
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2006 

Characterization of the pelagic plankton assemblage of Lake Characterization of the pelagic plankton assemblage of Lake 

Matano and determination of factors regulating primary and Matano and determination of factors regulating primary and 

secondary production dynamics. secondary production dynamics. 

Elisabeth Sabo 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Sabo, Elisabeth, "Characterization of the pelagic plankton assemblage of Lake Matano and determination 
of factors regulating primary and secondary production dynamics." (2006). Electronic Theses and 
Dissertations. 6942. 
https://scholar.uwindsor.ca/etd/6942 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6942?utm_source=scholar.uwindsor.ca%2Fetd%2F6942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


CHARACTERIZATION OF THE PELAGIC PLANKTON ASSEMBLAGE OF LAKE 
MATANO AND DETERMINATION OF FACTORS REGULATING PRIMARY AND 

SECONDARY PRODUCTION DYNAMICS

by

Elisabeth Sabo

A Thesis
Submitted to the Faculty of Graduate Studies and Research 

through Environmental Science 
in Partial Fulfillment of the Requirements for 

the Degree of Master of Science at the 
University of Windsor

Windsor, Ontario, Canada 

2006

© 2006 Elisabeth Sabo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-17108-0 
Our file Notre reference 
ISBN: 978-0-494-17108-0

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I O+M-tU?

ABSTRACT

Lake Matano, Indonesia, is an ancient lake that provides an opportunity to 

examine the factors governing planktonic community structure. I determined that the 

phytoplankton community exhibits very low biomass relative to other lakes with similar 

assemblages and physicochemical characteristics. Phosphate additions made to algal 

cultures in lake water produced significant growth, suggesting that phosphorus 

availability limits production. To test for metal toxicity, phytoplankton were grown in 

water treated by flocculation. The enhanced growth in these cultures is consistent with 

the removal of a toxic constituent during flocculation. Ecological characterization of the 

secondary production revealed a depauperate community populated by the endemic 

calanoid Eodiaptomus wolterecki, and Tropocyclops species, in each year sampled (2000, 

2002, 2004). Poor reproductive potential was suggested by the low proportion of egg- 

bearing individuals (less than 0.1%) in each year.
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CHAPTER 1 -  GENERAL INTRODUCTION AND OVERVIEW OF 
LIMNOLOGY OF THE MALILI LAKES

1.0 — General Introduction

1.1 -- Hotspot for biodiversity

In 2000, the biogeographical area of Wallacea was named one of 20 hotspots for 

global conservation priorities (Myers et al., 2000). This designation was based on the 

criterion of exceptional levels of terrestrial biodiversity and high degree of threatened 

habitat.

The species composition unique to the biogeographical region of Wallacea was 

first described and delineated by Alfred Wallace in 1860. ‘Wallace’s line’ represents the 

faunal break demarcated by an imaginary line that begins south of the Philippine Islands, 

curving down to separate the Indonesian islands of Sulawesi, Borneo and Bali from 

Lombok. Within the Indonesian islands on one side of the line, the Asian fauna reveals 

faunal characteristics found in Eurasia. On the other side of the line exists a unique 

Australian fauna. Wallace expected that the island of Sulawesi would maintain a rich 

Oriental fauna, but the fauna of this region was markedly different from that in either the 

Eurasian or Australian zones. Sulawesi exhibited a highly endemic, yet species-poor 

assemblage (Whitten et al., 1987). About 14 million years ago, Sulawesi was formed by 

tectonic collisions associated with the Eurasian and Australasian plates (Hamilton, 1978), 

resulting in its geographical isolation. It is largely a result of this geographical isolation 

that the fauna of Sulawesi is so highly endemic.

1
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1.2 -- Lake Matano and downstream Malili lakes

These high levels of endemism are also exemplified by the Malili Lakes system 

(Figure 1.1), found in central Sulawesi (formerly Celebes). Lake Matano, lies at 

S02°28.124, E1210 18.93. Downstream from Lake Matano, separated by a decline of 

70 m, is Lake Mahalona, which drains into Lake Towuti. Lake Masapi also lies within the 

Malili Lakes watershed, but is not directly connected to the downstream lakes.

Lake Matano is ancient, estimated at 1-4 million years old (Haffner et al., 2001). 

The lake harbours a highly endemic community, in which scientific interest has relatively 

recently peaked. High levels of endemism have been recorded in the diatom community 

(Hustedt, 1938, 1942; Bramburger et al., 2004), gastropods (Sarasin and Sarasin, 1897; 

von Rintelen and Glaubrecht, 2003) and the fish (Kottelat, 1990a, b; c, 1991; Roy et al., 

2004).

To date, however, no detailed studies have focused on the community structure of 

the phytoplankton and zooplankton assemblages in this system. The first account of the 

zooplankton of Lake Matano stems from the Woltereck expedition of 1932. During this 

expedition, Brehm collected water samples containing a calanoid copepod which he 

described as Eodiaptomus wolterecki, determined to be endemic to the lake. The 

Woltereck expedition spanned the Philippines, Hawaii, Sulawesi (then Celebes), Flores, 

Bali and Java. However, the expedition aimed to be expansive not comprehensive. In 

1950, John Langdon Brook described the patterns of endemism that had been observed in 

the Malili Lakes, citing E.wolterecki as the only recorded pelagic zooplankter. In 1987,

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.H. Fernando visited the Malili Lakes and noted the paucity of the zooplankton 

assemblage in Lake Matano (Fernando, 1987). Between 1991 and 1994, the Indo-Finnish 

Expedition Indodanau performed a survey of the basic water chemistry of the major lakes 

in Sumatra, Java, Bali, Lombok, Sulawesi and Irian Jaya, including Lake Matano 

(Lehmusluoto et al., 1997). Whitten et al. (1987) described the ecology of Sulawesi and 

cited the unusual endemism characteristic of the lakes, but noted that too little was known 

about the biology of the lakes to sufficiently contribute to conservation efforts. C.S. 

Reynolds, in 2000, cited Lake Matano as one of the great lakes of the world, requiring 

further study.

Haffner et al. (2001) described Lake Matano as having a very simplified 

biological system, due to its highly oligotrophic nature. Examining the phytoplankton and 

zooplankton communities has the potential to yield important information about the 

factors governing the primary and secondary production base in this unique tropical 

freshwater system. Moreover, anthropogenic activity in and around Lake Matano has 

increased substantially over the last few decades. This development creates an immediate 

need to acquire information on processes regulating community dynamics in an ancient 

and relatively isolated lake system. Anthropogenic impact is predicted to pose a threat to 

the endemic biodiversity and heightens the need to evaluate biological properties such as 

composition and abundance.

3
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1.3 — Understanding community assemblage

Processes governing community assemblage and organization of the production 

base have long been a focal point of ecology. Hutchinson (1967) explored the ‘paradox of 

the plankton’, the co-existence of a diverse selection of plankton as a result of 

intermediate disturbance in an apparently homogeneous environment. Tilman (1996) 

demonstrated a unimodal trend in species diversity with increasing resources. Lewis 

(1980) demonstrated that the structure and complexity of zooplankton communities in the 

limnetic zone is more directly influenced by predation than by the resource gradient. 

Island biogeography theory (MacArthur and Wilson, 1967) predicts that species richness 

will increase with elevated dispersal rates in the absence of competition. The abiotic and 

biotic factors of a lake or region will produce variation in the success of this colonization 

after a species has arrived in a new environment (Dodson, 1992; Hobaek et al., 2002). 

Habitat size plays a significant role in island biogeography. Lake area increases the 

likelihood of immigration, and with fewer restrictions on population size, lake volume 

lowers the potential for random extinction (Hobaek et al., 2002). Furthermore, larger 

lakes offer greater potential for a diversity of microhabitats. For instance, large lakes 

offer more variation in substrate type or more refuges from predators than shallow lakes. 

Deep lakes have the potential for higher vertical microhabitat exploitation.

As modem research attempts to meet challenges such as climate change and 

eutrophication, it becomes increasingly obvious that understanding: ‘what lives where 

and why’ (Reynolds et al., 2000) is as important now as it was during the early days of 

limnology. Historically, much of this knowledge has been generated from the study of

4
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smaller lakes in temperate regions, making the extrapolation of information to larger 

scales and a wider variation in latitude difficult or incorrect. Phosphorus deficiency, for 

example, was originally an accepted paradigm of freshwater nutrient limitation 

(Schindler, 1977). Subsequent enlargement of the lake nutrient dataset revealed that, 

while phosphorus limitation was common in temperate lakes, nitrogen was commonly the 

limited nutrient in tropical lakes (Lewis, 2000).

1.4 — Ancient lakes of the world

The vast majority of lakes are very young; few exceed the age of 10 000 years 

(Schon and Martens, 2004). Consequently, most lakes contain young assemblages. This 

restriction does not allow extensive insight into the influence of historical processes on 

shaping species, populations and communities. Ancient lakes are usually associated with 

major fault lines, prolonging the existence of these lakes, despite the continual 

sedimentation by which lakes disappear on geological timescales (Schon and Martens, 

2004). Ancient lakes provide optimal model systems with which to elucidate selective 

processes operating to determine and regulate community structure.

Most ancient lakes are characterized by very high levels of diversity as well as 

very high levels of endemism, so extant community diversity may be linked to historical 

and current processes (Schon and Martens, 2004). Since extensive radiation of endemic 

species in a community takes time, the richness of the lacustrine community is influenced 

by the stability of an ancient lake throughout its existence. The presence of potentially 

exploitable habitats drives endemic radiation over long time periods. This concept is well

5
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illustrated by the species flock of more than 350 amphipods in Lake Baikal, which 

accounts for 20% of all freshwater amphipod diversity (Verburg et al., 2003). Several of 

these species have diversified enough to penetrate the deep water habitat with adaptations 

such as concentrated hemolymph (Zerbst-Boroffka et al., 2000). Conversely, an ancient 

lake in which catastrophic events have occurred may contain a biologically young 

community (Schon and Martens, 2004). However, an ancient lake that has undergone 

intermediate fluctuations may have enhanced diversity. For instance, there is some 

evidence that the cichlid flock in Lake Tanganyika owes its extensive radiation to 

fluctuating water levels that may have separated populations through time (Livingstone, 

1999).

While ancient lakes provide invaluable records of the fluxes and radiations of 

historical communities, through which extant assemblages may be better understood, the 

knowledge that may be gained from them is susceptible to loss. For instance, Lake 

Tanganyika, one of the world’s oldest and deepest lakes, has not exhibited the ecological 

resistance to disturbance that might be predicted, based on the richly established, highly 

diversified nature of its community (Livingstone, 1999). According to Verburg et al. 

(2003), climate change has increased the resistance of Lake Tanganyika’s thermal 

stratification to seasonal mixing. This lack of mixing has resulted in significant changes 

in lake chemistry such as reduction in the depth of oxygen penetration and concentrations 

of soluble reactive phosphorus (Verburg et al., 2003). Within the past century, 

community effects have become evident such as reduction in phytoplankton biomass and 

diversity and disappearance of deep water faunal populations (Verburg et al., 2003;

6
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Livingstone, 1999). Detailed recordings of ancient lake ecology are important for tracing 

the magnitude of an effect such as that of global climate change on Lake Tanganyika.

1.5 -- Large lakes of the world

Reynolds et al. (2000) provided a comprehensive study of the mechanisms of 

community organization in the phytoplankton communities of the large lakes of the 

world, correlating biological organization with important physicochemical 

characteristics. The lakes that Reynolds et al. selected for this survey drew from the 

morphometric data of Herdendorf (1982) and included 12 of the largest inland lakes by

•a 'y
volume (>1500 km ), the nine largest lakes in area (>80 000 km ) and five of the deepest 

by depth (>450 m). The study qualified the distribution of the dominant phytoplankton 

assemblages as a function of the properties of these lakes, including density stratification, 

thermal-bar formation, ice cover, the depth of the surface mixed layer, water clarity and 

parameters of basic water chemistry and phosphorus concentrations. Ultimately,

Reynolds et al. provided a broad ecological overview of the status of some of the major 

freshwater bodies in the world, and his models provide a basis for future research. 

Reynolds et al. (2000) states that Lake Matano is not included in the models due to the 

paucity of studies available, representing an omission of some interest.

There is a need to better understand the processes regulating the biological 

production of Lake Matano, one of the relatively few ancient lakes worldwide as well as 

a large freshwater resource. The following discussion aims to investigate whether Lake 

Matano fits the model proposed by Reynolds et al. (2000). A comparison with
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downstream lakes, Mahalona and Towuti, is also presented. These lakes (Table 1.1) 

provide a regional frame of reference for the plankton community assemblages of Lake 

Matano within its relatively isolated island lake system.

1.5.1 — Morphology of Lake Matano, downstream lakes and other large lakes of the 

world

The morphology of the Malili Lakes has been previously described in Brooks 

(1950), Whitten et al. (1987) and Haffner et al. (2001). Morphological characteristics of 

these three lakes are summarized in Table 1.2. As can be seen, the depth of Lake Matano 

(590 m) clearly classifies it as one of the world’s large lakes.

1.5.2 ~  Seasonal stratification and mixing

Reynolds et aV  s list of the large lakes of the world was classified based on 

Lewis’ mixing types (1983). For the most part, these lakes are deep and stratified for 

most of the year. The classifications of the Malili Lakes and lakes with similar 

classifications are presented in Table 1.3.

The data from Lake Matano (Figures 1.2-1.4) suggest that the lake is fully mixed 

to a depth of 80-90 m. At this depth, an oxycline begins, declining from >4 mg/L. A 

thermal structure occurs near a depth of 100 m, but is weak, suggesting that Lake Matano
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is isothermal or nearly isothermal (Whitten et al., 1987; Haffner et al., 2001). Chemical 

characteristics such as concentrations of trace metals and nutrients also change at 100 m. 

This change in chemical characteristics indicates that the fully mixed depth of the water 

column does not extend beyond this depth. However, preliminary data suggest that trace 

quantities of oxygen may be detected below the mixed layer (Haffner et al., 2001). This 

finding may be the result of density currents set up by the regular heavy rainfall events, 

which transport oxygen below this weakly stratified layer (Haffner et al., 2001), 

combined with low anaerobic bacterial activity. In the tropics, the tendency towards 

anoxia will be amplified by the decline in oxygen solubility as well as the general lack of 

a full seasonal overturn and elevated microbial metabolic rates (Lewis, 2000). Therefore, 

the presence of even trace quantities of oxygen in deep, tropical lakes should be noted, as 

such lakes are subject to rapid anoxia (Lewis, 2000). Complete mixing refers to 

homogenization of the entire water column (Hutchinson and Loffler, 1956), while the 

available data suggest that Lake Matano is ‘pseudo-meromictic’ (Bramburger et al., 

2004). Lewis (1983) classified fully meromictic tropical lakes as warm monomictic, but 

suggested that they could remain meromictic for years, whereas Reynolds et al. (2000) 

makes the distinction between warm meromictic lakes and warm monomictic lakes.

Lakes Mahalona and Towuti (Figures 1.3 and 1.4) are classified as continuous 

warm polymictic lakes, along with lakes such as Tchad and Patos. ‘Continuous, warm 

polymictic’ refers to lakes with no seasonal ice cover, stratifying at most for a few hours 

at a time (Lewis, 1983). Such lakes rarely extend beyond 25 m in depth, are too shallow 

to sustain stable stratification and mix continuously, or at least nightly (Lewis, 1983).

9
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Lake Mahalona is relatively small and shallow, with a maximum depth of 60 m so its 

near isothermal state is not unusual for a tropical lake. Compared with other warm 

polymictic lakes, however, Lake Towuti is exceptional in that it appears to be 

consistently isothermal over its depth of approximately 200 m and presents a challenge to 

the classification. In deeper, temperate lakes such as Crater Lake and possibly Lake 

Tahoe, full column overturn may occur once or twice a year as a result of significant 

seasonal temperature change. Such overturns occur frequently at higher latitudes, but are 

much rarer in the tropics due to the lack of seasonal variation (Lewis, 1983). Moreover, 

stratification is also more stable in the tropics because even slight changes in temperature 

produce definite density changes, since density at high temperatures responds more 

quickly to small changes in temperature (Lewis, 2000). It is not possible at this time to 

postulate what maintains the isothermal nature of Lake Towuti. The unusual occurrence 

of isothermal conditions is shared by another lake in the region, Lake Moat (Whitten et 

al., 1987). As lakes Towuti, Matano and Moat all exist in tectonically active regions, it 

has been proposed that deep hot springs are present in these lakes (Whitten et al., 1987; 

Haffner et al., 2001). This hypothesis is supported by a study that reported an increase of 

1°C in the deepest waters of Lake Towuti (Whitten et al., 1987).

Other minor factors that contribute to mixing in this region include high rates of 

evaporation and heavy precipitation. Although pronounced seasonality does not exist in 

the region, periods of heavy precipitation do occur. Furthermore, lakes Matano and 

Towuti are fed by many small surface and groundwater streams that deliver cooler waters 

into the lake. The Malili Lakes, in common with all lakes at this latitude, will experience
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higher and more consistent annual irradiance as well as more consistent irradiance 

(Lewis, 2000).

In contrast to other large tropical lakes, there is no evidence of a thermal bar in 

Lake Matano. The steeply sloping sides likely preclude the formation of a thermal bar 

and contribute to horizontal homogeneity. As a result, low horizontal heterogeneity in the 

plankton distribution should exist in Lake Matano. More information is required to assess 

the likelihood of thermal bar formation in Towuti.

1.5.3 — Other physicochemical characteristics

Reynolds et al. (2000) presented the phytoplankton distributions of his lake 

database as a function of the following physicochemical characteristics: latitude, mean 

depth, Secchi depth, ratio of Secchi depth to mean depth, lake pH and nutrient status. 

Likewise, the physicochemical properties of Lake Matano and the downstream lakes are 

presented in Table 1.4 for comparison with Reynolds et al.'s dataset. Significant trends 

are discussed below.

In terms of depth, morphology and latitude, Lake Tanganyika compares most 

closely with Lake Matano. Other lakes located at comparable latitude to the Malili Lakes 

include lakes Victoria, Kivu and Toba. Lakes Toba, Tanganyika and Kivu are meromictic 

lakes; Lake Matano may be classified as near-meromictic for the purposes of this study. 

In contrast, lakes Towuti and Mahalona are classified as warm polymictic. As discussed
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above, this classification is particularly unexpected for Lake Towuti, because the 

grouping consists of lakes Bangweolo, Eyre, Patos and Tchad, very shallow lakes with 

mean depths of 1.0, 2.0, 3.1 and 4.3 m, respectively. In addition, these lakes are mid

latitude lakes. Lake Matano is most comparable in depth to Lake Tanganyika and only 

surpassed by Lake Baikal, while Lake Towuti has similar depth to lakes Kivu and Toba.

The ultra-oligotrophic status of the Malili Lakes compares most closely with Lake 

Toba and Great Bear Lake. Low biomass in Lake Toba, located on Sumatra Island, 

Indonesia, may be attributed to low pH and high volcanic sulphur releases. In contrast, 

Great Bear Lake is a high latitude, arctic lake and, with the exception of Lake Toba and 

the Malili Lakes, all other ultra-oligotrophic lakes are also temperate to Arctic. Moreover, 

lakes Matano and Towuti are anomalies when water clarity is considered. Lake Matano 

ranks among the top four clearest lakes together with Lake Tahoe, Crater Lake and Great 

Bear Lake, with Secchi depths of 24-36, <34 and <29 m, respectively. Lakes Matano and 

Towuti are clearer than lakes Baikal (with Secchi depth 5-24 m), Malawi (with Secchi 

depth 13-23 m), Issyk-kul (with readings of 13-20 m) and Superior (with Secchi depth 

10-17 m). With the exception of Lake Malawi, other tropical lakes have mid to very low 

water clarity. Secchi depths as low as 0.1 m are common (Reynolds et al., 2000).

On the basis of these characteristics, Lake Matano is most closely aligned with the 

most unproductive, cold climate, Arctic type lakes. In Arctic lakes, high water clarity has 

been correlated with a combination of low nutrient levels and low temperature, which act
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in synergy to create extremely low levels of primary production (Markager et al., 1999). 

Lake surveys have verified a linear relationship between primary production and latitude, 

with primary production highest at the equator and decreasing towards the poles (Lewis, 

1996), making Lake Matano a notable exception. The trend towards highest production at 

the equator is the result of greater quantities of consistent annual irradiation, sustained 

high temperatures and optimal nutrient cycling in the tropics (Lewis, 1996, 2000).

The ratio of Secchi depth to mixing depth is relatively high in Lake Matano and is 

similar to that found in lakes Malawi, Crater and Tahoe. Mixing to 100 m occurs in Lake 

Matano, with approximately 50 m of photic mixing and a deeper 50 m of aphotic mixing. 

With ratios of less than 0.1, much of the mixing in lakes Towuti and Mahalona will occur 

under light limitation.

1.6 — Conclusions and further objectives

Based on the available data, Lake Matano is classified here as warm and pseudo- 

meromictic, but demonstrates similar physical processes to lakes Malawi, Crater and 

Tanganyika. Lakes Towuti and Mahalona are nearly isothermal, a characteristic of 

shallow lakes and thus not what might be predicted, especially for Lake Towuti. The 

ultra-oligotrophic status of Lake Matano and the downstream lakes is representative of 

clear, unproductive Arctic-type lakes.

The following chapters provide the first detailed recording of community 

composition of the plankton of Lake Matano. The purpose is to determine whether the
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primary production of Lake Matano is limited and to explore possible factors regulating 

lake production. Firstly, the phytoplankton community of Lake Matano is compared with 

that of the downstream lakes Towuti and Mahalona, as well as that of Reynolds et al. ’s 

(2000) other large lakes of the world. The second chapter evaluates whether nutrient 

limitation restricts growth in the Lake Matano phytoplankton community or, 

alternatively, toxicity limits growth (Chapter 3). The last chapter characterizes and 

describes the zooplankton community dynamics. In this chapter, the first null hypothesis 

is that no vertical structure exists in the zooplankton assemblage in the well-mixed upper 

waters of the lake. This hypothesis is examined using the following parameters: 

abundances, reproductive potential, size distributions, 813C and 815N isotopic ratios and 

community composition of zooplankton with depth. Secondly, the hypothesis that 

predation effects regulate the secondary production is explored. This hypothesis is 

compared with the influence of bottom-up effects.
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Table 1.1 Locations for water chemistry sampling, Malili Lakes, 2004.

Lake
Sampling

coordinates
S 02°28.124,

Matano E 121° 18.93
S02°41.902,

Towuti E 121° 33.298
S 02°35.121,

Mahalona E 121° 29.129
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Table 1.2 Physical and geographical characteristics of Lake Matano, Towuti and 
Mahalona (Brooks, 1950; Whitten et al., 1987; Haffner et al., 2001).

Lake
Area
(km2)

Maximum 
depth (m)

Elevation
(m) Latitude Longitude

Matano 164.08 590 396 2S 121E
Towuti 560 200 293 2S 121E
Mahalona - 60 319 2S 121E
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Table 1.3 Classification of mixing in Lake Matano and downstream lakes and 
comparison with other lakes of similar mixing category.
(* denotes a large lake described in Reynolds et a l ’s model (2000)

Malili Lakes & Reynolds’ 
Lakes of Same 
Classification

Ice
Cover Thermal Stratification Mixing Depths

Meromictic lakes
Tanganyika*
Malawi*
Crater*
Toba*

Kivu*

40-50m
<40m

Rare 20-70m
<3 00m all year

<70m all year

100-250m

Deepens to ~200m

Exposed to strong S.E. 
winds

Near-meromictic lakes

Matano Presumed 100m all year

Deepens with rain- 
induced density 

currents, 100-120m

Continuous warm polymictic

Patos*

Tchad*

Eyre*

Bangweolo*
Towuti
Mahalona

Isothermal
Isothermal

Typical shallow near 
continuous mixing 

Typical shallow diel 
mixing 

Presumed typical 
shallow near 

continuous mixing 
Presumed typical 

shallow near 
continuous mixing 

Mixed to depth 
Mixed to depth
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Table 1.4 A comparison of the geomorphometric details of the Malili Lakes and the
great lakes of the world (table adapted from Reynolds et al., 2000. * Details o f  
the lakes: Herdendorf 1982, 1990; Beeton, 1984; cited in Reynolds, 2000)

Lake Latitude

Max.
depth

(m)

Secchi-
disc

depth
(m)

Secchi-
depth/mixed

depth
SRP

(pg/L)
TP

(Pg/L)
Great Bear* 66 N 446 <29 >0.4 <0.1
Great Slave* 62 N 614 4-17 0.07-0.57 3-8
Onezhskoye* 62 N 120 3.6-7.5 0.13-0.38 5-10
Ladohskoyw* 61 N 230 1.5-5 0.03-0.20 13-40
Baikal* 53 N 1741 5-24 0.007-1.2 10-60
Winnipeg* 53 N 18 0.3-2 0.02-0.13 2-8
Superior* 48 N 407 10-17 0.07-0.70 2-3
Balkash * 46 N 26.6 0.4-12 0.67-2 61
Huron * 45 N 229 1-8 0.02-0.32 4-5
Michigan* 44 N 282 9-13 0.11-0.52 <20 10-30
Ontario* 44 N 245 2-6 0.02-0.27 <20 <30
Crater* 43 N 589 <=34 0.49-1.7 <18
Issyk-kul* 43 N 668 13-20 0.05-1.0 2-4
Erie* 42 N 64 5-9 0.06-0.41 9-25
Tahoe* 39 N 505 24-36 0.10-0.72 <3 <6
Dangting* 29 N 30.8 0.1-0.3 0.01-0.04 <5
Tchad* 14 N 12 0.1-0.7 0.03-0.18
Nicaragua* 12 N 70 <5? <0.3?
Turkana* 4 N 73 1-4.5 0.03-0.16 <786 2400
Toba* 3N 529 0.2-0.6
Victoria* 1 S 84 0.2-2.5 0.01-0.06 <6 <12
Kivu* 2 S 480 <55
Tanganyika* 6 S 1471 12-15 0.05-0.35 4-10
Bangweolo* 11 S 5
Malawi* 12 S 706 13-23 0.16-0.60 1-10
Titicaca* 16 S 281 5-10 0.05-0.20 <23 39-331
Eyre* 29 S 5.7 250-910 <340
Patos* 31 S 5 0.1-2 0.05-1.0 <1000
Matano 2 S 590 23 0.23 <2 <2
Mahalona 2 S 60 5.5 0.09 <2 <2
Towuti 2 S 200 19 0.11 <2 <2
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Matano

Mahalona

Towuti

Figure 1.1 Map of the Malili Lakes, Sulawesi Island, Indonesia.
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Figure 1.2 Oxygen, conductivity, temperature and pH profiles of the top 120 m of 
Lake Matano, (Hydrolab data) August, 2004.
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Figure 1.3 Oxygen, conductivity, temperature and pH profiles of the top 120 m of Lake 
Mahalona. (Hydrolab data) August, 2004.
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CHAPTER 2 -  REGULATION OF THE PHYTOPLANKTON ASSEMBLAGES 
OF THE MALILI LAKES

2.1 — Introduction

Ecology involves the study of the distributions of organisms and their 

interrelationships with their environment and with each other. The pelagic zone of 

lacustrine ecosystems has long inspired ecologists seeking to better understand the rules 

of community assemblage (Lund, 1965; Hutchinson, 1967; Lewis, 1990). The epilimnia 

of large lakes operate on variable spatial and temporal scales (Reynolds, 1994) that 

present a complex environment regulating the development of plankton populations and 

communities (Reynolds, 1994). With the increasing necessity to respond to contemporary 

freshwater conservation challenges, knowledge of these processes becomes increasingly 

important.

Therefore, there is a need for effective ecological tools of classification that will 

accurately identify significant functional and structural roles and adaptations. Phycology 

and plant ecology have met this need with systems for classifying vegetative associations 

(Reynolds, 2002). These associations are functional units that may or may not be 

phylogenetically related, as long as the species associations exhibit similar requirements 

and predominate under certain conditions. Classifications should provide a basic 

functional unit with which to characterize community processes in an aquatic ecosystem. 

Reynolds et al. (2000), proposed a qualitative model with which to classify dominant 

phytoplankton associations and to correlate these associations with important lake
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physicochemical characteristics (see Chapter 1). This model has been used to compare 

the phytoplankton communities in the large lakes of the world (Reynolds et al., 2000).

Insufficient information was available to include the pelagic plankton system of 

Lake Matano in the Reynolds et al. (2000) model (see Chapter 1). Lake Matano is one of 

the few ancient lakes of the world possessing a highly endemic community, yet relatively 

few studies have been conducted on the lake. The goal of this study was to determine 

whether the community assemblage of the limnetic phytoplankton of Lake Matano is 

comparable to Reynolds et al. ’s qualitative model for large lakes of the world. In 

addition, the phytoplankton communities of the downstream lakes, Mahalona and 

Towuti, provide a regional comparison to understand factors regulating the 

phytoplankton assemblage at a local scale.

2.2 -  Materials and Methods

The sampling site for collection of phytoplankton in each lake corresponded with 

the central location chosen for water sampling. Kemmerer bottle samples were collected 

at successive 10 m depth intervals, down to a depth of 110 m in lakes Matano and Towuti 

and to a depth of 60 m in Lake Mahalona. One sample of five hundred mL of water was 

collected at each of these depths and was preserved with Lugol’s solution in 

sedimentation jars. These containers were refrigerated and phytoplankton sedimentation 

continued undisturbed for two weeks. After the completion of the sedimentation interval, 

the excess water above the sedimentation zone was gently siphoned from the jars and the 

concentrated plankton samples were stored for analysis. Samples of the supernatant were
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also taken and examined to verify the efficacy of the sedimentation process. The primary 

production of the lakes was not directly quantified as a result of logistical difficulties 

resulting from the low standing biomass observed.

One mL aliquots from the phytoplankton samples were placed in 5 mL 

sedimentation chambers for 24 hours prior to analysis. Phytoplankton were 

microscopically analyzed under 200 to 600x magnification using a Leica® inverted 

microscope and identified according to Bramburger (2004) and Prescott (1978). Three 

subsamples were analyzed for each sample, which exceeded 100 counts of individuals of 

the most dominant species. The mean count for each species was used to generate a 

profile of composition and abundance as a function of depth. The volumetric dimensions 

of 30 individuals from each species were measured using Openlab® 3.15 image analysis 

software and the mean dimensions were used to calculate the biovolume for each species, 

in accordance with the methodology and formulation presented in Sun and Liu (2003). 

Biomass was also estimated with depth, based on volumetric relationships.

2.3 ~  Results and Discussion

It is possible to qualitatively demonstrate the presence or absence of significant 

relationships between the nature of a lake and its phytoplankton composition (Reynolds 

et al., 2000). Reynolds et al. (2000) detailed the distribution of such assemblages among 

his selected lakes, using primarily taxonomic categories of phytoplankton, proposed by 

Hutchinson in 1967. These assemblages are presented in Table 2.1. In addition, 

cryptomonads, picoplankton and nanoplankton may be prominent members of the 

phytoplankton community. However, less quantitative information is available regarding
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their presence (Reynolds et a l, 2000). Figure 2.1 presents the distribution of the 

phytoplankton assemblages among Lake Matano and other large lakes and includes the 

downstream Malili Lakes. As latitude has been proposed as an important factor 

regulating the distribution of the phytoplankton assemblages, an axis of descending 

latitude is introduced here.

The abundances, compositions and representative phytoplankton assemblages 

specific to lakes Matano, Towuti and Mahalona are presented in Figures 2.3, 2.4 and 2.5, 

respectively. These assemblages are compared with the dominant assemblages of 

phytoplankton found in Reynolds et al. ’s lakes (Figure 2.2). Relative to Reynolds et a V s 

selection of lakes (Figure 2.6), which vary widely in characteristics such as depth, 

nutrient base and latitude, analysis of the phytoplankton communities for the Malili 

Lakes in August, 2004 reveals that the biomass of the primary producers in the three 

lakes are severely impoverished.

The phytoplankton community of Lake Matano was dominated by dinoflagellate 

plankton and non-nitrogen fixing cyanobacteria Numbers of Merismopedia peak in 

abundance at the surface, with 3.1 x 103 (se=3.7 x 102) cells/L as the highest abundance 

of cells at this depth (Figure 2.3). According to the biomass profile of Lake Matano, the 

peak mean biomass of 1.3 x 10'2 (se= 7.0 x 10'3) mg/L occurred in the upper waters 

(Figure 2.7). This biomass is comparable to that estimated from a brief pilot study on the 

lake, conducted in 2001, in which a biomass of 6.0 x 10’2 mg/L was calculated
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(Hamilton, unpublished data). A general survey of Indonesian lakes undertaken by 

Lehmusluoto et al. (1997) reported a lower biomass of 2 x 10' mg/L. In comparison with 

the selection of other large lakes, the biomass of Lake Matano presents an extreme in the 

spectrum of biomass yield (Figure 2.6). This yield compared most closely with Great 

Bear Lake, for which the biomass peak has been recorded as 6.0 x 10"2 mg/L. Biomass 

throughout the upper waters of the lake was predominated by Peridinium, which peaked 

at the surface with 1.1 x 10‘2 (se= 6.3 x 10'3) mg/L, with 3.2 x 102 cells/L (se= 1.9 x 102). 

Biomass declined until a second peak appeared at a depth of approximately 70 m. Below 

this depth, most species declined to rarity, although numbers of Microspora increased 

from 70 to 100 m, peaking at 100 m, with an abundance of 4.0 x 102 (se= 115) cells/L.

At this depth, some cells, consisting largely of Microspora and some diatom frustules, 

assumed a moribund condition, so the peak represented an accumulation of cells that had 

been mixed from the upper growth zones. In samples from 110 m, cell biomass and 

counts were negligible and any cells detected appeared moribund.

Phytoplankton biomass was lowest in Lake Mahalona (Figure 2.6), despite the 

small area and relatively shallow nature of the lake. The comparatively shallow Secchi 

disk depth (24 m) is not caused by standing crops of phytoplankton and the shading 

caused by the lake’s turbidity may partially explain the paucity of phytoplankton. Like 

the community structure of Lake Matano, non-nitrogen fixing cyanobacteria dominated 

phytoplankton numbers (Table 2.1). Aphanothece represented the dominant species in the 

upper 30 m, reaching 3.2 x 104 (se=3.0 x 103) cells/L at a depth of 10 m and Snowella 

and Merismopedia contributed largely to the remainder of the cell counts. Microspora, a
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chlorophyte, was also detected and represented much of the biomass peak that occurs at 

10 m, reaching 4.5 x 10"3 (se= 6.4 x 10'4) mg/L. Total biomass at this depth was 5.3 x 10'3 

(se=1.8 x 10'3) mg/L and biomass declined thereafter, becoming barely detectable below 

30 m.

Biomass was also depressed in the surface waters of Lake Towuti, although the 

standing crop was greater than that observed in lakes Matano or Mahalona (Figure 2.4).

Despite the well-mixed nature of Lake Towuti, a clear peak in biomass occurred at a

2 2depth of 60 m, with 9.0 x 10' (se-1.5x10’ ) mg/L. The existence of such a peak 

suggests that the phytoplankton distribution is regulated through the water column, 

although the regulating process cannot be determined at this time. Assuming no strong 

chemical gradient within the mixed waters, light attenuation with depth will provide a 

gradient that phytoplankton will track. In numbers, the lake was also dominated by 

cyanobacteria. Snowella, which reached a peak abundance of 2.0 x 105 (se=1.4 x 105)

cells/L, was followed by Merismopedia and Aphanothece in abundance (Figure 2.4).

• * 2  2Microspora provided the highest biomass, reaching 7.6 x 10' mg/L (se=1.7 x 10') at 60

m. Snowella and Aphanothece also contributed prevalently to the biomass throughout the 

water column. Lake Towuti exhibited higher production potential than Lake Matano and 

it is likely that this condition persists throughout the year. Contrary to Lake Matano, open 

water fisheries are common in Lake Towuti and the lake has been known to support top 

level predators, including crocodiles.
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Representation by the other phytoplankton assemblages such as diatoms, 

chrysophyceans and nitrogen-fixing cyanobacteria occurred in very low numbers or not 

at all in the three lakes. Diatom representation in Reynolds et al.'s lakes is common and 

most of the assemblages are dominated by diatoms for a portion of the year (Reynolds et 

al., 2000). Cyclotella figures largely in the open waters of these lakes, particularly deep, 

oligotrophic lakes with abundant light (Reynolds et al, 2000). No representatives of the 

group of centric diatoms were found in the open waters of any of the Malili Lakes and 

were also conspicuously absent from the periphyton of the littoral zone (Bramburger, 

2004). Interestingly, the Cyclotella assemblage is represented in regionally proximal 

Lake Poso (Haffner, unpublished data). Diatom representation in the open waters of Lake 

Matano and the downstream lakes was predominantly limited to Brachysira longirostris 

and Surirella wolterecki. These species were present, but were limited in terms of 

numbers and biomass. It is interesting to note that neither Brachysira longirostris or 

Surirella wolterecki are considered typically planktonic species. Deteriorated frustules of 

Surirella species were also observed in low numbers throughout the samples from Lake 

Matano and, to a lesser degree, in Lake Towuti, but were not quantified.

Chrysophytes and cryptophytes were not found in any of the Malili lakes. 

Pediastrum and Scenedesmus represented the extent of the chlorophyte grouping within 

the Malili Lakes. These phytoplankton are common among the large lakes and are more 

often associated with eutrophic lakes such as lakes Bangweolo, Tchad, Victoria and 

Winnipeg (Reynolds et al., 2000). No nitrogen-fixing bacteria were observed in the
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samples from the three Malili lakes. Along with Lake Issyk-kul, the Malili Lakes are an 

exception to the affinity of Merismopedia for weakly acidic lakes.

Reynolds’ qualitative model led to the proposal that the important 

physicochemical characteristics of a lake such as pH, Secchi depth, total phosphorus and 

maximum or mean depth are not sufficient to provide a cohesive trend by which to 

delimit the distribution of the major phytoplankton assemblages. Latitude appears to 

provide the best indication of the dominant phytoplankton assemblages inherent in a lake 

(Reynolds et al., 2000). This finding may be mediated by water temperature, day length 

and annual irradiance, or even the availability of carbon dioxide (Reynolds et al., 2000). 

Geographical proximity and the geological nature of the catchment may also play a role. 

Lake Matano and the downstream Malili Lakes exhibited dominant phytoplankton 

assemblages comparable to those found at similar latitude, where representation by 

cyanobacteria becomes more common with descending latitude (Figure 2.1). Non-N- 

fixing cyanobacteria (assemblage 10) are the dominant phytoplankton assemblage in the 

Malili Lakes and such non-N-fixing, as well as fixing (assemblage 9) cyanobacterial 

assemblages, also predominate in lakes Victoria, Kivu, Tanganyika and Malawi. These 

assemblages are rarely found above 14°N. However, in comparison with Reynolds et al. ’s 

lakes along a spectrum of latitude, the diversity and species richness of the observed 

assemblages is poor in the Malili Lakes.
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The distribution of such phytoplankton groupings may rely to some degree on a 

gradient of morphometric adaptations associated with a gradient of environmental 

conditions. Although the primary basis for delineation of the phytoplankton assemblages 

is strong co-occurrence rather than phylogenetic closeness, close morphometry is 

observed within the taxa. The functional groups of phytoplankton have similar 

morphometries that are quantifiable by descriptors such as biovolume (Reynolds, 2002). 

A plot of the size fractions of phytoplankton (in terms of biovolume) with descending 

latitude is presented in Figure 2.2. Dominant size fractions also follow a general 

latitudinal gradient, with a trend towards dominance by smaller biovolume classes 

towards the equator. The Malili Lakes are representative of this trend. The small 

phytoplankton size favored in the Malili Lakes presents several adaptive advantages for 

this dominant phytoplankton assemblage. The small sizes of the dominant cyanobacteria 

will be effective at reducing sinking rates and allowing the cells to remain suspended in 

the water column (Reynolds, 2002). This phenomenon will be particularly important in 

the Malili Lakes, where mixing and sinking out of the euphotic zone (see Chapter 1) 

presents a challenge to the resident phytoplankton.

This distribution of dominant phytoplankton assemblages also appears to correlate 

with a gradient in mixing patterns, from cold monomictic high latitude lakes and dimictic 

lakes, to meromictic and continuous warm polymictic lakes. The cyanobacterial 

assemblages dominate the meromictic and continuous warm polymictic lakes, in which 

the importance of resisting mixing provides a consistent explanation. Smaller sizes may
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also offer a competitive advantage in environments where elevated light and temperatures 

up-regulate metabolic rates, particularly on a limited nutrient base.

2.4 -- Conclusions

This work provides the first detailed description of the phytoplankton community 

of Lake Matano. The Lake Matano phytoplankton community was compared with that of 

the other large lakes of the world to identify the likely factors regulating the primary 

production base. In addition, the analysis included the downstream Malili Lakes.

Differences in biomass occurred among the Malili Lakes. Lake Towuti supported 

a greater biomass than lakes Matano or Mahalona. The particular species in the 

cyanobacterial assemblage that dominated each of the lakes varied (Merismopedia in 

Lake Matano, Snowella in Lake Towuti and Aphanothece in Lake Mahalona), suggesting 

differences in community regulation among the lakes. The biomass profiles of the lakes, 

particularly in fully mixed Lake Towuti, showed vertical structure.

The Malili Lakes were each dominated by a phytoplankton assemblage that 

consisted of non-N-fixing cyanobacteria. The distribution of this assemblage is predicted 

by Reynolds’ model, in which cyanobacteria and small size fractions become common at 

lower latitudes, despite variation in depth, mixing, trophic status and pH among the lakes. 

For instance, such an assemblage predominates in Lake Malawi (12°S), with a mean 

depth of 273 m, a Secchi depth of 13-23 m, a total phosphorus concentration of 1-10

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pg/L. It also dominates Lake Patos (31°S), a continuous warm polymictic lake, with a 

mean depth of 2 m, a Secchi depth of 0.1 to 2 m and a total phosphorus concentration of 

up to 1000 pg/L. Meanwhile, the assemblage is rarely found dominating the northern 

latitudes. Factors correlated with latitude such as light, may play a role in effecting this 

distribution. The latitudinal gradient also correlates with a gradient in mixing types. The 

distribution of the small-celled cyanobacterial assemblages is nearly limited to lakes that 

are meromictic or continuous warm polymictic. The existence of deep partial or full 

continuous mixing makes small size an advantage because small cells are more resistant 

to mixing. This phenomenon is particularly important in the Lake Matano and the 

downstream lakes, in which deep mixing (see Chapter 1) presents a challenge to 

phytoplankton cells.

Although the tendency towards small biovolume and the proliferation of 

cyanobacteria is a common attribute of tropical lakes, Lake Matano and the downstream 

lakes exhibit low species richness in comparison with the suite of lakes chosen by 

Reynolds et al. (2000). Moreover, in comparison with the Reynolds et al. ’s lakes, which 

offer a wide range in terms of nutrient status, latitude, morphology and mixing type, the 

biomass of the Malili Lakes is poor. Indeed, the yield of the phytoplankton standing crop 

is most characteristic of an unproductive Arctic-type lake.
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Table 2.1 Summary of the phytoplankton assemblages presented by Reynolds (2000), in his comparison of the distribution of
dominant assemblages among the large lakes of the world. Comparison of Lake Matano to other large lakes of the world 
references these phytoplankton assemblages.

Phytoplankton Assemblage
Phytoplankton Assemblage Assigned 

Number
Representative Genera in 

Assemblage
1 Cyclotella, Tabellaria

Diatoms:
2 Asterionella, Stephanodiscus 

Surirella, Nitzchia;
3 chrysophyceans;
4 Dinobryon

Oligotrophic chlorococcals 5
6

Sphaerocystis
Botryococcus

Eutrophic chlorophytes 7 Pediastrum and Scenedesmus
Dinoflagellates 8 Peridinium, Ceratium

9 N-fixers, Anabeana

Cyanobacteria 10
11

Microcystis, Merismopedia 
Oscillatoria

12 Spirulina, Arthrospira
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Table 2.2 List of phytoplankton genera (and associated families) detected in the Malii Lakes, August, 2004.

Matano Mahalona Towuti
Family Genera Family Genera Family Genera

Peridiniaceae Peridinium Hydrodictyaceae Pediastrum Hydrodictyaceae Pediastrum
Desmidiaceae Cosmarium Desmidiaceae Cosmarium Desmidiaceae Cosmariun
Brachysiraceae Brachysira Brachysiraceae Brachysira Brachysiraceae Brachysira
Merismopediaceae Merismopedia Desmidaceae Micrasterias Desmidaceae Staurastrum
Merismopediaceae Snowella Merismopediaceae Merismopedia Merismopediaceae Merismopedia
Synechococcaceae Aphanothece Merismopediaceae Snowella Scenedesmaceae Scenedesmus
Surirellaceae Surirella Synechococcaceae Aphanothece Desmidaceae Staurastrum
Microsporaceae Microspora Surirellaceae Surirella Merismopediaceae Snowella
Desmidaceae Staurastrum Microsporaceae Microspora Synechococcaceae Aphanothece

Surirellaceae Surirella
Microsporaceae Microspora
Gomphonemateceae Gomphonema
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11 11
10 10

Lakes (arranged from high to low latitude)

Figure 2.1 Presence/absence of dominant phytoplankton assemblages among the Malili Lakes and Reynold et aV  s (2000) great lakes 
of the world. Phytoplankton assemblages are represented by the designated numbers indicated in Table 2.1. From left to 
right, lakes are arranged from high latitude to near equatorial lakes, demonstrating the distribution of phytoplankton 
assemblages as a function of latitude. Cyanobacterial assemblages 9 and/or 10 dominate Lake Matano and other tropical 
lakes.
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Lake (arranged from high to low latitude)

Figure 2.2 Presence/absence of dominant phytoplankton cell sizes, as biovolume, among the Malili Lakes and Reynold et al.' s 
(2000) great lakes of the world. From left to right, lakes are arranged from high latitude to near equatorial lakes, 
demonstrating the distribution of phytoplankton cell sizes as a function of latitude. Smaller cell sizes dominate Lake 
Matano and other tropical large lakes.
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Figure 2.3 Abundances(± se) of phytoplankton with depth, in the upper 110 m of Lake Matano, 2004.
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CHAPTER 3 -  FACTORS LIMITING PRIMARY PRODUCTION IN LAKE 
MATANO: NUTRIENT LIMITATION

3.1 — Introduction

The term ‘nutrient limitation’ describes at least three possible outcomes 

associated with the influence of nutrients on biological systems: the limitation of the 

growth of current populations, the limitation of net primary production, and the limitation 

of net ecosystem production (Beardall et al., 2001; Howarth, 1988). In lakes, the first 

definition involves the ability of cells to maintain the stoichiometric ratio of C:N:P in the 

phytoplankton population. Redfield (1958) noted that a 16:1 ratio of nitrogen to 

phosphorus was statistically optimal for phytoplankton growth. A cellular N:P ratio near 

16:1 indicates that conditions are sufficient to produce and maintain viable cells, even if 

the population inhabits oligotrophic waters (Goldman et al., 1979). In a system where the 

ratio of N:P is not maintained, adding limiting nutrients may minimize nutrient stress in 

existing populations.

The second definition of nutrient limitation refers to a limitation of the potential 

rate of net primary production, whereby the addition of nutrients sustains the overall 

primary productivity of the system over a specific period of time. This condition may 

result from a change in community composition. For instance, increasingly eutrophic 

conditions favor dominance by previously suppressed cells. The third definition, a 

limitation of ecosystem production and structure, is difficult to quantify and less common 

(Beardall et al., 2001). Nutrient limitation, as it pertains to net primary productivity, is 

the most often utilized concept in aquatic biology.
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Phosphorus was traditionally considered to be the most important nutrient limiting 

factor in freshwater systems (Schindler, 1975). More recent investigations of tropical 

aquatic ecosystems have revealed that tropical lakes were most commonly nitrogen 

limited (Lewis, 1996). Lewis (2002) reviewed the widespread occurrence of nitrogen 

limitation on the growth of phytoplankton in tropical lakes, proposing that this trend 

resulted from either a low external supply of nitrogen to tropical lakes or a high internal 

loss. Lewis (2002) concluded that a high internal loss was most probable. Although 

partitioning of N from the atmospheric reservoir allows nitrogen concentrations to 

‘follow’ phosphorus concentrations (Tyrell, 1999), consistently warmer temperatures 

decrease this effect for two reasons (Lewis, 2002). Firstly, metabolic rates are elevated so 

that new nitrogen is readily assimilated. Secondly, N 2 is less soluble in water at higher 

temperatures. Edmond et al. (1993) observed that upwelling events in Lake Tanganyika 

do not effectively regenerate the limited N supply, as NH3 is readily oxidized to N2 and 

lost to the atmosphere.

Lake Matano, an ancient (1-4 million years old) lake in south-central Sulawesi, 

represents a unique opportunity to provide insight into factors regulating primary 

production. Global interest in the lake relates to the high levels of endemism observed 

within the fish (Kottelat, 1990 a, b, c, 1991; Roy et al., 2004), diatoms (Hustedt, 1938, 

1942; Bramburger, 2004), and gastropods (Sarasin and Sarasin, 1897; von Rittelen and 

Glaubrecht, 2003). In spite of this endemism, the lake supports only a sparse 

phytoplankton community, and species numbers are low (see Chapter 2). The ultramafic 

catchment of the lake is nutrient-poor (Figures 3.1, 3.2) and the lake is ultra oligotrophic,
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as nitrate and phosphate levels rarely exceed detection limits within the upper 100 m. As 

a result, the lake supports very low standing biomass of phytoplankton (see Chapter 2) 

and has an impoverished secondary production base (Fernando, 1987), with no top level 

predators (Haffner et a l, 2001). The lake is very deep (>590 m) and steep-sided, greatly 

restricting the breadth and extent of the littoral zone. There is evidence that mixing 

occurs to a depth of at least 100 m (see Chapter 1). Thus, a further loss of nutrients from 

the dissolved nutrient pool is expected as those cells contained within the standing crop 

are settled out from the euphotic zone. Meanwhile, effective regeneration of cells and 

their nutrients by physical mixing may be prevented by the depth of the lake and the 

persistent thermal structure.

Little investigation has been undertaken to elucidate the nature of the forces 

governing the primary production in Lake Matano. Increasing anthropogenic demands on 

the lake, as a source of freshwater and a wastewater disposal system, augment the need to 

clarify the nature of the regulatory forces at work within the lake. The goal of this study 

was to test the hypothesis that the phytoplankton community of the lake is nutrient 

limited.

3.2 -  Materials and Methods

To investigate the potential role of phosphorus and nitrogen in limiting primary 

production, nutrient addition studies were made to determine the response of the natural 

phytoplankton assemblage to changes in the relative proportions of N and P.
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3.2.1 Phytoplankton inoculum

The low standing biomass of phytoplankton in Lake Matano (<0.01 mg/L) (see 

Chapter 2), necessitated the use of a culture medium to yield an effective quantity of 

newly growing native cells. This medium was dilute (10%) Bold’s Basal solution.

Surface water was collected at mid-day from a central surface location in the open waters 

of Lake Matano (S02°28.124, E121°l 8.893). Ten millilitres of lake water were inoculated 

into the sterile culture media. The culture and an un-inoculated control were exposed to 

sun-lit conditions for two weeks until visible growth in the culture was ascertained by 

visual and microscopic observation. To ensure that the inoculum consisted of elevated 

densities of taxa from the natural assemblages of Lake Matano, 2 mL of the culture were 

inoculated into a second sterile tube of the same media and allowed a growth period of 

three days prior to inoculation at the start of the experiment.

3.2.2 -- Experimental water

Water from a depth of 1 m was obtained for culture water, using a Kemmerer 

sampler at a central lake location. This experimental water was filtered with an 80 pm 

mesh filter to remove interference by zooplankton and the larger colonial phytoplankton.

Nutrient enriched treatments and controls were performed in triplicate and 

consisted of 100 mL of the filtered Lake Matano surface water in transparent plastic jars. 

Nutrient additions consisted of either phosphorus or nitrogen, or both. Phosphorus growth 

limitation was tested using additions of KtfePO^to provide enrichments of 0 (reference), 

0.807, 1.61, 3.23 pM phosphorus (Table 3.1). Growth enrichments of 0 (reference), 1.42,
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3.55, and 5.40 pM nitrogen were performed using additions of NH4NO3 (Table 3.1). 

Concentrations chosen for enrichment were based on literature values for algal cultures.

A set of replicate cultures containing a common bottled drinking water (Aqua 

brand) as a culture medium was also introduced. This treatment constituted an 

experimental out-group to control for the possibility of factors limiting nutrient 

bioavailability in Lake Matano. Analysis of the bottled drinking water was conducted 

using a Bran and Luebbe continuous flow autoanalyzer, which employs a hydrazine 

sulfate reduction method for nitrate/nitrite and automated ascorbic acid reduction method 

for phosphate (Eaton et al., 1995). The water contained 139 pM nitrate and 4.26 pM total 

phosphorus.

Before inoculation, the fresh culture medium was centrifuged at 3000 rpm for 10 

minutes. The plankton pellet was gently removed from the medium and placed in a 

second tube of a sterile medium, then mixed into 45 mL of lake water to wash the cells 

(repeated three times), before a final centrifugation. The water was poured off and the 

phytoplankton pellet was homogeneously mixed into 100 mL of lake water. One milliliter 

of this inoculum was added to each treatment, and each jar was placed in a partial sun 

location for the duration of 21 days. Throughout the course of the experiment, the cells 

were kept suspended by regular mixing. Culture jar openings were covered with several 

layers of Kim wipes held in place with elastic bands to permit gas exchange and to 

minimize contamination. Twenty mL sub-samples were removed just after inoculation 

and at the termination of the experiment (21 days). Samples were immediately preserved 

with Lugol’s solution for cell counts and determination of composition. A loss of
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replicates during transportation back to Canada precluded analysis of the full suite of 

treatments and treatments with only three intact replicates are presented in the analysis.

Cell counts and composition studies were conducted using a Neubauer cell 

chamber, observed with a Leica® inverted microscope at 400x magnification. Three 

replicate counts were performed on each sample. Phytoplankton in five of the large 

etched squares of the counting chamber were enumerated and abundance was calculated 

based on the volume counted. Biomass was calculated using the volumetric relationships 

established by Sun and Liu (2003).

The mean and standard errors of these counts were calculated to assure reasonable 

estimates of actual abundance. To test for initial even distribution of the inoculum, an 

ANOVA was performed on results from samples taken immediately after inoculation. To 

elucidate whether diversity was affected by treatment, phytoplankton were identified to 

genus and Simpson’s Diversity (1-D) Index was calculated for each replicate. Individual 

numbers in representative genera were plotted for each replicate for presentation of 

relative community composition. A one-way ANOVA determined whether significant 

variation existed between biomass yields at the duration of the experiment.

3.3 -  Results

Cell counts from samples taken immediately after inoculation did not show 

significant differences in either treatment or control. Mean biomass in the cultures, after 

inoculation, was determined as 2.5 mg/L (se=2.0).
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In samples taken on day 21, the most pronounced effect was observed in the out

group treatment, which used bottled water as a growth medium (Figure 3.3). A highly 

significant difference (p<0 .0 1 ) was observed in phytoplankton counts from cultures 

incubated in bottled water. At the end of the experiment, the mean biomass in the bottled 

water cultures was 97 mg/L (se=25), with a relative cell abundance of 1.1 x 107 cells/mL 

(se=L8  x 105). This finding represented a cell growth rate several orders of magnitude 

above that determined in the other treatments associated with Lake Matano water.

Differences also occured between the cultures of lake water (Figure 3.4). Visible 

growth became evident in the cultures with the highest additions of P and N, beginning 

near day 11. No obvious growth was observed in the cultures with intermediate nutrient 

enrichments of P and N. From cultures with an enrichment of 3.23 pM/L P, the final cell 

count was 1.3 x 106 cells/mL (se=1.8 x 105), while an abundance of3.3 x 105 cells/mL 

(se=4.4 x 104) was determined in reference cultures. These abundances correlated with 

biomass estimates of 1.3 mg/L (se=0.69) and 0.14 mg/L (se=0.068), respectively. In 

comparison, the mean abundance in the cultures enriched with nitrogen was 4.7 x 105 

cells/mL (se=8.2 x 104), producing a mean biomass yield of 0.87 mg/L (se=0.66).

Simpson’s Diversity Indices did not vary significantly among treatments (Table 

3.2), although a slightly greater diversity was observed in the bottled water. In cultures of 

lake water, several changes occurred in the phytoplankton assemblages between initial 

and final treatments. The culture compositions, just after inoculation and on day 21 of the 

experiment, are presented in Figure 3.5. The distributions of the phytoplankton
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immediately after inoculation represented heterogeneous cell mixtures, with no 

significant differences in the dominant species. After 21 days, the composition of the 

phosphorus enriched cultures exhibited higher abundances of most cells, with Chlorella 

being the dominant genera. In contrast, no species emerged as significantly dominant in 

the nitrogen enriched or reference cultures and only an increase in abundances from 

initial numbers occurred.

3.4 -  Discussion and Conclusions

The addition of 3.23 pM P significantly increased the biomass and abundance of 

phytoplankton relative to that of the control. Although not statistically significant, 

increases in biomass and abundance also occurred in the cultures enriched in 540 pM N 

and both N and P (3.55 and 1.61 pM, respectively).

Simpson’s Diversity Indices showed no significant differences between the 

nutrient enriched cultures and the reference cultures. The increase in diversity did not 

necessarily follow the overall increase in productivity. Community composition did show 

varying trends among cultures at the end of the experiment. While changes in the 

dominant species did not occur in reference and nitrogen enriched cultures, the 

phytoplankton assemblage in the phosphorus enriched communities reflected a major 

shift in the dominant plankton. The predominance of Chlorella in the phosphorus 

enriched cultures suggests a modification from the dominant phytoplankton assemblages 

observed in situ (see Chapter 2), where non-N-fixing cyanobacteria dominate the water 

column. The results indicate that while nitrogen addition alleviates a growth restriction
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on the current populations, increased availability of phosphorus may cause a shift in 

community composition and production potential.

The evidence for phosphorus limitation in Lake Matano contradicts the hypothesis 

that tropical lakes are fundamentally limited only by nitrogen. The significant growth 

response in the phosphorus enriched cultures suggests that phosphorus levels in Lake 

Matano are below Redfield levels, despite the depletion of nitrogen associated with 

tropical systems. Low external inputs of phosphorus from weathering of the metal-rich 

and nutrient-poor ultramafic catchment will maintain the oligotrophic status of the lake.

In addition, high levels of iron in Lake Matano might prevent effective internal 

regeneration of P from the hypolimnion. Internal phosphorus cycling has been closely 

linked with that of iron, suggesting that determining phosphorus availability requires 

knowledge of the iron dynamics in a system (Lijklema, 1980). Soluble iron released from 

the sediment under anoxic conditions oxidizes at the oxic-anoxic boundary and forms 

colloidal interactions (Buffle et al, 1989). Upwelling phosphorus may be readily 

incorporated into the iron oxyhydroxy colloids formed in this process (Blomqvist and 

Gunnars, 1997). The colloids aggregate and sink out of the epilimnion, scavenging 

available phosphorus. The dissolved iron profile of Lake Matano (Figure 3.6) shows iron 

concentrations at detection level in the epilimnion, but peaking to 80 pM below 100 m. 

This profile is consistent with reduction of colloidal Fe III at the oxic-anoxic interface, 

producing a peak in soluble Fe II. The peak in Fe II also corresponds with the phosphorus 

peak, which would be predicted if reduction of iron was correlated with the release of 

bound phosphorus. It has been demonstrated that reduction in phosphorus regeneration is
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significantly correlated to an Fe:P ratio of approximately 2:1 (Blomqvist, 2004). In Lake 

Matano the high potential for iron binding is signaled by an Fe:P ratio of nearly 50:1 at 

the oxic-anoxic boundary (Figures 3.1 and 3.6).

It is also noteworthy that noticeable growth response occurred only after a lag time of 

greater than 11 days. Furthermore, the effect of either phosphorus of nitrogen addition to 

the cultures of Lake Matano water was not as pronounced as might be predicted if the 

limiting nutrient were suddenly in supply at 5-20 times the ambient water concentration. 

The low ambient nutrient concentrations suggest that nutrient restriction may be an 

important factor limiting the standing biomass of phytoplankton.
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Table 3.1 Nutrient additions made to algal cultures of surface water from Lake Matano.
Treatments lost during transport to Canada are labelled not available. Analysis 
considers only treatments with three treatments available.

ft of 
Replicates

Enrichment
(pMP)

Enrichment
(pMN)

Replicates in 
Final Analysis

3 0 0 3
3 0 1.42 NA
3 0 3.55 NA
3 0 5.40 3
3 0.807 0 NA
3 1.61 0 NA
3 3.23 0 3
3 1.61 3.55 NA
3 0.807 3.55 NA
3 1.61 1.42 NA
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Table 3.2 Simpson’s Indices (1-D) observed in each treatment at the end of the 
experiment.

Treatment (pM) Simpson's Diversity Index (1-D)
Control 0.58
3.23 P 0.56
5.40 N 0.56

Bottled water 0 . 6 8
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Figure 3.1 Total Phosphorus (TP) and soluble reactive phosphorus (SRP) measured with 
depth, Lake Matano, 2002. These nutrients are below detection level in the 
upper 1 0 0  m.
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Ammonia concentration (jaM)
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Figure 3.2 Ammonia and nitrate measured with depth, Lake Matano, 2002. These 
nutrients are below detection level in the upper 1 0 0  m.
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Figure 3.3 Total phytoplankton biomass (± se)observed in enrichment cultures and
control after 21 day incubation, including bottled water outgroup. Growth 
is significantly (p<0 .0 1 ) greater in bottled water outgroup.
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Figure 3.4 Total phytoplankton biomass (± se) observed in enrichment cultures and
control after 21 day incubation, excluding bottled water outgroup. Growth is 
significantly (p<0.05) greater in cultures enriched with highest 
concentrations of phosphate.
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Figure 3.6 Dissolved Fe with depth, Lake Matano, 2002 (Haffner, unpublished data, 
analysis by ICP-MS).
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CHAPTER 4 -  FACTORS LIMITING PRIMARY PRODUCTION IN LAKE 
MATANO: METAL TOXICITY

4.1 -  Introduction

In 2000, Myers et al. named Indonesia one of 25 global hotspots for conservation 

priorities, based on the twofold criteria of exceptional biodiversity and high habitat loss. 

Lake Matano, Sulawesi Island, Indonesia, is ancient (approximately 1-4 million years 

old) and harbours a biological assemblage in which endemic species comprise an 

estimated 80% of the total assemblage (Haffner et al., 2001). Only in the past decade 

have detailed limnological investigations on the lake commenced. The importance of 

obtaining a better understanding of the factors regulating biological production in this 

unique system is amplified by recent increases in anthropogenic activity in and around 

the lake. The development of serious demands on the system, as a source of freshwater 

and wastewater for mining runoff disposal system, poses potential threats to the highly 

endemic communities of Lake Matano.

Elevated endemism in Lake Matano does not correlate with either trophic 

complexity or rich speciation. The lake does not support a top piscivore trophic level 

(Roy et al., 2004), nor is there a significant level of benthic production (Bramburger, 

2004). Productivity in the lake is constrained, and biomasses of primary and secondary 

production have been consistently measured at very low levels (Lehmusluoto et al., 1997; 

see Chapter 2 and 5). Attempts to enhance fish yield through aquaculture have met with 

limited success (Whitten et al., 2001).
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Proposed constraints on production in Lake Matano have included nutrient 

limitation (Haffner et al., 2001; Chapters 1 & 2) and metal toxicity (Fernando, 1987; 

Lehmusluoto et al., 1997; Haffner et al., 2001). Lake Matano’s ultramafic catchment and 

sediments contain a rich supply of heavy metals (Haffner et al., 2001), particularly 

chromium, and are also very depleted in phosphorus and nitrogen. With respect to 

nutrient limitation, there is evidence that the oligotrophic status of the lake restricts 

primary production (Haffner et al., 2001; Chapters 1& 2). Alternatively, toxicity might 

also limit production dynamics. In a review of the lakes of Southeast Asia, Fernando 

(1987) proposed that the plankton community was depauperate in significant taxa due to 

Lake Matano’s having the highest levels of chromium recorded for the surveyed lakes of 

southeast Asia.

Chromium is a trace metal in most soils. It may also be introduced into the 

environment through industrial effluent (Ellis et al., 2002). Chromium occurs naturally at 

very high levels in Lake Matano’s bedrock. The concentration of total chromium in the 

oxygenated waters of Lake Matano has been measured at 293 nM (see Figure 4.1). 

Chromium exists most stably in the reduced, trivalent form or in the oxidized hexavalent 

form (Cotton and Wilkinson, 1988). The toxicity of chromium in the environment 

depends largely on its oxidation state, although research on the oxidation states of 

chromium is hindered by the difficulty of determining speciation. Unlike chromium (III), 

chromium (VI) forms anionic complexes and soluble compounds and is highly mobile 

and bio-reactive (Ellis et al., 2002). It is associated with cytotoxic, genotoxic and 

mutagenic effects (Canivet et al, 2001) and may require industrial remediation if it
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exceeds the drinking water guideline of 0.96 pM . Gorbi et al. (2004) found that Daphia 

magna experienced a significant reduction in both growth and survivorship when 

exposed to levels of chromium as low as 270 nM chromium (VI) over a period of several 

weeks. Cr VI was found to completely inhibit the growth of Scenedesmus acutus at 

concentrations of 19 pM (Gorbi and Corradi, 1993). Under subdued light at Cr VI 

concentrations from 19 to 192 pM, the algal cells survived longer than those exposed to 

normal light conditions. This finding was ascribed to decreased rates of Cr uptake in the 

cells under subdued light conditions, implicating Cr-uptake as an energy-dependent 

process (Gorbi et al., 2004).

To date, no studies have been conducted to test the hypothesis that metal toxicity 

limits primary production in Lake Matano. This study utilizes a novel bioassay approach 

to determine whether reducing the ambient concentrations of a suite of metals, including 

chromium, in natural lake water, results in changes in the abundance and composition in 

the phytoplankton community of Lake Matano.

4.2 -  Materials and Methods

Two experiments were implemented to test whether primary production was 

limited by metal toxicity (Experiments A and B). In addition, the effect of nutrient 

addition in conjunction with toxicity treatments was tested (Experiment B). Treatments 

for both experiments are summarized in Table 4.1.
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4.2.1 Experiment A

The dissolved chromium profile for Lake Matano demonstrates that levels of 

chromium peak in the epilimnion, but reach detection level below the oxic-anoxic 

boundary. To obtain culture water from Lake Matano with significantly reduced levels of 

chromium, water from a depth of (approximately) 150 m was obtained using Kemmerer 

samples at a central lake location (S 02°28.124, E 121°18.893). Immediately after water 

collection, samples were taken from the Kemmerer and analyzed for Nitrate/Nitrite, 

orthophosphate and Fe (II)/Fe (III) concentrations with the Hach Ferrozine ® method, 

using 1,10 Phenanthroline as an indicator. Culture water was collected by overflowing 

water directly from the Kemmerer into glass jars, which were immediately sealed for 

transportation to the laboratory. Here, under minimal oxygen exposure, the water was 

filtered with 0.45 pm syringe filters to remove insoluble Cr (III) particles that could 

oxidize to Cr (VI). As Lake Matano contains high levels of other metals such as iron (see 

Chapter 3), the second stage of the metal removal process consisted of flocculation of 

these metals under oxygenated conditions. Moreover, aeration was intended to promote 

oxidation of Fe (II) to Fe (III) for coagulation with any remaining Cr (III). The filtrate 

was bubbled with oxygen for 60 hours. Finally, a second 0.45 pm filtration removed the 

resulting oxidized metal precipitates.

At the end of the metal removal process, a fresh phytoplankton collection was 

obtained from multiple surface sweeps at the central lake location, using a 64 pm-mesh 

plankton net. This plankton slurry was then passed through a 250pm mesh net to remove 

the larger zooplankton. Subsamples from both the experimental and surface waters were

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



collected and stored in triplicate 20mL vials and sealed for subsequent analysis of metal 

concentrations by ICP-MS.

The experimental set-up consisted of culture jars containing metal-removed water 

(MRWa) and surface water (SWa) in replicates of three. Jars were randomly distributed 

in a semi-sun location. The volume of fresh phytoplankton biomass was thoroughly yet 

gently mixed and distributed among the jars in equal allotments of lmL.

Throughout the experiment, the cells were kept evenly suspended by regular 

mixing, and subsamples were removed just after inoculation, after seven days, and at 2 1  

days, marking the termination of the experiment. The duration of the experiment was 

based on several pilot studies using surface water cultures, in which no growth occurred 

in cultures that had been maintained from three days to two weeks. Subsamples were 

preserved in Lugol’s iodine for determination of phytoplankton abundance and 

composition.

4.2.2 — Experiment B

The process for metal removal (in Experiment A) was repeated in Experiment B, 

with two modifications to experimental design. Firstly, to collect an adequate population 

of growing cells from the low standing biomass observed in Lake Matano, phytoplankton 

cells from Lake Matano were incubated in dilute Bold’s Basal Media (10%) (see Chapter 

3) for three weeks prior to initiation of this experiment. After dense growth was 

ascertained by visual and microscopic observation, 2mL of the culture were inoculated
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into a second tube of the same medium. Incubation in this medium for a period of three 

days prior to the start of the experiment provided an inoculant of non-nutrient limited 

newly growing cells.

The second modification consisted of the addition of nutrients to replicate pairs of 

treatment and reference water. Nutrient enriched cultures received simultaneous additions 

of phosphate and nitrate in enrichments of 1.61 and 1.42 pM, respectively. These 

enriched cultures were compared with pairs of metal removed water and surface water 

that had not been enriched with nutrients. Therefore, this experiment tested pairs of 

replicates of surface water (SWb) and metal removed water (MRWb) as well as replicates 

of nutrient enriched metal removed (MRNW) and surface water (SNW). Table 4.1 

presents the treatments and replicates in Experiment A and B.

Before inoculation, the fresh phytoplankton culture was centrifuged at 3000 rpm 

for 10 minutes. The plankton pellet was gently removed from the media and placed in a 

second sterile tube. The pellet was washed twice by mixing it into 45mL of lake water 

and centrifuging. The resulting plankton pellet was distributed within a small amount of 

surface lake water. One milliliter of this inoculant was added to each treatment. These 

cultures were maintained in part sun for the duration of seven days, a length of time that 

was determined by the appearance of a visible growth response. Subsamples were 

removed just after inoculation and at termination of the experiment.
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4.2.3 -  Analysis

Cell counts and composition studies were conducted using Neubauer cell 

chambers, observed with a Leica® inverted microscope at 400-600x magnification. 

Volumetric measurements, based on Sun and Liu (2003) were supported by Openlab® 

3.15 image analysis software for conversion to biomass. Subsamples each received five 

separate counts. The mean of the counts was taken for treatment comparison. In 

experiment A, a t-test was used to test the null hypothesis that the phytoplankton 

biomasses in the SWa cultures were not different than the biomasses in the MRWa 

groups. In experiment B, an ANOVA was used to determine whether a difference existed 

in the biomasses obtained from the SWb, SNW, MRWb and MRNWb cultures.

4.3 — Results and Discussion

The metal removal process consisted of three steps: immediate filtration under 

conditions of minimal oxygen exposure, flocculation during oxygenation of the filtrate, 

and a second filtration. Visible precipitation occurred during the second step. As shown 

in Table 4.2, the procedure decreased levels of the redox metals Cr, Ni, Fe and Mn, while 

levels of Na, K, Ca and Mg were conserved. Ferrous iron, present at 44 pM in the MW, 

declined to 0.1 pM after metal removal. Chromium concentrations declined from 184.1 

nM in the 150 m water to 48.5 nM in this water after metal removal (MRW). In 

comparison, chromium occurred at 236.4 nM in the surface water of Lake Matano.

Nickel concentrations were 61.4 nM at the surface and 42.6 nM in MRW.
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9 9In aqueous solution, Cr (VI) exists as CrC>4 HCrOf, Cr202 " (Richard and 

Bourg, 1991). Previous investigations have demonstrated that ferrous iron may reduce Cr 

(VI), resulting in precipitation or coagulation and removal from solution (Fendorf and Li, 

1996; Sedlak and Chan, 1997). The metal removal process in this experiment is similar to 

methodology under development for remedial removal of Cr (VI) from drinking water 

(Qin et al., 2005). Qin et al. constructed a reduction/coagulation/filtration (RCF) pilot 

system that decreased Cr (VI) concentrations of 1.92 pM to below detection level. The 

study showed that the ferrous sulfate was an effective reducing agent in the RCF system 

at neutral pH (Qin et al., 2005). The efficacy of the filtration step was enhanced by 

factors such as low filtration rate and high Fe:Cr ratio (Qin et al., 2005). Although 

ongoing research is necessary to elucidate speciation and the presence of reductants, a 

similar reduction mechanism predicted to occur near the oxic-anoxic zone in Lake 

Matano. In this experiment, collection below the oxic-anoxic boundary utilized the 

decline in soluble Cr observed in previous sampling. Further decrease in Cr levels 

resulted from deoxygenated filtration, aeration and oxygenated filtration.

Therefore, the experiment tested for the influence of metal removal on the growth 

potential of Lake Matano water. Some caution is necessary in experimental interpretation 

as the use of hypolimnetic water also increased the concentrations of alkaline and 

conservative cations relative to surface water. This phenomenon confounds the direct 

correlation of growth effects to metal removal. As well, analysis of the chromium profile 

with depth indicates that at 150 m, chromium is below detection level.
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4.3.1 -- Experiment A

Mean relative phytoplankton abundance at day 0 ranged from 1.6 x 105 (se=2.2 x 

104) cells/mL in the MRW to 1.8 xlO5 (se=9.3 x 104) cells/mL in the SW, indicating that 

the inoculum was well distributed. The Simpson’s Diversity Indices (1-D) revealed no 

difference in starting conditions between the SW and MRW (Table 4.3).

Moderate changes in cell abundance and biovolume occurred in the cultures from 

day 0 to day 7. Total abundance of cells in MRW cultures increased marginally to 1.1 x 

106 (se=3.9 x 105) cells/mL, while total abundance in the SW was measured at 4.1 x 105 

(se=1.7 x 104) cells/mL. On day 21 of the experiment, the abundance of phytoplankton 

grown in cultures with MRW was significantly greater (p<0.05) than that determined in 

cultures of SW (Figure 4.2). The mean abundance of cells in the MRW was 1.4 x 108 

(se=1.7 x 106) cells/mL. The mean abundance of cells in the SW was determined at 5.2 x 

106 (se=2.7 x 106) cells/mL. Final (21 day) biomasses demonstrated that the 

phytoplankton yield was significantly greater in the MRW cultures than in the SW. The 

mean final biomass in the MRW was 0.10 (se=0.014) mg/mL. In contrast, the mean final 

biomass in the SW was only 0.021 (se=0.0069) mg/mL.

Although production varied significantly between treatments, final diversity was 

similar between the SW and MRW cultures. This finding is demonstrated in the 

Simpson’s Diversity Indices for each treatment (Table 4.3). The abundance of the 

phytoplankton genera present in each culture did not correlate with treatment. Diversity 

decreased in both SW and MRW from day 0 to day 21 as a result of predominance by
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several taxa. In both cases, the predominant taxa in the final treatment was Aphanothece, 

followed by Surirella (Figure 4.3). Aphanothece is a dominant member of the pelagic 

phytoplankton community and Surirella is a common member of the periphyton, thus the 

treatment did not appear to provide toxicity release to specific genera.

The growth response of the phytoplankton in both SW and MRW was slower than 

predicted. Although a moderate increase in cell numbers was observed from the point of 

inoculation to the seven day subsamples, this effect was not significant.

4.3.2 -- Experiment B

Initial diversity values, presented in Table 4.4, were also comparable among 

cultures. Diversity in the surface cultures decreased, while diversity in the treated water 

increased. An increase in diversity was observed in the treated water without nutrient 

addition relative to enriched treated water and to SW, with and without nutrient 

enrichment. The higher abundance of cells overall in the MRW cultures would slightly 

elevate the diversity indices. However, in all cultures, the dominant phytoplankton 

assemblage remained consistent (Figure 4.5). Aphanothece and Cosmarium predominated 

throughout all treatments. These species correspond to dominant phytoplankton observed 

in situ.

Immediately following inoculation, mean cell counts in MRWb and MRNW were

1.2 x 106 (se=1.6 x 104) and 1.3 x 106 (se=8.9 x 104) cells/mL, respectively. Associated 

biomasses were 4.0 x 10"5 (se=1.9 x 10'5) mg/L and 2.6 x 10’5 (se= 9.2 x 10'6). Cell
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abundance in the SNW and the enriched SW were 1.3 x 106 (se=1.6 x 104) and 1.9 x 106 

(se=8.6 x 104) cells/mL, with biomasses 5.7 x 10'5 (se=3.7 x 10‘5) and 7.7 x 10'5 (se= 5.6 

x 10'5).

After the seven day period, a positive growth response had occurred in the MRW 

and MRNW cultures relative to the SW cultures, although this effect was not significant 

at the p<0.05 level (Figure 4.4). Although nutrient enrichment did not enhance growth at 

statistically significant levels, the greatest biomass was determined in the MRNW 

cultures. In the MNRW cultures, the mean cell abundance at the duration of the test was 

3.8 x 107 (se=5.0 x 103) cells/mL, with biomass 2.4 x 10'3 (se=0.00038 x lO-4) mg/L. 

Abundance and biomass in the MRW cultures were 2.7 x 107 (se=1.8 x 104) cells/mL and

2.4 x 10'3 (se=3.9 x lO-4) mg/L. In the SNW cultures, mean cell abundance at the end of 

seven days was 2.0 x 107 (se=1.5 x 104) cells/mL, with a biomass of 1.5 x 10‘3 (se=4.0 x 

10'5) mg/L. Abundance in the SW cultures was 2.4 x 107 (se=1.4 x 104) cells/mL.

Improvement in phytoplankton growth rates occurred in the cells cultured in 

experiment B relative to those observed in experiment A. The use of the BBM provided 

an inoculum for experiment B that contained a quantity of cells more than an order of 

magnitude greater than that contained in the inoculum for experiment A. Potentially, the 

BBM stimulated growth by relieving a nutrient limitation or by providing release from 

toxicity. The cells from this inoculum would then be healthier than those taken directly 

from Lake Matano. Therefore, using this inoculum may have dampened the magnitude of 

cellular response to treatment type between cultures during the seven day period.
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4.4 -- Conclusions

Phytoplankton composition remained the same between the MRW and the surface 

water cultures in both experiments. The lack of any difference in the phytoplankton 

assemblages between the MRW cultures and the SW cultures in both experiments 

suggests that toxicity release was not operative in defining the community assemblage. 

Rather, the cells cultured represented the indigenous phytoplankton community, and 

growth rate of the dominant members of the community was enhanced under the 

conditions provided by the MRW.

In Experiment A, phytoplankton directly from the lake were inoculated into 

treatments of SW and MRW. The growth response of the phytoplankton in both SW and 

MRW was slow. Increase in cell numbers from the point of inoculation to the seven day 

subsamples was negligible and there was no significant difference between treatments at 

this time. By the conclusion of this experiment, a significant increase in cell numbers and 

biomass was determined in MW relative to SW.

Implementation of the dilute BBM to culture phytoplankton from the lake as an 

inoculum in Experiment B improved cellular growth rates and final yields in all 

treatments over the seven days. Biomass and cell numbers were elevated in the MRW 

and MRNW relative to the SW and SNW, although not at statistically significant levels. 

The dampened response may be a result of inoculation from the BBM. As well, the
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shorter duration of the experiment may have influenced the magnitude of the difference 

in growth responses to the treatments.

The relative influences of potentially confounding factors such as changes in the 

status of trace nutrients, were not resolved in this experiment. However, these 

experiments demonstrate enhanced growth potential in Lake Matano water after metal 

removal. In addition, this study demonstrates relatively restrained growth in the surface 

water of Lake Matano. These results are consistent with toxicity release though lower 

levels of metals such as Cr, Fe and Ni in the MRW and substantiate the need for further 

research.
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Table 4.1 Treatments and corresponding abbreviations, days on which cultures were 
subsampled (for composition and biomass) and number of replicates in 
experiments A and B.

Experiment Treatment Abbreviation
Days

subsampled
#

Replicates
A Surface water 

Metal removed
SWa 0, 7,21 3

A water MRWa 0, 7,21 3
B Surface 

Surface +
SWb 0,7 3

B Nutrient 
Metal removed

SNW 0,7 3

B water 
Treated +

MRWb 0,7 3

B Nutrient MRNW 0,7 3
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Table 4.2 Chemical concentrations measured in SW from Lake Matano, water from 
150 m prior to metal removal, and MRW.

SW

MW 
(Prior to 
removal) MRW

(pM)
P 0 4 0.250 (DL) 0.25 (DL) -
NO3 32.0 (DL) 32.0 (DL) -
Na 56.0 67.0 75.1
Mg 487 779 788
K 6.17 5.19 5.80
Ca 234 415 454
Fe 25.9 44.0 0.100
Mn 0.100 8.50 5.80

(nM)
Cr 236 184 48.5
Ni 61.4 66.1 42.6
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Table 4.3 Experiment A: Simpson’s Diversity Index (1-D) for SW and MRW cultures 
immediately after inoculation, mid-experiment, and at the end of the 
experiment.

Treatment Time
(d)

Simpson's Diversity 
Index 
(1-D)

SWa 0 1.0
MRWa 0 1.0

SWa 7 1.0
MRWa 7 1.0

SWa 21 0.63
MRWa 21 0.61
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Table 4.4 Experiment B: Simpson’s Diversity Index (1-D), MRW and SW, with and 
without nutrient addition, immediately after inoculation and at the end of the 
experiment.

Treatment
Time

(d)

Simpson's
Diversity

Index
(ID)

Surface 0 0.242
Surface +
nutrient 0 0.288
MRW 0 0.166

MRW +
nutrient 0 0.161
Surface 7 0.144

Surface +
nutrient 7 0.191
MRW 7 0.260

MRW +
nutrient 7 0.164
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Figure 4.1 Chromium concentrations with depth, Lake Matano, 2002. 
(Haffner, unpublished data, analysis by ICP-MS DL: detection limit).
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immediately after inoculation genera were evenly distributed; after 21 days, 
no major species shift occurred in the cultures.
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CHAPTER 5 -  FACTORS REGULATING COMMUNITY STRUCTURE OF THE 
PELAGIC ZOOPLANKTON COMMUNITY

5.1 -- Introduction

The relationships between ecosystem composition, biodiversity and productivity 

have been extensively studied to understand the processes governing plankton 

community structure. The question: ‘what lives where and why’ (Reynolds, 1998) is a 

prevailing theme in studies of freshwater plankton ecology. This question has been 

classically addressed through exploration of the temporal and spatial distribution of the 

plankton (Tailing, 1957; Hutchinson, 1967; Lewis, 1974).

The potential for high yields of the primary production base is a characteristic of 

tropical systems (Lewis, 2000). Given a sufficient nutrient supply, primary production in 

the tropics is expected to be at least twice that of higher latitudes (Lewis, 1996; Lewis, 

2000). This production capacity is supported by efficient nutrient cycling, intra-seasonal 

deep mixing, higher temperatures, and by latitudinal trends in minimum annual irradiance 

(Lewis, 1996; Lewis, 2000). Tropical systems are supplied annually with a higher level of 

irradiance, which is distributed more evenly throughout the year. This phenomenon 

optimizes the interactions of other potentially limiting controls such as temperature, 

nutrients and photosynthesis (Lewis, 2000). Increases in the overall production base have 

a direct influence on community structure, species diversity and trophic interactions. For 

instance, trophic cascade models predict that an increase in primary production can
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support a greater zooplankton biomass, until resource competition reduces zooplankton 

diversity. Higher productivity can also translate into greater predator densities, which can 

modify the composition of the prey community to favour species less vulnerable to 

predation.

Top-down control, in the form of predation, is also viewed as a dominant factor 

influencing the structure of freshwater zooplankton communities (McQueen and Post, 

1989; Lewis, 1987; Fernando, 2002). This prediction (Pinto-Coelho et al., 2005; 

Fernando, 2002) is substantiated by the increasing richness and diversity of planktivorous 

fish communities with decreasing latitudes. The relative lack of seasonality in breeding 

seasons for many tropical freshwater fish hinders the ability of zooplankton populations 

to decouple their life histories from those of their predators, a common defense strategy 

observed in temperate zooplankton species (Galbraith, 1967; Hall et al., 1976; Zaret and 

Baskin, 1980; Fernando, 2002). Ample evidence supports the direct impact of predation 

pressures in structuring zooplankton communities, suggesting these pressures are a major 

factor in influencing zooplankton evolution and population structure (Hecky, 1991; 

Pinto-Coelho et al., 2005). Year-round predation by sardine populations, for example, has 

virtually eliminated cladocerans from Lake Tanganyika (Hecky and Ogutuohwayo,

1991). Indeed, the typically larger size of cladocerans has effectively restricted both their 

overall sizes and their spatial distributions in many tropical systems (Fernando, 1994). A 

recent survey of 49 reservoirs on the Ivory Coast of Africa attributed the absence of 

Daphnid species to predatory influences from the introduced Nile Tilapia (Pinto-Coelho 

et al., 2005). Low diversity of crustacean zooplankton in surveys of subtropical and
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tropical lakes in Florida and Brazil have demonstrated strong predation forces (Pinto- 

Coelho et al., 2005). It has also been shown that substantial predation pressure in the 

tropics has resulted in the development of smaller, less detectable copepods (Hall et al., 

1976). Consequently, predation pressure has become a substantial factor governing 

zooplankton community structure, species composition, size spectra and behaviours.

Thus, both bottom-up and top-down forces structure zooplankton communities in 

most systems, but quantifying the relative influences of each is difficult. Reynolds et al. 

(2000) identified the need to explore more thoroughly the extent to which communities at 

lower trophic levels are structured by competition and predation. Despite the presence of 

apparent paradigms, this question remains the subject of vigorous debate. This lack of 

knowledge is a result of the inherent difficulty in quantifying bottom-up forces and from 

the paucity of studies dealing with bottom-up forces in tropical freshwaters (Saunders and 

Lewis, 1988; Lewis, 1996).

Lake Matano, south-central Sulawesi, Indonesia, represents an optimal model 

system for determining the relative influence of bottom-up versus top-down forces 

structuring zooplankton communities. The depth (590 m) (Haffner et al., 2001) and 

steeply sloping sides of this classical grabben lake (Brooks, 1950) minimize the influence 

of the littoral zone. Lake Matano is ancient, estimated at 1-4 million years old (Haffner et 

al., 2001), and is characterized by endemism recorded notably in the diatoms (Hustedt, 

1938,1942; Bramburger, 2004) gastropods (Sarasin and Sarasin, 1897; von Rintelen and 

Glaubrecht, 2003) and the fish (Kottelat 1990a, b, c; 1991; Roy et al., 2004).
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To date, however, few detailed accounts have focused on the distinct community 

structure and zooplankton assemblages in this system. The earliest reports of zooplankton 

composition date to Brehm’s account of the endemic calanoid Eodiaptomus wolterecki 

var. matanensis, described during the Woltereck Expedition to Indonesia in 1932 (Brehm, 

1933b). The expedition covered Hawaii, the Philippines, Celebes, Flores, Bali and Java.

It aimed to provide an extensive geographical comparison and not an understanding of 

zooplankton community dynamics. Brook (1950) reviewed the distribution of endemics 

in Lake Matano and downstream lakes and included the endemic calanoid as the only 

known pelagic zooplankter. Fernando (1987) visited the lake and mentioned an absence 

of cladocera, potentially as a response to naturally high levels of natural chromium.

Haffner et al. (2001) described Lake Matano as having a very simplified food web 

(i.e. no piscivore population) due largely to its highly oligotrophic nature. As such, 

examining the zooplankton community has the potential to yield important information 

about the factors governing the primary and secondary production base in this unique 

tropical freshwater system. Moreover, anthropogenic activity in and around Lake Matano 

has increased substantially within the last few decades. As global climate change and 

regional development have the potential to modify Lake Matano, it is essential to acquire 

information on community processes in this ancient and relatively isolated lake system, 

renowned for its biodiversity.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this study, we quantified the composition, species diversity, abundances, size 

ranges, total biomass and the distribution of ovigerous females of the zooplankton 

community throughout the upper 110 m of Lake Matano in August 2000, January 2002 

and August 2004. In addition, we determined the species diversity, abundances and 

carbon biomass distribution of the available standing phytoplankton community. Finally, 

the 813C and 815N stable isotope ratios were measured for the zooplankton and 

phytoplankton fractions throughout the epilimnion. We used these parameters to provide 

the first detailed characterization of the zooplankton community. The goals were to 

determine: 1) whether the zooplankton community revealed vertical structure in 

composition and abundance in Lake Matano and 2) the potential influence of top-down 

and bottom-up forces in regulating zooplankton community structure.

5. 2 -  Materials and Methods

5.2.1 -- Zooplankton community analysis

The zooplankton sampling regime for the years 2000 and 2002 consisted of four 

approximately equidistant sampling locations along latitudinal transects across the lake, 

from 121°15’00 E to 121°24’00 E (Figure 5.1). In 2004, zooplankton sampling was 

implemented at only one of these the sampling sites (121°18’00). Sampling periods 

spanned two seasons, commencing in the ‘dry season’, mid-August (2000 and 2004), and 

in the ‘wet season’ of mid-January, 2002; sampling times ranged from early morning to 

afternoon throughout the sampling weeks. The same sampling procedure was applied to 

all collections. A vertical closing net with a 64 pm mesh was used to successively filter
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10 m intervals of the water column, from 0-110 m. These vertical transects were designed 

to quantify the distribution of zooplankton in the water column across the lake and 

through the depth of the epilimnion. Filtered material was rinsed into plastic scintillation 

vials and immediately preserved in 95% ethanol. Vials were refrigerated at 4°C for 

storage purposes.

In the laboratory, each of the zooplankton samples from successive depths of the 

water column was subsampled for analysis of community composition and abundance. 

Sample vials were mixed thoroughly but gently, and subsamples of 1 millilitre each were 

removed using a wide bore pipette. Subsamples stood for 24 hours in sedimentation 

chambers before microscopic observation. After a detailed survey revealed that the 

community composition was consistent across the lake, replicated subsampling was 

conducted at locations 2 and 4 to produce vertical profiles of community composition and 

abundance. Counting and identification were performed using a Leica® inverted 

microscope at 50-600x magnification. To produce the vertical profile, counts of each 

species were replicated three times from each depth interval such that 100 individuals of 

the dominant species were enumerated within each sample. For composition and 

abundance data, post-naupliar copepods were identified to species level according to 

Reddy (1994), while naupliar stages of copepods were counted as a single group. The 

trophi of the adult rotifer were dissected out and rotifers were identified to species, 

according to Ruttner-Kolisko (1974). A lake-wide size profile of copepod body length 

measurements was obtained using Openlab® 3.15 image analysis software. Lengths were 

measured from the anterior end point of the head, between antennae, to the pre-setae edge
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of the caudal rami. Standing biomasses of rotifers and copepods were calculated with 

depth interval, using standard formulae for dry weight estimates according to Dumont et 

al. (1975). In addition, the locations of ovigerous females were documented. Table 5.1 

shows the combined sampling scheme for the three years.

5.2.2 -- 813C and 81SN isotope analysis for the production base

Vertical net hauls were also conducted in August, 2004 to collect plankton 

biomass for stable 8 C and 8 N isotope analysis. To collect sufficient phytoplankton 

biomass, repeated net hauls were conducted with the 64 pm closing net at discrete depth 

intervals of 30 m from 0 to 90 m. The biomass portions collected were then separated 

through a 200 pm mesh filter, yielding a size fraction of biomass greater than 200 pm 

and a size fraction of biomass below 200 pm and above 64 pm for each depth interval. 

Subsequent microscopic analyses confirmed that these size fractions approximated a 

division of the microplankton into zooplankton and phytoplankton. Each fraction was 

placed in aluminum weighing dishes and dried for isotope analysis. Isotopic analysis was 

conducted at the Environmental Isotope Laboratory at the Centre for Research in Earth 

and Space at the University of Waterloo.

5.3 — Results

5.3.1 — Zooplankton

Analysis of the vertical net series revealed relatively low abundance of few taxa 

and exhibited a high degree of seasonal continuity. The zooplankton community in
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August (the dry season) was comprised of the endemic calanoid, Eodiaptomus wolterecki 

and the tropical rotifer species Horaella brehmi. Samples from both January, 2002 (the 

wet season) and August, 2004 revealed a community composed of Eodiaptomus 

wolterecki, an endemic cyclopoid of the genus Tropocyclops, and Horaella brehmi.

Yearly abundance and biomass distributions of cyclopoids, calanoids and rotifers 

illustrate depth stratification (Figures 5.2-5.4). E. wolterecki numerically dominated the 

pelagic zone in all three sampling occasions. The highest density and biomass of 

E. wolterecki, at site 2 in 2000, occurred at the depth interval of 20-30 m, with a mean of

8.2 x 102 individuals/m3 (se=62) and a biomass of 2.5 mg/L (se=0.190). The second 

highest abundance was observed at a depth of 10-20 m at site 4 and at a depth interval of 

10-20 m at site 4, with 7.2 x 102 individuals/m3 (se=89), 2.0 mg/L (se=0.032). In 2002, a 

mean high of 3.0 x 10 individuals/m (se=21), biomass 5.3 x 10 pg/L (se=34), was 

found at depth interval 10-20 m at site 2. At the eastern end of the lake, site 4, a mean 

high of 8.1 x 102 individuals/m3 (se=58) was found at a depth of 10-20 m. During the 

following sampling season (2004), the highest abundance was determined at the 20-30 m 

interval, with 4.1 x 102 individuals/m3 (se=40) and 9.0 x 102 pg/L (se=1.0 x 102). 

Population numbers in all seasons declined sharply after a depth of approximately 50 m, 

decreasing to near 0 below 80 m. Likewise, rotifer densities were mostly detectable in the 

upper 50 m in each year and declined thereafter; they were virtually absent in samples 

below 80 m. In 2000, the highest abundance of H. brehmi occurred at a depth interval of 

10-30 m from 2000-2004, with densities of 1.9 x 102 individuals/L (se=1.2 x 102) and 1.3 

x 102 individuals/L (se=37), respectively. The cyclopoids were observed only in 2002 and
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2004. In both years, the cyclopoids occurred exclusively below 80 m, where rotifers and 

calanoids were infrequently detected. The cyclopoid communities were not prolific, 

reaching densities of 91 individuals/m3 (se=50) at 100-110 m in 2002 and 29 

individuals/m3 in 2004 (se=3.0).

Calanoid body lengths ranged from approximately 200 pm to 900pm in all three 

seasons sampled (Figure 5.5). In the years 2000, 2002 and 2004, respectively, the mean 

calanoid body lengths were 5.8 x 102 pm (se=28), 4.9 x 102 pm (se=32) and 5.8 x 102 pm 

(se=l 1.12). Cylopoid body lengths exhibited little seasonal variation, with a mean length 

of 3.9 x 102 pm (se=38) in 2002 and 3.2 x 102 pm (se=17) in 2004.

Ovigerous copepods were depauperate in all seasons (Table 5.3). For the year 

2000, over the extent of the water column sampled (0 to 110 m), the mean abundance of 

ovigerous calanoids was 1.4 individuals/m3 (se=0.41), with ovigerous individuals rarely 

observed in samples analyzed from depth intervals of 10-20 m, 20-30 m and more 

commonly observed between 90-100 m. In the wet season of 2002, ovigerous copepods 

(both calanoids and cyclopoids) were exclusively detected in samples from the 80-110 m 

depths of the lake. The mean abundance of ovigerous calanoids in the water column was 

0.65 individuals/m3 (se=0.33) and the mean RA of ovigerous cyclopoids throughout the 

water column was 1.2 individuals/m3 (se=0.43). In 2004, however, ovigerous calanoids 

were not confined to the 80-110 m depths but were found in low numbers throughout the 

water column, with a mean abundance of 1.4 individuals/m3 (se=0.41). The mean 

cylopoid abundance in 2004 was 0.20 individuals/m (se=0.16).
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5.3.2 — 8C and 8N isotope analysis for the production base

Carbon and nitrogen isotopic analysis (Table 5.2) revealed that the zooplankton 

and phytoplankton were relatively enriched in the 815N isotope, particularly in the surface 

waters. The zooplankton fraction was depleted in the 813C isotope, with 813C of -29.2 %o 

(se=0.0300) in the upper waters. The 813C signature of the phytoplankton fraction 

becomes progressively less depleted, and more different from the zooplankton fraction 

with depth. The phytoplankton signatures range from -28.2 %o the surface waters to - 

26.5 °/oo from samples collected at 60-100 m. In the surface waters, zooplankton was 

enriched in 815N by 12.4 %o, while the phytoplankton fraction was enriched by 8.52 %o. 

Enrichment of the heavier 815N isotope decreases with depth. In samples collected from

1 Ttows of 60-30 m depth, zooplankton had a 8 N signature of 11.5, while the 

phytoplankton signatures were 5.55 %o.

5.4 -  Discussion and Conclusions

Previous studies of the pelagic zooplankton in Lake Matano are few and prevent 

significant temporal comparisons beyond this study. Lakes at lower latitudes do not 

experience seasonal change to the extent of lakes at higher latitudes and it has been 

proposed that a single sampling series at any time of the year in the truly aseasonal 

tropics is sufficient to estimate total zooplankton richness (Dumont and Segers, 1996). In 

Lake Matano, the similarity in composition and vertical structure observed in each year 

sampled suggested that seasonality does not appear to be a significant factor structuring 

this zooplankton community. All sampling periods of this study revealed a simplified
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plankton community, with few changes in composition and abundance. In all sampling 

periods, abundance data, size spectra and biomass estimates showed that, as a whole, 

water column production is very low.

The zooplankton community of Lake Matano is dominated in biomass and 

numbers by the endemic calanoid copepod, Eodiaptomus wolterecki. This finding 

correlates to more than half the total pelagic plankton community in biomass and 

numbers in each year sampled. The rotifer Horaella brehmi occurs in all samples, 

representing less than a quarter of the pelagic zooplankton. The cyclopoid community 

was found only in samples from the years 2002 and 2004, representing less than 10% of 

the zooplankton community.

In conjunction with low abundances of each species, the small body sizes in Lake 

Matano translate into very low biomass of secondary production. Copepods, in the range 

of 1-2 mm, prevail in tropical systems and are considered small relative to size ranges 

found in temperate systems (Fernando, 2002). The mean size ranges of the Lake Matano 

copepods are barely half this norm for tropical systems.

Egg production and recruitment capability of a population has been established as 

an endpoint signifying the concentration and quality of food available to adults and 

nauplii (Poulet et al., 1995). This finding is likely due to copepod egg production 

following the structural weight concept (Carlotti et al., 1993), in which energy is allotted 

to reproduction only after the female has attained a critical weight and nutritional
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fulfillment (Hirche and Carlotti, 1997). Therefore, greater resource quality and quantity 

will yield faster maturation times and higher fecundity. With fecundity represented by the 

number of ovigerous individuals, very low fecundity was observed throughout the study 

period, with ovigerous individuals comprising less than 1% of the calanoid population. 

Due to the dependence of clutch size in copepods on their habitat quality (Fernando, 

2002), this yearly low population fecundity reflects the resource limitations imposed on 

the zooplankton of Lake Matano. Total copepodite and nauplii contribute less than 20% 

of the total copepod counts in all years, reflecting very low biomass turnover in the 

copepod community. The proportion of total copepodite and nauplii is quite high relative 

to ovigerous copepods. This observation is consistent with habitats that present a food 

limitation to adults but not to nauplii, so that egg production is stilted while naupliar 

growth occurs at a regular rate (Poulet et al., 1995). However, further work to elucidate 

naupliar development time in Lake Matano is merited.

The lack of diversity in the pelagic zone agrees with previous accounts of simple 

zooplankton assemblages in the tropics (Lewis, 1996). Explanations of the poor speciose 

nature of pelagial communities in tropical systems have tended towards a mechanism of 

top-down control exerted by diverse and abundant fish communities. This top-down 

control may decrease the number of realized species in the secondary production base, in 

spite of conditions favorable to primary production such as constant irradiance and 

efficient nutrient cycling (Lewis, 1996). Moreover, it is widely documented in tropical 

systems that the tendency towards smaller zooplankton at lower latitudes is strongly 

selected for by fish predation.
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Such a predation mechanism does not appear to drive the small sizes of the 

zooplankton in Lake Matano. Unlike downstream lakes in the vicinity, Lake Matano 

supports no top-level predators (Roy et a l, 2004, Haffner et al., 2001). The fish 

community, though endemic, is simple and not abundant (Roy et al., 2004), consisting 

mainly of very small fish (<10 cm) (Haffner et a l, 2001). Furthermore, the fish 

community is primarily confined to the littoral zone (Roy, personal communication). 

Indeed, within the last 40-50 years, the low fish production of the lake has driven the 

implementation of several aquaculture schemes. These attempts utilized introduced 

species, since it was considered that the endemic community was restricted in its use of 

the lake’s resources (Whitten et a l, 1987), but met with little success. Recent efforts use 

small, culture nets moored just at the shoreline that are fed by hand. Thus, predation does 

not play a significant role in reinforcing small sizes and depauperate community 

composition in Lake Matano.

The size structure, composition and biomass of the plankton community are 

important indications of food quality and quantity (Hall et a l, 1976). Relatively high total 

zooplankton densities are common in tropical lakes, but, as expected, biomass varies with 

nutrient status (Pinto-Coelho et a l, 2005; Dodson et a l, 2000). In lakes of high total 

phosphorus (TP) and chlorophyll such as eutrophic lakes and reservoirs, densities of total 

zooplankton greater than 103 individuals L'1 are common (Pinto-Coelho et a l, 2005). In 

Lake Matano, above the euphotic depth of 50 m, the peak phytoplankton biomass is 

0.013 mg L'1, indicating an impoverished production base that will have ramifications for
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the zooplankton community (see Chapter 2). According to Reynolds et aV  s (2000) 

classification of lakes, Lake Matano ought to exhibit production in keeping with its 

tropical nature. In contrast to other warm meromictic lakes such as Lake Tanganyika, 

with a biomass of 0.9 mg/L, rating Matano’s primary production using Reynolds et al. ’s 

(2000) puts it in the range of the most unproductive Arctic type lake. The very low 

primary production in Lake Matano (see Chapter 2) substantiates the importance of 

resource-base control in this system. Specifically, the critical range of phytoplankton 

required to support obligate filter feeders such as Daphnia is 0.1 to 0.4 mg C/L (Reynolds 

et al., 2000), several orders of magnitude above phytoplankton biomass in Lake Matano. 

Moreover, the selection of phytoplankton found in Lake Matano is not high and biomass 

is largely contributed by unpalatable species such as Microspora, and Peridinium. 

Although zooplankton communities will also avail themselves of microbial populations 

and detritus, Lake Matano does not have the capacity to sustain an expanded zooplankton 

community.

Carbon and nitrogen stable isotope analysis was performed to further elucidate 

trophic structure and energy flow throughout the pelagic plankton community (Peterson 

et al., 1987) of the Lake Matano pelagic plankton community. Two limitations on the 

analysis were presented by the paucity of standing biomass. Firstly, trophic levels were 

necessarily approximated, based on size fractionation. Secondly, the portion of the food 

web that passed through the 64 pm net was excluded. However, several important trends 

emerge from the analysis.
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• 1 TThe zooplankton fraction was more depleted in 8 C than the phytoplankton 

fraction and this disparity increases with depth. The 813C enrichment of a consumer tends 

to mirror the signature of the food it consumes, while variation in 8I3C signatures 

between food webs is introduced at the level of primary production. This finding suggests 

that in Lake Matano, the microphytoplankton sampled do not provide the only source of 

energy/carbon to the zooplankton community, particularly with increased depth. This 

finding is not surprising, given the range in size and type of phytoplankton sampled in 

this size fraction. Larger, inedible phytoplankton such as Staurastrum and Peridinium 

dominated this size fraction and are too large to be edible by the bulk of the zooplankton 

community, given the small sizes of the calanoid, cyclopoids and rotifer populations. The

• • I T *disparity between 8 C in the zooplankton and phytoplankton populations suggests that a 

partial dependence on alternate foodwebs, likely detrital or microbial, may exist for the 

primary consumers in this system.

Enrichment of the 815N isotope is also very high in the phytoplankton and 

zooplankton, particularly in the surface waters. The 8I5N enrichment of the zooplankton 

fraction is on the upper extreme of 815N observed for primary consumers. These values 

are highly lake specific and range from 1-13 %o (Cabana and Rasmussen, 1994). While 

highly enriched 815N levels are frequently associated with elevated trophic level, this is 

not likely the case in Lake Matano, particularly since the primary production base is also 

highly enriched in 815N. This enrichment varies with depth, suggesting that migration of 

the zooplankton within the mixed upper waters is limited. The high nitrogen values of the 

phytoplankton fraction are representative of the non nitrogen fixing community that
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appears to dominate the microphytoplankton. In aqueous systems with ample available 

nitrogen, non-nitrogen fixers preferentially take up the lighter isotope (Adams et al., 

2004). In systems with chronic nutrient limitation, the primary production base becomes 

progressively enriched in 815N (Vander Zanden et a l, 2005). The enrichment in 815N of 

the phytoplankton fraction in Lake Matano supports that nitrogen is not readily available 

in the surrounding media, creating a baseline of 815N enrichment. Substantial enrichment 

in 815N at the primary consumer level, as observed in this analysis, has also been 

demonstrated to result from limitations in available nitrogen (Zanden et al., 2005). For 

instance, a study investigating the change in N enrichment within a single species 

(Daphnia magna) under conditions of nutritional depletion resulted in a 815N that might 

have been indicative of a change in trophic position (Adams et al., 2004).

It is concluded in this study that bottom-up forces dominate secondary production 

dynamics in Lake Matano. Lake Matano consists of a single endemic grazer (a calanoid) 

and a limited selection of predatory species. This assembly agrees with the community 

structure that Dumont and Segers (1996) argued was common to the pelagic zone of 

ancient lakes, attributing this structure to the lack of potential niche diversification. While 

the age and volume of the lake are factors that will promote diversification, this diversity 

will be strongest in the fish and benthos (Hobaek et al., 2002), while the pelagic zone is 

frequently too homogeneous to sustain high levels of zooplankton diversity (Schon and 

Martens, 2004). Given the poor nutrient base in Lake Matano, it is supposed that the 

potential for niche diversification of zooplankters and planktivorous communities is very 

low, in spite of the age of the lake. However, there is some suggestion that this low niche
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diversification may drive the zooplankton community in Lake Matano to be structured 

according to the degree of spatial heterogeneity along the vertical gradient. In both years, 

cyclopoids were observed almost exclusively below 80 m, whereas calanoids and rotifers 

predominated above, indicating community depth selection within the epilimnion. The 

region of the water column below 80 m represented a change in the physical and 

chemical properties of the water column, as oxygen declined and a weak thermal 

structure begins. This will be a region where nutrient exchange can occur between the 

deeper waters and the epilimnion. Our dataset showed this depth selection in both years 

but the stability of this community stratification during a 24-hour cycle was not 

determined. However, extreme deviation from this depth selection through diel vertical 

migration seems unlikely, based on the consistency between both wet season (January, 

2000) and dry season (August, 2004) dynamics, and the range in sampling times from 

early morning to late afternoon throughout successive sampling days. It is expected that, 

based on the size of individuals in the zooplankton community, populations would not 

traverse great distances through the water column on a daily basis. Furthermore, daily 

vertical migration is an energetically costly behaviour primarily performed as a 

mechanism for predation avoidance. The lack of predators in the water column will not 

reinforce this defense.

The importance of Lake Matano today as a freshwater resource, being targeted for 

increased production and development, augments the necessity of understanding its 

historical and current status. Of particular significance are the community compositions 

in the production base of the system. The compositional, size spectra, fecundity and

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



abundance data from this investigation of the zooplankton community reflect production 

constraints. This study provides the first temporally and spatially detailed determination 

of the pelagic zooplankton community composition and proposes that bottom-up forces 

are most influential in regulating zooplankton community structure.
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Table 5.1 Sampling scheme for 2000, 2002, 2004.

Year Sites sampled Depths sampled # Replicates 
____________________ (10m intervals) per depth
2000 1 0-110 1

2 0-110 3
3 0-110 1
4 0-110 3

2002 1 0-110 1
2 0-110 3
3 0-110 1
4 0-110 3

2004 2 0-120 3
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Table 5.2 8C and 8N isotope analysis (±se) for the production base. (NA=not available, NR=replication not possible due to biomass 
considerations).

Plankton Fraction 
(pm)

Major
Composition

Depth
(m) 8C13 8N15

SE,
5C13

SE,
8N15

>250 Zooplankton 30-0 -29.20 12.42 0.03 0.27
64>, <250 Phytoplankton 30-0 -28.19 8.52 NR NR

>250 Zooplankton 60-30 -30.68 11.49 NR NR
64>, <250 Phytoplankton 60-30 -26.20 5.55 NR NR

>250 Zooplankton 90-60 NA NA NA NA
64>, <250 Phytoplankton 90-60 -26.50 4.04 0.11 0.07
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Table 5.3 Mean abundances of ovigerous copepods, Lake Matano.

Depth 2000
Calanoid Cyclopoid

2002
Calanoid Cyclopoid

2004
Calanoid Cyclopoid

0 0 NA 0 0 4.71809 0
10 0 NA 0 0 2.35905 0
20 0 NA 0 0 2.35905 0
30 0 NA 0 0 1.17952 0
40 2.47223 NA 0 0 0 0
50 3.65652 NA 1.79288 0 2.35905 0
60 1.88724 NA 0 0 0 0
70 1.2541 NA 0 0 0 2.35905
80 1.9698 NA 0 0 0 0
90 0 NA 4.93041 2.52418 0 0
100 0 NA 5.80326 0 0 0
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Figure 5.1 Lake Matano sampling stations. Stations 1-4: were sampled in the years 
2000, 2002; Station 2: sampled in 2004.
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Figure 5.2 Abundances of zooplankton species (± se), with depth, at sampling sites 2 and 4, August, 2000. Upper bar: Site 2,
Lower bar: Site 4. From left to right: Eodiaptomus wolterecki, Horaella brehmi and copepod nauplii. Note the lack 
of Tropocyclops sp.
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Figure 5.3 Abundances of zooplankton species (± se), with depth, at sampling sites 2 and 4, January, 2002. Upper bar: Site 2, 
Lower bar: Site 4. From left to right. Eodiaptomus wolterecki, Tropocyclops sp., Horaella brehmi.
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Figure 5.4 Abundances of zooplankton community (± se), with depth, at site 2, August, 2004. From left to right: Eodiaptomus 
wolterecki, Tropocyclops sp., Horaella brehmi.
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Figure 5.5 Size distributions (± se) of calanoid and cyclopoid copepods with depth. From left to right: A. 2000, B. 2002, C. 2004.
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CHAPTER 6: CONCLUSIONS

This major objective of this study was to fulfill the need to better understand the 

processes governing the primary and secondary production of Lake Matano. Specifically, 

the study characterized the phytoplankton and zooplankton communities of Lake Matano 

and determined that Lake Matano exhibited very low production in comparison with 

other lakes of similar physical characteristics. In addition, chemical stresses, including 

nutrient limitation and metals stress were considered.

As anthropogenic demands on the lake increase, the need to gage the impact of 

these demands and to provide the first detailed record of the pelagic plankton community 

becomes more significant. As an ancient lake that has remained relatively isolated 

through much of its history, studies of Lake Matano’s community also offer insight into 

factors governing community dynamics and assembly.

Reynolds et al. (2000) provided a qualitative model that correlates significant 

physicochemical characteristics with the assemblages of pelagic phytoplankton 

dominating a lake. The model has been applied to understanding the regulation of 

phytoplankton dynamics in the large lakes of the world, as delimited by lake depth and/or 

surface area. Lake Matano qualifies as one of the large lakes of the world. Reynolds et al. 

(2000) suggests that although the paucity of data available for Lake Matano prevented its 

inclusion during model development, Lake Matano may present a rewarding study. The 

limnology of Lake Matano and important geochemical characteristics of the lake are
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reviewed in Chapter 1 and applied to Reynolds’ framework for classifying the other large 

lakes of the world. In terms of depth, morphology and latitude, Lake Matano is 

comparable to Lake Tanganyika. Lake Matano is classified as a warm near-meromictic 

lake, based on the scheme applied to the other large lakes (Hutchinson and Loffler, 1956; 

Reynolds et al., 2000). Deep mixing occurs throughout the year, to a depth of at least 100 

m, where a slight thermal structure has been detected. As a regional frame of reference, 

the downstream Malili Lakes, Mahalona and Towuti, are continuous warm polymictic 

lakes. As a shallow, tropical lake, Lake Mahalona correlates with other lakes under this 

description. In the case of Towuti, the classification is atypical, as it is usually reserved 

for very shallow lakes.

Further understanding of the pelagic community of Lake Matano requires 

knowledge of the organization of the primary production base. The dominant 

phytoplankton assemblage found in Lake Matano, as well as the downstream lakes, is one 

of non-N-fixing cyanobacteria (see Chapter 2). This assemblage is common to the large 

lakes of low latitude and atypical at higher latitude. This finding corroborates that, in 

considering important lake physicochemical characteristics, latitude provides the clearest 

indication of phytoplankton type (Reynolds et al., 2000). However, the cyanobacterial 

dominance at low latitudes is also associated with the trend in mixing types (Chapter 2). 

An important aspect of the cyanobacterial assemblages is the small biovolume, which 

facilitates staying afloat in the water column (Reynolds et al., 2000). This adaptation 

would be important in the meromictic and continuous warm polymictic lakes in which 

this assemblage proliferates, particularly in the deeply mixed Malili Lakes.
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Lake Matano and the downstream lakes exhibit poor standing biomass most 

similar to an ultra-oligotrophic, unproductive Arctic-type lake, suggesting growth 

limitation of the primary production. Indeed, Lake Matano exhibits poor production at 

each trophic level, poor species richness and the lack of a top piscivore trophic level.

It has been proposed that lake production is constrained as a result of either 

nutrients (Haffner et al., 2001) or metal toxicity (Fernando, 1987; Haffner et al., 2001). 

The ultramafic catchment of the lakes is rich in heavy metals such as chromium, and poor 

in nutrients such as phosphorus and nitrogen. A nutrient enrichment experiment was 

conducted using phytoplankton from the lake, cultured in growth media prior to initiation 

of the experiment (Chapter 3). Higher numbers of cells were observed in the nitrogen- 

enriched cultures of water from the lake, relative to the control, but the effect was not 

significant. The trend may have resulted from transient nitrogen limitation of selected 

phytoplankton populations. In the P-enriched lake water, significantly higher (p<0.01) 

growth was observed than in the control cultures and nitrogen enriched cultures. In 

addition, community dominance shifted towards Chlorella. The results suggest the 

existence of phosphorus limitation of net primary productivity in Lake Matano. This 

finding deviates from the accepted norm for tropical lakes, in which nitrogen limitation is 

the norm, while temperate lakes are predominantly phosphorus limited (Lewis, 2000). 

Nitrogen limitation in tropical lakes results from the insolubility of nitrogen and 

heightened microbial metabolism in warmer temperatures (Lewis, 2000). In Lake 

Matano, the high levels of iron in the lake may scavenge phosphorus, depleting the 

available phosphorus. If this is the case, the ratio of N:P must be relatively high, with
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phosphorus in very low supply. An outgroup was also introduced into the experiment, 

consisting of bottled water as a culture medium. A ready growth response of significant 

magnitude indicated that a growth restriction had been readily alleviated in the outgroup. 

The water contained nutrient levels several orders of magnitude above the level found in 

the lake. The experiment suggests that nutrient bioavailability plays a role in limiting 

primary production.

Alternatively, metal toxicity restricts primary production (Chapter 4). A process 

of metal removal applied to lake water for culture media enhanced phytoplankton growth 

in this water relative to growth in water in which the metals had not been removed. A 

significant change in phytoplankton composition did not occur, suggesting toxic release 

of the existing species.

Lastly, the diversity, richness and life history characteristics of the secondary 

production base of Lake Matano were examined. The factors influencing community 

assemblage have been classically addressed through determination of the spatial and 

temporal plankton distribution (Tailing, 1957; Hutchinson, 1967). This approach was 

used to determine what factors regulate the dynamics of the pelagic zooplankton 

community. Fecundity, size distribution, 813C and 815N isotopic enrichment, composition 

and abundance were analyzed with depth in three sampling years. Results suggested that 

vertical structure is maintained in the well-mixed epilimnion of the lake. In tropical 

systems, top-down effects have traditionally been invoked as the dominant force 

governing plankton dynamics of freshwater systems (McQueen et al., 1988). However, in
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Lake Matano, the paucity of the primary production base and the lack of a significant 

piscivore population suggest that bottom-up effects have a greater influence on 

zooplankton community structure than do typical top-down effects.

This study reviews physical, chemical and biological characteristics of Lake 

Matano. Physicochemical characteristics of the lake were compared with those of other 

large lakes and with regional lakes; experiments were conducted to test chemical stress, 

and the potential influence of higher trophic levels on the production base was examined. 

Potential nutrient limitation was demonstrated in Chapter 3 while results in Chapter 4 

suggested toxicity release from metals stress. Field expeditions revealed low primary and 

secondary production over three field sampling expeditions. This atypically low primary 

and secondary production in Lake Matano is consistent with the chemical stresses tested.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 — References

Fernando, C.H. (1987). “Tropical freshwater zooplankton with special reference to South 
East Asia (Oriental Region)”. Reports o f the National Geographic Society 87:287-311.

Fernando, C.H. (1994). “Zooplankton, fish and fisheries in tropical freshwaters”. 
Hydrobiologia 272:105-123.

Haffner, G.D; Hehanussa, P.E. and Hartoto, D. (2001). “The biology and physical 
processes of large lakes of Indonesia” In: Munawar, M. and Hecky, R.E. (eds.). The 
Great Lakes o f  the World: Food-web, health, and integrity. Backhuys Publishers,
Leiden, the Netherlands, pp. 183-194.

Hutchinson, G.E. (1967). A Treatise on Limnology, Vol. II. Introduction to Lake Biology 
and the Limnoplankton, Wiley, New York.

Hutchinson, G.E. and Loffler, H. (1956). “The thermal classification of lakes”. Proc.
Natl. Acad. Sci. 42:84-86.

Lewis, W. (2000). “Basis for the protection and management of tropical lakes”. Lakes 
Reservoirs: Res. Manage 5:35-48.

Mcqueen, D.J. and Post, J.R. (1988). “Cascading trophic interactions- Uncoupling at the 
zooplankton-phytoplankton link”. Hydrobiologia 159(3):277-296.

Reynolds, C.S.; Reynolds, S.N.; Munawar, I. and Munawar, M. (2000). “The regulation 
of phytoplankton population dynamics in the world’s largest lakes”. Aquat. Ecosys. 
Health Manage 3:1-21.

Tailing, J.F. (1957). “Factors controlling the upper limit of primary production for 
African freshwater phytoplankton”. J. Appl. Ecol. 4(1): 15.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

NAME: Elisabeth Sabo

PLACE OF BIRTH: Calgary, Alberta, Canada

YEAR OF BIRTH: 1981

EDUCATION: Walkerville Collegiate Institute, Windsor, Ontario
1995-1999 High School

University of Windsor, Windsor, Ontario 
1999-2003 B.Sc. (Hons.)

University of Windsor, Windsor, Ontario 
2003-2006 M.Sc.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Characterization of the pelagic plankton assemblage of Lake Matano and determination of factors regulating primary and secondary production dynamics.
	Recommended Citation

	tmp.1507664919.pdf.AU8CR

