be determined from the polarization resistance Rp using equation (4.12).

The polarization o f the electrode in equations 4.10 and 4.11 is due to the charge transfer 

overvoltage, and increases in current density. Accordingly, the exchange current density should

be as large as possible to reduce the charge transfer overvoltage and the corresponding

polarization. Thus, estimation o f the exchange current density can provide information on the 

performance o f  the electrode material. The conventional Tafel polarization method can not be 

used to estimate the exchange current density due to the large overpotential. In this study, the 

exchange current density o f MG-Mg2Ni alloy was calculated from linear polarization curves 

obtained at low overpotential (±30mV from the equilibrium potential).

Fig.4.25 shows the linear polarization curves o f  an electrode made from material ball- 

milled 25 hours at a ball-to-powder weight ratio o f 5:1. The overpotential, which is directly 

proportional to the polarization current and the polarization resistance, Rp (slope o f the plots), 

increased with increasing number o f charge/discharge cycles (Fig.4.26), indicating that the
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Fig.4.25 Linear polarization curves for MG-MgiNi electrodes at different 
number o f  charge/discharge cycles 

(MG 25 hours at a ball-to-powder weight ratio o f  5:1 and discharged at 50mA/g)
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Fig.4.26 Polarization resistance, Rp, for MG-MgjNi electrodes 
(Ball-to-powder weight ratio o f  5:1 at different milling times)
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polarization resistance increased with increasing amount o f  the hydrogen remaining in the 

electrode. As a result, the hydrogen diffusion became more difficult with increasing number o f 

charge/discharge cycles. The polarization resistance o f electrodes o f  ball-milled material 

decreased with increasing ball milling time from the as-cast state to 25 hours milling and then 

increased again with increasing ball milling time up to 80 hours. Thus the discharge o f hydrogen 

became gradually easier from the as-cast state to 25 hours milling, but, unfortunately, discharge 

became more difficult from 25 hours to 80 hours milling. However, a long-time ball milling 

treatment still provided higher absorbing/desorbing ability than for the as-cast state.

The exchange current density, io, is a measure o f  the hydrogen absorption/desorption rate 

(Fig.4.27). It decreased with the increasing number o f  charge/discharge cycles and, therefore, the 

hydrogen absorption/desorption rate became relatively slower. The exchange current density 

increases with decreasing hydrogen content in the alloy. As a result, the ball-milling treatments 

increased the hydrogen absorption/desorption rate and the hydrogen absorption/desorption rate 

reached a maximum after 25 hours ball milling. The exchange current densities, io, and 

polarization resistances, Rp, after various milling times are summarized in Table 4.8.

Table 4.8 Exchange Current Density, io, and Polarization Resistance, Rp,at 10th cycle 

(Different Ball Milling Times at a Ball-to-Powder Weight Ratio of 5:1)

TIME AS-CAST 10 HOURS 25 HOURS 50 HOURS 80 HOURS

io(mA/g) 2.97 6.26 13.5 7.84 8.95

Rp (O) 172.67 82.06 38.01 65.47 57.36

A similar behavior with respect to exchange current density was observed for all ball- 

milled Mg2Ni electrodes at the different ball-to-powder weight ratios (Fig.4.28). The exchange
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Fig.4.27 Exchange current density, io, for MG-Mg2 Ni electrodes 
(Ball-to-powder weight ratio o f 5:1 at different ball milling times)
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Fig.4.28 Exchange current density io for MG-Mg2Ni electrodes 
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current densities, io, and polarization resistances Rp, for the different ball-to-powder weight ratio 

are summarized in Table 4.9.

It is thus concluded that a ball milling treatment increased the exchange current density 

significantly. The activity o f  the Mg2Ni electrodes was increased due to ball milling and this 

increase was higher at higher ball-to-powder weight ratios. However, the activity decreased with 

increasing number o f  charge/discharge cycles.

Table 4.9 Exchange Current Density, io, and Polarization Resistance, Rp, at I0(h cycle 

(Ball Milling Time of 25 Hours at Different Ball-to-Powder Weight Ratios)

BALL-TO-POWDER WEIGHT RATIO AS-CAST 1 : 1 5:1 1 0 : 1

i0 (mA/g) 2.97 3.45 13.5 22.3

Re (O) 172.67 148.63 38.01 23.01

The significant increase in the exchange current density, io, results from a change in 

mechanism for the charging process for alkaline media. It is known that the hydrogen evolution 

reaction for hydrogen absorbing metals first comprises a discharge-absorption step in which 

chemisorbed H atoms are formed. This is followed by two steps: (a) transfer o f  HabS through the 

interface into the interstitial sites o f  the material just below the surface and subsequent diffusion 

into the bulk; (b) the chemical or electrochemical recombination o f  Hads with H2 desorption.

During oxidation o f  the hydride, the above processes occurred in the reverse order: 

diffusion o f  bulk H atoms to surface, transfer to absorbed state (4.5); and electrochemical 

oxidation o f the ad-atoms (4.2).
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The kinetics o f the hydrogen evolution at the surface and the efficiency o f  H sorption in 

the bulk are determined by the relative rates o f (a) and (b). High efficiencies o f H sorption may 

occur if the rates o f the recombination processes for (processes (4.4) and (4.5)) are slow 

compared with step (4.3). With process (4.2) occurring at a higher rate than (4.4), the coverage 

o f  hydrogen in the low overpotential range will be small as long as the transfer from absorbed to 

adsorbed state (4.3) has a rate comparable with (4.2) (this would require a high value for the rate 

constant vp). Most H atoms absorbed on the surface will then be absorbed in the bulk. With 

increasing current, there was a gradual saturation with absorbed H, which decreased the rate o f H 

transfer across the interface. This, then, increased the coverage and the rate o f H recombination

(4.4). As the rates o f (4.3) and (4.4) become equal, H2 starts bubbling out o f the electrode. We 

assume that the desorption-controlled mechanism o f HER describes best what happened on the 

surface since it accounts both for the zero coverage at near equilibrium and the fact that Hj 

bubbling appeared only at relatively high currents.

The absorption/desorption ability (H/M) varied with reaction rate (Fig.4.29). H/M and 

exchange current density showed the same changing trend with ball milling time. An increased 

absorption/desorption rate increased the discharge capacity o f  ball-milled Mg2Ni electrodes. For 

Mg2Ni electrodes made o f  material ball-milled at different ball-to-powder weight ratios 

(Fig.4.30), the capacity (H/M) and exchange current density to show the same dependence on 

ball-to-powder weight ratio. The increased exchange current density due to the increased ball-to- 

powder weight ratio lead to an increased discharge capacity.

A relatively large value o f  exchange current density, io, is important in the practical use 

o f  the alloy as a hydrogen storage medium, since it lowers the charge transfer overvoltage 

(equation 4.1), which is known to cause power loss in both the charge and discharge steps. Due
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vs. ball milling times
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Chapter 4 Electrochemical Properties of Ball-Milled Mg2Ni Alloys

to volume restrictions o f  the grinding jar, higher ball-to-powder weight ratios will lead to less 

usable powder and the static surface electricity will make the powder stick to both the walls of 

the jar and the ball surfaces. For optimum ball milling effects and sufficient powder to make the 

electrodes, a ball-to-powder weight ratio o f  5:1 and a 25 hours ball-milling treatment are 

recommended.

4.5 Hydrogen Diffusion Rate (D0)

The performance o f a metal hydride electrode is determined both by the kinetics o f the 

reaction occurring at the metal/solution interface and the rate o f hydrogen diffusion within the 

bulk o f the metal. The determination o f the hydrogen diffusion rate in the bulk requires a 

solution o f  Fick’s second law.

Assuming that the hydride alloy was in a spherical form, the diffusion equation is:

d ( S ' c )  3 ! ( R ' c )

—  < 4 b )

where c is hydrogen concentration in alloy, t is time, Do is an average diffusion coefficient o f 

hydrogen over a concentration range, and R 'i s  the radius o f  the spherical particle. The diffusion 

equation may be solved under two different boundary conditions, namely: (i) constant hydrogen 

surface concentration and a uniform initial hydrogen concentration in the bulk alloy, or (ii) 

constant flux at the surface and a uniform initial concentration in the bulk o f the alloy.

The resulting diffusion current l(t) and the discharge capacity C(t) varies with time 

according to equations (4.14) and (4.15) respectively:

6 F D 0 _  = n ~ x ‘ D 0t
m  =  f ( C „ - C s ) I e x p (  - 2 - )  (4.14)

SR R
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C (,) = ^ ^ l { l - 6 i ( — )’- = x p [ i ^ ^ ] )  (4.15)
o  «=i t in  R~

where Co and Cs are the uniform initial hydrogen concentration in the bulk o f the alloy and the 

constant surface concentration, respectively. For large values o f t, when the actual discharge 

capacity was more than that o f the total capacity, equation (4.12) reduces to:

, _ DAC tt2D  x
C{t) = F - ~ r - — r l{t)  (4.16)

OK K

where C{t) = [l( t)d ti)

From the slope o f  the plot o f l(i) vs. C(t), the quantity -D q/R1 may be evaluated from 

equation (4.16) and if  the sphere radius is known, Do can then be calculated.

Fig.4.31 shows the specific discharge capacity remaining in the electrode as a function of 

the discharge current density for different ball milling times at a ball-to-powder weight ratio of 

5:1. The remaining discharge capacity is directly proportional to the current density. The 

corresponding hydrogen diffusion coefficients, Do, calculated from these plots, are given in 

Table 4.10. Ball milling increased the diffusion coefficient by up to nearly one order of 

magnitude compared to the as-cast state.

Table 4.10 Hydrogen Diffusion Coefficient, Do, for MG-Mg^Ni Electrodes 

(Different Ball Milling Times at a Ball-to-Powder Weight Ratio of 5:1)

TIME AS-CAST 10 HOURS 25 HOURS 50 HOURS

Particle Size (p.m) 25 I 0.75 0.5

D0 (m2/s) 3.17E-15 1.81E-14 2.83E-14 8.64E-15

(Note: Particle size after ball milling treatment was calculated from SEM metallographic observations)
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The discharge capacity is also proportional to the current density: see Fig.4.32 for data 

for material ball-milled 25 hours at different ball-to-powder weight ratios. The hydrogen 

diffusion coefficients, Do, calculated from this data are summarized in Table 4.11.

Ball milling greatly increased the hydrogen diffusion coefficient, D0, which was a 

maximum after 25 hours ball-milling at a 5:lball-to-powder weight ratio. A small particle size 

facilitates the inter-diffusion because the diffusion coefficient for the very small particles is 

much larger than that for the bulk materials and also because the total distance required for 

diffusion is reduced. This has been confirmed from the measurements o f  the exchange current 

density, io, and the specific discharge capacity. The hydrogen diffusion coefficient, Do, also 

increases with increasing ball-to-powder weight ratio.

Table 4.11 Hydrogen Diffusion Coefficient, Do, for MG-MgjNi Electrodes 

(Different Ball-to-powder Weight Ratios at 25 Hours Ball Milling)

BALL-TO-POWDER WEIGHT RATIO 1 : 1 5:1 1 0 : 1

Particle Size (pm) 1.5 0.75 0.65

D0 (mVs) 1.13E-14 2.83E-14 3.16E-14

(Note: Particle size after ball milling treatment was calculated from SEM metallographic observations)

4.6 High R ate Dischargeability of Bail-Milled Mg2Ni Electrodes

The purpose o f  ball milling is to improve the discharge capacity. This is beneficial for the 

practical application o f  the ball-milled hydrogen storage alloy in an electrode o f a rechargeable 

battery. However, from a consumer’s standpoint, it would be better if  it took less time to charge
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Chapter 4 Electrochemical Properties of Ball-Milled Mg2Ni Alloys

their batteries. Charging at a large current density requires less time to reach the required 

potential. However, the disadvantage o f a large current charge is that it results in a decreased 

discharge capacity because o f increased overpotentials. The lower the discharge current that is 

used, the higher is the discharge capacity and the longer is the battery life. While very little 

experimental work had been done to determine the behavior o f  H in the absorption/desorption 

reaction, especially the important potential dependence o f coverage by H that determines the 

Tafel slope o f the polarization relation, and hence the practical performance o f an electrode at 

high current densities.

The charge/discharge characteristics were studied at two different current densities, 

50mA/g and 200mA/g. The discharge capacity was much higher at the lower current density than 

at the higher current density (Fig.4.33). The discharge capacity also exhibited less decay, 51% at 

50mA/g and 72% at 200mA/g.

In order to compare the discharge current density dependence o f the discharge capacity o f 

the ball-milled Mg2 Ni electrodes, a high rate dischargeability was defined as the ratio of 

discharge capacity at 200mA/g to that at 50mA/g at the same number o f cycles. The high rate 

dischargeability decreased from an initial 90% to about 50% with increasing number o f 

charge/discharge cycles (Fig.4.33). This emphasises the advantage o f  discharging at a small 

current density. In order to improve the high rate dischargeability, the electrochemical activity o f 

the hydrogen evolution reaction must be increased. Fig.4.34 shows that the high rate 

dischargeability is related to the exchange current density, io, showing an approximately linear 

dependence. This shows that improvement in high rate dischargeability can be attributed to an 

increase in electrochemical activity for the hydrogen evolution reaction. With increasing ball 

milling time and/or ball-to-powder weight ratio, ball milling introduced more defects
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(dislocations) and increased the specific surface area (SSA) o f  the Mg2Ni powder, thereby 

increasing the electrochemical activity o f the electrode.

4.7 Effect of Additives on The Charge/Discharge Properties of Ball-Milled 

Mg2Ni Electrodes

Batteries using metal hydrides as the negative electrode have several advantages over Ni- 

Cd battery, e.g. high energy density and long cycle life stability. Reversible alkaline batteries 

which use metal hydride negative electrodes require a compacting procedure for fabricating the 

metal hydride electrode because the intermetallic compounds which are used as the active 

material are brittle and disintegrate into powder upon hydride formation. The characteristics of 

the metal hydride electrode can be manipulated by changing the composition o f the hydrogen 

storage alloy. Direct modification o f  the alloy may improve the electrode characteristics, e.g. 

cycle stability and high rate dischargeability.

Cu and Ni were selected as additives in making the electrodes. The effects o f these 

additive materials on the kinetics o f  the electrode, such as the hydrogen diffusion coefficient, D0 

and exchange current density, io, were studied. The addition o f Cu or Ni is expected to play at 

least two important roles. First, it serves as a barrier for protecting the alloy surface from 

oxidation; and secondly, it provides a microcurrent collector for facilitating the charge transfer 

reaction on the alloy surface.

Copper is attractive as an additive from three perspectives: (i) it provides increased 

thermal conductivity, (ii) it provides sufficient cycling strength during hydrogen absorption- 

desorption, and (iii) it provides excellent resistance against impure gas. It is also well known 

that the copper film has excellent hydrogen permeation.
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The high electronic conductivity o f  Ni powder provides good contact between the current 

collector and alloy, and contact between alloy particles. It indicates that the additive material 

should be considered in the manufacturing o f  the alloy electrode.

4.7.1 Effect of Electrode Additives on Discharge Capacity

Cu or Ni were added into the ball-milled (25 hours and R=5:l) MgjNi powder at a 1:1 

mole ratio, and electrochemical measurements were carried out on the electrodes fabricated from 

the mixed powder in the same manner as previously described. Table 4.12 gives the discharge 

capacities at each discharge cycle for the Mg2Ni + Cu/Ni electrodes.

Figs.4.35a and 4.35b are the charging curves for MgiNi electrodes with Ni or Cu, 

respectively. The potentials decreased rapidly in the first 500 seconds and gradually became 

stable during charging. The potential decreased with increasing number o f charge/discharge 

cycles. This is similar behavior as electrodes without Cu/Ni addition. This behavior is related to 

the saturation o f hydrogen on the electrode surface in the initial stages. After the electrode 

surface is completely covered by hydrogen atoms, the potential is almost stable. The high 

concentrated hydrogen accelerated the penetration o f  hydrogen into the electrode. Absorption o f 

hydrogen occurs by two main processes: (i) absorption o f hydrogen on the surface o f  the 

electrode, and (ii) the penetration o f  hydrogen into the electrode.

After charging, the ball-milled Mg2Ni+Cu/Ni electrodes were discharged at a constant 

current density o f  200mA/g. The discharge curves are shown in Figs.4.36a and 4.36b, 

respectively. The discharge potentials increased with time and increased rapidly after passing a 

critical potential o f about -0.80V(Hg/HgO). This potential indicates that an oxidation reaction 

was occurring on the electrode surface thus producing a passive film which was a barrier to
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hydrogen penetration into the electrode. Therefore, the discharge potential decreased 

significantly after the critical potential, because a very short time was needed for the electrode to 

be polarized from the critical potential to terminal potential and this caused a large polarization 

overvoltage.

Table 4.12 Discharge Capacities at Each Discharge Cycle of MgjNi + Cu/Ni Electrodes

CYCLE
NO.

AS CAST 
(mAh/g)

MgjNi
(mAh/g)

MgiNi+Ni
(mAh/g)

Mg:Ni+Cu
(mAh/g)

1 0.99 244.06 224.80 330.39

2 1.84 167.45 164.48 223.74

3 2.06 140.97 145.15 195.36

4 1.95 126.42 134.67 182.11

5 2.04 116.19 125.77 171.54

6 1.89 109.86 1 2 2 . 6 6 161.70

7 1.62 106.72 116.96 152.00

8 1.52 99.12 109.64 143.92

9 1.48 94.66 105.10 138.49

1 0 1.45 91.95 101.42 133.73

1 1 1.32 90.00 95.80 127.00

1 2 1.31 93.13 94.10 126.00

13 0.64 85.33 93.20 125.00

14 0.80 85.02 90.70 1 2 1 . 0 0

15 0.80 79.17 92.44 125.53

16 0.76 77.56 90.70 122.71

17 0.74 76.32 88.75 1 2 0 . 2 2

18 0.72 73.76 8 6 . 0 1 119.72

19 0.75 73.63 84.87 119.81

2 0 0.79 72.75 84.07 119.71

2 1 0.76 73.46 84.37 118.20

2 2 0.76 72.09 83.39 115.41

23 0.73 71.59 82.41 113.09

24 0.72 69.86 81.70 1 1 2 . 1 2

25 0.73 68.77 80.59 110.98
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It should noted that the addition o f  Ni or Cu powder further improved the discharge 

capacity o f  ball-milled electrodes with Cu being more beneficial than Ni (Fig.4.37).

The equilibrium potential during discharge corresponds to the amount o f hydrogen 

remaining in the electrode. The decreasing open circuit potentials (Fig.4.38) with increasing 

number o f  charge/discharge cycles indicates the increasing amount o f  hydrogen remained in 

electrode. As a result, the discharge capacity decreased with increasing number o f 

charge/discharge cycles for the MgiNi + Cu/Ni electrodes.

4.7.2 Effect of Additives on Electrochemical Activity of Hydrogen Evolution Reaction

The exchange current density, i0, is a measure o f electrochemical activity with an 

increasing exchange current density causing an increase in capacity. Linear polarization 

measurements were carried out to determine the polarization resistance and exchange current 

density for the Mg2Ni+Cu/Ni electrodes. Fig.4.39 shows the effect o f adding Cu or Ni on the 

polarization resistance. The as-cast MgjNi electrode had the largest polarization resistance and 

the polarization resistance increased rapidly with number o f charge/discharge cycles. Adding Cu 

or Ni powder reduced the resistance o f  the hydrogen evolution reaction. The electrode with a Cu 

addition had the smallest polarization resistance and the polarization resistance increased with 

number o f  charge/discharge cycles. Correspondingly, this treatment increased the exchange 

current density (Fig.4.40). In particular, the electrode containing Cu had an exchange current 

density two times higher than the Mg2Ni electrode without Cu in the initial cycle. Ni also had 

beneficial effects on the electrochemical properties o f electrode.

The increased electrochemical activity o f  the electrode with Ni is the result o f  the fact 

that hydrogen atoms make a stronger bond with the Ni atoms than Mg the atoms. The Ni additive
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became the preferential sites for hydrogen to form strong bonds and the hydride was very stable. 

The increased capacity introduced by Cu was due to the fact that Cu is a good conductor o f 

electricity. Another reason for the increased electrochemical activity is that the hydrogen 

diffusion rate, Do, increases with the addition o f  Cu or Ni (Fig.4.41) and it is a maximum for the 

Cu addition.

It is concluded that addition o f Cu or Ni greatly improved the electrocatalytic reaction o f 

the negative electrode, reduced the overpotential during charging/discharging, resulting in a 

significant increase o f the electrode capacity.

4.7.3 The Polarization Characteristics of MG-Mg:Ni + Cu or Ni Alloy

The polarization curves for Mg2Ni + Cu/Ni electrodes are presented in Fig.4.42 and 4.43 

for the Cu or Ni additions, respectively. Generally, the critical passivation current density, /,/, 

decreased on charging/discharging, indicating that the Mg2Ni electrodes were easily subjected to 

oxidation and an oxide layer was formed on the surface. The passivating potential, Epp, shifted 

negatively with charging/discharging indicating an earlier commencement o f the active-to- 

passive transition and easier formation o f  an oxide layer.

Compared with the pure Mg2Ni electrodes (Fig.4.19), the polarization current density 

increased significantly with Cu- or Ni- additions, Cu having a much larger effect in improving 

the oxidation resistance.

The overpotentials o f  Mg2Ni electrodes with Cu or Ni at polarization current densities o f 

and 50mA/g are given in Table 4.13.
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Table 4.13 Overpotentials of Mg2 Ni Electrodes with Cu or Ni at the 5th Cycle

MATERIALS MgjNi + Cu Mg:Ni + Ni MgiNi

Overpotential at SOmA/g 9.5mV ll.5mV 13.4mV
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CHAPTER 5 TRANSFORMATION FROM 

ELECTROCHEMICAL MEASUREMENTS TO A P-C-T CURVE

Although the theoretical discharge capacity (lOOOmAh/g) o f  the MgiNi alloy is 

approximately 2.7 times higher than that o f  LaNi,- (372mAh/g), the hydrogen absorption and 

desorption reactions in this alloy require high temperatures (200°C to 300°C) and pressures (up 

to lOatm).

The important thermodynamic properties o f  hydrogen absorption/desorption are the 

change in enthalpy, AH. and the change o f entropy. AS. Both o f these parameters can be 

determined from the pressure-composition* isothermal (P-C-T) diagrams. However, since the 

plateau pressures o f typical hydride electrode materials at room temperature are generally lower 

than 1 atm. P-C-T determination requires a specially designed high vacuum equipment and the 

experiment is difficult, and sometimes even impossible, when the plateau pressure is much lower 

than latm. Presently, in the pressure range from 10' 10 atm to 1 atm. the AH value is calculated 

from the van’t Hoff plot which was constructed from the P-C-T curves and the P-C-T curves are 

obtained from the electrochemical measurements using the Nemst equation.

5.1 The Transition from Electrochemical M easurements to a P-C-T Curve for 

the LaNi4.7Aloj Electrode

The pressures (in atm) at different temperatures were calculated from potentials 

according to the Nemst equation:
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(5.1)

where an:o is the activity o f  water and Ph: is the hydrogen pressure.

■° _ Hg Hgll -= -1.18041 + (4.4666 x 10' 3 -6 .93606  x 10*4 InT)T

+ 1.0788 x 1 0 'T : -4 .5 1 2  x 1 0 'lor  +
T

Using equation:

log£Z/ / ( , = -0.0225 m + 0.001434 m~ +
. 1 .38 /n-0 .9254m :

(5.3)'  +

T

where m is the concentration o f K.OH (mol/1), in this case m = 6 M.

Thus: 1 n / „ .  =
20.57 -1857 -3 5 1 7 2 +12760715 - (2 0 .5 7 -1 8 5 7 )2 

83.14477 : + 1 .4009x l0 'J7 4
(5.4)

At 7=298K and m=6 M. the calculated (£ /A iw /so///g). amo  and / h: are -0.9255V. 

0.6817M and 1.0006. respectively. Substituting the above values into the Nemst equation, the 

relationship between equilibrium potential o f the electrode and pressure at a temperature of

The measured P-C-T curve and the calculated P-C-T curve are given in Fig.5.1. We can 

see that in the plateau region and the high H/M region, the P-C-T curve obtained from the 

electrochemical measurements is in good agreement with the experimental curve obtained from 

manometric measurements. Only in the low H/M region, the E-C-T curve is about 0.1 H/M lower 

than the P-C-T curve, but they have the same trend.

298K. is11231:

E(V) = -0.9324 -0 .0291 log 7„, (atm) (5.5)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pr
es

su
re

 
(a

tm
)

Chapter 5 Transformation from E-C-T curves to P-C-T curves

100

10

1

0.1

E-C-T

P-C -T

0.01
1.20 0.1 0.2 0 .3 0.4 0 .5 0.6 0.7 1.10.8 0.9 1

H/M

Fig. 5.1 Transition from electrochemical measurements to P-C-T curve 
for LaN ujA loj at room temperature

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 Transition from E-C-T curves to P-C-T curves

5.2 Determination of AH and AS from Electrochemical Reactions for 

LaNi4.7Aloj Electrode

The relationship between potential and temperature for a LaNi4 7AI0 3  electrode can be 

expressed as follows1’21:

£.i( = -0.8788 -3 .0  x 10~*(7* -  273) (5.6)

According to electrochemical principles ll2j|:

A // ; '= 2 F [£ .i(- r ( ^ ) , ]  (5.7)
cT

and

c E
A S : = 2 F ( - 1 L ) p (5.8)

c T

Substituting equation (5.6) into equations (5.7) and (5.8). and taking £=8.314J/mol.K. 

£=96500J/mol.K. we obtain AH,..11 = -l53.63kJ/mol and A Se" =-57.83J/mot.K. at 298K..

Combining equations (5.2) and (5.4). we can obtain the relationship between potential 

and hydrogen pressure:

= 1.1804+ (4.4666x 10"' -6 .9 3 6 0 6 x I O'4 InT)T + 1.0788x 10"’T 1

T 2F  T I F

A //i° = 2 £ [ £ n, - r ( ^ ) , ]
Cl

= 2F( - 1. 18041 + 6.936 x 1 O'4 T  - 1.0788 x 10*6 T : + 9.024 x 1 O’10 T* (5.7a)

10 4 6 4  r
+ — ------57.64383/?) + R T 1 { -^ ;[ln (/Wi )]}

I c l

We assume that ym ^ I . From the van't Hoff equation, we obtain11231:
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and

Then

AH i  = R x ° (ln P‘" - = - R T : 5(In Pt*] (5.10)

5( \ )  dT

_ d(RT\nP(1()

dT

AH'' = 2 F ( - 1.18041 + 6.93606 xl0*"7’ - ! .0 7 8 8 x l0 * 'T :

4640 (5-7b)
+ 9.024 x 10 'IU7" + —— ) -  57.64383 R - A H ' ,

AS,. = 2F( 4.4666 x 10*' -  6.93606 x 10*4 In T -6 .93606 x 10*4
5  Tj") (5.8a)

+ 2 .15 7 x 10 " -1 .3 5 3 6 x 10*“r -  — F F  + AS'!,
T-

For T=298K.

AHp = -195.29 - A H "  (kJ/mol)

A > / = -53.45 + A S / (J/mol.K)

Substituting the AHC° and ASC° into the above two equations.

AHp = -195.29-153.63 = -41.66kJ/mol

ASp = -53.45-57.83= -11 l.28J/mol.K

Comparing the above data with the values o f  AHp° (-38.038 kJ/mol) and ASp° (-117.458

J/mol.K) obtained from manometric experiments1124125’, we find reasonable agreement

with relative errors being less than 10%, namely.

- 3 0 3 8 - M U « = _95%

' ' -38 .038
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# ; ) = - 1I7 '458- h ! 1^ = - 5,3% ,
'  ' -117.458

5.3 The Construction of a P-C-T Curve from Electrochemical

M easurements of the MgiNi Alloy

From the viewpoint ot’ thermodynamic parameter calculations, the transformation from 

electrochemical measurements to a P-C-T curve has been shown to be valid for hydrogen storage 

materials in sections 5.1 and 5.2.

The measured equilibrium potentials for MgiNi electrode and the calculated Peq are given 

in Table 5.1. and the calculated P-C-T curve is shown in Fig.5.2. Therefore the P-C-T curve can 

be constructed in a relatively easy fashion, namely by electrochemical testing.

Table 5.1 Measured Potential, Eeq, and Calculated Pcq for MG-M&Ni Electrodes

E,.q (V vs. Hg/HgO) Peq (atm) Q (mAh/g) 11/M

-0.8771 1.35E-2 33.125 0.924

-0.8485 I.46E-3 66.250 0.792

-0.8280 2.97E-4 99.375 0.659

-0.8123 8.76E-5 132.500 0.526

-0.7977 2.81E-5 165.625 0.394

-0.7827 8.76E-6 198.750 0.228

-0.7569 1.18E-6 231.875 0.090

-0.6743 1.00E-9 264.073 0
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Fig. 5.2 P-C-T diagram for MG-Mg2Ni electrode at room temperature 
(MG 25 hours and ball-to-weight ratio o f  5:1)
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CHAPTER 6 ACCELERATION MECHANISMS FOR 

HYDRIDING OF MG-Mg2Ni ELECTRODES

There has been considerable interest in recent years in the synthesis o f amorphous 

structures by high-energy ball milling o f  either elemental powder mixtures or powders o f 

intermetallics. In the case o f  amorphization o f  intermetallics, defects introduced by the 

deformation during milling are responsible for raising the free energy o f  the crystalline 

compound to that o f the amorphous phase. Milling the cast intermetallic leads to a 

number o f  effects which often act together simultaneously:

(i) Production o f  dislocations and other defects;

(ii) The material is crushed to powder. This increases the surface area. A subsequent 

stress will bond two particles together.

(iii) The continuous sequences o f  shocking and welding enhance the mixing process. 

Diffusion processes are accelerated either by increasing the diffusion velocity 

(e.g. pipe and boundary diffusion) or by decreasing the diffusion path length (due 

to a  smaller particle size).

6.1 Amorphization of Mg2Ni by Bail Milling

XRD patterns for MG-Mg2Ni alloy after different ball milling times are shown in 

Fig.6.1. The intensity o f  the Bragg peaks for Mg and Ni decreased rapidly after 0.5 hour 

o f  ball milling. Broad, diffuse peaks appeared after 25 hours o f  ball milling and the 

background level also increases to a significant degree, suggesting the formation o f  an
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amorphous phase. The peaks corresponding to Mg2Ni almost disappear, and those o f 

nickel decrease in intensity and get broader, reflecting a well-known decrease in the 

crystallite size and an increase o f  internal strain as the result o f the mechanical 

deformation and fracture. Experiment results (see section 4.1.2) showed that the 

discharge capacity increased to the maximum from the as-cast state to 25 hours o f ball 

milling. Thus mechanical treatment is effective to improve the charge/discharge capacity 

o f a negative electrode containing Mg2Ni alloy.

Amorphization by MG consisted o f energizing the crystalline solid by the severe 

plastic deformation that the ball milling provided. The plastic deformation and the shear 

impact introduced defects in the MG-Mg2Ni, which will increase the free energy o f the 

amorphous phase. The difference in free energy is the driving force for the hydriding 

acceleration. The question is, what defects can provide the required increase in free 

energy? The free energy differences between the crystalline compound and the 

amorphous phase are typically 5 to 20 kJ/mol. The stored energy o f deformation from 

conventional deformation processes is rarely more than about 1 to 2 kJ/mol. The 

maximum value o f  the stored energy associated with a very high dislocation density o f 

about 10l4/cm 2 in cold rolled phase is estimated to be 2.2 kJ/mol. Amorphization in 

intermetallics by the plastic deformation supplied by ball milling is analogous to 

amorphization in intermetallics irradiated with energetic particles, such as electrons, ions 

or neutrons. While the energy increase due to chemical anti-site disordering was the 

major driving force behind the electron-irradiation introducing amorphization in 

intermetallic compounds, it is likely that anti-site disordering can provide sufficient 

energy for amorphization o f  intermetallics by milling in some cases. Contributions from
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dislocations and grain boundaries were estimated to be 1 kJ/mol and 1.6-2.9 kJ/mol 

respectively. The reminder o f the stored energy required for amorphization was believed 

to come from the disordering at anti-phase boundaries. The anti-site chemical disorder is 

the main source o f  energy storage in ball-milled intermetallics. The amorphous phase 

resulted if  the free energy o f  the disordered compound exceeded the free energy o f  the 

amorphous state. Amorphization was not initiated until 25 hours ball milling. It was 

suggested that the additional stored energy required for the crystalline-to-amorphous 

transformation came from the grain boundary energy o f  the fine grain structure that 

evolved during milling o f the disordered compound. Thus the significant contributions to 

stored energy come from two major sources: (1) anti-site disorder AGd,sorder, and (2) grain 

boundary energy o f grains AGgniin'bound:lry. The occurrence, or not, o f amorphization by 

ball milling was consistent with estimated values o f free energy, such that AGd,sordcr + 

^Qgram-boundary > where AGa< was the difference in free energy between the ordered 

crystalline and amorphous phase.

The internal energy o f  the compound is raised by ball milling as a result o f  atomic 

disordering in the compound. It is then suggested that if  disordered compound attains a 

state o f  higher energy than amorphous state, a transformation to amorphous state will 

take place.

6.2 Surface Area and Particle Size

Various hydriding characteristics, such as kinetics of hydrogen 

absorption/desorption and rate o f  degradation during cyclic charge/discharge depend on 

the particle morphology.
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In metal hydride systems, surface area and the particle size are important 

parameters for enhancement o f  hydrogen uptake through reduction in the activation time, 

temperature and pressure and improvement in the reaction kinetics o f 

absorption/desorption reaction. Fig.6.2 shows the dependence o f  crystal size on ball 

milling time. During the initial few hours o f  ball milling, the crystal size decreases 

rapidly and then becomes stable with increasing ball-milling time. Fig.6.3 is scanning 

electron micrographs (SEM) o f  the Mg2Ni alloy milled for different periods in a nitrogen 

atmosphere. The as-cast sample shows block-like, cleavage fracture morphology and an 

inhomogeneous particle size distribution. After milling for 0.5hours, the large particles 

are broken down, the particle shape becomes rounded, and the particle size is reduced. 

Only flaky particles o f - 1 00pm in size were observed after 2 hours o f ball milling. The 

flaky particles then gradually disappeared, and equiaxed particles o f  an irregular shape 

appeared together with very fine particles which may have been fragmented from the 

coarse particles. Many small particles adhere to the large ones. It is suggested that the 

coarse particles are formed from the cold welding o f  the flaky powders, and/or the fine 

powders are formed from the fragmentation o f the coarse powders. After 15 hours ball 

milling, the coarse powders were completely broken up and only fine powders about 1 pm 

in size are present. In general, the fragmentation o f large, cold welded particles into the 

fine powders indicated the start o f amorphization. The calculated particle size (from SEM 

micrographs) and the specific surface area (SSA) are given in Table 6.1.

A critical factor for hydrogen absorption by metals is the metal surface, which 

should be able to dissociate the hydrogen molecules and also allow easy penetration o f
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Fig. 6.2 Crystal size vs. ball milling time for MgiNi alloy
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(a) Ball milling time 0.5 hours

(b) Ball milling time 5 hours 

Fig. 6.3 Particle morphologies o f Mg2Ni alloy at different ball milling times for Mg2Ni alloy
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(c) Ball milling time 10 hours

(d) Ball milling time 25 hours 

Fig. 6.3 Particle morphologies o f  Mg2Ni alloy at different ball milling times for Mg2Ni alloy
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(e) Ball milling time 50 hours

(f) Ball milling time 80 hours 

Fig. 6.3 Particle morphologies o f  Mg2Ni alloy at different ball milling times for MgzNi alloy
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hydrogen into the bulk. Ball milling constantly creates fresh surfaces during the process 

as a result o f  repeated cold welding and fracturing. This, and the high surface-to-volume 

ratios can explain why the activation procedure is much easier in the case o f  the ball- 

milled powder than for the non-ball milled material.

Table 6.1 Particle Size and Specific Surface Area of Mg2 Ni

at Different Ball Milling Times

TIME AS-CAST 10 HOURS 25 HOURS 50 HOURS

Particle Size (pm) 25 1 0.75 0.5

SSA (m2/g) 0.0375 0.09375 0.1250 0.1870

The particle size decreased with ball milling time and, correspondingly, the SSA 

increased. For example, the SSA o f MG-25 hours was three times larger than that o f as- 

cast Mg2 Ni and this increased SSA lead to a 120 times larger discharge capacity o f  the 

Mg2Ni electrode. The difference in reaction rate can be explained, in part at least by the 

fact that the smaller particle size resulted to a larger surface area per volume ratio and 

hence, more surfaces sites were available for the catalytic dissociation o f hydrogen.

The final particle size was presumably due to repeated fragmentation: the 

particles are repeatedly flattened, fractured and re-welded. Finer particles facilitated the 

inter-diffusion between particles because the diffusion coefficient for the very fine 

particles was much larger than that for the usual bulk material, and also because the total 

distance required for diffusion is reduced. It is suggested that enhanced diffusion rate and 

a reduced diffusion distance both lead to a increased hydriding rate.
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6.3 Internal Strain

When crystalline materials, including ordered alloys, are milled, they became at 

least partially disordered. And at same time, defects such as dislocations, stacking faults 

and grain boundaries are introduced. It was understandable that a large amount o f  internal 

energy would be stored and led to non-stabilization o f the lattice, yielding the fine grain 

sizes and eventually an amorphous phase. Generally, the broadening o f X-ray diffraction 

peaks can be ascribed to the change o f  crystal grain size and a heterogeneous strain. From 

the broadening o f  the Bragg peaks and using the Williamson and Hall method, it is 

possible to determine the crystallite size and internal strain components. This technique 

was used to analyze the X-ray powder patterns o f  ball-milled sample. Independent o f the 

ball milling parameters, the crystal size decreased and the internal strain (Fig.6.4) 

increased with increasing ball-milling time.

As noted, the internal strain increased with increasing milling time. The longer the 

milling time, the more defects are introduced into the Mg2Ni alloy. During the plastic 

deformation o f  intermetallics, different types o f dislocation will occur, depending on the 

crystal structure. The defects introduce distortion o f crystal lattice, as a result, internal 

strain will be produced. Storing sufficient energy as chemical disorder and the defects 

(including both crystal faults as well as grain boundary) can ultimately destabilize the 

crystal structure and lead to its conversion to a new structure, including the amorphous 

state.

The introduction o f  defects, disordering and internal strain gives rise to an 

increasing hydriding/dehydriding rates and capacity. Enhancements were found in 

kinetics o f hydrogen absorption and in activation pretreatment (expressed by diffusion
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coefficient, Do). First o f all, the internal strain increases with the decreasing crystal size 

(Fig.6.5). The internal strain introduced by the defects increased the activity o f  hydrogen 

absorbing/desorbing process. Since the exchange current density (Fig.6 .6 ) and the 

diffusion coefficient (Fig.6.7) were directly proportional to the internal strain, the amount 

o f  absorbed hydrogen in ball-milled Mg2Ni increased with the increasing internal strain 

(Fig.6 .8 ). Because the surface area o f  the MG powders was larger than in the as-cast 

state, it was anticipated that the hydriding/dehydriding processes would be faster.

Collisions are the main mechanism by which energy was transferred to the 

powder during the ball milling process. Powder particles were trapped between colliding 

balls during milling and undergo deformation and/or fracture which define the ultimate 

structure o f  the powder. The nature o f these processes depends upon the mechanical 

behavior o f  the powder compounds, their phase equilibrium and the stress during milling.

The equation for the energy transferred per unit o f  mass is as follows

[7.6 6 x i o - ^ y v ^ x : ( 6 n
9

where Rp is the radius o f  the plate o f the mill, E  is the Young’s modulus o f the Mg2Ni 

alloy, db is the diameter o f the milling balls, p  is the density o f  milling balls, cop is the 

angular velocity o f  the mill and 9  is the surface density o f  materials.

In this study, db, cop, Rp, p  and E  are constants. When the ball-to-powder weight 

ratio increased, the surface density, 9, decreased. Thus the transferred energy per unit of 

mass increased. As a result, the ball-milled Mg2Ni alloy has a high chemical potential, 

high hydriding/dehydriding rate (can be expressed by exchange current density, hydrogen 

diffusion coefficient) and corresponding by a high hydrogen capacity.
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK

7.1 Conclusions

This thesis reports the effects o f  ball milling on the structure o f Mg2 Ni powders and the

electrochemical properties when they are incorporated into the negative electrode o f a Ni-MH

battery. The main conclusions to come from this study are as follows:

1. A high-energy ball milling treatment is effective in accelerating the hydriding/dehydriding 

processes for the MgiNi alloy.

2. The hydriding/dehydriding characteristics o f Mg2 Ni alloy can be evaluated by 

electrochemical measurements at room temperature rather than using the conventional P-C-T 

method in gaseous environment which requires high temperatures and pressures, and is time 

consuming.

3. A ball milling treatment increases significantly the discharge capacity. From a kinetics 

viewpoint, ball milling increases the exchange current density, £<?, and hydrogen diffusion 

coefficient, Dq. From a thermodynamic viewpoint, ball milling increases the internal strain 

energy, decreases the overpotential for the hydrogen absorption/desorption processes. Ball 

milling creates a amorphous structure, greatly reduces the particle size and correspondingly 

increases the specific surface area.

4. The discharge capacity increases from only about 2mAh/g in the as-cast state to a maximum 

value o f 244mAh/g after 25 hours ball milling. It then decreases gradually for longer milling 

times. As ball milling proceeds, the Mg2Ni powders are fragmented and the amount o f
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amorphous material continuously increases. However, re-welding, static electricity and 

contamination balance o ff some o f the beneficial changes introduced by ball milling. There is 

an optimum milling time, 25 hours, which leads to the maximum discharge capacity. Kinetic 

parameters, including exchange current density, io, hydrogen diffusion coefficient, Do, also 

reach a maximum for 25 hours ball milling.

5. The discharge capacity, Q , exchange current density, io, and hydrogen diffusion coefficient. 

Do, increase with increasing ball-to-powder weight ratios from 1:1, 5:1 to 10:1. From the 

standpoint o f  discharge capacity, milling time and the amount o f Mg2 Ni powder required to 

fabricate an electrode, ball milling for 25 hours at a ball-to-weight ratio 5:1 is considered to 

be the optimum treatment.

6 . Ball milling treatments introduce defects into MG-Mg^Ni, indicating a much higher free 

energy in the bulk o f  MG-Mg2Ni. X-ray diffraction analysis shows that internal strain formed 

during the ball milling process increases linearly with ball milling time.

7. X-ray diffraction analysis showed that the Mg2Ni changed from a crystalline to an 

amorphous structure with increasing milling time. The particle size and crystallite size reduce 

rapidly with milling time.

8 . The addition o f Cu or Ni into electrodes made from the MG-Mg2Ni powders significantly 

increases the discharge capacity (from 224mAh/g to 330mAh/g and 244mAh/g for Cu and Ni 

respectively). The increased electrochemical activity o f  the electrodes with Ni is considered 

to result from the fact that hydrogen atoms bond more strongly with Ni atoms than Mg 

atoms. The increased capacity introduced from Cu is due to the increased electrical 

conductivity.

9. Thermodynamic parameters and P-C-T curves have been calculated and constructed from
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measured E-C-T curves for a LaNLuAloj alloy. For the first time, the P-C-T curves for a 

MgiNi alloy have been constructed from the E-C-T curves at room temperature.

7.2 Recommendations for future work

1. Use TEM to observe the defects in the ball-milled Mg2Ni alloy, and to determine the types, 

properties and the distribution o f  the defects, which will help in understanding the 

distribution o f  absorbed hydrogen and the discharge capacity acceleration by the ball milling 

treatment. The defects contribute to the energy for hydrogen absorption.

2. Determine the relationship between the strain that is introduced by the ball milling and the 

hydrogen absorption/desorption kinetics. The ball milling treatment introduces deformation 

in the Mg2Ni alloy, causing distortion, cracking and defect generation.

3. Calculate the strain energy in the ball-milled Mg2Ni alloy, and determine the critical required 

energy for the transformation from a crystalline to an amorphous state. The strain energy can 

be calculated using a theoretical elastic strain energy model developed by Sinha and 

Wallace1'27'. The free energy o f the crystalline phase, G c, the free energy increasing due to 

the defects, Go, (introduced by ball milling) and the free energy o f  the amorphous phase, GA, 

should be calculated using thermodynamic methods. Amorphization can occur when Gc + 

Gd > GA.

4. To determine the mechanisms o f hydrogen absorbing/desorbing, and the hydrogen 

penetration, distribution o f  hydrogen in the ball-milled Mg2Ni alloy using SEM, TEM and X- 

ray diffraction methods. X-ray diffraction illustrates the phases formed by the hydriding 

reaction, and the TEM shows the change in the crystal structure.
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5. To determine the mathematical relationship between the discharge capacity, Q , and the 

electrochemical parameters, such as, hydrogen diffusion coefficient, Do, exchange current 

density, i o ,  cr overpotentials, t j .  The discharge capacity, Q , is thus calculated in terms o f 

thermodynamic and kinetic parameters o f  the hydriding reactions.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

REFERENCES

[1] H. F. Bittner, C. C. Badcock, J. Electrochem. Soc., V30 (1983), 193C.

[2] J. J. G. Willems, Philips J. Res., V39, Suppl. (1984).

[3] N. Cui, B. Luan, H. K. Liu, Journal o f  Power Sources, V55 (1995), 263.

[4] G. Sandrock, Proceedings o f  the Symposium on Hydrogen and Metal Hydride Batteries. 

V94-27, (1994), 1.

[5] D. G. Ivey, Hydrogen Storage with Zirconium Pseudobinaries, M.A.Sc Thesis, University of 

Windsor (1982).

[6 ] J. H. N. van Vucht, Phillips Research Reports, V25 (1970), 133.

[7] H. H van Mai, K. H. J Buschow, A. R. Miedema, J. Less-Common Met., V35 (1974), 65.

[8 ] J. F. Lakner, F. S. Uribe, S. A. Steward, J. Less-Common Met., V72 (1980), 87.

[9] A. C. Switendick, Theoretical Studies o f  Hydrogen In Metals: Current Status and Further 

Prospects, Sandia Laboratories Report, SAND 78-0250 (1978).

[10] M. H. Mendelsohn, D. M. Gruen, Nature, V269 (1977), 45.

[11] M. H. Mendelsohn, D. M. Gruen, A. E. Dwight, Materials Research Bulletin, V13 (1978), 

1 2 21 .

[12] K. H. J. Buschow, J. Less-Common Met., V42 (1975), 163.

[13] J. J .Reilly, R. H. Wiswall, Jr., Inorg. Chem., V13 (1974), 218.

[14] G. D. Sandrock, P. D. Goodell, J. Less-Common Met., V73 (1980), 161.

[15] P. Fischer, Materials Research Bulletin, V13 (1978), 931.

[16] J. J. Reilly, Ist World Hydrogen Energy Conference, V4 (1979), 29

[17] P. S. Rudam, J. Less-Common Met., V58 (1978), 231.

[18] Q. D. Wang, Proceedings o f  the 2nd Pacific Rim International Conference on Advanced 

Materials and Processing, The Korean Institute o f  Metal and Materials. Korea (1995), 1529.

[19] D. Shaltiel,/. Less-Common Met., V53 (1977), 117.

[20] A. Pebler, E.A.Gulbransen, Transactions o f  the AIME, V239 (1967), 1593.

[21] J. J. Didisheim, J. Less-Common Met., V73 (1980), 355.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[22] D. Fruchart, J. Less-Common Met, V73 (1980), 363.

[23] J. B. Friauf, Physical Review, V29 (1927), 34.

[24] J. B. Friauf, Journal o f  American Chemical Society, V49 (1927), 3107.

[25] R. Wiswall, Hydrogen In Metals II, V29 (1978), 201.

[26] I. Jacob, Solid State Communications, V23 (1977), 369.

[27] M. H. Mendelsohn, D. M. Gruen, J. Less-Common Met., V78 (1981), 275.

[28] I. Jacob, J. Less-Common Met., V73 (1980), 369.

[29] H. Oesterreicher, Materials Research Bulletin, V13 (1978), 83.

[30] J. J. Reilly, R. H. Wiswall, J. Inorg. Chem. V7 (1968), 2254.

[31] J. J. Reilly, R. H. Wiswall, /  Inorg. Chem. V6  (1967), 2220.

[32] D. A. Ruhy, J. F. Nachman, A. N. Hammer, T. E. Duffy, Reports SAN-1167-1(1979)-, 

Energy Res.Abst. V5 (1980), 27052.

[33] H. Oesterricher, K. Ensslen, A. Kerlin, E. Bucher, Mat. Res. Bull. V I5 (1980), 275.

[34] J. J. Reilly. Z. Phvs. Chem. N. F. V I 17 (1979), 155.

[35] J. F. Stampfer, J.C.E.Holly,J. F. Shuttle, J. Am. Chem. Soc. V82 (1960), 3504.

[36] J. P. Damaudery, B. Darriet, M. Pezat, Int. J. Hydrogen Energy, V8  (1983), 705.

[37] D. Lupu, A. Biris, E. Indrea, N. Alden, R.V. Bucur, M.Morariu, Int. J. Hydrogen Energy 

(1983), 797.

[38] D. Lupu, A. Biris, E. Indrea, N.Alden, Int. J. Hydrogen Energy, V I  (1982), 783.

[39] T. Hirata, T. Matsumoto, M. Amano, Y. Sasaki,/. Less-Common Met., V89 (1983), 85.

[40] O. Bemauer, Int. J. Hydrogen Energy, V13, No.3 (1988), 181

[41] J. J. Reilly, Hydrogen: Its Technology and Implications, V2 (1977), 13.

[42] D. G. Ivey, D. O. Northwood, / .  Mater. Sci., V18 (1983), 321.

[43] J. Koh, A. J. Goudy, J. Less-Common Met., V153 (1989), 89.

[44] K. R. Clay, A. J. Goudy, / .  Less-Common Met., V166 (1990), 153.

[45] P. Selvan, B. Viswanathan, C. S. Swamy, Int. J. Hydrogen Energy, V16 (1991), 23.

[46] P. G. Goodell, / .  Less-common Met., V89 (1983), 45.

[47] H. C. Siegmann, L. Schlapbach, C.R. Brundle, Phys. Rev. Lett., V40 (1978), 972.

[48] V. Walskirch, P. Zurcher, Appl. Phys. Lett., V33 (1978), 689.

[49] L. Schlapbach, Solid State Commun., V38 (1981), 117.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[50] F. J. Liu, G. Sandrock, / .  Alloys and Compounds, V190 (1992), 57.

[51] E. H. Kisi, C. E. Buckley, J. Alloys and Compounds, V I85 (1992), 369.

[52] W. Zhang, J. Cimato, A. J. G oudy,/. Alloys and Compounds, V201 (1993), 175.

[53] P. Y. Lee, C. N. P ark ,/. Less-Common Met., V89 (1983), 169.

[54] S. Qian, D. 0 . Northwood, Int. J. Hydrogen Energy, V15 (1990), 649.

[55] N. A. Scholtus, W. K. Hall, / .  Chem. Phys., V39 (1963), 8 6 8 .

[56] T. B. Flanagan, J. D. Clewley, / .  Less-Common Met., V83 (1982), 127.

[57] C. E. Ludin, F. E. Lynch, Hydrides fo r  Energy Storage, Pergaman, Oxiford (1978), 385.

[58] P. D. Goodell, G. D. Sandrock, / .  Less-Common, V73 (1980), 135.

[59] E. W. Justi, H. H. Ewe, A. W. Kalberlah, Energy Conver., V10 (1970), 183.

[60] M. A. Gutjahr, H. Buchner, K..P. Beccu, Power Sources, IV, S. H. Collins ed.

[61] H. H. Ewe, E. W. Justi, K. Stephan, Energy Conver., V13 (1973), 109.

[62] I .  L. Markin, N. Bridger, R. Bennett, Proceedings o f  28th Power Source Symp., (1978), 136.

[63] H. Ishikawa. / .  Electrochem. Soc., V134 (1987), 558.

[64] K. Saprun, K. C. Hong, M. A. Fetcenko, U. S. Patent 4, 551,402 (1985).

[65] A J. Aldykiewicz, Jr., H.S. Isaacs, A.J. Davenport, Extended Abstracts, Abstract No.43, 

Spring Meeting, California, V94-1 (1994), 71.

[6 6 ] M. Ikoma, S. Hamada, N. Morishita, Proceedings o f  the Symposium in Hydrogen and Metal 

Hydride Batteries, V94-27 (1994), 371.

[67] N. Kuriyama, T. Sakai, H. Miyamura, Vaccum, V47, No.6 - 8  (1996), 889.

[6 8 ] L. Zhang, T. J. O ’Hara, M. G. Michal, Proceedings o f  the Symposium in Hydrogen and 

Metal Hydride Batteries, V94-27 (1994), 45.

[69] X.G. Yang, Y. Q. Lei, J. Wu, Transactions ofNFSOC, V S ,  No.3 (1995), 61.

[70] T. Sakai, H. Miyamura, N. Kuriyam a,/. Electrochem. Soc., V137 (1990), 795.

[71] Y. Chikano, M Kimoto, R. Maeda, Proceedings o f  the Symposium in Hydrogen and Metal 

Hydride Batteries, V94-27 (1994), 403.

[72] Z. Ye, T. Sakai, Proceedings o f  the Symposium in Hydrogen and Metal Hydride Batteries, 

V94-27 (1994), 184.

[73] A. Percheron-Guegan, M. Latroche, Proceedings o f  the Symposium in Hydrogen and Metal 

Hydride Batteries, V94-27 (1994), 196.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[74] J. Chen, Y. S. Zhang, J. Mater. Res., V9, No.7 (1994), 1802-1804.

[75] J. J. G. Willems, K. H. Bushow, J. Less-Common Met., V129 (1987), 13.

[76] Y. Q. Lei, Z. P. Li, C. P. Chen, J. Less-Common Met., V172-174 (1991), 1265.

[77] F. Meli, L. Schlapbach, J. Less-Common Met., V172-174 (1991), 1252.

[78] L. Zaluski, A. Zaluska, J. Alloys and Compounds, V217 (1995), 245.

[79] H. Aoyagi, K. Aoki, T. Masumoto, J. Alloys and Compounds, V231 (1995), 804.

[80] G. M. Friedlmeier, J. C. Bolcich, Int. J. Hydrogen Energy, V13, No . 8  (1988), 467.

[81] L. Zaluski, A. Zaluska, P. Tessier, J. Alloys and Compounds, V217 (1995), 295.

[82] C. Iwakura, S. Nohara, H. Inoue, Chem. Commun., (1996), 1831.

[83] N. Cui, B. Luan, H. K. Liu, 12,h Annual Battery Conf.on Applications & Advances. Long 

Beach, CA 1997,317.

[84] T. Kohno, M. Kanda, J. Electrochem. Society, V144, No.7 (1997), L I98.

[85] L. Zaluski, A. Zaluska, J. O. Strom-Olsen, J. Alloys and Compounds, V217 (1995), 245.

[8 6 ] N. Cui, B. Luan, H. J. Zhao, J. Alloys and Compounds, V233 (1996), 236.

[87] T. Sakai, T. Hazama, H. Miyamura,./. Less-Common Met., V172-174 (1991), 1175.

[8 8 ] T. Akiyama, T. Fukutant, H. Ohta, AIChE Journal, V41, No.5 (1995), 1349.

[89] T. Sakai, /  Electrochem. Society, V134, No.7 (1987), 558.

[90] Y. Q. Lei, J. J. Jiang, D. L. Sun, Q. D. Wang, Symposium on Metal Hydrogen Systems, 

Japan (1994).

[91] T. Ikeya, K. Kumai, T. Iwahori, J. Electrochem. Soc., V140, No.l 1 (1993), 3082.

[92] M. P. Sridhar Kumar, W. L. Zhang, K. Petrov, Proceedings o f  the Symposium in Hydrogen 

and Metal Hydride Batteries, V94-27 (1994), 111.

[93] S. Yang, R. Ye, T. Huang, Int. J. Hydrogen Energy, V13 (1986), 335.

[94] A. W. Weeber, H. Bakker, Physica B., V153 (1988), 93.

[95] T. Fukunaga, M. Mori, K. Inouard, Mater. Sci. Eng. A, V134 (1991), 863.

[96] J. Eckert, L. Schultz, K. Urban, Appl. Phys. Lett., V55 (1989), 117.

[97] H. J. Fecht, E. Hellstem, Z. Fu, W. L. Johnson, Metall. Trans. A, V21 (1990), 2333.

[98] A. Kumar Singh, A. Kumar Singh, J. Alloys and Compounds, V227 (1995), 63.

[99] R. B. Schwarz, Scripta Materialia, V34, No.l (1996), 1-4.

[100] J. S. Benjamin, Mater. Sci. Forum (1992), 88-90.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

[101] J. S. Benjamin, Metall. Trans. A, Vl(1970), 294.

[102] M. J. Fleetwood, Mater. Sci. & Technology, V2 (1986), 1176.

[103] G. H. Li, Q. P. Kong, Scripta Metallurgica et Materialia, V32, No.9 (1995), 1435.

[104] C. C. Koch, J. D. Whittenberger, Intermetallics, V4 (1996), 339.

[105] J. S. Benjamin, J. E. Volin, Metall. Trans., V5 (1974), 1929.

[106] D. R. Maurice, T. H. Courtney, Metall. Trans. A, V21 (1990), 289.

[107] K. M. Lee, P. H. Shingu, J. Alloys and Compounds, V241 (1996), 153.

[108] Y. D. Dong, W. H. Wang, Materials Science & Engineering, V134 (1991), 867.

[109] M. Y. Song, Int. J. Hydrogen Energy, V20, No.3 (1995), 221.

[110] P. Y. Lee, J. Jang, J. Less-Common Met., V140 (1988), 73.

[111] R. B. Schwarz, C. C. Koch, Appl. Phys. Lett., V49 (1986), 146.

[112] C. C. Koch, M. S. Kim, J. Phys. (Paris), Colloq., V46 (1985), C 8 .

[113] J. H. Ahn, H. Chung, Materials and Manufacturing Processes, V9, No.4 (1994), 637.

[114] M. S. El-Eskandarany, K. Aoki, J. Less-Common Met.. V169 (1991), 235.

[ 115] F. D. Manchester, D. Khatamian, Materials Science Forum V 31 (1988), 261.

[116] W. L. Wasz, R. B. Schwarz, Materials Science Forum, V225-227 (1996), 859.

[117] P. Tessier, L. Zaluski, Mat. Res. Soc. Symp. Proc., V286 (1993), 209.

[118] J. Chen, S. X. Dou, J. Alloys and Compounds, V244 (1996), 184.

[119] T. Kohno, S. Tsuruta, J. Electrochem. Society, V143, No.9 (1996), L198.

[120] T. Kohno, M. Kanda, /  Electrochem. Society, V144, No.7 (1996), 2385.

[121] G. Willamson, W. Hall, Acta Metall. V22 (1953), I.

[122] ASTM Standard Test Method for Conducting Cyclic Potentiodynamic Polarization 

Measurements for Localized Corrosion Susceptibility o f  Iron-, Nickel-, or Cobalt- Based 

Alloys, ASTM  Standard G61-86, re-approved 1993.

[123] C. S. Wang, X. H. Wang, Y. Q. Lei, C. P. Chen, Q. D. Wang, Int. J. Hydrogen Energy, V22, 

No. 12 (1997), 1117.

[124] M. H. Mendelsohn, D. M. Gruen, Nature, V269, No.l (1977), 45.

[125] E. L. H uston,, Journal o f  Less-Common Metals, V74 (1980), 435.

[126] M. Magini, A. Iasonna and F. Padella, Scripta Materialia, V34, No.l (1996), 13.

[127] V. K. Sinha and W. E. Wallace, J. Less-Common Metals, V91 (1983), 249.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

NAME:

PLACE OF BIRTH: 

YEAR OF BIRTH: 

EDUCATION:

Hao (Shirley) Niu 

Beijing, China 

1968

Beijing NO.2 Middle School, Beijing, China 
1984-1987 Diploma

University o f  Science & Technology Beijing, China 
1987-1991 B. Sc in Material Science and Engineering

University o f  Windsor, Windsor, Ontario 
1996-1999 M. Sc in Engineering Materials

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Electrochemical performance of ball-milled magnesium(2)-nickel electrodes.
	Recommended Citation

	tmp.1507664919.pdf.TVdTX

