
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

1-1-2007 

Group sequential testing of homogeneity in finite mixture models. Group sequential testing of homogeneity in finite mixture models. 

Yin Cui 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Cui, Yin, "Group sequential testing of homogeneity in finite mixture models." (2007). Electronic Theses and 
Dissertations. 6982. 
https://scholar.uwindsor.ca/etd/6982 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6982?utm_source=scholar.uwindsor.ca%2Fetd%2F6982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


G r o u p  s e q u e n t ia l  t e s t in g  o f  h o m o g e n e i t y  in  f i n i t e

M IX TU R E  MODELS

by

Yin Cui

A Thesis
submitted to the Faculty of Graduate Studies 

through Mathematics and Statistics 
in Partial Fulfillment of the Requirements 
for the degree of Master of Science at the 

University of Windsor

Windsor, Ontario, Canada 
2007

(c) Copyright by Y in  Cui 2007

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-35007-2 
Our file Notre reference 
ISBN: 978-0-494-35007-2

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



TESTING FOR HO M O G ENEITY IN  F IN IT E  M IX TU R E  MODELS IN  
GROUP SEQUENTIAL DESIGN

Y in  Cui

Master of Science, 2007 

Department Mathematics and Statistics 

University of Windsor

Abstract

The problem of testing wether a sample is from a homogeneous population has been 

investigated in the recent years by many authors. I t  has been recognized that the 

lim iting  d istribution of the likelihood ratio test for such homogeneity problems is very 

complex and d ifficu lt to  implement. Therefore, recently, Chen et al (2001) proposed 
a modified likelihood ratio test for homogeneity in finite m ixture models w ith  general 

parametric kernel d istribution families. In this thesis we provide a group sequential 

version of this modified likelihood ratio test. The group sequential tests are often used 

to reduce the sample size (number of observations) required for making decisions in 

statistical testing. In  general, group sequential procedures require less sample than a 

fixed-sample (nonsequential) testing procedure w ith  the same power and type I error. 

We used Monte Carlo simulations to illustrate the performance of the proposed group 

sequential procedures in the context of normal, binomial and Poisson mixtures. We 

apply the methods to a Poisson data set concerning the counts of number of accidents 

incurred by machinists.
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1 Introduction

1.1 Finite Mixture Models

Suppose X \ , . . . ,X n are independent and identically distributed p-dimensional random 

vectors w ith  probability density function f ( x j )  on Mp. We say that X j  are from a 

finite m ixture population i f  the density f ( x j ) can be w ritten in  the form

k

f ( xj )  =  (1 .1 )
i = 1

where the f i ( x j )  are the densities and the % are nonnegative quantities tha t sum to 

one. That is:

k

0  <  7 i <  1 ,i =  1 ,..., k and q* =  1 .
*=l

The quantities q i , a r e  called the m ixing proportions. The f i ( x j )  are called the 

component densities or kernels of the mixture.

F in ite m ixture models have provided a mathematical-based approach to the sta­

tistical modeling of a wide variety of random phenomena. Fields in which mixture

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



1 Introduction

models have been successfully applied include astronomy, biology, genetics, medicine, 

psychiatry, economics, engineering and marketing. In these applications, finite m ix­

ture models underpin a variety of techniques in major areas of statistics, including 

cluster and latent class analysis, discriminant analysis, image analysis, and survival 

analysis. Here we w ill briefly review some examples where finite m ixture models are 

found to be useful models. For a detailed and complete coverage of finite m ixture 

models, readers are referred to the books of Everitt and Hand (1981) and McLachlan 

and Peel (2000).

Linkage Analysis. Linkage analysis is a branch of human genetics that seeks the 

assignment of genetic loci to particular chromosome regions, or linkage groups, by 

the study of their cosegregation in families. Because of the wide availability of DNA 

polymorphism, linkage is now one of the principal methods used to  investigate genetic 

diseases of unknown biochemical origin. When two genes (say, an unknown disease 

gene and a known marker gene) are close to each other on the same chromosome, they 

tend to stay in the same gamete after meiosis. The closer they are, the smaller the 

chance of being separated. A  gamete w ith  only one of the two alleles is called recom­

binant and the recombination fraction, denoted as 9, is a useful measure of distance. 

When 9 is close to 0, the two genes are tigh tly  linked and located close to  each other 

on the same chromosome. When two genes are not linked, the recombination fraction 

takes the maximum possible value, 9 — 0.5. Sometimes, though, the underlying pop­

ulation is not homogeneous and the members of the population contain both linked 

and unlinked members. In such case, a binomial m ixture model is often used to test 

the presence of linked fraction.

2
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1 Introduction

Cluster Analysis. Cluster analysis is an exploratory data analysis tool for solving 

classification problems. Its object is to sort cases into groups, or clusters, so that the 

degree of association is strong between members of the same cluster and weak between 

members of different clusters. Each cluster thus describes, in terms of the data 

collected, the class to which its members belong. M ixture models, usually Gaussian, 

provide a useful statistical model for such clustering in many areas among which is 

the recently expanding microarry data analysis.

Long-term survivor models. I t  happens sometimes that a cohort of individuals whose 

survival time is under study includes a group dying from a cause other than the 

cause of interest. In  such cases, the analysis is handled by assuming that there is a 

fraction of cured subjects whose failure time is at infinity, when it  comes to the cause 

of interest. That is, the cohort under study is thought of as they were made up of 

two sub-cohorts one following some sort of survival d istribution w ith  respect to the 

cause of interest and the other as a cured sub-subcohort. Therefore, a two-component 

m ixture model would be appropriate for carrying out this type of analysis.

1.2 Homogeneity Testing Problems

Often in clinical applications, one could ask the question whether observed data are 

a sample from a single d istribution or whether they have come from several separate 

distributions. For instance, a problem that frequently occurs in clinical trials is that 

some subjects are less susceptible to the treatment than others are. A  m ixture model 

has trad itionally been proposed to describe the distribution of responses in treatment 

groups for such trials. As another example, consider the study of the genetic compo-

3
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1 Introduction

nents of complex human diseases. Researchers often rely heavily on the case control 

association designs to investigate such complex diseases. However, they are often in 

a dilemma as to whether they should recruit as many affected cases as they can in 

a study, which, in these cases, may constitute a heterogeneous group, or whether 

they should instead insist on a stricter case definition to achieve greater homogene­

ity. Testing for the homogeneity in this case w ill benefit both economics and design 

purposes.

The likelihood ratio test (LRT) is often used in parametric hypothesis testing. 

Under standard regularity conditions, the LRT statistic has the simple and elegant 

asymptotic ^ -d is tr ib u tio n  under the null hypothesis (Lehmann 1999). Unfortunately 

w ith m ixture models, regularity conditions do not hold for the LRT to have its 

usual asymptotic null d istribution of y 2 w ith  degrees of freedom equal to  the d if­

ference between the number of parameters under the null and alternative hypotheses. 

Ghosh and Sen (1985) considered the case of testing homogeneity against location- 

contaminated normal mixtures w ith  known variance. They showed that, under a 

separation condition imposed on the parameter space, the likelihood ratio test statis­

tic is asymptotically distributed as a supremum of a Gaussian process w ith  mean zero 

and covariance kernel that depends on the true parameters under the null hypothesis. 

T itterington et al. (1985) consider the LRT of Ho : 7  =  1 versus H \  : 0 < 7  <  1, 

where 7  is the m ixing proportion of a two-component m ixture. They derive that, 

asymptotically under H 0, the statistic follows a m ixture of y 2 distribution, 5 X0 +  

where Xo denotes the degenerate distribution that puts mass 1 at zero. A  number of 

papers have been w ritten on the LRT and modifications to it  in special cases where

4
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1 Introduction

some of the parameters are known. Liang and Rathouz (1999) define a score function 

which is sensitive toward a given alternative. This method also has a nice mathemat­

ical and statistical properties through choice of the alternative, which is somewhat an 

arbitrary choice. Chen et al. (2001) propose a modified likelihood ratio test (MLRT) 

for homogeneity in the finite m ixture models. The M LRT provides a nice solution to 

this situation by simply adding a penalty term to the log-likelihood function. The 

lim iting  d istribution of the M LRT statistic is a mixture of chi-squared distribution 

for a large variety of m ixture models. In  addition, it  is asymptotically most power­

ful under the local alternative models when there are no structural parameters (i.e., 

nuisance parameters).

1.3 Group Sequential Testing Procedures

Statistical sequential testing methods were originated by Abraham Wald in the 1940s 

during the second world war. They were invented in the context of industrial quality 

control and the main purpose was to reduce the sample size required for making deci­

sion in statistical testing procedures. The first version of sequential testing procedures 

was coined by Wald as Sequential Probability Ratio Test, SPRT. The name indicates 

that a likelihood ratio test is being used in a sequential fashion. The SPRT opened 

a century-long development in the field and quite many researchers worked in it. Se­

quential testing of hypotheses was introduced into the biomedical and clinical trials 

field during the 50s by Armitage (1960). As an alternative to the SPRTs, Armitage 

et al. (1969) suggested and studied the so-called “Repeated Significance Test” (RST). 

Its key idea is to perform conventional fixed-sample significance testing on the cumu-

5
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1 Introduction

lative data every time an observation arrives. That is, no conventional fixed-sample 

tests w ill be performed i f  the to ta l sample size attainable at the end of the study 

is no- The null hypothesis of interest is then rejected at the first inspection when 

the conventional fixed-sample test rejects it. The critical values, zai, i  =  1,..., n0, 

used for the intermediate testing, are obtained either by numerical integration as in 

Armitage et al. (1969) or from the approximating continuous time Wiener processes 

(Siegmund 1985).

Since, in double-blinded multi-centre clinical trials, frequent inspections may not 

be feasible, Pocock (1977) introduced a “group sequential” version of the RST. This 

approach performs a repeated significance testing only periodically as opposed to 

continuously testing after each observation. The conventional testing is performed at 

the pre-specified inspection times, h , . . . , tK ,  w ith  a fixed number of patients (group 

of patients) recruited between each two inspection times; tha t is, the number of 

patients, nk — rifc_i, recruited between the i ^ q t h  and A th  inspection is same for all 

k =  2,..., K .  The critical values, cak, k =  1,..., K ,  used for the intermediate testing, 

are all same and equal to  a constant, c. This constant is computed from the jo in t 

distribution (exact or approximate) of the K  conventional test statistics by requiring 

that the overall significance level is a pre-specified Type Terror a, i.e.,

P{Reject Ho at any tk <  tpc} =  «•

O ’Brien and Fleming (1979) modified the constant boundary of Pocock’s original 

group sequential method (i.e., cak =  constant for all k < K  ) to a square root 

boundary. In  BHAT (1982), the O ’Brien-Fleming method was used in the famous

6
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1 Introduction

Beta-Blocker Heart A ttack Trial.

Lan and DeMets (1983) further extended this methodology to accommodate un­

equal group sizes. Their monitoring time scale was the cumulative fraction of infor­

mation obtained up to the time of the current analysis out of the to ta l information 

planned to be obtained at the end of the study. That is, i f  the maximum information 

planned for at the end of the study is I k  and I k is the information obtained up to 

the fcth analysis, then the fcth analysis takes place at the time t k =  I kj I K . This 

formulation, w ith  the help of Brownian motion approximation and an a-spending 

function, gives group sequential methods which require neither equal group sizes nor 

pre-fixed number of analysis K . For further details account of group sequential sta­

tistical inferences, we refer the reader to  the monograph by Jennison and Turnbull 

(2000).

1.4 Thesis Objectives and Organization

The objective of the thesis is to devise group sequential procedures for testing the 

hypothesis that a population under study is homogeneous as opposed to being a two- 

component mixture. For this purpose, we use a sequential version of the modified 

likelihood ratio procedure of Chen et al. (2001). In  chapter 2 of this thesis, we review 

the main results regarding the M LRT and the regularity conditions used to show its 

asymptotic properties. Chapter 3 reviews the various group sequential testing pro­

cedures that are commonly used in practice. Also, in chapter 3, we prove the main 

result of the thesis in the form of Brownian motion approximation to a continuous­

time stochastic process obtained from the non-sequential MLRT. This Brownian mo-

7
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1 Introduction

tion approximation is then used to construct various types of group sequential testing 

procedures and their monitoring boundaries. In  chapter 4 we report the results of 

extensive Monte Carlo simulations to assess the performance of the proposed group 

sequential tests in terms of type I errors, powers and average sample sizes needed to 

detect genuine heterogeneity of mixtures. Three different density functions: Normal, 

Poisson and Binomial, are considered for the simulation experiments. In  Chapter 5, 

we apply some of the proposed procedures to accident data from Greenwood and Yule 

(1920), where the true model is suspected to be a m ixture of Poisson distribution, 

and concluding remarks and directions for further research are also presented.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



2 Likelihood Ratio Test

2.1 Ordinary Likelihood Ratio Test

Suppose we collected independent observations X 1, . . . ,X n from a common density 

(g(x,9) : 9 £ © }, which is a probability density function (pdf) suspected to be a 

m ixture of two densities. That is; we suspect that the pdf is of the form

9 (x ] l ,0 )  ■= (1  - ' y ) f ( x , 0 1) +  'y f{x ,d2), (2 .1 )

where 9i <  02 € 0  and 0 < 7  <  1. To verify whether the density is of the form above 

as opposed to being of the form f ( x ,  9), one needs to statistically test the hypothesis 

of homogeneity

Ho : 7  =  0  or 7  =  1 or equivalently 9i =  92

A ll of the above equivalent null hypotheses lead to the same conclusion that the 

observations are from a homogeneous population w ith  one common density of the 

form f ( x ; 9).

9
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2 Likelihood Ratio Test

The ordinary log-likelihood function is given by

n

l n { 7 , 0 1 , 0 2 )  =  J > g { ( l  +  l f { X M )  ( 2 . 2 )

i —1

Let 7 , 0 i,0 2 be the maximum likelihood estimators of the parameters under the 

whole parametric space : f Ihq U , i.e., the maximizers of (2.2). Let also 6q be 

the maximizer of Z„(l, 6q, #o) over the parameter space —oo <  60 <  oo, i.e., maximum 

likelihood estimator of population parameter 0 when the hypothesis of homogeneity 

is true. Then the LRT is to reject the null hypothesis Ho i f

■ Rn =  2 { lnt f j 1,d2) - l n( l , d 0,90)}  (2-3)

is large enough. The asymptotic null distribution of Rn is used to determine a critical 

value for the test. However, due to the irregularity of the finite m ixture models, 

the likelihood ratio statistic R n  does not have the usual y 2 lim iting  distribution. The 

article by Ghosh and Sen (1985) provide a comprehensive account of the breakdown in 

regularity conditions for the classical asymptotic theory to hold for the likelihood ratio 

test statistic. T itte rington et al. (1985) give a more intensive discussion regarding 

this problem.

2.2 Drawbacks of the Ordinary Likelihood Ratio Test

Chen and Chen (1998) show that when f ( x ,0 q) is the true null distribution, the

10
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2 Likelihood Ratio Test

asymptotic distribution of the LRT statistic for homogeneity H 0 is that of

{s u p IT + (0 ) } 2
0e©

where W (6) is a Gaussian process w ith  mean 0, variance 1 and autocorrelation func­

tion

c m j Z M  -  h ( e ) Y , ( D ) , Z m  -  h ( m m  n A ,

^ v a r { Z , m  -  h (e )Y ,(8 0) } v a r { Z , ( e ')  -  '

Here

Y(0\  Y(f f  0 i -  ~  f ( X i ’ eo) n _ L  n .  y ( 0  \  Y ( ( j  0  N f ' { X i , 0 0)
Y M  -  W M  _  ( e _ e o ) m  A )  , t  #  K  Y M  -

(2.5)

z m  = Zi(e,e0) = e Z M  = H o M  = dYi{̂ 9° \e=%\

( 2 .6 )

and

E { Y m z m )  , „ 7.
m  ~  ~ w m r -  ( ]

This asymptotic result proves that the large sample behavior of the LRT is no 

longer a y 2 distribution. Chen et al. (2001) summarize the main drawbacks of the LRT 

in these finite m ixture problems. As we could see from the (2.4-2.7), the asymptotic 

distribution under the null hypothesis requires the true value of the unknown 6q.

11
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2 Likelihood Ratio Test

Chernoff and Lehmann (1954) also raise this issue in Pearson’s y 2-test w ith  presence of

nuisance parameters. Because of this complicated asymptotic d istribution presented 

in the form of supremum of a Gaussian process, a simulation-based test is often used 

to obtain critical values for testing.

Finally, i t  is worth mentioning that the autocorrelation functions of the lim iting  

Gaussian functionals, are different for different distributions. For example, Chen and 

Chen (1998) showed that, i f  f ( x ,  9) is a density of a N(6, a) w ith  a =  1 9q =  0, 9 and 

9' ^  0, we have the autocorrelation

However, for a Poisson distribution e e9x/x \,  x — 1 , 2 ,..., the autocorrelation is

First one is that the null hypothesis 7  =  0 or 7  =  1 lies on the boundary of the 

parameter space. The second complication is that 7 , #1 and 92 are not identifiable

p{9,9')
e oe' _  1 _  00/

p(9,9>) =
evl/ -  1 -  m /

where

a a
v

9 ' - 9
v

\/9~o

2.3 Modified Likelihood Ratio Test

There are two complications in forming the asymptotic null d istribution of the LRT.

12
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2 Likelihood Ratio Test

under the null distribution. The main idea of the modified likelihood ratio test is 

to add an extra term in order to fix  these two problems. The modified likelihood 

ratio test based on the following modified log-likelihood function l'n(7 , 0\,02) provides 

a satisfactory solution. For 0 <  j  <  l , 0 i ,0 2 E ® w ith 01 <  02, Chen et al. (2001) 

defined modified log-likelihood function as,

n

4 (7 , Ou e2) =  lo g {( l -  7 00  +  7 f ( X i , 0 2)}  +  C  log{47 ( l  -  7 ) }, (2.8)
i = 1

where the constant C  >  0  is used to control the level of modification to the log- 

likelihood function. Notice that in this formulation the values of 7  — 1 and 7  =  0  are 

excluded from the parameter space, however, the null hypothesis of homogeneity is 

now of the form H q : 7  =  1 / 2 .

Let (7 , 0i, 02) maximize 4 (7 , 0 ,̂ 4 )  over the fu ll parameter space, Q : Q# 0 U 

and let 0O maximize the null modified likelihood function 0o, ^0 ), ^0  € 0 . The 

M LRT rejects the null hypothesis H 0 for large values of

M n =  2{l 'n ^ A A ) - l ' n { \ A A ) }  (2.9)

The additional term C lo g {4 7 ( l  —7 ) }  in equation (2.8) is non-positive and is intended 

to discourage fits that result in values of 7  that are close to either 0 or 1. In  fact, 

we observe that the modification term explodes to negative in fin ity  whenever 7  is 

close to 0  or 1 , thus solving the problem of the boundary during the estimation of 

the parameters and hopefully making the likelihood behave more tractably.

Chen et al. (2001) impose five regularity conditions on the kernel f ( x .  0) which

13
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must be met in order to establish the lim iting distribution of the M LRT statistic. 

(Appendix A  contains these conditions). Their main result is that, i f  conditions 1-5 

in appendix A  hold, the asymptotic null distribution of the M LRT statistic M n is the 

m ixture of x i  and Xo w ith  equal weights, i.e.,

2%o +  2 *1  (2-10)

where Xo is a degenerate d istribution w ith  all its mass at 0 .

Chen et al. (2001) suggested C =  log(M ) as an appropriate choice when the 

parameter 0 is in the interval [—M , M ]  for some large constant M .  For instance, this 

could be the case when dealing w ith  a practical problem in which the investigator can 

reasonably assume that the parameter w ill fa ll in a certain interval. However, based on 

the simulations done by Chen et al. (2001), the lim iting  d istribution of the modified 

likelihood ratio test is not very sensitive to the choice of C. Also, to improve the 

lim iting  d istribution for small samples, Chen et al. (2001) suggested the use of pn =  

Ph0 (M n <  0) as the weight for the degenerate chi-square in the lim iting  distribution. 

The authors showed that the M LRT is asymptotically most powerful under the local 

alternatives (alternatives that are close to the null hypothesis). Through Monte Carlo 

simulations they also compared their M LRT to Neyman’s C(a)  test, the bootstrap 

test by McLachlan (1987) and the method of Davies (1987), and they found that the 

results of the M LRT are the most promising. Therefore, the M LRT is a reasonable 

choice to extensions to group sequential testing procedures.

14
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3.1 Introduction

Since last century, group sequential analysis has drawn great attention in clinical 

trials, epidemiological studies, quality control and safety studies. Group sequential 

experimentation is an area of statistics which is both of practical importance and 

also of great theoretical interest. Group sequential statistical analysis was originally 

developed to obtain economic benefits. Early stopping w ith  positive results implies 

that the new product can be in market sooner whereas i f  a negative result is indicated, 

early stopping ensures that resources are not wasted. Group sequential methods 

typically lead to savings in sample size, tim e and cost in comparison to fix-sample 

(i.e., nonsequential) methods.

For ethical as well as practical reasons, investigators may wish to monitor a study 

and review it  over time at interim  looks to assess whether the research hypothesis is 

sufficiently supported to warrant early term ination of the study. In a group sequential 

study, a test statistic is typically computed at each look and compared to a stopping 

boundary. Due to repeated looks at the data, this boundary is adjusted to maintain

15
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some predetermined overall significance level. In order to design and monitor this 

type of study, the jo in t distribution of the sequentially computed statistics must be 

derived.

In  section 3.2, we review the commonly used group sequential monitoring proce­

dures w ith  greater emphasis on the so called alpha-spending approach of Lan and 

DeMets (1983). Section 3.3 provides a simple group sequential study to help reader 

gain more understanding of the group sequential design. In  section 3.4, we give the 

main result that the modified likelihood ratio test statistic behaves like a functional 

of a Brownian motion process and hence we illustrate how this result can be used to 

build monitoring boundaries, in particular, the Lan-Demets boundaries.

3.2 General Group Sequential Procedures

In general, a group sequential design w ith  K  planned interim  analyses for testing the 

hypothesis H 0 : 7  =  0 yields a sequence of test statistics { Z L. .... Zkj .  We say that 

this sequence of statistics has the canonical jo in t  distribution w ith  information levels 

{ / 1 , ..., R }  for the parameter 7  if:

•  ( Z i , .... Zk) is multivariate normal,

•  E (Z k) =  7 \ /4 ,  k =  1,..., K ,  and

•  Cov(Zk l, Zk2) =  \ J I kl / h 2 j 1 < h  < k 2 <  K

This jo in t canonical d istribution can often be shown to hold by approximating the 

sequence of statistics Z \ ,..., Z k  by a Brownian motion process stopped at some time

16
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3 Group Sequential MLRT

points t i , tK ■ These time points are usually given in the so called information time 

scale, tk — h / l K i  where /*, is the information about the parameter of interest collected 

up to the analysis k and I k  is the information planned to be collected by the end of 

the study. The time points represent for each k, the fraction of information collected 

by the fcth analysis. In  many cases it  can be shown that this fraction is approximately 

the same as the fraction of sample size collected up to the k ih  analysis, out of the 

to ta l sample planned by the end of the study.

For example, suppose it  is required to test a null hypothesis H q : 7  =  0 versus 

Ha '■ 7  7̂  0. We consider group sequential tests in which up to K  analysis are 

permitted and standardized statistics Zk , k =■T , ..., K ,  are available at these analysis. 

I f  the sequence of statistics follows the canonical jo in t distribution, then we can easily 

compute monitoring boundaries ± C i, ..., i c K which satisfy a given type I error rate, a, 

by using numerical integrations that exploit the canonical jo in t d istribution structure.

If, on the other hand, the canonical jo in t distribution does not hold, then comput­

ing the monitoring boundaries would require multivariate integrations that are highly 

computationally expensive even for number of analysis as large as K  =  7.

There are many ways of choosing the boundaries ci, ...,c^, and in the next sub­

sections we are going to review some boundaries that are commonly used in practice. 

We assume that the sequence of test statistics reject H 0 in favor of the alternative 

hypothesis only for large values of the test statistics.

Pocock’s Procedure

Pocock (1977) adapted the idea of a ’’ repeated significance test” at a constant nominal

17
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significance level to analyze accumulating data at a relatively small number of times 

over the course of an experiment. This is the simplest group sequential procedure in 

the sense that i t  has constant monitoring boundaries (straight lines). This procedure 

assumed equal sample between analysis.

Formally, the test procedure is as follows:

•  A fter group k =  1,..., K  — 1 (w ith  cumulative sample ny.)

— i f  \Zk\ >  CP( K , a), stop and reject Ho

— otherwise, continue to group k +  1

•  A fter group K

— if  \Zk \ >  Cp(K ,a ) ,  stop and reject H q

— otherwise, stop and accept H 0

The critica l value CP(K , a) is chosen to give a pre-fixed overall Type I error a,

i.e.,

P7=o{Reject Ho at stage k =  1, k =  2,..., or k =  K }  =  a.

The Pocock’s procedure results in a constant boundary, independent of the analy­

sis, K .  This constant boundary value is tabulated for various a  and K  (see Jennison 

and Turnbull (2000)). The Pocock’s method is not based on any formal optimal prop­

erties such as minimizing sample size under some particular hypothesis. However, it  

is rational and easy-to-use form of stopping rule which gives the test an im portant 

position from a practical practical aspect. (Jennison and Turnbull 2000).

18
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O ’Brien &  Fleming’s Procedure

O’Brien and Fleming (1979) proposed a test in which the nominal significance levels 

needed to reject H 0 at each analysis increase as the study progresses. Thus, it  is more 

difficult to reject Ho at the earliest analyses but easier later on as the information 

available increases.

Consider the same experiment setup as in Pocock’s Procedure, and assume that 

the sample sizes between analysis are equal. The O ’Brien-Fleming test has the fol­

lowing algorithm

•  A fter group k — 1,..., K  — 1 (w ith  cumulative

— if  \Zk\ >  Cb (K , o t)y /K /k ,  stop and reject Ho

— otherwise, continue to group k +  1

•  A fter group K

— if  \Zk \ >  Cb { K , ol), stop and reject H 0

— otherwise, stop and accept Ho

Since Cb (K , o t )^ jK /k  decreases w ith  increasing k, the O’Brien-Fleming test has 

narrower boundaries at later analysis and hence, it  is easier to reject H 0 at later 

analysis than at early analysis.

Error Spending Procedure

As both the Pocock and O ’Brien &  Fleming methods require equally spaced sam­

ple sizes between analyses, the boundaries cannot be computed in the course of the

19
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monitoring process. In  other words, modifying the times of analysis (say in the time 

scale of information fraction) or even reducing or increasing the frequency of interim 

analysis after the design stage, is not allowed. A  violation of these assumptions leads 

to lower power and some times inflated type I error. To overcome such difficulties, 

Lan and DeMets (1983) proposed a flexible monitoring procedure known as the a- 

spending (or error-spending) function approach. The procedure requires only the 

specification, in advance, of an increasing function «(£), which characterizes the rate 

at which type I' error, a, is spent.

Suppose the maximum number of analysis, K ,  is fixed before the study, and 

the Type I error is partitioned into probabilities a i , . . . ,a x ,  which sum to  a. As 

information time f i  =  I \ / I k - ,  ■ ■■• tx  — I k / I k  =  1 progresses, the two-sided critical 

values Cfc for the standardized statistics Ztk,k  =  1,..., K ,  are calculated such that,

^  5 ***7 \Htk — l l  ^  Ck— 1 ; — Cfc)" Qffc

Here, the Type I error is partitioned according to an error spending function a ( t ), 

which is non-decreasing and satisfies a(0) =  0 and a(t) =  a, for t  >  1. The value of 

a ( t ) indicates the cumulative Type I error that is to be spent when a fraction t of the 

maximum anticipated information has been obtained. The error spending function 

and the target information level must be decided before the design stage before the 

experiment and data collection start.

20
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The Type I errors allocated to each analysis are

c*i =  a ( t i)  (3.1)

Oik =  oi[tk) -  a'(ife-i), k =  2,3, ...K  (3.2)

Critica l values ck are computed successively to satisfy (3.2) by using numerical inte­

gration that exploit the canonical jo in t d istribution of the test statistics. Equivalently, 

the cumulative error can be used to compute the boundaries

k

ak =  a ( tk) =  ^ 2 p { \ z t i \  <  c i , . . . ,  |Z t i _ x \ <  C i - i ,  |Z t i  \ >  C i \ H 0 } .

i =  1

There are several a-spending functions proposed in the literature which result in 

various boundary shapes. There is no one best function, and often investigators use 

a-spending functions that approximate well the two well-known procedures of Pocock 

and O ’Brien-Fleming. For instance, the function

a(t)  =  a tp, (3.3)

where p >  0  is a tuning parameter which controls the shape of the boundary, is 

studied in Lan and DeMets (1983). For p — 1 we get a boundary that mimics Pocock’s 

boundary, whereas, p =  2 results in a boundary similar to that of O ’Brien-Fleming.

The algorithm for monitoring a group sequential testing procedure is, thus, not 

different than the ones we have seen for Pocock’s and O’Brien-Fleming’s procedures.

21
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3.3 An Illustrative Example

In  a typical two-arm randomized clinical tria l, subjects are recruited and divided 

into two groups, a control group A  and an experimental group B. Suppose that, on 

the basis of a normally distributed response and a known common variance cr2, we 

are interested in testing the null hypothesis of the equality of the means of the two 

populations, H q : pa  ~  AtB =  0, w ith  overall significant level a  =  0.05 versus the 

alternative hypothesis H a : \ /j ,a — Pb \ =  £ w ith  power 1 — (3. Suppose the maximum 

projected sample size is 60 on each arm w ith  4 interim  looks, the testing procedure w ill 

be carried out based on a two-sided O ’Brien-Fleming boundary computed through the 

a-spending function a t2 =  .05f2. I f  we adopt a monitoring schedule w ith  equal sample 

size increments at each analysis, then we should perform our analysis at the times 

when n i =  30, n 2 =  60, n:i =  90 and =  120 cumulative sample sizes are available or 

equivalently, on the information fraction time scale, at times t \  =  30/120 =  .25,1,2 =  

.5, ts — .75, £4 =  1 . The test uses the following standardized statistic after each group 

of observations,

Zk =  — . =
y j  4o2/rik

where k =  1,...,4 and X r\k and Xsk  are, respectively, sample mean for group A 

and B based on the cumulative data collected on each group up to the analysis k. 

The corresponding boundary values are {±4.408, ±2.862, ±2.337, ±2.204}. The upper 

and lower arms of Figure 3.1 illustrate these boundaries at the four analysis times. 

Suppose that after the first analysis, our data gives a standardized test statistic w ith

22
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the value 0.711 for the first 15 subjects. The test statistic Z\ falls in the continuation 

region so, we continue data collection and we prepare for the second analysis. Suppose 

that the test statistic Z^ at the second analysis has a value of 2 .2 0 1  and is s till 

w ith in  the continuation region. Thus, 45 subjects are collected in order to do the 

th ird  analysis. A t the th ird  stage, we have a statistic Z% w ith  a value of 2.685 and 

the procedure rejects the null hypothesis. Therefore, we stop the whole study and 

conclude our result that there is a significant difference between Group A  and Group 

B  in their mean responses. The design boundaries and testing statistics at each 

analysis are displayed in Figure 3.1.

- 1 -  K=4
Function:0’Brien-Fleming Type, alpha=0.05

N•e0) Q-

C
CM

0.4 0.6 0.8 1.0

Times

Figure 3.1: Group Sequential Design Example
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3.4 Group Sequential M LR T

For the purpose of group sequential monitoring, it  is sufficient to show that the finite 

dimensional d istribution of a continuous processes, converge to those of a standard 

Brownian motion and that the M LRT is a some tractable function of such a process. 

The Brownian motion process has independent increment structure and jo in t m u lti­

variate normal d istribution at any given set of K  time points t i ,  .... t Kl as required 

by the general setup of group sequential methods described in the previous section. 

Therefore, the M LRT w ill also benefit from such canonical structure and the moni­

toring boundaries can then be computed by using the usual numerical integrations. 

We define a weighted and continuous version of the M LRT statistic as for

n =  1 , 2 , 3 , . . .  where t €  (0 , 1 ], [nt] is the integer part of nt  and n  is the final sample 

size planned at the end of the study. This is simply a weighted interpolation of the 

modified likelihood ratio test M n. I t  has been shown by Chen et al. (2001) tha t

( (E IU  m ) +)2
nE[W%] + ° v i 1)

where W* =  Z{ — hYi and h =  E [Y Z \ /E [Y 2]. The quantities Y, — Y (90) and Zi =  

Zi(6o) are defined in Section 2.2. The random variables Wt have mean zero and 

variance E [W 2}. Under the null hypothesis, H 0, and in virtue of condition 4 in the 

appendix, i t  is easy to see that

Var(W i) =  E  [W f]  =  E  [ ( ^  -  h ^ ) 2] <  E  [Z f]  +  h2E  [Y 2] +  2\h\E\YiZ i \ <  oo,

24
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i.e., the random variables W* have finite variance. By noticing that [nt] j n  —> t as 

n —> oo, we can write the above approximation in terms of the interpolated M LRT 

process as follows,

[nt]
n

i £1 Wi X
+  ° p ( ! )

For sim plicity of notations, put ^  = Wi
y/E W ?

, which are i.i.d random variables w ith

mean 0  and variance 1 , and write the interpolated and normalized partia l sum process

M

s ”  = -7hX>
^  i —1

Now, classical results on convergence in d istribution for random measurable functions 

on [0,1] apply. In particular, Donsker’s theorem (Billingsley 1968), states that, as

n oo, SJ* V B(t), where B (t)  is a standard Brownian motion on the interval

[0,1]. Furthermore, since the function h(x) =  ) 2 is continuous, i t  follows that

such convergence s till holds under the the transformation h(.) so that

fc(ST) =  [(s?)+)
+12  ® [.B ( t )+F

As a consequence, the finite dimensional distributions of [(S' " ) " 1-] 2 converge to those 

of the squared positive part of the Brownian motion process. That is; i f  t \ ,  t 2, ■ ■ ■, t/r

25
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are fixed time points, then

( [ ( S , ” , ) + ] 2 ............[ < s y + ] 2 )  —  ( [ ( B ( t , ) ) + ] 2 , . . . ,  [ ( B f e ) ) + 1 2 )  .

Now, since n/[n t] —> 1 /t  as n  —»■ oo, by using the multivariate version of Slutsky’s 

theorem (Theorem 5.1.6 in Lehmann (1999, p.283)) and the Cramer-Wald device (see 

Lehmann (1999)), one can show that

n  o n

nt i p 1

n  o n

[ntK \ K
v

2
' { B ( t K ) \ +'

\ V h )  _
? • * * 5

as n  —> oo. In  summary, by setting r ik /n  =  tk where n*, is the sample size up to the 

analysis k and n is the sample size at the end of the study, we can state the following 

result:

T h e o r e m  1  Assume that conditions 1-5 in the appendix and Hq hold, and let 0  <  

t i  <  t 2 < ■ • ■ , <  t x  be some fixed time points in the interval [ 0 , 1 ]  f o r k  =  1 , ..., K  (fixed 

as n —> oo). Then the modified likelihood ratio test process, M t =  M[nt] defined above 

has its finite dimensional distributions converging to those of the squared positive part 

of standardized Brownian motion. That is,

(M t l , . . . ,  M tK)
v ba

i 2
(  B ( tK ) \ +'

i

> • • • i

* 
1

i
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3.4.1 Information-based Design

As mentioned above, in a group sequential study designed according to an a-spending 

function approach, has three steps to follow. First, one has to specify an overall 

probability of type I error,a, and the to ta l sample size needed for attaining certain 

desired power. Secondly, one has to decide the boundary type, which depends on 

the o-spending function, and the times of analysis, which are usually equally spaced 

in the sense that the analysis are performed at equal sample size increments. The 

th ird  step is to compute the monitoring boundaries and start collecting the data. I f  

the analysis times are modified along the way one has to modify the current and the 

future boundaries to adjust for the changes. These steps can also be formulated in 

the context of testing homogeneity of a m ixture using the M LRT and w ith  the help 

of the above theorem.

Suppose that we plan a group sequential study for testing the homogeneity in finite 

m ixture models based on K  interim  analysis. Suppose that these interim  analysis 

are planned at time points 0  =  to <  £i, • • • > <  t x  =  1 when rii, . . . ,nx  cumulative 

samples are collected. Suppose also that we intend using a boundary based on a(t), 

an a-spending function. As we mentioned earlier, a(t)  gives the cumulative portion 

of the Type I error that has been spent on or prior to the fcth interim  analysis. The 

boundaries, Ci, c2, . . . ,  ck for monitoring the M LRT statistic at the interim  analysis 

can be computed from the equations

k
Oil +  ••• +  a k =  a (tk) =  £  P { M tl <  c i , . . . ,  M ti_j <  >  Ci\H0}  (3.5)

i = 1
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for k =  1 ,2 , . . . ,  K  and M ti is the M LRT value computed at time ti, i.e., when there is 

rii cumulative sample collected of the to ta l n  planned for. By using the approximating 

positive-part Brownian motion process defined in the theorem, this is almost the same 

as monitoring the process \B + {tk) / and therefore,

a (tk)
fc-i

E p
i ~  1
k - 1

= £ p
f B + (t i)

1 I

<  Cl,

<  y/ci, ■ ■ ■

B + (U. i)  

\ / t i - 1
^  Cj_i, >  C,;|#0

£ + (L - i)
y / L - i

B +(D

V u

-  V "  r  rrr  E Q iz i l  <- /tt—  >  / r i  H \  (o

> v ^ | L T o y (3.6)

7)

The second equality, (3.6), is obvious and the th ird  one, (3.7), follows by arguing that, 

since the numbers ct are all s tric tly  positive, the origin of the if-dim ensional Euclidean 

space is always excluded from the volume of interest by the restriction >  /̂c~. 

Therefore, the parts of the area of interest where some coordinates are negative and 

which, under the positive-part function, are collapsed to the hyperplanes defining 

the positive orthant can be thought of as being expanded back and hence, as giving, 

along w ith  the volume in the positive orthant, the original volume under a multivariate 

normal density of the type given above. Thus, monitoring the process [_B+ (tk)/ a/Pc] 2 

is same as monitoring B ( tk ) / \ / tk • The importance of (3.7) is that we can simply 

use the tabulated critical values for the known group sequential procedures such as 

Pocock and OBF procedures or any software that produces monitoring boundaries 

based on a-spending functions. For instance, if  we were to conduct a group sequential 

monitoring using Pocock’s boundary (which is a constant) w ith  overall significance
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level of a — 0.05, then the desired constant boundary would be c =  C'p(O.l), where 

Cp(O.l) is the Pocock boundary corresponding to the monitoring of a Z-score at level 

a  —  0.1.

In  summary, the steps followed in designing the usual group sequential designs can 

also be followed in testing homogeneity of m ixture via a group sequential MLRT.

!

29

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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In order to assess the performance of the group sequential modified likelihood ratio 

test proposed in the previous chapter, we conduct several Monte Carlo simulations. 

The first two of these Monte Carlo simulations follow the same setups as in Chen et al. 

(2001) and they use Normal and Poisson m ixture models. Apart from the null models 

(where homogeneity is assumed) four normal and four Poisson mixtures w ith  different 

parameters are considered under the alternative hypothesis of non-homogeneity. The 

th ird  simulation considers the binomial m ixture models arising from genetic linkage 

analysis. We briefly introduce the background of the linkage analysis and relate our 

problem as testing the homogeneity in the binomial mixtures. The discussed phase 

known and phase unknown situations are both considered w ith  various parameter 

settings.

4.1 Normal and Poisson Mixtures

The most im portant class of finite m ixture densities is the class of normal mixtures. 

The reasons for the importance and widespread use of normal mixtures are not inci-
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dental. One of the reasons is that a univariate normal distribution has a simple and 

concise representation requiring only two parameters, the mean p and the variance 

<7 2. The normal density is symmetric, unimodal, and assumes the least prior knowl­

edge in estimating an unknown probability density w ith  a given mean and variance. 

These characteristics along w ith  its well-studied status give normal m ixture density 

models the power and effectiveness that other mixtures can hardly surpass. Fields in 

which normal m ixture models are used are various ranging from genetics (Schork et 

al. 1996) to the study of sensitivity of medical screening tests (McDonnell et al. 1998), 

in the absence of gold standard, to machine learning applications. W ith in  the statis­

tical methodology, normal m ixture models have been used in the investigation of the 

performances of certain estimators to  departures from normality and in the develop­

ment of robust estimators. Examples of many other areas where normal mixtures are 

applied can be found in McLachlan and Peel (2000).

The Poisson mixtures are used in many practical situations. Two im portant areas 

of applications for the Poisson mixtures are the modeling of over- or under-dispersion 

and zero-inflation in count data. Often, count data (mostly in toxicological, biological 

and medical data) are modeled as i f  they were coming from a Poisson distribution 

w ith  certain mean (or rate). An im portant assumption of the Poisson distribution is 

that the mean and the variance are equal. Data sets in which evidence against mean- 

variance equality is present are called over- or under-dispersed. One way of dealing 

w ith such data is to fit a m ixture of Poisson distributions w ith  continuous mixing 

variable distributed as Gamma. The second problem referred to as zero-inflated 

Poisson distribution problem. I t  arises when there are more zeros in the data than
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expected by a Poisson distribution. A  common technique to handle such situations is 

to assume that the extra zeros are due to the presence of unobservable subpopulation 

whose counts are zero. Therefore, the model used in such cases is a two-component 

m ixture, one from a Poisson distribution and the other taking only the value zero 

w ith  some probability. However, the use of Poisson mixtures to account for over- 

under-dispersion has received considerable attention in the literature.

In the simulation setups, we draw random variables x t from a m ixture of two 

univariate normal components w ith  common variance o2 and means / ix and j i2 in 

proportions 7  and 1 — 7  so that

f ( x i )  =  l < l > ( x i ] l i u o 3 )  +  ( 1  — 7 ) 0 ( ^ * ;  M 2, ( 4 . 1 )

where

x t  \  1 _ rt) =  —= = - e x p { - - -------- }.
v27rcH * o

Similarly, we draw y* from Poisson mixtures w ith  only two components,

(1_ l))yXJ?±pi+iefW k M .  (4 .2 )
Vi- Vi-

The four alternative normal m ixture models were chosen so tha t each model has 

mean (1 — 7 ) ^ 1  +  j 9 2 =  0 and variance (1 — 7 )6̂  +  7 Q\ =  The four Poisson m ixture 

alternative models are chosen so that each of them has mean (1 — 7 ) ^  +  7 $ 2  =  5 and 

variance (1 — 7 )(0 i -  5) 2 +  7 ( ^ 2  -  5)2 =  1.
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Although Chen et al. (2001) suggested the use of C  =  log(10) =  2.303 for Nor­

mal mixtures w ith  means falling in [—1 0 , 1 0 ], we have found, in the process of our 

simulations, that C — 1 gives better results. The values of the alternative being 

considered are summarized in Table 4.1. Two most commonly used test procedures, 

Pocock’s procedure and O ’Brien &  Fleming’s procedure, are considered in this simu­

lation study.

Normal M ixtures Poisson Mixtures
7 0x 02 7 0i 02

0.50 -0.500 0.500 0.50 4.000 6 .0 0 0

0.75 -0 .8 6 6 0.289 0.75 3.268 5.577
0.90 -1.500 0.167 0.90 2 .0 0 0 5.333
0.95 -2.179 0.115 0.95 0.641 5.229

Table 4.1: Parameters of the normal and Poisson models considered in the simulation 
study

Sample sizes were varied over the set n  =  50,100,150, 200,500, the nominal sig­

nificance levels were varied over a =  0.01,0.05,0.10 and at each combination of the 

above parameters and these sample sizes, 5000 Monte Carlo experiments were per­

formed. Both the rejection rates and average sample sizes are recorded. For compari­

son purposes, results for the nonsequential designs are also reported. This, of course, 

corresponds to K  =  1 (i.e., only one interim  analysis).

Tables (4.2-4.7) report the simulation results for normal M ixtures and Tables (4.8- 

4.13) report the results for Poisson Mixtures. In  general, the proposed procedures have 

similar behaviors w ith  respect to both models, normal and Poisson. The simulated 

Type I errors at actual a — 0.01 are mostly inflated as compared to a =  0.1,0.05. 

This is more so for the Poisson model as compared to the normal and Pocock’s
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procedure as compared to the OBF (see the blocks headed by H 0 in Tables 4.2-4.13). 

The OBF procedure’s simulated type I error is w ith in  the expected lim its in m ajority 

of the cases. This is quite reasonable as the Pocock procedure rejects more often at 

early stages given its straight line boundaries. When a  =  0.05,0.1, both procedures 

maintain their type errors w ith in  the expected lim its although the OBF is much better 

even for these type I error rates. The type I errors deviate more from the actual as 

the number of analyses, K ,  increase (as expected).

In  terms of power, the OBF has slightly higher power than Pocock’s procedure 

and both are lower but comparable to the power of the fixed-sample tests that have 

the same maximum sample size (see the columns headed by number of analysis=l). 

However, the sequential M LRT procedures (Pocock and OBF) both offer an average 

sample saving of 30 — 50% over what a fixed-sample M LRT would require to make the 

same decision. For instance, an OBF procedure for testing homogeneity of normal 

mixtures (see the last row in the block 7  =  0.75 of Table 4.6) w ith  K  =  10 analyses 

has power 97.69 and average sample size (ASN=227) whereas a similar fixed-sample 

test has 98.50 power and n =  500 sample size to detect heterogeneity of the mixture. 

The power of the sequential procedures decrease as K  increases, as expected, and this 

decrease ranges from 0 — 5% for K  ranging from 1 to 10.

Our simulation results for the fixed-sample M LRT design are consistent w ith  those 

of Chen et al. (2001). I t  is evident that the group sequential MLRT, derived in this 

thesis, are well suited for both normal mixtures w ith  known variances and Poisson 

mixtures. Even w ith  a sample as small as 50 and mixtures w ith  very high mixing 

proportions ( 7  =  0.95), the powers of the group sequential MLRTs are s till very
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reasonable. For practical use, however, we would recommend the OBF procedure 

over that of Pocock for it  maintains better the type I error rates.

4.2 Binomial Mixtures: Application to Linkage 

Analysis

Genetic linkage is due to the phenomenon that alleles at different loci on a single 

chromosome are often transmitted together from parent to offspring. On the other 

hand, even when the loci are physically close, alleles on different homologous chro­

mosomes are sometimes transmitted to one offspring. When the la tter occurs, a 

recombination event is said to have separated the two loci. The recombination frac­

tion 9, between two loci is the relative frequency of recombination. I f  the loci are on 

different chromosomes (i.e. 6 =  0.5), which implies no linkage, and i f  they are on the 

same chromosome, we suppose 0 <  9 <  0.5.

There are two situations that commonly occur in human genetics, phase-known 

where the density function is a Binomial d istribution function, and phase-unknown 

where the density function is the weighted sum of two symmetric binomial distribu­

tions (O tt 1999).

Phase-Known: Suppose we consider the case of autosomal linkage. Autosomal 

chromosomes occur as pairs, and i f  two loci are syntenic, then alleles inherited from 

a single parent must be on the same chromosome in the offspring. Autosomal loci 

are said to have known phase if  the d istribution of alleles on chromosome pairs can 

be determined w ithout ambiguity.
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Phase- Unknown: The phase-unknown occurs in many practical applications. For 

example, consider the case of a rare recessive disease, for which two alleles carrying 

a mutation must be present i f  the tra it is expressed. Usually, the grandparents that 

have transmitted the disease alleles can not be determined and therefore, the parental 

phase is unknown even i f  the marker locus is fu lly  informative.

Our main concern here is the detection of genetic linkage when linkage hetero­

geneity exists. Following Morton (1956), by linkage heterogeneity we mean variation 

in the recombination fraction between two loci studied in different families. Smith 

(1963) outlined several reasons for heterogeneity of human linkage data. I t  was postu­

lated that the use of a statistical test that assumes homogeneity when heterogeneity 

is present w ill result in a considerable reduction in power to detect linkage. Testing 

the genetic linkage under heterogeneity is closely related to the problem of statis­

tical inference from m ixture models. Heterogeneity in linkage entails that, both in 

phase-known and phase unknown cases, the binomial models become two-component 

mixtures of binomials. The two components represent linked and unlinked subgroups 

of the population of families in  a study. The density of the binomial m ixture models 

representing the phase-known and phase-unknown are;

•  PK case: f ( x i \  8 ) = jB ( m , 8) +  (1 — ~/)B(m, 1/2)

•  PU case: /(a:,; 8)—7 [(1 /2)B(m , 8) +  (1/2 )B(m, 1 — 0)] +  (1 — 7 )B(m ,  l'/2 ),

where 7  is the fraction w ith  linkage, m  is the family size (which need not be the same 

for all families), 8 is the recombination fraction in the linked families.

Here, we perform extensive Monte Carlo simulations to study the performance 

of the Pocock and OBF group sequential MLRTs for the type of binomial mixtures
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explained above. As before, we take n =  50,100,150,200 and 500 and family sizes of 

m =  2,4,8. The binomial variables x.t, which represent the number of recombinants in 

the family, are generated from the distribution 7 / ( 2:*; 9) +  (1 — 7 ) / ( 2 7 ; 0.5), 0 .< 7  <  1 

and 0 <  9 <  0.5, where fix,/, 9) represents either the single binomial or the symmetric 

weighted binomial described above. The log likelihood function is

n

L ( 1,9) =  ^  lo g i 'y f ix i ,  9) +  (1 -  7 ) f { x i ,  0.5)} +  Clog(4 7 ( 1  -  7 ))
i =  1

for the chosen constant C =  l .  Under the null hypothesis of 9 =  9q =  1/2, both m ix­

tures reduce to B(m,  1/2). To generate the data under the alternatives when a portion 

of the families is linked, we have chosen 7  =  0.1,0.2 and 9 =  0.1,0.01. For instance, 

the combination (7 ,9) =  (0.1,0.1) means that only 10% of the families are linked w ith  

recombination fraction 9 =  0.1. For each set of sample size n — 50,100,150,200,500 

and fam ily sizes m =  2,4,8 under both the null and alternative parameter configu­

rations, 5000 Monte Carlo replicates are generated to estimate the power, the type I 

error and average sample sizes (ASN) for the various testing procedures.

In  this simulation, we have used actual a  =  0.01,0.05,0.1, however, to save the 

space, we only report the results for a  =  0.05. From Tables (4.14-4.25), we can make 

the following remarks:

•  Overall, in the PK case and specially for large fam ily sizes m =  4,8, both 

Pocock and OBF procedures maintain the actual type I error, although again, 

the OBF procedure seems to be doing better. The type I errors are inflated a 

b it in the PU cases for m  =  2 and sometimes for m =  4.
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•  Both Pocock’s procedure and OBF procedure are comparable in terms of power 

for detecting linkage heterogeneity and both are comparable, although b it lower, 

to that of the fixed-sample MLTRs. Both procedures save up to 50% of the 

sample sizes required by the fixed-sample MLRT, but they are about 0 — 5% 

less powerful. For instance, the row headed by n — 150 in the last block 

of Table 4.20 reveals tha t an OBF procedure w ith  K  — 10 analysis would 

detect heterogeneity in populations, where 7  =  2 0 % of the families are linked 

w ith  recombination fraction of 6 =  1%, w ith  power the 95.15% and average 

sample size of ASN=77. This is contrasted w ith the fixed-sample M LRT which 

would require n  =  150 sample size and would detect the same heterogeneity 

w ith  power 95.76%. This means that the OBF group sequential version of the 

M LRT procedure offered an average sample saving of 50% over the fixed-sample 

(nonsequential) design w ith  v irtua lly  no loss of power.

•  The statistical power for all the procedures is considerably smaller in the PU 

case than in the PK. This discrepancy in statistical power between the PK and 

PU cases depends heavily on the percentage of families linked, the recombination 

fraction among those linked and the family size. The power is, in general, 

higher when the fraction of linked families is higher and/or the fraction of 

recombinants w ith in  the linked families is higher. O f course, larger fam ily size 

m  also entails better power as does larger sample size, n. However, one could 

choose to lose some sample sizes by using the OBF procedure in order to have 

a larger statistical power.

In summary, we can again safely recommend the OBF group sequential M LRT
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procedure for testing homogeneity in binomial mixtures that arise from genetic linkage 

analysis. A  caution should be exercised i f  the fam ily sizes are small (m — 2), as the 

type I errors could be inflated, especially in the PU cases.
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Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
H0

50 1.26 (50.00) 1.24 (49.83) 1.08 (49.73) 0.84 (49.73)
100 1.00 (100.00) 1.18 (99.67) 1.38 (99.304) 1.08 (99.36)
150 1.54 (150.00) 1.36 (149.42) 1.30 (148.98) 1.18 (148.96)
200 1.46 (200.00) 1.32 (199.22) 1.40 (198.54) 1.24 (198.70)
500 1.22 (500.00) 1.20 (498.25) 1.22 (497.20) 1.48 (495.58)

7 = 0.50
50 14.32 (50.00) 11.94 (48.74) 11.16 (47.98) 8.80 (48.12)
100 27.18 (100.00) 24.72 (94.64) 21.88 (92.34) 18.66 (92.62)
150 36.68 (150.00) 35.50 (138.62) 32.12 (133.03) 30.06 (131.69)
200 50.58 (200.00) 46.14 (179.36) 41.86 (169.98) 40.46 (167.57)
500 89.60 (500.00) 87.50 (366.45) 84.70 (314.22) 83.04 (298.71)

7 = 0.75
50 15.80 (50.00) 15.94 (49.18) 12.86 (47.70) 11.64 (47.51)
100 31.62 (100.00) 27.52 (94.01) 25.00 (90.09) 24.04 (90.28)
150 46.60 (150.00) 42.16 (136.13) 38.06 (129.08) 34.72 (129.09)
200 58.52 (200.00) 53.60 (175.64) 48.92 (163.64) 47.50 (160.41)
500 94.02 (500.00) 92.42 (346.15) 90.32 (285.22) 89.34 (269.51)

7 =  0.90
50 18.46 (50.00) 17.24 (47.94) 15.24 (47.01) 14.42 (47.03)
100 33.24 (100.00) 30.52 (93.08) 27.72 (89.57) 26.80 (89.13)
150 46.38 (150.00) 43.90 (134.43) 41.70 (126.13) 38.14 (125.58)
200 60.52 (200.00) 55.32 (172.96) 53.04 (159.19) 49.96 (156.54)
500 94.36 (500.00) 93.28 (341.65) 91.22 (278.54) 89.90 (261.89)

7 =  0.95
50 15.26 (50.00) 15.02 (48.13) 13.30 (47.26) 11.98 (47.18)
100 25.26 (100.00) 25.08 (94.23) 24.28 (90.24) 22.08 (89.97)
150 38.00 (150.00) 36.12 (136.92) 32.88 (130.87) 31.92 (128.43)
200 48.98 (200.00) 46.46 (177.56) 42.88 (166.54) 41.60 (163.00)
500 85.94 (500.00) 85.20 (367.35) 82.24 (311.18) 80.42 (299.27)

Table 4.2: Pocock’s Procedure: Normal Mixtures at a =  0.01
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Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Hq

50 4.96 (50.00) 5.12 (49.24) 4.87 (48.77) 5.14 (48.62)
100 5.32 (100.00) 5.70 (98.40) 5.12 (97.20) 5.37 (96.86)
150 5.32 (150.00) 5.52 (147.43) 5.48 (145.66) 5.84 (145.09)
200 4.88 (200.00) 5.21 (196.78) 5.95 (194.64) 5.32 (193.71)

7 = 0.5
500 5.52 (500.00) 5.43 (491.48) 5.14 (485.41) 5.50 (481.00)

50 32.41 (50.00) 28.91 (46.17) 26.34 (44.46) 24.93 (44.05)
100 49.31 (100.00) 46.27 (87.67) 42.74 (82.61) 40.53 (80.96)
150 63.23 (150.00) 59.10 (124.89) 55.27 (113.98) 53.26 (111.63)
200 73.94 (200.00) 70.09 (159.04) 66.11 (140.64) 64.20 (136.25)
500 96.89 (500.00) 96.43 (312.95) 94.69 (237.24) 93.26 (217.84)

7 = 0.75
50 35.14 (50.00) 31.72 (45.82) 29.08 (43.61) 27.41 (43.36)
100 53.33 (100.00) 50.59 (86.30) 47.33 (79.78) 45.02 (78.21)
150 68.99 (150.00) 64.91 (121.82) 58.68 (106.21) 61.90 (109.36)
200 79.74 (200.00) 75.36 (154.07) 71.86 (134.15) 69.93 (128.66)

7 =  0.9
500 98.66 (500.00) 97.96 (297.80) 97.22 (214.88) 96.41 (197.23)

50 34.94 (50.00) 32.82 (45.55) 31.02 (43.21) 29.69 (42.67)
100 53.37 (100.00) 50.98 (85.96) 48.61 (78.39) 46.39 (77.17)
150 67.32 (150.00) 97.68 (131.80) 61.07 (108.99) 60.32 (104.78)
200 76.90 (200.00) 74.48 (153.05) 72.20 (126.63) 64.28 (121.77)
500 97.98 (500.00) 97.68 (297.35) 96.58 (215.76) 96.14 (194.32)

7 =  0.95
50 34.78 (50.00) 34.10 (45.26) 33.62 (42.36) 32.56 (41.61)
100 53.22 (100.00) 51.70 (84.72) 49.66 (77.05) 48.50 (75.40)
150 66.40 (150.00) 65.50 (119.63) 63.76 (104.69) 63.14 (99.95)
200 76.16 (200.00) 76.52 (152.62) 73.72 (127.57) 73.34 (121.01)
500 97.80 (500.00) 97.68 (297.35) 96.96 (212.02) 96.86 (185.76)

Table 4.3: Pocock’s Procedure: Normal Mixtures at a =  0.05
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Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Hq

50 9.06 (50.00) 9.50 (48.49) 9.56 (47.44) 9.12 (47.24)
100 10.26 (100.00) 10.06 (96.80) 10.42 (94.82) 9.24 (94.29)
150 9.70 (150.00) 9.32 (145.73) 10.44 (141.67) 10.52 (140.60)
200 10.56 (200.00) 10.98 (192.70) 10.06 (189.14) 9.96 (187.72)
500 10.44 (500.00) 10.52 (484.10) 10.40 (472.58) 10.68 (467.61)

7 =  0.50
50 41.86 (50.00) 41.14 (44.13) 38.28 (41.08) 34.90 (40.93)
100 61.54 (100.00) 57.80 (82.87) 55.18 (74.24) 52.88 (72.19)
150 74.34 (150.00) 69.92 (117.18) 67.56 (101.16) 65.06 (96.66)
200 83.56 (200.00) 79.84 (146.58) 76.86 (122.64) 75.16 (116.79)
500 98.96 (500.00) 98.14 (290.50) 97.08 (203.14) 96.56 (182.88)

7 =  0.75
50 45.82 (50.00) 44.34 (43.65) 41.86 (40.51) 39.58 (39.49)
100 65.42 (100.00) 63.94 (80.76) 60.26 (71.62) 56.30 (70.23)
150 78.16 (150.00) 75.74 (113.06) 72.72 (96.50) 71.08 (91,94)
200 86.64 (200.00) 84.66 (141.64) 82.00 (114.82) 80.06 (109.80)
500 99.26 (500.00) 99.14 (280.20) 98.44 (185.40) 98.28 (163.94)

7 =  0.90
50 46.12 (50.00) 44.50 (43.27) 42.46 (40.11) 39.42 (39.57)
100 64.16 (100.00) 63.14 (80.75) 60.12 (70.98) 58.66 (68.40)
150 76.56 (150.00) 73.72 (113.97) 72.46 (95.93) 71.58 (90.66)
200 85.12 (200.00) 83.20 (143.40) 79.74 (117.82) 80.42 (107.45)
500 99.06 (500.00) 98.56 (283.60) 98.32 (185.48) 98.26 (161,22)

7 =  0.95
50 39.44 (50.00) 37.44 (44.38) 35.76 (41.47) 35.48 (40.47)
100 54.04 (100.00) 52.70 (84.27) 52.14 (74.52) 48.84 (73.57)
150 66.48 (150.00) 64.08 (119.94) 62.62 (104.04) 61.42 (99.41)
200 74.24 (200.00) 72.08 (153.12) 71.44 (128.18) 69.88 (121.53)
500 95.20 (500.00) 95.38 (308.90) 94.78 (222.10) 84.40 (193.21)

Table 4.4: Pocock’s Procedure: Normal Mixtures at a  =  0.10
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Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
Ho

50 1.34 (50.00) 1.18 (49.92) 1.24 (49.85) 1.16 (49.82)
100 1.42 (100.00) 1.14 (99.85) 1.54 (99.73) 1.06 (99.74)
150 1.42 (150.00) 1.02 (149.78) 1.10 (146.67) 1.18 (149.67)
200 1.30 (200.00) 1.26 (199.60) 1.20 (199.42) 1.34 (199.42)
500 1.10 (500.00) 1.40 (499.10) 1.26 (498.54) 1.32 (498.54)

7 =  0.50
50 13.80 (50.00) 13.04 (49.30) 13.30 (48.56) 12.68 (48.81)
100 27.56 (100.00) 26.48 (96.58) 24.62 (94.51) 24.10 (93.61)
150 38.08 (150.00) 38.58 (142.22) 36.40 (137.39) 36.32 (135.35)
200 49.56 (200.00) 49.10 (185.88) 49.12 (175.16) 48.38 (171.27)
500 90.62 (500.00) 89.40 (393.90) 88.94 (341.40) 87.90 (324.88)

7 =  0.75
50 16.06 (50.00) 15.88 (48.97) 15.42 (48.16) 15.04 (48.03)
100 31.92 (100.00) 30.84 (96.00) 29.62 (92.84) 29.32 (91.91)
150 46.56 (150.00) 45.10 (140.87) 42.62 (134.62) 42.38 (132.16)
200 58.30 (200.00) 55.48 (183.40) 56.60 (169.60) 54.90 (166.49)
500 94.36 (500.00) 93.96 (369.95) 93.30 (316.86) 93.40 (296.92)

7 =  0.90
50 18.48 (50.00) 17.86 (48.69) 17.02 (47.92) 16.82 (47.67)
100 31.90 (100.00) 31.40 (95.73) 30.66 (92.42) 32.14 (90.71)
150 44.96 (150.00) 47.78 (138.30) 45.90 (131.83) 45.02 (129.58)
200 58.54 (200.00) 58.22 (179.94) 57.98 (166.06) 58.36 (161.98)
500 94.54 (500.00) 93.32 (365.60) 93.74 (306.36) 92.12 (291.09)

7 =  0.95
50 15.18 (50.00) 14.74 (48.95) 14.68 (48.19) 14.52 (47.90)
100 26.76 (100.00) 25.48 (96.18) 27.40 (92.74) 26.14 (91.81)
150 37.98 (150.00) 37.44 (141,26) 35.82 (135.09) 36.50 (132.86)
200 45.86 (200.00) 48.38 (183.20) 45.66 (174.24) 46.70 (169.76)
500 86.16 (500.00) 86.06 (391.25) 86.38 (334.80) 85.96 (320.68)

Table 4.5: O BF’s Procedure: Normal M ixtures at a  =  0.01
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Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Hq

50 5.58 (50.00) 5.20 (49.50) 5.04 (49.26) 5.44 (49.13)
100 5.82. (100.00) 6.00 (98.82) 5.56 (98.13) 5.40 (98.16)
150 5.32 (150.00) 5.14 (148.46) 5.34 (147.67) 5.60 (147.14)
200 5.70 (200.00) 5.62 (197.80) 5.14 (196.65) 5.70 (196.04)
500 5.12 (500.00) 5.24 (494.80) 4.96 (492.54) 5.30 (490.42)

7 =  0.50
50 30.98 (50.00) 30.12 (47.24) 30.12 (45.43) 28.76 (45.10)
100 49.42 (100.00) 47.58 (90.27) 47.06 (85.87) 46.56 (83.07)
150 62.02 (150.00) 61.68 (128.49) 60.04 (119.09) 60.76 (114.88)
200 73.80 (200.00) 72.88 (165.04) 70.32 (150.33) 69.46 (144.50)
500 97.06 (500.00) 96.90 (329.30) 96.56 (266.14) 96.40 (246.91)

7 =  0.75
50 35.32 (50.00) 33.90 (46.67) 33.32 (44.87) 31.12 (44.53)
100 54.10 (100.00) 53.28 (89.02) 52.88 (82.71) 50.40 (81.88)
150 68.92 (150.00) 67.26 (127.52) 65.04 (116.22) 66.08 (111.83)
200 78.70 (200.00) 78.66 (159.74) 76.62 (141.92) 75.24 (138.13)
500 98.50 (500.00) 98.34 (309.55) 98.18 (243.56) 97.69 (227.12)

7 =  0.90
50 34.60 (50.00) 34.98 (46.37) 33.14 (44.72) 33.52 (44.03)
100 53.12 (100,00) 53.32 (88.26) 52.16 (81.70) 50.96 (80.83)
150 67.64 (150.00) 67.14 (126.08) 66.36 (113.81) 65.18 (109.81)
200 76.94 (200.00) 75.80 (160.32) 75.24 (141.50) 75.72 (141.50)
500 97.76 (500.00) 97.76 (309.50) 97.82 (242.70) 97.98 (220.27)

7 =  0.95
50 29.88 (50.00) 29.74 (46.69) 28.92 (45.27) 28.04 (44.80)
100 44.02 (100.00) 42.56 (90.59) 44.22 (84.70) 44.16 (82.81)
150 56.48 (150.00) 56.10 (130.11) 56.72 (119.26) 53.94 (117.74)
200 67.82 (200.00) 65.08 (167.36) 66.10 (149.34) 65.64 (144.93)
500 93.88 (500.00) 93.18 (340.75) 93.18 (275.16) 92.80 (254.37)

Table 4.6: O BF’s Procedure: Normal M ixtures at a — 0.05
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4 Simulations

Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
H0

50 9.48 (50.00) 8.94 (48.91) 9.70 (48.28) 9.14 (48.23)
100 9.38 (100.00) 10.34 (97.48) 10.22 (96.43) 9.30 (96.23)
150 10.32 (150.00) 10.34 (146.13) 10.36 (144.27) 9.78 (144.29)
200 10.46 (200.00) 9.86 (194.96) 9.98 (192.22) 10.86 (191.82)
500 10.00 (500.00) 10.04 (488.70) 10.78 (480.52) 11.24 (476.63)

7 =  0.50
50 43.13 (50.00) 42.36 (45.18) 41.08 (42.72) 40.32 (42.04)
100 62.06 (100.00) 60.32 (84.71) 59.32 (77.89) 58.48 (75.46)
150 74.08 (150.00) 72.68 (119.84) 72.22 (107.03) 71.94 (102.58)
200 82.16 (200.00) 81.92 (151.38) 80.82 (129.86) 80.32 (125.61)
500 98.98 (500.00) 98.62 (298.30) 98.38 (225.14) 98.02 (206.82)

7 = 0.75
50 46.42 (50.00) 45.44 (44.58) 42.94 (42.49) 44.08 (41.22)
100 66.50 (100.00) 65.02 (82.70) 62.88 (75.28) 62.92 (72.81)
150 77.88 (150.00) 77.02 (117.18) 77.20 (102.23) 75.26 (98.58)
200 86.72 (200.00) 85.04 (147.64) 83.46 (126.75) 84.56 (117.60)
500 99.54 (500.00) 99.10 (289.00) 98.90 (208.34) 98.96 (188.33)

7 =  0.90
50 45.10 (50.00) 45.36 (44.50) 44.18 (41.66) 44.28 (40.74)
100 63.50 (100.00) 63.54 (83.13) 63.26 (74.76) 61.46 (73.49)
150 75.22 (150.00) 76.30 (116.55) 74.52 (101.42) 75.32 (97.97)
200 83.92 (200.00) 83.76 (147.18) 82.86 (124.88) 83.88 (116.82)
500 99.10 (500.00) 98.96 (289.40) 98.54 (212.24) 98.68 (186.61)

7 — 0.95
50 37.00 (50.00) 38.44 (44.88) 39.00 (42.66) 37.82 (41.90)
100 54.68 (100.00) 53.74 (85.66) 54.04 (78.17) 53.04 (76.83)
150 66.04 (150.00) 64.52 (122.34) 65.34 (108.34) 65.34 (104.56)
200 74.20 (200.00) 74.14 (156.32) 75.12 (133.89) 73.02 (129.74)
500 96.32 (500.00) 95.74 (317.60) 96.08 (242.46) 95.28 (224.49)

Table 4.7: O BF’s Procedure: Normal M ixtures at a — 0.10
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 1.32 (50.00) 1.34 (49.93) 1.32 (49.86) 1.02 (49.88)
100 1.10 (100.00) 1.22 (99.73) 1.26 (99.72) 1.50 (99.65)
150 1.40 (150.00) 1.36 (149.73) 1.54 (149.53) 1.30 (149.55)
200 1.60 (200.00) 1.18 (199.60) 1.76 (199.24) 1.14 (199.34)
500 1.18 (500.00) 1.12 (499.40) 1.84 (497.92) 1.04 (498.91)

7 =  0.50 ■
50 9.26 (50.00) 8.80 (48.97) 7.78 (48.52) 7.54 (48.33)
100 18.20 (100.00) 16.52 (96.41) 14.46 (94.84) 12.64 (94.78)
150 26.18 (150.00) 23.98 (142.56) 19.94 (139.39) 19.86 (137.45)
200 34.50 (200.00) 32.02 (185.82) 27.40 (180.58) 25.98 (179.02)
500 74.56 (500.00) 68.84 (411.55) 64.78 (374.32) 63.88 (359.67)

7 =  0.75
50 13.80 (50.00) 12.24 (48.66) 11.22 (48.02) 9.68 (47.82)
100 26.66 (100.00) 24.62 (94.53) 22.26 (92.14) 19.90 (91.76)
150 39.14 (150.00) 36.36 (137.94) 33.66 (132.21) 30.26 (130.70)
200 50.80 (200.00) 46.04 (178.38) 43.64 (168.78) 40.58 (166.34)
500 89.66 (500.00) 87.86 (364.00) 85.10 (310.60) 83.36 (296.88)

7 = 0.90
50 29.14 (50.00) 28.14 (46.64) 25.76 (45.18) 23.70 (44.83)
100 54.02 (100.00) 50.66 (87.57) 48.16 (81.40) 44.08 (80.30)
150 69.72 (150.00) 67.86 (123.00) 63.74 (109.62) 62.44 (107.36)
200 81.42 (200.00) 78.42 (153.62) 77.58 (131.76) 76.76 (124.74)
500 99.56 (500.00) 99.28 (281.90) 99.24 (195.16) 98.88 (175.77)

7 = 0.95
50 62.16 (50.00) 60.46 (41.12) 59.32 (36.67) 57.30 (35.65)
100 86.28 (100.00) 84.86 (70.96) 84.38 (57.80) 83.64 (52.85)
150 95.00 (150.00) 94.20 (95.31) 94.28 (69.76) 94.12 (61.81)
200 98.46 (200.00) 97.96 (116.66) 98.04 (77.64) 97.50 (68.74)
500 99.98 (500.00) 100.0 (251.40) 100.0 (121.48) 100.0 (88.17)

Table 4.8: Pocock’s Procedure: Poisson M ixtures at cc =  0.01
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 5.42 (50.00) 5.76 (49.11) 5.88 (48.46) 5.54 (48.32)
100 5.38 (100.00) 5.40 (98.37) 5.90 (97.02) 6.46 (96.10)
150 5.32 (150.00) 5.36 (147.42) 5.40 (145.85) 5.62 (145.23)
200 4.84 (200.00) 5.00 (197.00) 6.26 (193.54) 6.08 (192.77)

7 =  0.50
500 5.2 (500.00) 5.28 (492.40) 6.06 (484.70) 5.38 (481.75)

50 23.82 (50.00) 22.30 (47.02) 21.06 (45.47) 20.54 (44.92)
100 38.94 (100.00) 35.52 (90.67) 32.80 (85.54) 31.58 (84.64)
150 49.76 (150.00) 46.14 (131.79) 42.18 (123.40) 39.50 (121.07)
200 59.08 (200.00) 54.90 (170.34) 51.02 (155.31) 48.90 (151.86)
500 89.90 (500.00) 87.40 (353.45) 83.16 (294.86) 82.94 (275.53)

7 =  0.75
50 32.02 (50.00) 28.94 (46.22) 26.88 (44.07) 24.98 (43.89)
100 49.72 (100.00) 46.06 (87.77) 41.72 (82.25) 41.42 (79.81)
150 63.82 (150.00) 59.06 (125.24) 55.38 (113.11) 53.28 (110.00)
200 72.56 (200.00) 68.46 (159.60) 66.26 (139.88) 63.82 (136.43)
500 96.94 (500.00) 95.90 (308.80) 94.46 (235.52) 93.66 (216.92)

7 =  0.90
50 49.20 (50.00) 44.96 (43.62) 42.86 (40.67) 41.98 (39.51)
100 70.86 (100.00) 68.78 (79.44) 66.50 (68.74) 65.16 (65.95)
150 85.56 (150.00) 83.50 (108.30) 80.20 (88.85) 80.30 (84.15)
200 92.32 (200.00) 90.32 (134.64) 88.62 (106.68) 88.54 (96.74)
500 99.88 (500.00) 99.82 (263.50) 99.78 (157.16) 99.82 (131.72)

7 =  0.95
50 72.08 (50.00) 71.42 (38.62) 71.30 (32.52) 69.22 (31.02)
100 91.14 (100.00) 91.48 (65.39) 90.04 (49.17) 89.92 (44.57)
150 96.92 (150.00) 97.42 (88.23) 96.94 (59.24) 97.22 (51.32)
200 99.16 (200.00) 99.20 (110.48) 98.88 (67.12) 98.88 (55.97)
500 99.98 (500.00) 100.0 (250.70) 100.0 (113.40) 100.0 (78.01)

Table 4.9: Pocock’s Procedure: Poisson Mixtures at a  =  0.05
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4 Simulations

Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
Ho

50 9.72 (50.00) 9.74 (48.55) 10.96 (47.11) 10.98 (46.63)
100 10.36 (100.00) 9.80 (96.90) 10.56 (94.36) 10.58 (93.66)
150 10.00 (150.00) 10.10 (145.25) 9.66 (141.96) 11.32 (139.54)
200 9.64 (200.00) 10.22 (193.14) 10.54 (188.81) 10.94 (186.23)
500 11.16 (500.00) 10.48 (483.15) 11.52 (468.82) 10.92 (465.33)

7 =  0.50
50 34.88 (50.00) 33.00 (45.18) 30.50 (43.00) 30.74 (41.85)
100 50.84 (100.00) 47.64 (85.40) 45.90 (78.62) 43.78 (76.77)
150 61.78 (150.00) 58.78 (123.45) 54.48 (111.84) 52.64 (107.27)
200 71.24 (200.00) 67.62 (157.54) 63.76 (138.52) 62.42 (132.03)
500 94.22 ( (500.00) 92.42 (323.50) 90.48 (251.02) 89.22 (229.49)

7 =  0.75
50 41.94 (50.00) 41.22 (44.03) 38.74 (40.82) 36.36 (40.24)
100 60.76 (100.00) 59.66 (82.19) 54.92 (74.00) 53.32 (71.79)
150 74.78 (150.00) 71.12 (116.45) 68.18 (99.93) 65.80 (96.20)
200 82.72 (200.00) 79.88 (146.60) 76.82 (122.07) 75.32 (115.88)
500 98.70 (500.00) 97.66 (291.50) 97.46 (201.52) 96.82 (179.46)

7 =  0.90
50 58.58 (50.00) 55.70 (41.42) 53.94 (36.98) 52.94 (36.08)
100 79.96 (100.00) 76.66 (74.18) 76.66 (61.28) 74.20 (57.45)
150 90.16 (150.00) 88.14 (102.02) 86.16 (79.87) 85.48 (73.14)
200 95.34 (200.00) 94.46 (125.74) 92.96 (92.94) 91.58 (83.63)
500 99.96 (500.00) 99.86 (258.25) 99.84 (143.24) 99.88 (114,13)

7 = 0.95
50 76.76 (50.00) 75.72 (37.22) 76.08 (30.57) 74.40 (28.94)
100 93.64 (100.00) 93.22 (63.19) 92.92 (44.83) 91.96 (40.48)
150 98.36 (150.00) 98.36 (85.65) 98.36 (53.84) 97.80 (45.87)
200 99.18 (200.00) 99.46 (107.44) 99.36 (61.67) 99.38 (49.44)
500 100.0 (500.00) 100.0 (250.45) 100.0 (110.24) 100.0 (72.72)

Table 4.10: Pocock’s Procedure: Poisson M ixtures at a =  0.10
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4 Simulations

Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
H0

50 1.32 (50.00) 1.34 (49.93) 1.32 (49.86) 1.02 (49.88)
100 1.10 (100.00) 1.22 (99.73) 1.26 (99.72) 1.50 (99.65)
150 1.40 (150.00) 1.36 (149.73) 1.54 (149.53) 1.30 (149.55)
200 1.60 (200.00) 1.18 (199.60) 1.76 (199.24) 1.14 (199.34)
500 1.18 (500.00) 1.12 (499.40) 1.84 (497.92) 1.04 (498.91)

7 =  0.50
50 10.66 (50.00) 9.26 (49.53) 7.96 (49.20) 9.08 (49.20)
100 17.16 (100.00) 17.48 (97.84) 16.22 (96.53) 16.18 (96.53)
150 26.70 (150.00) 24.84 (145.58) 24.88 (141.72) 23.62 (141.72)
200 33.84 (200.00) 33.88 (191.46) 32.84 (184.97) 32.20 (182.41)
500 73.90 (500.00) 73.46 (436.16) 71.40 (397.34) 71.22 (382.35)

7 =  0.75
50 15.18 (50.00) 14.66 (49.10) 13.54 (48.60) 13.90 (48.22)
100 27.18 (100.00) 26.04 (96.67) 26.50 (93.88) 25.16 (93.19)
150 40.44 (150.00) 38.60 (142.26) 39.10 (135.30) 37.12 (134.24)
200 50.82 (200.00) 50.58 (184.84) 49.88 (175.47) 48.44 (171.64)
500 90.02 (500.00) 89.80 (389.10) 88.60 (339.74) 88.30 (319.11)

7 =  0.90
50 30.76 (50.00) 28.50 (47.69) 28.48 (46.28) 28.82 (45.75)
100 53.08 (100.00) 52.56 (90.36) 51.76 (85.17) 49.72 (83.55)
150 70.74 (150.00) 70.52 (128.22) 68.90 (115.55) 67.88 (113.41)
200 83.26 (200.00) 81.10 (161.38) 81.24 (141.54) 81.34 (134.20)
500 99.38 (500.00) 99.54 (296.85) 99.36 (232.36) 99.20 (210.92)

7 =  0.95
50 62.90 (50.00) 60.78 (42.41) 62.40 (38.27) 61.72 (37.29)
100 85.76 (100.00) 86.64 (73.15) 86.14 (61.53) 84.76 (58.74)
150 95.36 (150.00) 95.50 (98.28) 94.88 (77.24) 94.56 (71.26)
200 98.76 (200.00) 98.58 (118.60) 98.34 (87.89) 98.40 (78.94)
500 100.0 (500.00) 100.0 (252.10) 100.0 (136.48) 100.0 (112.94)

Table 4.11: O BF’s Procedure: Poisson M ixtures at a — 0.01
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4 Simulations

Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
Ho

50 5.70 (50.00) 5.84 (49.46) 5.62 (49.03) 5.64 (49.03)
100 5.40 (100.00) 5.24 (98.84) 5.66 (98.28) 5.12 (98.11)
150 5.58 (150.00) 5.14 (148.52) 6.08 (148.52) 6.20 (146.98)
200 5.38 (200.00) 5.12 (197.89) 5.34 (197.88) 5.80 (195.82)
500 5.28 (500.00) 5.10 (494.35) 5.94 (494.35) 5.54 (490.46)

7 =  0.50
50 25.58 (50.00) 22.82 (47.85) 22.76 (46.72) 23.90 (45.95)
100 38.08 (100.00) 36.42 (92.70) 35.94 (89.62) 35.82 (87.62)
150 48.26 (150.00) 48.46 (135.18) 46.28 (128.48) 46.40 (124.91)
200 58.32 (200.00) 57.66 (176.38) 57.44 (163.39) 57.28 (157.71)
500 90.10 (500.00) 89.52 (368.85) 89.14 (315.66) 88.06 (299.95)

7 =  0.75
50 31.68 (50.00) 31.98 (46.99) 30.64 (45.30) 28.50 (45.04)
100 48.16 (100.00) 48.04 (89.98) 46.52 (85.01) 46.94 (82.89)
150 62.30 (150.00) 62.12 (129.66) 59.82 (119.84) 60.54 (115.07)
200 73.32 (200.00) 71.52 (165.00) 71.80 (148.19) 71.74 (142.44)
500 97.18 (500.00) 96.66 (326.45) 96.04 (264.90) 96.18 (243.20)

7 =  0.90
50 48.34 (50.00) 47.66 (44.58) 46.40 (40.71) 48.22 (40.71)
100 70.80 (100.00) 70.48 (81.41) 70.74 (71.27) 68.16 (71.27)
150 85.64 (150.00) 83.98 (113.16) 83.06 (97.31) 83.38 (91.52)
200 91.30 (200.00) 91.20 (140.92) 90.84 (115.86) 91.08 (107.52)
500 99.90 (500.00) 99.90 (268.10) 99.88 (182.36) 99.90 (162.48)

7 = 0.95
50 72.12 (50.00) 71.00 (39.67) 71.66 (34.33) 70.94 (32.85)
100 91.00 (100.00) 91.12 (67.33) 91.60 (52.82) 90.94 (49.05)
150 97.36 (150.00) 97.32 (90.11) 97.58 (64.33) 97.44 (57.84)
200 98.96 (200.00) 99.12 (112.94) 99.18 (74.20) 99.06 (64.92)
500 99.98 (500.00) 100.0 (251.30) 100.0 (120.72) 100.0 (91.96)

Table 4.12: O BF’s Procedure: Poisson Mixtures at a =  0.05
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4 Simulations

Size

Number of Analysis
1 2 5 10

a ASN a ASN a ASN a ASN
H0

50 10.58 (50.00) 10.14 (48.75) 9.90 (48.26) 10.62 (47.94)
100 9.68 (100.00) 10.76 (97.21) 11.50 (95.80) 10.48 (95.62)
150 9.72 (150.00) 10.34 (146.52) 10.64 (144.05) 11.18 (143.10)
200 10.02 (200.00) 9.76 (195.64) 10.42 (192.44) 10.66 (191.08)
500 10.16 (500.00) 10.12 (488.05) 10.74 (479.34) 10.94 (477.77)

7 =  0.50
50 35.72 (50.00) 33.86 (46.27) 35.20 (43.82) 34.74 (43.13)
100 51.22 (100.00) 48.52 (88.33) 47.74 (82.57) 46.66 (81.00)
150 62.06 (150.00) 60.52 (126.77) 60.54 (114.80) 57.80 (113.93)
200 70.64 (200.00) 69.84 (162.52) 67.58 (147.12) 68.44 (140.52)
500 93.76 (500.00) 93.24 (334.15) 92.66 (272.20) 93.26 (252.32)

7 =  0.75
50 45.22 (50.00) 41.70 (45.05) 41.10 (42.41) 40.44 (41.73)
100 61.70 (100.00) 60.46 (84.49) 58.74 (77.62) 57.82 (75.76)
150 74.36 (150.00) 71.44 (121.16) 71.66 (106.68) 70.18 (102.95)
200 82.84 (200.00) 80.60 (152.76) 80.40 (130.53) 79.92 (125.31)
500 98.44 (500.00) 98.22 (301.15) 97.70 (227.72) 98.20 (206.16)

7 = 0.90
50 58.78 (50.00) 57.66 (44.58) 57.40 (40.71) 55.74 (40.71)
100 79.80 (100.00) 78.58 (81.41) 77.16 (71.27) 78.24 (71.27)
150 89.90 (150.00) 88.92 (113.16) 88.42 (97.31) 87.76 (91.52)
200 95.62 (200.00) 94.74 (140.92) 94.32 (115.86) 93.96 (107.52)
500 99.96 (500.00) 99.98 (268.10) 99.98 (182.36) 99.88 (162.48)

7 =  0.95
50 76.72 (50.00) 77.74 (37.34) 76.52 (31.81) 76.28 (30.20)
100 93.70 (100.00) 92.86 (64.51) 93.48 (47.98) 94.06 (43.35)
150 98.16 (150.00) 97.46 (86.73) 98.38 (58.42) 97.82 (52.19)
200 99.18 (200.00) 99.58 (109.02) 99.42 (68.40) 99.44 (57.78)
500 100.0 (500.00) 100.0 (250.40) 100.0 (115.28) 100.0 (82.92)

Table 4.13: O BF’s Procedure: Poisson M ixtures at a  =  0.10
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Ho

50 4.72 (50.00) 4.90 (49.13) 5.28 (48.56) 5.94 (48.18)
100 5.50 (100.00) 4.48 (98.60) 5.32 (97.30) 5.56 (96.41)
150 4.78 (150.00) 4.58 (147.92) 5.15 (146.17) 4.98 (145.52)
200 4.94 (200.00) 5.24 (196.92) 5.18 (194.73) 4.58 (194.73)

i-H 
i—I

O 
o

 
il 

1!

500 4.84 (500.00) 5.06 (491.95) 4.96 (487.28) 4.40 (486.16)

50 18.92 (50.00) 19.58 (47.24) 17.94 (45.86) 18.18 (44.97)
100 30.52 (100.00) 27.40 (92.56) 28.32 (88.34) 24.04 (87.83)
150 39.62 (150.00) 36.68 (135.30) 34.02 (129.02) 33.28 (125.19)
200 48.48 (200.00) 45.04 (177.58) 41,44 (163.71) 39.76 (162.66)

7 =  0.1 
0 = 0.01

500 78.96 ■ (500.00) 76.44 (381.85) 74.70 (324.64) 71.30 (321.96)

50 24.82 (50.00) 25.30 (46.19) 23.40 (44.81) 23.32 (42.27)
100 41.54 (100.00) 37.84 (90.08) 37.04 (84.26) 32.84 (80.46)
150 53.90 (150.00) 50.12 (129.03) 46.12 (121.58) 45.58 (116.48)
200 62.04 (200.00) 59.46 (168.04) 54.94 (152.38) 54.40 (135.67)

CN 
i—I

o 
o

II 
II

500 91.48 (500.00) 91.40 (337.30) 89.02 (271.54) 87.26 (260.92)

50 48.24 (50.00) 46.50 (43.22) 42.82 (40.81) 42.78 (38.78)
100 73.08 (100.00) 69.60 (79.26) 68.32 (69.59) 61.98 (67.81)
150 85.74 (150.00) 83.76 (108.26) 80.84 (93.38) 79.42 (87.73)
200 93.52 (200.00) 92.30 (134.84) 90.70 (107.36) 87.98 (103.02)

7 = 0.2 
6 = 0.01

500 99.96 (500.00) 99.92 (261.50) 99.80 (156.28) 99.80 (133.46)

50 62.30 (50.00) 61.66 (40.90) 57.54 (37.20) 57.50 (35.20)
100 87.04 (100.00) 84.62 (71.89) 83.62 (59.46) 80.66 (55.19)
150 96.00 (150.00) 94.50 (96.17) 94.50 (75.01) 92.32 (68.21)
200 98.98 (200.00) 98.28 (117.42) 98.28 (84.66) 97.46 (76.36)
500 100.0 (500.00) 100.0 (251.45) 100.0 (124.36) 100.0 (98.38)

Table 4.14: Pocock’s Procedure: Binomial Mixtures at a  =  0.05 m =2 (PK)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Ho

50 5.82 (50.00) 5.10 (49.22) 5.14 (48.68) 5.48 (48.16)
100 4.92 (100.00) 5.18 (98.42) 5.28 (97.28) 4.64 (97.34)
150 5.02 (150.00) 5.12 (147.62) 5.44 (145.74) 4.98 (145.48)
200 4.34 (200.00) 4.92 (196.76) 5.20 (194.99) 5.70 (193.08)

II 
1! 

p 
o

 
f—1 

i—‘

500 5.22 (500.00) 5.20 (492.65) 5.24 (486.78) 5.04 (484.88)

50 36.70 (50.00) 35.00 (45.36) 34.14 (42.45) 31.48 (41.50)
100 55.62 (100.00) 51.96 (85.69) 49.18 (78.65) 48.28 (76.53)
150 67.80 (150.00) 66.40 (121.35) 64.64 (107.26) 62.70 (101.78)
200 77.54 (200.00) 77.78 (153.04) 74.48 (129.78) 73.48 (124.20)

7 =  0.1 
8 =  0.01

500 98.70 (500.00) 98.56 (293.85) 97.94 (210.44) 98.06 (186.36)

50 50.88 (50.00) 49.84 (43.07) 47.00 (39.49) 46.00 (37.86)
100 77.86 (100.00) 72.50 (77.26) 72,42 (66.48) 70.56 (63.17)
150 89.00 (150.00) 86.92 (106.25) 86.74 (85.58) 85.46 (77.45)
200 95.14 (200.00) 94.82 (131.04) 93.48 (97.22) 93.72 (90.49)

ry ---  f | 0

500 99.96 (500.00) 99.98 (257.30) 100.0 (144.58) 99.98 (120.17)
f ---  \J.£

8 = 0.1 50 77.82 (50.00) 75.12 (38.24) 75.02 (32.14) 72.50 (30.32)
100 95.96 (100.00) 94.58 (63.78) 94.72 (47.62) 93.10 (44.12)
150 99.16 (150.00) 99.08 (84.86) 98.96 (56.83) 98.28 (49.55)
200 99.82 (200.00) 99.86 (106.38) 99.86 (63.40) 99.86 (54.86)

7 =  0.2 
8 = 0.01

500 100.0 (500.00) 100.0 (250.05) 100.0 (108.92) 100.0 (75.93)

50 92.44 (50.00) 92.64 (33.19) 91.34 (25.58) 90.36 (22.94)
100 99.74 (100.00) 99.60 (54.18) 99.62 (35.05) 99.40 (29.23)
150 100.0 (150.00) 100.0 (76.64) 99.89 (41.56) 100.0 (33.15)
200 100.0 (200.00) 100.0 (100.54) 100.0 (47.52) 100.0 (37.42)
500 100.0 (500.00) 100.0 (250.00) 100.0 (100.70) 100.0 (57.94)

Table 4.15: Pocock’s Procedure: Binomial M ixtures at a =  0.05 m =4 (PK)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN <x ASN
Ho

50 4.94 (50.00) 5.68 (49.13) 5.30 (48.60) 4.84 (49.60)
100 5.08 (100.00) 5.18 (98.40) 5.78 (96.97) 5.22 (96.95)
150 5.28 (150.00) 5.76 (147.41) 5.60 (145.82) 5.64 (144.94)
200 4.14 (200.00) 5.60 (196.50) 5.66 (194.09) 5.64 (192.97)

ft 
II 

p 
o

 
i—1 

l—i

500 4.74 (500.00) 5.18 (491.00) 5.74 (484.68) 5.10 (485.69)

50 67.06 (50.00) 67.72 (38.78) 68.16 (33.77) 67.26 (32.10)
100 90.12 (100.00) 89.56 (67.85) 89.30 (51.09) 88.68 (47.80)
150 97.14 (150.00) 97.14 (92.01) 97.00 (63.98) 96.36 (56.15)
200 99.16 (200.00) 99.14 (111.78) 99.10 (72.49) 99.02 (61.42)

7 =  0.1 
0 = 0.01

500 100.0 (500.00) 100.0 (250.65) 100.0 (115.42) 100.0 (82.36)

50 90.44 (50.00) 91.14 (31.69) 90.28 (25.25) 89.94 (23.68)
100 99.00 (100.00) 99.22 (55.40) 99.32 (33.86) 99.24 (29.61)
150 99.92 (150.00) 99.92 (78.26) 99.92 (44.61) 99.88 (32.12)
200 99.98 (200.00) 100.0 (100.84) 100.0 (50.06) 99.98 (37.42)

1! 
II 

p 
o

b-* 
tO

500 100.0 (500.00) 100.0 (250.05) 100.0 (100.96) 100.0 (56.12)

50 96.96 (50.00) 96.78 (29.43) 96.38 (20.87) 96.66 (18.21)
100 99.94 (100.00) 99.92 (51.82) 99.92 (28.25) 99.96 (22.86)
150 100.0 (150.00) 100.0 (78.40) 100.0 (36.15) 100.0 (25.90)
200 100.0 (200.00) 100.0 (100.06) 100.0 (43.81) 100.0 (29.40)

7 =  0.2 
0 =  0.01

500 100.0 (500.00) 100.0 (250.00) 100.0 (100.14) 100.0 (52.62)

50 99.94 (50.00) 99.89 (28.53) 99.94 (14.73) 99.82 (12.02)
100 100.0 (100.00) 100.0 (50.14) 100.0 (21.67) 100.0 (15.28)
150 100.0 (150.00) 100.0 (75.00) 100.0 (31.30) 100.0 (18.52)
200 100.0 (200.00) 100.0 (100.50) 100.0 (40.43) 100.0 (23.07)
500 100.0 (500.00) 100.0 (250.00) 100.0 (100.00) 100.0 (50.09)

Table 4.16: Pocock’s Procedure: Binomial M ixtures at a =  0.05 m = 8  (PK)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 6.34 (50.00) 4.88 (49.43) 4.44 (48.84) 6.64 (47.75)
100 4.52 (100.00) 4.98 (98.44) 5.06 (97.13) 5.02 (96.79)
150 3.96 (150.00) 5.50 (147.30) 5.16 (146.35) 4.68 (145.90)
200 5.22 (200.00) 4.66 (196.94) 5.06 (194.86) 4.80 (193.93)

II 
II 

o 
o

h-* 
H-1

500 4.42 (500.00) 5.80 (491.40) 5.20 (486.66) 5.18 (483.53)

50 13.36 (50.00) 9.82 (48.98) 10.06 (47.71) 12.12 (46.30)
100 14.44 (100.00) 14.52 (95.76) 13.70 (93.86) 13.28 (92.58)
150 17.30 (150.00) 18.10 (142.31) 16.32 (139.72) 15.16 (138.40)
200 24.54 (200.00) 18.82 (189.66) 19.40 (183.73) 17.48 (181.17)

rw -- f| 1
500 39.80 (500.00) 38.76 (450.90) 34.80 (426.54) 32.16 (422.21)

j — A/. i. 
0 = 0.01 50 19.48 (50.00) 15.46 (48.34) 14.10 (46.99) 15.64 (45.46)

100 22.58 (100.00) 22.24 (93.88) 19.76 (91.10) 19.00 (90.15)
150 29.52 (150.00) 28.14 (139.40) 26.84 (133.87) 25.64 (131.93)
200 39.36 (200.00) 33.52 (183.22) 31.56 (173.84) 28.96 (171.30)

7 =  0.2 
9 =  0.1

500 67.96 (500.00) 67.18 (405.10) 60.26 (370.14) 56.66 (361.64)

50 27.42 (50.00) 19.68 (47.93) 19.08 (46.10) 20.68 (44.17)
100 33.82 (100.00) 32.24 (81.11) 28.72 (87.67) 27.52 (86.15)
150 45.08 (150.00) 42.64 (132.92) 40.88 (125.84) 36.18 (125.09)
200 57.68 (200.00) 49.94 (172.68) 47.82 (162.09) 43.58 (157.32)

7 =  0.2 
9 =  0.01

500 88.82 (500.00) 87.40 (358.55) 82.50 (303.68) 78.74 (294.83)

50 42.40 (50.00) 35.20 (46.25) 30.30 (43.68) 33.82 (41.27)
100 58.62 (100.00) 55.62 (83.87) 52.20 (78.10) 48.00 (76.23)
150 74.98 (150.00) 72.74 (118.73) 67.28 (107.45) 64.46 (105.26)
200 86.74 (200.00) 81.44 (149.08) 80.06 (127.40) 74.76 (122.22)
500 99.72 (500.00) 99.54 (276.05) 98.10 (192.34) 98.72 (172.54)

Table 4.17: Pocock’s Procedure: Binomial Mixtures at a =  0.05 m = 2  (PU)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 3.50 (50.00) 3.84 (49.60) 4.36 (49.39) 4.20 (49.07)
100 4.82 (100.00) 4.56 (99.13) 4.08 (98.83) 4.42 (98.59)
150 4.74 (150.00) 4.98 (148.49) 4.50 (148.11) 4.54 (147.63)
200 5.00 (200.00) 4.48 (198.48) 4.88 (196.94) 4.74 (197.00)

<35 II 
II 

o 
o

F-1

500 4.94 (500.00) 5.56 (494.65) 4.28 (493.90) 4.82 (491.77)

50 24.48 (50.00) 23.48 (46.83) 23.12 (44.97) 21.82 (44.32)
100 42.48 (100.00) 38.00 (90.93) 35.26 (85.57) 32.66 (84.05)
150 56.38 (150.00) 52.00 (129.05) 47.78 (118.86) 45.08 (116.80)
200 65.90 (200.00) 61.96 (165.28) 55.70 (152.75) 53.96 (145.84)

7 =  0.1 
e =  o.oi

500 94.86 ■ (500.00) 93.36 (331.15) 90.30 (266.32) 89.22 (250.75)

50 42.36 (50.00) 38.22 (44.90) 35.84 (42.64) 36.92 (40.72)
100 67.14 (100.00) 64.42 (82.37) 58.58 (75.40) 57.80 (70.84)
150 82.26 (150.00) 77.42 (113.57) 74.58 (97.94) 73.26 (93.76)
200 90.66 (200.00) 87.76 (140.86) 85.70 (117.19) 83.96 (109.58)

CM 
i—i

o 
o

 
II 

II

500 99.88 (500.00) 99.88 (267.45) 99.72 (172.76) 99.56 (150.84)

50 61.08 (50.00) 57.54 (42.14) 53.80 (38.61) 51.88 (36.88)
100 87.08 (100.00) 83.88 (73.55) 80.94 (61.88) 78.94 (57.89)
150 95.54 (150.00) 94.96 (96.83) 92.96 (75.37) 91.72 (70.38)
200 98.84 (200.00) 97.80 (118.68) 97.24 (87.28) 97.02 (77.46)

7 = 0.2 
8 = 0.01

500 100.0 (500.00) 100.0 (251.95) 100.0 (129.02) 100.0 (100.64)

50 86.74 (50.00) 82.70 (36.29) 81.76 (30.02) 79.14 (28.42)
100 98.38 (100.00) 97.98 (59.47) 97.22 (42.20) 97.16 (37.04)
150 99.90 (150.00) 97.22 (79.68) 99.80 (49.06) 99.74 (42.89)
200 100.0 (200.00) 97.16 (102.26) 99.98 (56.44) 100.0 (45.07)
500 100.0 (500.00) 100.0 (250.00) 100.0 (103.44) 100.0 (66.49)

Table 4.18: Pocock’s Procedure: Binomial Mixtures at a  =  0.05 m =4 (PU)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 5.14 (50.00) 5.92 (49.20) 5.62 (48.58) 5.02 (48.52)
100 5.40 (100.00) 5.16 (98.33) 5.04 (97.49) 5.06 (96.97)
150 4.54 (150.00) 5.10 (147.51) 5.46 (145.79) 5.60 (144.81)
200 5.32 (200.00) 4.68 (197.20) 6.22 (193.50) 5.88 (192.46)

*“H 
i—H

o 
o

 
II 

II

500 4.74 (500.00) 6.00 (491.25) 5.16 (486.92) 4.96 (484.84)

50 68.10 (50.00) 69.34 (38.41) 67.02 (34.06) 66.54 (32.23)
100 89.08 (100.00) 89.12 (67.85) 89.06 (51.22) 87.40 (48.69)
150 97.26 (150.00) 96.92 (91.82) 97.10 (64.67) 96.42 (55.96)
200 98.96 (200.00) 99.14 (113.24) 99.22 (72.64) 99.00 (60.07)

7 =  0.1 
6 =  0.01

500 100.0 (500.00) 100.0 (250.55) 100.0 (116.16) 100.0 (82.82)

50 89.50 (50.00) 90.70 (31.89) 90.16 (25.34) 90.64 (90.64)
100 99.44 (100.00) 99.06 (55.64) 99.10 (33.80) 99.18 (99.18)
150 99.88 (150.00) 99.90 (77.84) 100.0 (44.33) 99.94 (100.0)
200 100.0 (200.00) 99.98 (100.96) 100.0 (50.54) 100.0 (100.0)

II 
II 

p 
o

 
bo

500 100.0 (500.00) 100.0 (250.00) 100.0 (100.72) 100.0 (100.0)

50 96.98 (50.00) 97.00 (31.89) 96.86 (25.34) 96.54 (23.46)
100 99.98 (100.00) 100.0 (55.64) 99.94 (33.80) 99.94 (29.48)
150 100.0 (150.00) 100.0 (77.84) 100.0 (44.33) 100.0 (32.67)
200 100.0 (200.00) 100.0 (100.96) 100.0 (50.54) 100.0 (37.19)

7 =  0.2 
6 = 0.01

500 100.0 (500.00) 100.0 (250.00) 100.0 (100.72) 100.0 (56.77)

50 99.92 (50.00) 99.88 (25.84) 99.84 (14.67) 99.92 (12.17)
100 100.0 (100.00) 100.0 (50.12) 100.0 (21.74) 100.0 (15.61)
150 100.0 (150.00) 100.0 (75.00) 100.0 (31.40) 100.0 (18.34)
200 100.0 (200.00) 100.0 (100.00) 100.0 (40.44) 100.0 (23.16)
500 100.0 (500.00) 100.0 (250.00) 100.0 (100.0) 100.0 (50.09)

Table 4.19: Pocock’s Procedure: Binomial M ixtures at a  =  0.05 m = 8  (PU)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a. ASN a ASN
H0

50 4.56 (50.00) 4.72 (49.57) 4.94 (49.19) 4.62 (49.20)
100 5.56 (100.00) 4.78 (99.05) 5.08 (98.46) 5.10 (98.03)
150 5.00 (150.00) 4.86 (148.38) 4.82 (147.67) 4.88 (147.56)
200 5.00 (200.00) 5.30 (197.84) 4.58 (197.29) 4.72 (196.54)

7 =  0.1 
9 =  0.1

500 4.72 (500.00) 4.92 (495.95) 5.20 (482.36) 5.08 (490.92)

50 18.92 (50.00) 21.46 (47.13) 19.58 (47.13) 20.58 (46.49)
100 31.22 (100.00) 28.82 (94.77) 29.78 (91.05) 29.92 (89.30)
150 40.22 (150.00) 38.08 (138.54) 37.92 (132.43) 37.58 (130.78)
200 50.00 (200.00) 46.50 (180.52) 46.10 (171.81) 46.08 (167.64)

7 =  0.1 
9 — 0.01

500 80.08 (500.00) 79.48 (402.00) 78.22 (353.90) 77.16 (339.52)

50 24.90 (50.00) 27.22 (47.87) 25.36 (46.20) 26.18 (45.29)
100 41.16 (100.00) 38.98 (92.32) 37.90 (88.17) 39.80 (85.64)
150 52.58 (150.00) 48.88 (133.65) 49.28 (125.67) 48.98 (124.53)
200 62.04 (200.00) 60.96 (172.76) 61.78 (158.97) 59.76 (155.07)

II 
II

© 
O

 
*y—1 

to

500 91.52 (500.00) 91.36 (361.35) 90.90 (303.84) 90.08 (284.87)

50 47.44 (50.00) 49.78 (45.47) 46.96 (42.62) 47.18 (41.23)
100 73.46 (100.00) 71.62 (83.84) 71.62 (74.60) 71.04 (70.82)
150 68.72 (150.00) 85.92 (112.44) 84.08 (98.56) 84.92 (94.10)
200 93.38 (200.00) 92.64 (139.92) 92.28 (118.00) 92.90 (110.98)

7 =  0.2 
0 =  0.01

500 99.96 (500.00) 99.82 (268.55) 99.94 (186.80) 99.86 (167.47)

50 62.36 (50.00) 63.28 (43.25) 61.48 (39.30) 62.76 (38.04)
100 86.64 (100.00) 85.90 (76.56) 86.10 (64.01) 84.72 (60.05)
150 95.76 (150.00) 95.16 (99.45) 94.54 (82.45) 95.16 (77.00)
200 98.82 (200.00) 98.76 (121.22) 98.68 (94.50) 98.46 (87.68)
500 100.0 (500.00) 100.0 (252.00) 99.98 (146.88) 100.0 (128.79)

Table 4.20: O BF’s Procedure: Binomial M ixtures at a =  0.05 m =2 (PK)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 5.42 (50.00) 5.46 (49.48) 5.76 (49.13) 5.34 (49.03)
100 4.84 (100.00) 5.04 (98.97) 5.28 (98.42) 5.14 (98.29)
150 4.96 (150.00) 5.22 (148.38) 5.34 (147.42) 6.34 (146.65)
200 4.52 (200.00) 5.36 (198.10) 5.20 (196.71) 4.88 (196.62)

II 
II 

p 
o

 
H-1 

i—1

500 5.28 (500.00) 4.92 (494.20) 4.54 (492.80) 5.26 (490.72)

50 35.80 (50.00) 35.74 (46.28) 34.80 (44.30) 38.02 (43.15)
100 55.96 (100.00) 53.30 (88.33) 53.66 (81.68) 54.02 (78.86)
150 68.72 (150.00) 67.78 (124.85) 68.86 (112.03) 67.00 (108.71)
200 77.86 (200.00) 78.50 (160.12) 78.56 (138.96) 76.38 (133.60)

7 =  0.1 
e =  o.oi

500 98.60 (500.00) 98.68 (305.85) 98.66 (236.24) 98.82 (213.94)

50 50.20 (50.00) 51.80 (43.72) 51.04 (41.20) 54.04 (39.53)
100 75.66 (100.00) 73.04 (81.07) 74.00 (70.93) 72.90 (68.89)
150 88.18 (150.00) 89.06 (107.45) 87.88 (92.58) 88.12 (85.90)
200 95.54 (200.00) 95.10 (136.36) 95.02 (107.41) 94.88 (99.88)

CN 
i—H

© 
o

II 
II

500 99.94 (500.00) 100.0 (259.30) 99.98 (169.82) 99.98 (144.95)

50 78.50 (50.00) 77.02 (39.26) 76.82 (34.59) 78.84 (32.39)
100 95.78 (100.00) 95.40 (66.60) 94.70 (52.42) 95.10 (49.20)
150 99.38 (150.00) 99.38 (87.14) 99.24 (65.45) 98.92 (58.80)
200 99.90 (200.00) 99.88 (108.14) 99.92 (73.90) 99.82 (67.12)

7 =  0.2 
.0 =  0.01

500 100.0 (500.00) 100.0 (250.10) 100.0 (119.74) 100.0 (98.79)

50 92.60 (50.00) 92.24 (34.00) 92.66 (28.15) 92.76 (25.87)
100 99.76 (100.00) 99.60 (56.13) 99.58 (38.89) 99.46 (35.29)
150 100.0 (150.00) 100.0 (76.88) 99.98 (47.44) 100.0 (41.27)
200 100.0 (200.00) 100.0 (100.60) 100.0 (53.50) 100.0 (46.57)
500 100.0 (500.00) 100.0 (250.00) 100.0 (102.02) 100.0 (70.64)

Table 4.21: O BF’s Procedure: Binomial M ixtures at a =  0.05 in=4 (PK)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a. ASN a ASN a ASN
H0

50 4.92 (50.00) 4.92 (49.52) 5.34 (49.19) 5.24 (49.13)
100 5.04 (100.00) 5.58 (98.73) 5.64 (98.32) 4.88 (98.32)
150 4.54 (150.00) 4.96 (148.46) 4.84 (147.74) 5.22 (147.18)
200 5.18 (200.00) 4.72 (198.22) 4.80 (197.13) 5.08 (196.62)

7 =  0.1 
e =  o .i

500 4.96 (500.00) 5.12 (495.10) 4.36 (493.26) 5.38 (491.00)

50 67.88 (50.00) 68.50 (41.37) 67.90 (36.24) 68.04 (33.92)
100 89.76 (100.00) 89.38 (70.66) 89.84 (58.18) 89.36 (53.82)
150 97.26 (150.00) 97.16 (94.43) 97.06 (70.70) 97.30 (64.46)
200 98.90 (200.00) 99.24 (115.38) 99.24 (81.68) 99.28 (72.39)

7 =  0.1 
e = o .o i

500 100.0 (500.00) 100.0 (250.65) 100.0 (128.92) 100.0 (103.44)

50 90.18 (50.00) 89.80 (36.21) 90.32 (27.56) 90.56 (24.91)
100 99.26 (100.00) 99.30 (55.89) 99.38 (39.48) 99.26 (34.81)
150 99.98 (150.00) 99.98 (78.23) 99.94 (46.43) 99.97 (39.78)
200 100.0 (200.00) 99.98 (100.84) 99.98 (56.01) 100.0 (44.49)

II 
II

O 
O

1

500 100.0 (500.00) 100.0 (250.05) 100.0 (102.38) 100.0 (65.01)

50 97.10 (50.00) 96.98 (31.14) 97.02 (22.77) 97.38 (20.07)
100 100.0 (100.00) 99.96 (52.37) 99.96 (32.34) 99.94 (28.13)
150 100.0 (150.00) 100.0 (74.41) 100.0 (39.77) 100.0 (33.14)
200 100.0 (200.00) 100.0 (100.08) 100.0 (47.29) 100.0 (37.16)

7 =  0.2 
e = o .o i

500 100.0 (500.00) 100.0 (250.00) 100.0 (100.26) 100.0 (58.87)

50 99.74 (50.00) 99.82 (27.04) 99.88 (15.54) 99.86 (13.06)
100 100.0 (100.00) 100.0 (50.05) 100.0 (24.20) 100.0 (19.47)
150 100.0 (150.00) 100.0 (75.00) 100.0 (31.83) 100.0 (22.40)
200 100.0 (200.00) 100.0 (100.00) 100.0 (40.98) 100.0 (25.34)
500 100.0 (500.00) 100.0 (250.00) 100.0 (100.0) 100.0 (50.48)

Table 4.22: O BF’s Procedure: Binomial M ixtures at a =  0.05 m = 8  (PK)
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4 Simulations

Number of Analysis

H n

7 =  0.1 
9 =  0.1

7 =  0.1 
9 =  0.01

7 =  0.2 
0 =  0.1

7  =  0.2 
0 =  0.01

1 2 5 10
Size a ASN a ASN a ASN a ASN

50 6.04 (50.00) 4.10 (49.54) 5.14 (49.33) 4.96 (49.24)
100 4.32 (100.00) 5.52 (99.27) 5.02 (98.64) 5.14 (98.41)
150 4.50 (150.00) 5.00 (148.70) 5.24 (147.48) 5.26 (147.62)
200 5.48 (200.00) 4.78 (198.42) 5.00 (196.90) 5.86 (195.82)
500 5.04 (500.00) 4.96 (495.20) 4.54 (493.84) 5.10 (491.41)

50 13.34 (50.00) 10.66 (48.92) 10.64 (48.61) 11.72 (48.30)
100 13.26 (100.00) 15.60 (97.85) 14.12 (96.37) 14.72 (95.13)
150 17.20 (150.00) 19.66 (144.88) 18.78 (141.03) 18.36 (142.09)
200 24.72 (200.00) 22.62 (192.30) 19.44 (188.66) 21.46 (185.23)
500 42.20 (500.00) 39.74 (463.55) 39.12 (444.24) 36.72 (437.69)

50 17.94 (50.00) 15.34 (48.45) 14.84 (48.22) 15.46 (47.78)
100 22.92 (100.00) 25.52 (96.35) 22.50 (94.04) 22.50 (92.77)
150 29.24 (150.00) 31.58 (142.20) 30.46 (135.79) 30.38 (135.99)
200 39.86 (200.00) 37.34 (186.96) 34.48 (179.77) 35.48 (175.29)
500 68.06 (500.00) 67.50 (428.90) 66.62 (390.80) 64.56 (383.01)

50 25.84 (50.00) 20.06 (47.75) 21.22 (47.22) 22.54 (46.69)
100 33.82 (100.00) 35.70 (94.41) 33.34 (91.02) 32.18 (89.61)
150 44.36 (150.00) 46.12 (136.95) 45.48 (127.63) 45.06 (128.59)
200 58.06 (200.00) 54.36 (179.92) 51.66 (167.63) 53.32 (161.58)
500 88.86 (500.00) 87.94 (379.50) 87.46 (329.84) 85.42 (316.92)

50 41.88 (50.00) 34.64 (46.39) 35.30 (45.44) 37.12 (44.36)
100 60.06 (100.00) 61.08 (89.14) 56.62 (83.16) 56.52 (79.94)
150 74.28 (150.00) 75.18 (124.30) 74.08 (108.74) 73.60 (109.46)
200 86.66 (200.00) 83.78 (156.46) 81.16 (138.02) 83.12 (128.90)
500 99.52 (500.00) 99.52 (293.65) 99.38 (225.20) 99.32 (206.55)

Table 4.23: O BF’s Procedure: Binomial M ixtures at a =  0.05 m =2 (PU)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
Ho

50 3.60 (50.00) 3.64 (49.60) 4.36 (49.34) 4.60 (49.17)
100 4.52 (100.00) 4.80 (99.18) 4.22 (98.85) 4.78 (98.53)
150 4.72 (150.00) 4.42 (148.85) 4.44 (147.72) 4.30 (148.07)
200 5.04 (200.00) 4.78 (198.32) 5.34 (196.98) 5.08 (196.75)

7 = 0.1 
0 =  0.1

500 5.26 (500.00) 4.90 (495.55) 4.88 (492.78) 4.88 (491.33)

50 25.32 (50.00) 24.82 (47.85) 24.74 (46.34) 26.04 (45.57)
100 42.72 (100.00) 41.44 (92.32) 39.90 (88.22) 39.54 (86.50)
150 55.88 (150.00) 54.06 (134.06) 53.30 (125.22) 52.28 (121.30)
200 67.00 (200.00) 65.40 (172.84) 61.44 (158.25) 62.52 (153.71)

7 =  0.1 
0 = 0.01

500 94.92 ■ (500.00) 93.48 (352.10) 93.34 (294.70) 92.52 (276.08)

50 42.28 (50.00) 41.70 (45.98) 41.14 (43.70) 40.92 (42.83)
100 67.24 (100.00) 66.26 (84.77) 65.34 (77.38) 65.84 (75.36)
150 82.84 (150.00) 81.18 (118.55) 79.60 (105.56) 79.60 (99.09)
200 90.38 (200.00) 89.14 (149.20) 88.44 (124.66) 88.76 (119.33)

I! 
1!

© 
o  

H-1 
to

500 99.90 (500.00) 99.88 (276.90) 99.86 (203.70) 99.86 (182.45)

50 58.76 (50.00) 60.48 (43.41) 59.64 (39.95) 58.06 (39.17)
100 86.62 (100.00) 85.66 (76.18) 84.50 (66.74) 85.14 (62.99)
150 95.90 (150.00) 95.52 (102.06) 94.58 (85.19) 94.44 (79.00)
200 98.86 (200.00) 98.38 (123.78) 98.28 (96.44) 98.08 (89.86)

7 = 0.2 
0 =  0.01

500 100.0 (500.00) 100.0 (252.90) 100.0 (150.92) 100.0 (132.19)

50 87.62 (50.00) 86.02 (38.70) 85.00 (33.00) 84.92 (30.72)
100 98.42 (100.00) 98.60 (60.79) 98.02 (48.74) . 98.38 (44.25)
150 99.96 (150.00) 99.80 (81.81) 99.88 (58.88) 99.82 (52.47)
200 100.0 (200.00) 99.98 (103.74) 99.98 (66.12) 100.0 (59.52)
500 100.0 (500.00) 100.0 (250.00) 100.0 (109.60) 100.0 (89.32)

Table 4.24: O BF’s Procedure: Binomial M ixtures at a =  0.05 m =4 (PU)
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4 Simulations

Number of Analysis
1 2 5 10

Size a ASN a ASN a ASN a ASN
H0

50 4.64 (50.00) 4.52 (49.63) 3.64 (49.44) 4.90 (49.20)
100 4.56 (100.00) 4.42 (99.08) 4.92 (98.54) 4.76 (98.46)
150 4.88 (150.00) 4.64 (148.71) 4.06 (148.06) 4.94 (147.36)
200 4.04 (200.00) 4.60 (198.26) 4.50 (197.54) 3.86 (197.41)

1! 
II 

p 
o

500 5.20 (500.00) 5.22 (495.45) 4.90 (492.98) 4.68 (492.29)

50 61.30 (50.00) 61.26 (42.82) 58.98 (39.44) 60.92 (37.77)
100 85.38 (100.00) 85.22 (75.44) 84.96 (63.33) 84.04 (60.20)
150 94.56 (150.00) 94.18 (102.45) 94.08 (82.43) 94.08 (76.19)
200 97.80 (200.00) 97.96 (124.12) 98.04 (94.75) 98.08 (86.37)

7 =  0.1 
0 = 0.01

500 99.94 (500.00) 100.0 (254.25) 100.0 (147.34) 100.0 (126.05)

50 83.18 (50.00) 84.70 (36.63) 85.22 (30.59) 83.80 (29.27)
100 98.58 (100.00) 98.42 (59.87) 98.46 (42.95) 98.62 (38.71)
150 99.86 (150.00) 99.82 (81.50) 99.82 (54.47) 99.80 (47.35)
200 100.0 (200.00) 99.96 (102.86) 99.98 (59.18) 100.0 (51.47)

7 = 0.2 
<1 =  0.1

500 100.0 (500.00) 100.0 (250.10) 100.0 (104.94) 100.0 (73.23)

50 94.24 (50.00) 95.04 (33.13) 94.10 (26.63) 94.54 (24.24)
100 99.74 (100.00) 99.74 (54.35) 99.80 (36.69) 99.84 (32.33)
150 100.0 (150.00) 100.0 (77.00) 99.96 (46.11) 99.98 (39.32)
200 100.0 (200.00) 100.0 (100.36) 100.0 (52.51) 100.0 (44.15)

7 =  0.2 
6 =  0.01

500 100.0 (500.00) 100.0 (250.00) 100.0 (101.56) 100.0 (67.41)

50 99.54 (50.00) 99.54 (27.25) 99.54 (18.99) 99.36 (16.25)
100 100.0 (100.00) 100.0 (50.35) 100.0 (25.12) 100.0 (20.19)
150 100.0 (150.00) 100.0 (75.00) 100.0 (33.58) 100.0 (26.18)
200 100.0 (200.00) 100.0 (100.00) 100.0 (41.40) 100.0 (28.95)
500 100.0 (500.00) 100.0 (250.00) 100.0 (100.0) 100.0 (51.26)

Table 4.25: OBF’s Procedure: Binomial M ixtures at a =  0.05 m = 8  (PU)
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5 Application and Concluding Remarks

5.1 Application to Accident Data

There has been considerable research conducted on the development of statistical 

models for predicting accidents. Despite numerous advancements made for improv­

ing the estimation tools of statistical models, the most common probabilistic structure 

used for modelling accidents remains the trad itional Poisson distribution. Accidents 

data have been shown to exhibit over-dispersion, meaning that the variance is greater 

than the mean. The over-dispersion can be caused by various factors, such as data 

clustering, unaccounted temporal correlation, model misidentification. Lord et al. 

(2005) shows tha t as the number of trials increases and becomes very large, the dis­

tribu tion  may be approximated by a Poisson process, where the magnitude of the 

over-dispersion is dependent on the characteristics of the Poisson trials. As stated in 

Chapter 4, finite Poisson mixtures are useful for describing situations where random­

ness and Over dispersion are present. Since we do not have any control over when 

or where an accident would happen, it  is very d ifficu lt to conduct an experiment in 

accident data. However, by allowing interim looks, one could access the data several
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5 Application and Concluding Remarks

times before the complete collection of observations. In this chapter, we w ill apply 

the proposed procedure for testing the homogeneity in the case of a finite Poisson 

m ixture which is illustrated by a real data set example.

We first briefly review the data set. I t  refers to the number of accidents incurred 

by 414 machinists over a period of three months. I t  was first analyzed by Greenwood 

and Yule (1920). They tried to f it  a simple poisson model to the data and noticed 

that the result was very poor(y2 =  57.81 w ith  d .f  =  2) for the null hypothesis that 

there is only one component in the model). Karlis and Xekalaki (1999) suggest that a 

notable improvement could be achieved by using the Poisson m ixture models. Their 

procedure leads to the selection of the model w ith  a 3-component Poisson mixture. 

Table (5.1) reports the detail of the data.

Number of Accidents 0 1 2 3 4 5 6 7 8

Frequency 296 74 26 8  4 4 1 0  1

Table 5.1: Number of accidents incurred by 414 machinists over a period of 3 months

The test procedure we raised here addresses the homogeneity of population of 

accidents. We focus on the null hypothesis k — 1 versus k =  2 as the alternative 

hypothesis, where k is the number of components in the model. Our main concern is 

to check the valid ity of the modified likelihood ratio test. A t the beginning stage of 

the test, we use the whole data set to check whether we get the same conclusion as 

Karlis and Xekalaki (1999) that the data comes from a finite Poisson mixture. The 

result of the M LRT test gives us a clear answer that the hypothesis of one Poisson 

component is rejected in favor of the alternative that the data comes from a two- 

component Poisson m ixture (y 2 =  86.33 w ith  p-value=0).
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5 Application and Concluding Remarks

After the prelim inary analysis, the proposed group sequential test procedure is 

conducted w ith  combinations of a different number of analysis (K  =  2,5 and 10) 

and Type I errors (a =  0.01,0.05 and 0.10). The original data is in  the order as 

shown in Table (5.1). We randomly shuffled the 414 observations in the data, to 

make sure that the order in which the data arrives is not systematic. A fter each 

shuffling, we perform a group sequential M LRT and record the analysis at which the 

null hypothesis is rejected and the M LRT statistic value at that stopping time. The 

results are reported in the Table (5.2).

Pocock’s Procedure
K Stop Time

O BF’s Procedure
K Stop Time

cr =  0 .0 1 a =  0 .0 1

2 1 2 1

5 2 5 1

1 0 3 1 0 3
a =  0.05 a =  0.05

2 1 2 1

5 1 5 1

1 0 1 1 0 3
a =  0 .1 0 a =  0 .1 0

2 1 2 1

5 1 5 2

1 0 1 1 0 3

Table 5.2: Group Sequential M LRT for the Machinists accident Data

As we see from Table 5.2, the group sequential modified likelihood ratio test gives 

an excellent result. Most of the tests stop at the first look and largely save the sample 

size. Especially for tests w ith  K  =  5 and 10, only about 1/4 of the to ta l sample size is 

used to conclude the result. This example once again supports the practical benefits 

of the M LRT in group sequential analysis.
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5 Application and Concluding Remarks

5.2 Conclusions and Discussions

The problem of testing homogeneity in finite m ixture model has been investigated 

by many authors. I t  has been shown in the statistical literature that the classical 

asymptotic theory for likelihood ratio test is not applicable because the null hypothesis 

is on the boundary of the parameter space rather than in its interior, as assumed in 

the classical theory. In this thesis we have considered a modified likelihood ratio test 

(MLRT) for such homogeneity hypotheses. The M LRT has nice asymptotic properties 

and quite good power in detecting heterogeneity. We provided some group sequential 

versions of the M LRT and studies their power, type I error rates and average sample 

sizes they require for detecting a genuine heterogeneity. We applied the methods to 

simulated data sets using Normal, Poisson and Binomial mixtures. We also applied 

the methods to data set concerned w ith  the number of accidents incurred by 414 

machinists over a period of three months.

We conclude from our simulation study that the O’Brien-Fleming (OBF) group 

sequential M LRT gives very promising results. I t  can reduce the sample needed 

for detecting heterogeneity in finite m ixture models to almost half of what a nonse­

quential, w ith  the same type I error and the same power, would require. The good 

performance of the OBF procedure holds in all the three models considered, namely 

Poisson, Normal and Binomial, but in particular it  is strongly displayed in  the case 

of the binomial mixtures that arise from genetic linkage analysis. As human genetic 

linkage studies are usually run over a long period of time in order to collect familial 

data, the proposed sequential methods would greatly reduce the cost and time needed 

for such studies.
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5 Application and Concluding Remarks

The group sequential procedures presented can be extended to other sim ilar tests 

of homogeneity of mixtures such as the score statistic proposed by Liang and Rathouz 

(1999), which enjoys a very good power.

Also, one could extend these methods to testing two-component mixtures against 

an alternative of three or more component mixtures and mixtures where the kernel 

density function has also nuisance parameters. For instance, Chen et al. (2004) extend 

the M LRT to finite m ixture models w ith  high dimensions (i.e. k >  2 components 

distribution):

f { x ,  6i) =  71 f ( x ,  0 i) +  ... +  7 kf (x,  Ok)

with the penalty term C Y^!l= i l°g(27i), where 0\ <  ... <  9k and ^  7 ,; =  1 , as before. 

The asymptotic null d istribution of this higher dimensional M LRT would also be a 

mixture of y 2 distributions w ith  m ixing proportions depending on the model param­

eters. However, in these cases, the nice Brownian motion approximations that we 

have used to obtain the group sequential version, may not be as easy.
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Appendix A: Five Regularity Conditions on 
Kernel Distribution

C o n d itio n  1. Wald’s integrability conditions. The kernel function f i x ,  6) satisfies 
Wald’s integrability conditions for consistency of the maximum likelihood estimate. 
I t  is sufficient to assume, for each 6 G ©

1. E\ logf(x, f f ) \  <  oo

2. There exists p such that E[ logf (x,  0, />)] <  oo,where

Since the m ixture d istribution is identifiable and the space of densities is compact 
under the weak topology of distribution functions, the M LE of these densities as a 
distribution function is consistent.

C o n d itio n  2. Smoothness. The kernel function f i x ,  9) has common support and 
is twice continuously differentiable w ith respect to 0. The first two derivatives are 
denoted by f i x , 9) and f i x , 9).

C o n d itio n  3. Strong identifiability. The kernel function f i x .  0) is strongly iden­
tifiable. We say f i x .  0) is strongly identifiab ility in the sense that, for any G\  and G2 

such that

we must have G-\ =  G-2 - The kernel function f i x , 9), together w ith  its first two 
derivatives f ' ( x , 0 )  and f i x .  0) are also identifiable in the following sense: for any

f i x ,  0,p) =  1 +  sup { f { x ,  9' )}
\ 0 ' - 0 \ < P
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Appendix A : Five Regularity Conditions on Kernel D istribution

Ox ^  6*2 in 0 ,

2

y ,  a j f ( x ,  Oj) +  b j f  0 , (9j) +  c3/ " { x ,  Oj) =  0 , for all x,

implies that aj  =  bj — Cj =  0 , j  =  1 , 2 .
The identifiab ility required here is stronger than ordinary in the sense that, be­

sides f ( x , 0 ) itself, the first two derivatives are also identifiable. Chen (1995) proves 
that location and scale kernels are strongly identifiable if  / (± o o , 0) =  / '(± o o , 6) =  0 . 
Using this argument, we can show that all regular exponential families are strongly 
identifiable.

C o n d itio n  4. Uniform strong law condition o f large numbers. There exits inte- 
grable g w ith  some <5 >  0 such that |Y^ ( # ) |4+<5 <  g{Xf)  and |T/((9)|3 < g(X f) for all 
0 G ©, where Yi{6) is as defined in (2.6).

C o n d itio n  5. Tightness. The processes Y l^ 'iO )  and n } Y ” (0)
are tight, where Yi(0) and Zi(0) are defined as in (2.9) and (2.10).

The tightness condition ensures the weak convergence of the processes. I t  is noted 
that the tightness of n r 1 A ^ Y f O )  is in fact implied by Condition 4.
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