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Abstract

An outerplanar graph is a graph that can be embedded on the plane such that 
all the vertices lie on the exterior face and no two edges intersect except possibly 
at a common end-vertex. Five sequential algorithms had been proposed for rec­
ognizing outerplanar graph in the literature and all run in linear time and space. 
Although among them, the algorithms of Mitchell, Wiegers, and Tsin and Lin 
are obviously superior, no efforts had been made in comparing their performances 
during run-time.

In this thesis, the aforementioned three algorithms are implemented and their 
performances are compared using a large number of randomly generated graphs. 
Furthermore, the algorithms of Mitchell and Wiegers are modified so that an out- 
erpalnar embedding is generated if the input graph is outerplanar. Correctness 
proofs of the modification are presented. It is also shown that the complexity of 
the modified algorithms remain linear in both time and space.

Keywords: Graph algorithms, outerplanar graph, outerplanar embedding, lin­
ear time algorithm, performance evaluation.
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Chapter 1 

Introduction

A general definition of graph is any mathematical object involving nodes and 
connections between them. Graph-theoretic problems occur naturally in a great 
diversity of applications, such as electrical circuits, organic molecules, ecosystems, 
sociological relationships, databases, and in the flow of control in a computer pro­
gram.

1.1 M otivation

An outerplanar graph is a graph that can be embedded in the plane so that all 
the vertices lie on the boundary of the exterior face and no two edges cross each 
other. Outerplanar graphs appear naturally in a wide variety of applications. For 
instance, in RNA structure, every secondary structure which consists of a list of 
base pairs has the structure of an outerplanar graph [52]. In computer networks, 
message routing is generally an expensive task in terms of time and space complex­
ity. However, for outerplanar network, compact routing schemes [21] and compact 
fault-tolerant message routing method [21] had been developed. Although in real- 
life situation, computer networks are usually planar, Frederickson showed that 
the problem of designing efficient compact routing scheme for planar networks 
can be reduced to that for a class of outerplaner networks satisfying certain prop­
erties [20]. Furthermore, Gongalves recently showed that every planar graph can 
be decomposed into two outerplanar subgraphs [25]. The study of outerplanar 
network thus plays an important role in message routing.

Outerplanar graph has been extensively studied. For instance, while the 
Hamiltonian cycle problem and the chromatic-number problem are NP-complete

1
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1.1 Motivation

and NP-hard, respectively, in general, there exist polynomial-time algorithms for 
the two problems if the given graph is outerplanar. Mitchell et al. [41] showed 
that the isomorphism problem for maximal outerplanar graphs can be solved in 
polynomial-time and presented two liner-time algorithms. Bachl et al. [5] showed 
that the isomorphic subgraphs problem is NP-Complete for outerplanar graphs 
and is solvable in linear time when restricted to trees. Proskurowski and Sysol [43] 
presented an efficient algorithm for finding minimum adominating cycle for the 
biconnected outerplanar graphs. For the problem of list coloring and precoloring 
extension on the edges of planar graphs, Marx [39] showed that both problems 
are NP-Complete for bipartite outerplanar graphs.

It is of both theoretical and practical interest to determine if a graph is out­
erplanar and produce an outerplanar embedding of it if it is. Efficient algorithms 
had been proposed for this problem on various computer models.

For the parallel model, Diks, Hagerup and Rytter [16] presented an algo­
rithm that runs in O(lognloglogn) time using n/(lognlog logn) processors on 
the CREW (concurrent-read-exclusive-write) PRAM (Parallel RAM), where n is 
the number of vertices in the given graph. If the graph is outerplanar and bicon­
nected, then a Hamiltonian cycle will also be produced.

For the distributed model, Kazmierczak and Radhakrishnan [33] presented an 
asynchronous distributed algorithm that uses 0 (n) time and transmits 0 (m) mes­
sages to determine if a biconnected network with n-node and ra-link is outerplanar.

For the external memory model, Maheshwari and Zeh [37] presented an algo­
rithm that performs sort(n) I/O  operations to determine if a biconnected graph 
is outerplanar, where sort(n) is the number of I/O operations performed to sort 
a list of n elements.

For the sequential model, a number of linear time and space algorithms for 
recognizing outerplanar graph had been published. Brehaut proposed the first two 
algorithms [7]. Both algorithms rely heavily on the planarity testing algorithm of 
Hopcropt and Tarjan [30] and are thus quite complicated. In the first algorithm, 
the planarity testing algorithm is first used to assure that the given graph is a 
planar graph. After that, a dependency subgraph is generated. A coloring is then 
performed on the dependency subgraph to generate an outerplanar embedding of

2
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1.1 Motivation

the given graph. In the second algorithm, a depth-first search is first performed 
over the given graph to convert the graph into a palm tree [48]. An acceptable 
adjacency list structure for the palm tree is then generated. A second depth-first 
search is then performed over the palm tree to produce an ear-decomposition of 
the graph. Those ears that have more than one edges are then used to form a 
Hamiltonian cycle of the given graph. Based on the Hamiltonian cycle, the orig­
inal adjacency structure is modified and a third depth-first search is performed, 
generating another palm tree and another acceptable adjacency structure. A di­
rected Hamiltonian cycle of the given graph with diagonals is then generated. The 
given graph is outerplanar if and only if no two diagonals cross each other.

Syslo and Iri [47] presented another depth-first search based algorithm for rec­
ognizing outerplanar graphs. Their algorithm uses the fact that a biconnected 
graph is outerplanar if and only if it is a cycle or it can be reduced to a cycle 
by repeatedly replacing maximal paths whose internal vertices are of degree two 
with a single edge. Although this algorithm is simpler than that of Brehaut, it is 
still quite complicated as it makes multiple passes over the given graph and uses 
sorting.

Mitchell [41] presented another algorithm which does not use depth-first 
search. Instead it is based on maximal outerplanar graph - an outerplanar graph 
such that adding any edge between any two non-adjacent vertices results in a non- 
outerplanar graph. The idea underlying their algorithm is to transform a given 
biconnected graph into a maximal outerplanar graph by repeatedly adding edges 
between non-adjacent vertices. It had been shown that a biconnected graph is 
outerplanar if and only if it can be transformed into a maximal outerplanar graph.

Wiegers [53] presented yet another algorithm that does not use depth-first 
search. The algorithm uses an edge coloring technique and repeatedly deletes ver­
tices of degree two or less. It can work directly on graphs that are not biconnected.

Recently, Tsin and Lin [50] presented yet another depth-first search based al­
gorithm for testing and embedding outerplanar graphs. Their algorithm is based 
on a new characterization theorem of outerplanar graph whose conditions can be 
efficiently tested during the depth-first search.

So far, no work had been done on comparing the performances of the afore-

3
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1.2 Thesis Statement

mentioned sequential algorithms. Therefore, in this thesis, we shall implement the 
algorithms and compare their performance based on randomly generated graphs. 
However, after a preliminary study of the six algorithms, we noticed that the al­
gorithms of Brehaut and that of Syslo et al. are clearly inferior to the rest. We 
shall thus implement and compare the last three algorithms only.

We had also noticed that the algorithms of Mitchell and Wiegers only test 
for outerplanarity of the given graph. They do not produce an embedding if the 
graph is indeed outerplanar. We shall thus refine the two algorithms to include 
such functionality.

1.2 Thesis Statem ent

In this thesis, a detailed comparison of the algorithms of Mitchell, Wiegers and 
Tsin’s outerplanar graph algorithms will be presented. Firstly, crucial details that 
were omitted in the original presentation of Mitchell’s and Wiegers’ algorithm will 
be filled in. The three algorithms are then implemented and their performances 
are compared based on a large number of experimental graphs. The graphs are 
generated randomly and are of different types with different sizes.

While Tsin’s algorithm also generates an embedding of the graph if it is in­
deed outerplanar, Mitchell’s and Wiegers’ do not. In this thesis, the algorithm 
of Mitchell and Wiegers, respectively, are modified so that an outerplanar em­
bedding is generated if the input graph is outerplanar. Correctness proofs of the 
modification are presented. It is also shown that the complexity of the modified 
algorithms remain linear in both time and space.

1.3 Organizations of Thesis

This thesis is organized into eight chapters. Chapter 1 gives the motivation of 
the thesis. Chapter 2 introduces the background knowledge of graph theory, 
graph algorithm, depth-first search and bucket sort. Chapters 3,4 and 5 explain 
Mitchell’s, Wiegers’, Tsin and Lin’s outerplanar outerplanar graph algorithm, 
respectively, and present efficient implementation for each of them. Chapter 6 

presents and discusses the experimental results. Chapter 7 presents outerplanar

4
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1.3 Organizations of Thesis

embedding algorithms for Mitchell’s and Wiegers’ algorithm. Chapter 8 is the 
conclusion.

5
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Chapter 2

Background

2.1 Basic Definition

A graph G =  (V, E) consists of two sets V and E.

• The elements of V are called vertices (or nodes).

• The elements of E  are called edges

• Each edge is associated with two vertices (possibly identical) called its end­
points.

The sets V and E are usually finite. \V\ is the order  (the number of vertices) 
and IE11 is the size  (number of edges) of the graph. In an undirected graph, 
each edge is associated with an unordered pair (see Figure 2.1) whereas in a 
directed graph, each edge is an ordered pair (see Figure 2.2). In this thesis,
(u,v) represents an unordered pair, whereas < u,v  > represents an ordered pair.
If an edge e is associated with an unordered (ordered, respectively) pair (u,v) 
(< u,v  >, respectively), we shall write e =  (u,v) (e = <  u,v  >, respectively). A 
direct edge e = <  x ,y  > is considered to be directed from x  to y; x  is called the 
tail and y is called the head of the edge.

2.1.1 R elated  C oncepts

In this thesis, we shall focus on undirected graph. The following definitions are 
thus given to undirected graph although they can be easily extended to directed 
graph.

D efinition 1. A vertex u is adjacent to a vertex v if they is an edge e = (u , v). 
The two vertices are said to be jo in t by the edge e.

6
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2.1 Basic Definition

Figure 2.1: an undirect graph Figure 2.2: a direct graph

Definition 2. I f vertex v is an endpoint of edge e, then v is said to be incident 
on e, and e is incident on v.

Definition 3. Two adjacent vertices are called neighbors.

Definition 4. A self-loop is an edge whose two end-points are identical.

Definition 5. A multi-edge is a collection of two or more edges having identical 
end-points.

Definition 6. A proper edge is an edge that joins two distinct vertices.

Definition 7. A sim ple graph is a graph that has no self-loops or multi-edges.

Definition 8. The degree of a vertex v (denoted by Deg(v)) in a graph G, is 
the number of proper edges incident on v plus twice the number of self-loops.

Definition 9. A path in a graph is a sequence of vertices such that from each 
vertex there is an edge to the next vertex in the sequence. The first vertex is called 
the s ta r t vertex and the last vertex is called the end vertex. Both of them are 
called end or term inal vertices of the path. The other vertices in the path are 
in ternal vertices.

Definition 10. A cycle is a path such that the start vertex and end vertex are 
the same.

Definition 11. A graph is connected if between every pair of vertices there is a 
path.

Definition 12. A subgraph of a graph G is a graph whose vertex and edge sets 
are subsets of those o fG .A  spanning subgraph of G is a subgraph of G whose 
vertex set is same as that of G.

7
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2.1 Basic Definition

Definition 13. A connected component of a graph G is a connected subgraph 
H such that no subgraph of G that properly contains H is connected.

Definition 14. A simple graph G = (V,E) is isom orphic to a simple graph 
H — (V 7, E') if there exists a bijection f  : V  —»■ V' such that (u, v) G E if and 
only if (f(u), f(v ))  G Ef

Definition 15. A cut-vertex is a vertex whose removal increases the number of 
connected components.

Definition 16. A biconnected graph is a graph without cut-vertex.

Definition 17. A cut-edge (also known as bridge) is an edge whose removal 
increases the number of connected components.

Definition 18. A tree is a connected graph with no cycles.

Definition 19. A spanning tree of a graph G is a spanning subgraph of G that 
is a tree (see Figure 2.3).

Figure 2.3: A spanning tree of the graph in Figure 2.1

Definition 20. A simple graph is a complete graph if every pair of vertices 
is joined by an edge. The complete graph with n vertices is denoted by K n (see 
Figure 2-4, 2-4) ■

Definition 21 . A  2-vertex is a vertex of degree 2 and whose neighbors are ad­
jacent.

Definition 22. A simple graph is bipartite if its vertices can be partitioned into 
two disjoint sets (called partite  sets) in such a way that no edge joins two vertices 
in the same set.

8
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2.1 Basic Definition

Figure 2.4: K 5 Figure 2.5: K±

Figure 2.6: 3 Figure 2.7: K 2,z

Definition 23. A com plete bipartite graph is a simple bipartite graph in which 
each vertex in one partite set is adjacent to all the vertices in the other partite 
set. I f  the two partite sets have cardinalities r and s, then this graph is denoted 
by K rtS (see Figure 2.6, 2.7).

Definition 24. A graph is H am iltonian if it has a spanning cycle.

Definition 25. Two graphs G and H are homeomorphic if both of them can 
be obtained from the same graph by replacing edges with paths.

D efinition 26. A planar embedding of a graph is a graphical representation of 
the graph on the plane ( with dots representing vertices and line segment joining 
two dots representing edges joining the two corresponding vertices ) such that no 
two edges intersect except at an end-point. The edges partition the plane into 
regions, called faces. The edges surrounding a region is called the boundary of 
that region. There is exactly one face with unbound area called the exterior face.

Definition 27. A graph is planar if it has a planar embedding in the plane.

Definition 28. A graph is called outerplanar if it has an embedding in the plane 
such that all the vertices lie on the boundary of the exterior face.

Definition 29. A m axim al outerplanar graph is an outerplanar graph such 
that adding an edge to join any two non-adjacent vertices results in a non- 
outerplanar graph.

9
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2.2 Representation of Graph

Definition 30. An ou ter  edge is an edge which lies on the boundary of the 
exterior face.

Definition 31. The in n e r  edge is an edge which does not lie on the boundary 
of the exterior face.

2.2 Representation of Graph

2.2.1 A djacency M atrix

An adjacency m a tr ix  of a graph G = (V, E) is an |Fj x |f/| matrix M, such that 
M[i,j] =  1 if and only if vertex v-i and vertex Vj are adjacent. Adjacency matrix 
is the simplest way to represent graphs. However, the time and space complexity 
are fl( |F |2) as it requires 0 (|V |2) memory locations to store the matrix M  and 
0 ( |F |2) time to initiate the matrix. Figure 2.1 is an adjacency matrix for the 
graph in Figure 2.1.

Vl V2 v3 v4 v5 Ve v7 Vs Vg Vio

Vi 0 1 0 0 0 0 0 0 0 1

V2 1 0 1 0 0 0 1 0 1 0

v3 0 1 0 1 0 0 0 0 0 0
v4 0 0 1 0 1 0 1 0 0 0
V5 0 0 0 1 0 1 0 0 0 0
V& 0 0 0 0 1 0 1 0 0 0
v7 0 1 0 1 0 1 0 1 1 0

Vs 0 0 0 0 0 0 1 0 1 0

V9 0 1 0 0 0 0 1 1 0 1

VlO 1 0 0 0 0 0 0 0 1 0

Table 2.1: Adjacency matrix of the graph in Figure 2.1 

2.2.2 A djacency List

An adjacency list of a graph G =  (V,E) consists of an |Vj— element array of 
pointers, where the ith element points to a linked list of the vertices adjacent to 
the vertex without loss of generality, we shall use v, and i interchangeably. 
AList{i) denotes the adjacency list of vertex i. j  G AList(i) implies that vertex 
j  is adjacent to vertex i. To initialize the adjacency list, 0(\E\) time is sufficient. 
We shall use adjacency lists to represent the given graph in this thesis.

10
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2.3 Graph Traversing Techniques

1 — > 2 — >10
2 — > 1 — ► 3 — > 7 — > 9
3 — >2 — >4
4 — > 3 — >5 — > 7
5 — > 4 — >6
6 — > 5 — > 7
7 — >2 — >4 — >6  — >8  — ► 9
8 — > 9 — > 7
9 — >2 — >8  — >7 — >10
10 — > 1 — > 9 _________________________________________

Table 2.2: Adjacency lists of the graph in Figure 2.1

Definition 32. Cross-pointer linked lists are the adjacency lists of the graph 
G =  (V,E) such that for each vertex v in AList(u),u  E V , there is cross-pointer 
between the vertex v in AList(u) and the vertex u in AList(v).

2.3 Graph Traversing Techniques

A search algorithm takes a problem as input, evaluates a number of possible so­
lutions, and returns a solution to the problem. The set of all possible solutions to 
a problem is called the search space.

Among all the search algorithms, tree search algorithm is the heart of all search 
techniques, and is one of the central algorithms of many game playing programs. 
A tree traversal is a process of visiting each vertex in a tree data structure. Such 
traversal can be classified by the order in which the nodes are visited. For instance, 
level by level (Breadth-first search), reaching a leaf vertex first before backtracking 
(Depth-first search), alternative-deepening search, depth-limited search, bidirec­
tional search and uniform-cost search.

2.3.1 D epth  First Search

Depth First Search (abbreviated as DFS), as its name implies, is a graph-search 
method that searches “deeper” when possible. Specifically, a DFS extends the 
current path as far as possible before backtracking to the last reached vertex and 
trying the next alternative path.

DFS was first used by Tar j an in his algorithms for finding biconnected compo-

11
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2.3 Graph Traversing Techniques

nent and strongly connected component [48]. Later, Tarjan and Hopcroft used it 
to develop a linear-time algorithm for recognizing planar graph [30]. Since then, 
depth-first search has been used in developing optimal algorithm for a vast variety 
of graph-theoretic problems.

Owing to the success in using depth-first search to develop efficient graph al­
gorithms on the sequential computers, researchers in parallel computation had 
attempted to adapt the technique to parallel computers. Unfortunately, very few 
progresses were reported. Finally, Reif proved that depth-first search is an inher­
ently sequential technique [44].

It turned out that depth-first search is much more adaptable to the distributed 
processing setting. Chueng [9] presented the first depth-first search algorithm that 
runs on an asynchronous computer network. The algorithm takes 2m time and 
transmits 2 m  messages each with 0 (1) length, where m  is the number of links in 
the network. Awerbuch [4] improved the time bound to 4n, where n is the number 
of nodes in the network (note that m = 0 (n 2)). Lakshmanan et al. [35] tightened 
the time bound to 2n — 2. Cidon [11] showed that the message bound can be 
reduced to 3m; however, Tsin [49] later showed that Cidon’s algorithm does not 
always perform a depth-first search over the network correctly. Tsin then corrected 
the flaws in Cidon’s algorithm and showed that the time and message complexity 
of the corrected algorithm are actually same as those of Lakshmanan et al Tsin 
further showed that by extending the message length from 0(1) to O(logn), the 
time complexity of the corrected Cidon’s algorithm can be improved to n(l +  r), 
where 0 < r < 1. Sharma et al. [34,45] showed that one can trade message size 
for time and message by using messages of length 0 (n) to reduce the time and 
message to 2n — 2. Makki et al. [38] improved the bounds to n (l +  r), where 
0 < r  < 1 by using the dynamic backtracking technique. Recently, Turau [51] 
showed that depth-first search is also adaptable to wireless sensor network.

On the external-memory model (a model in which the input size is larger than 
the internal memory size), Chiang et al. [10] proposed a depth-first search algo­
rithm that requires 0(\n/M ]scan(m ) + n) I/O  operations, where M  is the size of 
the internal memory, n and m  are the number of vertices and the number of edges, 
respectively, of the given graph, and scan(m) is a primitive which is the number 
of I/O  operations needed to read m  items striped across the external disks that 
form the external memory. Buchsbaum et al. [1] introduced the buffered reposi-
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2.3 Graph Traversing Techniques

tory tree and used it to develop another depth-first search algorithm that requires 
0((n  + rn/B) log2(n/B) +  sort(m)) I/O operations, where B  is the number of 
items an I/O  operation can transfer from/to an external disk and sort(m) is an­
other primitive which is the number of I/O  operations needed to sort m  items 
striped across the external disks. The algorithm outperforms that of Chiang et 
al. when M  = o{{n/B)/\og 2 (n/B)). For planar graph, Arge et al. [2] presented 
a depth-first search algorithm that requires 0(sort(n) \og(n/m)) I/O  operations.

The following is a brief description of depth-first search:
Initially, all the edges in the graph G — (V, E) are unexplored and all vertices 

are unvisited. An arbitrary vertex r  is chosen as the starting point of the depth- 
first search. Vertex r thus becomes the current vertex of the search. In general, 
let v be the current vertex of the search. An unexplored edge incident on v is 
chosen. If the edge does not lead to an unvisited vertex, it is discarded and an­
other unexplored edge is chosen. This step is repeated until either an unexplored 
edge whose other end-point w is unvisited is encountered or vertex v runs out of 
unexplored edge. In the former case, the search advances to vertex w making it 
the current vertex. In the latter case, the search backtracks to the vertex u from 
which v was discovered as an unvisited vertex earlier.

A depth-first search creates a spanning tree, called depth-first search span­
ning tree (abbreviated as DFS-tree), of the given graph. The spanning tree 
consists of all those edges the search uses to advance from a current vertex to an 
unvisited vertex. An edge in the graph is called a tree edge if it belongs to the 
DFS-tree and is called a back edge, otherwise. Let e = (u,v) be a tree edge. 
Vertex u is the parent of vertex v if vertex u is visited before vertex v during the 
search. Vertex v is called a child  of vertex u.

The depth-first search also labels each vertex v with an integer, called the 
depth-first search number of v, which shall be denoted by dfs(v).  The inte­
ger is the rank of vertex v in the ordering the vertices are visited by the depth-first 
search. Specifically, dfs{v) =  k if vertex v is the kth unvisited vertex being turned 
into a current vertex by the search.

The following is a formal description of depth-first search.

13
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2.4 Planar Graphs and Outerplanar Graphs

A lgorithm  1 DFS(v, u)
Inpu t: The adjacency lists of G =  (V, E):
{comment: vertex u is the parent of vertex v}
dfs(v) <— count; count <— count + 1; comment: /* count is initialized to 1 */ 
for each w in the adjacency list of v do 

if w is unvisited th en  
D F S K  v) 

end if 
end for

Figure 2.8: a DFS spanning tree of the graph in Figure 2.1

2.4 Planar Graphs and Outerplanar Graphs

2.4.1 Planar Graph

Planar graph arises naturally in real-life situation. For instance, railway maps, 
electric circuits are planar graphs.

Kuratowski gave the first characterization theorem for planar graphs, now 
known as the Kuratowski’s theorem.

Theorem  1. An undirected graph is planar if and only if it does not contain a 
subgraph that is homeomorphic to K$ or K ^ .

Unfortunately, there is no apparent way of using Kuratowski’s theorem to 
produce an efficient algorithm for planarity testing. Auslander and Parter [3] pre­
sented the first planarity algorithm. The algorithm runs in 0 (n 3) time, where n

14
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2.4 Planar Graphs and Outerplanar Graphs

is the number of vertices in the graph. Later, Goldstein [23] spotted an error in 
Auslander and Parter’s algorithm and corrected it.

The first linear-time planar graph algorithm was proposed by Hopcroft and 
Tarjan [31]. The algorithm is based on Auslander, Parter and Goldstein’s algo­
rithm. It starts from a cycle and adding to it one path at a time. Each such 
new path connects two existing vertices with new edges and vertices. The process 
continues until either a non-planar subgraph is constructed or the entire graph is 
constructed. In the former case, the given graph is non-planar; in the latter case, 
the given graph is planar.

Lempel, Even and Cederbaum [36] used a different approach for planarity 
testing. Instead of starting with a cycle and adding one path at a time, they 
start with a single vertex and add one vertex at a time. Each time after a new 
vertex is added, all the previously added edges that are incident on the new 
vertex are connected to the vertex; new edges incident on the new vertex are then 
added with their other endpoints left unconnected. The process continues until a 
either nonplanar is constructed or the entire graph is completed. Several linear 
time algorithms based on Lempel, Even and Cederbaum’s algorithm had been 
proposed [6,17,46].

2.4.2 Outerplanar Graph

An outerplanar graph  is an undirected graph which can be embedded into the 
plane so that every vertex lies on the boundary of the exterior face. Obviously, 
every outerplanar graph is planar, but the converse is not true. A4 and A2)3 

(Figures 2.5, 2.7) are the two smallest non-outerplanar graphs. They play a 
fundamental role in characterizing outerplanar graphs.

T heorem  2. A graph is outerplanar if and only if it has no subgraph homeomor- 
phic to K 4 or Â2,3 ■

Proof. See [8].
□

Theorem  3. A graph is outerplanar if and only if each of its biconnected compo­
nents is outerplanar.

Proof. See [28].
□

15
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2.5 Bucket Sort

Owing to Theorem 3, many outerpalnar graph algorithms assume that the 
input graph is biconnected. Brehaut [7], Mitchell [41] and Syslo et al. [47] are 
such examples. However, if the input graph is not biconnected, a biconnected 
component algorithm must be used to decompose the input graph into a collection 
of biconnected components first. This could lengthen the run time of the algorithm 
significantly. By contrast, both Wiegers [53] and Tsin and Lin [50] do not make 
such assumption on the input graph.

2.5 Bucket Sort

Bucket sort is a distribution sorting method that is most suitable for sorting d- 
digit integers or d-tuples of integers in which the integers are bounded by integer 
k. It runs in linear time providing that k and d are small, fixed constants.

The algorithm works as follows: Let Array[0..n — 1] be an array of n d-tuples 
of integers in which the integers are in the range {1,2, . . . ,  A;}. Then k initially 
empty buckets are used each of which corresponds to a distinct integer in the 
given range. The algorithm runs through d iterations. During the j th, 1 < j  < k 
iteration, a tuple Array[i] = (a^, ai2, . . . ,  aik) is put into bucket aik_j+1. the tuples 
are then combined into one list with those tuples from bucket i precede those from 
bucket i + 1, where 1 < i < k. The list is then used in the following iteration. A 
brief description of the algorithm is given below.

Algorithm 2 Bucket Sort {Array, n) 
for j  =  1 to k do

Bucket[i\ := 0; comment: /* initialize the Buckets */ 
end for
for j  =  1 to d do 

for i =  0 to n — 1 do
Bucket[aik_j+1] <— Bucket[aik_j+1] ® Array[i\]
{comment: Append Array[i] to Bucket aik_j+1] © is the concatenation 
operator} 

end for
Combine the tuples in the buckets into one list such that those tuples from 
bucket i precede those from bucket i + 1, where 1 < i < k;
Copy the list back into Array[0..n — 1]; 

end for

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

A Study of M itchell’s Algorithm

3.1 M aximal Outerplanar Algorithm

Mitchell’s algorithm [40] runs in linear time and space. However, it assumes 
that the given graph is biconnected. If the graph is not biconnected, then a 
biconnected component algorithm must be used to decompose the graph into a 
collection of biconnected subgraphs. Michell’s algorithm can then be used on each 
of the subgraphs to find out if any of them is not outerplanar. The given graph 
is outerplanar if and only if each of its biconnected components is outerplanar. 
Furthermore, Mitchell’s algorithm does not produce an embedding for the given 
graph if the graph is outerplanar.

Mitchell first presented a linear time and space algorithm for recognizing max­
imal outerplanar graphs. The algorithm is based on the following lemma.

Theorem  4. A graph G =  (V, E ) is maximal outerplanar if and only if either G 
is a triangle or

i G contains exactly 2\V\ — 3 edges, and

ii G has at least two 2-vertices, and

iii no edge of G lies on more than two triangles, and

iv for any 2-vertex u, G — u is maximal outerplanar.

Proof. See [40]. □

The brief description of Mitchell’s algorithm is given below:

17
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3.2 Outerplanar algorithm

Given a biconnected undirected graph G = (V, E). LIST is a stack used to 
store the 2-vertices. EDGES is the set of all the edges in the graph.

1. If |Ej ^  2|U| — 3 then stop and report that G is not maximal outerplanar. 
(Based on Theorem 4(i))

2. Push all the vertices of degree 2 onto L IST . If the size of L IS T  is less 
than 2 , then stop and report that G is not maximal outerplanar. (Based on 
Theorem 4(ii))

3. Repeat the following steps until a triangle is left (Based on Theorem 4(iv)):

3.1 Pop a 2-vertex NO D E  from LIST;

3.1 Find the vertices N E A R  and N E X T  which are adjacent to N O D E ;

3.2 Remove NO D E  from the graph G;

3.3 Add (N E X T , N E A R ) to PAIRS;

3.4  If Deg(NEXT) = 2, push N E X T  onto LIST;
If Deg(NEAR) =  2, push N E A R  onto LIST;

4. Use two-pass bucket sort to sort P A IR S  and ED G ES  in lexicographical 
order. (So that Step 5 can be done in 0(|V |) time)

5. Compare the lists P A IR S  and EDGES. If there is an occurrence of an 
element in P A IR S  that is not in ED GES, then stop and report that G is 
not maximal outerplanar. Otherwise, report that the graph G is maximal 
outerplanar. (Based on Theorem 4(iii), there should be one and only one 
edge between the vertices adjacent to 2-vertices.)

Each time a 2—vertex is removed from L IS T S , an edge (N E X T , N EAR) is 
added to P A IR S  indicating that that edge must be an edge in G and hence in 
set ED GES, if G is maximal outerplanar.

3.2 Outerplanar algorithm

Lemm a 1. A graph G is outerplanar if and only if it can be transformed to a 
maximal outerplanar graph by triangulation [40].

18
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3.3 An Example of Mitchell’s Outerplanar Algorithm

Owing to Lemma 1, Mitchell’s maximal outerplanar algorithm presented in 
last section can be easily modified to do outerplanar recognition. The complexity 
of the resulting algorithm is still linear in the number of vertices. The modifica­
tion involves Steps 1 and 3 only:

Theorem 5. Let G—(V,E) be an outerplanar graph. Then \E\ < 2\V\ — 3.

Proof. See [28].
□

Owing to Theorem 5, the condition “\E\ ^  2\V\ — 3” in Step 1 is replaced by 
“|£ | ^  2|Vj — 3”. Step 3 is modified as follows:

3.1 Pop a 2-vertex N O D E  from LIST-,

3.2 Find the vertices N E A R  and N E X T  which are adjacent to N O D E ;

3.3 Remove NO D E  from the graph G\

3.4 Add {N E XT, N E A R ) to PAIRS;

3.5 If edge {N E XT, N E A R ) does not exist in G, add it to ED G ES  and add 
N E A R  and N E X T  to each other’s adjacency list;

3.6 If Deg{NEXT) =  2, push N E X T  onto LIST]
If Deg{NEAR) =  2, push N E A R  onto L IS T ;

Step 3 .1 , 3 .2???, 3 .4 , 3.6  require constant time. Step 3 .3???, 3.5 take 0(|R |) 
time.

3.3 An Exam ple of M itchell’s Outerplanar Al­
gorithm

We shall demonstrate an execution of Mitchell’s Outerplanar algorithm with the 
graph depicted in Figure 3.1.
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3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

( 1 ,2 )
(1,6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6 )

LIST

5
4
3
1

PAIRS

Figure 3.1: An Illustration of Mitchell’s Algorithm 

3.3.1 Rem oval of 2-vertices

The algorithm first checks if the condition \E\ < 2\V\ — 3 holds. Since the con­
dition holds, all the vertices of degree 2 are pushed onto the stack L IS T  (see 
Figure 3.1). As the size of L IS T  is greater than 2, the algorithm begins to pop 
the stack LISTS.

The first vertex popped out is the vertex 5 (see Figure 3.2). Since vertices 4 
and 6 are adjacent to 5, the edge (4,6) is added to PAIRS.  Since the edge (4,6) 
does not exist in the graph, it is added to EDGES.

Deg{4) and Deg(6) remain unchanged.

LIST

4
3
1

PAIRS

(4,6)

EDGES

(4.6)
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Figure 3.2: An Illustration of Mitchell’s Algorithm: after removal of node 5

The removal of node 4 is similar with node 5. The updated graph, LIST,  
ED G ES  and P A IR S  are shown in Figure 3.3.

Figure 3.4 shows the graph after node 3 is removed. The difference with pre-
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3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

(6.3)
(4.6)
( 1 ,2 )
( 1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Figure 3.3: An Illustration of Mitchell’s Algorithm: after removal of node 4

LIST

3
1

PAIRS

(6,3)
(4,6)

vious step is that (2 ,6 ) already exists in the graph, so there is no need to add it 
into EDGES.  Since Deg(2) and Deg{6) have changed to 2, there are thus pushed 
onto the LIST.

EDGES

(6.3)
(4.6) LIST PAIRS
(1,2)
( 1.6) 6 (2 ,6)
(2.3) 2 (6,3)
(3.4) 1 (4,6)
(4.5)
(5.6)
(2 .6)

Figure 3.4: An Illustration of Mitchell’s Algorithm: after removal of node 3

Figure 3.5 shows the graph after the last removal of vertex from L IS T  is per­
formed. If the given graph is outerplanar, it would always appear like this: a 
single edge connect two vertices which are stored at the bottom of LIST.

After the process of removing vertices from L IS T  terminates, the last edge 
remained in the graph, (2,1), is added to EDGES. The current elements of 
ED G ES  and P A IR S  are shown in Figure 3.6.
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3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

(6.3)
(4.6) 
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

LIST
PAIRS

2
1

(1,2)
(2 ,6 )
(6,3)
(4,6)

Figure 3.5: An Illustration of Mitchell’s Algorithm: after removal of node 6

Figure 3.6: An Illustration of Mitchell’s Algorithm: P A IR S  and ED G ES  after 
all the 2—vertices are removed

3.3.2 Bucket Sort

Both the lists ED G ES  and P A IR S  can be sorted by a two-pass Bucket Sort. 
Each pair in ED G ES  and P A IR S  consists of two integers from 1 to 6 . Before 
sorting, every pair is adjusted so that the first integer is no greater than the second 
integer.

The arrays in Figure 3.7 are then sorted using 2-pass Bucket sort. The buckets 
are labeled from 1 to 6 . In the first pass, each pair in P A IR S  (EDGES, respec­
tively) is put into a bucket whose label is identical to the second integer of the 
ordered pair. A partially sorted P A IR S  (EDGES, respectively) (sorted by their 
second integer) is obtained. In the second pass, each pair in P A IR S  (EDGES, 
respectively) is put into a bucket whose label is identical to the first integer of the 
ordered pair. A sorted P A IR S  (EDGES, respectively) is then obtained. Fig-

EDGES

(2 ,1)
(6.3)
(4.6) 
(1 ,2)
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

PAIRS

( 1 ,2)
(2 ,6)
(6,3)
(4,6)
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3.3 An Example of Mitchell’s Outerplanar Algorithm

EDGES

PAIRS(3,6) -----------

( 1 ,2 ) 
(1 ,2)
(3,6)

(1 2 ) (1'2)
6 (2 '6 >

23  W
( M )  (4 ’6)
(4.5)
(5.6)
(2.6)

Figure 3.7: An Illustration of Mitchell’s Algorithm: P A IR S  and ED G ES  before 
Bucket Sort

ures 3.8 and 3.9 show the results of Bucket sort.

EDGES

( 1.2 )

(34) f1'2)
45  <2'6>

<*•>(4.6) l4,bj
(1 .6)
(5.6)
(2 .6)

Figure 3.8: An Illustration of Mitchell’s Algorithm: P A IR S  and ED G ES  after 
one-pass Bucket Sort

3.3.3 Check PAIRS and EDGES

After both P A IR S  and ED G ES  are sorted, the two lists are scanned to determine 
if every pair in P A IR S  also appears in EDGES. For the given example, all the 
pairs (1,2), (2,6), (3,6 ), (4,6) are in EDGES. The give graph is thus outerplanar.
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EDGES

(1 ,2)
( 1 ,2 )
( 1,2)
(1,6)
(2.3) 
(2 ,6)
(3.4) 
(3,6)
(4.5)
(4.6)
(5.6)

PAIRS

( 1 ,2)
(2 ,6)
(3.6)
(4.6)

Figure 3.9: An Illustration of Mitchell’s Algorithm: P A IR S  and ED G ES  after 
a two-pass Bucket Sort

3.4 Im plem entation

Unfortunately, the presentation of Mitchell’s outerplanar algorithm in Mitchell’s 
original paper [41] is very brief. It is not at all clear that the algorithm can be 
implemented in linear time and space. For instance, in Step 3 .5 , the algorithm has 
to check whether the edge (NEAR, N E X T )  already exists in the graph G before 
it is added to EDGES. This could be accomplished by scanning the adjacency 
list of N E X T  for the vertex NEAR.  The vertex N E A R  appears in the adjacency 
list if and only if the edge (NEAR, N E X T )  exists in G. Since it takes 0(\V\) 
time to search an adjacency list in the worst case, if there are 0 ( |I/|)  N E X Ts,  
the algorithm would take 0 (|U|2) time rather than linear time.

3.4.1 Our strategies in th e im plem entation

We adopt the following strategies in implementing Mitchell’s algorithm:

• The adjacency list data structure is used to represent the input graph G =

• Delay checking if the edge (NEXT, N EAR)  exists in the given graph until 
either N E X T  or N E A R  is popped out of L IS T  (i.e. D eg(NEXT)  =  2 or 
Deg(NEAR) =  2).

• In order to save the time on scanning the adjacency list, we shorten the 
adjacency list by deleting all the nodes of degree 0 . As we often deal with

(V,E).
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node with degree 2 , it takes only 0 (1) to scan this adjacency list.

3.4.2 M ain Steps o f our Im plem entation

We briefly describe the main steps of our implementation first.

1. Check whether |E\ < 2\V\ — 3 . If not, then Stop.

2. Push all the vertices with degree 2 onto LIST.  If size(LIST)  < 2, then 
Stop.

3. Pop NO D E  from L IS T ; Find the vertices N E A R  and N E X T  which are 
adjacent to NODE; Add (N EX T, NEAR)  to PAIRS;  Remove N O D E  
from the graph.

4. Add N E A R  and N E X T ,  each with a mark, to each other’s adjacency list.

5. If Deg(NEXT) =  2, check if any node with a mark in the adjacency list is 
a duplicate entry, if it is, then delete the node with a mark; otherwise add 
the node to adjacency list of N E X T  and update Deg(NEXT)  accordingly. 
Do the same for vertex N E A R  if Deg(NEAR) =  2.

6 . If Deg(NEXT) =  2 or Deg(NEAR) = 2, push it onto LIST.

7. Use a two-pass Bucket Sort on PAIRS and EDGES.

8 . If there is an occurrence of an element in P A IR S  that is not in EDGES, 
then Stop, else report that the given graph G is outerplanar.

The changes take place in Step 4 and 5. To save the efficiency, our algorithm 
does not check whether the edge (NEAR,NEXT) exists in adjacency list until 
Deg(NEXT) or Deg(NEAR) = 2. In this way, it takes only 0(2) times in stead 
of 0(|Wj) in Mitchell’s algorithm.

In order to record NEXT or NEAR which may be added to adjacency list 
later, we add this node with a mark (denoted by node*) at the beginning of the 
adjacency list, which is faster than at the end. Then, we do a ’’CheckExist” 
process when Deg(NODE) = 2. The steps contained in the ’’CheckExist” process 
are: If we find out that the edge has already existed before the node* is added, 
the algorithm would delete the node*. Otherwise, the node* would be deleted 
from the beginning of the adjacency list and a regular node would be added to 
the end of adjacency list.
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3.4.3 A  D etailed  Im plem entation

The input graph is represented by the adjacency lists of its vertices. Each node in 
the adjacency list of a vertex v contains a vertex that is adjacent to v and hence 
also represents an edge incident on v. To distinguish between a marked node and 
a regular node, we color the nodes with different colors. Specifically, if the node 
is colored white, then it is a regular node; if it is colored red, then it a marked 
node. Marked node are inserted at the beginning of the adjacency list. Details 
are spelled out in Algorithms 3, 5, 6 and 7 below.
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Algorithm 3 An Implementation of Mitchell’s Outerplanar Algorithm
1. if ( |£ | < 2\V\ -  3) then
2 . Output ” No”
3. end if;
4. L IS T  <- {v\Deg[v) = 2}; P A IR S  <- 0;
5. if (\LIST\ < 2) then
6. Output ”No”
7. end if;
8 . for L =  1 to  |Vj — 2 do
9. NO D E <- pop (LIST)]

NE AR , N E X T  <— the two vertices adjacent to N O D E ;
10. Add (NEAR, N E X T ) to list P A IR S ;
11. Remove NO D E  from the graph;
12. Decrement Deg(NEAR) and Deg(NEXT)]
13. if (Deg(NEAR ) < 2) th en
14. ChkAdj (NEAR, NEXT)-,
15. end if
16. if (Deg(NEXT)  < 2) then
17. ChkAdj (N EX T, N E A R );
18. end if;
19. if (Deg(NEAR) > 2) A (Deg(NEXT) > 2) th en
20. AddRed(NEXT, NEAR)]
21. end if
22. if (Deg(NEAR) < 2) th en  Add N E A R  to LIST]
23. if (Deg(NEXT) < 2) th en  Add N E X T  to LIST]
24. if (\LIST\ - L <  2) then
25. Output ”No”
26. end if
27. end for;
28. Add the edge (NEAR, N E X T )  to EDGES]
29. Lexicographically sort EDGES]
30. Lexicographically sort PAIRS]
31. if there is an edge in P A IR S  and not in ED G ES  then
32. Output ”No”
33. else
34. Output ”Yes”
35. end if
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Algorithm 4 Check the adjacency list of vertex a for vertex b 
Procedure ChkAdj(a,b) 

if (there is no b colored white in the adjacency list of a) then 
AddWhite(a, 6); 

end if ;
for (each vertex v in the adjacency list of a) do 

if (Deg[v] =  0) then Remove v from the list; 
else if (v is red) then

if (^ another v colored white in the list) then 
RemoveRed((a, v))-,
AddWhite(a, v); 

else RemoveRed(a,v);

Algorithm 5 Add White Node 
Procedure AddWhite(a,b)

Add the edge (a,6) to list ED GES
Add a and b with color white to the end of each other’s adjacency list 
Increment(Deg(a)); Increment(Deg(b))

In Step 1, if \E\ > 2\V\ — 3, then by Theorem 5, the input graph cannot be 
outerplanar. The algorithm thus terminates its execution and outputs a ”No”.

In Step 4, the set of vertices of degree 2 are pushed onto the stack LIST.  The 
list of edges P A IR S  is initialized to the empty set.

In Step 9, a vertex NO D E  is popped out of the stack LIST.  Since NO D E  
is of degree 2, it can have only two adjacent vertices, N E A R  and N E X T .

In Step 10, the edge (N EX T, N EAR)  is added to PAIRS.

In Step 11, vertex NO D E  is removed from the graph by setting Deg(NODE) 
to 0 .

In Step 12, the degrees of Deg(NEXT)  and Deg(NEAR) are incremented 
according.

In Steps 13-15, if the Deg(NEAR) < 2, then its adjacency list is scanned for 
N E X T .  The existence of a N E X T  vertex colored white indicates that the edge 
(NEAR, N E X T )  exists in G. So, no further action is necessary. Otherwise, a 
vertex N E X T  (NEAR, respectively) colored white is added to the adjacency list
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A lgorithm  6  Add Red Node__________________________
P rocedure AddRed(a,b)

Add b with color red to the beginning of g’s adjacency list

A lgorithm  7 Remove Red Node 
P rocedure  RemoveRed(a,b)

Remove b (colored red) from the adjacency list of a

of N E A R  (N E X t , respectively). This effectively adds the edge (NEAR, N E X T )  
to G. Therefore, the edge (NEAR, N E X T )  is also added to ED G ES  and the de­
grees of a and b are incremented accordingly. Next, the adjacency list of N E A R  
is scanned. For each vertex v in the list, if Deg(v) = 0, vertex v is removed 
rom the list. If v is colored red and there is a vertex v colored white in the list, 
then the red v is removed; otherwise, the red v is removed, and a white v is 
added to the adjacency of N E A R  while a white N E A R  is added to the adjacency 
list of v. Moreover, the edge (NEAR,v)  is added to ED G ES  and Deg(v) and 
Deg (NEAR)  are incremented accordingly.

Steps 16-18 are similar to Steps 13-15.

Steps 19 — 21, if neither Deg(NEAR) < 2 nor Deg(NEXT) < 2, then a 
vertex N E X T  (NEAR,  respectively) colored red is added to the adjacency list 
of N E A R  (N E X T ,  respectively). When Deg(NEAR) (Deg(NEXT),  respec­
tively) finally becomes two or less, the red N E X T  (NEAR, respectively) will be 
processed in Steps 13-15 (16-19, respectively).

In Steps 22 and 23, vertex N E A R  (N E X T ,  respectively) is pushed onto the 
stack L IS T  if Deg(NEAR) <  2, (Deg(NEXT)  < 2, respectively)

In Steps 24 — 26, If there are less then two vertices on the stack L IS T  and 
fewer than | V| — 2 vertices had been popped out of LITS ,  then execution of the 
algorithm terminates and the graph G is reported as non-outerplanar.

In Steps 29-35, both ED G ES  and P A IR S  are sorted lexicographically using 
bucket sort. This is to ensured that checking if P A IR S  C  ED G ES  can be carried 
out in linear time. The details are given in Algorithm 8 below.
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A lgorithm  8  Check if PAIRS C EDGES________________________
1. {Let P A IR S  =  {pairi\l < i  < n}, ED G ES  =  {edgej\l < j  < m}} 
2- j  =  - 1;
3. for % := 0 to  n do
4- j  +  +;
5. if j  > m  th en
6 . Output ”NO”; stop
7. end if;
8 . while pairi ^  edgej do
9. j  +  +;

10. if j  > m  then
11. Output ”NO”; stop
12. end if
13. end while
14. end for
15. Output ”YES” .

3.4.4 A n Illustration of M itchell’s Outerplanar A lgorithm

We use the example in Figure 3.10 to illustrate Mitchell’s algorithm for outerpla- 
narity testing. After reading the input graph file, the Adjacency Lists and the 
elements in ED G ES  would be as shown in Figure 3.10. The algorithm starts with 
verifying |£j < 2\V\ — 3. Since \V\ =  6 and \E\ = 7, the condition is satisfied. 
The next step is to push all vertices that are of degree 2 onto L IS T  and initialize 
P A IR S  to 0.

EDGES

(1,2)
( 1 ,6 )
(2.3)
(3.4)
(4.5)
(5.6)
(2.6)

Adjacency List

1 : 2 6
2 : 1 6 3
3 : 2 4
4 : 3 5
5 : 4 6
6 : 1 2 5

LIST

5
4
3
1
PAIRS

Figure 3.10: An Illustration of Mitchell’s Outerplaner Algorithm; |Vj =  6 .

Node 5 is the first vertex popped out of L IS T  and removed from G. Since the 
two vertices adjacent to vertex 5 are vertices 4 and 6 . the edge (4,6) is added to 
LISTS .  Moreover, as Deg{4) < 2 after vertex 5 is removed, the adjacency list of 
vertex 4 is examined. As the list does not contain an unmarked vertex 6 (i.e. a
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white vertex 6), vertex 6 is thus added at the end of the adjacency list of vertex 4 
while vertex 4 is added at the end of the adjacency list of vertex 6 . Furthermore, 
vertex 5 in the adjacency list of vertex 4 is removed. The updated information is 
shown in 3.11.

EDGES

(4.6) 
(1 ,2)
(1 .6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Adjacency List

1 : 2 6  
2 : 1 6 3  
3 : 2 4  
4 : 3 6  
6 : 12 5 4

LIST

4
3
1
PAIRS

(4,6)

Figure 3.11: An Illustration of Mitchell’s Algorithm: After removal of vertex 5

The removal of vertex 4 is similar to vertex 5 (see Figure 3.12).

EDGES

(3.6)
(4.6) 
( 1 ,2 )
(1.6)
(2.3)
(3.4)
(4.5)
(5.6)
(2 .6)

Adjacency List
LIST

1 : 2 6
2 : 1 6 3 3
3 : 2 6 1
6 : 1 2 5 4 3 PAIRS

(3.6)
(4.6)

Figure 3.12: An Illustration of Mitchell’s Algorithm: After removal of vertex 4

The next vertex popped out of L IS T S  is vertex 3. The edge (2,6) is then 
added to PA IRS.  After vertex 3 is deleted, both Deg(2) and Deg(6) become 2. 
Suppose vertex 2 is examined first, then the adjacency list of vertex 2 is scanned 
and vertex 3 is removed. Furthermore, as an unmarked vertex 6 appears in the 
list, no edge (2,6 ) is added to EDGES. Vertex 6 is then examined and its adja­
cency list is scanned. Since Deg{3) =  Deg{4) — Deg(5) =  0, all these vertices are 
removed. Since an unmarked vertex 2 appears in the list, no edge (2 , 6 ) is added 
to EDGES. Vertices 2 and 6 are the pushed onto L IS T  (see Figure 3.13).
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EDGES

(3,6)
(4,6) Adjacency List LIST
(1,2)
(1,6) 1 : 2 6 6
(2,3) 2 : 1 6 2
(3,4) 6 : 1 2 1
(4,5) PAIRS
(5,6)
(2 ,6 ) (2 ,6)

(3.6)
(4.6)

Figure 3.13: An Illustration of Mitchell’s Algorithm: After removal of vertex 3

The next vertex popped out of L IS T  is 6 . The edge (1,2) is then added to 
PA IRS.  Since Deg( 1) < 2, the adjacency list of vertex 1 is scanned and vertex 
6 is removed from the list. Furthermore, as there is an unmarked vertex 2 in the 
list, no edge (1,2) is added to EDGES. Similarly, as Deg(2) < 2, the adjacency 
list of vertex 2 is scanned and vertex 6 is removed from the list. Finally an edge
(1, 2) is added to EDGES.

Finally, as P A IR S  C  EDGES, the algorithm thus terminates execution with 
a ” Yes”.

EDGES

( 1 ,2 )
(3.6)
(4.6) Adjacency List LIST
( 1 ,2 )
( 1.6) 1 : 2  2
(2.3) 2 : 1  1
(3.4) PAIRS
(4.5)
(5.6) (1,2)
(2 .6) (2 ,6 )

(3.6)
(4.6)

Figure 3.14: An Illustration of Mitchell’s Algorithm: After removal of vertex 6
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Chapter 4 

A Study of W iegers’ Algorithm

4.1 Outerplanar algorithm

In contrast with Mitchell’s algorithm, Wiegers’ Outerplanar algorithm [53] ac­
cepts non-biconnected graphs as the input graph and performs no sorting. This 
algorithm uses a 2—reducible graph testing and an edge-coloring technique. Sim­
ilar to Mitchell’s algorithm, Wiegers’ algorithm repeatedly removes vertices of 
degree two or less from the graph; whenever a vertex of degree two is removed, 
a new edge joining its two neighbors is added to the graph if the edge does not 
exist. If the algorithm runs out of vertices of degree two or less before reducing 
the input graph into an edgeless graph, the algorithm terminates its execution 
and reports that the graph is non-outerplanar. This is because the graph must 
contain a subgraph that is homeomorphic to K 4. The edge-coloring technique is 
used to keep track of the number of triangles each edge belongs to. If any edge 
belongs to more than two triangles, the algorithm would report that the graph 
is non-outerplanar indicating that the graph contains a subgraph that is homeo­
morphic to A2)3.

4.1.1 T he 2-R educible Graph Algorithm

Definition 33. [53] A graph G=(V,E) is 2—reducible if and only if 

E = 0, or

3u € V such that Deg(u) < 1, Gu = G — {«} is 2-reducible, or

3u € V  such that Deg(u) =  2 and Vi, v2 are the adjacent vertices of v, Gu = 
(V  — {u}, E  — {(u, Vi), (u , u2)} U {(wi, u2)}) is 2-reducible.
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Theorem  6 . The class of outerplanar graphs C  the class of 2-reducible graphs C  

planar graphs.

Proof. [53]. □

A 2—reducible graph can be totally disconnected or can be made totally dis­
connected by repeatedly deleting edges adjacent to vertices of degree at most 2 . 
Wiegers showed that a 2-reducible graph can be recognized in 0(|V |) time. Based 
on Theorem 6 , an outerplanar graph is a 2-reducible graph, but the converse is 
not true.

Since it is both annoying and time consuming to check whether there exists an 
edge between two given vertices u and v, Wiegers’ 2-Reducible graph algorithm 
would not do such checking until the degree of one of the two vertices becomes 
less than 3. Therefore, two adjacent lists AList'{u) and ALIst'(v) are maintained 
to hold this potential edge. When the degree of u or v becomes less than 3, the 
edge (u,v) is then moved from AList'(u) (ALIsf(v),  respectively) to AList(u) 
(.ALIst(v), respectively).

The following is a brief description of the 2-Reducible graph algorithm:

1. Given a graph G = (V, E), check whether |A| > 2\V\ — 3. If yes, then the 
graph is not outerplanar;

2 . Let M be the set containing all the vertices of degree less then or equal to 2 

during the execution;

3. Remove one vertex u € M. If AListfu)  contains a vertex v, then remove 
v from AList’(u). Furthermore, if v does not appears in AList(u), then v 
(■u , respectively) are inserted into AList(u) (AList(v), respectively) which 
effectively adds the edge (u,v) to the graph. Vertex u is returned to M  if
Deg(u) < 2. On the other hand, if AList'(u) is empty, vertex u would be
made an isolated vertex. Moreover, if Deg(u) =  2, and v and w are the 
two adjacent vertices of u, then vertex v (w, respectively) is inserted into 
AList'(w) (A L is t fv ), respectively). Finally, if Deg(v) < 2 , v is added to 
M. The same applies to vertex w.

4. When M  =  0, \E\ = 0 if and only if G is outerplanar.

The 2-Reducible graph algorithm is presented as Algorithm 9.
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A lgorithm  9 2-Reducible Graph Algorithm
1. if \E\ > 2\V\ -  3 then
2 . re tu rn  false
3. end if
4. M  <— {u\Deg(u) < 2};
5. while M / 0  do
6 . Remove u from M;
7. if Deg(u) < 2 th en
8 . if AList'(u) t£ 0 th en
9. Remove u\ from AList'{u);

10. if ui AList{u) then
11. add u\ to AList(u); add u to AList{u\ )
12. Increment Deg(ui)-, Increment Deg(u)\
13. end if
14. if (Deg(u) < 2) th en  M <— M U {u};
15. else
16. if Degiu) = 1 th en
17. Let ui 6  AList(u), delete U\ from AList(u)-,
18. Decrement Deg(ui);
19. if (Deg(ui) < 2) th en  M  <— M  U {ui};
20. else
21. if Deg(u) — 2 th en
22. Let « i ,«2  € AList(u); Remove u\, from AList(u);
23. Add U\ in AList’(«2); Add u<i in AList'(u])\
24. Decrement Deg(u\)\ Decrement Deg(u‘})\
25. if (Deg{ui) < 2) th en  M < -M U  {^i};
26. if (Deg(u2 ) < 2) th en  M < -M U  {^2};
27. end if
28. end if
29. end if
30. end if
31. end while
32. re tu rn  \E\ = 0
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4 .1.2 T he Edge Coloring Technique

Wiegers classified the edges in an outerplanar graph into three types: cross edge, 
outer edge and bridge. Each edge in the outerplanar graph can belong to at most 
two triangles. Note that if an edge belongs to a triangle, then the other two 
edges of the triangle corresponds to a non-trivial path connecting the endpoints 
of that edge in G. Therefore, if an edge belongs to three triangle, then there 
exist three edge-disjoint paths in G connecting the endpoints of that edge. The 
three paths form a subgraph of G which is homeomorphic to K-ip,. The graph G 
is thus non-outerplanar. The edge-coloring technique is used to keep track of the 
number of times each edge appears on a triangle in the course of executing the 
algorithm. Specifically, a cross edges is an edge for which no triangle containing 
it has been discovered. An outer edge is an edge for which one triangle containing 
it has been discovered. A bridge is an edge for which either no triangle or two 
triangles containing it have been discovered. In the former case, it is a genuine 
bridge (i.e a cut-edge), In the latter case, it implies that if a triangle containing 
the edge is discovered at a later stage, then the graph G contains a subgraph that 
is homeomorphic to A2,3- The graph is thus non-outerplanar and the coloring is 
called an unacceptable edge coloring. The outerplanar graph algorithm is a mod­
ification of the 2-reducible graph algorithm using the edge-coloring technique. It 
is based on the following idea: every reduction of an outerplanar graph with an 
acceptable edge coloring gives rise to an outerplanar graph with an acceptable 
edge coloring. If an unacceptable edge coloring is created by such reduction, the 
graph is non-outerplanar.

D efinition 34. V(o, b) £ E, col(a,b) denotes the color assigned to the edge (a, b), 
which can be cross, outer or bridge.

R em ark. V(a, b) £ E,col(a,b), col(a,b) is initialized to cross. The value of 
col(a,b) is updated whenever a reduction is applied to a vertex during the exe­
cution of the outerplanar graph algorithm.

In the following discussion, u is the vertex removed from M. If Deg{u) =  1, 
then Ui is the vertex adjacent to u. If Deg(u) =  2, then v,\ and u% are the two 
vertices adjacent to u. Finally, A = {cross, outer, bridge} and B = {cross, outer}.

We shall explain how to use the edge-coloring technique in conjunction with 
vertex reduction to determine if a graph G =  (V, E) is outerplanar. Seven cases
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are to be considered separately and are summarized in Table 4.1.

In Case (i), Deg(u) =  1. In Cases (ii) and (iii), Deg(u) =  2 and (Ui,m2) ^ E. 
In Cases (iv) to (vii), Deg(u) = 2 and (mi, m2) G E. In the first case, the edge 
(u, u\) is simply discarded; no coloring of edges is necessary. In the remaining six 
cases, the color of the edge (mi,m2) must be determined.

Deg(u)=l co1(m, Ui) G /. acceptable (Figure 4.1)

Deg(u)=2

(ui,u2) £ E

col(«, u\) G B, 
col(«, u2) E B acceptable (Figure 4.2)
col(w, u\) E A, 

col(«, u2)=bridge acceptable (Figure 4.3)

{uu u2) E E

co1(m,Ui) G B, 
col(u,u2) E B, 
(ui, u2)=cross acceptable (Figure 4.4

col(w, Mi) G B, 
col(u, u2) E B, 
(ui,u2)=outer acceptable (Figure 4.5)
co1(m, m i ) G B, 
co1(m, m2) G B, 

(Mi,M2)=bridge unacceptable (Figure 4.6)
co1(m,mi) G A, 

co1(m, M2)=bridge, 
(mi,m2) G A unacceptable (Figure 4.7)

Table 4.1: Types of reduction

© ■
co1(m,mi) E A

O
\o

o
o

Figure 4.1: case (i):Deg(u) =  1. No matter col(u,Ui)  is cross, outer or bridge, G 
remains having acceptable coloring
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In Case (ii), col(u,Ui),col(u,u2) G {cross, outer}  and (ui ,u2) £ E. Since 
col(u,ui) ,col(u,u2) G {cross, outer},  therefore the edge (u, u\) ((u, u2), respec-

most one triangle. It is thus assigned the color outer. The coloring for the graph 
after the vertex u is removed and the edge {u\ ,u2) is added is thus an acceptable 
coloring (see Figure 4.2).

Figure 4.2: case (ii):Deg(u) — 2, u\ and u2 are not joined with an edge.

colors and (ui,u2) £ E. Then col(u,u2) G {bridge} implies that the edge (u,u2) 
lies on two triangles or no triangle while col(u, U\) G {cross, outer, bridge} implies 
that the edge (u , U\) lies on at most two triangles. As a result, if the new edge 
(ui,u2) is added in, the edge cannot lie on any triangle in the graph after a 
reduction is applied to vertex u. It is thus assigned the color bridge. Note that if 
both (u,ui) and (u, u2) are genuine bridges, then the new edge would also be a 
genuine bridge in the graph after a reduction is applies to vertex u. The coloring 
for the graph after the reduction is thus an acceptable coloring (see Figure 4.3).

Figure 4.3: case (iii):Deg(u) = 2, u\ and u2 are not joined with an edge.

tively) lies on at most one triangle. It follows that the new edge (u\, u2) lies on at

col(i/i, u2) = outer

In Case (iii), col(u,u2) G {bridge} while col(u,U\)  can be any of the three

001(1/1, 142) =  bridge
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In Case (iv), col(u ,ui) , col(11,112) €  {cross, ou ter}  and ( w i ,m 2) E {cross}.
Since col(u ,u \ ) , co l (u ,U2)  E { c ross ,  o u te r } ,  the edge (u ,u \ )  ((u, u2), respectively) 
lies on at most one triangle. (ui,ii2) E {cross} implies that it lies on no triangle 
so far. It follows that the edge («i,m2) lies on at most one triangle in the graph 
after a reduction is applied to u. It is thus assigned the color outer.  The coloring

Figure 4.4: case (iv):Deg(u) =  2, u\ and « 2 are joined with an edge.

In Case (v), col(u,Ui) ,col (u ,U2)  E { c ross ,  o u te r }  and (ui,u2) E {o u te r } .  

Since col (u ,u \ ) , co l (u ,U2)  E {c ross ,  o u te r } ,  the edge (u ,u \ )  ((u,  u2), respectively) 
lies on at most one triangle, (ui ,  u2) E { o u t e r }  implies that it lies on one triangle. 
It follows that the edge (u\ ,  tt2) lies on two triangles in the graph after a reduction 
is applied to m. It is thus assigned the color bridge. The coloring for the graph 
after the reduction is thus an acceptable coloring (see Figure 4.5).

for the graph after the reduction is thus an acceptable coloring (see Figure 4.4).

c o 1(m i , w2) =  outercross

c o 1(u i , m2) =  outer

Figure 4.5: case (iv):Deg(u) =  2, ux and u2 are joined with an edge.
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In Cases (vi) and (vii), at least one of the three edges (u, u\), (u, 112) and 
(ui,U2 ) is colored bridge. This implies that the edge lies on two triangles so far. 
Since the three edges form a third triangle containing the edge, the edge thus lies 
on three triangles. It follows that the is a subgraph of G that is homeomorphic to 
.^2,3• The coloring for the graph is thus an unacceptable coloring (see Figure 4.6 
and 4.7).

col(«i,U2) =  bridge

Figure 4.6: case (v):Deg(u) — 2, u\ and 
«2 are joined with an edge.

Figure 4.7: case (vi):Deg(u) =  2, U\ 
U2 are joined with an edge.

4.2 Im plem entation

The doubly-linked adjacency list is required to represent the graph. Furthermore, 
cross-pointers are used between adjacency lists in order to saves time when an 
edge is to be deleted from the graph. The deletion of an edge (u, v) (assuming 
Deg(u) < 2) consists two steps: first, find v in AList{u) and remove it. As 
Deg(u) < 2, this step takes 0(1) time. Next, use the cross pointer to locate u in 
AList(v) and remove it. This clearly takes 0(1) time.

Let A = {cross, outer, bridge}, B  =  {cross, outer}, col (a, b) is the color of the 
edge (a, b) in AList, and col'(a,b) is the color of (a, 6)in AList'. Our implemen­
tation is shown in Algorithm 10.

In Step 1, after loading the input graph file, we check if |E | < 2|Vj — 3 is 
satisfied.

In Step 4, each edge in the AList is associated with a color. At the beginning, 
the color is initialized to cross.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Implementation

Algorithm 10 Implementation of Wiegers’ Outerplanar Graph Algorithm
1. if \E\ > 2\V\ — 3 then
2. return false
3. end if
4. for every edge (a, b) E E  do
5. col(a, b)= cross
6 . end for
7. V\Deg(u) < 2};
8. while M ^ 0  do
9. Remove u from M

10. if Deg(u) < 2 then
11. if AList’(/a) 7  ̂0 then
12. MoveEdge(u)
13. else
14. if Deg(rt)=l then
15. Let U\ E AList(u), remove U\ from AList(u)-,
16. Decrement Deg(ui);
17. if (Deg{ui) <  2) then M  <—
18. else
19. if Deg(u) =  2 then
20. Let u-i,U2 E AList(u), delete ult from AList(n);
21. Decrement Deg(u\); Decrement Deg{u2)]
22. if (Deg{u\) < 2) then M  <— M  U {mi};
23. if (Deg\u2j <  2) then M  <— M  U {^2 };
24. Add U] in AList'{u2)\ Add u2 in AList1 (ui);
25. if col(u,ui), col(u,U2 ) E B then
26. col'(ui,U2 ) outer
27. else
28. col'(ui,U2 ) bridge
29. end if
30. end if
31. end if
32. end if
33. end if
34. end while
35. return |£7| =  0
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Algorithm 11 MoveEdge 
Procedure MoveEdge(u)

1. Let u\ G AList'(u), delete U\ from AList’(m)
2. if ui G AList(u) then
3. if col'(u, Ui) =  bridge then
4. return false
5. else
6. if col(u, Ux) = cross then
7. col(u, Mi) <— outer
8. else
9. if col(u,ui) =  outer then

10. col{u,u\ ) <— bridge
11. else
12. if col (u ,Ui) =  bridge then
13. return false
14. end if
15. end if
16. end if
17. end if
18. else
19. Insert u into AList(u\ ); Insert U\ into AList(u); col(u,u\ ) <— col'(u,Ui);
20. end if
21. M  = M  U {u} if Deg(u) < 2;

In Step 7, let M  be the set containing all the vertices with degree 2 or less.

In Step 8 , the while loop will iterate until M  is empty.

In Steps 9 to 11, we select one vertex u from M. If AList'(u) is not empty, 
then Procedure MoveEdge(u) is invoked.

In Steps 14 to 17, when Deg(u) = 1, Deg(u) is reduced to 0 and u\ is removed 
from AList(u) which takes 0(1) time. Using the cross-pointer in the adjacency 
lists, we can locate the vertex u in AList(ui) and remove u from AList(u\) in 
0 (1) time.

In Steps 19 to 28, as Deg(u) =  2, we immediately find the two vertices in 
AList(u) and the colors associated with them. If both col(u, U\) and col(u, u^) 
are cross or outer, then as shown in cases (ii), (iv), (v), (vi), we add (ui, u2) to 
AList' and color it as outer. Otherwise, by case (iii), the edge (ui, u2) is added to 
AList' and colored as bridge. Deg{u) is reduced to 0 and U\, u2 are both deleted
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from AList{u). Finally, vertex u is deleted from both AList(ui) and AIAstiuz). 

In Procedure MoveEdge:

• In Step 1, a vertex Ui is removed from AList1 (it). If (u,u\) £ E, then u\ is 
added to AList{u) and col'(u,Ui)  is assigned to col(u, Uy) .

• In Steps 3 and 4, Case (vii) occurs which implies that the edge coloring is 
unacceptable. The graph is thus non-outerplanar.

• In Steps 6 and 7, Case (iv) occurs which implies that the edge coloring is 
acceptable.

• In Steps 9 and 10, Case (v) occurs which implies that the edge coloring is 
acceptable.

• In Steps 12 and 13, Case (vi) occurs which implies that the edge coloring is 
unacceptable. The graph is thus non-outerplanar.

4.2.1 A n Exam ple

We present an example of the implementation of Wiegers’ outerplanar graph al­
gorithm. We shall use crs, out, brg as the abbreviations of cross edge, outer edge 
and bridge, respectively.

As shown in Figure 4.8, we display the contents of M  and AList. Initially, the 
colors of all the edges are initialized to cross edge and M  consists of the vertices 
with degree 2 or less.

In Figure 4.9, vertex 4 is selected from M. Since Deg(4) =  1, it takes 0(1) 
time to locate vertex 5 in AList(4). Using the cross-pointer, it also takes 0(1) 
time to delete 4 in AList(5). Since Deg(5) =  2, it is added to M.

In Figure 4.10, vertex 5 is selected from M. Vertex 2 is inserted into AList'(Q) 
while vertex 6 is inserted into AList'(2). Since col(2,5) and col(5,6) are both cross,
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2

AList

1 : 2 (crs) 6 (crs)
2 : l(crs) 3(crs)
3 : 2(crs) 6 (crs) 5(crs)
4 : 5(crs)
5 : 4(crs) 6 (crs) 3(crs)
6 : l(crs) 5(crs) 3(crs)

AList’

Figure 4.8: Example of Implementation of Wiegers’ Algorithm: a graph with 6 
vertices

© AList

M

5
2
1

2 (crs) 6 (crs) 
l(crs) 3(crs)
2(crs) 6 (crs) 5(crs)

6 (crs) 3(crs) 
l(crs) 5(crs) 3(crs)

AList’

Figure 4.9: Example of Implementation of Wiegers’ Algorithm: u — 4 

col' (2 , 6) is thus assigned the color outer.

In next step (Figure 4.10), Deg(3) becomes 2. Vertex 6 is removed from 
AList'(3) and AList(3) is search for an occurrence of vertex 6 . Since col(3,6 ) 
is cross, it is changed to outer. Since Deg{3) =  2, vertex 3 is returned to M  
(Figure 4.11).

Since AList! (3) is empty, the two vertices adjacent to 3, namely 2 and 6 , are 
removed from AList(3). Since col(2,3) is cross and col(3,6) is outer, therefore 
col'(2,6) is outer. Furthermore, vertex 2 is inserted into AList1 (6) while vertex 6 

is inserted into AList'(2). (Figure 4.12).

Similarly, vertex 1 is removed from M  and the edge (2, 6) is added as in the 
previous step Figure 4.13.

Now, AList'(2) and AList'(6) are the only two lists that are non-empty. Fur­
thermore, A L is f(2) contains two occurrences of 6 while AList!(6) contains two
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©
M

1
2
6
3

AList AList’

2 (crs) 6 (crs) 
l(crs) 3(crs) 
2 (crs) 6 (crs)

l(crs) 3(crs)

6 (out)

3(out)

© AList
M

1
2
6
3

2 (crs) 6 (crs) 
l(crs) 3(crs) 
2 (crs) 6 (out)

AList’

l(crs) 3(out)

Figure 4.11: Example of Implementation of Wiegers’ Algorithm: u — 3

occurrences of 2. After the first occurrence of 2 and 6 are removed from the two 
lists, a new edge (2,6) is created and is given the color outer. After the second 
occurrence of 2 and 6 are removed from the two lists, as the edge (2 ,6) already 
exists, no new edge (2,6) is created. However, the color of (2,6) is changed to 
bridge (Figure 4.14).

Finally, after the edge (2, 6) is removed, the graph becomes edgeless. The 
input graph G is an outerplanar graph.
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2 (crs) 6 (crs)

l(crs)

AList’

1
2
3
4
5
6

6 (out)

2 (out)

Figure 4.12: Example of Implementation of Wiegers’ Algorithm: u — 3

©  ©  AList

0  ©  _M _  1

0
2

2 3
6 4

5
6

AList’

6 (out) 6 (out)

2 (out) 2 (out)

Figure 4.13: Example of Implementation of Wiegers’ Algorithm: u — 3

0  
©  0  

©  0  
0 2

6

AList

M 1 
2 6 (brg)

2 (brg)

AList’

Figure 4.14: Example of Implementation of Wiegers’ Algorithm: u — 3
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Chapter 5

A  Study of Tsin and Lin’s 
Algorithm

In contrast with the algorithms of Michell and Wiegres, Tsin and Lin’s [50] out- 
erplanar graph algorithm is a DFS-based algorithm. The algorithm performs one 
DFS and does no sorting. During the DFS, the algorithm would abort its execu­
tion and output a ”No” if a subgraph homeomorphic to K 4 or A2)3 is detected; 
otherwise, it would terminate successfully with a ” Yes” output. As with Wiegers’ 
algorithm, this algorithm does not require the input graph to be biconnected.

5.1 Outerplanar algorithm

We shall first explain the idea underlying Tsin and Lin’s algorithm.

A DFS is performed over the input graph to partition the graph into a collec­
tion of edge-disjoint paths such that every path contains exactly one back-edge. 
The paths are ordered using the following lexicographical order.

D efinition 35. [50] Let (q,p), (y,x) be two back edges such that dfs(q) < dfs(p) 
and dfs(y) < dfs(x). Then (q,p) is lexicographically sm a ller  than (y,x), 
denoted by (q,p)~< (y,x), if and only if

(i) dfs(q) < df s(y), or

(ii) dfs(q) =  dfs(y) and dfs(p) < dfs(x) and p is not an ancestor of x, or 

(Hi) dfs(q) = dfs(y) and dfs(p) > dfs(x) and p is a descendant of x.
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For each tree edge (u,parent(u)), we associate it with the back edge (y, x) 
with the smallest lexicographical rank such that a: is a descendant of u and y is 
a proper ancestor of u. In this way, every tree edge is associated with a unique 
back edge. As a result, the edge set E  is partitioned into a collection of subsets 
in which each subset contains exactly one back edge. It is easily verified that all 
the edges in the same subset form a path in G [50]. The following definitions are 
in order.

Definition 36. [50] Pathi is a path consisting of one back edge and all the
tree edges associated with the back edge, where i is the rank of the back edge in 
lexicographical order.

Definition 37. [50] A path is a non-triv ia l path if it contains at least one tree 
edge. Otherwise, it is a triv ia l path.

As there are a total of \E\ — |V| + 1  back-edges, the collection of paths can be 
denoted by {pathi\l < i < \E\ — |F | +  1}, where i is the rank (in lexicographical 
order) of the back edge that determine Pathi. Furthermore, Pathi is always non­
trial and is a cycle. Note that the non-trivial path are not generated explicitly. 
The are generated during the depth-first search.

Definition 38. [50] A back edge (u, v) is an incom ing (outgoing, respectively) 
back edge o fu  (v, respectively) if u is an ancestor ofv.

The algorithm is based on the following new characterization of outerplanar 
graph.

Theorem  7. A graph is outerplanar if and only if all of the following conditions 
hold:

i with the exception of Pathi, the two end points of every non-trivial path are 
connected by a tree edge;

ii for every tree edge, there is at most one non-trivial path terminating at its 
two end points;

iii on every non-trivial path, no two there are two back edges interlace with each 
other.
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Proof: See [50]. □

A violation of either condition (i) or (ii) implies that the graph G contains a 
subgraph that is homeomorphic to while a violation of condition (iii) implies 
that the graph contains a subgraph that is homeomorphic to A4.

The depth-first search starts at an arbitrary vertex r. During the depth-first 
search, the algorithm checks for a violation of any one of the three conditions 
stated in Theorem 7. If a violation is discovered, the algorithm would abort its 
execution immediately and output a ”No” to indicate that the input graph is non- 
outerplanar. Otherwise, it would terminate its execution successfully and output 
a “Yes”. The algorithm maintains the following variables for detecting violation 
of any of the three conditions:

Definition 39. [50] Vw E V , Pathu is the non-trivial path containing the tree 
edge (u,parent(u)), P ath lu is a non-trivial path terminating at u and parent(u).

Definition 40. [50] Vu € V, Zu (Z lu, respectively) is the vertex lying on Pathu 
(Pathlu; respectively) such that (Zu,u ) ((Z lu, u), respectively) is the lexicograph­
ically largest incoming back edge of u.

Definition 41. Vu € V,lowpt(u) = min({dfs(u)}U{lowpt(w)\ui is a child of u}U 
{dfs(s)\(u, s) is an outgoing back-edge ofu});

When a vertex u is the current vertex of the depth-first search, the variables, 
pathu, pathlu, Zu, Z lu, lowpt(u) and dfs(u) (the depth-first search number of u, 
see Chapter 2) are defined for u.

Whenever the depth-first search backtracks from a child vertex, w, of u, if 
Pathu already exists such that its two end-points are not connected by a tree-edge 
and lowpt(w) < df s(parent(u)), then a violation of Condition (i) is detected; if 
Pathlu already exists and lowpt(w) = df s (parent (u)), then a violation of Condi­
tion (ii) is detected.

Whenever an outgoing back edge, (u ,w ), of u is encountered, if dfs(w) < 
lowpt(u) and Pathu is defined, then a violation of Condition (i) is discovered.
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When the depth-first search backtracks from vertex u to its parent, if there 
is a vertex v lying on the path connecting u and Zu (Z lu, respectively) on 
Pathu (Pathlu, respectively) such that v has an outgoing back edge (v,y) and 
dfs(y) < dfs(u). Then a violation of Condition (iii) is detected.

A brief description of Tsin and Lin’s algorithm is presented in Algorithm 12.

A lgorithm  12 Tsin and Lin’s Outerplanar Algorithm [50]
1. if (\E\ > 2\V\ — 3) then
2 . Output ” No”
3. end if;
4. count 1; com m ent: /* Initialize the counter for dfs number */
5. Outerplanar-testing(l, null, _L); com m ent: /*start DFS from vertex 1 */

5.2 An Example of Tsin and Lin’s Outerplanar 
Algorithm

Figure 2.1 shows the depth-first search spanning tree created by a depth-first 
search. The number if the circles representing the vertices are the depth-first 
search numbers.

Figure 5.1: a DFS spanning tree of the graph in Figure 2.1

Figures 5.2, 5.4, 5.5, 5.6 depict the non-trivial paths Pi, P3 , P4 and Pj, re­
spectively. Note that P\ is a cycle. When the depth-first search backtracks from
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Figure 5.2: non-trivial path

ii
Figure 5.3: triv­
ial path P‘i Figure 5.4: non-trivial

path P3

P i

Figure 5.6: non-trivial 
Figure 5.5: non-trivial path P4 path P5

vertex 6 to vertex 4, since lowpt(4) =  1 and lowpt(Q) = dfs(parent(4)), no vio­
lation of any condition is detected. When the depth-first search backtracks from 
vertex 8 to vertex 7, since lowpt(7) =  2 and lowpt(8) = dfs{parent(7)), again 
no violation of any condition is detected. When the depth-first search backtracks 
from vertex 7 to vertex 3, since lowpt(3) =  1 and lowpt(7) =  dfs(parent(3)), 
again no violation of any condition is detected. At vertex 2 , neither the back edge 
(2,4) nor the back edge (2,10) creates a situation that violates Condition (iii). 
The depth-first search thus terminates at the root 1 reporting that the graph is 
outerplanar.

During the DFS, whenever there is a non-trivial path whose terminating ver­
tices are u and parent(u), for some u E V, the algorithm would mark this tree 
edge. If any tree edge is marked twice, then Condition (ii) is violated and the 
given graph is non-outerplanar. In the given example, this case does not happen.
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5.3 Im plem entation

Tsin and Lin’s algorithm is based on depth-first search which it is easy to im­
plement, We shall thus refrain from explaining its implementation in this thesis. 
However, we shall remark that in our implementation, we did notice that recur­
sive calls induced substantial run-time overhead. We thus replaced the recursive 
calls with iterations by explicitly maintaining the run-time stack that stores the 
current vertices of the depth-first search.
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Procedure Outerplanar-testing(u, Pathu,v ) 
dfs(u) <— count; count <— count +  1; lowpt(u) «— dfs(u); alertu <— false; 
Pathu.type <— trivial; Pathu <— n; ■*— it; P ath lu <— it; Z l„ 4— it; 
for each ic in the adjacency list of it do 

if in is unvisited then
if both Pathu and P ath lu have been found then return(false); 
Outerplanar-testing(iy, Pathw, u); 
if (lowpt(w) < lowpt(u)) then 

if Pathu is non-trivial then 
if the end points of Pathu are not connected by a tree edge then 

return(false); 
else

P a th lu  P a th u; Z l u <— Zu; /* update P a th lu and Z lu */ 
end if 

else
Label Pathu as non-trivial;
if ((Pathw terminates at u and parent(u))) then mark the tree edge 
(•u,parent(u));
Pathu ■*- u || Pathw; Zu <— u; lowpt(u) <— lowpt(w)
/* || represents the concatenation operator for sequences */ 

end if 
else

if (lowpt(w) > lowpt(u)) then
if (tree edge (u,parent(u)) has been marked) V ( the two end points 
of Pathw are not connected by a tree edge ) then 

return(false) 
end if
mark the tree edge (u,parent(u)); Pathlu •*— u || Pathw; Z lu <— u; 

else
if (Pathu is non-trivial) then

if ( v is not the root V tree edge (u, parent(u)) has been marked) 
then

return(false)
else

mark the tree edge (u,parent(u)); Pathlu <— u || Pathw 
end if 

else
Pathu <— u II P a th w; Z u 4— u; Label P a th u as non-trivial; 

end if 
end if 

end if 
else 

backEdge(u, w); 
end if 

end for
if (Zu /  u) then bTest(Pathu,Z u) 
if (Z lu ^  it) then bTest(Pathlu, Z lu);
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Procedure bTest(Path, Z) 
if ( 3v connecting vertices u and Z  on the path Path such that v has an outgoing 
back edge (y, v) and dfs(y) < dfs(u)) then 
return(false)

Procedure backEdge(u, w) 
if (w,u) is an outgoing back edge of u then  

if (dfs(w) < lowpt(u)) then  
if Pathu is non-trivial then

if Pathu is not terminating at u and parent(u) then 
return(false) 

end if
Label Pathu as trivial;
P ath lu Pathu; Z lu <— Zu\ Pathu <— u; Zu <— u

end if
lowpt(u) <— dfs(w ) 

end if 
else

if ((w, u) is an incoming back edge of u) then 
if w lies on Pathu then  

if (dfs(w) > dfs(Zu)) then Zu <— w\ 
else

if w lies on P ath lu then  
if (dfs(w ) > d fs(Z lu)) then Z lu <— w; 

end if 
end if 

end if 
end if
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Chapter 6 

Experim ents

We selected Mitchell’s, Wiegers’, Tsin and Lin’s algorithms to implement and 
compare their behaviors using a total of 175 randomly generated graphs.

6.1 Experim ental D ata

6.1.1 T he Input Graphs

In generating the input graphs, we take the following factors into consideration:

• Since all of the three algorithms terminates immediately if the input graph 
satisfies \E\ > 2\V\ — 3, therefore it is worth nothing to include those graphs 
in our experiment.

• Since Mitchell’s algorithm only accepts biconnected graphs, all the input 
graphs generated are biconnected graphs.

• \V\ and \E\ are randomly generated. The possibility of an edge connecting 
two vertices is independent of the vertices themselves.

We randomly generated 175 simple graphs (graphs without self-loops and par­
allel edges). The 175 graphs consists of 85 non-outerplanar graphs and 90 out­
erplanar graphs. The number of vertices of the graphs ranges from 25,748 to 
1,922,064, and the number of edges ranges from 25,926 to 3,799,671. Although it 
is desirable to generate more random graphs for our experiment, the performances 
of the three algorithms depicted in Figures 6.1, 6.2 and 6.3 clearly show the trend 
of the performance of each algorithm. Increasing the number of random graphs 
will not change the trends.
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Biconnected Graphs

The algorithm for generating a random biconnected Graph G =  (V, E) is shown 
in Algorithm 13.

A lgorithm  13 Random biconnected Graphs 
Randomly generate \V\. Let V  =  {1,2,..., |F|};
Connect 1 and 2, 2 and 3,..., |V| — 1 and |V|, |Vj and 1; 
Randomly generate |JE7| such that |Vj < \E\ < (2|Vj — 3); 
for i =  \V\ to |£j do 

repeat
Randomly select two vertices a, 6; 

un til an edge (a, b) has not been created before;
Add edge (a, b) into the graph 

end for

The G raph  File

An adjacency list is used to represent the graph generated by Algorithm 13. The 
number of vertices and the number of edges are randomly generated. Each graph 
is stored in a binary file and is made up of three parts: the number of vertices, 
the number of edges and the edges denoted by two end vertices. The total size of 
graph files is around 2.85 Gbytes.

6.1.2 E xperim ental R esults

We have conducted all the tests on operating system Fedora Core 4 which runs 
on Intel Pentium 4 2.60 Ghz processors and 512 Mbyte Memory. The programs 
are written in C. The execution time is reported in seconds, which is the user 
program CPU time, not including system CPU time. The performances of the 
algorithm are shown in the following figures.

In Figure 6.1, the performances of three algorithms on all the graphs are shown. 
Tsin and Lin’s algorithm clearly has the best performance. The performances of 
Mitchell’s and Wiegers’ algorithms are close. However, when the number of edges 
goes beyong 1 million, Wiegers’ algorithm begins to outperform that of Mitchel’s.

In Figures 6.2 and 6.3, the performances of the three algorithms for outer­
planar graphs and non-outerplanar graphs, respectively, are shown. For both
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Mitchell 
Wiegers 
Tsin etal.

o

Number of Edges

Figure 6.1: The performances of the three algorithms on all graphs, as a function 
of the graph size

groups of graphs, Tsin and Lin’s algorithm has the best performance, especially 
for graphs with large edge sizes, the difference becomes more apparent. As shown 
in Figure 6.3, the performance of Mitchell’s algorithm does not differ much with 
Wieger’s when the input graph is non-outerplanar and has fewer than 2 million 
edges. However, when the edge size goes beyond 2 millions, Mitchell’s algorithm 
has a better performance. On the other hand, for outerplanar graphs, Mitchell’s 
algorithm is always the worst one (Figure 6.2).

6.2 Discussion

Tsin and Lin’s algorithm is definitely the most efficient one in all cases. Be­
tween Mitchell’s algorithm and Wiegers’ algorithm, while Mitchell’s has a better 
performance for non-outerplanar graphs, Wiegers’ has a better perfomance for 
outerplanar graphs. This can be explained as follows: the bucket-sort used in
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Figure 6.2: The performances of the three algorithms on Outerplanar Graphs, as 
a function of the graph size

Mitchell’s algorithm is extremely time-consuming for larger input sizes. In dealing 
with non-outerplanar graphs, Mitchell’s algorithm could terminate before doing 
bucket-sort. This allows it avoids doing the time-consuming sorting. For outer­
planar graphs, bucket-sorting is an unavoidable step in Mitchell’s algorithm.
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6.2 Discussion

Mitchell 
Wiegers 
Tsin et al.

CO

00 CO

Number of Edges

Figure 6.3: The performances of the three algorithms on non-Outerplanar Graphs, 
as a function of the graph size
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Chapter 7 

Embedding of Outerplanar 
Graphs

Once a graph is determined to be outerplaner, it is important to generate an 
outerplanar embedding for it. Of the three algorithms we have investigated, only 
Tsin et al. generates an outerplanar embedding in linear time and space. In this 
chapter, we shall modify Mitchell’s algorithm so that it will generate an embed­
ding for outerplanar input graph in linear time and space.

7.1 A M odified M itchell’s Algorithm  for Outer­
planar Embedding

We shall modify Mitchell’s outerplanar algorithm so as to generate an outerpla­
nar embedding for the input graph if the graph is outerplanar. The outerplanar 
embedding is represented by a sequence of the vertices along the boundary of the 
exterior face. The sequence is stored in a doubly-linked list OuterList{u). Note 
that the two vertices preceding and following a vertex in the linked list are the 
two vertices adjacent to the vertex on the boundary of the exterior face.

We shall first briefly explain the idea underlying our modification.

Initially, all the vertices of degree two are inserted into a queue rather than a 
stack. We shall continue using L IS T  to represent the queue. The reason of using 
a queue is that all the vertices that are of degree two initially have both incident 
edges lying on the boundary of the exterior face and hence should be dealt with
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7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

first. To determine the boundary of the exterior face, it suffices to determine, for 
each vertex u, the two vertices (or two edges) on the boundary that are adjacent 
(or incident) to u. They are determined when the vertex u is removed from the 
queue LIST .

When a vertex u is removed from L IST , it is of degree 2 and hence must have 
exactly two incident edges (u,v) and (u,w ), for some v,w  € V. We must deter­
mine if any of the two edges belongs to the boundary of the exterior face. Our 
method is to mark all the edges that do not lie on the boundary of the exterior 
face. These are exactly those edges that either are new edges added to the graph 
or appeared as (NEAR, N E X T ) in the course of executing the algorithm. As a 
result, we modify Mitchell’s algorithm to mark these edge when they are created 
or encountered. The modified Mitchell’s algorithm is presented as Algorithm 14. 
The new instructions are in bold-italic font. Some explanations are in order:

On Line 13, whenever a vertex of degree two is removed, Algorithm AddEdgeto- 
Boundary is called to include its unmarked incident edges to the linked list rep­
resenting the boundary of the exterior face.

In Procedure ChkAdj, a and b are the two vertices adjacent to the most re­
cently removed vertex. The edge connecting them cannot be an edge on the 
boundary of the exterior face and must thus be marked. Therefore, Procedure 
ChkAdj is modified as follows: If a and b are not connected by an edge, then 
an edge (a, b) is added to the graph and the edge is marked at both end points 
indicating that it is not an edge on the boundary. On the other hand, suppose 
a and b are connected by an edge. Then the white b in the adjacency list of a is 
marked. Moreover, if \LIST\ = 2, then the white a in the adjacency list of b can 
be marked immediately. Otherwise, a red a is added to the adjacency list of b. 
This is to ensure that when the degree of vertex b is reduced to 2 and vertex b 
is removed from L IST , the red a will lead to the marking of edge (a, b) at vertex b.

When the adjacency list of a is scanned, every red vertex v in the list corre­
sponds to an edge (a,v) that is not on the boundary and must thus marked at 
both end-points. If the edge (a,v) does not exist, then it is created by calling 
Procedure AddWhite(a,v) in which the edge is marked at both end points a and 
v. If the edge does exist, then it is marked at a. The edge will be marked at v 
later on when the adjacent list of v is scanned and a red a is encountered.
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7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

In Procedure Add White, whenever a new edge is added, the edge is marked at 
both end points to indicate that it does not lie on the boundary of the exterior face.

Procedure AddEdgetoBoundary adds unmarked edges incident to the vertex u 
(the most recent vertex removed from L IST)  to the linked list representing the 
boundary of the exterior face.
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7.1 A Modified Mitchell’s Algorithm for Outerplanar Embedding

A lgorithm  14 Modified Mitchell’s Outerplanar Algorithm
1. if ( |£ | < 2\V\ -  3) then
2. Output ” No”
3. end if;
4. L IS T  <- {v\Deg[v} =  2}; P A IR S  *- 0;
5. if (\LIST\ < 2) then
6. Output ” No”
7. end if;
8. for L = 1 to  \V\ — 2 do
9. N O D E *- front (LIST)]

N E A R , N E X T  <— the two vertices adjacent to NODE',
10. Add (NEAR, N E X T ) to list PAIRS;
11. Remove N O D E  from the graph;
12. Decrement Deg(NEAR) and Deg(NEXT);
13. A ddE dgetoB oundary(N O D E , N E AR , N E X T );
14. if (Deg(NEAR) < 2) th en
15. ChkAdj (NEAR, N E X T );
16. end if;
17. if (D eg(NEXT) < 2) then
18. ChkAdj (N E X T , NEAR);
19. end if;
20. if (Deg(NEAR) > 2) A (Deg(NEXT) > 2) then
21 . AddRed(NEXT, NEAR);
22. end if;
23. if (Deg(NEAR) < 2) th en  Add N E A R  to the end of LIST;
24. if (D eg(NEXT) < 2) th en  Add N E X T  to the end of LIST;
25. if (\LIST\ - L  < 2) th en
26. Output ”No”
27. end if
28. end for;
29. Add the edge (NEAR, N E X T )  to EDGES;
30. Lexicographically sort EDGES;
31. Lexicographically sort PAIRS;
32. if there is an edge in P A IR S  and not in ED G ES  then
33. Output ”No”
34. else
35. Output ”Yes”
36. end if
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7.1 A Modified Mitchell's Algorithm for Outerplanar Embedding

A lgorithm  15 Check the adjacency list of vertex a for vertex b 
P rocedure  ChkAdj (a,b) 

if (there is no b colored white in the adjacency list of a) then  
AddWhite(a, b) 

else
m ark the white vertex  b; 
if (\LIST\ > 2) th en

add an a to the adjacency list o f b; color the a red; 
else

m ark the white vertex a in  the adjacency list o f  b; 
end if 

end if ;
for (each vertex v in the adjacency list of a) do 

if (Deg[v\ — 0) th en  Remove v from the list; 
else if (v is red) then

if (^ another v colored white in the list) then  
RemoveRed((a, v));
AddWhite(a, v); 

else RemoveRed(a,v);
m ark the white v;

A lgorithm  16 Add White vertex 
P rocedure  AddWhite(a,b)

Add the edge (a,b) to list EDGES;
Add a with white color to the end of the adjacency list of b; m ark the a; 
Add b with white color to the end of the adjacency list of a; m ark the b; 
Increment(Deg(a)); Increment(Deg(b));
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7.2 Proof of Correctness

A lgorithm  17 AddEdgetoBoundary (u,v,w);
Com m ent: Add the edges (v,u) and (it,iu) to the boundary 
if (v in the adjacency list of it is unmarked) then  

Add v to OuterList(u)-, Add u to OuterList(v)\ 
end if ;
if (w in the adjacency list of u is unmarked) then  

Add w to Outer List(u): Add u to Outer Li st(w)\ 
end if

7.2 Proof of Correctness

Theorem  8. Let G =  (V ,E ) be a connected biconnected graph such that \V\ > 2 . 
Then Vit G V, Deg(u) > 2.

Proof: Suppose to the contrary that 3u G V  such that Deg(u) < 2. Then 
Deg(u) =  0 or Deg(u) =  1. In the former case, G is disconnected. In the latter 
case, the vertex adjacent to it is a cut-vertex which implies that the graph G is 
not biconnected. In either case, we have a contradiction. □

Theorem  9. Let G =  (V, E) be a biconnected outerplanar graph. Let u G V such 
that Deg(u) =  2 and v and w be the two vertices adjacent to u. Then the edges 
(i>,u) and (u ,w ) lie on the boundary of the exterior face.

Proof: For every vertex u in an outerplanar graph, there exist two adjacent ver­
tices of u on the exterior face. Since Deg(u) =  2, the edges (v, u) and (u, w) are 
the only two edges incident to u. They must thus lie on the boundary of the 
exterior face. □

Theorem  10. Let ube a vertex removed from LIST and (it, v) be an edge incident 
on it. The edge (u,v) is marked if and only if it does not lie on the boundary of 
the exterior face.

Proof: First, note that all the edges are unmarked initially.
Suppose the edge (it, v) lies on the boundary of the exterior face. If Deg(u) — 2 

originally, then vertex it is put into the queue L IS T  at the beginning of the 
execution of the algorithm. Therefore, when vertex u is removed from L IS T , the 
edge (it, v) remains as unmarked. If Deg(u) > 2 originally, then as only those 
edges that have appeared as (NEAR, N E X T ) during execution are marked, the 
edge (u, v) will never be marked as it will never appear as (NEAR, N E X T ) owing 
to the biconnectivity of the graph.
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7.3 An Example

Suppose the edge (u, v) does not lie on the boundary of the exterior face. If 
(u, v) is created during execution, then it is marked immediately after its creation 
or is marked when the adjacency list of one of u or v is scanned at a later stage. 
On the other hand, if it exists in the original input graph, then it is marked ei­
ther when it appears as the edge (NEAR, N E X T )  or at a later stage when the 
adjacency list of one of u or u is scanned. □

Theorem  11. The modified Mitchell’s Outerplanar algorithm correctly deter­
mines the boundary of the exterior face of an outerplanar graph.

Proof. Immediate from Theorems 8 , 9, 1 0 . D

Theorem  12. The modified Mitchell’s Outerplanar algorithm takes 0(|V j) time 
and space to determine the boundary of the exterior face of an outerplanar graph.

Proof: The new instructions increase the time and space complexity by a con­
stant factor only. The theorem thus follows. □

7.3 An Example

In this section, we give an example on how the modified Mitchell’s Outerplanar 
algorithm produces an Outerplanar embedding for the graph in Figure 7.1.

OuterList Adjacency List

1
2
_3

5
6

LIST

5
4
1

: 2 6
2 : 1 6 3
3 : 2 4 6
■4 : 3 5
5 : 4 6
6 : 1 2 5 3

Figure 7.1: Example of OuterPlanar Embedding (Mitchell’s Algorithm)

In Figure 7.1, the vertices 1, 4 and 5 are inserted into L IS T  as these are the 
vertices that are of degree 2.
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7.3 An Example

List

: 2 6 
: 1 6 3 
: 2 4 6 
: 3 6*
: 1 2 3 4*

Figure 7.2: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after 
removal of vertex 5

In the next step, the vertex 5 is removed from L IS T  Figure 7.2. The two ad­
jacent vertices of 5, namely 4 and 6, are already stored in OuterList{h). Vertices 
4 and 6 are the two adjacent vertices of vertex 5. Since Deg(4) =  2, AList(4) is 
examined. As the list does not contain a vertex 6, a marked vertex 6 is thus added 
at the end of AList(4) while a marked vertex 4 is added to the end of AList(6 ).

OuterList

OuterList
Adjacency List

C l 

(Tj

Figure 7.3: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after 
removal of vertex 4

In Figure 7.3, the removal of vertex 4 is similar to that of vertex 5. Vertex 6 
in AList(3) is marked and a vertex 3 with red color is added to AList(6). Since 
Deg{3) =  2, vertex 3 is inserted into LIST.

1 : LIST
2 1 : 2 6
3 : 4 1 2 : 1 3 6
4 : 3 5 3 3 : 2 6*
5 : 4 6 6 • 3red, 1
6 : 5

Next, vertex 1 is removed from LIST . Vertices 2 and 6 are marked in AList(6 ) 
and AList{2), respectively. As Deg(2 ) =  2 and Deg{6) =  2, vertices 2 and 6 are 
inserted into L IST . Furthermore, the vertex 3 with red color is removed from 
AList(6 ) and the white vertex 3 in AList(6) is marked (Figure 7.4).

In the last step (Figure 7.5), vertex 3 is removed from L IST . AList(3) is 
scanned and the unmarked vertex 2 is encountered. So vertex 2 is added to 
Outer L ist(3) while vertex 3 is added to OuterList(2).
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7.3 An Example

OuterList

1 : 2 6
2 : 1
3 : 4
4 : 3 5
5 : 4 6
6 : 5 1

LIST Adjacency List

3 2 : 3 6*
2 : 2 6*
6 6 : 2* 3*

Figure 7.4: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after 
removal of vertex 1

OuterList

©

©

2 6 
1 3
4 2 
35 
4 6
5 1

LIST

2
6

Adjacency List

6*

2*

Figure 7.5: Example of OuterPlanar Embedding (Mitchell’s Algorithm): after 
removal of vertex 3

Now, Vu € G, OuterList(u) are determined. An outerplanar embedding of 
the input graph is thus constructed.
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7.4 A Modified Wiegers’s Algorithm for Outerplanar Embedding

7.4 A M odified W iegers’s Algorithm  for Outer­
planar Embedding

The modification for Wiegers’ algorithm is quite simple. First, the input graph 
is decomposed into biconnected components. Next, an outplaner embedding for 
each of the biconnected components is determined. Finally, the outerplanar em­
beddings are joint at the cut-vertices to produce an outerplanar embedding for 
the input graph.

It remains to explain how to produce an outerplanar embedding for a bicon­
nected graph.

In Wiegers’ algorithm, edges are initially colored as cross edges. Therefore, 
if an edge is colored cross when it is removed from the graph, it must lie on the 
boundary of the exterior face.

An edge is colored outer if it is created during execution or it is converted 
from a cross edge. In the former case, it clearly cannot lie on the boundary of the 
exterior face. In the latter case, it cannot lie on the boundary of the exterior face 
unless it is the last edge left in the graph.

Since the graph is biconnected, an edge is colored bridge implies that it lies 
on two triangles. Therefore it cannot lie on the boundary of the exterior face.

The modification is clearly straight-forward and the resulting algorithm clearly 
takes linear time and space. The details are thus omitted.
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Chapter 8 

Conclusions

In this thesis, we presented the implementation of Mitchell’s, Wiegers’, Tsin and 
Lin’s outerplanar graph algorithms. Mitchell’s algorithm is based on a transforma­
tion of her maximal outerplanar graph algorithm. However, she only gave a brief 
description of the transformation and omitted many crucial details. Wiegers’ algo­
rithm briefly describes a 2—reducible graph testing method and an edge-coloring 
technique, but did not point out how to implement them in linear time and space. 
We filled in all these non-trivial omitted details to clearly demonstrate how to 
implement them in linear time.

To the best of our knowledge, this is the first time a comparative study of the 
performances of outerplanar graph algorithms is carried out. The input graphs are 
randomly generated. The size of the input graph ranges from 25 thousands to 3.8 
millions. Our experimental result shows that: Tsin and Lin’s algorithm has the 
best performance among the three algorithms. Between Mitchell’s and Wiegers’ 
algorithms, Mitchell’s has a better performance for non-outerplanar graphs while 
Wiegers’ has a better performance for outerplanar graphs.

With the exception of Tsin and Lin’s algorithm, Mitchell’s and Wiegers’ al­
gorithms do not generate an outerplanar embedding if the input graph is indeed 
outerplanar. We presented a modification for each of the two algorithms so that 
an outerplanar embedding will be produced if the input graph is outerplanar. Cor­
rectness proofs of the modifications are presented. The complexity of the modified 
algorithms remain linear in both time and space.

It would be interesting to implement the outerplanar embedding algorithm of 
the aforementioned algorithms so that we could have better visualization of the
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input graph if it is outerplanar. This could be our future research.
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