
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

On the implementation and refinement of outerplanar graph On the implementation and refinement of outerplanar graph

algorithms. algorithms.

Tao Deng
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Deng, Tao, "On the implementation and refinement of outerplanar graph algorithms." (2007). Electronic
Theses and Dissertations. 6972.
https://scholar.uwindsor.ca/etd/6972

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6972?utm_source=scholar.uwindsor.ca%2Fetd%2F6972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

On the Im plem entation and Refinement of
Outerplanar Graph Algorithm s

by

Tao Deng

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada
2007

©2007 Tao Deng

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-34997-7
Our file Notre reference
ISBN: 978-0-494-34997-7

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

An outerplanar graph is a graph that can be embedded on the plane such that
all the vertices lie on the exterior face and no two edges intersect except possibly
at a common end-vertex. Five sequential algorithms had been proposed for rec­
ognizing outerplanar graph in the literature and all run in linear time and space.
Although among them, the algorithms of Mitchell, Wiegers, and Tsin and Lin
are obviously superior, no efforts had been made in comparing their performances
during run-time.

In this thesis, the aforementioned three algorithms are implemented and their
performances are compared using a large number of randomly generated graphs.
Furthermore, the algorithms of Mitchell and Wiegers are modified so that an out-
erpalnar embedding is generated if the input graph is outerplanar. Correctness
proofs of the modification are presented. It is also shown that the complexity of
the modified algorithms remain linear in both time and space.

Keywords: Graph algorithms, outerplanar graph, outerplanar embedding, lin­
ear time algorithm, performance evaluation.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Tsin whose
guidance and encouragement helped me during the research. His attitude of pro­
viding only high quality work, has made a deep impression on me. Besides of
being an extrordinary supervisor, Dr. Tsin is a dear friend to me. I feel so lucky
to get to know Dr. Tsin in my life.

I wish to express my thanks to my thesis committee members, Dr, Wu, Dr. Kao
and Dr. Ahmad who used their precious time and provided invaluable suggestions
to my thesis.

My parents deserve a special thanks for giving me their unconditional love. I
am also very grateful to all my friends for all their help and support.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Motivation... 1
1.2 Thesis S ta tem en t... 4
1.3 Organizations of Thesis.. 4

2 Background 6
2.1 Basic Definition.. 6

2.1.1 Related C oncepts.. 6
2.2 Representation of G ra p h ... 10

2.2.1 Adjacency M atrix .. 10
2.2.2 Adjacency List .. 10

2.3 Graph Traversing Techniques .. 11
2.3.1 Depth First S ea rch ... 11

2.4 Planar Graphs and Outerplanar Graphs 14
2.4.1 Planar G ra p h ... 14
2.4.2 Outerplanar G ra p h .. 15

2.5 Bucket S o r t .. 16

3 A Study of M itchell’s Algorithm 17
3.1 Maximal Outerplanar Algorithm... 17
3.2 Outerplanar a lg o rith m .. 18
3.3 An Example of Mitchell’s Outerplanar A lgo rithm 19

3.3.1 Removal of 2-vertices... 20
3.3.2 Bucket S o r t .. 22
3.3.3 Check PAIRS and ED G ES.. 23

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS CONTENTS

3.4 Implementation... 24
3.4.1 Our strategies in the im plem entation................................... 24
3.4.2 Main Steps of our Implementation... 25
3.4.3 A Detailed Implementation .. 26
3.4.4 An Illustration of Mitchell’s Outerplanar Algorithm 30

4 A Study of W iegers’ Algorithm 33
4.1 Outerplanar a lg o rith m ... 33

4.1.1 The 2-Reducible Graph Algorithm 33
4.1.2 The Edge Coloring Technique... 36

4.2 Implementation... 40
4.2.1 An Exam ple.. 43

5 A Study of Tsin and Lin’s Algorithm 47
5.1 Outerplanar a lg o rith m ... 47
5.2 An Example of Tsin and Lin’s Outerplanar Algorithm................... 50
5.3 Implem entation... 52

6 Experiments 55
6.1 Experimental D a t a ... 55

6.1.1 The Input Graphs .. 55
6.1.2 Experimental Results... 56

6.2 Discussion.. 57

7 Embedding of Outerplanar Graphs 60
7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding . . . 60
7.2 Proof of Correctness .. 65
7.3 An Exam ple... 66
7.4 A Modified Wiegers’s Algorithm for Outerplanar Embedding . . . 69

8 Conclusions 70

Bibliography 71

VITA AUCTORIS 76

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 an undirect g ra p h ... 7
2.2 a direct g ra p h ... 7
2.3 A spanning tree of the graph in Figure 2 .1 8
2.4 # 5 ... 9
2.5 # 4 ... 9
2.6 # 3,3 .. 9
2.7 # 2,3 .. 9
2.8 a DFS spanning tree of the graph in Figure 2 . 1 14

3.1 An Illustration of Mitchell’s A lgorithm .. 20
3.2 An Illustration of Mitchell’s Algorithm: after removal of node 5 . 20
3.3 An Illustration of Mitchell’s Algorithm: after removal of node 4 . 21
3.4 An Illustration of Mitchell’s Algorithm: after removal of node 3 . 21
3.5 An Illustration of Mitchell’s Algorithm: after removal of node 6 . 22
3.6 An Illustration of Mitchell’s Algorithm: P A IR S and E D G ES after

all the 2—vertices are removed... 22
3.7 An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES be­

fore Bucket S o rt... 23
3.8 An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES after

one-pass Bucket S o r t .. 23
3.9 An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES after

a two-pass Bucket S o r t ... 24
3.10 An Illustration of Mitchell’s Outerplaner Algorithm; | V\ = 6 30
3.11 An Illustration of Mitchell’s Algorithm: After removal of vertex 5 31
3.12 An Illustration of Mitchell’s Algorithm: After removal of vertex 4 31
3.13 An Illustration of Mitchell’s Algorithm: After removal of vertex 3 32
3.14 An Illustration of Mitchell’s Algorithm: After removal of vertex 6 32

4.1 case (i):Deg{u) — 1. No matter col(u,Ui) is cross, outer or bridge,
G remains having acceptable coloring.. 37

4.2 case (ii):Deg(u) = 2, U\ and u2 are not joined with an edge. . . . 38
4.3 case (iii)\Deg(u) = 2 , U\ and u2 are not joined with an edge. . . 38
4.4 case (iv):Deg(u) = 2, ui and u2 are joined with an edge........ 39
4.5 case (iv)\Deg(u) = 2, u\ and u2 are joined with an edge........ 39
4.6 case (v):Deg(u) = 2, u\ and u2 are joined with an edge................... 40
4.7 case (vi):Deg(u) = 2, U\ and u2 are joined with an edge.................. 40

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES LIST OF FIGURES

4.8 Example of Implementation of Wiegers’ Algorithm: a graph with
6 vertices .. 44

4.9 Example of Implementation of Wiegers’ Algorithm: u — 4 44
4.10 Example of Implementation of Wiegers’ Algorithm: u = 5 45
4.11 Example of Implementation of Wiegers’ Algorithm: u = 3 45
4.12 Example of Implementation of Wiegers’ Algorithm: u = 3 46
4.13 Example of Implementation of Wiegers’ Algorithm: u = 3 46
4.14 Example of Implementation of Wiegers’ Algorithm: u = 3 46

5.1 a DFS spanning tree of the graph in Figure 2 . 1 50
5.2 non-trivial path P \ ... 51
5.3 trivial path P2 ... 51
5.4 non-trivial path P s ... 51
5.5 non-trivial path P i ... 51
5.6 non-trivial path P5 ... 51

6.1 The performances of the three algorithms on all graphs, as a func­
tion of the graph s iz e .. 57

6.2 The performances of the three algorithms on Outerplanar Graphs,
as a function of the graph s iz e .. 58

6.3 The performances of the three algorithms on non-Outerplanar
Graphs, as a function of the graph s i z e ... 59

7.1 Example of OuterPlanar Embedding (Mitchell’s Algorithm) . . . 66
7.2 Example of OuterPlanar Embedding (Mitchell’s Algorithm): after

removal of vertex 5 .. 67
7.3 Example of OuterPlanar Embedding (Mitchell’s Algorithm): after

removal of vertex 4 .. 67
7.4 Example of OuterPlanar Embedding (Mitchell’s Algorithm): after

removal of vertex 1 .. 68
7.5 Example of OuterPlanar Embedding (Mitchell’s Algorithm): after

removal of vertex 3 .. 68

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Adjacency matrix of the graph in Figure 2 .1 10
2.2 Adjacency lists of the graph in Figure 2 . 1 11

4.1 Types of red u c tio n .. 37

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Algorithms

1 DFS(w, u) .. 14
2 Bucket Sort {Array, n) .. 16
3 An Implementation of Mitchell’s Outerplanar A lg o rith m 27
4 Check the adjacency list of vertex a for vertex b 28
5 Add White N o d e ... 28
6 Add Red Node .. 29
7 Remove Red Node .. 29
8 Check if PAIRS C ED GES.. 30
9 2-Reducible Graph A lgorithm .. 35
10 Implementation of Wiegers’ Outerplanar Graph Algorithm 41
11 M oveEdge.. 42
12 Tsin and Lin’s Outerplanar Algorithm [50]...................................... 50
13 Random biconnected G raphs... 56
14 Modified Mitchell’s Outerplanar Algorithm...................................... 63
15 Check the adjacency list of vertex a for vertex b 64
16 Add White vertex ... 64
17 AddEdgetoBoundary (u,v,w)\ 65

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

A general definition of graph is any mathematical object involving nodes and
connections between them. Graph-theoretic problems occur naturally in a great
diversity of applications, such as electrical circuits, organic molecules, ecosystems,
sociological relationships, databases, and in the flow of control in a computer pro­
gram.

1.1 M otivation

An outerplanar graph is a graph that can be embedded in the plane so that all
the vertices lie on the boundary of the exterior face and no two edges cross each
other. Outerplanar graphs appear naturally in a wide variety of applications. For
instance, in RNA structure, every secondary structure which consists of a list of
base pairs has the structure of an outerplanar graph [52]. In computer networks,
message routing is generally an expensive task in terms of time and space complex­
ity. However, for outerplanar network, compact routing schemes [21] and compact
fault-tolerant message routing method [21] had been developed. Although in real-
life situation, computer networks are usually planar, Frederickson showed that
the problem of designing efficient compact routing scheme for planar networks
can be reduced to that for a class of outerplaner networks satisfying certain prop­
erties [20]. Furthermore, Gongalves recently showed that every planar graph can
be decomposed into two outerplanar subgraphs [25]. The study of outerplanar
network thus plays an important role in message routing.

Outerplanar graph has been extensively studied. For instance, while the
Hamiltonian cycle problem and the chromatic-number problem are NP-complete

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Motivation

and NP-hard, respectively, in general, there exist polynomial-time algorithms for
the two problems if the given graph is outerplanar. Mitchell et al. [41] showed
that the isomorphism problem for maximal outerplanar graphs can be solved in
polynomial-time and presented two liner-time algorithms. Bachl et al. [5] showed
that the isomorphic subgraphs problem is NP-Complete for outerplanar graphs
and is solvable in linear time when restricted to trees. Proskurowski and Sysol [43]
presented an efficient algorithm for finding minimum adominating cycle for the
biconnected outerplanar graphs. For the problem of list coloring and precoloring
extension on the edges of planar graphs, Marx [39] showed that both problems
are NP-Complete for bipartite outerplanar graphs.

It is of both theoretical and practical interest to determine if a graph is out­
erplanar and produce an outerplanar embedding of it if it is. Efficient algorithms
had been proposed for this problem on various computer models.

For the parallel model, Diks, Hagerup and Rytter [16] presented an algo­
rithm that runs in O(lognloglogn) time using n/(lognlog logn) processors on
the CREW (concurrent-read-exclusive-write) PRAM (Parallel RAM), where n is
the number of vertices in the given graph. If the graph is outerplanar and bicon­
nected, then a Hamiltonian cycle will also be produced.

For the distributed model, Kazmierczak and Radhakrishnan [33] presented an
asynchronous distributed algorithm that uses 0 (n) time and transmits 0 (m) mes­
sages to determine if a biconnected network with n-node and ra-link is outerplanar.

For the external memory model, Maheshwari and Zeh [37] presented an algo­
rithm that performs sort(n) I/O operations to determine if a biconnected graph
is outerplanar, where sort(n) is the number of I/O operations performed to sort
a list of n elements.

For the sequential model, a number of linear time and space algorithms for
recognizing outerplanar graph had been published. Brehaut proposed the first two
algorithms [7]. Both algorithms rely heavily on the planarity testing algorithm of
Hopcropt and Tarjan [30] and are thus quite complicated. In the first algorithm,
the planarity testing algorithm is first used to assure that the given graph is a
planar graph. After that, a dependency subgraph is generated. A coloring is then
performed on the dependency subgraph to generate an outerplanar embedding of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Motivation

the given graph. In the second algorithm, a depth-first search is first performed
over the given graph to convert the graph into a palm tree [48]. An acceptable
adjacency list structure for the palm tree is then generated. A second depth-first
search is then performed over the palm tree to produce an ear-decomposition of
the graph. Those ears that have more than one edges are then used to form a
Hamiltonian cycle of the given graph. Based on the Hamiltonian cycle, the orig­
inal adjacency structure is modified and a third depth-first search is performed,
generating another palm tree and another acceptable adjacency structure. A di­
rected Hamiltonian cycle of the given graph with diagonals is then generated. The
given graph is outerplanar if and only if no two diagonals cross each other.

Syslo and Iri [47] presented another depth-first search based algorithm for rec­
ognizing outerplanar graphs. Their algorithm uses the fact that a biconnected
graph is outerplanar if and only if it is a cycle or it can be reduced to a cycle
by repeatedly replacing maximal paths whose internal vertices are of degree two
with a single edge. Although this algorithm is simpler than that of Brehaut, it is
still quite complicated as it makes multiple passes over the given graph and uses
sorting.

Mitchell [41] presented another algorithm which does not use depth-first
search. Instead it is based on maximal outerplanar graph - an outerplanar graph
such that adding any edge between any two non-adjacent vertices results in a non-
outerplanar graph. The idea underlying their algorithm is to transform a given
biconnected graph into a maximal outerplanar graph by repeatedly adding edges
between non-adjacent vertices. It had been shown that a biconnected graph is
outerplanar if and only if it can be transformed into a maximal outerplanar graph.

Wiegers [53] presented yet another algorithm that does not use depth-first
search. The algorithm uses an edge coloring technique and repeatedly deletes ver­
tices of degree two or less. It can work directly on graphs that are not biconnected.

Recently, Tsin and Lin [50] presented yet another depth-first search based al­
gorithm for testing and embedding outerplanar graphs. Their algorithm is based
on a new characterization theorem of outerplanar graph whose conditions can be
efficiently tested during the depth-first search.

So far, no work had been done on comparing the performances of the afore-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Thesis Statement

mentioned sequential algorithms. Therefore, in this thesis, we shall implement the
algorithms and compare their performance based on randomly generated graphs.
However, after a preliminary study of the six algorithms, we noticed that the al­
gorithms of Brehaut and that of Syslo et al. are clearly inferior to the rest. We
shall thus implement and compare the last three algorithms only.

We had also noticed that the algorithms of Mitchell and Wiegers only test
for outerplanarity of the given graph. They do not produce an embedding if the
graph is indeed outerplanar. We shall thus refine the two algorithms to include
such functionality.

1.2 Thesis Statem ent

In this thesis, a detailed comparison of the algorithms of Mitchell, Wiegers and
Tsin’s outerplanar graph algorithms will be presented. Firstly, crucial details that
were omitted in the original presentation of Mitchell’s and Wiegers’ algorithm will
be filled in. The three algorithms are then implemented and their performances
are compared based on a large number of experimental graphs. The graphs are
generated randomly and are of different types with different sizes.

While Tsin’s algorithm also generates an embedding of the graph if it is in­
deed outerplanar, Mitchell’s and Wiegers’ do not. In this thesis, the algorithm
of Mitchell and Wiegers, respectively, are modified so that an outerplanar em­
bedding is generated if the input graph is outerplanar. Correctness proofs of the
modification are presented. It is also shown that the complexity of the modified
algorithms remain linear in both time and space.

1.3 Organizations of Thesis

This thesis is organized into eight chapters. Chapter 1 gives the motivation of
the thesis. Chapter 2 introduces the background knowledge of graph theory,
graph algorithm, depth-first search and bucket sort. Chapters 3,4 and 5 explain
Mitchell’s, Wiegers’, Tsin and Lin’s outerplanar outerplanar graph algorithm,
respectively, and present efficient implementation for each of them. Chapter 6

presents and discusses the experimental results. Chapter 7 presents outerplanar

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Organizations of Thesis

embedding algorithms for Mitchell’s and Wiegers’ algorithm. Chapter 8 is the
conclusion.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

2.1 Basic Definition

A graph G = (V, E) consists of two sets V and E.

• The elements of V are called vertices (or nodes).

• The elements of E are called edges

• Each edge is associated with two vertices (possibly identical) called its end­
points.

The sets V and E are usually finite. \V\ is the order (the number of vertices)
and IE11 is the size (number of edges) of the graph. In an undirected graph,
each edge is associated with an unordered pair (see Figure 2.1) whereas in a
directed graph, each edge is an ordered pair (see Figure 2.2). In this thesis,
(u,v) represents an unordered pair, whereas < u,v > represents an ordered pair.
If an edge e is associated with an unordered (ordered, respectively) pair (u,v)
(< u,v >, respectively), we shall write e = (u,v) (e = < u,v >, respectively). A
direct edge e = < x ,y > is considered to be directed from x to y; x is called the
tail and y is called the head of the edge.

2.1.1 R elated C oncepts

In this thesis, we shall focus on undirected graph. The following definitions are
thus given to undirected graph although they can be easily extended to directed
graph.

D efinition 1. A vertex u is adjacent to a vertex v if they is an edge e = (u , v).
The two vertices are said to be jo in t by the edge e.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Basic Definition

Figure 2.1: an undirect graph Figure 2.2: a direct graph

Definition 2. I f vertex v is an endpoint of edge e, then v is said to be incident
on e, and e is incident on v.

Definition 3. Two adjacent vertices are called neighbors.

Definition 4. A self-loop is an edge whose two end-points are identical.

Definition 5. A multi-edge is a collection of two or more edges having identical
end-points.

Definition 6. A proper edge is an edge that joins two distinct vertices.

Definition 7. A sim ple graph is a graph that has no self-loops or multi-edges.

Definition 8. The degree of a vertex v (denoted by Deg(v)) in a graph G, is
the number of proper edges incident on v plus twice the number of self-loops.

Definition 9. A path in a graph is a sequence of vertices such that from each
vertex there is an edge to the next vertex in the sequence. The first vertex is called
the s ta r t vertex and the last vertex is called the end vertex. Both of them are
called end or term inal vertices of the path. The other vertices in the path are
in ternal vertices.

Definition 10. A cycle is a path such that the start vertex and end vertex are
the same.

Definition 11. A graph is connected if between every pair of vertices there is a
path.

Definition 12. A subgraph of a graph G is a graph whose vertex and edge sets
are subsets of those o fG .A spanning subgraph of G is a subgraph of G whose
vertex set is same as that of G.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Basic Definition

Definition 13. A connected component of a graph G is a connected subgraph
H such that no subgraph of G that properly contains H is connected.

Definition 14. A simple graph G = (V,E) is isom orphic to a simple graph
H — (V 7, E') if there exists a bijection f : V —»■ V' such that (u, v) G E if and
only if (f(u), f(v)) G Ef

Definition 15. A cut-vertex is a vertex whose removal increases the number of
connected components.

Definition 16. A biconnected graph is a graph without cut-vertex.

Definition 17. A cut-edge (also known as bridge) is an edge whose removal
increases the number of connected components.

Definition 18. A tree is a connected graph with no cycles.

Definition 19. A spanning tree of a graph G is a spanning subgraph of G that
is a tree (see Figure 2.3).

Figure 2.3: A spanning tree of the graph in Figure 2.1

Definition 20. A simple graph is a complete graph if every pair of vertices
is joined by an edge. The complete graph with n vertices is denoted by K n (see
Figure 2-4, 2-4) ■

Definition 21 . A 2-vertex is a vertex of degree 2 and whose neighbors are ad­
jacent.

Definition 22. A simple graph is bipartite if its vertices can be partitioned into
two disjoint sets (called partite sets) in such a way that no edge joins two vertices
in the same set.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Basic Definition

Figure 2.4: K 5 Figure 2.5: K±

Figure 2.6: 3 Figure 2.7: K 2,z

Definition 23. A com plete bipartite graph is a simple bipartite graph in which
each vertex in one partite set is adjacent to all the vertices in the other partite
set. I f the two partite sets have cardinalities r and s, then this graph is denoted
by K rtS (see Figure 2.6, 2.7).

Definition 24. A graph is H am iltonian if it has a spanning cycle.

Definition 25. Two graphs G and H are homeomorphic if both of them can
be obtained from the same graph by replacing edges with paths.

D efinition 26. A planar embedding of a graph is a graphical representation of
the graph on the plane (with dots representing vertices and line segment joining
two dots representing edges joining the two corresponding vertices) such that no
two edges intersect except at an end-point. The edges partition the plane into
regions, called faces. The edges surrounding a region is called the boundary of
that region. There is exactly one face with unbound area called the exterior face.

Definition 27. A graph is planar if it has a planar embedding in the plane.

Definition 28. A graph is called outerplanar if it has an embedding in the plane
such that all the vertices lie on the boundary of the exterior face.

Definition 29. A m axim al outerplanar graph is an outerplanar graph such
that adding an edge to join any two non-adjacent vertices results in a non-
outerplanar graph.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Representation of Graph

Definition 30. An ou ter edge is an edge which lies on the boundary of the
exterior face.

Definition 31. The in n e r edge is an edge which does not lie on the boundary
of the exterior face.

2.2 Representation of Graph

2.2.1 A djacency M atrix

An adjacency m a tr ix of a graph G = (V, E) is an |Fj x |f/| matrix M, such that
M[i,j] = 1 if and only if vertex v-i and vertex Vj are adjacent. Adjacency matrix
is the simplest way to represent graphs. However, the time and space complexity
are fl(|F |2) as it requires 0 (|V |2) memory locations to store the matrix M and
0 (|F |2) time to initiate the matrix. Figure 2.1 is an adjacency matrix for the
graph in Figure 2.1.

Vl V2 v3 v4 v5 Ve v7 Vs Vg Vio

Vi 0 1 0 0 0 0 0 0 0 1

V2 1 0 1 0 0 0 1 0 1 0

v3 0 1 0 1 0 0 0 0 0 0
v4 0 0 1 0 1 0 1 0 0 0
V5 0 0 0 1 0 1 0 0 0 0
V& 0 0 0 0 1 0 1 0 0 0
v7 0 1 0 1 0 1 0 1 1 0

Vs 0 0 0 0 0 0 1 0 1 0

V9 0 1 0 0 0 0 1 1 0 1

VlO 1 0 0 0 0 0 0 0 1 0

Table 2.1: Adjacency matrix of the graph in Figure 2.1

2.2.2 A djacency List

An adjacency list of a graph G = (V,E) consists of an |Vj— element array of
pointers, where the ith element points to a linked list of the vertices adjacent to
the vertex without loss of generality, we shall use v, and i interchangeably.
AList{i) denotes the adjacency list of vertex i. j G AList(i) implies that vertex
j is adjacent to vertex i. To initialize the adjacency list, 0(\E\) time is sufficient.
We shall use adjacency lists to represent the given graph in this thesis.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Graph Traversing Techniques

1 — > 2 — >10
2 — > 1 — ► 3 — > 7 — > 9
3 — >2 — >4
4 — > 3 — >5 — > 7
5 — > 4 — >6
6 — > 5 — > 7
7 — >2 — >4 — >6 — >8 — ► 9
8 — > 9 — > 7
9 — >2 — >8 — >7 — >10
10 — > 1 — > 9 ___

Table 2.2: Adjacency lists of the graph in Figure 2.1

Definition 32. Cross-pointer linked lists are the adjacency lists of the graph
G = (V,E) such that for each vertex v in AList(u),u E V , there is cross-pointer
between the vertex v in AList(u) and the vertex u in AList(v).

2.3 Graph Traversing Techniques

A search algorithm takes a problem as input, evaluates a number of possible so­
lutions, and returns a solution to the problem. The set of all possible solutions to
a problem is called the search space.

Among all the search algorithms, tree search algorithm is the heart of all search
techniques, and is one of the central algorithms of many game playing programs.
A tree traversal is a process of visiting each vertex in a tree data structure. Such
traversal can be classified by the order in which the nodes are visited. For instance,
level by level (Breadth-first search), reaching a leaf vertex first before backtracking
(Depth-first search), alternative-deepening search, depth-limited search, bidirec­
tional search and uniform-cost search.

2.3.1 D epth First Search

Depth First Search (abbreviated as DFS), as its name implies, is a graph-search
method that searches “deeper” when possible. Specifically, a DFS extends the
current path as far as possible before backtracking to the last reached vertex and
trying the next alternative path.

DFS was first used by Tar j an in his algorithms for finding biconnected compo-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Graph Traversing Techniques

nent and strongly connected component [48]. Later, Tarjan and Hopcroft used it
to develop a linear-time algorithm for recognizing planar graph [30]. Since then,
depth-first search has been used in developing optimal algorithm for a vast variety
of graph-theoretic problems.

Owing to the success in using depth-first search to develop efficient graph al­
gorithms on the sequential computers, researchers in parallel computation had
attempted to adapt the technique to parallel computers. Unfortunately, very few
progresses were reported. Finally, Reif proved that depth-first search is an inher­
ently sequential technique [44].

It turned out that depth-first search is much more adaptable to the distributed
processing setting. Chueng [9] presented the first depth-first search algorithm that
runs on an asynchronous computer network. The algorithm takes 2m time and
transmits 2 m messages each with 0 (1) length, where m is the number of links in
the network. Awerbuch [4] improved the time bound to 4n, where n is the number
of nodes in the network (note that m = 0 (n 2)). Lakshmanan et al. [35] tightened
the time bound to 2n — 2. Cidon [11] showed that the message bound can be
reduced to 3m; however, Tsin [49] later showed that Cidon’s algorithm does not
always perform a depth-first search over the network correctly. Tsin then corrected
the flaws in Cidon’s algorithm and showed that the time and message complexity
of the corrected algorithm are actually same as those of Lakshmanan et al Tsin
further showed that by extending the message length from 0(1) to O(logn), the
time complexity of the corrected Cidon’s algorithm can be improved to n(l + r),
where 0 < r < 1. Sharma et al. [34,45] showed that one can trade message size
for time and message by using messages of length 0 (n) to reduce the time and
message to 2n — 2. Makki et al. [38] improved the bounds to n (l + r), where
0 < r < 1 by using the dynamic backtracking technique. Recently, Turau [51]
showed that depth-first search is also adaptable to wireless sensor network.

On the external-memory model (a model in which the input size is larger than
the internal memory size), Chiang et al. [10] proposed a depth-first search algo­
rithm that requires 0(\n/M]scan(m) + n) I/O operations, where M is the size of
the internal memory, n and m are the number of vertices and the number of edges,
respectively, of the given graph, and scan(m) is a primitive which is the number
of I/O operations needed to read m items striped across the external disks that
form the external memory. Buchsbaum et al. [1] introduced the buffered reposi-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Graph Traversing Techniques

tory tree and used it to develop another depth-first search algorithm that requires
0((n + rn/B) log2(n/B) + sort(m)) I/O operations, where B is the number of
items an I/O operation can transfer from/to an external disk and sort(m) is an­
other primitive which is the number of I/O operations needed to sort m items
striped across the external disks. The algorithm outperforms that of Chiang et
al. when M = o{{n/B)/\og 2 (n/B)). For planar graph, Arge et al. [2] presented
a depth-first search algorithm that requires 0(sort(n) \og(n/m)) I/O operations.

The following is a brief description of depth-first search:
Initially, all the edges in the graph G — (V, E) are unexplored and all vertices

are unvisited. An arbitrary vertex r is chosen as the starting point of the depth-
first search. Vertex r thus becomes the current vertex of the search. In general,
let v be the current vertex of the search. An unexplored edge incident on v is
chosen. If the edge does not lead to an unvisited vertex, it is discarded and an­
other unexplored edge is chosen. This step is repeated until either an unexplored
edge whose other end-point w is unvisited is encountered or vertex v runs out of
unexplored edge. In the former case, the search advances to vertex w making it
the current vertex. In the latter case, the search backtracks to the vertex u from
which v was discovered as an unvisited vertex earlier.

A depth-first search creates a spanning tree, called depth-first search span­
ning tree (abbreviated as DFS-tree), of the given graph. The spanning tree
consists of all those edges the search uses to advance from a current vertex to an
unvisited vertex. An edge in the graph is called a tree edge if it belongs to the
DFS-tree and is called a back edge, otherwise. Let e = (u,v) be a tree edge.
Vertex u is the parent of vertex v if vertex u is visited before vertex v during the
search. Vertex v is called a child of vertex u.

The depth-first search also labels each vertex v with an integer, called the
depth-first search number of v, which shall be denoted by dfs(v). The inte­
ger is the rank of vertex v in the ordering the vertices are visited by the depth-first
search. Specifically, dfs{v) = k if vertex v is the kth unvisited vertex being turned
into a current vertex by the search.

The following is a formal description of depth-first search.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Planar Graphs and Outerplanar Graphs

A lgorithm 1 DFS(v, u)
Inpu t: The adjacency lists of G = (V, E):
{comment: vertex u is the parent of vertex v}
dfs(v) <— count; count <— count + 1; comment: /* count is initialized to 1 */
for each w in the adjacency list of v do

if w is unvisited th en
D F S K v)

end if
end for

Figure 2.8: a DFS spanning tree of the graph in Figure 2.1

2.4 Planar Graphs and Outerplanar Graphs

2.4.1 Planar Graph

Planar graph arises naturally in real-life situation. For instance, railway maps,
electric circuits are planar graphs.

Kuratowski gave the first characterization theorem for planar graphs, now
known as the Kuratowski’s theorem.

Theorem 1. An undirected graph is planar if and only if it does not contain a
subgraph that is homeomorphic to K$ or K ^ .

Unfortunately, there is no apparent way of using Kuratowski’s theorem to
produce an efficient algorithm for planarity testing. Auslander and Parter [3] pre­
sented the first planarity algorithm. The algorithm runs in 0 (n 3) time, where n

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Planar Graphs and Outerplanar Graphs

is the number of vertices in the graph. Later, Goldstein [23] spotted an error in
Auslander and Parter’s algorithm and corrected it.

The first linear-time planar graph algorithm was proposed by Hopcroft and
Tarjan [31]. The algorithm is based on Auslander, Parter and Goldstein’s algo­
rithm. It starts from a cycle and adding to it one path at a time. Each such
new path connects two existing vertices with new edges and vertices. The process
continues until either a non-planar subgraph is constructed or the entire graph is
constructed. In the former case, the given graph is non-planar; in the latter case,
the given graph is planar.

Lempel, Even and Cederbaum [36] used a different approach for planarity
testing. Instead of starting with a cycle and adding one path at a time, they
start with a single vertex and add one vertex at a time. Each time after a new
vertex is added, all the previously added edges that are incident on the new
vertex are connected to the vertex; new edges incident on the new vertex are then
added with their other endpoints left unconnected. The process continues until a
either nonplanar is constructed or the entire graph is completed. Several linear
time algorithms based on Lempel, Even and Cederbaum’s algorithm had been
proposed [6,17,46].

2.4.2 Outerplanar Graph

An outerplanar graph is an undirected graph which can be embedded into the
plane so that every vertex lies on the boundary of the exterior face. Obviously,
every outerplanar graph is planar, but the converse is not true. A4 and A2)3

(Figures 2.5, 2.7) are the two smallest non-outerplanar graphs. They play a
fundamental role in characterizing outerplanar graphs.

T heorem 2. A graph is outerplanar if and only if it has no subgraph homeomor-
phic to K 4 or Â2,3 ■

Proof. See [8].
□

Theorem 3. A graph is outerplanar if and only if each of its biconnected compo­
nents is outerplanar.

Proof. See [28].
□

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Bucket Sort

Owing to Theorem 3, many outerpalnar graph algorithms assume that the
input graph is biconnected. Brehaut [7], Mitchell [41] and Syslo et al. [47] are
such examples. However, if the input graph is not biconnected, a biconnected
component algorithm must be used to decompose the input graph into a collection
of biconnected components first. This could lengthen the run time of the algorithm
significantly. By contrast, both Wiegers [53] and Tsin and Lin [50] do not make
such assumption on the input graph.

2.5 Bucket Sort

Bucket sort is a distribution sorting method that is most suitable for sorting d-
digit integers or d-tuples of integers in which the integers are bounded by integer
k. It runs in linear time providing that k and d are small, fixed constants.

The algorithm works as follows: Let Array[0..n — 1] be an array of n d-tuples
of integers in which the integers are in the range {1,2, . . . , A;}. Then k initially
empty buckets are used each of which corresponds to a distinct integer in the
given range. The algorithm runs through d iterations. During the j th, 1 < j < k
iteration, a tuple Array[i] = (a^, ai2, . . . , aik) is put into bucket aik_j+1. the tuples
are then combined into one list with those tuples from bucket i precede those from
bucket i + 1, where 1 < i < k. The list is then used in the following iteration. A
brief description of the algorithm is given below.

Algorithm 2 Bucket Sort {Array, n)
for j = 1 to k do

Bucket[i\ := 0; comment: /* initialize the Buckets */
end for
for j = 1 to d do

for i = 0 to n — 1 do
Bucket[aik_j+1] <— Bucket[aik_j+1] ® Array[i\]
{comment: Append Array[i] to Bucket aik_j+1] © is the concatenation
operator}

end for
Combine the tuples in the buckets into one list such that those tuples from
bucket i precede those from bucket i + 1, where 1 < i < k;
Copy the list back into Array[0..n — 1];

end for

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A Study of M itchell’s Algorithm

3.1 M aximal Outerplanar Algorithm

Mitchell’s algorithm [40] runs in linear time and space. However, it assumes
that the given graph is biconnected. If the graph is not biconnected, then a
biconnected component algorithm must be used to decompose the graph into a
collection of biconnected subgraphs. Michell’s algorithm can then be used on each
of the subgraphs to find out if any of them is not outerplanar. The given graph
is outerplanar if and only if each of its biconnected components is outerplanar.
Furthermore, Mitchell’s algorithm does not produce an embedding for the given
graph if the graph is outerplanar.

Mitchell first presented a linear time and space algorithm for recognizing max­
imal outerplanar graphs. The algorithm is based on the following lemma.

Theorem 4. A graph G = (V, E) is maximal outerplanar if and only if either G
is a triangle or

i G contains exactly 2\V\ — 3 edges, and

ii G has at least two 2-vertices, and

iii no edge of G lies on more than two triangles, and

iv for any 2-vertex u, G — u is maximal outerplanar.

Proof. See [40]. □

The brief description of Mitchell’s algorithm is given below:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Outerplanar algorithm

Given a biconnected undirected graph G = (V, E). LIST is a stack used to
store the 2-vertices. EDGES is the set of all the edges in the graph.

1. If |Ej ^ 2|U| — 3 then stop and report that G is not maximal outerplanar.
(Based on Theorem 4(i))

2. Push all the vertices of degree 2 onto L IST . If the size of L IS T is less
than 2 , then stop and report that G is not maximal outerplanar. (Based on
Theorem 4(ii))

3. Repeat the following steps until a triangle is left (Based on Theorem 4(iv)):

3.1 Pop a 2-vertex NO D E from LIST;

3.1 Find the vertices N E A R and N E X T which are adjacent to N O D E ;

3.2 Remove NO D E from the graph G;

3.3 Add (N E X T , N E A R) to PAIRS;

3.4 If Deg(NEXT) = 2, push N E X T onto LIST;
If Deg(NEAR) = 2, push N E A R onto LIST;

4. Use two-pass bucket sort to sort P A IR S and ED G ES in lexicographical
order. (So that Step 5 can be done in 0(|V |) time)

5. Compare the lists P A IR S and EDGES. If there is an occurrence of an
element in P A IR S that is not in ED GES, then stop and report that G is
not maximal outerplanar. Otherwise, report that the graph G is maximal
outerplanar. (Based on Theorem 4(iii), there should be one and only one
edge between the vertices adjacent to 2-vertices.)

Each time a 2—vertex is removed from L IS T S , an edge (N E X T , N EAR) is
added to P A IR S indicating that that edge must be an edge in G and hence in
set ED GES, if G is maximal outerplanar.

3.2 Outerplanar algorithm

Lemm a 1. A graph G is outerplanar if and only if it can be transformed to a
maximal outerplanar graph by triangulation [40].

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example of Mitchell’s Outerplanar Algorithm

Owing to Lemma 1, Mitchell’s maximal outerplanar algorithm presented in
last section can be easily modified to do outerplanar recognition. The complexity
of the resulting algorithm is still linear in the number of vertices. The modifica­
tion involves Steps 1 and 3 only:

Theorem 5. Let G—(V,E) be an outerplanar graph. Then \E\ < 2\V\ — 3.

Proof. See [28].
□

Owing to Theorem 5, the condition “\E\ ^ 2\V\ — 3” in Step 1 is replaced by
“|£ | ^ 2|Vj — 3”. Step 3 is modified as follows:

3.1 Pop a 2-vertex N O D E from LIST-,

3.2 Find the vertices N E A R and N E X T which are adjacent to N O D E ;

3.3 Remove NO D E from the graph G\

3.4 Add {N E XT, N E A R) to PAIRS;

3.5 If edge {N E XT, N E A R) does not exist in G, add it to ED G ES and add
N E A R and N E X T to each other’s adjacency list;

3.6 If Deg{NEXT) = 2, push N E X T onto LIST]
If Deg{NEAR) = 2, push N E A R onto L IS T ;

Step 3 .1 , 3 .2???, 3 .4 , 3.6 require constant time. Step 3 .3???, 3.5 take 0(|R |)
time.

3.3 An Exam ple of M itchell’s Outerplanar Al­
gorithm

We shall demonstrate an execution of Mitchell’s Outerplanar algorithm with the
graph depicted in Figure 3.1.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

(1 ,2)
(1,6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

LIST

5
4
3
1

PAIRS

Figure 3.1: An Illustration of Mitchell’s Algorithm

3.3.1 Rem oval of 2-vertices

The algorithm first checks if the condition \E\ < 2\V\ — 3 holds. Since the con­
dition holds, all the vertices of degree 2 are pushed onto the stack L IS T (see
Figure 3.1). As the size of L IS T is greater than 2, the algorithm begins to pop
the stack LISTS.

The first vertex popped out is the vertex 5 (see Figure 3.2). Since vertices 4
and 6 are adjacent to 5, the edge (4,6) is added to PAIRS. Since the edge (4,6)
does not exist in the graph, it is added to EDGES.

Deg{4) and Deg(6) remain unchanged.

LIST

4
3
1

PAIRS

(4,6)

EDGES

(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Figure 3.2: An Illustration of Mitchell’s Algorithm: after removal of node 5

The removal of node 4 is similar with node 5. The updated graph, LIST,
ED G ES and P A IR S are shown in Figure 3.3.

Figure 3.4 shows the graph after node 3 is removed. The difference with pre-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

(6.3)
(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Figure 3.3: An Illustration of Mitchell’s Algorithm: after removal of node 4

LIST

3
1

PAIRS

(6,3)
(4,6)

vious step is that (2 ,6) already exists in the graph, so there is no need to add it
into EDGES. Since Deg(2) and Deg{6) have changed to 2, there are thus pushed
onto the LIST.

EDGES

(6.3)
(4.6) LIST PAIRS
(1,2)
(1.6) 6 (2 ,6)
(2.3) 2 (6,3)
(3.4) 1 (4,6)
(4.5)
(5.6)
(2 .6)

Figure 3.4: An Illustration of Mitchell’s Algorithm: after removal of node 3

Figure 3.5 shows the graph after the last removal of vertex from L IS T is per­
formed. If the given graph is outerplanar, it would always appear like this: a
single edge connect two vertices which are stored at the bottom of LIST.

After the process of removing vertices from L IS T terminates, the last edge
remained in the graph, (2,1), is added to EDGES. The current elements of
ED G ES and P A IR S are shown in Figure 3.6.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

(6.3)
(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

LIST
PAIRS

2
1

(1,2)
(2 ,6)
(6,3)
(4,6)

Figure 3.5: An Illustration of Mitchell’s Algorithm: after removal of node 6

Figure 3.6: An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES after
all the 2—vertices are removed

3.3.2 Bucket Sort

Both the lists ED G ES and P A IR S can be sorted by a two-pass Bucket Sort.
Each pair in ED G ES and P A IR S consists of two integers from 1 to 6 . Before
sorting, every pair is adjusted so that the first integer is no greater than the second
integer.

The arrays in Figure 3.7 are then sorted using 2-pass Bucket sort. The buckets
are labeled from 1 to 6 . In the first pass, each pair in P A IR S (EDGES, respec­
tively) is put into a bucket whose label is identical to the second integer of the
ordered pair. A partially sorted P A IR S (EDGES, respectively) (sorted by their
second integer) is obtained. In the second pass, each pair in P A IR S (EDGES,
respectively) is put into a bucket whose label is identical to the first integer of the
ordered pair. A sorted P A IR S (EDGES, respectively) is then obtained. Fig-

EDGES

(2 ,1)
(6.3)
(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

PAIRS

(1 ,2)
(2 ,6)
(6,3)
(4,6)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

PAIRS(3,6) -----------

(1 ,2)
(1 ,2)
(3,6)

(1 2) (1'2)
6 (2 '6 >

23 W
(M) (4 ’6)
(4.5)
(5.6)
(2.6)

Figure 3.7: An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES before
Bucket Sort

ures 3.8 and 3.9 show the results of Bucket sort.

EDGES

(1.2)

(34) f1'2)
45 <2'6>

<*•>(4.6) l4,bj
(1 .6)
(5.6)
(2 .6)

Figure 3.8: An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES after
one-pass Bucket Sort

3.3.3 Check PAIRS and EDGES

After both P A IR S and ED G ES are sorted, the two lists are scanned to determine
if every pair in P A IR S also appears in EDGES. For the given example, all the
pairs (1,2), (2,6), (3,6), (4,6) are in EDGES. The give graph is thus outerplanar.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

EDGES

(1 ,2)
(1 ,2)
(1,2)
(1,6)
(2.3)
(2 ,6)
(3.4)
(3,6)
(4.5)
(4.6)
(5.6)

PAIRS

(1 ,2)
(2 ,6)
(3.6)
(4.6)

Figure 3.9: An Illustration of Mitchell’s Algorithm: P A IR S and ED G ES after
a two-pass Bucket Sort

3.4 Im plem entation

Unfortunately, the presentation of Mitchell’s outerplanar algorithm in Mitchell’s
original paper [41] is very brief. It is not at all clear that the algorithm can be
implemented in linear time and space. For instance, in Step 3 .5 , the algorithm has
to check whether the edge (NEAR, N E X T) already exists in the graph G before
it is added to EDGES. This could be accomplished by scanning the adjacency
list of N E X T for the vertex NEAR. The vertex N E A R appears in the adjacency
list if and only if the edge (NEAR, N E X T) exists in G. Since it takes 0(\V\)
time to search an adjacency list in the worst case, if there are 0 (|I/|) N E X Ts,
the algorithm would take 0 (|U|2) time rather than linear time.

3.4.1 Our strategies in th e im plem entation

We adopt the following strategies in implementing Mitchell’s algorithm:

• The adjacency list data structure is used to represent the input graph G =

• Delay checking if the edge (NEXT, N EAR) exists in the given graph until
either N E X T or N E A R is popped out of L IS T (i.e. D eg(NEXT) = 2 or
Deg(NEAR) = 2).

• In order to save the time on scanning the adjacency list, we shorten the
adjacency list by deleting all the nodes of degree 0 . As we often deal with

(V,E).

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

node with degree 2 , it takes only 0 (1) to scan this adjacency list.

3.4.2 M ain Steps o f our Im plem entation

We briefly describe the main steps of our implementation first.

1. Check whether |E\ < 2\V\ — 3 . If not, then Stop.

2. Push all the vertices with degree 2 onto LIST. If size(LIST) < 2, then
Stop.

3. Pop NO D E from L IS T ; Find the vertices N E A R and N E X T which are
adjacent to NODE; Add (N EX T, NEAR) to PAIRS; Remove N O D E
from the graph.

4. Add N E A R and N E X T , each with a mark, to each other’s adjacency list.

5. If Deg(NEXT) = 2, check if any node with a mark in the adjacency list is
a duplicate entry, if it is, then delete the node with a mark; otherwise add
the node to adjacency list of N E X T and update Deg(NEXT) accordingly.
Do the same for vertex N E A R if Deg(NEAR) = 2.

6 . If Deg(NEXT) = 2 or Deg(NEAR) = 2, push it onto LIST.

7. Use a two-pass Bucket Sort on PAIRS and EDGES.

8 . If there is an occurrence of an element in P A IR S that is not in EDGES,
then Stop, else report that the given graph G is outerplanar.

The changes take place in Step 4 and 5. To save the efficiency, our algorithm
does not check whether the edge (NEAR,NEXT) exists in adjacency list until
Deg(NEXT) or Deg(NEAR) = 2. In this way, it takes only 0(2) times in stead
of 0(|Wj) in Mitchell’s algorithm.

In order to record NEXT or NEAR which may be added to adjacency list
later, we add this node with a mark (denoted by node*) at the beginning of the
adjacency list, which is faster than at the end. Then, we do a ’’CheckExist”
process when Deg(NODE) = 2. The steps contained in the ’’CheckExist” process
are: If we find out that the edge has already existed before the node* is added,
the algorithm would delete the node*. Otherwise, the node* would be deleted
from the beginning of the adjacency list and a regular node would be added to
the end of adjacency list.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

3.4.3 A D etailed Im plem entation

The input graph is represented by the adjacency lists of its vertices. Each node in
the adjacency list of a vertex v contains a vertex that is adjacent to v and hence
also represents an edge incident on v. To distinguish between a marked node and
a regular node, we color the nodes with different colors. Specifically, if the node
is colored white, then it is a regular node; if it is colored red, then it a marked
node. Marked node are inserted at the beginning of the adjacency list. Details
are spelled out in Algorithms 3, 5, 6 and 7 below.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

Algorithm 3 An Implementation of Mitchell’s Outerplanar Algorithm
1. if (|£ | < 2\V\ - 3) then
2 . Output ” No”
3. end if;
4. L IS T <- {v\Deg[v) = 2}; P A IR S <- 0;
5. if (\LIST\ < 2) then
6. Output ”No”
7. end if;
8 . for L = 1 to |Vj — 2 do
9. NO D E <- pop (LIST)]

NE AR , N E X T <— the two vertices adjacent to N O D E ;
10. Add (NEAR, N E X T) to list P A IR S ;
11. Remove NO D E from the graph;
12. Decrement Deg(NEAR) and Deg(NEXT)]
13. if (Deg(NEAR) < 2) th en
14. ChkAdj (NEAR, NEXT)-,
15. end if
16. if (Deg(NEXT) < 2) then
17. ChkAdj (N EX T, N E A R);
18. end if;
19. if (Deg(NEAR) > 2) A (Deg(NEXT) > 2) th en
20. AddRed(NEXT, NEAR)]
21. end if
22. if (Deg(NEAR) < 2) th en Add N E A R to LIST]
23. if (Deg(NEXT) < 2) th en Add N E X T to LIST]
24. if (\LIST\ - L < 2) then
25. Output ”No”
26. end if
27. end for;
28. Add the edge (NEAR, N E X T) to EDGES]
29. Lexicographically sort EDGES]
30. Lexicographically sort PAIRS]
31. if there is an edge in P A IR S and not in ED G ES then
32. Output ”No”
33. else
34. Output ”Yes”
35. end if

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

Algorithm 4 Check the adjacency list of vertex a for vertex b
Procedure ChkAdj(a,b)

if (there is no b colored white in the adjacency list of a) then
AddWhite(a, 6);

end if ;
for (each vertex v in the adjacency list of a) do

if (Deg[v] = 0) then Remove v from the list;
else if (v is red) then

if (^ another v colored white in the list) then
RemoveRed((a, v))-,
AddWhite(a, v);

else RemoveRed(a,v);

Algorithm 5 Add White Node
Procedure AddWhite(a,b)

Add the edge (a,6) to list ED GES
Add a and b with color white to the end of each other’s adjacency list
Increment(Deg(a)); Increment(Deg(b))

In Step 1, if \E\ > 2\V\ — 3, then by Theorem 5, the input graph cannot be
outerplanar. The algorithm thus terminates its execution and outputs a ”No”.

In Step 4, the set of vertices of degree 2 are pushed onto the stack LIST. The
list of edges P A IR S is initialized to the empty set.

In Step 9, a vertex NO D E is popped out of the stack LIST. Since NO D E
is of degree 2, it can have only two adjacent vertices, N E A R and N E X T .

In Step 10, the edge (N EX T, N EAR) is added to PAIRS.

In Step 11, vertex NO D E is removed from the graph by setting Deg(NODE)
to 0 .

In Step 12, the degrees of Deg(NEXT) and Deg(NEAR) are incremented
according.

In Steps 13-15, if the Deg(NEAR) < 2, then its adjacency list is scanned for
N E X T . The existence of a N E X T vertex colored white indicates that the edge
(NEAR, N E X T) exists in G. So, no further action is necessary. Otherwise, a
vertex N E X T (NEAR, respectively) colored white is added to the adjacency list

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

A lgorithm 6 Add Red Node__________________________
P rocedure AddRed(a,b)

Add b with color red to the beginning of g’s adjacency list

A lgorithm 7 Remove Red Node
P rocedure RemoveRed(a,b)

Remove b (colored red) from the adjacency list of a

of N E A R (N E X t , respectively). This effectively adds the edge (NEAR, N E X T)
to G. Therefore, the edge (NEAR, N E X T) is also added to ED G ES and the de­
grees of a and b are incremented accordingly. Next, the adjacency list of N E A R
is scanned. For each vertex v in the list, if Deg(v) = 0, vertex v is removed
rom the list. If v is colored red and there is a vertex v colored white in the list,
then the red v is removed; otherwise, the red v is removed, and a white v is
added to the adjacency of N E A R while a white N E A R is added to the adjacency
list of v. Moreover, the edge (NEAR,v) is added to ED G ES and Deg(v) and
Deg (NEAR) are incremented accordingly.

Steps 16-18 are similar to Steps 13-15.

Steps 19 — 21, if neither Deg(NEAR) < 2 nor Deg(NEXT) < 2, then a
vertex N E X T (NEAR, respectively) colored red is added to the adjacency list
of N E A R (N E X T , respectively). When Deg(NEAR) (Deg(NEXT), respec­
tively) finally becomes two or less, the red N E X T (NEAR, respectively) will be
processed in Steps 13-15 (16-19, respectively).

In Steps 22 and 23, vertex N E A R (N E X T , respectively) is pushed onto the
stack L IS T if Deg(NEAR) < 2, (Deg(NEXT) < 2, respectively)

In Steps 24 — 26, If there are less then two vertices on the stack L IS T and
fewer than | V| — 2 vertices had been popped out of LITS , then execution of the
algorithm terminates and the graph G is reported as non-outerplanar.

In Steps 29-35, both ED G ES and P A IR S are sorted lexicographically using
bucket sort. This is to ensured that checking if P A IR S C ED G ES can be carried
out in linear time. The details are given in Algorithm 8 below.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

A lgorithm 8 Check if PAIRS C EDGES________________________
1. {Let P A IR S = {pairi\l < i < n}, ED G ES = {edgej\l < j < m}}
2- j = - 1;
3. for % := 0 to n do
4- j + +;
5. if j > m th en
6 . Output ”NO”; stop
7. end if;
8 . while pairi ^ edgej do
9. j + +;

10. if j > m then
11. Output ”NO”; stop
12. end if
13. end while
14. end for
15. Output ”YES” .

3.4.4 A n Illustration of M itchell’s Outerplanar A lgorithm

We use the example in Figure 3.10 to illustrate Mitchell’s algorithm for outerpla-
narity testing. After reading the input graph file, the Adjacency Lists and the
elements in ED G ES would be as shown in Figure 3.10. The algorithm starts with
verifying |£j < 2\V\ — 3. Since \V\ = 6 and \E\ = 7, the condition is satisfied.
The next step is to push all vertices that are of degree 2 onto L IS T and initialize
P A IR S to 0.

EDGES

(1,2)
(1 ,6)
(2.3)
(3.4)
(4.5)
(5.6)
(2.6)

Adjacency List

1 : 2 6
2 : 1 6 3
3 : 2 4
4 : 3 5
5 : 4 6
6 : 1 2 5

LIST

5
4
3
1
PAIRS

Figure 3.10: An Illustration of Mitchell’s Outerplaner Algorithm; |Vj = 6 .

Node 5 is the first vertex popped out of L IS T and removed from G. Since the
two vertices adjacent to vertex 5 are vertices 4 and 6 . the edge (4,6) is added to
LISTS . Moreover, as Deg{4) < 2 after vertex 5 is removed, the adjacency list of
vertex 4 is examined. As the list does not contain an unmarked vertex 6 (i.e. a

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

white vertex 6), vertex 6 is thus added at the end of the adjacency list of vertex 4
while vertex 4 is added at the end of the adjacency list of vertex 6 . Furthermore,
vertex 5 in the adjacency list of vertex 4 is removed. The updated information is
shown in 3.11.

EDGES

(4.6)
(1 ,2)
(1 .6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Adjacency List

1 : 2 6
2 : 1 6 3
3 : 2 4
4 : 3 6
6 : 12 5 4

LIST

4
3
1
PAIRS

(4,6)

Figure 3.11: An Illustration of Mitchell’s Algorithm: After removal of vertex 5

The removal of vertex 4 is similar to vertex 5 (see Figure 3.12).

EDGES

(3.6)
(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Adjacency List
LIST

1 : 2 6
2 : 1 6 3 3
3 : 2 6 1
6 : 1 2 5 4 3 PAIRS

(3.6)
(4.6)

Figure 3.12: An Illustration of Mitchell’s Algorithm: After removal of vertex 4

The next vertex popped out of L IS T S is vertex 3. The edge (2,6) is then
added to PA IRS. After vertex 3 is deleted, both Deg(2) and Deg(6) become 2.
Suppose vertex 2 is examined first, then the adjacency list of vertex 2 is scanned
and vertex 3 is removed. Furthermore, as an unmarked vertex 6 appears in the
list, no edge (2,6) is added to EDGES. Vertex 6 is then examined and its adja­
cency list is scanned. Since Deg{3) = Deg{4) — Deg(5) = 0, all these vertices are
removed. Since an unmarked vertex 2 appears in the list, no edge (2 , 6) is added
to EDGES. Vertices 2 and 6 are the pushed onto L IS T (see Figure 3.13).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Implementation

EDGES

(3,6)
(4,6) Adjacency List LIST
(1,2)
(1,6) 1 : 2 6 6
(2,3) 2 : 1 6 2
(3,4) 6 : 1 2 1
(4,5) PAIRS
(5,6)
(2 ,6) (2 ,6)

(3.6)
(4.6)

Figure 3.13: An Illustration of Mitchell’s Algorithm: After removal of vertex 3

The next vertex popped out of L IS T is 6 . The edge (1,2) is then added to
PA IRS. Since Deg(1) < 2, the adjacency list of vertex 1 is scanned and vertex
6 is removed from the list. Furthermore, as there is an unmarked vertex 2 in the
list, no edge (1,2) is added to EDGES. Similarly, as Deg(2) < 2, the adjacency
list of vertex 2 is scanned and vertex 6 is removed from the list. Finally an edge
(1, 2) is added to EDGES.

Finally, as P A IR S C EDGES, the algorithm thus terminates execution with
a ” Yes”.

EDGES

(1 ,2)
(3.6)
(4.6) Adjacency List LIST
(1 ,2)
(1.6) 1 : 2 2
(2.3) 2 : 1 1
(3.4) PAIRS
(4.5)
(5.6) (1,2)
(2 .6) (2 ,6)

(3.6)
(4.6)

Figure 3.14: An Illustration of Mitchell’s Algorithm: After removal of vertex 6

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A Study of W iegers’ Algorithm

4.1 Outerplanar algorithm

In contrast with Mitchell’s algorithm, Wiegers’ Outerplanar algorithm [53] ac­
cepts non-biconnected graphs as the input graph and performs no sorting. This
algorithm uses a 2—reducible graph testing and an edge-coloring technique. Sim­
ilar to Mitchell’s algorithm, Wiegers’ algorithm repeatedly removes vertices of
degree two or less from the graph; whenever a vertex of degree two is removed,
a new edge joining its two neighbors is added to the graph if the edge does not
exist. If the algorithm runs out of vertices of degree two or less before reducing
the input graph into an edgeless graph, the algorithm terminates its execution
and reports that the graph is non-outerplanar. This is because the graph must
contain a subgraph that is homeomorphic to K 4. The edge-coloring technique is
used to keep track of the number of triangles each edge belongs to. If any edge
belongs to more than two triangles, the algorithm would report that the graph
is non-outerplanar indicating that the graph contains a subgraph that is homeo­
morphic to A2)3.

4.1.1 T he 2-R educible Graph Algorithm

Definition 33. [53] A graph G=(V,E) is 2—reducible if and only if

E = 0, or

3u € V such that Deg(u) < 1, Gu = G — {«} is 2-reducible, or

3u € V such that Deg(u) = 2 and Vi, v2 are the adjacent vertices of v, Gu =
(V — {u}, E — {(u, Vi), (u , u2)} U {(wi, u2)}) is 2-reducible.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

Theorem 6 . The class of outerplanar graphs C the class of 2-reducible graphs C

planar graphs.

Proof. [53]. □

A 2—reducible graph can be totally disconnected or can be made totally dis­
connected by repeatedly deleting edges adjacent to vertices of degree at most 2 .
Wiegers showed that a 2-reducible graph can be recognized in 0(|V |) time. Based
on Theorem 6 , an outerplanar graph is a 2-reducible graph, but the converse is
not true.

Since it is both annoying and time consuming to check whether there exists an
edge between two given vertices u and v, Wiegers’ 2-Reducible graph algorithm
would not do such checking until the degree of one of the two vertices becomes
less than 3. Therefore, two adjacent lists AList'{u) and ALIst'(v) are maintained
to hold this potential edge. When the degree of u or v becomes less than 3, the
edge (u,v) is then moved from AList'(u) (ALIsf(v), respectively) to AList(u)
(.ALIst(v), respectively).

The following is a brief description of the 2-Reducible graph algorithm:

1. Given a graph G = (V, E), check whether |A| > 2\V\ — 3. If yes, then the
graph is not outerplanar;

2 . Let M be the set containing all the vertices of degree less then or equal to 2

during the execution;

3. Remove one vertex u € M. If AListfu) contains a vertex v, then remove
v from AList’(u). Furthermore, if v does not appears in AList(u), then v
(■u , respectively) are inserted into AList(u) (AList(v), respectively) which
effectively adds the edge (u,v) to the graph. Vertex u is returned to M if
Deg(u) < 2. On the other hand, if AList'(u) is empty, vertex u would be
made an isolated vertex. Moreover, if Deg(u) = 2, and v and w are the
two adjacent vertices of u, then vertex v (w, respectively) is inserted into
AList'(w) (A L is t fv), respectively). Finally, if Deg(v) < 2 , v is added to
M. The same applies to vertex w.

4. When M = 0, \E\ = 0 if and only if G is outerplanar.

The 2-Reducible graph algorithm is presented as Algorithm 9.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

A lgorithm 9 2-Reducible Graph Algorithm
1. if \E\ > 2\V\ - 3 then
2 . re tu rn false
3. end if
4. M <— {u\Deg(u) < 2};
5. while M / 0 do
6 . Remove u from M;
7. if Deg(u) < 2 th en
8 . if AList'(u) t£ 0 th en
9. Remove u\ from AList'{u);

10. if ui AList{u) then
11. add u\ to AList(u); add u to AList{u\)
12. Increment Deg(ui)-, Increment Deg(u)\
13. end if
14. if (Deg(u) < 2) th en M <— M U {u};
15. else
16. if Degiu) = 1 th en
17. Let ui 6 AList(u), delete U\ from AList(u)-,
18. Decrement Deg(ui);
19. if (Deg(ui) < 2) th en M <— M U {ui};
20. else
21. if Deg(u) — 2 th en
22. Let « i ,«2 € AList(u); Remove u\, from AList(u);
23. Add U\ in AList’(«2); Add u<i in AList'(u])\
24. Decrement Deg(u\)\ Decrement Deg(u‘})\
25. if (Deg{ui) < 2) th en M < -M U {^i};
26. if (Deg(u2) < 2) th en M < -M U {^2};
27. end if
28. end if
29. end if
30. end if
31. end while
32. re tu rn \E\ = 0

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

4 .1.2 T he Edge Coloring Technique

Wiegers classified the edges in an outerplanar graph into three types: cross edge,
outer edge and bridge. Each edge in the outerplanar graph can belong to at most
two triangles. Note that if an edge belongs to a triangle, then the other two
edges of the triangle corresponds to a non-trivial path connecting the endpoints
of that edge in G. Therefore, if an edge belongs to three triangle, then there
exist three edge-disjoint paths in G connecting the endpoints of that edge. The
three paths form a subgraph of G which is homeomorphic to K-ip,. The graph G
is thus non-outerplanar. The edge-coloring technique is used to keep track of the
number of times each edge appears on a triangle in the course of executing the
algorithm. Specifically, a cross edges is an edge for which no triangle containing
it has been discovered. An outer edge is an edge for which one triangle containing
it has been discovered. A bridge is an edge for which either no triangle or two
triangles containing it have been discovered. In the former case, it is a genuine
bridge (i.e a cut-edge), In the latter case, it implies that if a triangle containing
the edge is discovered at a later stage, then the graph G contains a subgraph that
is homeomorphic to A2,3- The graph is thus non-outerplanar and the coloring is
called an unacceptable edge coloring. The outerplanar graph algorithm is a mod­
ification of the 2-reducible graph algorithm using the edge-coloring technique. It
is based on the following idea: every reduction of an outerplanar graph with an
acceptable edge coloring gives rise to an outerplanar graph with an acceptable
edge coloring. If an unacceptable edge coloring is created by such reduction, the
graph is non-outerplanar.

D efinition 34. V(o, b) £ E, col(a,b) denotes the color assigned to the edge (a, b),
which can be cross, outer or bridge.

R em ark. V(a, b) £ E,col(a,b), col(a,b) is initialized to cross. The value of
col(a,b) is updated whenever a reduction is applied to a vertex during the exe­
cution of the outerplanar graph algorithm.

In the following discussion, u is the vertex removed from M. If Deg{u) = 1,
then Ui is the vertex adjacent to u. If Deg(u) = 2, then v,\ and u% are the two
vertices adjacent to u. Finally, A = {cross, outer, bridge} and B = {cross, outer}.

We shall explain how to use the edge-coloring technique in conjunction with
vertex reduction to determine if a graph G = (V, E) is outerplanar. Seven cases

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

are to be considered separately and are summarized in Table 4.1.

In Case (i), Deg(u) = 1. In Cases (ii) and (iii), Deg(u) = 2 and (Ui,m2) ^ E.
In Cases (iv) to (vii), Deg(u) = 2 and (mi, m2) G E. In the first case, the edge
(u, u\) is simply discarded; no coloring of edges is necessary. In the remaining six
cases, the color of the edge (mi,m2) must be determined.

Deg(u)=l co1(m, Ui) G /. acceptable (Figure 4.1)

Deg(u)=2

(ui,u2) £ E

col(«, u\) G B,
col(«, u2) E B acceptable (Figure 4.2)
col(w, u\) E A,

col(«, u2)=bridge acceptable (Figure 4.3)

{uu u2) E E

co1(m,Ui) G B,
col(u,u2) E B,
(ui, u2)=cross acceptable (Figure 4.4

col(w, Mi) G B,
col(u, u2) E B,
(ui,u2)=outer acceptable (Figure 4.5)
co1(m, m i) G B,
co1(m, m2) G B,

(Mi,M2)=bridge unacceptable (Figure 4.6)
co1(m,mi) G A,

co1(m, M2)=bridge,
(mi,m2) G A unacceptable (Figure 4.7)

Table 4.1: Types of reduction

© ■
co1(m,mi) E A

O
\o

o
o

Figure 4.1: case (i):Deg(u) = 1. No matter col(u,Ui) is cross, outer or bridge, G
remains having acceptable coloring

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

In Case (ii), col(u,Ui),col(u,u2) G {cross, outer} and (ui ,u2) £ E. Since
col(u,ui) ,col(u,u2) G {cross, outer}, therefore the edge (u, u\) ((u, u2), respec-

most one triangle. It is thus assigned the color outer. The coloring for the graph
after the vertex u is removed and the edge {u\ ,u2) is added is thus an acceptable
coloring (see Figure 4.2).

Figure 4.2: case (ii):Deg(u) — 2, u\ and u2 are not joined with an edge.

colors and (ui,u2) £ E. Then col(u,u2) G {bridge} implies that the edge (u,u2)
lies on two triangles or no triangle while col(u, U\) G {cross, outer, bridge} implies
that the edge (u , U\) lies on at most two triangles. As a result, if the new edge
(ui,u2) is added in, the edge cannot lie on any triangle in the graph after a
reduction is applied to vertex u. It is thus assigned the color bridge. Note that if
both (u,ui) and (u, u2) are genuine bridges, then the new edge would also be a
genuine bridge in the graph after a reduction is applies to vertex u. The coloring
for the graph after the reduction is thus an acceptable coloring (see Figure 4.3).

Figure 4.3: case (iii):Deg(u) = 2, u\ and u2 are not joined with an edge.

tively) lies on at most one triangle. It follows that the new edge (u\, u2) lies on at

col(i/i, u2) = outer

In Case (iii), col(u,u2) G {bridge} while col(u,U\) can be any of the three

001(1/1, 142) = bridge

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Outerplanar algorithm

In Case (iv), col(u ,ui) , col(11,112) € {cross, ou ter} and (w i ,m 2) E {cross}.
Since col(u ,u \) , co l (u ,U2) E { c ross , o u te r } , the edge (u ,u \) ((u, u2), respectively)
lies on at most one triangle. (ui,ii2) E {cross} implies that it lies on no triangle
so far. It follows that the edge («i,m2) lies on at most one triangle in the graph
after a reduction is applied to u. It is thus assigned the color outer. The coloring

Figure 4.4: case (iv):Deg(u) = 2, u\ and « 2 are joined with an edge.

In Case (v), col(u,Ui) ,col (u ,U2) E { c ross , o u te r } and (ui,u2) E {o u te r } .

Since col (u ,u \) , co l (u ,U2) E {c ross , o u te r } , the edge (u ,u \) ((u, u2), respectively)
lies on at most one triangle, (ui , u2) E { o u t e r } implies that it lies on one triangle.
It follows that the edge (u\ , tt2) lies on two triangles in the graph after a reduction
is applied to m. It is thus assigned the color bridge. The coloring for the graph
after the reduction is thus an acceptable coloring (see Figure 4.5).

for the graph after the reduction is thus an acceptable coloring (see Figure 4.4).

c o 1(m i , w2) = outercross

c o 1(u i , m2) = outer

Figure 4.5: case (iv):Deg(u) = 2, ux and u2 are joined with an edge.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

In Cases (vi) and (vii), at least one of the three edges (u, u\), (u, 112) and
(ui,U2) is colored bridge. This implies that the edge lies on two triangles so far.
Since the three edges form a third triangle containing the edge, the edge thus lies
on three triangles. It follows that the is a subgraph of G that is homeomorphic to
.^2,3• The coloring for the graph is thus an unacceptable coloring (see Figure 4.6
and 4.7).

col(«i,U2) = bridge

Figure 4.6: case (v):Deg(u) — 2, u\ and
«2 are joined with an edge.

Figure 4.7: case (vi):Deg(u) = 2, U\
U2 are joined with an edge.

4.2 Im plem entation

The doubly-linked adjacency list is required to represent the graph. Furthermore,
cross-pointers are used between adjacency lists in order to saves time when an
edge is to be deleted from the graph. The deletion of an edge (u, v) (assuming
Deg(u) < 2) consists two steps: first, find v in AList{u) and remove it. As
Deg(u) < 2, this step takes 0(1) time. Next, use the cross pointer to locate u in
AList(v) and remove it. This clearly takes 0(1) time.

Let A = {cross, outer, bridge}, B = {cross, outer}, col (a, b) is the color of the
edge (a, b) in AList, and col'(a,b) is the color of (a, 6)in AList'. Our implemen­
tation is shown in Algorithm 10.

In Step 1, after loading the input graph file, we check if |E | < 2|Vj — 3 is
satisfied.

In Step 4, each edge in the AList is associated with a color. At the beginning,
the color is initialized to cross.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

Algorithm 10 Implementation of Wiegers’ Outerplanar Graph Algorithm
1. if \E\ > 2\V\ — 3 then
2. return false
3. end if
4. for every edge (a, b) E E do
5. col(a, b)= cross
6 . end for
7. V\Deg(u) < 2};
8. while M ^ 0 do
9. Remove u from M

10. if Deg(u) < 2 then
11. if AList’(/a) 7 ̂0 then
12. MoveEdge(u)
13. else
14. if Deg(rt)=l then
15. Let U\ E AList(u), remove U\ from AList(u)-,
16. Decrement Deg(ui);
17. if (Deg{ui) < 2) then M <—
18. else
19. if Deg(u) = 2 then
20. Let u-i,U2 E AList(u), delete ult from AList(n);
21. Decrement Deg(u\); Decrement Deg{u2)]
22. if (Deg{u\) < 2) then M <— M U {mi};
23. if (Deg\u2j < 2) then M <— M U {^2 };
24. Add U] in AList'{u2)\ Add u2 in AList1 (ui);
25. if col(u,ui), col(u,U2) E B then
26. col'(ui,U2) outer
27. else
28. col'(ui,U2) bridge
29. end if
30. end if
31. end if
32. end if
33. end if
34. end while
35. return |£7| = 0

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

Algorithm 11 MoveEdge
Procedure MoveEdge(u)

1. Let u\ G AList'(u), delete U\ from AList’(m)
2. if ui G AList(u) then
3. if col'(u, Ui) = bridge then
4. return false
5. else
6. if col(u, Ux) = cross then
7. col(u, Mi) <— outer
8. else
9. if col(u,ui) = outer then

10. col{u,u\) <— bridge
11. else
12. if col (u ,Ui) = bridge then
13. return false
14. end if
15. end if
16. end if
17. end if
18. else
19. Insert u into AList(u\); Insert U\ into AList(u); col(u,u\) <— col'(u,Ui);
20. end if
21. M = M U {u} if Deg(u) < 2;

In Step 7, let M be the set containing all the vertices with degree 2 or less.

In Step 8 , the while loop will iterate until M is empty.

In Steps 9 to 11, we select one vertex u from M. If AList'(u) is not empty,
then Procedure MoveEdge(u) is invoked.

In Steps 14 to 17, when Deg(u) = 1, Deg(u) is reduced to 0 and u\ is removed
from AList(u) which takes 0(1) time. Using the cross-pointer in the adjacency
lists, we can locate the vertex u in AList(ui) and remove u from AList(u\) in
0 (1) time.

In Steps 19 to 28, as Deg(u) = 2, we immediately find the two vertices in
AList(u) and the colors associated with them. If both col(u, U\) and col(u, u^)
are cross or outer, then as shown in cases (ii), (iv), (v), (vi), we add (ui, u2) to
AList' and color it as outer. Otherwise, by case (iii), the edge (ui, u2) is added to
AList' and colored as bridge. Deg{u) is reduced to 0 and U\, u2 are both deleted

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

from AList{u). Finally, vertex u is deleted from both AList(ui) and AIAstiuz).

In Procedure MoveEdge:

• In Step 1, a vertex Ui is removed from AList1 (it). If (u,u\) £ E, then u\ is
added to AList{u) and col'(u,Ui) is assigned to col(u, Uy) .

• In Steps 3 and 4, Case (vii) occurs which implies that the edge coloring is
unacceptable. The graph is thus non-outerplanar.

• In Steps 6 and 7, Case (iv) occurs which implies that the edge coloring is
acceptable.

• In Steps 9 and 10, Case (v) occurs which implies that the edge coloring is
acceptable.

• In Steps 12 and 13, Case (vi) occurs which implies that the edge coloring is
unacceptable. The graph is thus non-outerplanar.

4.2.1 A n Exam ple

We present an example of the implementation of Wiegers’ outerplanar graph al­
gorithm. We shall use crs, out, brg as the abbreviations of cross edge, outer edge
and bridge, respectively.

As shown in Figure 4.8, we display the contents of M and AList. Initially, the
colors of all the edges are initialized to cross edge and M consists of the vertices
with degree 2 or less.

In Figure 4.9, vertex 4 is selected from M. Since Deg(4) = 1, it takes 0(1)
time to locate vertex 5 in AList(4). Using the cross-pointer, it also takes 0(1)
time to delete 4 in AList(5). Since Deg(5) = 2, it is added to M.

In Figure 4.10, vertex 5 is selected from M. Vertex 2 is inserted into AList'(Q)
while vertex 6 is inserted into AList'(2). Since col(2,5) and col(5,6) are both cross,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

2

AList

1 : 2 (crs) 6 (crs)
2 : l(crs) 3(crs)
3 : 2(crs) 6 (crs) 5(crs)
4 : 5(crs)
5 : 4(crs) 6 (crs) 3(crs)
6 : l(crs) 5(crs) 3(crs)

AList’

Figure 4.8: Example of Implementation of Wiegers’ Algorithm: a graph with 6
vertices

© AList

M

5
2
1

2 (crs) 6 (crs)
l(crs) 3(crs)
2(crs) 6 (crs) 5(crs)

6 (crs) 3(crs)
l(crs) 5(crs) 3(crs)

AList’

Figure 4.9: Example of Implementation of Wiegers’ Algorithm: u — 4

col' (2 , 6) is thus assigned the color outer.

In next step (Figure 4.10), Deg(3) becomes 2. Vertex 6 is removed from
AList'(3) and AList(3) is search for an occurrence of vertex 6 . Since col(3,6)
is cross, it is changed to outer. Since Deg{3) = 2, vertex 3 is returned to M
(Figure 4.11).

Since AList! (3) is empty, the two vertices adjacent to 3, namely 2 and 6 , are
removed from AList(3). Since col(2,3) is cross and col(3,6) is outer, therefore
col'(2,6) is outer. Furthermore, vertex 2 is inserted into AList1 (6) while vertex 6

is inserted into AList'(2). (Figure 4.12).

Similarly, vertex 1 is removed from M and the edge (2, 6) is added as in the
previous step Figure 4.13.

Now, AList'(2) and AList'(6) are the only two lists that are non-empty. Fur­
thermore, A L is f(2) contains two occurrences of 6 while AList!(6) contains two

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

©
M

1
2
6
3

AList AList’

2 (crs) 6 (crs)
l(crs) 3(crs)
2 (crs) 6 (crs)

l(crs) 3(crs)

6 (out)

3(out)

© AList
M

1
2
6
3

2 (crs) 6 (crs)
l(crs) 3(crs)
2 (crs) 6 (out)

AList’

l(crs) 3(out)

Figure 4.11: Example of Implementation of Wiegers’ Algorithm: u — 3

occurrences of 2. After the first occurrence of 2 and 6 are removed from the two
lists, a new edge (2,6) is created and is given the color outer. After the second
occurrence of 2 and 6 are removed from the two lists, as the edge (2 ,6) already
exists, no new edge (2,6) is created. However, the color of (2,6) is changed to
bridge (Figure 4.14).

Finally, after the edge (2, 6) is removed, the graph becomes edgeless. The
input graph G is an outerplanar graph.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Implementation

2 (crs) 6 (crs)

l(crs)

AList’

1
2
3
4
5
6

6 (out)

2 (out)

Figure 4.12: Example of Implementation of Wiegers’ Algorithm: u — 3

© © AList

0 © _M _ 1

0
2

2 3
6 4

5
6

AList’

6 (out) 6 (out)

2 (out) 2 (out)

Figure 4.13: Example of Implementation of Wiegers’ Algorithm: u — 3

0
© 0

© 0
0 2

6

AList

M 1
2 6 (brg)

2 (brg)

AList’

Figure 4.14: Example of Implementation of Wiegers’ Algorithm: u — 3

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

A Study of Tsin and Lin’s
Algorithm

In contrast with the algorithms of Michell and Wiegres, Tsin and Lin’s [50] out-
erplanar graph algorithm is a DFS-based algorithm. The algorithm performs one
DFS and does no sorting. During the DFS, the algorithm would abort its execu­
tion and output a ”No” if a subgraph homeomorphic to K 4 or A2)3 is detected;
otherwise, it would terminate successfully with a ” Yes” output. As with Wiegers’
algorithm, this algorithm does not require the input graph to be biconnected.

5.1 Outerplanar algorithm

We shall first explain the idea underlying Tsin and Lin’s algorithm.

A DFS is performed over the input graph to partition the graph into a collec­
tion of edge-disjoint paths such that every path contains exactly one back-edge.
The paths are ordered using the following lexicographical order.

D efinition 35. [50] Let (q,p), (y,x) be two back edges such that dfs(q) < dfs(p)
and dfs(y) < dfs(x). Then (q,p) is lexicographically sm a ller than (y,x),
denoted by (q,p)~< (y,x), if and only if

(i) dfs(q) < df s(y), or

(ii) dfs(q) = dfs(y) and dfs(p) < dfs(x) and p is not an ancestor of x, or

(Hi) dfs(q) = dfs(y) and dfs(p) > dfs(x) and p is a descendant of x.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Outerplanar algorithm

For each tree edge (u,parent(u)), we associate it with the back edge (y, x)
with the smallest lexicographical rank such that a: is a descendant of u and y is
a proper ancestor of u. In this way, every tree edge is associated with a unique
back edge. As a result, the edge set E is partitioned into a collection of subsets
in which each subset contains exactly one back edge. It is easily verified that all
the edges in the same subset form a path in G [50]. The following definitions are
in order.

Definition 36. [50] Pathi is a path consisting of one back edge and all the
tree edges associated with the back edge, where i is the rank of the back edge in
lexicographical order.

Definition 37. [50] A path is a non-triv ia l path if it contains at least one tree
edge. Otherwise, it is a triv ia l path.

As there are a total of \E\ — |V| + 1 back-edges, the collection of paths can be
denoted by {pathi\l < i < \E\ — |F | + 1}, where i is the rank (in lexicographical
order) of the back edge that determine Pathi. Furthermore, Pathi is always non­
trial and is a cycle. Note that the non-trivial path are not generated explicitly.
The are generated during the depth-first search.

Definition 38. [50] A back edge (u, v) is an incom ing (outgoing, respectively)
back edge o fu (v, respectively) if u is an ancestor ofv.

The algorithm is based on the following new characterization of outerplanar
graph.

Theorem 7. A graph is outerplanar if and only if all of the following conditions
hold:

i with the exception of Pathi, the two end points of every non-trivial path are
connected by a tree edge;

ii for every tree edge, there is at most one non-trivial path terminating at its
two end points;

iii on every non-trivial path, no two there are two back edges interlace with each
other.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Outerplanar algorithm

Proof: See [50]. □

A violation of either condition (i) or (ii) implies that the graph G contains a
subgraph that is homeomorphic to while a violation of condition (iii) implies
that the graph contains a subgraph that is homeomorphic to A4.

The depth-first search starts at an arbitrary vertex r. During the depth-first
search, the algorithm checks for a violation of any one of the three conditions
stated in Theorem 7. If a violation is discovered, the algorithm would abort its
execution immediately and output a ”No” to indicate that the input graph is non-
outerplanar. Otherwise, it would terminate its execution successfully and output
a “Yes”. The algorithm maintains the following variables for detecting violation
of any of the three conditions:

Definition 39. [50] Vw E V , Pathu is the non-trivial path containing the tree
edge (u,parent(u)), P ath lu is a non-trivial path terminating at u and parent(u).

Definition 40. [50] Vu € V, Zu (Z lu, respectively) is the vertex lying on Pathu
(Pathlu; respectively) such that (Zu,u) ((Z lu, u), respectively) is the lexicograph­
ically largest incoming back edge of u.

Definition 41. Vu € V,lowpt(u) = min({dfs(u)}U{lowpt(w)\ui is a child of u}U
{dfs(s)\(u, s) is an outgoing back-edge ofu});

When a vertex u is the current vertex of the depth-first search, the variables,
pathu, pathlu, Zu, Z lu, lowpt(u) and dfs(u) (the depth-first search number of u,
see Chapter 2) are defined for u.

Whenever the depth-first search backtracks from a child vertex, w, of u, if
Pathu already exists such that its two end-points are not connected by a tree-edge
and lowpt(w) < df s(parent(u)), then a violation of Condition (i) is detected; if
Pathlu already exists and lowpt(w) = df s (parent (u)), then a violation of Condi­
tion (ii) is detected.

Whenever an outgoing back edge, (u ,w), of u is encountered, if dfs(w) <
lowpt(u) and Pathu is defined, then a violation of Condition (i) is discovered.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 An Example of Tsin and Lin’s Outerplanar Algorithm

When the depth-first search backtracks from vertex u to its parent, if there
is a vertex v lying on the path connecting u and Zu (Z lu, respectively) on
Pathu (Pathlu, respectively) such that v has an outgoing back edge (v,y) and
dfs(y) < dfs(u). Then a violation of Condition (iii) is detected.

A brief description of Tsin and Lin’s algorithm is presented in Algorithm 12.

A lgorithm 12 Tsin and Lin’s Outerplanar Algorithm [50]
1. if (\E\ > 2\V\ — 3) then
2 . Output ” No”
3. end if;
4. count 1; com m ent: /* Initialize the counter for dfs number */
5. Outerplanar-testing(l, null, _L); com m ent: /*start DFS from vertex 1 */

5.2 An Example of Tsin and Lin’s Outerplanar
Algorithm

Figure 2.1 shows the depth-first search spanning tree created by a depth-first
search. The number if the circles representing the vertices are the depth-first
search numbers.

Figure 5.1: a DFS spanning tree of the graph in Figure 2.1

Figures 5.2, 5.4, 5.5, 5.6 depict the non-trivial paths Pi, P3 , P4 and Pj, re­
spectively. Note that P\ is a cycle. When the depth-first search backtracks from

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 An Example of Tsin and Lin’s Outerplanar Algorithm

Figure 5.2: non-trivial path

ii
Figure 5.3: triv­
ial path P‘i Figure 5.4: non-trivial

path P3

P i

Figure 5.6: non-trivial
Figure 5.5: non-trivial path P4 path P5

vertex 6 to vertex 4, since lowpt(4) = 1 and lowpt(Q) = dfs(parent(4)), no vio­
lation of any condition is detected. When the depth-first search backtracks from
vertex 8 to vertex 7, since lowpt(7) = 2 and lowpt(8) = dfs{parent(7)), again
no violation of any condition is detected. When the depth-first search backtracks
from vertex 7 to vertex 3, since lowpt(3) = 1 and lowpt(7) = dfs(parent(3)),
again no violation of any condition is detected. At vertex 2 , neither the back edge
(2,4) nor the back edge (2,10) creates a situation that violates Condition (iii).
The depth-first search thus terminates at the root 1 reporting that the graph is
outerplanar.

During the DFS, whenever there is a non-trivial path whose terminating ver­
tices are u and parent(u), for some u E V, the algorithm would mark this tree
edge. If any tree edge is marked twice, then Condition (ii) is violated and the
given graph is non-outerplanar. In the given example, this case does not happen.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Implementation

5.3 Im plem entation

Tsin and Lin’s algorithm is based on depth-first search which it is easy to im­
plement, We shall thus refrain from explaining its implementation in this thesis.
However, we shall remark that in our implementation, we did notice that recur­
sive calls induced substantial run-time overhead. We thus replaced the recursive
calls with iterations by explicitly maintaining the run-time stack that stores the
current vertices of the depth-first search.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Implementation

Procedure Outerplanar-testing(u, Pathu,v)
dfs(u) <— count; count <— count + 1; lowpt(u) «— dfs(u); alertu <— false;
Pathu.type <— trivial; Pathu <— n; ■*— it; P ath lu <— it; Z l„ 4— it;
for each ic in the adjacency list of it do

if in is unvisited then
if both Pathu and P ath lu have been found then return(false);
Outerplanar-testing(iy, Pathw, u);
if (lowpt(w) < lowpt(u)) then

if Pathu is non-trivial then
if the end points of Pathu are not connected by a tree edge then

return(false);
else

P a th lu P a th u; Z l u <— Zu; /* update P a th lu and Z lu */
end if

else
Label Pathu as non-trivial;
if ((Pathw terminates at u and parent(u))) then mark the tree edge
(•u,parent(u));
Pathu ■*- u || Pathw; Zu <— u; lowpt(u) <— lowpt(w)
/* || represents the concatenation operator for sequences */

end if
else

if (lowpt(w) > lowpt(u)) then
if (tree edge (u,parent(u)) has been marked) V (the two end points
of Pathw are not connected by a tree edge) then

return(false)
end if
mark the tree edge (u,parent(u)); Pathlu •*— u || Pathw; Z lu <— u;

else
if (Pathu is non-trivial) then

if (v is not the root V tree edge (u, parent(u)) has been marked)
then

return(false)
else

mark the tree edge (u,parent(u)); Pathlu <— u || Pathw
end if

else
Pathu <— u II P a th w; Z u 4— u; Label P a th u as non-trivial;

end if
end if

end if
else

backEdge(u, w);
end if

end for
if (Zu / u) then bTest(Pathu,Z u)
if (Z lu ^ it) then bTest(Pathlu, Z lu);

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Implementation

Procedure bTest(Path, Z)
if (3v connecting vertices u and Z on the path Path such that v has an outgoing
back edge (y, v) and dfs(y) < dfs(u)) then
return(false)

Procedure backEdge(u, w)
if (w,u) is an outgoing back edge of u then

if (dfs(w) < lowpt(u)) then
if Pathu is non-trivial then

if Pathu is not terminating at u and parent(u) then
return(false)

end if
Label Pathu as trivial;
P ath lu Pathu; Z lu <— Zu\ Pathu <— u; Zu <— u

end if
lowpt(u) <— dfs(w)

end if
else

if ((w, u) is an incoming back edge of u) then
if w lies on Pathu then

if (dfs(w) > dfs(Zu)) then Zu <— w\
else

if w lies on P ath lu then
if (dfs(w) > d fs(Z lu)) then Z lu <— w;

end if
end if

end if
end if

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experim ents

We selected Mitchell’s, Wiegers’, Tsin and Lin’s algorithms to implement and
compare their behaviors using a total of 175 randomly generated graphs.

6.1 Experim ental D ata

6.1.1 T he Input Graphs

In generating the input graphs, we take the following factors into consideration:

• Since all of the three algorithms terminates immediately if the input graph
satisfies \E\ > 2\V\ — 3, therefore it is worth nothing to include those graphs
in our experiment.

• Since Mitchell’s algorithm only accepts biconnected graphs, all the input
graphs generated are biconnected graphs.

• \V\ and \E\ are randomly generated. The possibility of an edge connecting
two vertices is independent of the vertices themselves.

We randomly generated 175 simple graphs (graphs without self-loops and par­
allel edges). The 175 graphs consists of 85 non-outerplanar graphs and 90 out­
erplanar graphs. The number of vertices of the graphs ranges from 25,748 to
1,922,064, and the number of edges ranges from 25,926 to 3,799,671. Although it
is desirable to generate more random graphs for our experiment, the performances
of the three algorithms depicted in Figures 6.1, 6.2 and 6.3 clearly show the trend
of the performance of each algorithm. Increasing the number of random graphs
will not change the trends.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Experimental Data

Biconnected Graphs

The algorithm for generating a random biconnected Graph G = (V, E) is shown
in Algorithm 13.

A lgorithm 13 Random biconnected Graphs
Randomly generate \V\. Let V = {1,2,..., |F|};
Connect 1 and 2, 2 and 3,..., |V| — 1 and |V|, |Vj and 1;
Randomly generate |JE7| such that |Vj < \E\ < (2|Vj — 3);
for i = \V\ to |£j do

repeat
Randomly select two vertices a, 6;

un til an edge (a, b) has not been created before;
Add edge (a, b) into the graph

end for

The G raph File

An adjacency list is used to represent the graph generated by Algorithm 13. The
number of vertices and the number of edges are randomly generated. Each graph
is stored in a binary file and is made up of three parts: the number of vertices,
the number of edges and the edges denoted by two end vertices. The total size of
graph files is around 2.85 Gbytes.

6.1.2 E xperim ental R esults

We have conducted all the tests on operating system Fedora Core 4 which runs
on Intel Pentium 4 2.60 Ghz processors and 512 Mbyte Memory. The programs
are written in C. The execution time is reported in seconds, which is the user
program CPU time, not including system CPU time. The performances of the
algorithm are shown in the following figures.

In Figure 6.1, the performances of three algorithms on all the graphs are shown.
Tsin and Lin’s algorithm clearly has the best performance. The performances of
Mitchell’s and Wiegers’ algorithms are close. However, when the number of edges
goes beyong 1 million, Wiegers’ algorithm begins to outperform that of Mitchel’s.

In Figures 6.2 and 6.3, the performances of the three algorithms for outer­
planar graphs and non-outerplanar graphs, respectively, are shown. For both

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Discussion

Mitchell
Wiegers
Tsin etal.

o

Number of Edges

Figure 6.1: The performances of the three algorithms on all graphs, as a function
of the graph size

groups of graphs, Tsin and Lin’s algorithm has the best performance, especially
for graphs with large edge sizes, the difference becomes more apparent. As shown
in Figure 6.3, the performance of Mitchell’s algorithm does not differ much with
Wieger’s when the input graph is non-outerplanar and has fewer than 2 million
edges. However, when the edge size goes beyond 2 millions, Mitchell’s algorithm
has a better performance. On the other hand, for outerplanar graphs, Mitchell’s
algorithm is always the worst one (Figure 6.2).

6.2 Discussion

Tsin and Lin’s algorithm is definitely the most efficient one in all cases. Be­
tween Mitchell’s algorithm and Wiegers’ algorithm, while Mitchell’s has a better
performance for non-outerplanar graphs, Wiegers’ has a better perfomance for
outerplanar graphs. This can be explained as follows: the bucket-sort used in

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Discussion

7 T-----

(0oo
JO
0)
E
H
co

3Q.
Eoo

O O L O L O i n L O L O i n c O C O C D C D C D C D C D C D C D C O C D
1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mitchell
■Wiegers

■Tsinet al.

Number of Edges

Figure 6.2: The performances of the three algorithms on Outerplanar Graphs, as
a function of the graph size

Mitchell’s algorithm is extremely time-consuming for larger input sizes. In dealing
with non-outerplanar graphs, Mitchell’s algorithm could terminate before doing
bucket-sort. This allows it avoids doing the time-consuming sorting. For outer­
planar graphs, bucket-sorting is an unavoidable step in Mitchell’s algorithm.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Discussion

Mitchell
Wiegers
Tsin et al.

CO

00 CO

Number of Edges

Figure 6.3: The performances of the three algorithms on non-Outerplanar Graphs,
as a function of the graph size

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Embedding of Outerplanar
Graphs

Once a graph is determined to be outerplaner, it is important to generate an
outerplanar embedding for it. Of the three algorithms we have investigated, only
Tsin et al. generates an outerplanar embedding in linear time and space. In this
chapter, we shall modify Mitchell’s algorithm so that it will generate an embed­
ding for outerplanar input graph in linear time and space.

7.1 A M odified M itchell’s Algorithm for Outer­
planar Embedding

We shall modify Mitchell’s outerplanar algorithm so as to generate an outerpla­
nar embedding for the input graph if the graph is outerplanar. The outerplanar
embedding is represented by a sequence of the vertices along the boundary of the
exterior face. The sequence is stored in a doubly-linked list OuterList{u). Note
that the two vertices preceding and following a vertex in the linked list are the
two vertices adjacent to the vertex on the boundary of the exterior face.

We shall first briefly explain the idea underlying our modification.

Initially, all the vertices of degree two are inserted into a queue rather than a
stack. We shall continue using L IS T to represent the queue. The reason of using
a queue is that all the vertices that are of degree two initially have both incident
edges lying on the boundary of the exterior face and hence should be dealt with

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

first. To determine the boundary of the exterior face, it suffices to determine, for
each vertex u, the two vertices (or two edges) on the boundary that are adjacent
(or incident) to u. They are determined when the vertex u is removed from the
queue LIST .

When a vertex u is removed from L IST , it is of degree 2 and hence must have
exactly two incident edges (u,v) and (u,w), for some v,w € V. We must deter­
mine if any of the two edges belongs to the boundary of the exterior face. Our
method is to mark all the edges that do not lie on the boundary of the exterior
face. These are exactly those edges that either are new edges added to the graph
or appeared as (NEAR, N E X T) in the course of executing the algorithm. As a
result, we modify Mitchell’s algorithm to mark these edge when they are created
or encountered. The modified Mitchell’s algorithm is presented as Algorithm 14.
The new instructions are in bold-italic font. Some explanations are in order:

On Line 13, whenever a vertex of degree two is removed, Algorithm AddEdgeto-
Boundary is called to include its unmarked incident edges to the linked list rep­
resenting the boundary of the exterior face.

In Procedure ChkAdj, a and b are the two vertices adjacent to the most re­
cently removed vertex. The edge connecting them cannot be an edge on the
boundary of the exterior face and must thus be marked. Therefore, Procedure
ChkAdj is modified as follows: If a and b are not connected by an edge, then
an edge (a, b) is added to the graph and the edge is marked at both end points
indicating that it is not an edge on the boundary. On the other hand, suppose
a and b are connected by an edge. Then the white b in the adjacency list of a is
marked. Moreover, if \LIST\ = 2, then the white a in the adjacency list of b can
be marked immediately. Otherwise, a red a is added to the adjacency list of b.
This is to ensure that when the degree of vertex b is reduced to 2 and vertex b
is removed from L IST , the red a will lead to the marking of edge (a, b) at vertex b.

When the adjacency list of a is scanned, every red vertex v in the list corre­
sponds to an edge (a,v) that is not on the boundary and must thus marked at
both end-points. If the edge (a,v) does not exist, then it is created by calling
Procedure AddWhite(a,v) in which the edge is marked at both end points a and
v. If the edge does exist, then it is marked at a. The edge will be marked at v
later on when the adjacent list of v is scanned and a red a is encountered.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

In Procedure Add White, whenever a new edge is added, the edge is marked at
both end points to indicate that it does not lie on the boundary of the exterior face.

Procedure AddEdgetoBoundary adds unmarked edges incident to the vertex u
(the most recent vertex removed from L IST) to the linked list representing the
boundary of the exterior face.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

A lgorithm 14 Modified Mitchell’s Outerplanar Algorithm
1. if (|£ | < 2\V\ - 3) then
2. Output ” No”
3. end if;
4. L IS T <- {v\Deg[v} = 2}; P A IR S *- 0;
5. if (\LIST\ < 2) then
6. Output ” No”
7. end if;
8. for L = 1 to \V\ — 2 do
9. N O D E *- front (LIST)]

N E A R , N E X T <— the two vertices adjacent to NODE',
10. Add (NEAR, N E X T) to list PAIRS;
11. Remove N O D E from the graph;
12. Decrement Deg(NEAR) and Deg(NEXT);
13. A ddE dgetoB oundary(N O D E , N E AR , N E X T);
14. if (Deg(NEAR) < 2) th en
15. ChkAdj (NEAR, N E X T);
16. end if;
17. if (D eg(NEXT) < 2) then
18. ChkAdj (N E X T , NEAR);
19. end if;
20. if (Deg(NEAR) > 2) A (Deg(NEXT) > 2) then
21 . AddRed(NEXT, NEAR);
22. end if;
23. if (Deg(NEAR) < 2) th en Add N E A R to the end of LIST;
24. if (D eg(NEXT) < 2) th en Add N E X T to the end of LIST;
25. if (\LIST\ - L < 2) th en
26. Output ”No”
27. end if
28. end for;
29. Add the edge (NEAR, N E X T) to EDGES;
30. Lexicographically sort EDGES;
31. Lexicographically sort PAIRS;
32. if there is an edge in P A IR S and not in ED G ES then
33. Output ”No”
34. else
35. Output ”Yes”
36. end if

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 A Modified Mitchell's Algorithm for Outerplanar Embedding

A lgorithm 15 Check the adjacency list of vertex a for vertex b
P rocedure ChkAdj (a,b)

if (there is no b colored white in the adjacency list of a) then
AddWhite(a, b)

else
m ark the white vertex b;
if (\LIST\ > 2) th en

add an a to the adjacency list o f b; color the a red;
else

m ark the white vertex a in the adjacency list o f b;
end if

end if ;
for (each vertex v in the adjacency list of a) do

if (Deg[v\ — 0) th en Remove v from the list;
else if (v is red) then

if (^ another v colored white in the list) then
RemoveRed((a, v));
AddWhite(a, v);

else RemoveRed(a,v);
m ark the white v;

A lgorithm 16 Add White vertex
P rocedure AddWhite(a,b)

Add the edge (a,b) to list EDGES;
Add a with white color to the end of the adjacency list of b; m ark the a;
Add b with white color to the end of the adjacency list of a; m ark the b;
Increment(Deg(a)); Increment(Deg(b));

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Proof of Correctness

A lgorithm 17 AddEdgetoBoundary (u,v,w);
Com m ent: Add the edges (v,u) and (it,iu) to the boundary
if (v in the adjacency list of it is unmarked) then

Add v to OuterList(u)-, Add u to OuterList(v)\
end if ;
if (w in the adjacency list of u is unmarked) then

Add w to Outer List(u): Add u to Outer Li st(w)\
end if

7.2 Proof of Correctness

Theorem 8. Let G = (V ,E) be a connected biconnected graph such that \V\ > 2 .
Then Vit G V, Deg(u) > 2.

Proof: Suppose to the contrary that 3u G V such that Deg(u) < 2. Then
Deg(u) = 0 or Deg(u) = 1. In the former case, G is disconnected. In the latter
case, the vertex adjacent to it is a cut-vertex which implies that the graph G is
not biconnected. In either case, we have a contradiction. □

Theorem 9. Let G = (V, E) be a biconnected outerplanar graph. Let u G V such
that Deg(u) = 2 and v and w be the two vertices adjacent to u. Then the edges
(i>,u) and (u ,w) lie on the boundary of the exterior face.

Proof: For every vertex u in an outerplanar graph, there exist two adjacent ver­
tices of u on the exterior face. Since Deg(u) = 2, the edges (v, u) and (u, w) are
the only two edges incident to u. They must thus lie on the boundary of the
exterior face. □

Theorem 10. Let ube a vertex removed from LIST and (it, v) be an edge incident
on it. The edge (u,v) is marked if and only if it does not lie on the boundary of
the exterior face.

Proof: First, note that all the edges are unmarked initially.
Suppose the edge (it, v) lies on the boundary of the exterior face. If Deg(u) — 2

originally, then vertex it is put into the queue L IS T at the beginning of the
execution of the algorithm. Therefore, when vertex u is removed from L IS T , the
edge (it, v) remains as unmarked. If Deg(u) > 2 originally, then as only those
edges that have appeared as (NEAR, N E X T) during execution are marked, the
edge (u, v) will never be marked as it will never appear as (NEAR, N E X T) owing
to the biconnectivity of the graph.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 An Example

Suppose the edge (u, v) does not lie on the boundary of the exterior face. If
(u, v) is created during execution, then it is marked immediately after its creation
or is marked when the adjacency list of one of u or v is scanned at a later stage.
On the other hand, if it exists in the original input graph, then it is marked ei­
ther when it appears as the edge (NEAR, N E X T) or at a later stage when the
adjacency list of one of u or u is scanned. □

Theorem 11. The modified Mitchell’s Outerplanar algorithm correctly deter­
mines the boundary of the exterior face of an outerplanar graph.

Proof. Immediate from Theorems 8 , 9, 1 0 . D

Theorem 12. The modified Mitchell’s Outerplanar algorithm takes 0(|V j) time
and space to determine the boundary of the exterior face of an outerplanar graph.

Proof: The new instructions increase the time and space complexity by a con­
stant factor only. The theorem thus follows. □

7.3 An Example

In this section, we give an example on how the modified Mitchell’s Outerplanar
algorithm produces an Outerplanar embedding for the graph in Figure 7.1.

OuterList Adjacency List

1
2
_3

5
6

LIST

5
4
1

: 2 6
2 : 1 6 3
3 : 2 4 6
■4 : 3 5
5 : 4 6
6 : 1 2 5 3

Figure 7.1: Example of OuterPlanar Embedding (Mitchell’s Algorithm)

In Figure 7.1, the vertices 1, 4 and 5 are inserted into L IS T as these are the
vertices that are of degree 2.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 An Example

List

: 2 6
: 1 6 3
: 2 4 6
: 3 6*
: 1 2 3 4*

Figure 7.2: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after
removal of vertex 5

In the next step, the vertex 5 is removed from L IS T Figure 7.2. The two ad­
jacent vertices of 5, namely 4 and 6, are already stored in OuterList{h). Vertices
4 and 6 are the two adjacent vertices of vertex 5. Since Deg(4) = 2, AList(4) is
examined. As the list does not contain a vertex 6, a marked vertex 6 is thus added
at the end of AList(4) while a marked vertex 4 is added to the end of AList(6).

OuterList

OuterList
Adjacency List

C l

(Tj

Figure 7.3: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after
removal of vertex 4

In Figure 7.3, the removal of vertex 4 is similar to that of vertex 5. Vertex 6
in AList(3) is marked and a vertex 3 with red color is added to AList(6). Since
Deg{3) = 2, vertex 3 is inserted into LIST.

1 : LIST
2 1 : 2 6
3 : 4 1 2 : 1 3 6
4 : 3 5 3 3 : 2 6*
5 : 4 6 6 • 3red, 1
6 : 5

Next, vertex 1 is removed from LIST . Vertices 2 and 6 are marked in AList(6)
and AList{2), respectively. As Deg(2) = 2 and Deg{6) = 2, vertices 2 and 6 are
inserted into L IST . Furthermore, the vertex 3 with red color is removed from
AList(6) and the white vertex 3 in AList(6) is marked (Figure 7.4).

In the last step (Figure 7.5), vertex 3 is removed from L IST . AList(3) is
scanned and the unmarked vertex 2 is encountered. So vertex 2 is added to
Outer L ist(3) while vertex 3 is added to OuterList(2).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 An Example

OuterList

1 : 2 6
2 : 1
3 : 4
4 : 3 5
5 : 4 6
6 : 5 1

LIST Adjacency List

3 2 : 3 6*
2 : 2 6*
6 6 : 2* 3*

Figure 7.4: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after
removal of vertex 1

OuterList

©

©

2 6
1 3
4 2
35
4 6
5 1

LIST

2
6

Adjacency List

6*

2*

Figure 7.5: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after
removal of vertex 3

Now, Vu € G, OuterList(u) are determined. An outerplanar embedding of
the input graph is thus constructed.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 A Modified Wiegers’s Algorithm for Outerplanar Embedding

7.4 A M odified W iegers’s Algorithm for Outer­
planar Embedding

The modification for Wiegers’ algorithm is quite simple. First, the input graph
is decomposed into biconnected components. Next, an outplaner embedding for
each of the biconnected components is determined. Finally, the outerplanar em­
beddings are joint at the cut-vertices to produce an outerplanar embedding for
the input graph.

It remains to explain how to produce an outerplanar embedding for a bicon­
nected graph.

In Wiegers’ algorithm, edges are initially colored as cross edges. Therefore,
if an edge is colored cross when it is removed from the graph, it must lie on the
boundary of the exterior face.

An edge is colored outer if it is created during execution or it is converted
from a cross edge. In the former case, it clearly cannot lie on the boundary of the
exterior face. In the latter case, it cannot lie on the boundary of the exterior face
unless it is the last edge left in the graph.

Since the graph is biconnected, an edge is colored bridge implies that it lies
on two triangles. Therefore it cannot lie on the boundary of the exterior face.

The modification is clearly straight-forward and the resulting algorithm clearly
takes linear time and space. The details are thus omitted.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

In this thesis, we presented the implementation of Mitchell’s, Wiegers’, Tsin and
Lin’s outerplanar graph algorithms. Mitchell’s algorithm is based on a transforma­
tion of her maximal outerplanar graph algorithm. However, she only gave a brief
description of the transformation and omitted many crucial details. Wiegers’ algo­
rithm briefly describes a 2—reducible graph testing method and an edge-coloring
technique, but did not point out how to implement them in linear time and space.
We filled in all these non-trivial omitted details to clearly demonstrate how to
implement them in linear time.

To the best of our knowledge, this is the first time a comparative study of the
performances of outerplanar graph algorithms is carried out. The input graphs are
randomly generated. The size of the input graph ranges from 25 thousands to 3.8
millions. Our experimental result shows that: Tsin and Lin’s algorithm has the
best performance among the three algorithms. Between Mitchell’s and Wiegers’
algorithms, Mitchell’s has a better performance for non-outerplanar graphs while
Wiegers’ has a better performance for outerplanar graphs.

With the exception of Tsin and Lin’s algorithm, Mitchell’s and Wiegers’ al­
gorithms do not generate an outerplanar embedding if the input graph is indeed
outerplanar. We presented a modification for each of the two algorithms so that
an outerplanar embedding will be produced if the input graph is outerplanar. Cor­
rectness proofs of the modifications are presented. The complexity of the modified
algorithms remain linear in both time and space.

It would be interesting to implement the outerplanar embedding algorithm of
the aforementioned algorithms so that we could have better visualization of the

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input graph if it is outerplanar. This could be our future research.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A .L .B u c h s b a u m , G o l d w a s se r , M., V e n k a t a s u b r a m a n ia n , S., a n d
W e s t b r o o k , J. On external memory graph traversal. In Procedding of the
11th ACM-SIAM Symposium on Discrete Algorithms (2000), pp. 859-860.

[2] A r g e , L., M e y e r , U., T o m a , L., a n d Ze h , N. On external-memoryin
planar depth-first search. Journal of Graph Algorithms and Applications 7,
2 (2003), 105-129.

[3] A u s l a n d e r , L., a n d P a r t e r , S. On embeddings graphs in the plane. J.
Math, and Mech 10, 3 (1961), 517-523.

[4] Aw e r b u c h , B. A new distributed depth-first search algorithm. Information
Processing Letters 20 (1985), 147-150.

[5] B a c h l , S. Isomorphic subgraphs. In Proceedings Graph Drawing (1999),
Kratochvl, Ed., Springer, pp. 286-296.

[6] B o o t h , K., a n d L u e k e r , G. Testing the consecutive ones property, inter­
val graphs, and graph planarity using pq-tree algorithms. Journal of Com­
puter and System Science 13 (1976), 335-379.

[7] B r e h a u t , W. An efficient outerplanarity algorithm. In Procedding of the 8 th
Southeastern Conference on Combinatorics, Graph Theory and Computing
(Baton Rouge, Louisiana, February 1977), pp. 99-113.

[8] C h a r t r a n d , G., a n d H a r a r y , F. Planar permutation graphs. Ann. Inst.
Henri Poincare, Sec B3 SE-9 (1967), 433-438.

[9] C h e u n g , T. Graph traversal techniques and the maximum flow problem in
distributed computation. IEEE Transactions on Software Engineering SE-9,
4 (1983), 504-511.

[10] C h ia n g , Y., G o o d r ic h , M., G r o v e , E., T a m a s s ia , R., V e n g r o p f ,
D., a n d V i t t e r , J. External-memory graph algorithms. In Procedding
of the 6 th Annual ACM-SIAM Symposium on Discrete Algorithms (1995),
pp. 1-10.

[11] ClDON. Yet another distributed depth-first search algorithm. Information
Processing Letters 26 (1988), 301-305.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[12] COOK, S. The complexity of theorem-proving procedures. In Theory of
Computing (1971), Proc. 3rd Annual ACM Symp., ACM, pp. 151-158.

[13] D a n t z ig , G., a n d F u l k e r s o n , D. On the max-flow m in-cut theorem of
networks. In Linear Inequalities and Related Systems (Princeton, NJ, 1956),
H. Kuhn and A. Tucker, Eds., 38, Annals of Mathematics Studies, Princeton
University Press, pp. 215-221.

[14] D a n t z ig , G., F u l k e r s o n , D ., a n d J o h n s o n , S. Solution of a large-scale
traveling-salesman problems. Oper. Res. Lett. 2 (1954), 393-410.

[15] D ij k s t r a , E. A note on two prlbems in connexion with graphs. Numer.
Math. 1 (1959), 269-271.

[16] Diks, K., H a g e r u p , T., a n d Ry t t e r , W. Optimal parallel algo­
rithms for the recognition and coloring outerplanar graphs. In Proceedings of
Math. Foundations of Computer Science (Porabka-Kozubnik, Poland, 1989),
pp. 207-217.

[17] E W. M y r v o l d , J. B. Stop minding your p’s and q’s: A simplified planar
embedding algorithm. In Procedding of the Tenth Annual ACM-SIAM Sym­
posium on Discrete Algorithms (Baltimore, Maryland, January 1999), ACM
Special Interest Group on Algorithms and Computation Theory and SIAM
Activity Group on Discrete Mathematics, ACM Press, pp. 140-146.

[18] E d m o n d s , J. Paths, trees and flowers. Canada. J. Math 17 (1965), 449-467.

[19] E u l e r , L. The solution of a problem realint to the geometry of position.
Academy of Sciences of St. Petersburg (1735).

[20] F r e d e r ic k s o n , G. Planar graph decomposition and all pairs shortest paths.
J.ACM 38 (1991), 162-204.

[21] F r e d e r ic k s o n , G., a n d J a n a r d a n , R. Designing networks with compact
routing tables. Algorithmica 3 (1988), 171-190.

[22] F r e d e r ic k s o n , G., a n d J a n a r d a n , R. Space-efficient and fault-tolerant
message routing in outerplanar networks. IEEE Transactions on Computers
37 (1988), 1529-1540.

[23] G o l d s t e in , A. An efficient and constructive algorithm for testing whether
a graph can be embedded in a plane. Graph and Combinatorics Conference,
Dept. Math., Princeton University (1963), 16-18.

[24] G o m o r y , R., a n d H u , T. Multi-terminal network flows. SIAM J. Appl.
Math. 9 (1961), 551-556.

[25] G o n q ALVES. Edge partition of planar sraphs into two outerplanar graphs.
Annual ACM Symposium on Theory of Computing (2005), 504-512.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[26] GROSS, J., AND Y e l l e n , J., Eds. Handbook of Graph Theory. CRC Press,
2004.

[27] G u a n , M. Graphic programming using od or even points. Chinese Math. 1
(1960), 273-277.

[28] H a r a r y , F. Graph Theory. Addison-Wesley, 1969.

[29] H a r a r y , F. Graph Theory. Addison-Wesley, 1994.

[30] H o p c r o f t , J., a n d T a r j a n , R. Efficient planarity testing. ACM 21, 4
(1974), 549-568.

[31] H o p c r o f t , J., a n d T a r j a n , R. Efficient planarity testing. Journal of the
Association for Computing Machinery 21, 4 (1974), 549-568.

[32] K a r p , R. Reducibility among combinatorial problems. In Complexity of
Computer Computations (1972), R. Miller and J. Thatcher, Eds., Plenum
Press, pp. 85-103.

[33] K a z m ie r c z a k , A., a n d R a d h a k r is h n a n , S . An optimal distributed ear
decomposition algorithm with applications to biconnectivity and outerplanar
testing. IEEE Transactions on Paralle and Distributed Systems 11 (2000),
110-118.

[34] K u m a r , D ., Iy e n g a r , S ., a n d S h a r m a , M . Correction to a distributed
depth-first search algorithm . Information Processing Letters 35 (1990), 5 5 -
56.

[35] L a k s h m a n a n , K., M e e n a k s h i , N., a n d T h u l a s ir a m a n , K. A time-
optimal message-efficient distributed algorithm for depth-first search. Infor­
mation Processing Letters 25 (1987), 103-109.

[36] L e m p e l , A., E v e n , S ., a n d C e d e r b a u m , I. An algorithm for planarity
testing of graphs. Proceddings International Symposium on Theory of Graphs
(1967), 215-232.

[37] M a h e s h w a r i , A., a n d Ze h , N. I / o efficient algorithms for outerplanar
graphs. Journal of Graph Algorithms and Applications 8, 1 (2004), 47-87.

[38] M a k k i , S ., AND H a v a s , G. Distributed algorithms for depth-first search.
Information Processing Letters 60 (1996), 7-12.

[39] M a r x , D. Np-completeness of list coloring and precoloring extension on the
edge of planar graphs. Journal of Graph Theory 49, 4 (2005), 313-324.

[40] M i t c h e l l , S. Linear algorithm to recognize ouerplanar and maximal out­
erplanar graphs. Information Processing Letters 9, 5 (1979), 229-232.

[41] M it c h e l l , S., B e y e r , T., a n d J o n e s , W. Linear algorithms for isomor­
phism of maximal outerplanar graphs. Journal of the ACM 26, 4 (1979),
603-610.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[42] PADBERG, M., AND R in a ld i , G. Optimization of a 532—city symmetric
traveling salesman problem by branch and cut. Oper. Res. Lett. (1987), 1-7.

[43] P r o s k u r o w s k i , A., a n d S y s lo , M. Minimum dominating cycles in out­
erplanar graphs. International Journal of Parallel Programming 10, 2 (1981),
127-139.

[44] R e i f , J . D epth first search is inherently sequential. Information Processing
Letters 20 (1985), 229-234.

[45] S h a r m a , M ., I y e n g a r , S ., a n d M a n d y a m , N . An efficient distributed
depth-first search algorithm. Information Processing Letters 32 (1989), 183-
186.

[46] S h ih , W ., a n d H su , W. A new planarity test. Theoretical Computer
Science 223 (1999), 179-191.

[47] S y s l o , M., a n d I r i , M. Efficient outerplanarity testing. Annales Societatis
Mathematicae Polonae Series IV: Fundamenta Informaticae II (1979), 261-
275.

[48] T a r j a n , R. Depth-first search and linear graph algorithms. SIAM
J.COMPUT 1 (1972), 146-160.

[49] T s in , Y . Som e remarks on distributed depth-first search. Information Pro­
cessing Letters 82 (2002), 173-178.

[50] T s in , Y., a n d L in , Y. On testing and embedding outerplanar graphs in
linear time and space, Technical Report TR 04-022. School of Computer
Science, University of Windsor, 2004.

[51] T u r a u , V. Computing bridges, articulations and 2-connected components
in wireless sensor networks. In ALGOSENSORS 2006, LNCS 4%40 (2006),
pp. 164-175.

[52] v o n C h r i s t in a W i t w e r . Prediction of Conderved and Consensus RNA
Structures, Ph.D. thesis. Fakultat fur Naturwissenschaften und Mathematik
der Universitat Wien, 2003.

[53] W ie g e r s , M . Recognizing outerplanar graphs in linear time. In Interna­
tional Workshop WG '86 on Graph-theoretic concepts in computer science
(1987), Springer-Verlag, pp. 165-176.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Tao Deng

Chengdu, China

1981

University of Electronic Science and Technology of China
Chengdu, China
1999-2003

University of Windsor, Windsor, Ontario
2005-2007

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	On the implementation and refinement of outerplanar graph algorithms.
	Recommended Citation

	tmp.1507664919.pdf.T8f_S

