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A b stra c t

This thesis is concerned with the identification of the extreme points of a 

given finite set of points denoted by S. In Jibrin, Boneh and Caron[19] the 

authors explored the advantage of using probabilistic methods applied to the 

polar dual of S  to quickly detect some extreme points. This thesis builds on 

those results with the introduction of a polynomial time procedure that uses 

the detected extreme points to eliminate redundant points.
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Chapter 1

Introduction

1.1 O verview  and O utline o f Thesis

This thesis builds on the results in Jibrin, Boneh and Caron [19] for the identifi

cation of the extreme points of the convex hull of a finite subset S  = {p\ . . .  pn} 

of Rd. The extreme point identification problem is to determine the small

est subset S  of S  such that the convex hulls of S  and S  are the same. The 

results in [19] are based on the fact that a point pk 6  S  is extreme if and 

only if the inequality p jy  < 1 is necessary with respect to the representation 

{ y G Rd | p jy  < 1, Vpi G S}  of the polar dual S* of S. Thus, S  can be found by 

classifying the inequalities in the representation as necessary or redundant; and 

since this can be done with linear programming, the extreme point identification 

problem is polynomial.

In [19] the authors show the advantage of using a probabilistic hit-and-run 

algorithm applied to the polar dual for the quick identification of extreme points. 

They also show how redundancy, i.e., points in S  \  S  can be detected. In 

Chapter 2 we present the work in [19] in detail and we explore the strengths

1
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and weaknesses and offer improvement. In Chapter 3 we show how some of the 

assumptions in [19] can be relaxed. In Chapter 4 we propose a new preprocessor 

for removing points in S  \  S  that requires polynomial time in the worst case 

and scales to spaces of arbitrary dimension. Experimental results are given in 

Chapter 5.

1.2 N otation  and D efinitions

We adopt the notation and definitions of [15]. Let A  be a subset of Rd, K  be a 

convex subset of Rd and S' be a finite subset of Wl. We denote the cardinality 

of a finite set S  by 151.

D efin ition  1.2.1 (Interior). We call a € A an interior point if  we can find 

e > 0 such that if  \a — b\ < t then b € A.

We call the collection of all interior points of a set A  the interior of A  and 

denote it int(A).

D efin ition  1.2.2 (Affine Independence). We say a set { p i,. . .  ,pk} is affinely 

independent i f  0 =  X i  KPi and 0 — X a X implies A,: =  0 for all i.

If a set is not affinely independent it is affinely dependent.

D efin ition  1.2.3 (Convex Set). We say that K  C Rrf is a convex set if  for all 

distinct x and y in K  the closed line segment with endpoints x and y is contained 

in K. Equivalently for all distinct x and y in K, Xx +  (1 — A)y is in K  for A in 

[0 , 1 ] •

2
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D efin ition  1.2.4 (Convex Sum). Given a finite set S  we say a summation of 

these vectors is a convex sum if all coefficients are greater than or equal to 0  

sum to 1 .

D efin ition  1.2.5 (Convex Hull). The convex hull of A  C  M.d is the intersection 

of all convex subsets o fR d that contain A. We denote the convex hull of A as 

conv(A).

Lem m a 1.2.1. The convex hull of A  C  Rd is convex.

Proof. Let x, y E  conv(A) and x  ^  y. Any convex set K  containing A  also 

contains x  and y  and hence contains the closed line segment with endpoints x  

and y. Therefore, conv(A) contains the closed line segment with endpoints x  

and y  and is hence convex. □

Lem m a 1 .2 .2 . The convex hull of a finite set S  is bounded.

Proof. Let S  = {p i-.-P k}  C  Rd. Let m int = m inj{(pj)i} and maxi = 

m axj{(pj)i}  for each i E { l . . .d } .  The set [m in\,m axi\ x [mm2 ,m ax2] x 

. . .  x [mind, maxd] is a bounded convex set containing S  and hence it contains 

conv(5). □

D efin ition  1.2.6 (Full Dimensional Set). We say a subset A of M.d has full 

dimension if the interior of conv(A) is not empty.

D efin ition  1.2.7 (Extreme Point). Let K  be a convex subset of Rd we call 

x E  K  an extreme point of K  if  x does not lie on the interior of any line 

segment contained in K. That is if  x = Xy +  (1 — A)z with y and z in K  and 

0 < A < 1 then x  = y — z.

3
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We use an over set caret to denote the set of extreme points of the convex 

hull of a set. For example A  is the set of extreme points of conv(A). We denote 

the cardinality of A  by h.

An immediate result of this definition is tha t every element of S  is also an 

element of S. Indeed, the set of convex sums of elements of S' is a convex set 

containing S  and hence conv(S'). Hence any element of S  is either a non trivial 

convex sum of elements of S, a contradiction; or an element of S  itself.

D efin ition  1.2.8 (Chord of a Convex Hull). Let x  and y be distinct extreme 

points of conv(S), we call the line segment xy  a chord of the convex hull of S.

1.2.1 P o ly to p es

In this section, we introduce the concept of a polytope along with related defi

nitions and results. We conclude the section by showing that any polytope with 

non empty interior can be translated to contain the origin.

D efin ition  1.2.9 (Polyhedral Set). The set A  C R d is a polyhedral set i f  A  is 

the intersection of a finite family of closed halfspaces of Rd.

D efin ition  1.2.10 (Polytope). A polytope is the convex hull of a finite set of 

points inM.d.

Equivalently a polytope is a bounded polyhedral set[15].

D efin ition  1.2.11 (Halfspaces defined by a (d-l)-hyperplane). Let H  = {x  <E 

W! | aTx  =  b} be a (d-1)-hyperplane. The half spaces defined by H  are 

=  {x  e  Rd | aTx  < 6 } and H + =  { i £  Rd | aTx > b}.

4
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D efin ition  1 .2 . 1 2  (Distance Between H and A). Let H  be a hyperplane and A  

be a subset o/3Rd, the distance between H  and A  is inf{|fi — a| | h € H, a € A}.

D efin ition  1.2.13 (Supporting Hyperplane). We call H a supporting hyper

plane of A  C W1 i f  the distance from, H  to A  is zero and A  is contained entirely 

in one of the closed half spaces defined by H.

D efin ition  1.2.14 (Face). Let K  be a convex subset of Mf  and F  C K.  We 

call F  a face of K  if F  = 0 or F  — K  or there exists a supporting hyperplane H  

of K  such that F  — H  fl K .

D efin ition  1.2.15 (Dimension of a Face). We say a face F  has dimension k if  

there are k +  1 affinely independent points in F  but any set of k F  2 points in 

F  are affinely dependent.

We adopt the notation k-face  for a face of dimension k.

D efin ition  1.2.16 (Edge). Let K  be a polytope and F be a 1 -face of K, we call 

F an edge of K.

D efin ition  1.2.17 (Facet). Let K  be a polytope of dimension d and F  be a 

maximal proper face (a (d-1) -face) of K, we call F a facet of K.

Lem m a 1.2.3. The polytope defined by a set S  is the same as the polytope 

defined by S , the extreme points of conv(S'). That is conv(S') =  conv(S').

Proof. W ithout loss of generality we assume |S| > 0. By definition 1.2.7 

conv(S') D S  thus by definition 1.2.5 conv(S') D conv(S). We now show that 

conv(S') D conv(S). The set S  is finite thus the convex hull must be bounded. 

We proceed via induction on the dimension of conv(S').

5
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If d = —1,0,1 the result is trivial. We assume the result holds for sets with 

dimension d < 5—1 and consider a set S  with the dimension of conv(5') =  5. Let

x  6  conv(S'). If a; is contained in a proper face F  of conv(S') then the inductive 

hypothesis yields an expression of x  in terms of the extreme points of F, and 

hence in terms of the extreme points of S. Now suppose x  is an interior point. 

We select another distinct point x  € conv(S'), these two points define a line 

passing through the interior of conv(S’) that must intersect the boundary at 2  

distinct proper faces of conv(S), say Fi = conv(5)fli?i and F2 =  coiw (S)nH 2 at 

points x i and x 2 respectively. We observe x = A.ti +  (1—A).t2 for some A € (0,1). 

The dimensions of F\ and F2 are each less than S so by the inductive hypothesis

xi and x 2 are elements of conv(S fi H\) and conv(5 fl H2) respectively. Thus 

x  e  conv(S n  H iU S  Pi H2) C conv(S') and hence conv(5) D conv(S’). Therefore, 

conv(5) =  conv(S'). □

D efin ition  1.2.18 (Barycentre). The barycentre o f S  is B s — nP'1 •

T h eo rem  1.2.1. I f  S is full dimensional its barycentre is in the interior of 

conv(S).

Proof, by definition 1.2.18, the barycentre B s is in conv(S'). W ithout loss of 

generality we assume B$ = 0 as we can translate S  by —B s  otherwise. We now 

show that it is in the interior. Consider otherwise, that is 0 lies on a facet F  

of conv(S') with supporting hyperplane H. As H  is a supporting hyperplane 

conv(S) lies entirely in one of the halfspaces it defines, say H+. Let v be a 

vector normal to H  and pointing into H+. This means that for all x  e  H  n  S,
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S  has full dimension thus vJ Bs  =  Yhxe s \x  •> contradicting the fact

that the barycentre was 0. Therefore, Bs does not lie on a facet and is hence 

in the interior of conv(S'). □

1.2.2 T he  P o la r D ual

The extreme point identification method of Jibrin, Boneh and Caron is based 

upon the concept of the polar dual of a convex set.

D efin ition  1.2.19 (The Polar Dual). The polar dual A* of a set A  C  M.d is 

{x € Md | pTx  < l,Vp € A}.

<

(-1,0)

Y

(0,1)
1

J1.0) X• w

(>(0,-1)

Y

y<l
....; > r J ,

-X<1 X<1

-ysl

(a) (b)

Figure 1.1: An Example Polar Dual

E xam ple  1.2.1 (A Polar Dual). In Figure 1.1 (a) the members of the set 

S  =  {(1,0)T, (0 ,1)T, (—1,0)T, (0, — 1)T} in M2 are plotted. In Figure 1.1 (b) we 

have S* with the interior shaded and the constraint corresponding to pi labeled 

with the inequality (x , y ) r pi < 1 for each pi in S.

We now introduce some key properties of the Polar Dual.
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L em m a 1.2.4. Let A  C Md then A* is bounded if and only if  0 e  int(conv(H)).

Proof. Let 0 E int(conv(H)). By definition 1.2.1 there exists c such that \b\ < 

2e => b € conv(i4). Let E  — {eaVi \ a E {1, -1 } , (K); =  1, (Vf)j =  0 if 

j  7  ̂ i\/i E { 1 , . . . ,  d}}. By the selection of e we have E  C  A  and hence A* C  E* 

because the set of constraints defining E* is a subset of the constraints defining 

A*. However by the construction of E  we have that E* is bounded and hence 

A* is bounded. Indeed, for any x E E* and i E 1 .. .d  we have ext < 1 and 

—exi < 1 and hence Xi E [“ , 7 ]- Thus x e [ ~ .  and A* is bounded.

Suppose 0 int(conv(yl)). If 0 is on the boundary of conv(H) set v to be 

a vector normal to a supporting hyperplane of conv(H) passing through 0. If 

0 (f conv(H) consider the supporting hyperplane H  of conv(H) nearest 0 and 

set v to a normal vector of H.  Such supporting hyperplanes are guaranteed 

to exist[15]. The selection of v guarantees v 0 and conv(yl) is a subset 

of either vr x  <  0  or —vTx < 0, in the second case we negate v. We have 

vTx < 0 Vx € conv(yl), so 0 +  av E  A* Vo: > 0 hence A* is unbounded. 

Therefore, A* is bounded implies 0 E int(conv(H)).

Therefore, K  C Md then A* is bounded if and only if 0 E int(conv(H)). □

This result allows us to find for any point set in Mfi with full dimensional 

convex hull a translation with a bounded polar dual. We now show that such a 

translation must exist.

L em m a 1.2.5. Let S  C Md and int(conv(5)) ^  0 then there exists a translation 

of S, S ' with 0 E int(conv(S")).
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Proof. We have that m ^com^S1)) is non empty so it contains a point b. Let 

S' = { a \ a  + b e  S}  then 0 € int(conv(S")). □

L em m a 1.2.6. There are no duplicate constraints in S*.

Proof. Suppose we can find a pair of duplicate constraints in S*, say a jx  < 1 

and a jx  < 1 with { x  \ a jx  < 1} =  {x \ a jx  < 1} with ai ^  a2. Then by 

the separation theorem[15] we can find x  such that a jx  < 1 and a jx  > 1, a 

contradiction. Therefore, there are no duplicate constraints in S*. □

1.3 C onvex H ull A lgorithm s

In this section we introduce some of the standard algorithms for finding conv(S') 

when the dimension d — 2. For this special case all that is necessary to deter

mine the convex hull is either an ordered list of the extreme points or an ordered 

list of the facets of the convex hull. Given a set S  of known extreme points of 

S  determining the convex hull of S  can provide a quick method of determining 

what points in S \ S  are in conv(S) and hence can not be extreme points of 

S. There are limitations to this method however, as algorithms for finding the 

convex hull of sets in Rfi have time complexity that is exponential in d as we 

will see. This is the motivation for the new preprocessor in Chapter 4.

1.3.1 G ra h am  Scan

The steps of the Graham Scan[13] algorithm are as follows.

0.0. Set p  to be the element of S  with minimum y coordinate, in the event of 

a tie take the point with minimum x  coordinate.

9
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0.1. Append p to the initially empty list T.

0 .2 . Sort the remaining points in increasing angular order around p, where the 

angle is taken between the vector from p to the point in question and the 

positive x axis. Denote the sorted list as L.

0.3. Append the first point in L to T.

0.4. Set i = 2

1.0. Calculate the cross product o of the vector defined by the last two elements 

of T  and the vector defined by the last element of T  with element i in L.

1.1. If o > 0 append L  [i] to T.

1.2. If o < 0 remove the last element of T  and return to step 1.

1.3. If o = 0 remove the last element of T  and append L  [«] to T.

2.0. Increment i, if i is less than \L\ return to step 1.0.

3.0. T  now contains an ordered list of the extreme points of the convex hull.

We examine the time complexity of Graham Scan. Determining p in 0.0. 

requires O(n) time. The sort in step 0.2. requires 0 (n lo g n) time. The calcu

lation of the convex hull then requires O (n) time as every element of L  is only 

added to T  once, and removed at most once. This results in O (nlogn) total 

running time using O(n) space.

While Graham Scan is an efficient and elegant way to find a two dimensional 

convex hull, the reliance on angular sorting prevents generalization to higher 

dimensions.

10
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145] L[| ]. .  T[4]
iT[3]

T[4] T[2]

T[l]

iT[3]

T[2]

T[0] i luj jj-Q]
<a> (b) (c)

Figure 1.2: Example Graham Scan Iteration.

E xam ple  1.3.1. In Figure 1.2 we are given a set of points in R 2 with the convex 

hull being calculated using Graham’s scan. The point labeled T[0] is the point p 

added during step (0.1), T[1] is the point added at step (0.3) and T[2] through 

T[4J are points added during 3 subsequent iterations. Figure 1 .2 (a) shows the 

beginning of the fth  iteration, with i — 5 and L(5], the current point of inter

est labeled. We see the cross product calculated in step (1.0) is negative so we 

remove T[4] from T  leading to the situation in Figure 1 .2 (b). Performing the 

cross product calculation of step (1.0) yields a positive value, so we add L[5] to 

T, making it the new T[4] and increment i as in Figure 1.2(c). Intuitively neg

ative cross products correspond to counter clockwise angles and positive values 

correspond to clockwise angles.

1.3.2 J a rv is ’ M arch

We now examine Jarvis’ March[17]. The Graham Scan algorithm determined 

the ordered set of extreme points. Jarvis’ March instead determines the ordered 

set of facets. Given a set of points S  in the R 2 Jarvis’ March works by selecting 

a point guaranteed to be on the convex hull and in essence wrapping a line

l l
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around the set of points until reaching the start point again. The steps are as 

follows.

0 .0 . Set p to be the element of S  with minimum y coordinate, in the event of 

a tie take the point with minimum x  coordinate.

0.1. Append p to the empty list T.

0.3. Find a in S  \  T  that maximizes the angle between ap and the negative x 

axis.

0.4. Append a to T.

1.0. Find a in S' that maximizes the cross product of the vector defined by the 

last two elements of T  and the vector defined by a and the last element of 

T.

2.0. If a T[0], append a to T  and go to (1.0).

3.0. T  now contains the extreme points of the convex hull in sequential order.

We first observe that the algorithm visits each extreme point of the convex 

hull exactly once. At an extreme point the algorithm checks the resulting angle 

with every other point in the set, or O(n) points. Let |S| — h, then the algorithm 

runs in 0(n h )  time. This yields worst case O(n2) time complexity when S  — S.

E xam ple  1.3.2. In Figure 1.3(a) we are given a set of points in R 2 with the 

initial point p determined in step 0.0. labeled. In Figure 1.3(b) we see the initial 

convex hull point p added to the list T  in step (0.1), the angle corresponding to 

the maximal cross product is drawn along with the second point added to T

12
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T[0] (C)

Figure 1.3: Example Jarvis’ March Problem.

labeled T[l], By completing another iteration yields the addition of T[2j to T  as 

seen in (c). A fter five more iterations we detect T[0] again and terminate with 

the extreme points stored in T  as in (d).

Jarvis’ March can be viewed as a specialization of the Gift-wrapping [11] 

algorithm of Chand and Kapur. Gift-wrapping begins with a convex hull facet 

and detects neighboring facets moving to them and repeating the process. While 

Jarvis’s March can be interpreted as wrapping a string around a set in M2, Gift- 

wrapping can be interpreted as wrapping a hyperplane around a point set in 

R d. The worst case complexity of gift-wrapping is 0 {rn\dl2\+} +  n logn). A 

full analysis can be found in [23] and is beyond the scope of this thesis.

13
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1.3.3 C h a n ’s A lg o rith m

The algorithm presented by Timothy Chan[10] in 1996 is a simple optimal 

output-sensitive convex hull algorithm for sets in R2. The algorithm works by 

arbitrarily partitioning the input set into subsets no larger than a parameter 

m  that is assumed to be less than h. The convex hull of each partition is 

found using a O (nlogn) algorithm like Graham Scan, resulting in a family of 

of sub hulls. The algorithm then attem pts to merge the resulting sub hulls by 

performing at most m  +  1 iterations of Jarvis’ March on the extreme points of 

the sub hulls. If the iteration limit is reached the process starts again with a 

larger value for m. The value of m  is squared after each failed attem pt but not 

allowed to exceed n, thus the value of m  at iteration £(> 0) is min (n, 22‘) . The 

resulting worst case complexity is 0 (nlogh).

Chan’s algorithm can be extended to the three dimensional case by using an 

0 (n  log n) three dimensional convex hull algorithm like Divide and Conquer[23] 

in place of Graham Scan along with a three dimensional implementation of 

Gift-wrapping.

E xam ple  1.3.3. In Figure l.Jf (a) we are given a set of points in R2, we 

now use Chan’s Algorithm, to find the convex hull. In (b) we see the result of 

attempting to find the hull with the parameter m set to 2. In (c) We see the 

result of attempting to find the hull with the parameter m set to 4- Finally in 

(d) we find the hull by setting m to 8 .
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(a)

0

1.3.4 Q uickhull

6

0,7

(d)

Figure 1.4: Chan’s Algorithm Example.

We now look at a family of algorithms independently derived by multiple 

sources[12, 6 , 14] in the mid 1970s[23]. The algorithm functions in a fashion 

similar to the Quicksort[16], and ultimately has some of the same weaknesses. 

The algorithm works for sets in Md, we however limit our discussion to the case 

d = 2 .

The Quicksort algorithm is a comparison sort that functions by partitioning 

the input set into those less than or equal to and those greater than a value 

selected via a partitioning rule. Partitioning requires O(n) time. The algorithm

15
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then recurses on the resulting subsets with cardinality greater than one. The 

expected performance with a good partitioning rule is 0(nlogn)[16]. W ith a 

naive partitioning rule performance can be as bad as 0 (n 2). For example if 

we take the first element as the partitioning value, then input of a list that 

is already sorted in increasing order will result in £ ^ = 1  * =  n(n~1) or_ 0 (n2) 

comparisons.

The Quickhull[23] algorithm in M2 begins by selecting a chord of the convex 

hull with end points I and r. An easy way of finding such a chord is selecting 

the points with maximum and minimum values in a coordinate. The chord 

partitions the set into two sets, the points on either side of the chord, say Si 

and S2 . We now find the point p & Si that maximizes the area of the triangle 

prl (Apr/), with ties broken by finding the point which maximizes Zp/r.

T h eo rem  1.3.1. Given a chord Ir of conv(S') and p € Si that maximizes Apr I 

with ties broken by selecting p to maximize /.plr, then p is an extreme point.

Proof. Suppose that p is not extreme. Then p is either an interior point of 

conv(S') or it is a boundary point of conv(S).

If p is an interior point we select select a vector 0  _L Ir that points into 

the half plane containing p. We can find a  > 0 such that p + ao = p  is a 

boundary point, if p is an extreme point then p £ S  with Aprl > Apr I a 

contradiction. Otherwise p is on an edge of conv(S), say x ix 2. We set x  to be 

a Xi with maximum distance from the chord Ir. Any such x  will be such that 

A xrl > Apr I > Apr I, contradicting maximality of A prl among the possible 

p € Si.

16
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If p is a boundary point it must be interior to an edge Xix2  of conv(S'), so 

p =  \ x \  +  ( 1  — X)x2 - If X\X2 is parallel to Ir then for any p' G X\X2 we have 

A p'rl =  A prl. However one of the following must be true, /p l r  < / x \ I r  or 

/.plr < / x 2 lr, a contradiction. If XjX-2 is not parallel to Ir we set x  to be a 

Xi with maximum distance from the chord Ir. Any such x  will be such that 

A xrl > Apr I a contradiction.

Therefore, p  must have been an extreme point of conv(S')

□

We proceed by eliminating the points interior to Aprl in Si from considera

tion, as they are guaranteed to be interior to conv(S'). The remaining points are 

partitioned into the points opposite pr and the points opposite Ip, by selection 

of p these sets are disjoint, otherwise if there was a point po in the intersection 

then Ap0rl > Apr I. We repeat this process on the two subsets using pr and Ip 

in place of the original chord respectively. This recursion is continued until all 

the extreme points are identified.

E xam ple  1.3.4. In Figure 1.5 (a) we are given a set of points in R2, with 

the chord Ir labeled and the point p in S\ that maximizes A  prl also labeled. In  

(b) we see the points interior to Aprl have been removed and the remainder of 

Si has been partitioned into S 3  and S4. The next step of the recursion is also 

shown using S3, with a new p selected to maximize triangle area. Removal of 

points interior to the new triangle leaves only a single point that we label S 3 

and recurse on in (c). In (d) we see the resulting partial hull after S 3  has been 

processed entirely and edges have been merged.

17
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(a) (b)

Id)(c)

Figure 1.5: Quickhull Example.

The analogy to Quicksort is the partitioning and recursion at each step, also 

if partitions are no larger than some constant fraction of the input set size at 

each step we achieve 0(nlogn)[23] time complexity. If this doesn’t hold time 

complexity can be as bad as 0 (n 2)[23] like Quicksort.

1.4 Linear C onstraint C lassification

In this section we introduce and explore the concept of redundancy in sets of 

linear inequalities. We adopt definitions and terminology similar to tha t which 

is found in [7]. This combined with the polar dual will provide the basis for our 

probabilistic method for extreme point detection.

Let I be a set of indices. We define the corresponding constraint set as 

C(I)  =  { a j x  ^  bi j i G /}  where a, and x  are d-vectors. This set of constraints

18
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defines a possibly empty region in Wl. X ( I )  — {x  € | a j x  ^  bi, Vi € /} . We

call “a j x  ^  bf'  the k-th  constraint.

D efin ition  1.4.1 (Redundant Constraint). The k-th constraint is redundant in 

C(I)  i f  X ( I )  — X ( I \ { k } ) .

D efin ition  1.4.2 (Necessary Constraint). The k-th constraint is necessary in 

C ( I ) z f X ( I ) ^ X ( I \ { k } ) .

A Redundant Constraint is one that can be removed without changing the 

feasible region defined by the constraint set. A constraint tha t is not redundant 

is necessary and its removal will change the feasible region.

D efin ition  1.4.3 (Degenerate Extreme Point). We callp a degenerate extreme 

point of X ( I )  i f  p is an extreme point and |{i € I  | a jp  = bi}\ > d.

We can classify a constraint as redundant or necessary by solving a linear 

optimization problem. Consider the linear optimization problem

min — a jx  (1 -1 )

3 a j x < b j  Vi e l ,  k.

If (1.1) is unbounded or has optimal solution x* with ajx* > bk then constraint 

k is necessary in C(I).  In fact if we can find a feasible x  € X ( I  \  {&}) with 

a j x  > bk we can conclude constraint k is necessary. The constraint classification 

problem can be solved by solving the family of linear optimization problems

19
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LOk :(fc € I)  (1 .2 )

min —a j k

3 a j x  < bj Vji E I,  j  k.

In our context, given a point set S  — {p i,. . .  ,pn) then I  = {1,2 , . . . ,  n}, 

C( I ) =  [ p j  x <  1 | * € /}  and X ( I )  = S*. We will use necessary in S* as short

hand for necessary in { p j x  < 1 | * E  I }, with similar notation for redundant 

and so on.

1.5 H it-A nd-R un A lgorithm s

We now introduce the class of Hit-and-Run Algorithms and examine some differ

ent variants. The first hit-and-run algorithm was introduced in 1979 by Boneh 

and Golan[4]. A typical iteration begins with an interior point in a set K  then, 

a random direction is selected using a probability distribution. This random 

direction and interior point define a feasible line segment in K  which intersects 

the boundary of K  in two places. A new interior point is chosen at random on 

the feasible line segment and becomes the interior point for the next iteration.

E xam ple  1.5.1 (Hit-and-run example iteration). We consider the region in 

Figure 1.6 (a) and illustrate a single iteration. We first need an interior point 

for this region in R2, we use the point labeled xq in Figure 1.6 (b). We next 

generate a direction, as shown by the arrow a tx o in Figure 1.6 (c), the resulting 

line is drawn in as a dashed line. We see in Figure 1.6 (d) the resulting line

20
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(a)

Figure 1.6: Example Hit-and-Run Iteration.

segment and the new interior point X \ .  The two constraints that determine the 

end points of the line segment are necessary.

1.5.1 C o o rd in a te  D irec tio n  V arian t

The Coordinate Direction (CD) variant uses a random coordinate direction for 

the search direction uses the origin as the initial point [19, 20].

21
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1.5.2 C o m p u ta tio n a l C om plex ity  o f C D  I te ra tio n s  

C D  A lg o rith m

0. Set a0 = 0, J  = 0, set Vi =  0, Vi e  / .

1. Choose a random coordinate direction ej.

1.1 Calculate possible step sizes, ot — (bi — Vi)/'(pi)j (Vt € I , {pt ) 3 /  0).

1.2 Determine maximum feasible step size in the positive and negative ej di

rections. That is find l \  and £ 2 so that =  minje/{cq | (p*)j > 0} and

a<?2 -  maxieI{ai | (pi)j <  0}.

2. Update detected constraint set by replacing J  with J  U {£\. £2 }-

2 . 1  Set a =  uotx +  (1 — u)a^2, u ~Uniform (0,1 ), and update 

Vi <— vt +  cr(pi)j Vi € I. Return to Step 1 and repeat.

The set J  contains indices corresponding to necessary constraints.

T h eo rem  1.5.1. Each CD Iteration requires O(n) time.

Proof. The selection of a random e7 requires the selection of an integer between 

1 and d, expressing such an integer requires at least log2 d bits. Therefore, 

0(logd!) time is required to determine the search direction. Calculating the as 

in step 1.1 requires 0(n)  time, as does calculating l \  and t 2 in step 1.2. This 

results in a total cost of 0 ( n ) as for Step 1 because log d < n. Step 2 requires 

0(1) time. Therefore, the cost of both Step 1 and Step 2 and thus of a CD 

iteration is O (n) time. □

22
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1.5.3 Stand-and-H it Variant

We now consider the Stand-and-Hit (SH) variant [19, 18]. This variant uses a 

fixed interior point (the origin) and random unit vectors for the search direction. 

Each iteration detects one necessary constraint, and unlike the CD variant when 

finding the intersections, the cost of calculating the inner products is linear in 

d instead of constant.

1.5.4 Com putational C om plexity o f SH Iterations 

SH Algorithm

The set J  contains indices corresponding to necessary constraints.

0. Set J  =  0.

1. Choose a random unit vector s as a search direction.

1.1 Find £ such that a =  (p j s)~x =  minie/{ (p js ) _ 1  | p js  > 0}.

2. Replace J  with J  U {£}. Return to Step 1 and repeat.

Theorem  1.5.2. Each SH Iteration requires O(nd) time.

Proof. We observe that selecting a random vector v is linear in the dimension of 

the vector, as is calculating its length. Hence converting it to a unit vector thus 

calculating a random unit vector s requires 0(d) time. We observe calculating 

(p js ) - 1  requires 0(d) time and it must be calculated for each i e  I  or n times. 

Therefore, calculating I  and a requires 0(nd) time. Step 1 requires 0(d) + 

0(nd) = 0(nd) time. Step 2  requires constant time for set insertion and a 

single addition, therefore an entire SH iteration requires 0(nd) time. □

23
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We now show how hit-and-run can be used to detect necessary constraints.

Theorem  1.5.3. pk £ 8  is an extreme point if  and only if  p jx  ^  1 is. necessary 

in 5* [19].

Proof Suppose pk is not an extreme point in S  then pk =  A a + (1 — \)(3 for some 

A £  [0,1] and a. (3 £  conv(S'). However as a , 0  £  conv(5) we have a Ty < 1 and 

/3J y  < 1 for all y £ S* so that

p fy  = A(aTy) +  ( 1  -  A){(3Ty) <  A +  (1 -  A) =  1 (Vy € S*>

and p ly  ^  1 is redundant. This is the contrapositive of the desired result.

If p lx  ^  1 is redundant then there is an optimal solution to the following 

Linear Optimization problem

min { —p i  x  | p jx  ^  1 (Vi ^  k )} .

Let x* be such an optimal solution, the optimality conditions imply the existence 

of u* > 0 with JT/fc u*Pi ~  Pk■ Therefore, p^  is not an extreme point of K  and 

we have the contrapositive of the desired result. □

We can now use this result to identify extreme points in S  using S*.

Theorem  1.5.4. I f  3x £ R d with p fx  = 1 and p jx  < 1 (i £ I  \  {fc} then 

p lx  < 1 is necessary in S*.

Proof. We observe that only the constraint corresponding to pk is active at x, 

if we were to multiply x  by a constant c > 1 then p f  {ex) = c > 1 so cx £ S*. 

We claim that removing the constraint p fx  < 1 changes the region, let Cq =

24
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mm {| | i € A W  ,p jx  ^  o |  U { |} . By construction of Cq, p j(c 0x) <

1 (i £ I \  {k} and c0 > 1). Therefore, c0.x while not in S* would be in the region 

with the constraint p jx  <  1 removed, hence p jx  ^  1 is a necessary constraint 

and pk is extreme in S  as required. □

This Theorem allows for the application of hit-and-run to the constraint 

classification problem. We need only find a point where one constraint is active 

to detect a necessary constraint, the probability of hit-and-run hitting any single 

point, and hence any extreme point of the region is 0 .

25
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Chapter 2

The Algorithm  of Jibrin, Boneh  

and Caron

2.1 Introduction

In this section we introduce and analyze the probabalistic extreme point identi

fication algorithm of Jibrin, Boneh and Caron[19]. Their algorithm takes advan- 

tageof the key relationship between the extreme points in S  and the necessary 

constraints in S*. We also explore their preprocessing methodology.

2.2 T he A lgorithm  o f Jibrin, B oneh and Caron

We now examine the algorithm of Jibrin, Boneh and Caron. As input the 

algorithm takes a point set S  C of cardinality n > d+  1 such that any d+ 1  

elements of S  do not lie on a (d — l)-hyperplane.

1.0 Calculate Bs, the barycentre of S.

2.0 Find S, the set S translated by —Bs

3.0 Set p  to the origin.

26
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3.1 Perform a hit-and-run iteration in S* with p as the known interior point.

3.2 Label the point(s) in S  corresponding to the detected constraint(s) as nec

essary.

3.3 Update p as required.

3.4 If the stopping rule is not met go to 3.1.

4.0 The set of labeled elements in S  form a subset of the extreme points of S.

As this is a probabalistic algorithm it is possible that the list of extreme 

points generated will be incomplete.

2.3 P reprocessing A pplication

In some problems, for example determining the convex hull of a set S, only 

the extreme points have bearing on the solution. Hit-and-Run provides a fast 

method for detecting a subset S  of the extreme points of S. We also know 

that conv(S') D conv(S') so points interior to conv(S) must also be interior to 

conv(S'). Determining the points interior to conv(<S) allows the use of Hit-and- 

Run as a preprocessor for problems interested only with the extreme points.

In [19] a subset of S  with cardinality d +  5 is selected, the convex hull of this 

subset is then found using quickhull. The points in S  \  S  are then tested for 

membership in this convex hull, with points in the hull discarded.
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2.4 C onclusions

The algorithm of Jibrin, Boneh and Caron has one immediate shortcoming and 

that is generality. The requirement that any set of d + 1 points are non-coplanar 

guarantees every input set has full dimension, but it also precludes sets with, 

for example, three collinear points from being processed. In the next chapter 

we will remove this requirement and generalize the algorithm to arbitrary finite 

point sets in Rd.

The preprocessor application can also be improved. Scalability is question

able as the performance of the quickhull algorithm degrades for d > 9 [24], the 

work around for this in [19] results in possible wasted effort when more than 

d + 5 extreme points are detected via Hit-and-Run. In chapter 4 we propose an 

alternate approach to the preprocessing step.

28
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Chapter 3

Im provem ents to Jibrin, Boneh  

and Caron

3.1 Introduction

In this chapter we seek to augment the Jibrin, Boneh and Caron algorithm to 

allow the processing of general finite point sets in W1. We remove the require

ment that any subset S  of the input set S  with ,S| =  d + 1 do not lie on a 

{d — l)-hyperplane (are non-coplanar). We will refer to this requirement as The 

Non-Coplanarity Condition.

3.2 Coplanarity, D egeneracy and D im ensionality

In this section we will explore the implications of the non-coplanarity condition, 

namely that any S  satisfying the non-coplanarity condition has full dimension 

and the extreme points of S* are non degenerate.
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3.2.1 D im ensionality

The most obvious implication of the non-coplanarity condition is that the convex 

hull of any S  C  S  with |5 |  =  d + 1 has full dimension as it must be a d-simplex.

L em m a 3.2.1. Given a set S  C  M.d that satisfies the Non-Coplanarity Condi

tion and S  C  S  with | 5 |  =  d +  1 then conv(K) is a d-simplex.

Proof. Let S  C  S  with |5 |  =  d +  1. If 5  has full dimension it is a d-simplex 

and we are done. Suppose S  does not have full dimension, then we can find a 

(d— 1) —hyperplane containing S, contradicting the Non-Coplanarity condition. 

Therefore S  must be a full dimensional set, and hence a d-simplex. □

As a d-simplex has non-empty interior and S  has a subset with cardinality 

d +  1 the convex hull of S must be non empty. Thus the convex hull of any set 

of cardinality d +  1 or greater that meets the non-coplanarity condition is non 

empty.

T h eo rem  3.2.1. I f  S  satisfies the non-coplanarity condition then the extreme 

points of conv(S*) are non degenerate.

Proof. Suppose there is an extreme point p of S* that is degenerate, that is there 

are d+1 or more active constraints at p. However the set of active constraints at 

a point in the S* determines a set of points in a (d — l)-hyperplane in 5  [15]. The 

existance of such an p  thus leads to an immediate contradiction as S  satisfies 

the non coplanarity condition. □

E xam ple  3.2.1. In Figure 3.1 (a) we are given a simplicial facet F  of the 

convex hull of a point set in M3 with its three extreme points labeled. The dual
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f.3*
f l *

f2 *

(a)

.*  f2

f l *

f2*

f3 *
f4 *

(b)

f6 *

f2 *

f4 *

(c)

Figure 3.1: Facets and their duals.

of this is the extreme point F* with exactly three active constraints, namely those 

corresponding to the extreme points of F. In the case of (a) we observe there
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are no redundant constraints and F* is non degenerate. In (b) We have a non 

simplicial facet, however all members of the point set incident on the facet are 

extreme points. The dual of this facet is a degenerate extreme point, but there 

are still no redundant constraints as shown. In (c) we have a non simplicial 

facet with an incident non extreme point labeled f6 . The dual of this facet is a 

degenerate extreme point, moreover the constraint f6 * is redundant.

The non-coplanarity condition guarantees S  has full dimension and S* has no 

degenrate extreme points. If we require input to have full dimension and handle 

degeneracy in S* we can remove the non-coplanarity condition. Degeneracy in 

S* is an issue when multiple constraints are detected active at a single point 

during a hit-and-run iteration. In such a case we have lost the guarantee that 

all active constraints are necessary in S*, some of the detected constraints may 

not correspond to extreme points in conv(S'). One solution to this problem is 

to ignore iterations where this occurs, this is the solution we adopt.

We have removed the non-coplanarity condition, but we have replaced it with 

a weaker condition requiring full dimensionality. We eliminate this condition.

Suppose we are given an input set S  C  that may not be full dimensional. 

Let P  be the matrix with columns from S, if rank(P) = d we have a full 

dimensional set. If rank(P )<  d we consider the smallest k < d such that S  can 

be embedded in a &-hyperplane.

We begin by performing a translation that places the barycentre of S  at the 

origin, we label this translated set S. The /c-hyperplane containing S  will be a 

subspace of Rfi. We now compute a basis (3 for this subspace and re-express the
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elements of S  as linear combinations of the elements of f3. The coefficients of 

these expressions are elements of Mfc, we denote the the set of these coefficients 

as S R. Letting B  be the matrix with columns from /3 we show that detecting 

the extreme points of S r  is equivalent to detecting the extreme points of S  and 

hence S.

Theorem  3.2.2. For every a G conv(S') there exists aR G conv(S^) with B aR =  

a.

Proof. Let a G conv(S) then a = Yh=x ^iVi — Xn=i X,Bxt = B(Y^=  i  \ x '<) = 

BaR □

Theorem  3.2.3. For every or G eonv( S r ) then there exists a G conv(S) with 

B o r = a.

Proof Let a € conv(S') then aR = \ . x i so B aR = Yh=i =  J 2 i = i  ^ iP i  =  

a. □

Theorem  3.2.4. The point (pi)r  G S r  is extreme in S r  i f  and only i f  pi is 

extreme in S.

Proof.  Let (pt )r  be an extreme point in S r  and suppose pi  is not an extreme 

point of S.  Then we can find a  and b in conv(S’) with Aa+ (1 — A)b =  pi  for some 

A e  (0,1). By the preceding theorem 3 a r, bR G conv(5';?j such that B o,r  — a  and 

B bR — b. This results in B ( \ o r -{-(1 — A )& r) =  X B a R + ( l  — \ ) B b R  — Pi =  Bfpf jR  

so A Or  +  (1 — A )bR =  (pi)R, contradicting that (pfjR was extreme. Therefore p t 

is extreme in S'.
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We now let pi be an extreme point in S  and suppose (pi)R is not an extreme 

point of S r . Then we can find aR and bR in conv (X R) with XaR +  ( 1  — X)bR — 

(Pi)r for some A € (0,1). By the preceding theorem 3a, b e  conv(S') such that 

BaR =  a and BbR =  b. This results in B(XaR +  (1 -  A)6 r) =  \B a R+ (l — 

X)BbRv — Aa +  ( 1  — A)b — pi, contradicting that pi was extreme. Therefore 

(Pi)R is extreme in S r . □

By checking the rank of P  determining a basis (3 for S  if the rank is less than d 

and re-expressing S  in terms of 3 we guarantee a full dimensional representation 

of the problem. The rank check and basis determination and re-expression can 

be computed easily using Gauss Jordan elimination at a cost of 0 (n 3) time, or 

using more numerically stable methods like LU or QR decompositions.

3.3 C onclusion

We have generalized the algorithm of Jibrin, Boneh and Caron to arbitrary 

finite point sets in M.d. If Gauss-Jordan elimination is used the cost of this step 

is 0 (n 3) time. It is possible tha t this step could dominate total time required as 

running n lo g n  CD iterations requires 0 (n 2 logn) time. In the samples tested 

so far this has not proven to be an issue.
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Chapter 4

A N ew  Preprocessor

4.1 Introduction

We now use the extreme points detected by hit-and-run S  to expunge some of 

the interior points of conv(S'). We perform this removal by reformulating the 

problem of testing € conv(5') as a feasibility problem.

4.2 T he Preprocessor

Now that we know a subset S  of the extreme points of conv(S') we wish to 

take advantage of this. For some problems the interior points of conv(S) have 

no bearing on the final result and hence can be removed before solving. The 

interior of conv(S') is a subset of the interior of conv(5). In this section we 

explore a pair of methods for removing points in the interior of conv(S).

In the Jibrin Boneh and Caron paper the method presented requires deter

mining the convex hull of S  using Quickhull then checking membership of the 

resulting hull. While this approach is straightforward and relatively efficient for 

d < 9 [24], performance degrades for higher dimensions. Indeed even the best
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knwn algorithm can require time exponential in d [2]. This algorithm requires 

O (ndv) time where v is the number of facets in the convex hull. One possible 

method for bounding the performance is to fix the size of the considered set of 

extreme points relative to d, this size is set at d + 5 in [19]. Besides the obvious 

wasted effort finding any more than d +  5 this also relies on the full dimension 

aspect of the non-coplanarity condition.

We know that a € conv(S') if and only if there exist Ax. . .  Afc such that there 

exist Ax. . .  Afc such that

k

(4.1)
i~  1

k

0 < Ai < 1,V* e  { !...& }.

This is a linear feasibility problem.

Let P  =  [p i... .pk], A =  (Ax, A2, . . . ,  Afc)T, e be a vector of ones and 0 be a

vector of zeros. The system (4.1) can be rewritten as

F A - a  
eTA= 1 , 

0 < A< e.

(4.2)

Setting

(4.3)
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we can rewrite system (4.1) as

AoA— bo 
0 < A< e.

(4.4)

T h eo rem  4.2.1. There is a solution to A0A =  bo and 0 < A < e i f  and only if  

the optimal solution X* to

max f T A 
3 AoX < bo, 

A < e,

A >  0.

(4.5)

is such that f TX* — eTb0 where f  =  eT 4̂o-

Proof. See [3]. □

We test membership of a in conv(S') by solving (4.5). Letting b = / ,  u = X

A T =
Ao
I

On --

we can test for membership by solving

maxfeT«

9  A t u  < ca, 
u > 0 .

(4.6)

We now consider the dual of (4.6), that is
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min c jx  (4.7)
3 A x  > b, 

x > 0 .

This linear program reminds us of (1.1) which was used to identify necessary 

and redundant constraints. Specifically if the solution x* is such that cjx* < 

bje = aTe +  1. We observe that for any x* that is optimal in (4.7) we have 

c jx  < aTe + 1 by weak duality, as we know the optimal objective function value 

is no larger than aTe +  1 by the construction of /  in theorem 4.4.1. Let x* be 

an optimal solution to (4.7) then either cjx*  =  aTe +  1 and a E conv(S'), or 

cjx*  < aTe +  1 and a ^  conv(S'). In the first case a is redundant and can be 

removed, the second case is indeterminate as a may be extreme.

When considering the family of objective functions corresponding to S \ S  the 

LP in (4.7) is reminiscent of CLASFY[8 , 9] except in the context of CLASFY

the objective function also served as a constraint for the other LPs to be solved.

In this context we must adapt CLASFY to simultaneously solve a family of 

constraints over a fixed feasible region. We solve the problem

min cj.x Vi E I  (4.8)
3 A x  > b  

x  > 0

where I  is the set of indices corresponding to those points in S  not classified as 

extreme by the hit-and-run step.
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4.3 C om putational C ost

We now analyze the cost of transforming the problem into a system of linear 

inequalities. To find the vector /  we must add |5 | < n d-vectors, this has 

worst case time complexity O (nd) and requires O(n) space. The matrix A  is 

a (k +  1 ) x (d +  2k +  2 ) matrix. As d < n  and k < n, A  is no larger than 

(n + 1) x (3n +  2 ) < (2n) x (4n) or 8 n 2 elements so generating A  requires 0 (n 2) 

space and has 0 (n 2) time complexity. To find the constraint corresponding 

to a given a we must construct ca and calculate aTe +  1. The vector ca is a 

(d +  2k +  2 )-vector so construction can be done in O(n) time using O(n) space. 

Computing aTe +  1 is an inner product of d-vectors and hence uses 0 (d )= 0 (n ) 

time and 0(1) space. We have up to n  such constraints to generate so the worst 

case cost for constraint generation is 0 (n 2). Total worst case time complexity 

for set up is thus O (nd) +  0 (n2) +  0 (n) +  0 (n2) =  0 (n2), and worst case 

storage use is 0 (n2).

Solving the n —k =  0 (n ) linear programs in (4.8) can be done in polynomial[1] 

time, In particular L  is approximately k + l * d  + k + l — 0 (n 2), so our upper 

bound is 0 (n6 / lnn) .

4.4 Further Im provem ents

We have achieved theoretical polynomial time complexity. We may be able to 

reduce practical running time further by using a strategy similar to CLASFY[8 , 

9], at the cost of the polynomial upper bound on time complexity [21], We have 

an upper bound on the optimal value of the objective function for each objective
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in (4.8)

0.0.0 Find xq > 0 satisfying A x > b

0.1.0 For each i £ I  test for optimality of min cPi at xq.

0.2.0 For each optimal min c]H, check cj.xo = p j  e + 1.

0.2.1 If equal remove i from I  and classify pt as redundant.

0 .2 . 2  If cJHXq < p j  +  1 remove i from I  and classify pi as indeterminate.

0.3.0 Set j  =  0

1.0.0 Set Os to cPi for some i £ I  and set Gs =  p j e + 1 . If 7 is empty, terminate.

2.0.0 Calculate a search direction Sj and step size aj using Os as the objective

to be minimized.

3.0.0 Xj+ 1 =  (TjSj + Xj

3.1.0 For each i £ I  test for optimality of min cPi at x:,+\.

3.2.0 For each optimal m incPi, check cJ.Xj+ 1 =  p j  +  1.

3.2.1 If equal remove i from I  and classify pt as redundant.

3.2.2 If cJ.Xj+i < p j  + 1 remove i from I  and classify pt as indeterminate.

4.0.0 If Os is optimal at Xj+ 1 go to (1.0.0).

5.0.0 Go to (2.0.0).

We dehne S = {pt £ S  | pi £ SV  Pi was classified as indeterminate}. Then 

conv S  — conv S  and |5 | < |5j and S  can be used in place of S  when solving 

problems where only conv S  impacts the result.
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4.5 Conclusion

In this chapter we have proposed an alternate preprocessor that uses all points 

detected by the Hit-and-Run step. Moreover this method avoids the exponential 

cost for higher dimension quickhull.
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Chapter 5

Experim ental R esults

5.1 Introduction

In this section we discuss an implementation of the revised algorithm and ana

lyze the performance and scaling of this implementation.

5.2 Technical D eta il

The implementation of the revised Hit-and-Run sampler was done in C, using 

the Stand-and-Hit variant. For generating Pseudo-Random integer and Uniform 

[0,1] values an implementation of Mersenne Twister[22] seeded by system time 

was used. Normal(0,l) values were generated using the Box Muller[5] trans

formation. The implementation of the preprocessor was also done in C. The 

family of Linear Programs (4.8) was solved sequentially using lpsolve version

5.5.0.10, this solver is based on the simplex method and as such may violate 

our polynomial time bound. All tests were performed on a server with 2GB of 

RAM and dual Pentium 4 Xeon processors running at 2.2GHz.
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5.3 R esu lts

In this section we show the effectiveness of the new preprocessor and explore how 

well it scales as d, |<S| and n  increase. The distribution sampled when generating 

an example varies based on the example. Some examples are sampled uniformly 

from a d dimensional hypercube centered at the origin, some are based on d- 

tuples of Normal(0,1) samples, most however are a 1 : 2  mix of points chosen 

uniformly over [—4 ,4]d and points with norm al(0,1) coordinates. We will label 

these as Uniform, Normal and Mix respectively.

We begin by showing preprocessor performance on examples taken from all 

3 distributions. We generate one example with n  =  5000 for each of the three 

distributions and each dimension de{2 ,3 , 6 , 9} .

Table 5.1: Preprocessor Performance by Distribution
Ex. d n Dist. \s\ M l |ind| Ti T2 t 3

1 2 5000 Normal 14 4986 0 0.000 23.760 3.130
2 2 5000 Uniform 26 4974 0 0.000 23.840 4.390
3 2 5000 Mix 20 4980 0 0.000 23.810 3.600
4 3 5000 Normal 48 4952 0 0.000 26.390 7.460
5 3 5000 Uniform 89 4887 24 0.000 26.440 11.980
6 3 5000 Mix 69 4927 4 0.000 26.440 9.640
7 6 5000 Normal 357 4482 161 0.000 33.830 67.770
8 6 5000 Uniform 689 3687 624 0.000 33.820 132.420
9 6 5000 Mix 434 4322 244 0.010 33.720 82.250

10 9 5000 Normal 850 3263 887 0.010 41.350 229.090
11 9 5000 Uniform 1605 1653 1742 0.010 41.170 430.880
12 9 5000 Mix 866 3648 486 0.010 41.250 209.480

Table 5.1 shows the result of these 12 examples. The columns give the 

example number, the dimension d, the number of points n, the distribution 

of the points, the number of extreme points detected by n logn  hit-and-run 

iterations \S\, the number of points determined to be interior |int|, the number 

of points for which the classification is unknown |ind|, the time required for
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dimensionality testing and reduction the time required for n  log n  stand 

and hit iterations T2 and the time required to solve the family (4.8) of linear 

programs T3.

We observe that for almost all sample sizes and dimensions the normally 

distributed examples have the fewest detected extreme points and the lowest 

times required for the solve step.

+1
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*»« * 0.%°
> -  0 -
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1 1 1 I I I I

-3 -2 -1 0 1 2 3
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Extreme + Interior •

Figure 5.1: Normally D istributed Example Problem.

E xam ple  5.3.1. In Figure 5.1 we see the results of Example 1 from Table 5.1 

with the interior points limited to 300 for the sake of readability. The vast 

majority of the points are clustered near the origin.

On the other end of the spectrum the uniform examples have the most ex

treme points and longest time required for solving.
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Figure 5.2: Uniformly Distributed Example Problem.

E xam ple  5.3.2. In Figure 5.2 we see the results of Example 2 from Table 5.1 

with the interior points limited to 300 for the sake of readability. In this case 

the extreme points tend to cluster around the comers of [—1 , l]2.

For the remainder of the examples we will use the mixed distribution to main

tain quick performance but still have relatively large sets of detected extreme 

points.

E xam ple  5.3.3. In Figure 5.3 we see the results of Example 3 from Table

5.1 with the interior points limited to 300 for the sake of readability. In this 

case the extreme points tend to cluster around the corners of [—4 ,4]2. The 

interior points cluster around the origin yielding fewer extreme points than a 

pure uniform sample, and more than a pure normal sample.
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Figure 5.3: Mixed Distribution Example Problem.

We now examine how the preprocessor scales as d and n  are increased. We 

use the preprocessor on twelve examples with varying dimensions and sample 

sizes. The results organized in table 5.2 use the same column labeling as table

5.1. We observe that the time for the hit-and-run step seems to grow with the 

size of n  and the solve step is much more sensitive to increases in |S'|. The 

dimension of the example problems also seem to have little bearing on the time 

required for solving (4.8), other than the increase in extreme points due to the 

increase in d. One possible reason for this is that when d is increased by 1 the 

number of variables in (4.8) increases by 1, however when |5 | is increased by 

one we increase the number of variables and constraints in (4.8) by 1.
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Table 5.2: Preprocessor Scaling
Ex. d n Dist. \s\ |int| |ind| 2i t 2 t 3

1 2 1000 Mix 13 987 0 0.000 0.770 0.580
2 2 5000 Mix 20 4980 0 0.000 23.840 3.700
3 2 10000 Mix 21 9979 0 0.000 102.910 7.330
4 3 1000 Mix 54 945 1 0.000 0.870 1.560
5 3 5000 Mix 61 4928 11 0.000 26.380 8.670
6 3 10000 Mix 93 9793 114 0.000 114.290 26.970
7 6 1000 Mix 167 761 72 0.000 1.100 5.450
8 6 5000 Mix 417 4337 246 0.010 33.720 75.050
9 9 1000 Mix 248 678 74 0.000 1.340 10.300

10 9 5000 Mix 877 3657 466 0.010 41.200 226.440
11 12 1000 Mix 282 642 76 0.000 1.580 15.070
12 12 5000 Mix 1150 3392 458 0.020 50.750 367.320

5.4 C om parison to  B rute Force

We now compare the performance of the new preprocessor to the time required 

to determine interior points using the family of linear programs (1 .1 ).

Table 5.3: New Preprocessor vs. Brute Force
Ex. d n Dist. T’new Cnew Pnew rbf Cbf P bf I'new T b f

1 2 1000 Mix 13 16 987 1000 2 1000 1.300 7.870
2 2 5000 Mix 20 23 4980 5000 2 5000 26.240 198.980
3 2 10000 Mix 21 24 9979 10000 2 10000 105.190 797.180
4 3 1000 Mix 54 58 946 1000 3 1000 2.390 12.380
5 4 1000 Mix 88 93 912 1000 4 1000 3.430 13.990
6 5 1000 Mix 125 131 875 1000 5 1000 4.770 . 16.600
7 6 1000 Mix 163 170 837 1000 6 1000 6.530 18.970
8 7 1000 Mix 200 208 800 1000 7 1000 8.580 22.310
9 9 1000 Mix 241 251 759 1000 9 1000 11.320 28.390

10 25 1000 Mix 329 355 671 1000 25 1000 51.910 88.410

Table 5.3 shows the result of 10 examples. The columns give the example 

number, the dimension d, the number of points n, the distribution of the points, 

the number constraints rnew, the number of variables cnew and the number of 

linear programs solved by the new preprocessor p new. The number of rows, 

columns and problems solved by the brute force method are labeled Hf,Cbf 

and pbf respectively. The time for all steps required in the new preprocessor is
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labeled Tnew and the time required to solve the brute force problems is labeled 

Tbf-

We observe that in all the examples the new preprocessor outperforms the 

brute force method, in particular in cases with large set size and few extreme 

points. In example three the new preprocessor takes 87.5% of the time required 

for brute force, a savings of over 11 minutes. We observe that the only exam

ple where the time savings using the new preprocessor was less than 60% was 

example 1 0 , where the number of extreme points detected was large relative to 

the size of n.
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Chapter 6

Conclusions

In this thesis we have commented on and generalized the work of Jibrin, Boneh 

and Caron[19]. We have also introduced a new preprocessor.

We have relaxed the constraints on the input set significantly, from finite 

point sets satisfying the non-coplanarity condition to any finite set in Md. This 

generalization incurs a seemingly trivial additional computation cost.

We have designed a new preprocessor that scales well with dimension and 

set size. We have explored the performance of this preprocessor with varying 

problem sizes and dimensions, and contrasted it to the performance of the brute 

force method of redundancy checking.

Further work should be aimed at refining the preprocessor as the imple

mentation discussed does not exploit all tha t we know about the reformulated 

problem. In particular a simultaneous solving strategy may further improve 

the performance of the preprocessor. The formulation of the new preprocessor 

also lends itself to easy parallelizability which may lead to further performance 

gains.
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