


Hierarchical analysis of the population differentiation indicated that the pattern of
genetic differentiation among populations was not as expected. Gene flow within a
drainage basin would be expected to produce equal or less genetic differentiation within
drainage basins relative to among drainage basins. For example, observations of
European populations of Arctic charr (Salvelinus alpinus) Brunner et al. (1998) note that
in these lake resident populations 18 % of the microsatellite genetic variance explained
was among-drainage basins, and 19.2 % of the variance explained was within-drainage
basins. A similar pattern of microsatellite variance was reported for among basins vs.
within basins (8.8% and 7.9% respectively) in North American lake cisco (Coregonus
artedi) populations (Turgeon and Bernatchez, 2001). In contrast, we observed that more
than 10 times of the genetic variance explained at the within drainage basin level (14.3%)
relative to among drainage basins (1.2%). Similar results were reported by Castric et al.
(2001) for brook charr (Salvelinus fontinalis) from five major drainage basins in Maine,
where they observed that within drainage basin explained variance was approximately six
times higher than among-drainage basin explained variance (0.203 and 0.037,
respectively). Although the precise mechanisms for the greater explained within-
drainage basin variance are unclear, these results may possibly reflect departure from
migration-drift equilibrium or gene flow between drainage basins. Departure from
migration-drift equilibrium would suggest that the amount of time since postglacial
colonization has been insufficient for the accumulation of genetic differences among
drainage basins (Castric ef al., 2001). In addition, natural gene flow and / or hatchery
reared progeny from one population to supplement another population (anthropogenic

gene flow) cannot be ruled out as a possible factor, especially since the supplementation
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of Walleye populations is common within Ontario. Gene flow between drainage basins is
expected to reduce population genetic differentiation (Waples, 1994), and hence possibly
result in the low among-drainage basin variance explained, but relatively high within
drainage basin variance explained (Heath et al., 2001; Miller and Kapuscinski, 2003).
- Neighbour-joining cluster analysis also indicates that inter-basin gene flow is a
likely factor resulting in greater levels of population structure within-drainage bésins than
- among-drainage basins. The phenogram depicts the populations as being loosely
clustered by drainage basin with populations intermingled among drainage basins instead
of being grouped within their respective drainage basins; populations within the Nelson
River basin (drainage basin 2; Figure 2) exhibit the strongest within basin clustering. As
mentioned above, gene flow, natural or anthropogenic, could account for this pattern, as
the introduction of fish for supplementation purposes among primary drainage basins
could further weaken drainage basin differentiation, wifh weaker effects on the within
basin structure. Despite the low degree of differentiation among drainage basins,
population structure is evident among walleye.

The neighbour-joining cluster analysis provides evidence of anomalous gene
flow between walleye populétions that did not generally clustered geographically,
irrespective of the primary drainage basin of origin, but gene flow generally did not oceur
between the north versus south clades (Figure 2). Evidence from the cluster analysis is
made somewhat ambiguous by the placement of two southern lakes (Wolfe and Deer
lakes) into the northern clade and one northern lake (Young Lake) being placed into thev
southern clade. The individual grouping patterns of the populations within the clades is

somewhat less distinct and, again may be indicative of migration by individuals (i.e. gene
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flow) between geographically proximate lakes within and among basins. If gene flow is
occurring among geographically close populations, then the isolatidn—by-disfance model
is expected to be valid, but our neighbour-joining cluster analysis also shows a close
association among some populations that are geographically distant. This observation is
not readily explainable by natural gene flow between populations because even a few
migrants per generation would homogenize allele frequencies among populations, nor is
it explained by the divergence of allele frequencies in populations that are relatively
isolated (Miller and Senanan, 2003). Although it has been shown that Ontario walleye
have likely originated from three glacial refugia (Todd and Haas, 1993; Billington et al.,
1992; Murdoch and Hebert, 1997), our data identifies only two glacial refugia as being
more likely, and such a historical genetic signature may be the explanation for the

observed division into a north-south clade.

Natural and Anthropogenic Influences on Population Structure

Isolation-by-distance is expected based on a stepping-stone model of population
divergence (Kimura and Weiss, 1964) and is used as a basis to predict increasing genetic
differences.with increasing separating distance. However this relationship may be
confounded by natural and anthropogenic factors that can influence population
differentiation among freshwater fish populations. Substantial genetic differentiation is
expected among populations of a freshwater species as populations become isolated from
one another due to‘past vicariance events (Senanan and Kapuscinski, 2000) in
combination with species-specific dispersal limitations (Carvalho, 1993). The Nelson

River Basin, the only primary drainage basin to exhibit evidence for within drainage
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basin clustering as depicted by the neighbour-joining analysis, was also the only basin to
provide evidence for isolation by distance, suggesting that those populations are probably
approaching genetic equilibrium (Slatkin, 1993, Hutchinson and Templeton, 1999). This
positive correlation may be simply due to low levels of anthropogenic disturbances
among these extreme north-west populations, or that gene flow among the populations
follows a stepping-stone model. There was no evidence of isolation-by distance among
the 46 sampled populations or for the other four drainage basins. The failure to show an
isolation-by-distance relationship at either scale for those groups suggests that they are
not at migration—drift equilibrium (Hutchinson and Templeton, 1999), which may be a
consequence of recent colonization of the sampled lakes or that isolation-by-distance may
be weak or undetectable over large geographic scales (Castric and Bernatchez, 2003), but
may be present at a smaller geographic scale between geographically close populations
(Hutchinson and Templeton, 1999). It seems unlikely that the time since colonization
would have been solely responsible for the isolation-by-distance pattern observed in the
Nelson River Basin as it would likely have been colonized on a latitudinal cline similar to
other basins as the glaciers retreated. Geographical scale and artificial gene flow appears
to be the most likely explanation for the isolation-by-distance pattern for the sampled
populations as this basin encompasses populations that are closer together relative to the
other basins, thus we suspect that smaller basins would be better suited for a stepping-
stone model describe dispersal as opposed to the larger primary drainage basins (i.e.
Lake Superior / Lake Huron Basin, Hudson Bay / James Bay Basin)

Genotype assignment analyses are being used by fisheries managers primarily to

determine possible population admixture due to cryptic migration, or to quantify the
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possible genetic impact of artificial supplementation programs. We had expected that
artificial gene flow would have an effect on the population structure because the transfer
or supplementation of non-native fish can result in a reduction in genetic diversity among
populations (Ryman et al., 1995). For example, among 32 populations of Atlantic salmon
(Salmo salar) in Denmark that have been exposed to variable levels of supplementation
effort, there was significantly lower population differentiation among hatchery
supplemented populations compared to populations with limited or no stocking (Ruzzante
et al.,2001). We observed that hatchery supplemented walleye populations in Ontario
were significantly more similar to one another than non-stocked populations (p < 0.001),
based on pair-wise Fsr comparisons between hatchery and non-hatchery supplemented
walleye populations. In addition, the majority of genotype assignments identified
individuals as belonging to their sampled source population (85 %) and a much lower
proportion of individuals (12 %; s.ee Table 1) were not assigned to any population. The
inability of the model to assign individuals to a specific population is likely a result of the
population of origin not being included in the analysis, or the individuals were the
progeny of introgression, again with unknown source populations (Baudouin et al.,
2004). Interestingly, 3 % of the individuals were assigned to other source populations
with the majority of individuals being assigned to one of four lakes. The assignment of
individuals to a population other than the sampled source population (mis-assignment)
provides statistical evidence of gene flow among the sampled walleye populations
(Paetkau et al., 2004). Where individuals were assigned to a population not of sample |
origin, 86% of the individuals were assigned to four populations located in south-eastern

Ontario (Big Gull, Skootamatta, Mink, and Rice lakes), but not all mis-assignments were
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associated with known stocking records; 24% of the sampled populations have no record
of being stocked but do have individuals assigned to other populations. Some of the
anomalous individual assignments (i.e. 30% of the sampled individuals from Young Lake
were assigned elsewhere; Table 1) reflect probable human mediated gene flow as the
identified source populations included ones that were geographically distant (e.g. >
1000km). Although genotype assignments indicated that only a small fraction of the fish
appeared to be migrants (approximately 3%), the genetic structure of Ontario walleye
reflects human mediated effects. Nevertheless, consideration of conservation and
ecological concerns are necessary as introgression between native and introduced
individuals may eventually erode the overall genetic population structure and
compromise local adaptations in the populations involved (reviewed in Allendorf &
Waples, 1996).

In summary, moderate to high levels of population structure were found among
the 46 sampled populations, as well as at the finer geographical scales of individual
drainage basins. Our results indicate that Ontario walleye populations are genetically
differentiated into northern and southern clades, which is likely a result of post-glacial
colonization events. Within each clade, neighbour-joinihg analysis suggests that gene
flow is occurring among populations and drainage basins, and this gene flow is not
simple dispersal, but rather likely due to anomalous fish movement since we found no
evidence for genetic isolation by distance within four of the five drainage basins.
Genotype assignment analysis also indicated that the population structure of walleye in
upland Ontario lakes is primarily due to historic geographic isolation among the sampled

populations, but with a substantial component of gene flow that is best explained by
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human-mediated fish transfers. The evidence of anthropogenic contributions to the
population structure of walleye, supported by hatchery lakes exhibiting lower Fsr relative
to un-supplemented populations, has important evolutionary and conservation
implications for walleye. Management activities, such as population supplementation
and harvest practices, need to take into account that without some degree of consideration
for the genetic structure of a species, the homogenization of the genetic structure within
and among populations will reduce long-term persistence within its range in a stochastic

environment.
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Chapter 4
Discussion ahd Conclusion

The objectives of this study were to investigate the genetic diversity and
population structure of Ontario walleye with the following specific goals: 1) to determine
the relationships between lake parameters and population genetic diversity estimators and
genetic diversity and life history traits, which are critical components of fitness (Chapter
2); 2) to investigate for population structure among the 46 sampled walleye populations
(Chapter 3); and 3) to determine if population divergence is primarily due to natural
processes or recent anthropogenic events (Chapter 3).

The genetic diversity and population structure of walleye have been considerably
influenced by past glacial events and have undoubtedly resulted in changes to habitat and
range. The population structure of Ontario walleye has been affected by post-glacial
dispersal and reproductive isolation that has resulted in limited migration (gene flow)
among populations. As we have shown, there is a well defined division between northern
and southern walleye populations indicating restricted gene flow. Varying selection
pressures across the walleye range has likely contributed further to the genetic diversity
observed among current populations. As was observed, genetic diversity of walleye is
étrongly influenced by lake habitat parameters possibly reflecting the variation in habitat
stability and population size. Generally, larger habitats (i.e. lakeé) have the potential to
support greater numbers of individuals; lake size was found to have a significant
influence on genétic diversity. This observation has implications for the management of
smaller lake populations since smaller systems tend to be at greater risk than larger

systems to stochastic events, which could result in smaller effective population sizes and /
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or recurring severe bottlenecks that could increase the incidence of inbreeding and
expression of deleterious alleles. The influence of climate effects on population size can
also have a significant effect on genetic diversity across populations. The variability of
productivity and carrying capacity among lakes would restrict population size, and thus
genetic diversity. Finally, transfers of fish among populations, either by authorized stock
transfers of individuals for supplementation purposes or by “bait-bucket-biologists” to
supposedly improve or create a fishery, have had an effect on the genetic diversity of
walleye. Introgression between native and introduced individuals can genetically
homogenize populations, and thus reducing genetic differentiation among populations.
Nevertheless, natural and anthropogenic effects have impacted the genetic diversity and
population structure driven by changes in the probability of inbreeding (i.e. small
population size or genetic bottlenecks) or outbreeding (i.e. hatchery supplementation).
Genetic diversity has an important role in the long-term persistence of a species,
which becomes evident as individual populations persistence in changing environments.
Positive correlations between genetic diversity measures and lake parameters and
hatchery supplementation are likely due to inbreeding as a result of small population
sizes and / or recurring bottlenecks or outbreeding between distantly related individuals.
It appears that inbreeding depression was limited among the sampled walleye populations
and was only detectable at the early life stages of juvenile walleye across populations, but
there was no evidence suggesting outbreeding depression. Positive associations between
population genetic diversity and early growth rate, coupled with the negative associations
with Fis, suggest that the effect on early growth rate is a consequence of inbreeding due

to small effective population sizes. This relationship could have critical implications for
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the long term persistence of small populations as juvenile walleye may not survive to
sexual maturity to contribute to future generations.

Introgression between wild and hatchery reared individuals can alter the genetic
structure within and among populations through the introduction of novel alleles that may
reduce benéﬁcial genetic adaptations that have evolved within a specific habitat, and by
increasing the genetic similarity among stocked populations. The removal of
reproductive isolating barriers by transfers of fish stocks among populations (artificial
gene flow) can drive genetic homogenization of populations. Among the walleye
populations sampled, those populations supplemented with hatchery reared individuals
were significantly less differentiated than populations of native origin. The positive
linear relationship between genetic diversity estimates (d*) and the magnitude of hatchery
supplementation effort indicate that genetic introgression is likely occurring between the
introduced hatchery and native walleye, but as mentioned above, there is no evidence of

outbreeding depression in walleye populations.

In this study, we identified a significant level of population structure and genetic
diversity among 46 widely dispersed walleye populations across the province of Ontario
using microsatellite DNA. Such an approach allowed us to detect for large scale
environmental effects on genetic diversity, and in turn determine if these changes in
genetic diversity were associated with environmental variation and translated into
inbreeding or outbreeding depression. The power of such a large genetic survey, as
conducted in this study, is important because of its robustness and captures a greater

range of genetic variability than a smaller scaled study could. Our results are thus
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important for the maintenance and conservation of genetic diversity and evolutionary
potential of a species as a goal of fisheries management, and contributes to further our
understanding of the environmental and anthropogenic factors that contribute to the

genetic diversity of a species, and hence population genetics of natural populations.

Management Implications

The data from this study indicate that factors influencing genetic diversity,
population viability, and the overall population structure have serious evolutionary and
conservation implications for walleye populations. Prior to this study, knowledge of the
genetic diversity and population structure of inland walleye populations in Ontario was
non-existent. Past management activities, such as hatchery supplementation, have altered
the genetic architecture of some populations while others have remained relatively
undisturbed. The data from this study provides evidence that Ontario walleye

- populations are genetically differentiated.

Even though there are numerous walleye populations within Ontario it would take
an enormous amount of resources to manage each on an individual basis. [ would
propose that it would be more feasible to manage populations on the basis of relatively
small watershed units, relative to current practices. Since walleye hatchery enhancement
is common practice within Ontario, the brood stock should originate from the target
population in order to eliminate the possibility of introducing new alleles or possibly
weaken / eliminate local adaptations that have developed over time. By designing
broodstock capture programs to simulate natural effective population sizes, or as close to

it as possible, would guard against stocking too few progeny of limited genotypes.
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The use of native or genetically similar stocks for supplementation programs will
help preserve unique and potentially locally adapted genotypes of native Ontario upland
walleye populations. Because of the numerous genetically differentiated stocks of
walleye throughout Ontario, management practices may need to adjust to managing
populations at a smaller scale for genetic conservation purposes. Small scale
management areas would, to a large degree, increase the probability of long-term
population viability and evolutionary potential instead of being managed as a few large
populations inhabiting arbitrarily designated management areas.

The genetic techniques used in this study can and should continue to be used to
provide information necessary for the ménagement and enhancement of Ontario walleye
populations. Sampling and collection of life history data and tissue for DNA analyses
should therefore continue to allow for the monitoring of changes in genetic diversity
among populations. This would be extremely useful in detecting temporal changes in
genetic variation that may possibly expose reductions in fitness due to inbreeding /
outbreeding effects, especially for walleye populations subject to heavy anthropogenic
influences (e.g. harvest rates, habitat destruction, intense supplementation). Additional
genetic surveys of walleye populations throughout Ontario are therefore recommended to
further identify the population structure of walleye for improvedvmanagement capabilities

and to expand the understanding of walleye biology and population genetics.
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Vita Auctoris
Name: \ Christopher J. Cena
Place of Birth: Edmonton, Alberta
Born: 1972

Education: British Columbia Institute of Technology
1993 - 1995

University of Northern British Columbia
1996 — 2000

University of Windsor
2002 - 2005
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