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Abstract

Query rewriting using views is a technique for answering a query using a set of views 

instead of accessing the database relations directly. There are two categories of rewritings,

i.e., equivalent rewriting using materialized views applied in query optimization, and 

maximally contained rewriting used in data integration. Although maximally contained 

rewriting is acceptable in data integration, there are cases where an equivalent rewriting 

is desired. More importantly, the maximally contained rewriting is a union of all the 

contained queries, many of which are redundant. This thesis gives an efficient algorithm 

to find a complete and equivalent rewriting that is a single conjunctive query. We proved 

that the algorithm is guaranteed to find all the complete and equivalent rewritings, and 

that the produced rewriting is guarantee to be equivalent without additional containment 

checking. We showed that our algorithm is much faster than other algorithms by 

complexity analysis and experiments.

Keywords: query rewriting, data integration, containment mapping.
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Chapter 1 

Introduction

1.1 Application Background

Query rewriting using views is also known as answering query using views [1] or query 

folding [2]. Informally speaking, the problem can be described as following: given a 

i query on a database schema, and a set of views over the same schema, how can the query 

be rewritten so that it partially or completely refers to the set of views? Query rewriting 

plays a very important role in many database management applications, such as query 

optimization [3, 4], data integration [5, 6, 7, 8], and data warehouse [9, 10, 11].

In query optimization, some views are created to perform the frequently executed query 

operations, and the results of these views are stored in disk for future uses. These views 

are called materialized views. Given a query posed over database relations, if it can be 

answered using materialized views, then the evaluation process of this query will become 

more efficient, because some computations are pre-performed by the materialized views. 

Therefore, from the query optimization point of view, query rewriting is to generate 

logical plan that is equivalent to the original query using materialized views.

In the context of data integration, query rewriting using views is also unavoidably 

involved into the process of answering queries. Some well-known data integration

1
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systems, such as Information Manifold [5] and Infomaster [12], provide a uniform query 

interface to a number of heterogeneous data sources. In order to do so, the data 

integration system first defines a global schema according to a particular application, and 

then describes all data sources as views over the global schema. Users pose queries over 

the global schema as well. Global schema, however, is a set of virtual relations, which 

means there is no actual data stored in them. In order to answer those queries, the system 

has to find rewritings of the queries that only refer to data source descriptions (views). 

The rewriting result might be a union of several queries that are contained in the original 

query.

This thesis focuses on the discussion of query rewriting algorithms for data integration 

applications. Thus in the next section, we will talk about data integration architecture in 

more detail.

1.2 Data Integration

1.2.1 Introduction

Along with the booming of World Wide Web, there is tons of information on the Internet. 

Apart from the Web, there is also a large number of public databases and many other 

types of information sources that can be accessed through the Internet. However, how

2
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can we make efficient use of all those information? Data integration system is one of the 

solutions to this problem.

Data integration system provides uniform access to various distributed heterogeneous 

information sources. The information sources can include traditional database systems, 

structured data like XML files, or even semi-structured data like information in HTML 

pages. Data integration system frees the users from finding information from many 

t different sources and then manually combining them together. Taking advantages of data 

integration architecture, users are able to pose queries against a uniform schema, without 

knowing the type of data sources that is used behind.

In previous researches, several information integration systems have been proposed.

•  Information manifold, a project of AT&T Lab [5].

•  TSIMMIS, a cooperative project between Stanford University and IBM [6].

•  Infomaster, a practical integration system from Stanford University [12].

•  SIMS, a service and information management system for decision support [13].

1.2.2 Data Source Modeling

Data integration system is also known as mediator system. The two approaches to define 

mediator and information descriptor are as follows.

3
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1. Global-As-View (GAV) approach defines the mediator schema as views in terms of 

the schema of information sources. The mediator schema is considered as a set of 

query patterns. A query is defined in terms of mediator schema. A query can be 

answered by the mediator if it matches one of those patterns, otherwise it cannot be 

handled. When a data source is added into or removed from the mediator, the 

mediator schema has to be reformulated. Some known data integration systems are 

based on GAV approach, for example, TSIMMIS, a cooperative project between 

Stanford University and IBM [6], TSIMMIS uses GAV approach although it adopts 

a different rule language.

2. Local-As-View (LAV) approach is the opposite of GAV. The mediator schema in 

LAV is a global virtual schema designed according to the need of specific 

application. It is called virtual schema because there is no data actually stored in the 

mediator schema. Both user queries and source descriptions are defined in terms of 

the global schema.. In order to answer a query, the system first rewrites the query 

using source description views, and then retrieves the best result from the rewritings.

Since the virtual mediator schema contains no data, the rewritten query must only 

refer to data descriptions (views). Because some data sources might be incomplete, 

the system allows a rewritten query not equivalent to the original query, but to be 

able to retrieve the maximal answer set based on all available data sources.

4
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Adding or deleting an information source is just creating or removing a source 

descriptor. Therefore, the data integration system based on LAV approach has 

excellent extendibility and is suitable for Internet based applications. Information 

Manifold system from AT&T Lab [5] and Infomaster system from Stanford 

University [12] are two famous data integration systems that use LAV approach.

In these two systems, query rewriting plays an essential role. In the following 

sections, we will introduce some existing query rewriting algorithms used in data 

integration applications.

1.3 Query Rewriting Using Views

Query rewriting using views is a technique that offers a way to answer a query referring 

to pre-defmed views instead of database relations. According to different criteria, query 

rewritings can be categorized into:

1. Complete Rewriting vs. Partial Rewriting

•  Complete Rewriting is a rewriting of query that only refers to views.

•  Partial Rewriting is a rewriting of query that refers to both views and database 

relations.

5
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2. Equivalent Rewriting vs. Maximally Contained Rewriting

•  Equivalent Rewriting is a rewriting having the same answer set as the original 

query.

•  Contained rewriting is a rewriting whose answer set is contained by the answer 

set of the original query.

•  Maximally contained rewriting is a contained rewriting whose answer set 

contains the answer set of any other contained rewriting of the query.

Different applications require different type of query rewritings. Query optimization 

application looks for an equivalent rewriting that has the shortest evaluation time, while 

data integration application needs a rewriting that only refers to views and has the same 

answering set as the original query. Therefore, complete and equivalent rewriting, also 

known as CE rewriting is the best solution for data integration application. However, 

some queries might not have equivalent rewriting based on all available views, and then 

complete maximally contained rewriting can work as an alternative solution.

Many algorithms have been proposed to solve the query rewriting problem for data 

integration applications. These algorithms generally fall into two classes: bucket-based 

algorithm and inverse rule-based algorithm. The primary bucket algorithm was first 

proposed by A.Y. Levy in [5]. More recently, some other bucket-based algorithms, such 

as MiniCon algorithm [14], Shared Variable Bucket (SVB) algorithm [15] and

6
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CoreCover algorithm [16] were developed to improve the performance of primary bucket 

algorithm.

The idea of inverse rule was first proposed by X. Qian in [2], and presently the inverse 

rule algorithm was formally discussed in [17]. We are going to review these algorithms 

in section 2.3.

1.4 Thesis motivation and contribution

Existing complete query rewriting algorithms [5] [14] [15] [16] are designed to produce 

complete maximally contained rewritings. The result of those algorithms is a union of all 

complete contained rewritings that can be found. In application where there is a large 

number of views available for query rewriting, there might exist a single conjunctive 

query that is equivalent to the original query. This equivalent rewriting itself is sufficient 

to answer the query. However, existing complete query algorithms include all the other 

contained conjunctive queries into the result, which in fact are redundant and make the 

evaluation of the rewriting inefficient.

In order to find the complete and equivalent conjunctive rewriting, we propose a TCM 

(Tail Containment Mapping) Bucket algorithm that expands the bucket algorithm to 

generate complete and equivalent rewriting. TCM bucket algorithm prevents

7
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inappropriate views from being added to the buckets generated in the first stage of the 

bucket algorithm, so that the rewritings produced in the combination stage are 

automatically CE rewritings without any extra containment checking.

In the experiments of this thesis, we implement MiniCon algorithm, an advanced bucket 

based algorithm, with our TCM checking rules and compare this combination with some 

other algorithms. All testing data we use in our experiments, containing hundreds of 

relations, views and queries, are extracted from real e-commerce projects, rather than 

generated by ourselves.

1.5 Thesis overview

The main body of this thesis is organized as follows. Chapter 2 introduces the relevant 

notations, gives the formal definition of the query rewriting problem and some important 

concepts, and briefly goes over two previous query rewriting algorithms in the last 

section. In chapter 3, we first discuss the motivation and benefit of answering query 

using complete equivalent rewriting, and then we present our TCM bucket algorithm. 

Chapter 4 provides the results and analyses of the experiments that we conduct. Chapter 

5 provides a summary of this thesis and discusses possible future work.

8
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Chapter 2 

Overview of Query Rewriting Using Views

In this chapter, we will first introduce some concepts that are related to query rewriting 

using views and are used throughout this thesis. Secondly, we will describe some 

different kinds of query rewritings surveyed in [1]. And at last, we will discuss some 

related works that have been already done under this topic.

2.1 Query Language

All the queries and views discussed in this thesis are SPJ queries, whose relational 

algebra expressions only contain project, select and join operations. We also assume that 

no queries contain redundant subgoal, and that neither query nor view contains 

comparison predicates.

We use Datalog to define all the queries and views in this paper. Datalog [18] is a 

powerful query language that is widely used to express queries and views in [16, 15, 14, 

19]. Using Datalog expression, a SPJ query Q can be conveyed to a rule in the following 

form:

Q( X ) : - n (  X i ) , - - - , r „ (  X„)

9
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where Q and n , • • •, rn are predicate names, and X, Xi, • • •, Xn are tuples of variables 

or constants. Q( X) is the head of query, denoted by H(Q). Variables in X are called 

distinguished variables or head variables. The variables in X i, • • • , X„ but not in X are 

called existential variables. To be safe, distinguished variables must also appear in 

subgoals of relations or views. ri( Xi), • • • , rn( Xn) are called source subgoals, which 

refer to database relations or views. And we use Subgoal(Q) to denote all source relations 

of a query Q.

In a datalog clause, we always assume that the ith variable of a subgoal r(X) refers to the

thi attribute of the relation table that r(X) refers to. And the fact that the same variable 

appears in two source subgoals implicates that there is a join predicate on this variable 

between the two relations or views referred by these two subgoals. Such variables are 

called join variables. A Datalog clause may also include subgoals of arithmetic 

comparison predicates, such as <, =, >• These subgoals are called comparison subgoals. 

Variables in a comparison subgoal must also appear in subgoals of relations or views.

Example 2.1 Here we give an example o f Datalog notation based on a university 

schema as in Figure 2-1 [1J. We will use this schema throughout this thesis. Based 

on this schema, suppose there is a query that asks for the name o f  a student and the 

course this student registered. The SQL expression for this query is as follows: 

SELECT Student, sname, Register.cnum

10
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FROM Student, Register

WHERE Student. snum= Register, snum.

P rof (pname, area) Advise(pna me .snum)

'Course (cnum, ctitle) 

Student (simiiijSiianiejiiajo

Teachfpnau 

f) R egister (si

ie, cnum, term) 

turn.cnum. term)'

pname snum
Advise Student^ sname

major

Register

Course/  Vcnum ctitle

Figure 2-1: University schema and entity/relation diagram 

The Datalog expression for this query is:

Q(sname, cnum):-Student (snum, sname, major), Register (snum, cnum, term).

Variable snum appears in both subgoals implies that there is a join condition between 

student and register on variable snum.

11
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2.2 Query Rewriting

2.2.1 Query Containment and Equivalence

The problem of conjunctive query containment was first studied in [20]. Query 

containment is used to decide the containing relationship between two queries, and is 

important to check the correctness of a query rewriting. The formal definition of query 

containment and equivalence is as below [1].

Definition 2.1 (Query containment and equivalence)

A query Qi is sa id  to be contained in another query Q2, denoted as Qj c :  Q2, i f  fo r  any 

database D, the set o f  tuples computed fo r  Qi is a subset o f  those computed fo r  Q2, i.e., 

Qi(D) cr Q2 (D). The two queries are sa id  to be equivalent, denoted as Qi = Q2, i f  Qi cr 

Q2 and Q2 c" Qi.

2.2.2 Containment Mapping

Generally speaking, whether a query Qi is contained in query Q2 is undecidable. For 

conjunctive queries that are considered in this thesis, the containment relationship is 

decidable [21]. Containment mapping [20] provides a method to decide containment 

relationship between conjunctive queries.

A containment mapping reflects a homomorphism between the variables of two queries.

12
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It maps a variable in ith position of a source subgoal in query Qi to a variable in ith 

position of a subgoal referring to the same relation in query Q2 . A formal definition of 

containment mapping is given below [18]:

Definition 2.2 (Containment Mapping)

Given two queries Qi and Q2  over database schema S, and a mapping cp from variables 

o f Q2  to variables o f  Qi. Mapping cp is a containment mapping from Q2 to QI, i f

1. The head o f Q2  maps to the head o f Qi; and

2. Every subgoal o f Q2  is mapped to a subgoal o f  Qi.

Intuitively, a containment mapping from Q2  to Qi guarantees that all join relationships in 

query Q2  are retained in query Qj. In addition, query Q; may have more subgoals than 

query Q2 . Thus, comparing to Q2 , query Qi has same or even stricter conditions to select 

tuples. There is a well-known and important conclusion based on containment mapping 

as below [18].

Theorem 2.1 Given conjunctive queries Qi and Q2 , Qi c; Chif and only if there is a 

containment mapping from Q2 to Qi.

Example 2.2 Suppose we have three queries as below:

Qi(pnal,cnul,snul):-Teach(pnal,cnul,terl), Register(snul,cnul,terl)

Student (snul,snal,majl)

Q2 (pna2 ,cnu2,sna2):-Teach(pna2, cnu2, ter2), Register(snu2,cnu2, ter2 )

13
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Q3 (pnaS, cnu3, sna3):-Teach(pna3, cnu3, ter3), Register(snu3, cnu3, ter3)

We can form a mapping (p2 ifrom  Q2  to Qi as following:

<P2 P {pna2 -^pnal, cnu2 ->cnul, ter2 ->terl, snu2 ->snul ter2 ’-Uteri’}

(P21 satisfies the conditions o f containment mapping, so QI is contained by Q2. For query 

Q3, the only possible mapping cp 31 we can construct from Q3 to Qj is shown below.

<P3 d {pna3 ~>pnal, cnu3 ->cnul, ter3 ->terl, snu3 ->snul ter3 ->terl ’}

However, it is not a containment mapping because variable ter3 o f  Q3 is mapped to two 

different variables terl and terl ’ o f  Qj. As a result, Qi is not contained by Q3 .

Theorem 2.1 provides a basic way to check whether a conjunctive query Qi contains 

another query Q2 . Finding containment mapping from Qi to Q2 is an NP-complete 

problem [20]. In the worst case, its time complexity is 0(m n), where n is the number of 

subgoals in Qi and m is the number of subgoals in Q2 . In practice, the size of queries or 

views is usually not large; hence, the execution time for containment checking is 

acceptable. More important, the performance of an algorithm could be significantly 

improved if the use of containment checking is avoided or reduced.

2.2.3 Query Rewriting Using Views

The problem of query rewriting using views, a.k.a. answering query using views, is about 

finding a method to retrieve the resulting tuples of a query from some predefined views

14
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instead of accessing the database relations. The formal definitions of two kinds of query 

rewritings are shown below.

Definition 2.3 (Equivalent Rewriting) [1]

Given a query Q referring to database relations o f a schema, and a set o f views V = 

Vi, ■ ■ ■, Vm over the same schema, the query Q ’ is an equivalent rewriting o f Q using V

i f

• Q ’ refers to one or more views in V; and

• Q ’ is equivalent to Q.

Definition 2.4 (Maximally-Contained Rewriting) [1]

Given a query Q referring to database relations o f a schema, and a set o f views V = 

Vj, ■ ■ -, Vm over the same schema, Q ’ is a rewriting o f Q using views from V, then

1) Q ’ is a contained rewriting o f Q, i f  Q ' c:Q.

2) Q ’ is a maximally-contained rewriting o f Q if:

• Q ’ c:Q; and

• There is no another rewriting Q ” o f Q using the same query language, such 

that Q ’ c Q ” c Q , i.e., for any database D, Q ’(D) cr Q ”(D) cr Q(D).

Definition 2.5 (Complete and Equivalent Rewriting) [1]

Given a query Q referring to database relations o f  a schema, and a set o f views V = 

V i , " - ; V m over the same schema, Q ’ is a rewriting o f  Q using views from V, then

1) Q ’ is a complete rewriting o f Q i f  Q ’ only refers to views from V.

15
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2) Q ’ is a complete and equivalent rewriting o f Q if:

•  Q ’ is complete rewriting; and

•  G’«0.

In this thesis, we abbreviate the complete and equivalent rewiring to CE rewriting.

Here are some examples of different types of query rewritings.

Example 2.3 Suppose that we have a query over the schema defined above which 

asks for student names who are taught by professors in “Database ” area in winter 

term.

Q(sname):—Register(sname, cnum, term), Teach(pname, cnum, term, year),

Prof (pname, area), area= “Database ”, term=“w in”.

Besides the database relations, we have two views Vj and V% Vj shows the professors in 

Database area and the courses they teach. V2  shows the registration information in 

winter term.

Vj (pname, cnum):-Prof(pname, area), Teach(pname, cnum, term), 

area= “Database 

V2 (sname, cnum):-Register (sname, cnum, term), term=“w in”.

There are three rewritings o f query Q using Vj and V2  shown below. We can see both Q )  

and Q '2 are partial rewritings, while Q ’3 is a complete rewriting o f Q.

Q ’i(sname):-V](pname,cnum), Register (sname, cnum, term), term=“win”. 

Q ’2 (sname):-V2 (sname,cnum), Teach(pname,cnum,term),

16
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Prof(pname,area), area= ’’Database 

Q ’3 (sname):-Vi(pname,cnum),V2 (sname,cnum).

Query rewriting is used in various database applications. Different applications require 

different kinds of query rewritings. For the purpose of query optimization, equivalent 

rewriting is required, but both complete and partial rewritings are acceptable. While in 

data integration applications, the rewriting must be complete rewriting, because data 

* relations in this case are virtual relations and actual data sources are described as views. 

When equivalent rewriting cannot be approached, maximally-contained rewriting is 

accepted then. In this thesis, we only discuss the problem of finding complete rewriting.

2.2.4 Query Expansion

For a query Q over a database schema referring to not only relations but also views, the 

expansion of Q is a query Qx constructed by substituting the views in the body of Q with 

their definitions and renaming the variables to maintain the equivalence with the original 

query Q.

Suppose the original query is as below:

Q(X):- ri(X i),. . ,  rn(Xn), V (Y). 

and we have the definition of view V as follows:

17
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V (Z):-p 1(Z1) , . ; . , p m(Zm).

then the expansion of Q is of the form:

Q x ( X ) : - nCXO,. . . ,  rn(Xn), pKVO,. . . ,  pm(Vm).

Q x  is created in two steps:

1. Replace the subgoal V(Y) in Q with the body of the definition of view V.

2. Rename all variables from V definition, Z \ , . . .  ,Zm, using the following rules:

(a) If variable Zj is a distinguished variable of V, i.e., z; e Z, rename Zj as a 

corresponding variable in Y from the original query.

(b) If variable z; is an existential variable of V, i.e., z* gZ, rename Z; as a new 

variable of Q which is not in Xi U . . .  U Xn.

Example 2.4 Consider the following query and views:

Q(pname, cnum,sname):-V](pname,area,snum), V2 (pname,area, cnum),

Student (snum,sname,majo).

Vi(pnal,arel,snul) Advise(pnal,snul), Prof(pnal,arel.)

V2 (pna2 ,are2 ,cnu2 )  Prof(pna2,are2), Teach(pna2,cnu2,ter2).

The expansion o f  Q is as below:

Qx(pname, cnum, sname):—Advise(pname,snum), Prof(pname,area),

Prof(pname,area), Teach(pname,cnum,ter2)

Student (snum, sname, major).
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2.2.5 Rewriting Containment Verification

Given a query Q  on a database schema S, and a rewriting Q ’ of Q  referring to some 

views over the same schema, it is not applicable to compare Q  and Q ’ directly, but taking 

advantage of Q ’x , it can be decided whether Q ’ is contained or equivalent to Q .

The rewriting Q ’ referring to Y is computed using view instance d. While in Q ’x , all 

subgoals referring to views are substituted by the definitions of these views, so that Q ’eXp 

refers to database relations. Based on our assumption that the instance of any view 

contains all tuples that satisfy its definition, we can infer that Q ’ and Q ’x yield the same 

set of resulting tuples, i.e., Q ’ =  Q ’x.

For a rewriting Q’ of query Q, both Q’x and Q refer to schema S, therefore according to 

Theorem 2.1, it can be decided whether Q’x is contained or equivalent to Q by finding 

containment mapping between Q and Q’x. Furthermore, it can be inferred whether Q’ is 

contained or equivalent to Q using corollary 2.1.

Corollary 2.1 Given a database schema S, a set o f  views V is defined on S. Suppose Q is 

a conjunctive query on S, and Q ’ is a rewriting o f  Q referring to V.

1) Q ’ c Q i f f Q f c z Q .

2)  Q ’ =  Q i f f Q ’x =  Q

19
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2.3 Previous Algorithms for Query Rewriting

Two types of rewriting algorithms have been proposed for data integration applications 

in previous researches: bucket based algorithm and inverse rule based algorithm. The 

primary bucket algorithm was first proposed by paper [5] for Information Manifold 

system. In the later research, several improved version of bucket algorithm were 

developed, such as MiniCon algorithm [14], shared variable bucket algorithm (SVB) [15] 

and CoreCover algorithm [16]. The basic idea about inverse rule was proposed by paper 

[2], and was then developed into the inverse rule algorithm in [17]. Other inverse rule 

based algorithms were proposed in [22], [19]. Both bucket based algorithms and inverse 

rule based algorithms aim to find maximally contained rewriting, so that output of these 

algorithms are a union of all contained rewritings that can be found.

Before continuing the thesis, it may be necessary to introduce the bucket algorithm in 

more detail.

Bucket Algorithm

The input of bucket algorithm is a conjunctive query Q referring to database relations and 

a set of views V: Vi, • • • , Vn. Both the query Q and view Vi are non-recursive SPJ 

(project-select-join) queries. The output of bucket algorithm is a union of conjunctive 

rewritings that are contained in the original query Q.

20
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With the input Q and V, bucket algorithm proceeds in following two steps.

1 . bucket constructing

For each source subgoal r e subgoal(Q), create a bucket, and put the views V; e V , 

which can satisfy the following condition, into the bucket of subgoal r.

• View Vi has a subgoal ryi, representing the same relation to r, and there exists a 

partial containment mapping \|/ from r to rv i.

When a view is added to a bucket, the view variables in the domain of \jr are renamed 

as the corresponding variables of Q, while other variables are renamed as new 

variables (primed).

2. making Combination and containment checking

First, make a Cartesian product within all buckets, and for each tuple of the result of 

Cartesian product, create a conjunct query Q’ by joining all elements in the tuple. 

Then proceed a containment checking to decide if Q’ c  Q. If so, add Q’ to the output 

union.

Example 2.5 Suppose we have the query and views as following.

Q(pname,sname).-Register(sname, cnum, term), Teach(pname, cnum,term), 

Prof(pname,area).

Vfsnal, cnul, terl) .-Register(snal, cnul, terl), Course(cnul, ctil). 

V2 (pna2 ,cnu2 ,ter2 ):-Prof(pna2 ,are2 ), Teach(pna2,cnu2,ter2).
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V3 (pna3, sna3):-Teach(pna3, cnu3, ter3), Register(sna3, cnu3, ter3). 

After the first step, a set o f buckets (in Table 2-1) is created.

Register(sname, cnum, term) Teache(pname, cnum, term) Prof(pname, area)

Vi(sname, cnum, term) V2 (pname, cnum,term) V2(pname, cnu2, ter2)

V3(pna3 , sname) V3(pname, sna3)

Table 2-1: Bucket table for bucket algorithm

In the second step, a Cartesian product is performed within all buckets, and the 

combinations o f views shown in Table 2-2 are retrieved. For each tuple in the 

combination table, a conjunctive query Q ’ is constructed by joining all elements o f the 

tuple and containment checking is imposed to test i f  Q ’ cr Q. For our example, two 

contained rewritings are found at the end as below:

Vi (sname, cnum, term) V2(pname, cnum,term) V2(pname, cnu2, ter2)

Vi (sname, cnum, term) V3(pname, sna3) V2 (pname, cnu2, ter2)

V3(pna3, sname) V2 (pname, cnum,term) V2 (pname, cnu2, ter2)

V3(pna3 , sname) V3 (pname, sna3) V2(pname, cnu2, ter2)

Table 2-2: Table of view combinations 

Q ’](pname,sname)V](sname,cnum, term), V2 (pname,cnum,term). 

Qjfpname,sname):-V 3 (pname,sname), V2 (pname,cnu2 ,ter2 ).

The final output o f bucket algorithm is a union o f Q j  and Q j, i.e., Q j  U Q ’2.

22
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Chapter 3 

Finding Complete and Equivalent Rewriting

In the last chapter, we have introduced some algorithms of answering query using views. 

The objective of those algorithms is to find maximally contained rewriting. In this 

chapter, we will present our TCM (Tail Containment Mapping) Bucket algorithm, which 

is designed to find equivalent and complete rewritings for a conjunctive query. We will 

first explain the motivation of our research in section 3.1. Then, we will discuss two 

solutions for finding complete and equivalent (CE) rewritings. In section 3.3, we will 

propose our TCM Bucket algorithm, and the analysis of its time complexity will be given 

in the last section.

3.1 Motivation

In the context of data integration, most of query rewriting algorithms [5][14] [15] [16] 

are designed to produce maximally contained rewriting. The output of those algorithms is 

a union of all contained rewritings they can find. We denote such maximally contained 

rewriting as Q ’m , Q ’m =  Q ’ i U , . . . , U Q ’n, where Q ’i, 1 < i < n, is a conjunctive 

contained rewriting of Q  using views.

23
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However, among all those contained rewritings Q ’ i, . . . ,Q ’n, there might be an 

equivalent single conjunctive rewriting, say it is Q ’i, Q ’j =  Q , and i is in {1, ..., n}. 

Obviously, answering Q  using Q ’i will be much more efficient than using Q ’m - Since Q ’i 

is already equivalent to Q , there is no need to evaluate all other contained rewritings in 

Q ’l, • • • ,Q ’n •

In application where a large number of views are available for query rewriting, the 

number of contained rewritings for a query could also be very large. Among those 

contained rewritings, there usually exist CE rewritings. For example, in our experiment 

in section 4.2.1, when the number of views is 450, 158 queries have 3273 contained 

rewritings in total. On average, a query Q  has 20 contained rewritings. 116 out of these 

158(73%) queries have CE rewritings. Suppose a query Q  has 20 contained rewritings, 

and one of those rewritings, say Q ’e is equivalent to Q , then using Q ’e instead of Q ’m to 

answer query Q  will have following significant benefits:

• Save the time on generating other 19 contained rewritings.

•  Avoid evaluating all other 19 contained rewritings.

• Save the time on making a union of the results of all rewritings.

Suppose it takes the same time to evaluate every single conjunctive contained rewriting, 

then using Q ’e to answer Q  will be at least 20 times faster than using Q ’M .

Therefore, there is a need to develop a query rewriting algorithm that produces only CE

24
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rewritings for data integration applications. We have explored two approaches to find CE 

rewriting. One is expanding equivalent rewriting algorithms, and the other one is 

utilizing complete rewriting algorithms.

3.2 Expanding equivalent rewriting algorithms

Equivalent query rewriting algorithms [23, 24] are designed for the purpose of query 

♦ optimization. The result of those algorithms are required to be equivalent rewritings, but 

not necessary to be complete.

In an equivalent rewriting algorithm, the rewriting is achieved by a sequence of 

substitutions. Each substitution replaces one or more subgoals of the original query with 

that of the given views. In order to obtain an equivalent rewriting in the end, the 

algorithm guarantees the result of each substitution to be equivalent to the original query. 

In general, it requires that every substitution is a safe substitution [23], which means all 

subgoals and predicates of the view must be able to be mapped to their counterparts of 

the original query.

Due to the sequential application of the substitutions and the strict restriction on safe 

substitution, in certain cases such algorithm cannot find any complete rewriting even if 

there is one. For example, there is a query that has one subgoal referring to a relation R
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and two views refer to R. In this case, one view is used and the relation R is removed, 

hence the second view can never be used and some possible CE rewritings may be 

missed.

Example 3.1 Given one query Q and two views V/ and V2  as below:

Q(a, d) :-A(a, b), B(b, c), C(c, d).

Vj(a, b, c) :-A(a, b), B(b, c).

V2 (b, c, d) B(b, c), C(c, d).

Obviously, Vi can substitute subgoals A and B in Q, and V2 can substitute subgoals B 

and C in Q. Because both two substitutions are safe substitutions, after the first iteration, 

an equivalent rewriting algorithm will generate two partial equivalent rewritings:

Q’i(a, d) V,(a, b, c), C(c, d).

Q’2(a ,d ) :-A (a ,b ) ,V 2 (b ,c,d).

Nevertheless, in the next iteration, we find out that subgoal C in Q’i cannot be safe 

substituted by V2. Because subgoal B has been replaced by Vi already, B in V2is not 

able to be mapped to any subgoal in Q’i. Likewise, situation exists between Q2and Vi. 

As a result, the algorithm stops, and Q’i and Q ’ 2 are the final result. However, the 

algorithm misses two CE rewritings:

Q’3( a ,d ) : -V 1(a ,b ,c ’) ,V 2 (b,c,d).

Q’4(a, d ) : - V,(a, b’, c), V2(b, c, d).
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In order to make use of equivalent query rewriting algorithms to find CE rewritings, we 

have to adjust the query to be rewritten, in every iteration of substitution, by adding some 

extra subgoals and predicates, so that we can continuously conduct safe substitutions 

until all source subgoals in the query are replaced by views. However, adding extra 

subgoals will add unnecessary overhead, and make the algorithm very complicated. 

Equivalent query rewriting algorithm, therefore, is not a proper start point for CE

4 . .rewritings.

3.3 Expanding Complete Rewriting Algorithms

Complete rewriting algorithms are designed for data integration applications. 

Accordingly, the result of this kind of algorithms must be complete rewriting. There are 

two major types of complete rewriting algorithms, bucket based algorithm [5, 14, 15] and 

inverse rule based algorithm [2, 17]. Complete rewriting algorithms can always find 

maximally contained rewritings. It implies that if there exist equivalent rewritings of the 

original query based on the given views, these algorithms can find at least one of them. 

The only problem is that such algorithm does not generate any single conjunctive query 

as its result; instead, it produces a union of all contained conjunctive queries.

A naive approach of expanding bucket algorithm to get CE rewritings is to properly
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remove contained conjunctive queries from the resulting contained rewritings of a 

complete rewriting algorithm. For each contained rewriting, we can conduct a 

containment checking with query Q. If the conjunctive rewriting contains Q, it is a CE 

rewriting, otherwise it is not equivalent to Q and will be eliminated.

Example 3.2 Suppose we have three relations, A(a,b,c), B(c,d) and C(d,e). A query

and four views are as in Table 3-1.

Q(a, e ) :- A(a, b, c), B(c, d), C(d, e).

Vi(a, c ) : -A(a, b, c). V3 (a, c ) :- A(a, d, c), B(c, d).

V2(c ,e):-B (c ,d ),C (d ,e). V4 (c, e, f) :- B(c, d), C(d, e), D(e, f).

Table 3-1: Query and views for example 3.1 

In the first step, we apply a complete rewriting algorithm, i.e. MiniCon algorithm [14], 

and get a set of all possible contained rewritings. The rewritings and their expansions are

shown in Table 3-2.

Qi’(a,e) :-V!(a,c), V2(c, e).

Q ’ i-exp(a, e) :- A (a , b, c), B(c, d), C(d, e).

Q2 ’(a, e) :- V3(a, c), V2(c, e).

Q ’2-exp(a, e) :- A (a , d \  c), B(c, d’), B(c, d”), C(d”, e).

Q3 ’(a, e ) :-V 1(a ,c ),V 4(c, e, f).

Q ’3-exP(a , e ) :- A (a , b, c), B(c, d), C(d, e), D(e, f).
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Q4 ’(a, e) V3(a, c), V4(c, e, f).

Q’4-exP(a, e ) A ( a ,  d’, c), B(c, d’), B(c, d”), C(d”, e), D(e, f).

Table 3-2: Contained rewritings and expansions for example3.1

In the second step, we impose a containment checking on each produced contained 

rewriting respectively, to test if it contains Q. If the contained rewriting contains Q, it is a 

CE rewriting, otherwise it is not equivalent to Q and will be eliminated. Among the four 

contained rewritings above, the CE rewriting is:

Q’](a,e) : -Vi(a, c), V2(c, e).

In general, there may be a large number of contained rewritings that need to be removed 

when the size of the query and the size of the view set are large. Some of the produced 

rewritings are eliminated for the same reason. For example, both eliminated rewritings 

Q ’ 3 and Q ’ 4 refer to view V4. Hence, if we can remove V4 before generating the rewriting, 

the algorithm will be much more efficient.

A closer inspection on the example reveals that there are two cases when a view should 

not be used in rewriting. One is when the view contains an extra table as in V4. For 

example, V4 introduces a subgoal D that can not be mapped to any subgoal in Q. Another 

case is when a view introduced extra constraints on variables, even though there are no 

extra tables introduced, such as the case in V3 where there is another join condition on
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the second attributes of A and B. In this case, variable d’ in expansions of Q ’ 2 and Q’4, 

which is introduced by V 3 ,  can not be mapped to any variable in Q. Hence, Q ’ 2 and Q ’ 4 

are not equivalent to Q.

Based on the observations above, we can see that view V 3  and V4 should not be used to 

generate CE rewriting of Q. Therefore, we should eliminate V 3  and V4 before rewritings 

are constructed, hence prevent non-equivalent rewriting Q’2 , Q ’ 3 and Q ’ 4 from being 

generated, and avoid afterward containment checking.

3.4 TCM Bucket Algorithm

We now propose an algorithm that expands the bucket algorithm, a complete rewriting 

algorithm, to generate CE rewriting, which is much efficient than the naive approach in 

section 2.3. The main idea is to prevent inappropriate views from being added to the 

buckets in the first stage of the bucket algorithm, so that the rewritings produced in the 

combination stage are automatically CE rewriting without any extra containment 

checking.
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3.4.1 Definitions

Before going into the detail of TCM bucket algorithm, we first introduce some 

definitions and terms used in the algorithm.

Definition 3.1 (Tail Containment Mapping)

Given queries V and Q, and a mapping (p from the variables in V to the variables in 

Q. cp is called a TCM mapping i f  each subgoal o f  V can be mapped to one o f the 

subgoals in Q.

Example 3.3 Suppose there are four relations and 4 queries as in Table 3-3.

Relations Queries

A(a, b, c) Qi(xb ui) Ai(xb yi, zO, Bi(zi, yi), Ci(zi, ui).

B(d, e) Q2 (x2 , t2 ) A 2(x2, y2, z2), B2 (z2, t2).

C(f, g ) QaCys, z3) B3(z3, y3), C3(z3, y3).

D(h,i) Q4 (z4, s4)  C4(Z4, m), D4(u4, s4).

Table 3-3: Queries in example for tail containment mappings

Suppose subgoals A„ Bi: C, and Dt refer to relations A, B, C and D respectively, then we 

can construct three mappings from Q2, Q3  and Q4  to Qj as shown in Table 3-4.

921 : Q2 Ql

V x2 Y2 Z2 t2
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9 2 i ( V ) X i y i Z i y i

<P31 :Q 3  “ >  Ql

V Z 3 Y3

9 3 i ( V ) Z i y i

941 : Q 4 ” >  Ql

V z4 u4

q>4i(V) Z i U i

Table 3-4: all possible mappings in example 3.3

In mapping (p^ y3 in Q3 is mapped to yi in Qi, and z3 in Q3 is mapped to z\ in Qi. 

However, there is no subgoal C(zi, yi) in Qi, so that subgoal C3 in Q3 can not be mapped 

to any subgoal in QI, which implies that cp3i is not a tail containment mapping. For cp4 i, 

because it does not cover subgoal D4 in Q4, it is not a tail containment mapping either. 

While 9 2 1  holds all conditions in definition 3.1, 9 2 1  is the only tail containment mapping 

in Example 3.3.

Similar to containment mapping [18], tail containment mapping also requires that all 

relations referred by Qi are also referred by Q2 , and all join relations in Qi are retained in 

Q2 . These two conditions guarantee that query Q2 has the same as or stricter conditions 

than the query Qi does.
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The difference between tail containment mapping and containment mapping is that tail 

containment mapping does not require that all head variables of Q2 can be mapped to 

head variables of Qi. Intuitively, a tail containment mapping from Q2 to Qi represents 

that without considering projection to head variables, tuples that satisfy Qi also satisfy

q 2.

f In order to verify TCM mapping, we first introduce some definitions and theorems. 

Definition 3.2 (Variable Range)

Given a query Q, for any variable x e  Q, the range o f x in Q, denoted by R(x, Q), is 

the set o f  relation attributes to which x refers.

For example, there are two relations A(a,b,c) and B(d,e), and a query Q(z) A(x,y,z), 

B(z,u). Then the range of variable x in Q is {A.a}, i.e. R(x,Q) = {A.a}, and the range of z 

in Q is {A.c,B.d}, i.e. R(y,Q)= {A.c,B.d}.

The range of variable x in query Q reflects the specific join relationship in query Q. If 

R(x,Q) contains only one attribute, it means there is no join on that attribute. If R(x, Q) 

has more than one attributes, it implicates that in query Q, all those attributes are joined 

together.
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Definition 3.3 Given subgoal S j(x i,. . ,  x j  from query Qi, and S2 (yi, . . . ,yr) from query Q2, 

Si can be mapped to S2, i f

1. Si and S2  refer to the same database relation, and

2. The ran ge o f  any variable o f Si is a subset o f  the range o f  corresponding variable in S2, 

i.e. R(xit Qi) cR (yu QT), 1 < i <n.

Intuitively, the fact that subgoal Si can be mapped to S2 means all the join predicates 

applied on Si in query Qi can be mapped to some join predicates on S2 in query Q2 . This

is very important to tell whether a tuple satisfying Q2 can also satisfy Qi, i.e., there is a

TCM mapping from Qi to Q2 .

3.4.2 Expanding Bucket Algorithm with TCM

We now propose an algorithm that expands the bucket algorithm to generate CE 

rewriting, which is much efficient than the naive approach in section 3.3. The main idea 

is to refine the buckets generated in the first stage of the bucket algorithm, so that the 

rewritings produced in the combination stage are automatically CE rewriting without any 

extra containment checking.

We illustrate the TCM bucket algorithm with the following example.

Example 3.4 Given a query Q(x, r):-A(x, y), A(y, z), B(z, r)., and four views as 

below:
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Vi(y, z, r):-A(y, z), B(z, r). V2 (x, y, z):-Ai(x, y), A2 (y, z).

V3(y, z):-A(y, z), B(z, y). V4 (z, r, w):-B(z, r), C(r, w).

Table 3-5: Views in example 3.4

After the first stage of the bucket algorithm, the generated buckets are as below:

A(x, y) A(y, z) B(z, r)

V i(x ,y ,r’) 

V2(x, y, z’) 

V3(y ,z’)

V i(y ,z,r”) 

V2(x’, y, z) 

v 3(y , z)

Vi(y’, z, r) 

V3(y’,z ) 

V4(z, r, w’)

Table 3-6: Buckets after the first stage

Some views will always cause non-equivalent rewritings. Theorem 3.1 below can be 

used to decide which views should never be used to generating CE rewritings.

Theorem 3.1 If Q’ is a CE rewriting of query Q, each view referred by Q’ must have 

a TCM mapping to Q.

Proof: Since Q’ is equivalent to Q, there must be a containment mapping cp from the

expansion of Q \ noted by Q’exp, to Q. Therefore, according to definition 3.1, 

we have a conclusion:

Any subgoal of Q’exp can be mapped to a subgoal of query Q.................. (1)

Suppose Q’ is in the form of Q’(X):- Vi(Xi), • • • ,Vn(X„). We assume that view

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vi( X;):- Si( Yi), • • • ,Sm( Ym) does not have TCM mapping to Q. So there 

must be a subgoal of view Vj, say S( Y) that can not be mapped any subgoal of

Q-

Suppose in the Q’exp, subgoal S(yi,...,yn) of Vj is changed to S(zi,...,zn), where 

Zj is renamed from yb 1 < i < n. There are two cases of zb

a) Variable Zj is a fresh new variable in Q’exp, which means Zj does not 

appear in any views other than Vj. Then R(zi, Q ’exp ) =  R(yi,vo.

b) Variable z; is a variable in Q, so that R(zb Q ’exp)=  R(yi,Vj) U ... U R(xn, 

Vn), where xn is the variable in view Vn that is also renamed to zb Then 

we have R(zi, Q’exp) eR (yi5Vi).

Based on a) and b), for any variable yi of subgoal S(yi,...,yn), R(zb Q’eXp) £  

R(yi,Vi), where Zj is the corresponding variable in subgoal S(zi,.. .,Zn). Thus we 

can draw another conclusion:

A subgoal S(yi,.. .,yn) in view Vj can be mapped to the corresponding subgoal 

S(Zi,... ,Zn) in Q exp-  ...............(2 )

While according to conclusion (1), subgoal S(zi,...,zn) can be mapped to a 

subgoal, say it is Sq, of Q. Then it is easy to infer that S(yi,.. .,yn) can also be 

mapped to Sq, which is contradict to the assumption that S( Y) can not be
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mapped to any subgoal of Q. It means that any view Vi must have a TCM 

mapping to Q.

Q.E.D.

Intuitively speaking, Theorem 3.1 proves that views having no TCM mapping to a query 

Q can never be used to generate CE rewritings of Q, no matter how they are combined 

with other views. Based on the theorem 3.1, we develop the first rule of our algorithm, 

i Rule 1: If a view does not have a TCM mapping to the given query, remove it before 

running the bucket algorithm.

In Example 3.4, view V 3  and V 4  do not have TCM mapping to query Q. For V 3 ,  because 

there is an extra join between subgoal A and B, none of them can be mapped to a subgoal 

of Q. For V 4 ,  the extra subgoal C can not be mapped to any subgoal of Q. Therefore, 

after applying Rule 1, the buckets are as below:

A(x, y) A(y, z) B(z, r)

V i(x ,y ,r’) 

V2 (x, y, z’)

V i(y, z, r”) 

V2(x \ y, z)

Vi(y’,z ,r )

Table 3-7: Buckets after applying Rule 1.

However, only rule 1 is not enough to ensure that the resulting rewritings are all CE 

rewritings. For the combination {Vi(x, y, r ’), Vi(y, z, r”), Vi(y’, z, r)} from the bucket in 

Table 3-7, a rewriting can be formed as below:
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Qi’(x, r):- Vi(x, y, r ’), Vi(y, z, r ”), V i(y \ z, r).

After optimization, Q i’ becomes:

Q’i(x, r)> Vi(x, y, r ’), Vi(y, z, r).

Q’i.eXp(x, r):-A(x, y), B(y, r ’), A(y, z), B(z, r).

Q’i is a properly contained rewriting, i.e. Q’icQ , because in the expansion of Q’i, 

subgoal B(y, r ’) cannot be mapped to any subgoal of Q.

In order to prevent generating a contained rewriting like Q’ i, we need to refine the TCM 

mapping to Bucket-TCM mapping as below.

Definition 3.4 (Bucket-TCM mapping)

Given a bucket (or subgoal) S(xj, x f  in query Q, and a subgoal S(yi,...,yn) in a 

view V. A mapping cp is a Bucket-TCM mapping from V to Q wrt S ( x i , x j  i f

•  S(yi, ...,yr) is mapped to the subgoal S(xj, x„); and

•  All other subgoals in V are mapped to some subgoals in Q.

Different from the TCM mapping, Bucket-TCM mapping is relevant to one particular 

subgoal. Through this definition, we are aware of that Vi does not have a Bucket-TCM 

mapping to Q wrt the bucket S(x, y), hence Vi cannot be added to this bucket. 

Generalizing from this observation, we developed the following theorem:

Theorem 3.2 Given a rewriting Q’:-Vi, • • •, Vn. of query Q:-Si, ..., Sn., the rewriting 

is generated using a bucket-based algorithm. Each view Vi, 1 < i < n, is selected
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from a bucket of the Si. Q’ is a CE rewriting iff each Vj has a Bucket-TCM mapping 

to Q wrt Sj.

Proof:

Part 1 (If Q’ is a CE rewriting, each Vj has a Bucket-TCM mapping to Q wrt Sj.)

First, we assume that Q’ is equivalent to Q, and Q’ refers to a view V that does 

not have a Bucket-TCM mapping to Q wrt any Ai; 1 < i < n.

* Because Q’ is generated from bucket algorithm, Vj must be selected from a

bucket, say it is Bj. Assume that Bj is of query subgoal Sj, according to the bucket 

algorithm, V; must have a subgoal S(xi,...,xn) that refers to the same database 

table as Sj(yi,...,yn) does. And based on the assumption given at the beginning of 

this proof,

S(xi,...,xn) can not be mapped to Sj(yi,...,yn) ........(1)

Suppose in the Q’eXp, subgoal S(yi,.. .,y„) is changed to S(zi,.. ,,zn), and S(xi,.. .,xn) 

can be mapped to S(zi,... ,zn). And because Q’ is an equivalent rewriting, there is 

a containment mapping from Q’eXp to Q. Therefore S(zi,.. ,,zn) can be mapped to a 

subgoal S(ti,...,tn) of query Q. Furthermore, we have:

S(xi,... ,xn) can be mapped to S(ti,... ,tn) ............. (2)

From (1), (2), it is obvious that Sj(yi,...,yn) and S(ti,...,tn) are different subgoals

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of query Q.

On the other hand, because Q ’ is an equivalent rewriting of query, the bucket 

algorithm ensures that there is a containment mapping for Q to Q ’eXp that maps 

subgoal S(yi,...,yn) to S(zi,...,zn), which means Si(yi,...,yn) can be mapped to 

S(zi,...,zn). Because S(zi,...,zn) can be mapped to query subgoal S(ti,...,tn), the 

conclusion can be drawn that Si(yi,...,yn) can be mapped to S(ti,...,tn). As 

Si(yi,.. . ,yn) and S(ti,...,tn) are different subgoals of Q ,  it can be proved that 

Si(yi,...,yn) is redundant in query Q .  This is contradictory to the earlier 

assumption in this paper that no queries contain redundant subgoals.

In conclusion, the assumption at the beginning of this proof is not true.

Part 2 4r (If each V j  has a Bucket-TCM mapping to Q  wrt S j ,  Q ’ is a C E  rewriting.) 

Because the bucket algorithm guarantees that Q ’ is a complete rewriting and Q ’ c ;  Q ,  

we only need to prove Q c Q ’.

Because there is TCM mapping from Vj to Q ,  upon Theorem 3.1, any subgoal 

S(xi,...,xm) ofVj can be mapped to a subgoal S(yi,. ..,ym) of Q ,  which means for any 

x j ,  1 < j < m, R ( x j ,  Vj) c R ( y j5 Q ) .
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Suppose in the Q’exp, subgoal S(xi,.. ,,xm) is changed to S(zi,...,zm), and variable zj, 

1 < j < m, is renamed from Xj using following rule:

a) If Xj is not a distinguished variable from subgoal S v i ,  Zj is a fresh variable in 

Q ’ eXp which does not appear in subgoals from views other than V j .  So R ( z j ,  

Q ’exp) =  R (X J , V i )  c R ( y j , Q ) .

b) If Xj is a distinguished variable from subgoal Svi, Xj is renamed to y], i.e. Zj = 

yj. According to the bucket algorithm, all variables that are mapped to yj are 

renamed to Zj. So R(Zj, Q ’eXp) = R(xj, V j )  U ... U R(t, V t) .  Because Svi can be 

mapped to S qi, R(xj, V j )  c=R(yj, Q), same as all other variables that are 

renamed to zj. So R(zj, Q ’exp) cR(y j5 Q).

Based on the two situations a) and b) above, any subgoal of V i in Q ’eXp can be 

mapped to a subgoal of query Q . Similarly, all other subgoals in Q ’exp can also be 

mapped to subgoals in query Q . Based on Definition 3.1, there is a TCM mapping 

from Q ’exp to Q .

In addition, the bucket algorithm guarantees that all the head variables of Q’exp have 

1:1 map to the head variables of query Q. Overall, a conclusion can be drawn that 

there is a containment mapping from Q ’eXp to Q, which proves Q c Q ’.

Q.E.D
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Based on Theorem 3.2, we develop the second rule for our algorithm:

Rule 2: When a view V is added to a bucket A of query Q, V must have a Bucket-TCM 

mapping to Q wrt A.

For the buckets in Table 3-7, the only view that does not satisfy rule 2 is view Vi(x, y, r ’) 

in the bucket of A (x, y). It can be verified that subgoal A(y, z) of Vi can only be mapped 

to subgoal A(y, z) of Q, but not A(x, y) of Q. Based on rule 2, Vi should not be added to 

the bucket of A(x, y). After rule 2 is applied, the buckets in Table 3-7 are changed as 

below:

Ai(x, y) A2(y,z) B(z, r)

V2 (x, y, z’) V i(y, z, r”) 

V2(x’, y, z)

Vi(y’,z ,r )

Table 3-8: Buckets after applying rule 2

In the combination stage of the bucket algorithm, with the buckets in Table 3-8, two 

rewritings are generated as below. It can be verified that both Q ’ 2 and Q ’ 3 are CE 

rewritings.

Q’2(x, r):-V2 (x, y, z’), Vi(y, z, r).

Q ’2-exP(x , r):-Ai(x, y), A2 (y, z’), A(y, z), B(z, r).

Q’3(x, r):-V2 (x, y, z), Vi(y’, z, r).

Q ’3-exp(x, r):-Ai(x, y), A2 (y, z), A(y’, z), B(z, r).
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Theorem 3.1 and 3.2 prove that by applying rule 1 and 2 in the first stage of the standard 

bucket algorithm, the algorithm only produces CE rewriting. We refer to this expanded 

bucket algorithm as TCM Bucket algorithm. Many rewritings that can be generated using 

standard bucket algorithm will not be produced by TCM bucket algorithm.

According to Theorem 3.2, none of those rewritings are equivalent to the original query. 

In another word, all CE rewritings that the standard bucket algorithm can create are also 

1 in the output of our TCM Bucket algorithm. Because the bucket algorithm can always 

produce maximally contained rewriting, if there exist CE rewritings, the bucket 

algorithm is guaranteed to find one. The same conclusion applies to TCM bucket 

algorithm.

3.4.3 TCM Bucket Algorithm Implementation

The TCM bucket algorithm expands the bucket algorithm, so that all produced rewritings 

are automatically CE rewritings without extra containment checking. Based on the first 

stage of bucket algorithm, TCM bucket algorithm needs to apply an extra TCM mapping 

to test which view should be put into which bucket.

First, we need to implement a procedure to find TCM mapping from a view to the given 

query Q. Based on the definition of tail containment mapping, the procedure to verify
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that there is a TCM mapping from V to Q falls into two steps.

In the first step, the algorithm attempts to find out all possible mappings from variables 

of V to variables of Q that cover all subgoals of view V. It first creates a matching set for 

each subgoal of V. Every matching set contains all subgoals of Q that refer to the same 

database relation as the corresponding view subgoal does. If any matching set is empty, 

which means the view has an extra subgoal that does not exist in query Q, the 

verification fails immediately, because in that case, there would be no tail containment 

mapping from Q to V.

Here we use the query Q and view Y i in Example 3 to illustrate the procedure of finding 

TCM mappings.

Q(x, r):-A(x, y), A(y, z), B(z, r).

Vi(y, z, r):-A(y, z), B(z, r).

The matching set of the two subgoals A(y, z) and B(z, r) are as in Table 3-9,

A(y,z) A(x, y), A(y, z)

B(z, r) B(z, r)

Table 3-9: Matching sets for subgoals of view VI

Then, the procedure selects one subgoal from each matching set, and constructs a 

mapping from the view subgoals to those query subgoals. As for the example above, two 

mappings can be created as in Table 3-10.
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V, A(y, z) B(z, r) y z r

<Pi(Vi) A(x,y) B(z, r) X y r

CP2 (Vl) A(y, z) B(z, r) y z r

Table 3-10: Constructed mappings

In the second step, we check all mappings found in the first step, to see if there exists a 

tail containment mapping. For view Vi, (pi is not a tail containment mapping, because cpi 

maps subgoal B(z, r) to B(y, r) which is not included in query Q. Mapping 9 2  

satisfies all conditions required to be a tail containment mapping.

To apply rule 1, TCM mapping verification procedure is used to test each view. If a view 

V does not have any TCM mapping to Q, V will not be added to any bucket.

To apply rule 2, we make use of the TCM mappings found in the previous step. If there is 

a Bucket-TCM mapping from V to Q wrt the query subgoal o f the bucket, the head o f V will be 

renamed according to the mapping and added into the bucket.
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The whole TCM bucket algorithm is described as in Figure 3-1.

/* TCM bucket algorithm*/
Begin

/* The first stage*/

For every view V in the bucket set B
Call TCM mapping verification procedure 
If there is NO TCM mapping from V to Q 

Continue
Else

For every bucket Bi of query subgoal Si 
If has a Bucket-TCM mapping to Q wrt Si 

Rename head variables of V 
Add V into Bi 

Endif 
Endfor 

Endif 
Endfor

/* The second stage*/
Execute the combination stage algorithm of the 
bucket algorithm with bucket sets B to generate 
CE rewritings.

End

Figure 3-1: TCM bucket algorithm

In fact, the two rules in TCM bucket algorithm can also be applied to other bucket based 

algorithms, such as MiniCon, SVB Bucket, etc. Since all bucket based algorithms consist 

of bucket construction stage and combination stage, it is very easy to apply the two rules 

to bucket construction stage of any bucket based algorithm to make the algorithm
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capable of automatically generating CE rewriting without extra containment checking. In 

our experiment system, we integrate TCM and Mini Con to TCM-MiniCon algorithm, 

which is much more efficient than the TCM bucket algorithm.

3.4.4 Time Complexity

First, we analyze the time cost of finding TCM mappings from a view to a query. Given a 

$ query Q, assume that, within all relation tables referred by Q, there are p  relation tables 

referred by multiple query subgoals, and maximally one relation is referred by q subgoals, 

then there could be qp possible mappings for every view in the worst case. In addition, 

suppose m is the maximal number of subgoals in a view, t is the maximal number of 

variables in each subgoal, then the time to verify if a mapping is a TCM mapping is 

0(mt). Therefore the time complexity of finding TCM mapping from a view to query Q 

is 0 (mtqp).

In the first stage of TCM bucket algorithm, for each available view, we need to find TCM 

mappings from the view to the query, and put the view into different buckets according to 

the TCM mappings. Therefore if there are totally M views available, the time complexity 

of the first stage is 0 (Mmtqp).

The analysis above shows that the major performance problem is that the number of

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



possible mappings grows exponentially in terms of q and p. However, in most real 

applications, queries that have many different subgoals referring to a same relation table 

are very rare. As a result, we can simply assume that qp will never be greater than a 

constant G. Therefore, we can regard the time complexity of the second stage of TCM 

bucket algorithm as O(Mmt).

Suppose that the number of views in all buckets is M’, the time complexity of the second 

stage of bucket algorithm is 0 (  (nmM’)n ) [14], Therefore, the time complexity of the 

whole TCM bucket algorithm is 0(Mmt + (nmM’)n).

In the worst case where all views are good to generate CE rewriting, i.e., M=M’, the time 

complexity of TCM bucket algorithm is 0 (  (nmM’)n ), which is as same as that of 

bucket algorithm. However, in most practical cases, applying TCM testing will 

dramatically decrease M’. It is the reason why in our experiments, TCM bucket 

algorithm always runs much faster than the bucket algorithm.
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Chapter 4 

Experiments

In this chapter, we will describe several experiments we have conducted to support our 

theory and algorithm. In order to reflect real situation of data integration applications, all 

data we use in our experiments are extracted from a real e-commerce system, rather than 

created by ourselves.

We will review the design, testing data and environment of our experiments in the first 

section. Then the result and analysis of our experiments will be presented. In the last 

section, we will briefly describe the implementation of the application of our 

experiments.

4.1 Overview

4.1.1 Experiment Design

In order to find CE rewritings precisely and efficiently, we expand the MiniCon 

algorithm with our TCM checking rules. We choose MiniCon algorithm, rather than 

other bucket-based algorithms, because of the following two reasons:

1. MiniCon is proved to be able to find out all possible complete rewritings.
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2. In most cases, MiniCon algorithm outperforms basic bucket and inverse-rule 

algorithm

In our experiment system, given a database schema, a set of predefined views, and a 

query posed over the schema, we implement three methods to rewrite the query.

Method 1

Expand the MiniCon algorithm with our TCM checking rules to generate CE rewritings. 

We refer to this method as TCM-MiniCon algorithm.

Method 2

Expand the MiniCon algorithm with the naive approach to generate CE rewritings. We 

refer to this method as E-MiniCon algorithm.

Method 3

MiniCon algorithm is directly applied to find out all contained rewritings, and then a 

maximally contained rewriting can be retrieved by simply making a union of all found 

contained rewritings. For this method, we simply refer to it as MiniCon algorithm.

Three experiments are designed to compare these three methods to validate the necessity, 

effectivity and efficiency of using TCM-MiniCon algorithm:

1. Compare the results of TCM-MiniCon and MiniCon algorithms to show that how 

using CE rewriting other than using maximally contained rewriting can benefit the 

evaluation of a query when a large number views can be used for rewriting.

2. Compare TCM-MiniCon algorithm with E-MiniCon algorithm in the number of
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rewritings that can be finally produced to prove that, considering the result, 

TCM-MiniCon algorithm is as effective as E-MiniCon algorithm.

3. Compare TCM-MiniCon with E-MiniCon and MiniCon in the running time of 

rewriting a certain number of queries to testify the efficiency of TCM-MiniCon 

algorithm.

4.1.2 Experiments Data

The data used in our experiments are extracted from a real e-commerce system [25, 26]. 

The database schema of this system includes 389 relations, and on average, each relation 

contains 8  columns. There are 450 views defined over 212 relations in this schema. And 

30 views, 6% o f all available views, have more than 1 subgoal. The reason why most 

views only have one subgoal is because that every view here is converted from a certain 

member function of an EJB bean, which represents a single relation.

The queries we use in our experiments are randomly selected from the queries in the real 

system that satisfy the following conditions:

•  Queries require distinct tuples.

•  Queries are conjunctive and contain no aggregation predicates.

We totally collected 200 such queries, and on average, each query has 3 subgoals. These
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queries might refer to any relation in the database schema. Nevertheless, the views we 

have only cover 55% of all 389 relations, thus there might be some queries that do not 

have completely rewriting using the views available.

As the number of subgoals in views and queries is relatively small, the most important 

variable throughout the experiments is the number of views available. All the resulting 

data are averaged over multiple runs with the same parameters.

4.1.3 Experiment Environment

All programs in our experiments are developed using Java JSDK 1.5.0 and run on a 

Pentium 4 2.0 GHz running Ubuntu Linux 6.06 with 1024 MB RAM.

4.2 Experiment Results

4.2.1 Necessity Validation

In this experiment, we rewrite all 200 queries using TCM-MiniCon algorithm and 

MiniCon algorithm respectively. By comparing the outputs of these two algorithms, we 

will realize how CE rewriting benefits the evaluation of a query when the number of 

views available increases.
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1. The number of queries having rewritings

Firstly, it is necessary to know how many of the 200 testing queries have contained 

rewritings and how many of them have CE rewritings. Given a certain number of views, 

MiniCon algorithm is used to generate contained rewritings, while TCM-MiniCon 

algorithm is called to find CE rewritings. The results are displayed in Table 4-land 

Figure 4-1.

Number o f views 50 100 150 200 250 300 350 400 450

Queries having contained rewritings 25 35 73 102 112 154 154 158 158

Queries having CE rewritings 19 30 60 89 90 99 112 116 116

Table 4-1: The number of queries having contained or CE rewritings 

Number of queries having rewritings

<8 1 1 0
too

| number of queries 
hawing contained 
rewriting 

| number of queries 
hawing equivalent 
rewriting

B0 100 150 200 250 300 350 400 450

number of views 

Figure 4-1: Number of queries having contained or CE rewritings
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As we mentioned in the previous chapter of this thesis, given a certain number of views, 

not all queries have complete rewriting. As shown in Figure 4-1, both the number of 

queries having contained rewritings and the number of queries having CE rewriting 

greatly go up when the number of views increases. And in most cases, a major portion of 

the queries that have contained rewritings also have CE rewritings. For example, when 

450 views are available, 158 queries (79% of all 200 testing queries) have contained 

rewritings, and 116 queries (58% of the same 200 queries) have CE rewritings. It means 

that 55% queries can be answered using CE rewritings, 24% queries have to be answered 

using maximally contained rewritings, and the rest 2 1 % can not be answered using this 

set of views.

2. Query evaluation cost using different rewritings

Secondly, we compare the cost of answering a query using CE rewritings with the cost 

using maximally contained rewritings. Because we do not have a real database, we are 

not able to compare the real evaluation time of answering a query using these two types 

of rewritings. Therefore, we assume that every contained rewriting has the same 

evaluation time. Then, in order to compare the cost of answering a query using the two 

rewritings, we can simply compare the number of contained rewritings needed to be 

computed in each of these two methods.

Table 4-2 and Figure 4-2 show the average number of produced contained rewritings for
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each query that can be answered using maximally contained rewritings.

Number o f views 50 100 150 200 250 300 350 400 450

Number o f queries having 

contained rewritings
25 35 73 102 112 154 154 158 158

Total number o f contained 
rewritings

51 90 202 371 454 1352 1813 2148 3273

Average number o f contained 

rewritings per query
2 2.5 2 . 8 3.5 4 8.7 1 1 . 8 13.6 20.7

Table 4-2: Average number of contained rewritings per query

i
Average number of contained rewritings per query

. . . .  a

...............'....’................................. ‘ ' ....................................................  /

x — — .....■

■...............i .............  ”1 i ............."i...................i...... .. ....— r.................. i................  i
50 100 150 200 250 300 350 400 450

n u m b e r  o f  views

Figure 4-2: Average number of contained rewritings per query

From Figure 4-2, we notice that the average number of contained rewritings increases 

sharply as the set of views expands. When 450 views are available, there are 158 queries 

having contained rewritings, and on average, each of those queries has 2 0  contained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rewritings. Consequently, to answer one of these queries using maximally contained 

rewritings now becomes to compute 2 0  contained rewritings and make a union of all the 

results.

As in Table 4-1, among those 158 queries, 116 queries have CE rewritings. These queries 

can be answered using a single CE rewriting. Using CE rewriting not only retrieves the 

same answering set as using maximally contained rewriting, but also saves the time to 

evaluate other 19 contained rewritings and to make the union. In another word, in this 

situation, answering a query using CE rewriting is at least 19 times faster than using 

maximally contained rewriting.

Overall, through the necessity validation experiment introduced in this section we 

observe that

(1 ) when the set of available views grows, both the number of queries having 

contained rewritings and the number of queries having CE rewritings greatly 

increase; meanwhile

(2) As the number of available views grows, the average number o f contained rewritings 

a query may have dramatically rises, and accordingly so does the cost of answering 

query using maximally contained rewriting.

It is concluded that when there is a large number of views to be used in rewriting,
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answering query using CE rewriting instead of maximally contained rewriting is an 

essential way to speed up the process of query evaluation.

4.2.2 Correctness Validation

To validate the correctness of TCM-MiniCon algorithm, we rewrite all of the 200 

queries using both TCM-MiniCon and MiniCon, and compare the results of these two 

j algorithms in the number of queries having CE rewritings and the total number of CE 

rewritings found for all 2 0 0  queries.

Table 4-3 and Figure 4-3 give the number of queries having CE rewritings out of all 200 

queries.

Number o f views 50 . 100 150 200 250 300 350 400 450

TCM-MINICON 19 30 60 89 90 99 112 116 116

E-MiniCon 19 30 60 89 90 99 112 116 116

Table 4-3: The number of queries having CE rewritings
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Number of queries having equivalent rewritings
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Figure 4-3: The number of queries having CE rewritings

Table 4-4 and Figure 4-4 give the total number of CE rewritings that can be found for all 

2 0 0  queries.

Number o f views 50 100 150 200 250 300 350 400 450

TCM-MINICON 45 80 130 176 219 239 351 362 404

E-MiniCon 45 80 130 176 219 239 351 362 404

Table 4-4: The total number of CE rewritings for all testing queries

We notice that TCM-MiniCon algorithm comes up with the same number of queries 

having CE rewritings and the same total number of CE rewritings for all 200 queries as 

E-MiniCon algorithm does. In conclusion, this experiment demonstrates that our
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TCM-MiniCon algorithm can definitely compare to E-MiniCon algorithm in effectivity, 

because they always retrieve the same result.

Total number of equivalent rewritings

P I  BCM-MiniCon 
^  MiniCon

50 100 150 200 250 300 350 400 450

number o f  views 

Figure 4-4: The total number of CE rewritings for all testing queries

4.2.3 Efficiency Validation

In this experiment, we rewrite all 200 queries using MiniCon, E-MiniCon and 

TCM-MiniCon respectively, and compare the running time of these three algorithms.
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Number o f views 50 100 150 200 250 300 350 400 450

E-MiniCon
748 1255 1871 2703 3263 5753 7575 9809 16032

MiniCon
671 1183 1808 2456 2752 4456 5583 7408 12156

TCM-MiniCon
445 527 788 1084 1154 1257 1655 1742 1932

Table 4-5: Rewriting time for 200 queries(in ms) 

Excuting time for 200 queries rewriting
18000 -t

w 14000-■
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□ E-MiniCbri 
♦  MiniCon 
▼ BCM-MLniCbn

number o f  views

Figure 4-5: Rewriting time for 200 queries

From Table 4-5 and Figure 4-5, we have three observations:

1. With the same set of available views, TCM-MiniCon algorithm always costs less 

time than MiniCon and E-MiniCon to finish rewriting all 200 queries.

2. When the number of views grows, the performance superior of TCM-MiniCon to the 

other two algorithms dramatically increases.

3. In term of executing time, MiniCon algorithm also outperforms E-MiniCon 

algorithm in all cases.
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In order to understand why TCM-MiniCon algorithm runs much faster than E-MiniCon 

and MiniCon, we first recall the time complexity of these three algorithms. Suppose M is 

the total number of all valid views that can be used to rewrite the given query, m is the 

maximal number of subgoals in a view, t is the is the maximal number of variables in 

each subgoal, and n is the number of subgoals in the query, then the time complexity of 

MiniCon algorithm is 0(nmM)n [14]. E-MiniCon algorithm first calls MiniCon algorithm, 

* and then processes the rewritings generated by MiniCon, it thereby always consumes 

more time then MiniCon.

On the other hand, TCM-MiniCon first calls TCM verification algorithm, whose time 

complexity is O(Mmt) (see section 3.3.2), to filter out all unsuitable views, then applies 

the second stage of MiniCon algorithm to directly generate CE rewritings. Suppose M’ is 

the number of the views available in the second stage, then the time complexity of the 

whole TCM-MiniCon algorithm should be 0(Mmt + (nmM’)n).

Because in practical applications, m, n, and t are usually fairly small, M and M’ will be 

the only critical factors that affect these algorithms’ performance. Table 4-6 and Figure 

4-6 show the number of all available views before and after applying TCM algorithm. 

The number of valid views varies according to different queries. Therefore, we record the 

average value for all 2 0 0  queries.
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Number o f views 50 100 150 200 250 300 350 400 450

TCM-MINICON
0.81 1.16 2.3 3.43 3.81 4.78 5.17 5.28 5.73

MiniCon
2.3 3.63 6.81 9.41 10.81 13.39 15.23 16.31 17.71

Table 4-6: The number of valid views in TCM-MiniCon and MiniCon algorithm

Number o f  valid views

se 14

|  BCM-MiniCon 
I MiniCon

to ta l number o f availble views 

Figure 4-6: The difference of number of valid views between TCM-MiniCon and

MiniCon algorithm

From Figure 4-6, we observe that for TCM-MiniCon algorithm, using TCM testing 

algorithm can reduce the size of valid views before the combination stage. It brings effect 

that is more significant when a larger number of views are available. This is because the 

time complexity of combination stage is exponential in size of the number of valid views, 

and the number of subgoals in the query, while TCM testing algorithm only has a linear
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time complexity in term of valid views. In conclusion, applying TCM before MiniCon 

can greatly improve the algorithm’s performance in the application with large-scale view 

set and complex queries..

Here we also analyze the difference in executing time between MiniCon and E-MiniCon 

algorithm. E-MiniCon carries out the afterward containment checking approach. In order 

to get CE rewriting, it calls MiniCon algorithm first, then applies a containment checking 

i on every single created contained rewriting. For a given query, there could be O(nmM)" 

contained rewritings generated by MiniCon algorithm. From the first experiment, we

know that when 450 views are available for rewriting, there are 3273 contained

rewritings created for 200 queries. Therefore, applying containment checking on each of 

these 3273 contained rewritings extremely slows down the E-MiniCon algorithm.

4.2.4 Summary

The observations of our experiments are summarized as below:

1. When the number of views is very large, there generally are many contained

rewritings for a single query. In such circumstance, answering query using CE

rewriting is much more efficient than using maximally contained rewritings.

2. In term of rewriting result, TCM-MiniCon is just as good as E-MiniCon. The two 

algorithms always have the exactly same output.
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3. Speaking of performance, TCM-MiniCon is superior to both E-MiniCon and 

MiniCon. Applying TCM algorithm effectively improves the performance of the 

entire rewriting algorithm, especially in the environment with massive views and 

complex queries.

4.3 Implementation

Our experimental query rewriting system is developed using Java on Linux platform. All 

java class source codes are compiled and executed on the latest J2SE 1.5.0. During the 

development, we use Eclipse as the IDE(Integrated Development Environment), Apache 

Ant as package management software, and CVS as version control software.

Our system includes several libraries that provide classes and functions for query parsing, 

translating and rewriting. We also develop a command line interface and a GUI(Graphic 

User Interface) to test various query rewriting algorithms in different situations. Figure 

4-7 shows all the packages in our system. Below is the briefly description of each 

package.
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Sql4j

QrwAPP

Qrw

QrwGUI

Datalog4j

Figure 4-7: Package relationship in experiment rewriting system

•  Sql4j is a SQL parser that can parse a SQL string and fill in java structures that 

represent SQL statements and expressions [27].

•  Datalog4j defines the datalog class that is a semantic expression of queries. This 

package also provides functions to translate a query in SQL into a datalog expression 

[28].

•  Qrw is the most critical class in our system. It contains an abstract class, QRewriter, 

defining a set of uniform interfaces for query rewriter. Besides, there are three 

subclasses derived from QRewriter, which are TCM-MiniCon, E-MiniCon, and 

MiniCon.

•  QrwGUI provides graphic interface to show database environment (schemas and 

view definitions) and to rewrite a query using different algorithms. It is convenient 

to compare results of different rewriting algorithms for a single query. See Appendix 

C for the screen-shots of QrwGUI.

QrwGUI and QrwApp take a SQL query string as input and produce a set of CE

rewritings or contained rewritings as output. In order to use QrwGUI and QrwAPP
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correctly, user must provide the definitions of database schema and views. They are 

defined using two XML files. The sample XML files for definitions of the database 

schema and views used in our experiment can be found in Appendix A.
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Chapter 5 

Conclusion

5.1 Summary

Based on the bucket algorithm, we propose TCM bucket algorithm to find CE rewritings 

of a query. It applies TCM mapping to test which view should be put into which bucket, 

I so that each produced rewriting is automatically a CE rewriting without extra 

containment checking.

In order to filter out the inappropriate view from the buckets, we developed two rules: 

Rule 1 If a view does not have a TCM mapping to the given query, remove it before 

running the bucket algorithm.

Rule 2 When adding a view V to a bucket S of query Q, V must have a Bucket-TCM 

mapping to Q wrt S.

We prove that with these two rules, all the rewriting generated by TCM bucket algorithm 

are CE rewriting without applying extra containment checking, and TCM bucket 

algorithm can always find a CE rewriting if there exits one. Moreover, rule 1 and 2 can 

be easily integrated with any bucket based algorithm, such as MiniCon algorithm and 

SVB algorithm, so that they are also able to generate CE rewritings.
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A series of experiments have been carried out to validate the necessity, effectiveness and 

efficiency of our algorithm. All testing data we use in our experiments are extracted from 

a real data integration project, which includes 450 views and 200 queries. In our testing 

system, the experiments are undertaken upon the following three query rewriting 

methods.

1. MiniCon

A popular maximally contained rewriting algorithm based on bucket algorithm

2. E-MiniCon

The naive extension of MiniCon algorithm. It obtains CE rewritings by removing 

properly contained rewritings from all rewritings generated by MiniCon algorithm.

3. TCM-MiniCon

It integrates the two rules in TCM Bucket algorithm with MiniCon algorithm to 

produce CE rewritings

The result of these experiments shows three facts that support our algorithm.

1. When the number of views is very large, there generally are many contained 

rewritings for a single query. In such circumstance, answering query using CE 

rewriting is much more efficient than using maximally contained rewritings.

2. In term of rewriting result, TCM-MiniCon is just as good as E-MiniCon. The two 

algorithms always have the exactly same output.

3. Speaking of performance, TCM-MiniCon is superior to both E-MiniCon and
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MiniCon algorithm. Applying TCM algorithm effectively improves the performance 

of the whole rewriting algorithm, especially in the environment with massive views 

and complex queries.

5.2 Future work

There are three aspects to improve our method of finding CE rewritings:

1. Consider the value domain of all variables when verify tail containment mapping 

so that TCM algorithm can handle queries and views having comparison 

predicates. Some of the ideas for handling comparison predicates have been 

mentioned in [29, 30, 31, 32],

2. Extend our algorithms to handle integrity constrains, such as inclusion 

dependencies. It will enable our algorithms to find out more CE rewritings. There 

are some papers, such as [33, 34, 35], discussing the problem about query 

rewriting with inclusion dependencies.

3. Our algorithm usually generates more than one CE rewritings of the given query, 

and randomly picks one as the final answer. For the further improvement, we 

need to introduce a cost model in evaluating views in TCM algorithm. With this 

cost model, TCM algorithm will be able to filter out more views, and guarantee 

that the complete rewriting algorithm can generate the best rewriting for the given 

query.
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Appendices

Appendix A Rewriting Environment

A rewriting environment contains database schema and view definitions. They are 

defined in two XML files: schema.xml and views’xml. Below is an example for the 

University schema and views.

1. schema.xml

<?xml version3’1,0J?>
<S c hema Dat abas eName="Vi ewSurvey"> 
cTableName Name3"Prof">

<ColumnName Name3"name" TypeNaise3"CHARACTER" />
<ColmnnName Name3"area" TypeName3"CHARACTER"/>
<ColumnName Name3"age" TypeName3"CHARACTER"/>
<PrimaryKey>

<PrimaryKeyColumnName Name3"name" SequenceName 3 "l"/> 
</PrimaryKey>
<ForeignKey>
</ForeignKey>

</TableName>
<TableName Name3MCourse">

<ColumnName Name3"c_number" TypeName3"CHARACTER"/ >  

<ColunmName Name3"title" TypeName="CHARACTER"/>
<PrimaryKey>
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<PrimaryKeyColuinnName Name="c_number" SequenceName = "l"/> 
</PrimaryKey>
<ForeignKey>
</ForeignKey>

</TableName>
<TableName Name="Teach.es">

<ColumnName Name="prof" TypeMame="CHARACTER"/>
<ColumnName Name="c.number" TypeName="CHARACTER"/>
<ColumnName Name="quarter" TypeName="CHARACTER"/>
<ColumnName Name="evaluation" TypeName="CHARACTER"/> 
<PrimaryKey>

<PrimaryKeyColumnName Name="cjnumber" SequenceName = "l"/> 
<PrimaryKeyColumnName Name="quarter" SequenceName = "2"/> 

</PrimaryKey>
<ForeignKey>

<ForeignKeyColumnName Name="prof">
<ForeignKeyReferenceTableName Name="Prof"/> 
<ForeignKeyReferenceColumnName Name="name"/> 
<ForeignKeySequence Name="l"/> 

</ForeignKeyColumnName>
<ForeignKeyColumnName Name="c_number">

<ForeignKeyReferenceTableName Name="Course"/> 
<ForeignKeyReferenceColumnName Name="c„number"/> 
<ForeignKeySequence Name="l"/> 

</ForeignKeyColumnName>
</ForeignKey>

</TableName>
<TableName Name="Registered”>

cCoTumnName Name="student" TypeName="CHARACTER"/>
<ColumnName Name="c_number" TypeName="CHARACTER"/>
<ColumnName Name="quarter" TypeNairie="CHARACTER"/>
<PrimaryKey>

<PrimaryKeyColumnName Name="student" SequenceName = 
<PrimaryKeyColumnName Name="c_number” SequenceName = "2"/>
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<PrimaryKeyColumnName Name="quarter" SequenceName = !l3"/> 
</PrimaryKey>

<ForeignKey>
<ForeignKeyColumnName Name="c ..number ">

<ForeignKeyReferenceTableName Name='!Course"/■> 
<ForeignKeyReferenceColumnName Name="c_number"/> 
<ForeignKeySequence Name="l"/> 

'</ForeignKeyColunmName>- 
<ForeignKeyColumnName Name="student">

<ForeignKeyReferenceTableName Name="Major"/> 
<ForeignKeyReferenceColumnName Name="student"/> 
<ForeignKeySequence Name="l"/> 

</ForeignKeyGolumnName>
<ForeignKeyColumnName Name="c.number">

<ForeignKeyReferenceTableName Name="Teaches"/> 
<ForeignKeyReferenceColumnName Name-!'c.number"/> 
<ForeignKeySequence Name-"l"/> 

</ForeignKeyColumnName>
<ForeignKeyColumnName Name="quarterl(>

<ForeignKeyReferenceTableName Name="Teaches"/> 
<ForeignKeyReferenceColumnName Name="quarter"/> 
<ForeignKeySequence Name="2,,/> 

</ForeignKeyColumnNaxne>
</ForeignKey>

</TableName>
<TableName Name-"Major">

<ColumnName Name="student" TypeName="CHARACTER"/> 
cColumnName Name="dept" TypeName="CHARACTER"/>
<PrimaryKey>

<PrimaryKeyColumnName Name="student" SequenceName = " ! " / >  

</PrimaryKey>
<ForeignKey>
</ForeignKey>
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</TableName>
cTableName Name="'Advises">

<ColumnName Narae="prof" TypeName=”CHARACTER"/>
<ColumnName Name="student" TypeName="CHARACTER"/>
<PrimaryKey>

<PrimaryKeyColumnName Name="prof" SequenceName = "l"/> 
<PrimaryKeyColumnName Name="student" SequenceName = "2" 

</PrimaryKey>
<ForeignKey>

<ForeignKeyColumnName Name="prof">
<ForeignKeyReferenceTableName Name=”Prof"/>
<ForeignKeyReferenceColumnName Hame="name"/> 
<ForeignKeySequence Name="l"/> 

</ForeignKeyCoiumnName>
<ForeignKeyColumnName Name="student">

<ForeignKeyReferenceTableName Name="Major"/> 
<ForeignKeyReferenceColumnName Name-"student" / >  

<ForeignKeySequence Name="l"/> 
</ForeignKeyColumnName>

</ForelgnKey>
</TableName>
</Schema>

2. views.xml

<?xml version="l.0"?>
<views>
cview name="Vl"> <Query>

SELECT Registered.student, Registered.c_number, 
Course.title 

FROM Registered, Course
WHERE Registered.c„number=Course.c_number 

AND Course.title = ’DB’
</Query>

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



</view>

<view name="V2"> <Query>
SELECT Registered.student, Teaches.prof,

Registered.c_number, Teaches.evaluation 
FROM Registered, Teaches 
WHERE Registered.c.number=Teaches.c_number

AND Registered.quarter=Teaches.quarter
</Query>

</view>
cview name="V3”> <Query>

SELECT Registered.student, Registered.c_number 
FROM Registered

</Query>
</view>
<view name="V4M> <Query>

SELECT Teaches.prof, Teaches,c_number, Course.title 
FROM Registered, Course, Teaches 
WHERE Registered.€_number=Teaches.c.number 
AND Registered.c_number=Course.c.number

</Query>
</view>
<view name="V5"> <Query>

SELECT Prof.name, Teaches,c.number, Teaches.quarter, 
Prof.area, Teaches.evaluation 

FROM Teaches, Prof 
WHERE Teaches.prof=Prof.name 
And Teaches.evaluation = 7 0

</Query>
</view>
</views>
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Appendix B Demonstration of QrwApp

QrwApp is a command line interface of our query rewriting system. We implemented 

many different query rewriting algorithms in Qrw library. Taking advantage of Qrw 

library, QrwApp provides a way to find contained rewritings or equivalent rewritings of 

queries using different rewriting algorithms. Another significant feature of QrwApp is 

that it is able to handle queries in batches.

a) Usage of QrwApp

File Edit View Terminal Tabs Help

----------

HR

■
HH

b) Demonstration of QrwApp

Suppose we have two queries based on the schema defined in Appendix A as below: 

Q1:

SELECT Registered.student, Registered.c_number, Registered.quarter, Course.title

FROM Registered, Course

WHERE Registered.c_number=Course.c_number
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Q2:

SELECT Registered.student, Registered.c_number, Teaches.prof 

FROM Teaches, Registered, Course 

WHERE Teaches.c_number=Registered.c_number 

AND Registered.quarter = Teaches.quarter 

AND Registered.c_number=Course.c_number

Before running QrwApp, we put definition files o f schemas, views and those two queries into one 
directory, for example aptest. Then we run QrwApp with TCM-MiniCon and E-MiniCon respectively.

•  Result of running QrwApp using TCM-MiniCon ■IHHBfl i i ■
11■

■MM i i ■H R i i ■■i R̂■■■■
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•  Result of running QrwApp using E-MiniCon
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T e s t  Summary
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•  Result of running QrwApp using MiniCon
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Appendix C Demonstration of QrwGUI

QrwGUI is GUI program to rewriting a single query using different rewriting algorithms. 
Here are some screenshots for QrwGUI.

1. QrwGui startup

€  A p p l ic a tio n s  A c tio n s  u  a *  a 00 9  %  «  M o n  J a n  2 . 2 1 :54  43 B

E n v i r o n m e n t  A lg o r i th m  H e lp  

is c h e m a  " .....  ... q u e r y  i n p u t :

r e w r i t e  o u t p u t :

v ie w s

[ in fo r m a t io n  [C o n s o le  •

]
C e r id  A lg o rith m

fcti VI 1>
1 i J r .

' (*»a.

s a g

□  u r x v t □ Q u e r y  R e w r ite
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2. QrwGui loads rewriting environment files
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C o u rse (T IT L E , C _N U M B ER ), T eaches(E V A L U A T IO N , P'ROF, QUA RTERO, C JW M B E R ) .
D a ta lo g :

S E L E C T  T e a c h e s  .p ro f , T e a c h e s  .c j t u m b e r ,  C o u r s e . t i t le  FRO M  R e g i s t e r e d ,  C o u r s e ,  T e a c h e s  W H E

□  Q u e r y  R e w r l t e : t e a t i I 1 K
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3. QrwGui shows rewriting resul

If Applications Actions |gj fM QQ %  i  4b» Mon Jan 2, 2 1 :5 7 # |0

[Views

r e w r i t e  o u t p u t :

environment Algorithm Help

S c h e m a  _ _t ,  .,,J query input :

•> ADVISES 
-  TEACHES 

c o lu m n :
EVALUATION 

PRO F 
Q UA RTER 
C .N U M B E R  

v  P rim a ry K e y :

QU A RTER 
C N U M B E R  

v  F o re ig n K e y :
[C _N U M B E R ]-> [C _N U M B E R ](C O U R SE ) 
lPR O F ]-> [N A M E ](P R O F) 

t> PRO F 
► COURSE

SE LEC T R e g i s t e r e d .s tu d e n t ,  R e g i s t e r e d .c .n u m b e r ,  T e a c h e s .p r o f
FRO M  T e a c h e s ,  R e g i s t e r e d ,  C o u rs e
W H ERE T e a c h e s .c _ n u m b e r = R e g is te r e d .c _ n u m b e r  AND
R e g is te r e d .c _ n u m b e r = C o u r s e .c _ n u m b e r  AN D  T e a c h e s .e v a lu a t io n = 8 0

C e r id  A lg o rith m  

^ E c m iv a ie h tR w  

C o n ta in e d  R w  

L o a d  O u e rv  

C le a r  ’

> V I (STUDENT, C .N U M B E R , TITLE)

^  V2(STU D EN T, PRO F, C .N U M B E R , EVALUATIC

> R e g is te r e d
> T e a c h e s

> V3(STU D EN T, C N U M BER)

V5(PRO F, C  N U M B ER , Q U A RTE R, A R EA , EVA  
*  T e a c h e s

EVALUATION 
PRO F 

Q U A RTE R  
C_N U M B ER

> P ro f

Q u e ry :
SQL:
SELEC T R e g i s t e r e d .s tu d e n t ,  R e g is te r e d .c _ n u m b e r ,  T e a c h e s .p r o f  
FRO M  T e a c h e s ,  R e g i s t e r e d ,  C o u r s e  
W H ERE T e a c h e s  .c _ n u m b e r = R e g is te r e d .c _ n u m b e r  AND R e g is te r e d .c _ n u m b e r = C o u r s e .c _ n u m b e r  Ah

D a ta lo g :
Q(STUD ENT, C  N U M B ER , P R O F) < - Teaches(E V A L U A T iO N , PRO F, Q U A RTE R, C  N U M B ER ), 

R eg is te re d (Q U A R T E R O , C N U M BER, STU D EN T),
C o u rse (T lT L E , C .N U M B E R ).

R e w r it in g :
Q '(STUD ENT, C .N U M B E R , PR O F) < - V 5(PR O F, C_N U M BER, Q U A RTE R, AREAO, EVALUATION), 

V 4(PRO FO , C .N U M B E R , TITLE), V 1(STU D EN T, C N U M B E R , TITL E), EV A LU A TIO N *80. 
Q '(STU D EN T, C  N U M B ER , P R O F) <• V 5(PR O F, C N U M B ER , Q U A R T E R , AREAO, EVALUATION),

V 4(PR O F07C _N U M B E R , TITLE), V 2(STU D EN T, PR O F1, C N U M B ER , EVALUATIONO), EVALUATIO 
Q '(STUD ENT, C .N U M B E R , PR O F) < - V 5(PR O F. C N U M B ER , Q U A RTE R, AREAO, EVALUATION), 

V 4(PRO FO , C N U M B ER , TITLE), V 3(STU D EN T, C N U M B E R ), EVALUATION = 8 0 .

3 r e w r i t i n g s  fo u n d  in  3 6  m s .

r r

H  IS 15 urxvt'!

infermationjConeole’
SQL: "  ...........— .............................    -“
V 4(PROF, C .N U M B E R , TITLE) < -  R e g is te re d (Q U A R T E R , C .N U M B E R , S T U D E N T ),

C o u rse (T IT L E , C .N U M B E R ), T eaches(E V A L U A T IO N , PRO F, QUARTERO, C .N U M B E R ).
D a ta lo g :

S E L E C T  T e a c h e s .p ro f ,  T e a c h e s .c .n u m b e r ,  C o u r s e . t i t le  FR O M  R e g i s t e r e d ,  C o u r s e ,  T e a c h e s  W HE

t3 Query Rewrt&testl
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