
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

A web service based architecture for authorization of unknown A web service based architecture for authorization of unknown

entities in a Grid environment. entities in a Grid environment.

Jordan Rivington
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Rivington, Jordan, "A web service based architecture for authorization of unknown entities in a Grid
environment." (2007). Electronic Theses and Dissertations. 6996.
https://scholar.uwindsor.ca/etd/6996

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F6996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/6996?utm_source=scholar.uwindsor.ca%2Fetd%2F6996&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Web Service Based Architecture for Authorization of
Unknown Entities in a Grid Environment

by

Jordan Rivington

A Thesis
Submitted to the Faculty of Graduate Studies

through Computer Science
in Partial Fulfillment of the Requirements
for the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada
2007

© 2007 Jordan Rivington

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35021-8
Our file Notre reference
ISBN: 978-0-494-35021-8

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

As the “Grid” becomes closer and closer to fruition, not as a static entity, but as a

dynamic global solution, certain issues must be addressed. These issues include, but are

not limited to, virtualization, discovery, accounting and fault tolerance [Kesselman2002].

Many of such issues are being addressed with the advent of OGSA/OGSI and related

service-based changes, which are being applied to grid-based computing

[Kesselman2002]. Of course, these changes also include security, but not from the point

of view of unknown entities. Before we can successfully achieve pervasive computing,

we must leave behind, or at least augment, the current notion of pre-established trust

[Rivington2004]. This requires too much administrative overhead, and is not realistic in a

distributed environment where processing may occur across thousands to millions of

independently administered nodes [Kirschner2004]. Therefore, the purpose of this paper

is to present a new architecture for distributed authorization which will surpass current

schemes in scalability, due to a lower administrative overhead, while also supporting the

notion of arbitrary entities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

Dedication

I dedicate this work to my parents. Without their support, mentally, emotionally, and

financially, as well as their influence in general, I would not have become the person I

am today. It took a little while for me to realize that I don’t know everything and I have

them to thank for it. It also took some time for them to convince me that education was in

fact important. For this, and everything else, I am forever grateful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

Acknowledgements

Throughout the lifetime of this project, many major events have occurred in my life. I

met my fiance, we have planned a wedding, we have purchased a house, and we now

have three pets chewing everything in sight. I am very happy with how my life is

progressing. The completion of this project will be the proverbial icing on the cake. That

being said, the first person I would like to acknowledge is my fiance Kristin. She has

supported me throughout this long process, and I could not have done this without her.

Soon we shall be able to spend more time together without the laptop.

From a technical and mentoring point of view, I could not have asked for a better person.

Dr. Robert Kent has played many roles in this project including technical consultant,

devil’s advocate, motivator, and friend. I still remember the day I went into his office to

ask him if I could work with him for my Master’s. He abruptly said “you have thirty

seconds to tell me why I shouldn’t kick you out of my office right now”. I guess I said

what I needed to say, because I have been working with him ever since. Although at

times I became quite frustrated with his suggested changes of topic, I have since realized

that it was all part of the learning process, and I cannot thank him enough for the

guidance. In the end, I don’t consider anything I have done a waste of time.

Most people are lucky if they can find one person to provide them with the necessary

help and guidance required to complete this type of project. I was fortunate to have not

only one supporter. Dr. Akshai Aggarwal was also always available to help me with the

technical details of this project. For this, I cannot thank him enough.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Preface...1
1 Introduction...2
2 Background Terminology and Technologies...5

2.1 Authorization... 5
2.2 Web Services... 6
2.3 XML..6
2.4 WSDL...7
2.5 UDDI...7
2.6 SOAP.. 8
2.7 OGSA.. 8
2.8 Globus (GT4)... 9

3 Literature Review and Related W ork...11
3.1 Authorization Systems...11

3.1.1 Akenti(1999)... 11
3.1.2 Certificate Based Authorization Simulation System (2001)...................... 12
3.1.3 MAFTIA1 (2001)..13
3.1.4 CAS (GT4) (2002).. 13
3.1.5 KEYNOTE (1999).. 14
3.1.6 PERMIS (2002)... 14
3.1.7 CARDEA (2003)... 15
3.1.8 FIDELIS (2003)... 16
3.1.9 HP HSA (2003).. 16
3.1.10 CONTEXT SENSITIVE (2003).. 17
3.1.11 TERA (2004).. 17
3.1.12 IBM TE (2004)... 18
3.1.13 Shibboleth (2004)... 18
3.1.14 VOMS (2004).. 19
3.1.15 PRIMA (2004)... 19
3.1.16 WS AA Authorization Framework (GT4) (2006)...................................... 19
3.1.17 General System Comparison..20

3.2 Methods of Authorization... 21
3.3 Comparison 1: Authorization... 21
3.4 Comparison 2: Features... 22
3.5 Comparison 3: Implementation..24
3.6 Comparison 4: Arbitrary Entities...24
3.7 Authorization System Comparison Summary.. 25

4 Augmented Authorization System Using Reputation...27
4.1 Justification.. 27
4.2 Overall Architectural Comparison with AASUR... 28
4.3 Problem Statement...28

5 AASUR...31
5.1 Design Context... 31
5.2 Design Methodology..32
5.3 Design Assumptions..37

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Reputation and Evidence... 38
5.5 Architectural Assumptions... 41
5.6 Maj or Components and Packages... 42

5.6.1 org.aasur.ejbca.ca.AassurCaService (ACS)..42
5.6.2 org.aasur.resource.ResourceSiteServiceListener (RSSL)............................44
5.6.3 org.aasur.reputation.AASURReputation (AR)...46
5.6.4 org.aasur.policy.UserClass (UC)...48
5.6.5 org.aasur.policy.UserClassPolicy (UCP).. 49
5.6.6 org.aasur.policy.UserClassEngine (UCE)... 50
5.6.7 org.aasur.policy.RiskFactorPolicyEntry (RFPE)..52
5.6.8 org.aasur.policy.RiskFactorPolicy (RFP)... 53
5.6.9 org.aasur.policy.RiskFactorEngine (RFE).. 54
5.6.10 org.aasur.policy.AccessDecisionPolicyEntry... 55
5.6.11 org.aasur.policy.AccessDecisionPolicy.. 56
5.6.12 org.aasur.policy.AccessDecisionEngine... 58

5.7 Supporting Components..59
5.7.1 org.aasur.user.UserSiteSimulator... 59
5.7.2 org.aasur.common.Serializer... 59
5.7.3 org.aasur.common.TextCompressor..61
5.7.4 org.aasur.common.FileContentExtractor.. 62
5.7.5 org.aasur.common.RandomNumberGenerator...63
5.7.6 org.aasur.common.ReputationExtractor... 64
5.7.7 org.aasur.common.XMLDomParser..64
5.7.8 org.aasur.simulation.RandomJobGenerator.. 65
5.7.9 org.aasur.simulation.JobAction... 66

5.8 Policy Formats.. 67
5.8.1 Risk Factor Determination Policy..68
5.8.2 Access Decision Policy...69
5.8.3 User Class Definition Policy...70
5.8.4 Local Blacklisting Actions Definition Policy... 71

5.9 Message Formats.. 72
5.9.1 Resource Access Request...72
5.9.2 Point Action Notification..72
5.9.3 Resource Access Ticket.. 73

5.10 OTHER FORMATS... 74
5.10.1 Certificate Point Format (Reputation)...74
5.10.2 Local Blacklist Format.. 75

5.11 Extensibility...76
5.12 Sample Walkthrough (SYSTEM FLOW)... 77
5.13 Sample Walkthrough (AUTHORIZATION DECISION)................................... 80
5.14 Current State..87
5.15 Limitations... 87
5.16 Implementation..88

6 Development/Deployment Infrastructure...90
6.1 Required Components...90
6.2 Selection of Software.. 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Installation and configuration..92
6.3.1 JBoss... 92
6.3.2 Java..93
6.3.3 Linux... 94
6.3.4 EJBCA.. 94
6.3.5 MySQL... 97

7 Testing and Verification..99
7.1 Code Correctness Verification... 99
7.2 Metrics...99
7.3 Procedures and Results...100

7.3.1 Test A: Certificate Retrieval Time (NO REPUTATION)........................ 100
7.3.2 Test B: Certificate Retrieval Time (EMPTY REPUTATION)................102
7.3.3 Test C: Certificate Retrieval Time (0-100,000 ACTIONS)...................... 104
7.3.4 Test D: Certificate Size Vs. Actions in Reputation...................................106
7.3.5 Test E: Access Decision Time (0-100,000 ACTIONS).............................108

7.4 Performance Comparisons..110
7.4.1 Akenti...110
7.4.2 Permis..I l l
7.4.3 AASUR / Permis / Akenti Comparison Summary..................................... I l l

8 Conclusion.. 113
8.1 Future Work... 114

References..116
Appendix A: Environment Configuration Instructions.................... 121

A. 1 LINUX INSTALLATION..121
A.2 JBOSS INSTALLATION...122
A.3 MYSQL CONFIGURATION.. 123
A.4 EJBCA INSTALLATION..124
A. 5 PREPARATION AND DEPLOYMENT... 125

VitaAuctoris.. 129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Tables

1. Table 1: Legal/Illegal Point Actions..39

2. Table 2: Other Point Actions... 39

3. Table 3: Additional Evidence.. 40

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Figures

1. Graphical Representation of the Grid Security Infrastructure (GSI).........................10

2. Figure 2: System Comparisons 1: Authorization Methods...22

3. Figure 3: System Comparisons 2: Features... 23

4. Figure 4: System Comparisons 3: Implementation..24

5. Figure 5: System Comparisons 4: Arbitrary Entity Support.......................................26

6. Figure 6: System Comparisons 5: Overall Architectural Comparison................ 28

7. Figure 7: AASUR Reputation Object.. 41

8. Figure 8: AasurCaService Object...44

9. Figure 9: ResourceSiteServiceListener Object..45

10. Figure 10: AasurReputation Object...47

11. Figure 11: UserClass Object.. 49

12. Figure 12: UserClassPolicy Obj ect..50

13. Figure 13: UserClassEngine Object...52

14. Figure 14: RiskFactorPolicyEntry Obj ect..53

15. Figure 15: RiskFactorPolicy Obj ect... 54

16. Figure 16: RiskFactorEngine Obj ect...55

17. Figure 17: AccessDecisionPolicyEntry Obj ect... 56

18. Figure 18: AccessDecisionPolicy Object...57

19. Figure 19: AccessDecisionEngine Object...58

20. Figure 20: Serializer Object... 61

21. Figure 21: TextCompressor Object..62

22. Figure 22: FileContentExtractor Object.. 63

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23. Figure 23: RandomNumberGenerator Object.. 64

24. Figure 24: ReputationExtractor Object...64

25. Figure 25: ReputationExtractor Object...65

26. Figure 26: RandomJobGenerator Object... 66

27. Figure 27: JobAction Object... 67

28. Figure 28: Sample Transaction Walkthrough.. 77

29. Figure 29: TEST A: 1000 Certificate Retrievals. No reputation..............................101

30. Figure 30: TEST B: 1000 Certificate Retrievals. Empty reputation........................ 103

31. Figure 31: TEST C. 1000 certificate retrievals. 100,000 action reputation.............105

32. Figure 32: Test D. Certificate size increase with 100,000 actions in reputation.... 107

33. Figure 33: Test E. Authorization decision time with 100,000 action reputation... 109

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preface

This thesis is the direct result of my own work and includes nothing which is the outcome

of work done with others, except where specifically indicated in the text. Of course,

direction and suggestions have been given to me by my supervisor and other faculty. This

thesis is not the same as any that I have submitted for another degree or any other

qualification at any other educational institution. No part of this work has already been,

or is being currently submitted for any such degree, diploma or other qualification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

1 Introduction

Grid computing encompasses the sharing of computational, storage, and networked

resources that are controlled by different resource owners, typically independent

institutions, and where the users of grid resources may be members of some, but not all,

institutions [Foster2001]. Before such foreign users may be permitted to access remote

grid resources it is necessary that their identities be authenticated and their requests for

access to resources be authorized. The Open Grid Services Architecture (OGSA)

provides a universally applicable and adopted framework for grid system integration,

virtualization, and management [Kesselman2002]. It also provides several mechanisms

with respect to security.

The various OGSA mechanisms which address security do so within a scope defined by a

specified and limited lifetime of application. At the present time OGSA is still in a

relatively infant stage of development with primary attention paid to issues of

authentication which have been treated effectively, for the most part. Authorization

mechanisms, however, are generally considered as underdeveloped and many problems

still remain to be treated. New techniques must be integrated into OGSA to provide both

new authentication as well as authorization mechanisms to address evolving security

problems and schemas in modem distributed systems. [Rivington2004]

Though the security of web services has been addressed in the OGSA specifications,

authorization is, at best, rudimentary. Currently, OGSA authorization relies on a static

grid-map file, specific to each resource, which provides a mapping from a global ID

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtained using a public key certificate (PKC) to a local account [Keahey2002]. Local

account rights are then used as the basis for granting access to resources. While this

approach certainly has a place in the general authorization scheme of OGSA, especially

in the case of pre-established collaborations and federations, it is not sufficient for an

evolving distributed computing environment, where resources may be shared with

individuals who may be unknown to the resource provider [Kirschner2004]. Moreover, if

each new entity must be manually added to the local grid-map file the scalability of the

system becomes limited [Kirschner2004].

Similar types of authorization manifest themselves in several other architectures and

systems, through various novel approaches. Within all of these approaches there exist

potential issues that affect the overall scalability, performance, administrative overhead

requirements, and other characteristics which would limit the overall scale of use of these

approaches.

In this thesis we propose an architecture which collects and records actions performed by

an entity throughout its lifetime in a grid. These actions are tracked through a subsystem,

and are recorded as points which are then used as evidence. When combined with site

specific policies, this evidence is used to determine an entity’s reputation and to augment

other local policies to obtain an authorization decision. This architecture, called

Augmented Authorization System Using Reputation (AASUR) [Rivington2004], has

been implemented and tested and various performance results are presented and

discussed.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The remainder of the thesis is organized as follows. Chapter 2 introduces terminology

and discusses a number of relevant existing software tools, components, and systems. In

Chapter 3 we review several authorization approaches and systems presented in the

literature. This discussion includes a critical review of the problems and limitations of

those approaches. Chapter 4 is dedicated to developing the precise context of our

AASUR approach to authorization and how it intends to address and overcome the

limitations of other systems. In this context we state the thesis problem and provide a set

of specific objectives, justifications and intended contributions relating to authorization

for grid computing. Chapter 5 outlines in complete detail the Augmented Authorization

System Using Reputation, including design context, assumptions, discussion dealing with

reputation, components, policies/messages and associated formats, discussion regarding

extensibility, and sample transactions to illustrate functionality. We also discuss the

current state of AASUR, inherent limitations, and various implementation details.

Chapter 6 provides details regarding the development and deployment infrastructure used

for AASUR. Chapter 7 discusses the verification and testing of our approach, including

procedures, correctness, performance, and associated metrics leading to a comparison

with several other existing systems. Chapter 8 contains our conclusions, including what is

new and novel with respect to this system, and a discussion of possible future research

work. There is one Appendix wherein we present a detailed procedure for installing and

configuring required AASUR components to form a working system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Background Terminology and Technologies
In order to provide a foundation and consequently an appreciation of the nature of the

authorization problem in grid computing, we begin by defining conventional terminology

used in discussions of security and describing the various software tools and technologies

pertinent to web services, distributed systems, and authorization.

2.1 Authorization

In the context of grid and distributed computing, authorization is the act of determining

what a user may be permitted to do within a computing system, including the set of

resources for which access may be granted and also the actions that may be performed on

those resources [0pplinger2000].

Typically, in the context of existing approaches, authorization is derived from

authentication. This means that once a user’s identity has been determined the actions

that may be performed are derived from that identity [Lampson2000]. This has worked

very well in the context of operating systems and other systems where control is

generally centralized. This paradigm does not necessarily shift well into the realm of

globally distributed processing where it is very likely that a resource will have no prior

knowledge of a user. Creating a mapping between an unknown user and a set of

associated rights becomes very difficult. Inevitably, centralized schemes will suffer from

a lack of scalability since the central services must handle ever larger amounts of traffic

volumes from growing numbers of users requesting authorizations. For this reason a

different, more scalable approach must be examined.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Web Services

Current trends, including grid computing, are increasing the degree of reliance on

networks; in short networked elements must communicate with each other necessitating

the use of software modules to achieve this intent. Hence, web services are web based,

compositions of small, well defined modules [Curbera2001]. The evolution of distributed

computing, like networks, is very dynamic and web services reflect this dynamism.

Modularity affords easier maintenance, code reuse, abstraction from unnecessary

implementation details, and domain-wide access [Fiadeirol995]. Once properly described

(using descriptive languages described below) and maintained in a repository for

discovery purposes (also described below), these publicly exposed modules can be

accessed as Web Services using well known scripting languages, such as Hypertext

Markup Language (HTML) and the extensible Markup Language (XML), and protocols,

such as the Simple Object Access Protocol (SOAP) [Curbera2001]. All services are

offered individually and completely abstracted from their underlying complexity and

implementation details. These services can be used independently or composed to create

more complex services [Koehler2003].

2.3 XML

The extensible Markup Language, or xml, is an Open Source standard proposed by the

World Wide Web Consortium (W3C). It is a self-describing data format intended to

enable data interchange among various applications and hosts across the Internet

[W3C1]. Due to the simple tagged structure of XML, parsing is very straightforward, and

many programming languages have built-in support for xml parsing. All xml documents

must be well formed; that is, all opening tags must have closing tags unless they are

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

empty [W3C1]. This ensures that parsing of the xml is unambiguous. We note that all of

the policies, formats, and reputation in our system, defined later in this thesis, are defined

in xml based formats because of the many benefits inherited through its use.

2.4 WSDL

The Web Services Description Language, or WSDL, is an XML based language whose

function is to support the definition of web services. In other words, WSDL defines a

web service in terms of its publicly accessible interface, including method names, input

parameters, and return types [Orth2002]. This definition specifies web services as a set of

network endpoints (that is, ports) operating on a message payload [W3C2]. The services

are abstractly defined in terms of messages and available operations, and consequently

bound to underlying protocols in a concrete instance [W3C2]. This ensures that the

individual definitions can be reused. Although WSDL is extensible, it is typically bound

to SOAP, the Hypertext Transfer Protocol (HTTP), and multipurpose internet mail

extensions (MIME) [W3C2].

2.5 UDDI

UDDI stands for Universal Description Discovery and Integration [ShaikhAli2003].

UDDI is a platform-independent, xml based registry which is available to store

information about various businesses that have an internet presence. More specifically,

UDDI registers web services that may be discovered and utilized. An entry in UDDI is

composed of three parts [ShaikhAli2003]:

1. White pages - address/contact information

2. Yellow pages - business categories

3. Green pages - services exposed by the business

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Essentially, UDDI exists to allow SOAP based web service queries to obtain WSDL

documents that will enable other businesses or users to make use of the offered services.

2.6 SOAP

SOAP is an acronym which stands for the Simple Object Access Protocol. It is an XML

based method of exchanging information between hosts [W3C3]. The SOAP messaging

protocol is stateless, and operates within the context of simplex communication but can

be extended using underlying protocols [W3C3]. SOAP can accommodate various

messaging paradigms, but the most commonly used is the RPC style. From a web

services point of view, SOAP is transferred over a common protocol, typically HTTP

[W3C3]. In other words, SOAP has HTTP bindings. This allows the transfer of SOAP

messages to be accomplished by any single machine on the Internet.

2.7 OGSA

The Open Grid Services Architecture, or OGSA, is the current core architecture that

describes and specifies the alignment and augmentation of Grid and Web services

technologies [Kesselman2002]. OGSA is a continuing development project coordinated

through the auspices of the Open Grid Forum (formerly, the Global Grid Forum)

[Foster2005]. The intent underlying OGSA is that it will contain a well defined set of

basic interfaces that may be used to build more complex useful systems from a

distributed computing viewpoint. This is analogous to the main paradigm of Web

Services.

In the spirit of interoperability, OGSA also specifies open, extensible, and vendor-neutral

capabilities [Kesselman2002]. OGSA is intended to be implemented using tools such as

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WSDL and application development frameworks such as the Globus Toolkit, itself

constructed, in part as a service oriented architecture [Foster2005].

2.8 Globus (GT4)

The Globus Toolkit is an application development framework for grid computing

[Globus2005]. This middleware layer is intended to support all necessary mechanisms to

achieve grid computing including job distribution, accounting, resource discovery,

security, etc. For security, the GT4 supplies a component known as the Grid Security

Infrastructure (GSI) [Butler2000, Fosterl998j. As mentioned above, OGSA recommends

employing web services to expose the Globus Toolkit as a Web Service entity which

forms a fairly complete distributed processing system [Globus2005].

The GSI provides four distinct functions. All of which deal explicitly with the security

aspect of grid systems. These include [Globus2005]:

1. TLS (transport-level) or WS-Security and WS-SecureConversation (message

level) are used as message protection mechanisms in combination with SOAP.

2. X.509 End Entity Certificates or Username and Password are used as

authentication credentials

3. X.509 Proxy Certificates and WS-Trust are used for delegation

4. SAML assertions are used for authorization

All of these functions are absolutely essential to the proper security of any grid system.

For more details regarding these functions see the Figure 1 below. Notice the use of the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

grid-map file as well as SAML for the authorization aspect of the GSI. Both of these will

be discussed in more detail later in this thesis.

Authorization

Delegation

Authentication

Message
Protection

Message format

Figure 1: Security layout of the Grid Security Infrastructure (GSI)

Message-level
Security

w/X.509 Credentials

MtessagaHevei
Security

w/Usernames and
Passwords

SAML and
grid-map file

x.509 Proxy
ws-

Trusi
X.509 End Entity

Csrticatas
WS-Security

WS-SecunsConversation

SOAP

grid-roapfite
 .

W SmM mM M

Username/
Password

WS-Security

SOAP

Transport-level
Security

w/X.SOi Credential

SMIL and
grid-mapflle

X.509 Proxy
Cenmcawsrws-

TrusJ
X.509 End Entity

Certificates

TLS

SOAP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

3 Literature Review and Related Work

In this chapter we review the relevant research literature. Our focus is on complete

authorization systems and approaches that serve as a foundation and comparative basis

for developing an augmented system as described later in this thesis. We conclude the

chapter with a critique of current problems and limitations of existing authorization

systems and approaches and, thereby, provide a foundation for the approach described

later in the thesis.

3.1 Authorization Systems

Several systems have been proposed to accomplish authorization in distributed

environments. Though all of these systems share at least something in common to our

system, they were designed with different goals in mind. Thus, our system is intended to

augment other existing systems, not replace them entirely.

3.1.1 Akenti (1999)

The Akenti system was developed under a grant from the Department of Defense (DOE)

at Lawrence Berkeley National Laboratories by Mary Thompson, William Johnston,

Srilekha Mudumbai, Gary Hoo, Keith Jackson, and Abdelilah Essiari. Akenti is an

authorization system which supports “multiple, independent and geographically dispersed

stakeholders” [Thompsonl999]. These stakeholders state their access requirements in

certificates known as use-condition certificates and define those trusted to confirm the

user attributes in question [Thompsonl999]. A policy engine will then collect all the

relevant certificates and make an access decision based on whether or not the user

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

satisfies all the requirements. Once Akenti has all the necessary certificates, it returns

control of the access decision to the server (resource) [Thompson1999]. The resource

server then acts on that decision to allow/deny access to the resource on behalf of the

client. Akenti is a PKI based system, and thus to operate within Akenti, a user must have

an X.509 public key certificate (PKC) at authentication time. Further, “Akenti policies

are hierarchical and distributed between proprietary Policy Certificates and Use-

Condition Certificates” [Thompsonl999]. The main focus of Akenti is classical

discretionary access control lists. Akenti always replies with a Capability Certificate, that

states what a user is authorized to do [Thompson1999].

3.1.2 Certificate Based Authorization Simulation System (2001)

CBASS is a system which was developed by Jie Dai and Jim Alves-Foss from the Center

for Secure and Dependable Software at the University of Idaho. Within CBASS, an AC is

used for both authentication and authorization. A user’s certificate is the vehicle chosen

to carry policies and capabilities, specified via java/prolog [Dai2001]. Note that there are

two types of certificates (policy and credential). CBASS also supports anonymity and

Discretionary Access Control lists (DAC) [Dai2001].

The client, better known as the requester initiates a resource access request by asking the

server (responder) for a credential template which indicates the necessary credential

certificates to authorize the request [Dai2001]. After the template has been received, the

client performs certificate discovery, including a local search of its own certificate

database [Dai2001]. This is followed by credential retrieval from other external objects

(e.g. user object), and finally the credentials are presented to the server along with the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

request [Dai2001]. The server verifies the credentials against its policies and decides

whether to acknowledge permission or to deny the request.

3.1.3 MAFTIA1 (2001)

MAFTIA was developed in France at LAAS-CNRS by Noreddine Abghour, Yves

Deswarte, Vincent Nicomette, and David Powell. It supports an authorization scheme that

can grant each user the appropriate access rights, while only distributing the credentials

and information needed to execute its own task [Abghour2001]. MAFTIA employs an

authorization server for the granting or denying rights. If a complex operation is

authorized, the server distributes the necessary credentials/capabilities for all the

individual basic operations that are needed to carry it out [Abghour2001]. On each host, a

security kernel performs the necessary tasks for fine-grain authorization. To ensure that

the security kernels on off-the-shelf computers connected to the Internet are adequately

protected, critical parts of the security kernel will be implemented on a Java Smart Card

[Abghour2001].

3.1.4 CAS (GT4) (2002)

The Community Authorization Service (CAS) is a trusted third party server that is

responsible for managing the various necessary policies which govern access to a

community’s (Virtual Organization, VO) set of shared resources [Welch2002]. It was

developed in collaboration between various institutions. The principal participants

include Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven Tuecke.

The CAS server contains individual entries for Certificate Authorities, users, servers and

resources sites that combine into groups to form a community [Welch2002]. It also

maintains policy statements which define which user or group has the permission, which

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource or resource group that specific permission is granted on, and what rights that

permission entitles the user or group to [Pearlman2003]. CAS employs the notion of

restricted proxies, which are built from a credential format that is designed to be neutral

to the actual policy language employed [Pearlman2003]. An access request is made to the

CAS server and if granted, a proxy is returned which contains the appropriate

permissions to access the resource in question. Note that CAS can support various

arbitrary policy languages such as Controlled English [Bacon2001], ASL [Jajodial997],

or Ponder [Damianou2001].

3.1.5 KEYNOTE (1999)

Keynote was developed by Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis at

AT&T Labs in 1999. Keynote in three words is a Trust Management System. It uses

credential assertions to denote what actions can be done and who may perform them

[Blaze 1999]. Signature verification is build into the system. The assertions are based on

human readable syntax [Blaze 1999]. Keynote uses a very simple notation for specifying

policy and credentials. Each trusted action is described by a simple attribute/value pair

[Blaze1999]. Each application can define its own set of attributes which require

application specific credentials to operate on them [Blaze1999].

3.1.6 PERMIS (2002)

Permis is a Java based authorization system developed by David Chadwick and Sassa

Otenko at the University of Kent in the UK. It consists of a custom language to define

actions, users, policies, and credentials as well as a compliance checker which is invoked

as a Java object at a resource sites gateway [Otenko2003]. The credentials in Permis are

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

built in accordance to the latest X.509 standard [Otenko2003]. Permis leaves the

mechanisms for authentication up to the application. The Permis policies are written in

XML and are contained within one X.509 Attribute Certificate (AC) [Otenko2003]. The

system also has implemented role based access controls which recognize separate

hierarchies for authentication (CAs) and authorization (stakeholders) [Otenko2003].

Once the appropriate credentials and policies are retrieved, the compliance checker

makes an access decision which is a simple yes or no. Unfortunately, Permis has no

ability to return Capability Certificates [Otenko2003].

3.1.7 CARDEA (2003)

CARDEA is a product of Rebekah Lepro at NASA’s Advances Supercomputing

Division. It is a system which dynamically evaluates relevant characteristics of the

resource and requester when processing all requests for access instead of considering

specific local identities (not unlike grid-map) [Lepro2003]. Shared resources within an

administrative domain are protected by local resource access control policies. All users

are identified by X.509 proxy certificates and are then modeled according to individual

characteristics [Lepro2003]. The necessary information needed to complete a decision is

determined and collected during the decision process [Lepro2003]. Once all necessary

information has been collected, it is presented to the policy decision point (PDP) for an

access decision [Lepro2003]. From a conceptual point of view, Cardea “contains a

SAML Policy Decision Point (SAML PDP), one or more Attribute Authorities (AA), one

or more Policy Enforcement Points (PEP), one or more references to an Information

Service (IAS), an XACML context handler, one or more XACML Policy Administration

Points (PAP) and an XACML Policy Decision Point (XACML PDP)” [Lepro2003],

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.8 FIDELIS (2003)

Fidelis was developed by Walt Teh-Ming Yao for a PhD. at the University of Cambridge

in 2003. It is a decentralized framework for trust management [Yao2003]. It specifies the

necessary mechanisms for defining and managing trust information. It defines principals

and policies which define the “who” and the “what” of a particular access decision

[Yao2003]. Trust conveyance is the major concept within Fidelis, and is used to specify

what a specific principal (subject) is trusted to do and who trusts the principal to do the

specified actions [Yaoo2003]. This trust is specified using custom policy language

statements. Fidelis also makes use of modified x.509 certificates which contain the

required attributes. Fidelis is a web service platform which enables communication

between complete strangers via third-party assertions and Role Based Access Control

(RBAC) [Yao2003].

3.1.9 HP HSA (2003)

This paper presents a distributed authorization model which is appropriate in a web

service scenario where multiple stakeholders are involved in performing a particular

action [Mont2003]. This model uses a third party authorization service to compare

specific credentials with a set of authorization policies [Mont2003]. The authorization

model is built in such a way to enable authorization policies to be checked and built as a

component of the web service composition process [Mont2003]. The major factor which

makes this architecture different from others is its reliance on a hardware security

appliance to perform the necessary security checks [Mont2003].

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.10 CONTEXT SENSITIVE (2003)

Context Sensitive authorization is a Role-Based Access Control (RBAC) form of

authorization. In this system, authorization is derived dynamically within specific

contexts [Mostefaoui2003]. More specifically, context-based security tries to adapt the

security policy according to relevant information which has been collected from the

dynamic runtime environment [Mostefaoui2003]. As the context of a particular action

changes, so may the authorization decision. Users which operate under this type of

authorization are consequently mapped to roles based on their credentials and associated

competencies [Mostefaoui2003].

3.1.11 TERA (2004)

Trust Enhanced Role Assignment (TERA) is an authorization system developed by

several individuals at Purdue University in 2004. The main principals include Bharat

Bhargava and Leszek Lilien. TERA is a Java framework which is based on uncertain

evidence and trust which is determined dynamically [Bhargava20004]. TERA evaluates

the trust of a user directly based on their behaviors. The system will then decide “whether

a user should be authorized for an operation based on the policies, the evidence, and the

degree of trust” [Bhargava2004]. The reliability of the evidence is derived from the trust

of the evidence provider [Bhargava2004]. A third party service, known as a reputation

server, is responsible for managing the trust information. TERA makes use of two

algorithms, which have been developed to determine a user's trust value based on a

sequence of the user’s past behaviours and interactions [Bhargava2004].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.12 IBM TE (2004)

IBM Trust Establishment (TE) is a Java based, trust management tool which can be used

to create trust relationships between strangers using their PKC [Ibm2004]. Rather than

local account mapping based on a unique id, TE can determine a user’s role(s) by their

X.509 certificate [Ibm2004]. Though X.509 certificates are the most commonly used

certificates, other certificate types are also supported. Note that this system is not

responsible for making any access decisions, instead it provides user to group/role

mappings, based on PK [Ibm2004].

3.1.13 Shibboleth (2004)

Shibboleth is a system which is intended to properly secure access to web-based

resources under the Single Sign On (SSO) paradigm of access control [Morgan2004]. It

has been designed in such a way to allow various federations and collaborations to extend

their identity management systems (and PKI) to work together in partnerships, while

always protecting the privacy of user’s at individual sites [Morgan2004]. This scalable

architecture predominantly performs attribute based authorization using the Security

Associations Markup Language (SAML). To accomplish these tasks, Shibboleth employs

both a Shibboleth Identity Provider (IdP) and a Shibboleth Service Provider (SP)

[Morgan2004]. Typically a user will sign on to their local IdP which authenticates the

user and returns a SAML assertions stating that the user has logged in. This assertion can

then be sent to other sites within the collaboration to enable access without repeating the

authentication step [Morgan2004],

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.14 VOMS (2004)

VOMS is an authorization system which is similar in nature to CAS. It provides an

authorization capability in the context of Virtual Organizations. It is composed of several

parts which include a user server (manages and returns information about users, including

their certificates), the user client which accepts a user’s certificate and returns a list of

groups, roles, and capabilities, the administration client which enables management of the

overall system, and the administration server which handles the requests from the

administration client [Alfieri2003]. Authorization requests are accompanied by the

appropriate capabilities which will enable access to a specific resource.

3.1.15 PRIMA (2004)

The Privilege Management (PRIMA) system was developed as a PhD. thesis by Markus

Lorch from Virginia Polytechnic Institute and State University in 2004. The Prima model

consists of the necessary components to define a fine-grained authorization framework

for distributed systems [Lorch2004]. These components include “a high-level privilege

management model, an incremental user-centric trust model, and a dynamic model for

authorization and enforcement” [Lorch2004]. Within Prima, all access rights are granted

in the form of a privilege, which are secured using the proper mechanisms to prevent

theft/tampering. These privileges are specified in a platform-independent policy

language, with a limited lifetime, and can be delegated to other users [Lorch2004].

3.1.16 WS AA Authorization Framework (GT4) (2006)

The Authorization framework in Version 4 of the Globus Toolkit (GT4) provides many

essential functions. This Java based framework has been designed in such a way that the

actual method of authorization is abstracted, which allows authorization to be

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accomplished by several different mechanisms [Globus2005]. These authorization

methods include a module which supports the typical gridmap based authorization, access

control lists, SAML assertions, and others [Globus2005]. The AA framework also

supports delegation.

3.1.17 General System Comparison

There are other systems which also address some aspects of authorization in distributed

environments. Any system which makes use of the Globus Toolkit (GTK) makes use of a

grid-map file and Security Associations Markup Language (SAML) assertions in varying

degrees, for authorization [Globus2005]. Such systems require accounts to be created

prior to job execution. Though the possibility of a set of local generic accounts for

unknown entities would solve this problem, it is undesirable from several viewpoints,

including accounting. The Akenti Authorization System provides a mechanism for a finer

degree of specification of authorization rights from multiple owners [Thompson2003].

Shibboleth, a SAML-based authorization framework, provides a mechanism for

combining attribute information of known entities from multiple resource sites for the

purpose of an access decision [Morgan2004]. VOMS and CAS have been developed to

provide authorization on the basis of Virtual Organization (VO) membership, which

enhances scalability, but still requires the manual configuration of trust relationships and

VO memberships [Welch2002, Pearlman2003, and Cecchini2004] respectively. IBM

Trust Establishment (TE) uses Role Based Access Control (RBAC) to provide

authorization on roles rather than individual users [Ibm2004]. This is more scalable, but

arguably, still not scalable enough. Several other systems were also researched and

compared to ensure our system did not duplicate the functionality of an existing system.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Methods of Authorization

All architectures considered in this thesis research make a significant contribution to the

problem at hand. Further, the culmination of these other systems could achieve the end

goal of functional authorization with little to no administrative overhead in a scalable

manner. It is the goal of the AASUR architecture not to combine all features of these

other systems; rather, to combine the necessary aspects to achieve the desired end. All

systems that were compared were considered from several points of view. These include:

1. Authorization Type (Cl)

2. Architectural Features (C2)

3. Implementation Details (C3)

4. Arbitrary Entity Support (C4)

3.3 Comparison 1: Authorization

From Figure 2 we see that the majority of the systems tested involved some type of third

party assertions. This means that some type of pre-established trust relationships must

exist. Also, we can see that Attribute Certificates (AC) and/or capabilities are commonly

used to specify what rights a particular user has [0pplinger2000]. The problem with the

AC/Capability is that the access specifiers must exist within the AC or capability, prior to

a job request. These specifiers may also take the form of access tickets which have been

granted to a user or have been delegated to another user. These specifiers must be

associated with sites that we have already established trust with. The access level is not

determined dynamically. Within many of these systems, RBAC is employed as it is

within AASUR, to reduce the overall administrative load.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The most important aspect of this table is the reputation column. Notice that only one

other system makes use of some type of reputation to perform the access decision. Please

note that although several of thee system may operate within the context of Globus and

the notion of map files, the do not rely on map files natively, unless specified in the

Figure 2.

Figure 2: Authorization Comparison

3.4 Comparison 2: Features

Figure 3 illustrates various features including what type of policy languages the system

supports to define access rights to its resources, whether or not the system operates in the

context of a public key infrastructure (PKI), and whether the system supports multiple

stakeholders, anonymity, and delegation. Several of these features are considered

essential in this type of environment, while others are simply features albeit very useful

ones.

From Figure 3 we see that almost every system is PKI based, and that most also support

delegation. Delegation is useful for sharing access rights to trusted users, but it is not

REPUTATION ASSERTIONS MAP FILE ATTRIBUTE CERTIFICATES CAPABILITIES RBAC
AKENT1 -2000 X X X
CBASS - 2001 j X X
A F n A i - M o t L I * ' ' X
CAS (GT4}-2002 X x
KEYNOTE-2002 X : x
PERMIS-2002 i T x X
CARDEA-2003 .X ! x x
FIDELIS - 2003 i X[..XL.
HP HSA - 2003x '

'
............ r x

CONTEXT SENSITIVE- 2003 X
TERA-2004 X X X
IBM TE - 2004 ! X
SHIBBOLETH - 2004 X ■ x
VOMS - 2004 X X
PRIMA -2004 ! .. x
WS AA AUTHZ (GT4) - 2006 i x . x X

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

included within AASUR at this stage of design/development. Note, however, that it could

be included in the future. We note that there is a wide range of policy languages which

are supported by the various systems. More than half of the systems make use of a

custom policy language which is a detriment to interoperability. This means that every

site must now use the specific custom policy language in order to interact. A couple of

systems, including AASUR, are completely policy language independent, meaning access

policy specifications can be presented in different languages at each site. This is due to

the fact that only the site which makes the access decision and generates the access ticket

will have to understand it. Finally, anonymity is the least important attribute in this table.

Though it has a place in some use cases, typically we want each user to be held

accountable for their actions; knowing who they are helps to ensure that no malicious

actions take place. It also provides a way of enforcing certain actions if any rules are

broken. Most systems do not support anonymity. Note that both FPL and TPL are custom

policy specification language developed specifically for Fidelis and IBM TE respectively.

ACCESS POL. LANG i PKI MULTIPLE STAKEHOLDERS ANONYMITY (DELEGATION
AKENTI-2000 ! CUSTOM YES X509 1 X
CBASS - 2001 (PROLOG YES CUSTOM ! (' X X
MAFTIA1 - 2001 : CUSTOM YES CUSTOM ((' " ! X ! X
CAS fST4j - 2002 (in d epen d en t •YES. X509 X
KEYNOTE -2002 (cu sto m YES X509 I X
PERMIS-2002 (cu sto m YES INDEPENDENT !........... (X / X
CARDEA-2003 XACML YES XS09
FIDELIS-2003 (FPL (YES, CUSTOM (X (((" ' X.....
HPHSA-2M3 (CUSTOM (Y£S(X509................... jX
CONTEXT SENSITIVE- 2003 (CUSTOM (NO impl

TERA -2004 (CUSTOM (YES.X509 X
IBM T E -2004 (TPL (YES. X509
SHIBBOLETH-2004 (in d epen d en t (YESC XS09 X, limitwi
VOMS - 2004 (in d epen d en t lYES, XS09. via GT4 I 1 X. via globus
PRIMA-2004 (custom (YES(X509 ix r ! X..........

IWS AA AL1THZ (GT4) - 2006 i CUSTOM (YES. X509 ! x " _'

Figure 3: Feature Comparison

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Comparison 3: Implementation \

The implementation comparison involved which language was used (if implemented at

all), whether or not the system was web service based, and whether or not it relied on any

type of external servers other than Certificate Authorities (CA) (as nearly almost every

system needs at least one CA). Figure 4 illustrates this comparison appropriately. Most

systems are implemented in Java, due to its security model and web capabilities. The

performance of Java has been under attack by many, but it is in fact very close to C++ in

many ways. Note that nearly all systems need some type of external server which will

increase the overall message transfer time requirements, thus hindering performance.

Finally, due to the shift in design paradigms towards web services, most of these systems

have been implemented in such a way which exploits web services.

.JAVA" OTHER LANGUAGE THEORY / NGTIfsIPl. SERVICE BASED" EXTERNAL SERVERS
iAKENTl-2000 ! X x :
jCBASS - 2001 X
IMAFTIA1 -2001 Xx'................. ..
;CAS (GT4| - 2002
iKEYNOtE-2002

i x ! X
I X

" X ' x J

PERMIS-2002 : X X :
CARDEA - 2003 ; X X " X ;
iFIDEUS - 2003 X X X I
lHPHSA-2003 : X ■ X x :
ICONTBCT SENSITIVE- 2003 X X
ITERA - 2004 : X x T
jIBMTE -2004 ■ X
! SHIBBOLETH - 2004 X A : X
VOMS - 2004 " x :' X . ’A . A A x A ;
PRO lA - 2004 X
v S AA AUTHZ (GT4) - 2006 1 * A I T . A

Figure 4: Implementation Comparison

3.6 Comparison 4: Arbitrary Entities

The meaning of arbitrary entity support is straightforward. Supporting arbitrary users

means that the system has the capability to allow an unknown user (that is, with no prior

knowledge of the user) potentially to use the resources at a specific site. There is,

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

however, a caveat (in general and specifically directed to Figure 5). Technically, this

includes knowledge of a user both directly and indirectly. If a user is trusted (but not

known) through another site, there is still a requirement for pre-established trust. The best

way to ultimately make a system scalable from an administrative overhead point of view

is to ensure that a site does NOT require ANY direct or indirect knowledge of a user. In

that scenario, the reputation is the only contributing factor to the access decision.

'AKENTl 2000
CBASS 2001
MAFTIA1 -2001
CAS (GT4) - 2002
KEYNOTE - 2002
PERMIS - 2002
CARDEA-2003
FIDELIS-2003
HP HSA-2003
CONTEXT SENSITIVE-2003
TERA -.2004
IBM TE - 2004
SHIBBOLETH-2004
VOMS-2004
PRIMA-2004
WSAAAUTHZ{GW)-2Q06

[ARBITRARY ENTITIES
1 X
I X
I X

X
A

x'
x
x
X

Figure 5: Arbitrary Entity Support

3.7 Authorization System Comparison Summary

As with any new development many issues have come to light. Most have been very

minor, but one major issue came up. The solution to the main issue involved striking a

balance between the amount of information kept which will severely affect the certificate

size and consequently the scalability, and the flexibility available to the individual

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource sites to determine who may have access to their resources based on their past

actions. In the end, we have gone with a minimalist approach to ensure unlimited scale.

The closest match to AASUR is the TERA (Trust-Enhanced Role Assignment) system

[Bhargava2002]. Though TERA encapsulates ideas, similar to AASUR, it has several key

differences. First, the reliability of the evidence is based on the trust of an evidence

provider [Bhargava2002]. This implies that evidence may come from a third-party source

and be potentially less reliable. Our system maintains a globally consistent representation

of an entity’s past, which allows a resource site to make an access decision based on a

local interpretation. Secondly, TERA relies on a separate reputation server to manage

user reputation [Bhargava2002], whereas we store the actions an entity has performed in

its PKC, managed by a Certificate Authority (CA). In AASUR, the reputation is

calculated using local processing power to maintain scalability. Finally, whereas our

architecture has been developed as a web service, TERA is an application based system.

In this chapter we have critiqued several approaches and systems for authorization

presented in the literature. In the next chapter we introduce a system that augments the

important features of several of these systems.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Augmented Authorization System Using Reputation

In this section will give a detailed description about our system, the Augmented

Authorization System Using Reputation (AASUR). At the most general level, the main

contribution of this architecture is the notion of providing authorization on the basis of

points which are collected in a standardized way, and which in turn may be used by

individual resources to determine reputation. The only guarantee that this architecture

makes is that points will be collected consistently for accepted actions. Any decision that

results in a breach at a resource site is completely the responsibility of the resource site

that misinterpreted the points presented at the time of resource request. There is no

requirement to obtain or analyze any assertions from any third party though, in the future,

this capability could be exploited to enhance this system further. From an administrative

point of view, there is no need to establish anything prior to a job request/allowance.

Though these features may exist in other systems individually, this combination, and

consequently the overall ability of the system, does not exist anywhere else to the best of

our knowledge.

4.1 Justification
The reason for this architecture is simple. If the current notion of the “grid” is to reach a

level where the masses are able to use/sell spare cycles on a global scale (not unlike

selling power back to the grid) then minimally, from an administrative point of view,

changes needed to occur. Scalability in current systems is, without a doubt, a hindrance to

this goal. Of course, this architecture (AASUR) is not the end solution, but it is a step in

the right direction.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Overall Architectural Comparison with AASUR

Although all of these previous comparisons are valuable in and of themselves, an active

comparison of the most important characteristics which AASUR possesses is also

needed. This can be found in Figure 6. This table takes the most important aspects of the

AASUR system, and shows how the other systems compare to it. Although many systems

show some similarities in various categories, none provide the complete set which

AASUR does, including support for reputation. The details regarding the inner workings

of AASUR will be dealt with next in Chapter 5.

RepBAC RBAC FLEX POLICY PKI JAVA SERVICE BASH) EXTERNAL SERVERS i
AASUR - 2006 X x ! INDEPENDENT 1X509 X X
CAS (GT4J - 2002 X ' in d e p e n d e n t X509 X X ' x!
PERMIS - 2002 X i CUSTOM YES IND. X X
CARDEA-2003 1XACML X509 "XX X
FIDELIS - 2003 X 'FPL ;YES. CUSTOM X X
TERA - 2004 * X CUSTOM X503 r x X
SHIBBOLETH-2004 X INDEPENDENT ■X509 X
VOM S-2004 X INDEPENDENT X509. via GT4 f 7 x “ ’ “ j r . X

Figure 6: Overall Architectural Comparison

4.3 Problem Statement

We have introduced existing tools, components, and systems which are used as parts of

complete authorization systems. We have also discussed the various systems which have

been created to solve problems with the current state of authorization. Further, we have

defined the major characteristics of our system, AASUR, and provided a comparison of it

alongside the other existing systems. We will now define clearly what the current

problem is and how we intend to overcome it.

The major problems which exist in current systems include the following:

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The requirement for pre-established trust among user-to-resource and resource-

to-resource (in the case of delegation of credentials), is not feasible due to the

administration overhead.

2. Further, scalability in general due to the pre-established trust, is significantly

hindered, which results in limited scale for any architecture which mandates

pre-established trust.

3. Many existing systems require the use of a particular policy language which

creates the need for every site to use a specific policy language.

4. Though many systems are Web Services based, some are not. Evolution in

current distributed computing certainly requires an architecture which is based

on Web Services.

With this background information, and the comparison of exiting systems, we state the

following:

The current requirement for pre-established trust, the lack o f consensus fo r the

use o f web services, and the specific requirements fo r policy languages are a

detriment to the overall adoption o f the various authorization schemas in

existence. This is not only due to the significant overhead, but also due to the lack

o f flexibility inherent in existing systems. We present a solution to this problem

using the AASUR architecture, which will achieve what other systems have not.

We accomplish this through the use o f reputation metrics which allow individual

resource sites to make authorization decisions without having any prior

knowledge o f a particular user. AASUR will also be completely independent o f

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resource access policy language thereby providing much flexibility to individual

resource sites.

Through various simulations and consequent numerical results we show that AASUR

contends well in distributed authorization from a performance point of view and also

from an administrative overhead point of view. We show also that AASUR does in fact

solve many of the problems facing existing authorization systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

5 AASUR

AASUR was developed to solve the problem discussed throughout Chapters 3 and 4. It is

written in Java and its functionality is exposed as web services described by WSDL

documents. All messages and formats are XML based. It can be deployed to any

application hosting environment, but must be used alongside EJBCA, an Enterprise Java

Bean Certificate Authority. They (AASUR + EJBCA) have all of the necessary

components to retrieve certificates, request resource access, perform authorization

decisions, collect job actions, and update a user’s certificate to reflect newly performed

actions. Of course, there are several components which are needed to support these

critical tasks as well. All of this will be discussed in detail further on in this paper.

5.1 Design Context

The context which this architecture was developed within is very straightforward. The

major goal was to develop a system in which automated discovery and authorization

could occur. Existing systems provide other aspects of automated discovery. In fact other

systems provide automated authorization, but in the context of pre-established trust and

local accounts with rights setup prior to authorization/execution. The AASUR system has

been developed within the context of automated authorization without any pre-

established trust, and very minimal administrative overhead at any participating site. The

goal of AASUR was to provide not only automated authorization, but also automated

collection of a user’s history, which would allow for this authorization to take place with

almost no user interaction and zero pre-established trust.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Design Methodology

The methodology that was followed was simple. It started with isolation of specific

characteristics within current systems which would prevent the goals of this architecture

from being realized. Several issues were very quick to surface, and are as follows. First,

the requirement for existing accounts to exist which provide a mapping to locally defined

rights, although functional, were not conducive of an architecture which could scale

easily. Second, although a possible solution to the previously mentioned issue, the notion

of shared accounts at resource sites does increase scalability, but eliminates any

possibility of maintaining an individuals actions or providing any kind of accounting or

non-repudiation. Third, though receiving assertions from other trusted sources enables a

site to use some combinational logic to determine a best action, it is still subjective to

some to degree. This may require some clarification, as this (AASUR) approach also is

subjective in some ways. The major difference is that this architecture is subjective with

respect to the resource sites decision for access, not the collection or portrayal of a user’s

reputation. Finally, many systems lack flexibility when it comes to the decision of

whether or not access will be granted. This should always be left completely up to the

resource owner.

The goals then of AASUR are the converse of these issues found within distributed

authorization systems. Once these initial goals had been established it was time to begin

designing the system. From the outset we wanted to develop a set of metrics that would

allow the storage of a fairly detailed history which could be used to derive a user’s

reputation. We developed a core set of 27 point categories which, in our opinion, cover

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

what a user could potentially do (both good and bad) during the execution of a job. The

specific details regarding these categories will be discussed in the Section 5.4.

Once the point categories were determined, we began designing how and what else would

be stored. Always, the maintenance of the highest degree of resource site flexibility was

constant. For example, we wanted an individual resource site to be able to deny a user

because that user had performed a Buffer Overflow (BOF) at Site X on May 3, 2007 at

6:03 pm.

Our initial format to represent a user’s reputation is as follows:

<? xml version-1.0' encoding-ISO-8859-11 ?>
<reputation>

<collection type-LFC'>
<site shal-A123A3E4B32CD3E2145CC32DDEF4A123A3E4B32C'>

<date>
1158654532123

</date>
<date>

1156785432345
</date>

</site>
<site shal-45CC32DDEF4A123A3E4B32CD3E21F678A3B5C332'>

<date>
1165434567897

</date>
<date>

1124567543567
</date>

</site>
</collection>
<collection type='LMO'>

<site shal-D3E21F678A3B5C33245CC32DDEF4A123A3E4B32C'>
<date>

4532245678878
</date>
<date>

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2232357889764
</date>

</site>
</collection>

</reputation>

This format allows for several things. First, everything is broken down into point

categories, so that the act of summing them to make the necessary calculations is more

efficient. Second, within each category the occurrences are divided up by location so that

if a user has ever been involved with a specific resource site, the points earned from those

interactions can be quickly ignored. Third, the absolute date/time in milliseconds has

been recorded to allow for maximum flexibility with respect to filtering of actions based

on date and time. There was one caveat however, to this design. Due to the detail which

was kept in this format, the overall scalability could be an issue. This was not only

because an X.509 certificate was not meant to store a lot of extra information, but simply

because of the scale of information that would be involved.

The initial testing was strictly intended to determine how scalable this particular setup

would be. This involved creating one certificate (to represent an individual user) and

begin running some simulated jobs to see how a certificate would handle the reputation.

The job simulator, which is discussed in detail later (5.7.9), has the ability to configure

the percentage of good actions which are generated as well as the percentage of bad

actions generated. Initial testing involved a 90/10 split (good/bad). I generated 100

actions (corresponding to random point categories) for each job. I decided to make the

first run consist of 1000 jobs, for a total of 100,000 actions, including a date for each one

and the resource site it occurred at. Very quickly (approximately 15 jobs, 1500 actions)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the code threw an exception. The certificate had reached 45K and the CA could no longer

accommodate it. Although not that large, it is much larger than it was designed to be.

This is aside from the performance hit that would have been experienced had a certificate

of this size, and larger, worked without error in the context of this CA. A larger

certificate would affect not only the network transfer times, but also the available storage

space on the CA.

Obviously this format consumed far too much space, so an alternative would have to be

developed. The important question then is, could be done without losing any of the

flexibility for the resource site. Further testing revealed that 1000 site signatures

amounted to approximately 5 OK, which equates to the previously determined limit. This

did not include the actual actions which are the most important aspect of reputation. We

decided that since within typical globally distributed systems, a job may span more than

1000 sites, this level of information was simply not scalable or feasible.

The second design revision involved a long integer to represent each point category.

Since the long data type in Java is 64 bits, each number has an unsigned maximum value

of 18,446,744,073,709,551,615 (264). This design also included a sliding window of

resource site signatures. These signatures would enable a resource site to see the last X

sites a user had been involved with. Since 1000 site signatures were far too big, we

determined that 250 was a good number to try. After a little testing, it seemed that this

solved the problem, but raised another issue. Due to the scale of global grid computing, it

is not unreasonable to say that a particular job could span more than 1000 sites. This, to

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

us, made the value of the last 250 sites a user has been involved with very minimal. We

came to the conclusion that this extra information would simply waste valuable space in

the certificate and mean longer certificate retrieval times, as well as longer transfer times

between the CA and the resource site. With that, we removed the sliding window of

resource sites altogether.

In the end, the format of the reputation is significantly different from the original version.

We simply maintain a counter (64 bit) for each point category, along with some basic

information such as most recent request, average job time, etc. Depending on the context,

this is good and bad. The bad is that we loose some flexibility, but that type of detail is

simply not scalable in this type of computing environment. The good is that an upper

bound of the certificate size can be determined and it is relatively small. To analyze the

maximum size, we must consider the average certificate size using only the standard

information. In the case of EJBCA, which should not differ significantly from other

Certificate Authorities, the initial certificate size with no non-standard extensions is 2-

3K. There is a total 27 categories, each requiring a Java long integer. A long integer in

Java is 64 bits (8 bytes). This gives us a total of 216 bytes. Add the certificate base size to

this and we arrive at approximately 3.2K. It is not likely to ever reach 5K, but if we use

that as an upper bound, the max size is still very small and is unlikely to cause any

performance/scalability issues from a message transfer or certificate retrieval point of

view.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Design Assumptions

Several assumptions were made prior to and during the design phase of AASUR. These

assumptions were required in the context of the thesis, though some could be removed if

further development was to take place.

The first assumption is that a middleware layer exists to provide the necessary

mechanisms to collect all actions that occur during processing at a resource site. This

assumption is rather large as, without it, the thesis will not function properly. Such a

component would make use of various operating system specific hooks to pull various

pieces of information such as read, writes, memory usage, disk usage, CPU time, etc.

Along with this raw information, this component would need some type of interpreter to

maintain what levels of access have been granted. This is needed so it will be possible to

determine when these various access level thresholds have been crossed. Not only should

this be able to determine when thresholds have been breached, but it must also be able to

intelligently determine if gray area events, such as buffer overflows, have occurred.

The second design assumption also involves the mechanisms which are responsible for

collecting user actions at individual resource sites. This code, which must be deployed at

every participating resource sites on the grid, is expected to be contained within secure

and signed binaries to prevent tampering and to ensure integrity.

Third, it is also assumed that this collection component signs each and every job action

message destined for a CA with its public key (PK) so that we may ensure the integrity of

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the message during transport. This stops any malicious resource sites from falsifying

what actually happened during processing and sending these inaccurate job actions to a

CA for addition to a user’s reputation. In other words, this ensures that collection will be

completely objective. Effectively meaning that, if any improper access decisions are

made, it is strictly due to improper policy configuration at the resource site in question.

The fourth and final assumption involves global participation. Typically, the definition of

an entity known as the “grid” (which has yet to exist) implicitly involves many, if not all,

users across the globe. In fact, the goal of researchers is to create a system that is

pervasively and unobtrusively embedded in the environment, completely connected,

intuitive, effortlessly portable, and constantly available [Tang2004]. Thus, for this

architecture to become as useful as it possibly can, it must be adopted and trusted on a

global scale. That being said, this is not a complete requirement, just an assumption that

was made prior to design. This system could be used within the context of any

collaboration that exists under a common CA hierarchy and that wishes to share its

resources in this automated fashion.

5.4 Reputation and Evidence

If an entity is to execute a job on foreign resources, the system must use some globally

accepted metric to determine whether or not the entity can be trusted. Typically this

metric, outside of the computing world, is the reputation of that entity. It seems

reasonable that this notion of reputation can be used within the context of the computing

realm as well.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To enable assessment of reputation we use the various points earned by a user at various

resource sites. Points are acquired by tracking important actions performed by a user

(e.g., overuse of resources) during job processing. This point base serves as evidence to

be used by resource sites, along with local policy, to determine a particular user’s

reputation, and consequently, to make an access decision.

We have developed a set of actions which, we believe, directly pertain to the act of

making an authorization decision. From a high-level view, the actions (called point

categories), are divided into three main sections: Illegal/Legal Actions, Other Performed

Point Actions, and Additional Information (Tables 1, 2, and 3 respectively) for a

comprehensive listing of the various point categories. Please note that the current set of

point categories may change as our system evolves. Please also note that although the

illegal and legal categories contain the same actions, it is necessary to maintain both.

In AASUR, the act of performing one of the applicable actions is equivalent to earning

one point which will be added to the associated point counter in the user’s PKC. See

5.10.1 for an example of a user’s reputation in our XML based format.

Reads/Attempts Communication attempts
Writes/Attempts Deletes/Creates
Execution/Process Spawn Resource allocations
System commands Service invocations
Device Access Various I/O Operations

Table 1 - Legal/Illegal Point Actions

Forcibly terminated jobs Buffer overflows
Overuse of Resource Compilation Errors
Runtime errors

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2 - Other Performed Point Actions

It is necessary to note that many of the multiple instance actions such as all of the actions

listed in Table 1, as well as Denied/Permitted Job Requests (DJR/PJR) in Table 2, have a

matching pair of positive and negative categories. Certain multiple instance categories

however, do not. These categories include Buffer Overflows (BOF), Compilation Errors

(CE), Runtime Errors (RTE), Resource Overuses (ROU), and Forcibly Terminated Jobs

(FTJ). The reason is that these particular categories do not possess an opposite value, is

simply due to the nature of their values, not because it was decided to not include them.

Although legal/illegal actions are very important, there may be additional information

which a resource site may consider. Our architecture also makes use of this other numeric

information. Like the illegal/legal numeric data, this numeric information is also

transmitted in each entity’s PKC. Table 3 provides examples of this additional evidence.

First job request First job completed
Most recent request Most recent job completed
Average job time Total Jobs
Country Successful jobs
Permitted job requests Denied job requests
Culture Geographic location

Table 3 - Additional Evidence

Below, Figure 7 shows a complete representation of the structure of an AASUR Java

based reputation object in our system.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AASUR REPUTATION OBJECT

SINGLE INSTANCE
REPUTATION FIELDS
f i r s t J o b R e q u e s t
f i r s t JjObCoaBplefcetl

NEGATIVE IULTIPLE INSTANCE
REPUTATION FIELDS

M s m s s M

SX£E9SSil?2&Xj®S
sgsaMs&s

ill& ft& JW il eC£#3iA.pm
ille.^e3.Filegelefeio2iis

SSS3J&X

P O S IT IV E H O LTIPLE INSTANCE
REPUTATION FIELDS
m m M M M r n a m s M

ie.geiyile.Cr.ee.ti.Qgs

S J M s s M m m m S z m m

.codeCmipil eii.oagrrofa
& M ££8££z$£M gm
£ im tJ jm S £ £ P zs

iM § M £ £ £ m £ M ® m $,
U m M m i a
iGCf&lWEl t&&
iM s M m & s m g m m M s i .

Figure 7: AASUR Reputation Object

5.5 Architectural Assumptions

The layered design of OGSA permits straightforward integration of AASUR within

existing and future systems as a web service [Foster2005]. This means that this

authorization system could be used to provide the authorization capability to almost any

system which supports web services and OGSA.

We assume the proper and secure use of web services including the necessary standard

web service mechanisms such as SOAP and WSDL. This also includes ensuring that the

application hosting environment is configured properly and securely according to

associated specifications. Further, this requires the use of either the TLS suite of

protocols or the WS-Security specification to ensure message protection and integrity. In

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the case of this thesis, TLS has been selected as it handles everything for us at other

layers automatically. With WS-Security, encoding and interpretation of keys must be

manually dealt with and the key information must be sent along as payload and extracted

at the receiving end [WSS2004].

We also assume that the Certificate Authority functionality may be accessed as SOAP

based web services [W3C3]. In the case of EJBCA, this functionality was not available,

and thus it had to be added.

5.6 Major Components and Packages

5.6.1 org.aasur.ejbca.ca.AassurCaService (ACS)

This is the major component which exists on each CA. It provides the system with many

necessary functions. Not only does it act as an interface between a web service consumer

and the CA, but it also performs several of the critical processing procedures needed by

AASUR. There are four methods publicly exposed via the web from this service. Two of

these methods are used to directly retrieve a certificate (one via serial number and one via

username). Both of theses methods, findCertificateByUsemame(username) and

findCertificateBySemo(semo) return the certificate (if found) in the form of a byte

array. The third method used for certificate retrieval is called findUsemameBySemo(

sem o). It returns a String representation of a username.

It was previously mentioned that one of these methods provides indirect retrieval

capabilities. This is because findUsemameBySemo(semo) provides the capability to

discover the mapping between a username and a serial number. The serial number can

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then be used to retrieve a certificate. Multiple certificate retrieval methods exist for

flexibility depending on the specific requirements of a given situation.

The fourth public method is called pointNotification(actions), and has the duty of

accepting the point actions message (see 5.9.2) from a resource site, and performing all

necessary processing. This processing will include the following steps:

1. retrieval of the user in questions certificate

2. parsing of the message with the assistance of a supporting class called

org.aasur.common.XMLDomParser.parseXmlString(xm l) (see 5.7.7)

3. instantiation of a new reputation object populated with the user’s

reputation with assistance of org.aasur.reputation.AasurReputation(

certificate) (see 5.6.3)

4. a call to the merge function of org.aasur.reputation.AasurReputation

called mergeNewActions(actions) (see 5.6.3) which combines the

current reputation with the new actions list.

5. a call to an internal private method in ACS called generateCertificate(

username, semo_string, password, reputation), which does what its

name hints at, and stores the new certificate in the internal CA database.

Since generateCertificate() is only used internally, it does not get

exposed publicly.

Further details of the AasurCaService methods are shown in Figure 8.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor Summary
| AaanrCaServi ce CI
i Class constructor

Method Summary

Description

findCertiftoatesBvUserisaeie (1 ava. laxto. 3 txiacr naernaaas)
Description

i 4s*-i n$. leac .S crin o ujser aernoi
Description

oointNotti£ica.tioa fbycePf p o in t n o tif ic a t io n mao)
Desagrtkm

Figure 8: AasurCaService Object

5.6.2 org.aasur.resource.ResourceSiteServiceListener (RSSL)

The resource site service listener is the next major component in the AASUR system.

This particular service resides on each site where a resource(s) will be made available to

the public. RSSL may be on individual machines, but the most likely scenario involves an

instance of it on the gateway. This class has only one public method, but there are also

two additional private methods contained within for internal use. The major public

method is called resourceRequest(certificate). It is this service which a user that is

requesting some resource access will connect to when they want to submit their

credentials to for an access decision. This service/method performs several duties which

include:

1. certificate validation

2. extract the CN of the CA so we know which CA to contact with the

reputation update

3. extract the reputation from the certificate

4. load Risk Factor (RF), User Class (UC), and Access Decision Engine

(ADE) policies (discussed later)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. call RF determination functions

6. call User Class determination functions

7. call ADE to make final authorization decision

If authorization is granted, this method will also perform additional functions, including:

1. job timing calculations

2. job action simulations

3. notification formatting

4. CA notification

Note that if authorization is not granted, there is still a need for notification formatting

and a point notification message containing a Denied Job Request (DJR) (see Table 2).

As previously mentioned, this class has two private methods used internally. These are

called formatPointNotification(actions, startTime, endTime, siteSignature) and

generateDjrNotification(siteSignature). Their main function is to create/format the

messages which will be sent to the parent CA of the requesting user. The second method

is used when a request for resource access is denied, as a message is still required to be

sent to the parent CA of the user to record a denied request for statistical purposes.

Further details of these methods are shown in Figure 9.

Constructor Summary
Resources iteServicetl steaer 0

Method Summary
bccseae J re 8 0 t l r a e Ra<:maj8t {byre ’ 3 x 5 0 9 _ c a r t i£ ic a e c J b y t je s i

Figure 9: ResourceSiteServiceListener Object

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.3 org.aasur.reputation.AASURReputation (AR)

This object is the foundation for a Java based representation of a user’s reputation. It

provides the necessary functions to allow reputation manipulation, perusal, and merging

as well as the actual act of parsing the XML into reputation objects. This class has two

main methods and six supporting methods. It also has two constructors (Figure 9). All

supporting methods are public (mostly involving get/set operations for private object

variables). The major public method is mergeNewActions(actions) and the major

private method is populatObjectWithReputation(reputationXml).

The mergeNewActions(actions) method is called (within the parent CA of the user

which performed the processing) when a job has been completed and there are new

actions which need to be added to the existing reputation. There is only one parameter to

mergeNewActions which is a String representation of the XML based Point Notification

message sent from the resource site. This method performs the following functions:

1. message parsing

2. average job time, first job/most recent job (requests/completions)

calculations

3. incrementing the proper reputation counters to reflect new actions in the

reputation

The other method, populateObjectWithReputation(reputation), also performs a very

critical function. It is the responsibility of this method, which gets called from the

AasurReputation(certificate) constructor upon instantiation of an AasurReputation

object (and nowhere else), to create a local, Java based, representation of a user’s

reputation. It performs the following functions:

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. reputation extraction from certificate

2. parsing of the user’s reputation

3. cycle through reputation, incrementing local variables (long) which are

used to represent the various point categories when a specific type is

encountered

The remaining methods, with the exception of toXml(), in the AasurReputation class are

used to get/set private local objects from outside of the class. These can be used to

retrieve age, average job time, denied job requests, permitted job requests, and most

recent job completed. The remaining point categories are public by default. The toXml()

method is used to format the current reputation for insertion into the user’s certificate.

Further details of these methods are shown in Figure 10.

Constructor Summary
AasarStesmtatioa i 1 ava ♦ iaag ♦ Striae reputation.)

AastrReputat 1 cm J3aves. security. cert.X509Certi£icate cuxzent^cert)

Method Summary
lea? setAsei)

l«ng cetAveraaeiXob? ime {1

9 cretDeni edtf obRa<me*t* i i

9 ostileoe&t JobCostoleted {)

-e era! ttedJobSecmes ts {j

void Meroe&ewAotionsllava.lana.Stricct lob actions!

tdXnlO

Figure 10: AasurReputation Object

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.4 org.aasur.policy.UserClass (UC)

As The User Class is useful not only when a user has not performed any actions in the

grid yet (authorization base case) but it also helps to augment the RF in the overall

authorization picture. It makes use of additional user information (Table 3). This

additional information belongs to the Java Object as local private variables and includes

the following:

1. age

2. average job time

3. denied j ob requests

4. permitted j ob requests

5. most recent job completed

It is our opinion that these pieces of information are as valuable when making an

authorization decision as the individual occurrences of the various point categories. That

being said, the UserClass object is one that has a local placeholder for each one of these

variables. For a given instance of UserClass, these local variables hold specific rules that

define what range of values these variables may hold. These values define the

requirements a user must meet in order to belong to a specific User Class. A User Class

Policy is what contains one or more of these UserClass instances. An example will be

provided to shed more light on this in 5.13. There are two constructors for this class, as

defined in Figure 11 below. This class also contains the necessary get methods for these

instance variables, as well as a toXmlQ method which provides a mapping from the Java

UserClass object to one that is XML based to be inserted (as one of potentially many)

into the UserClass policy file for long term storage.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further details o f these methods are shown in Figure 11.

Constructor Summary
U s e rC la s s ()

Userdags{java.laag.String clasaNawe, long age, long pjr, long djc, long a jt, long mrjc)

Method Summary
long g e tA g e (j

long getAVGJoliTlmeltiXXls (}

Java, lan g .S trin g ge tC lasaH am e ||

long g e tD en ied Jo b R eq u ests 0

long g e tP e rm itte d J o b R e g u e s ts i)

long g e tR ecen tC m n p le te tfflfillis ()

java. lan g .S trin g toXm l!)

Figure 11: UserClass Object

5.6.5 org.aasur.policy.UserClassPolicy (UCP)

The UserClassPolicy class serves as the Java representation of the AASUR User Class

Determination Policy. It is a place where multiple UserClass objects can be stored and

accessed when an authorization decision is going to be made. During instantiation of this

object, we pass a filename to the constructor which defines the location of the systems

User Class policy file. This file is extracted and parsed, and the corresponding UserClass

objects are created for each defined class. These objects are stored in the UserClassPolicy

object instance within a local Vector. There are actually two constructors for this class, as

defined in Figure 12.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This class has a public method called getClasses() which returns a Vector of all classes

which have been defined in the system. The org.aasur.policy.UserClassEngine will look

through these classes one by one and compare the values of the individual pieces of

information with the values which are associated with the user in question. This class also

has a toXml() method which produces a complete policy with all defined user classes that

can be written to a file on the local file system for persistent storage. This is the same

format that is parsed by the constructor of this class when a policy file is being read from

the file system.

Further details of these methods are shown in Figure 12.

Constructor Summary
U se rC la ssP o licy i)

Use rC ia s sP o lic y (ja v a . la n g .S tr in g policyFileNam e)

Method Summary'
Java.util.V ector g e tC la sse s ()

Jav a .lan g .S trin g to S n lt)

Figure 12: UserClassPolicy Object

5.6.6 org.aasur.policy.UserClassEngine (UCE)

The UserClassEngine is what performs the necessary comparisons to determine which, if

any, class the user in question belongs to. It has three methods, all of which are public

and very important. The first of these methods is setPolicy(policy). This method takes a

UserClassPolicy object as an argument and sets a local instance of UserClassPolicy to it.

The second method is called loadInformation(reputation). Loadlnformation accepts an

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AssurReputation object as input and will extract the additional information (and assign to

local variables) which we will use as a comparison to the various user classes to

determine which classes a user is in. The final method in the UserClassEngine class is the

determineUserClassMembership(reputation) method. This method looks at one

UserClass from the policy at a time, comparing the individual values to the user’s values.

If each comparison passes then the user is a member of that specific class, and the engine

will move on to the next defined class. Note that it is possible for a user to be in several

user classes. When making the comparisons, the UserClassEngine operates under the

following rules:

1. AGE - The user has been around for at least x milliseconds

2. AVG JOB TIME — A user’s average job is no longer than x milliseconds

3. DENIED JOB REQUESTS - A user has no more than x denied job

requests

4. PERMITTED JOB REQUESTS - A user has at least x permitted job

requests

5. MOST RECENT COMPLETED - A user has completed a job no longer

than x milliseconds ago

If all of these rules axe met, then a user belongs to this class.

Further details of these methods are shown in Figure 13.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor Summary
| EteerCXmsagagine()|

Method Summary
jAra.ottii.VteesM ^ e t«rm in«U serCla*sM eiaberslsis t& asttrSe& ucation r e m jta t io s l

! _

*«fcPolieyftJ»<srClassl*oX±ev ue»'s

Figure 13: UserClassEngine Object

5.6.7 org.aasur.policy.RiskFactorPolicyEntry (RFPE)

Very similar to the various user class entries which may exist within a UserClassPolicy

object, the RiskFactorPolicyEntry is one of 27 entries that exist within a

RiskFactorPolicy. Each entry corresponds to a particular point category. The design is

deliberately general to facilitate the easy addition of new point categories, should the

system need to be extended. Each entry contains a risk factor type and multiplier. Both of

these values can be accessed and set with the corresponding public get/set methods which

belong to this class. This class also has a toString() method which is only used for

debugging purposes. Instantiation of this class can involve the default empty constructor

or a constructor which takes a type and multiplier as input.

Further details of these methods are shown in Figure 14.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor Summary
m skTacSorltol%cySftt r y ()

StskJPaotorgoXicySatry(1 ava♦ lo n g . Ssrlaq eype, m s is u lc ig lie r)

Method Summary
Cr«tMXJit2»lier 0

jasa. lansr. Steinf a*£3Ensao

s a t t t e l t ie l le y (lis t ffla ltits lier i

eetT voe< 1«va ,l*»a .3critia cvoe)

toS tr ia a O

I

Figure 14: RiskFactorPolicyEntry Object

5.6.8 org.aasur.policy.RiskFactorPolicy (RFP)

The RiskFactorPolicy object is the collection of all defined multipliers for each point

category. It contains a Vector of RiskFactorPolicyEntry(s). It does not have to contain an

entry for each category. If a particular category is not defined, the value of it when the RF

calculation is taking place is defaulted to 0 so that the points associated with that category

are ignored. Instantiation of this class involves passing the filename which contains the

persistent Risk Factor policy to the constructor. This extracts the policy from the file, and

passes it to the private internal method called populatePolicy(policyFilename). This

method parses the policy and for each entry creates a new instance of

RiskFactorPolicyEntry and inserts it into the local vector of entries, using another local

method called addPolicyEntry(entry). This vector will later be used by the

RiskFactorEngine (5.6.9). Other methods within this class include getEntryCount() which

allows us to see how many entries exist in this policy, and getEntryAt(index) which

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

returns a policy entry at a specific index. This is useful for cycling through the entries

when the RiskFactorEngine is making its calculations.

Further details of these methods are shown in Figure 15.

Constructor Summary
S ixkT ao to rP o iiay i3*va. Xaisg. S tr in g policyFiletfam e)

Method Summary

g. .jsol icy.Sa ai i ey£«s»y

Ssring

a d d P o iia y g E tr v to r g . a a s a r .p o l i c y . R isk F a c to r P o lic y E a tr y r f p e)

g o tE n tr v A tf i s t in d ex}

aetB ntrvC orm t i }

t o X a l j}

Figure 15: RiskFactorPolicy Object

5.6.9 org.aasur.poIicy.RiskFactorEngine (RFE)

The Risk Factor Engine is what takes a RiskFactorPolicy and an AasurReputation

instance as input and calculates the user’s overall RF. This RF along with the user’s

classes will be used within the AccessDecisionEngine (5.6.12) to determine what level, if

any, of access will be given. From an implementation point of view, the RFE is quite

simple. It only has two methods, both of which are exposed publicly. One of these

methods is used to load a specific RF policy into the engine, called setPolicy(policy),

which takes a RiskFactorPolicy object as input, and the other is used to calculate the Risk

Factor, called calculateRiskFactor(reputation), which takes an AASURRepuation object

as input. The RF is returned as a double value.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further details o f these methods are shown in Figure 16.

Constructor Summary
Hiikfaatorgftqtfte H

Method Summary
*** oaictalatelti skFactor (AasurStetpuc-aciar. asejratat-ien)

varLd aetPoIioy ̂HlalcFacCGrgollsy ztp)

Figure 16: RiskFactorEngine Object

5.6.10 org.aasur.policy.AccessDecisionPolicyEntry

The Access Decision Policy Entry (ADPE) is very similar to the Risk Factor Policy Entry

(RFPE). It is essentially a generic format to hold a specific instance of one of the entries

that exist within the AccessDecisionPolicy (see 5.6.11). Each entry specifies a required

RF, a level identifier (simply a unique identifier), a list of user classes and an Access

Specifier. Access is granted if the RF of the user in question is larger or equal to the

specified RF and the user belongs to at least one of the classes specified in the entry. If

both of these conditions are satisfied, the user will receive the access defined within the

Access Specifier (arbitrary site specific resource access policy string).

This class has two constructors, the default and one which accepts the four values which

correspond to those associated with an entry. This class also contains the necessary

get/set methods for all four variables as well as a corresponding toXml() method. The last

method, called addUserClass(class) enables more User Classes to be added to the User

Class Vector within the entry.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Further details o f these methods are shown in Figure 17.

Constructor Summary
A c c e s s P e a l l i o g P o X 1 o y 3 o t x y <)

A o o c » » P a c l » i o a g o l i a y * P t T y i l n c l e v e l , J a v a . v r e l l . V e c e o x c l a s s e s , d o u b l e r f , l a v a . l e n g , S o r i n g a c c e s s l e v e l)

Method Summary
va is i

$ - laa® - Szx&xtg

a d d t l s e r C l a s ® (l a v a . l a n e . B t r i n c c l a s s m a n ®)

a e t A c c e s s L e v e l (}

In*

d eu b l*

7-84SI

vedd

3 f iS £ A M f t 8 « < >

■ o e t L e v e l i >

q a t M U

s e t A c c e s s t e i r e l f l a v a . l a i s c . S t r i o o e c c e s a t e v e l)

s e t C l a « * a s (j a v a . u c i l . V e c c o x c l a s s e s)

v a id
s e t i e v e l (l o t l e v e l)

*rais4 r a t R f (d o u b l e r f)

la n g .S -sr in g
t b S O t l i)

Figure 17: Access Decision Policy Entry Object

5.6.11 org.aasur.policy.AccessDecisionPolicy

The AccessDecisionPolicy class is used to represent the resource sites Access Decision

policy as a Java object. This object will be used by the AccessDecisionEngine (5.6.12) to

perform the necessary calculations to determine whether or not access should be granted.

This class has one constructor which accepts a policy filename that specifies where the

text file based instance of the resource sites Access Decision policy resides. Upon

instantiation of the AccessDecisionPolicy object, the file is opened and the contents

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

extracted. Next, the XML is parsed, the individual AccessDecisionPolicyEntry(s) are

created, and the policy is ready for use.

This class has 4 public methods and one private method. The private method , called

populate Policy (policy) is used in association with the constructor to populate this object

with the necessary data from the persistent reputation file. The public methods include

the following in figure 18. The first method, addPolicyEntry(entry) allows a new entry

to be added to the current policy. The getEntry(index) method allows for an entry at a

specific location to be retrieved. The getEntryCount() method returns the number of

AccessDecisionPolicyEntry(s) within this AccessDecisionPolicy, and is useful for

defining loops which will be used to cycle through these entries. Finally, we have a

toXml() method to format the policy for persistent file storage.

Further details of these methods are shown in Figure 18.

((instructor Summary
| s l ongol i ay (ja v a . l* « g . S tr in g pallcyFileH ajae)

L. __________

Method Summary
i addFolicv&atrv {ftccesaSecisiaaPoiicyEatrv adfre)

1 \

i
aetKntrvAtlint

i; aa«
1

getant-ryConnt (>

| jara.Sjt&gf.a&rijif tox<an

Figure 18: Access Decision Policy Object

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.12 org.aasur.policy.AccessDecisionEngine

The Access Decision Engine component is responsible for making the final access

decision based on a user’s reputation. There is only a default constructor and it takes no

input for instantiation. It has three methods. These methods include the necessary

functionality to set/load the Access Decision Policy, called setPolicy(policy), to load the

information about a user including their RF and which User Class(s) they belong to called

loadInformation(rf, classesTheyBelongTo), and most importantly to make the access

decision, called determineAccess(). The determination of whether or not access will be

given involves cycling through the individual AccessDecisionPolicyEntry(s). For each

entry, we must ensure that:

1. the user’s RF is greater than or equal to the specified RF

2. the user belongs to at least one of the specified User Classes within the

current AccessDecisionPolicyEntry

Further details of these methods are shown in Figure 19.

Constructor Summary
AccesaDciQislQitSstgiite j)

Method Summary
deteytalneAcoess f I

\ loadl&ffonaatio& I double rf, j ava, util. Vector classes)

11setFoli gyi&cccaaPecialongolley adp)

Figure 19: AccessDecisionEngine Object

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 Supporting Components

5.7.1 org.aasur.user.UserSiteSimulator

The user site package is very minimal. In fact, in typical situations, this package (with

one class) would never be used. Normally, a user site would have a particular resource

discovery mechanism in place and it would be that which makes a resource request to

various resource sites for access. In this implementation, we do not assume the use of a

particular resource discovery mechanism. The UserSiteSimulator class contains the

necessary functions perform the following duties:

a. connect to various resource provider sites

b. make a request for resource access (presenting a certificate with reputation)

c. obtain the result

5.7.2 org.aasur.common.Serializer

One of the first real challenges that I faced was the limited set of types that could be

passed over HTTP/SOAP to a waiting web service. In this system, we use the Java API

for XML based Remote Procedure Calls (JAX-RPC) for mapping Java types to

XML/WDSL definitions [Jax2006]. In general, JAX-RPC supports the following types

[JaxTypes]:

java.lang.Boolean
java.lang.Byte
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String
java.math.BigDecimal
java.math.Biglnteger
java.net.URI
java.util.Calendar
java.util.Date

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JAX-RPC also supports the passing of “complex types” which are basically compositions

of these elementary types. This means that if you wish to pass a more complex type, like

an X.509 certificate, you may have a serious problem on your hands. We considered the

possibility of reconstructing the X.509 cert type with these basic types, but came to the

conclusion that it simply wouldn’t work from a standards point of view.

The solution to this problem came after following a discovery of serialization. In Java

there is an interface called Serializable, which conveniently is implemented by almost

every class. This means that each class can be serialized, with the exception of a few.

Typically, serialization is used to store Java objects persistently in files. After being

serialized, the object is represented as an array of bytes. Coincidentally, one of the

possible types that JAX-RPC supports for passing is an array of bytes. Thus, as long as an

object is serialized first, it can be sent as a web service parameter. Deserialization is the

opposite action at the receiving end (to restore the Object), and happens the same way in

reverse.

With this background information, the Serialization class is used to perform the

serialization/deserialization functions needed to pass complex types to web services. The

serialize(object) method takes an Object and returns a byte[], while the deserialize(

bytes) method takes a byte[] and returns an Object. Note that you must know what type

of object you are deserializing into otherwise you will not be able to cast it to the

appropriate type once deserialized.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The methods which belong to Serializer are shown in Figure 20.

Constructor Summary
jS e r ia liz e rn
j Gass canstmctor

Method Summary
| daaseriali aa tbyte S 1 s e r ia l iz e d)
(Takes in a feyteQ which is a serialized Object, and returns a the serialized Object ready to be casted to appropriate
I type (must tie known)
| t y - t l a o r i a i i i a Claea.laaa.Cto-iecc o o s e r la l l ie d)
| Takes ta a comffa type, casted to an Object

Figure 20: Serializer Object

5.7.3 org.aasur.common.TextCompressor

Performance is of utmost importance in any system. This is doubly so when we are

talking about distributed/grid processing where resources may be geographically

distributed and messaging our take a significant portion of the overall overhead. For this

reason, the smaller that each message can be made, the less time/bandwidth an individual

transaction will cost.

In AASUR, the reputation is stored within a user’s PKC. As reputation grows larger, the

amount of space required to store a user’s reputation will also grow. Although this was

taken into consideration in the design phase of AASUR, and it is already quite minimal,

compression can make the reputation in a certificate even smaller. Of course, a smaller,

more compact reputation is desirable.

For both of these reasons, compression was a natural thing to include in the system. On

the fly compression/decompression would enable the reputation which is stored in the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

certificate to take up less space. It would also ensure that the messages sent between hosts

would be as small as possible. The TextCompressor class makes use of Java’s built in zip

capabilities and makes inline compression very straightforward. There are four methods

available in TextCompressor. They include the necessary capabilities to zip a set of bytes

(into bytes), to zip a string (into bytes), to unzip (bytes) into a set of bytes, and to unzip

(bytes) into a string.

Further details of these methods are shown in Figure 21.

Constructor Summary
T e a c t C o a p r e s a o r Q j

Method Summary
aaz io T o B v te* (b v te11 in p u t) i

tm z*p?o$ trincr(bv te 11 input:) 1

ssipB yieacfcyren in p u t)
i

feS'satl zipSfcrincf (1 ava „ l a n e . S tr in g s> i

Figure 21: TextCompressor Object

5.7.4 org.aasur.common.FileContentExtractor

Several policies exist within ASSUR. These policies are used to control how a Risk

Factor (RF) and User Class (UC) are determined, who belongs to the Local Blacklist, and

how final decisions are made. These policies are stored persistently in text files located

on the local system. When the server starts up, these policies must be loaded so that when

an access decision must be made, they are available. The policies are stored in plaintext,

so reading them is very straightforward. The FileContentExtractor class was simply

created to avoid multiple instantiations of the necessary objects to read from a file. The

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

major method in this class takes a file name as input and returns a String representation of

the contents of the file.

Further details of these methods are shown in Figure 22.

Constructor Summary
Fi loC oatggtgxtratctor t)

Method Summary
y g a f lf | |e t-i&va. la a a . S tr in g Illm saae)

Figure 22: FileContentExtractor Object

5.7.5 org.aasur.common.RandomNumberGenerator

In the context of AASUR the RandomNumberGenerator class is strictly used for

simulation purposes. A random number is used in part to generate a list of random jobs.

Also, initially, a random number was used for an access decision prior to completion of

all authorization decision logic. Similarly to FileContentExtractor, the

RandomNumberGenerator class was simply created to avoid multiple instantiations of the

necessary objects to create random numbers. The major method called

generateRandomNumber(low, high) in this class takes two integers as input. One of

these integers denotes a low and the other denotes a high of a range which defines where

the random number that will be generated should fall.

Further details of these methods are shown in Figure 23.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Constructor Suiiiman
I HasdprnH’taBberGeaarator i)
j Class constructor

Method Summan'
1 jgeaerateRaadoiaatmber t in t ra»g«£o*r, in t rangeHigh)
1 Given a specified max and am, this method returns a single randomly generated mt withm the previously mentioned range

Figure 23: RandomNumberGenerator Object

5.7.6 org.aasur.common.ReputationExtractor

The act of extracting a particular extension from an X.509 certificate involves several

steps. These steps have been combined into a method within the ReputationExtractor

class. The major method extractReputation(certificate, Extensionld) in this class takes

two parameters as input. The first parameter is the particular certificate from which the

extension in question will be extracted from. The second parameter is the unique object

id (OID) which identifies said extension. This method returns a String representation of

the extension from the certificate.

Further details of these methods are shown in Figure 24.

Constructor Summary

j Class constructor

Method Summary
m ctracgteca ta ttoB ila v a .a eco r ln v .cer t.X S O a C ertitlea se cn xress c e r t , 3 a v a .la n g .S tr in g e x t o ld)

Takes ia a user's X509Ceri&«te and an extension id (1.3.6.1.5.5.7.3.99).

Figure 24: ReputationExtractor Object

5.7.7 org.aasur.common.XMLDomParser

XML is integrated heavily into AASUR. All policies, messages, and job actions, as well

as the representation of a user’s reputation are contained in specifically defined XML

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

formats. With this much XML, parsing takes place quite frequently. Thus, the purpose of

the XMLDomParser class is to facilitate the parsing of XML. The major method in this

class called parseXmlString(xml) takes a String as input which is the XML

representation of the data in question. This method uses the Document Object Model

(DOM) to parse this data into a Document class object instance and returns this instance

for use. This document will allow the code to cycle through and target individual tags

which were contained in the data for specific processing.

Further details of these methods are shown in Figure 25.

Constructor Summary

Figure 25: ReputationExtractor Object

5.7.8 org.aasur.simulation.RandomJobGenerator

The RandomJobGenerator class is the heart of the simulation aspect of AASUR. The

major role of this class is to generate the list of JobActions (see 5.9.2), corresponding to

the various point categories, which occurred during a particular job simulation at a

resource site. These actions will then be sent to the parent CA of the user so that they

may be added to the user’s certificate to represent the user’s constantly evolving

reputation. There are several methods in this class. These include setGoodPercentage(

percent), setBadPercentage(percent), and generateRandomJobList(quantity). The first

two methods are used to set the percentage of good and bad actions that will be generated

; XtaXDosaParaay i)
Qass constructor

Method Summary
i l C T a lp»r»aX»lSt:rlng(tasra. lo n g .S tr in g xffiXSSxing)

Takes in a String representation of some XML formatted information.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

during a simulated job execution. Note that these percentages may be sent to the

RandomJobGenerator constructor upon object instantiation. If they are not, these methods

must be used to set the values prior to any job generation. The third method,

generateRandomjobList(quantity), is the major method in this class. If performs the

actual random selection of the actions which occurred during processing. It takes an

integer as input which defines how many actions will be generated during processing.

The result is a Vector of JobActions (5.9.2).

Further details of these methods are shown in Figure 26.

Constructor Summary
Random Job Ge n e rat or ()

RandomJobGenerator(double goodjpexcefct, double bad jpercent)

Method Summary
qeaarabefiaRdajaJofetist llnz cruaabltvl

8 a id sdtS'&dPere&ataaa {double bad)

satGoodPerce (double oead)
„............. v><.....

Figure 26: RandomJobGenerator Object

5.7.9 org.aasur.simulation.JobAction

A JobAction is used to represent one particular action that occurred during processing.

The result of a job execution is a Vector of these JobAction(s). A JobAction is very basic,

and is only composed of a type. This type is one of the many codes which represent the

various point categories in AASUR. There are three methods that belong to the JobAction

class. They include getActionType() to retrieve the action type as a String, and a

toStringO and toXml() method. None of these take any parameters. The toXml will return

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a String formatted in the appropriate xml (to be returned later to the parent CA of the

user) and the toString method returns a String representation which is only used for

debugging purposes.

Further details of these methods are shown in Figure 27.

Constructor Summary
JobAction(i

JobActiondava.Xaag.StgiBg actiocType)

Method Summaiy
. . » ..aj K .-'!

la* . I to s tr tn q (>

i era. tow. 5*.l»f! toXgl (j

Figure 27: JobAction Object

5.8 Policy Formats

A set of policies, formats, and messages has been devised so that resource owners are

able to retain ultimate control over their resources. All policies, messages and formats are

defined using XML. It should be noted that many of the formats are quite similar. This

was done to maintain consistency which helps to enable an easy understanding of the

system, as well as to ensure that as much complexity as possible has been removed from

processing.

These policies are stored persistently in text files on the resident file system of the local

server. They are secured via typical file system permissions. From the application server

point of view, these files are read only, so that no malicious modifications may be done to

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the file. Further, these files are loaded once when the server begins, and are persistent in

memory for the duration of the application server lifetime. If any changes are desired in

these policy files, the changes must be applied and the server environment restarted. This

is to increase the overall security of the system.

There is a very important aspect regarding the definition of these files which must be

discussed. As previously mentioned, we have tried to maintain a high degree of flexibility

for resource owners to specify what and how access is granted through the various

policies. This flexibility is somewhat of a double edged sword however. Should an

administrator not fully comprehend the intent of each policy, there is a risk of improper

decisions (unintentionally too easy or too difficult). To alleviate this issue, a default set of

policies will be included in the system, but the best practice is to know what each number

in a policy means, and how it will affect the overall decision making process. Setting

values which you do not understand, can have undesired results.

5.8.1 Risk Factor Determination Policy

This policy contains the necessary information to define how the specific RF is derived,

including the relative importance (weight) of each point category.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type=’r f >

<multiplier type=’djr’> -4 </multiplier>
<multiplier type=’rou’> -5 </multiplier>
<multiplier type=’ida’> -3 </multiplier>
<multiplier type=’ifc’> -3 </multiplier>
<multiplier type=’ifd’> -4 </multiplier>
<multiplier type=’imo’> -6 </multiplier>
<multiplier type=’inc’> -5 </multiplier>
<multiplier type=’ips’> -3 </multiplier>
<multiplier type=’ird’> -5 </multiplier>

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<multiplier type=’iwr’> -5 </multiplier>
<multiplier type=’isc’> -6 </multiplier>
<multiplier type-’isi’> -7 </multiplier>
<multiplier type=’lbl’> -7 </multiplier>
<multiplier type=’bof > -9 </multiplier>
<multiplier type=’rte’> -6 </multiplier>
<multiplier type=’cce’> -5 </multiplier>
<multiplier type=’lda’> 2 </multiplier>
<multiplier type=’lfc’> 2 </multiplier>
<multiplier type=’lfd’> 1 </multiplier>
<multiplier type=Tmo’> 3 </multiplier>
<multiplier type=’lnc’> 3 </multiplier>
<multiplier type=Tps’> 4 </multiplier>
<multiplier type=’lrd’> 2 </multiplier>
<multiplier type=’lwr’> 4 </multiplier>
<multiplier type=Tsc’> 3 </multiplier>
<multiplier type=’lsi’> 2 </multiplier>
<multiplier type=’pjr’> 1 </multiplier>

</policy>

5.8.2 Access Decision Policy

This policy corresponds to the AccessDecisionPolicy object previously defined. The

AccessdDecisionEngine is the last step of the access decision. Its input includes a user’s

RF and User Class, and its output includes arbitrary blocks of a site specific access policy

language (one for each level of access). These blocks define what a user has the

permission to do if they are granted access to that level. This policy may have as many

different levels as an administrator desires. Each level is associated with a required RF

range (which the user’s RF must fall into) and a specific User Class.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type=’ade’>

<level id=’a ll’ rfh=’1000’ rfl=’3000’ >
<classes>

<class> userClassl </class>
<class> userClass2 </class>

</classes>
<access>

arbitrary access specification

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</access>
</level>
<level id=’al2’ rfh=’2500’ rfl=’5000’ >

<class>
<class> UserClass2 </class>

</class>
<access>

arbitrary access specification
</access>

</level>
<level id=’al3’ rfh=’4000’ rfl=’ 10000’ >

<class>
<class> userClass3 </class>
<class> userClass 4 </class>
<class> userClass 5 </class>

</class>
<access>

arbitrary access specification
</access>

</level>
<level id=’al4’ rfh=’10000’ rfl=’50000’ >

<class>
<class> userClass5 </class>
<class> userClass6 </class>

</class>
<access>

arbitrary access specification
</access>

</level>
</policy>

5.8.3 User Class Definition Policy

This policy defines how the user’s class is derived from non-numeric evidence and

various policies. This policy gives us the ability to group a user into one or many

categories which will allow us to give out various levels of access. It also helps to deal

with the authorization base case where a user is brand new and has no points because

they have not yet carried out any processing within the system.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type="uc">

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<class name='testClassr>
<rule type-age'>123456789</rule>
<rule type-pjr'>12345</rule>
<rule type='djr'>32</rule>
<rule type='ayg'>29</rule>
<rule type=lmrjc'>876543219</rule>

</class>
<class name='testClass2’>

<rule type='age'>234567891</rule>
<rule type-pjr'>23451</rule>
<rule type='djr'>132</rule>
<rule type='avg'>39</rule>
<rule type='mxjc'>765432198</rule>

</class>
<class name=’ br andN e w’ >

<rule type='age'>0</rule>
<rule type-pjr'>0</rule>
<rule type='djr'>0</rule>
<rule type-avg'>0</rule>
<rule type-mrj c '>0 </rule>

</class>
</policy>

5.8.4 Local Blacklisting Actions Definition Policy

This policy defines exactly which particular action(s) will cause a user to become locally

blacklisted. This policy can contain any number of actions including zero (if the resource

site does not feel that the use of a local blacklist is valuable).

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type-LBL>

<action type-IM O' />
<action type-ISC' />
<action type-IDA' />
<action type-BOF' />
<action type-CCE' />
<action type='RTE' />
<action type-IW R' />
<action type='IPS' />
<action type-INC' />

</policy>

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.9 Message Formats

5.9.1 Resource Access Request

This is the initial message sent from a user that desires some type of resource access. It is

sent to the resource site that it would like to participate with. It will contain the requesting

sites PKC signature (user identification). At a later time, this request could contain

various detailed levels of requested access. The only potential issue with requesting a

level of access involves the language used to specify the access level request. We have

developed an architecture which allows a resource site to use an arbitrary access policy

language for the ticket, however, there must be some accepted language for the access

request. This implies that all sites must conform to a certain language, at least for the

request aspect of authorization. See below for an example of a resource request.

<?xml version-1.0' encoding-ISO-8859-1'?>
<resource_request>

<shal>
6 AC824B3EDDD8748A2B1261249D84EE48B3 7A96

</shal>
</resource_request>

5.9.2 Point Action Notification

This particular format defines the messages that will be sent from a resource site to the

parent CA of the user which has just completed a job at that site. The message will

contain both the signature of the user and resource site in question, the start and end time

(in millis) of the job, and a list of all individual actions which took place during

processing.

<?xml version-1.0' encoding='ISO-8859-l'?>

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<message
type='PN'
s iteshal - U7H99 Y C6THTD1B3W8FGL3 5RKUM5 3 FHD VFFLLZZZ1'
user_semo=’ 7H99YC6THTD1B3W8FGL35RKUM53FHD VFFLLZZZ 1'
startJime=T 178467068203’
end_tim e-l 178467068250’>

<action type='LMO' />
<action type-LSC' />
<action type-LSC' />
<action type='LDA' />
<action type='LFC' />
<action type='LWR' />
<action type-LRD' />
<action type-LFD' />
<action type-LFD' />
<action type='LFD' />
<action type='LRD' />
<action type='LSI' />
<action type-LRD' />
<action type='LSC' />
<action type='LFD' />
<action type='LMO' />
<action type='LNC' />
<action type-LW R' />
<action type='LFC' />
<action type='LWR' />
<action type='LWR' />

</message>

5.9.3 Resource Access Ticket

This is the access ticket which will be generated upon completion of the access decision

at the resource site. It will contain PKC of the owner (user which has been given access),

the PKC of resource, and the granted permissions.

<?xml version-1.0' encoding- ISO-8859-1'?>
<access_ticket>

<user_shal>
6AC824B3EDDD8748A2B1261249D84EE48B37A96

</user_shal>
<resource_shal>

6AC822B1261249D84EE48B37 A964B3EDDD8748A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</resource_shal >
<access_granted>

this will contain a chunk o f policy language, specific to the site
which has given this ticket, that contains a specification o f access
rights which have been granted to the requesting user. The benefit
o f allowing arbitrary policy to be inserted into the access ticket is
that our architecture is completely policy language independent.

</access_granted>
</access ticket >

5.10 OTHER FORMATS

5.10.1 Certificate Point Format (Reputation)

All points within our architecture will be stored in the user’s PKC in this format. As

previously discussed, this format was developed, after several design changes, to be very

efficient and to have a very minimal footprint. See below for a very young sample

certificate point format.

<?xml version='1.0' encoding='ISO-8859-1'?>
<reputation fjr='1178467068203'

fjc= '1178467068250'
mrjr='1178467068203'
mrjc='1178467068250'
ajt='47'
tj='l'
c = 'Canada'
pj r = '1'
lda='6'
I f c = ' 7 '
lfd='14'
lmo='91
lnc='9'
lps='3'
lrd='8'
lwr='20'
lsc='3'
lsi='11'
djr='0'
rou='01
ida='0'
ifc='1'
ifd='0'
imo='0'
inc='2'
ips=10'
ird='2'

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iwr='1'
isc='0'
isi='3'
bof= 10'
rte='0'
cce='1'>

</reputation>

5.10.2 Local Blacklist Format

Any user/resource which performs an action which the local resource deems worthy of

addition to the local blacklist (as defined in 5.8.4), will be added to the local sites

blacklist. As previously mentioned these are only applicable at, and are restricted to,

individual resource sites to ensure that the unwarranted addition of a user to a blacklist

does not affect the overall trust of a user in the global grid.

Each entry to the local blacklist contains the signature of the user which was added to the

blacklist and what action caused that user to be added to the local blacklist. See below for

an example of a resource sites local blacklist.

<?xml version-1.0' encoding='ISO-8859-r?>
<local_blacklist>

<entry action=’cce’>
<user>C824B3 EDDD8748A2B1261249D84EE4 8B3 7 A96</site>

</entry>
<entry action=’imi’>

<user >C824B3EDDD8748A2B1261249D84EE48B37A96</site>
</entry>
<entry action=’isc’>

< user >FTGRC3EDDD87482B1261249D84EE48B37A96</site>
</entry>
<entry action=’ida’>

< user >D874AC824B3ED8A2B1261249D84EE48B37A96</site>
</entry>

<local blacklist>

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 Extensibility

Many aspects of this system have been designed in such a way that extension of this

architecture is very straightforward. The question then becomes what would someone

want to add to this system most commonly, or to what degree can the system be easily

extended. The answer to the first question is point categories. Various resource sites may

desire to add new point categories to the system for their own custom use. In theory this

is straightforward for much of the system, but you will be quick to notice that it is in fact

quite involved.

As far a simply adding a new point type to the RF policy and the user’s permanent

reputation, this is very simple. Everything was designed in such a way that adding a new

category to the policy would automatically be recognized, and the same applies with the

reputation within the certificate. If some site defined a category in their RF policy which

did not exist, it would have no bearing on the overall RF since there would be 0

occurrences of it which amounts to nothing in the RF. Further if a new point category

was created in the system and a site did not define it in the RF policy, again a zero value

in the multiplier would render it neutral. The entries in an RF policy are not statically

defined, so new entries could be added at any time.

There is however a problem with respect to extension. The problem involves the point

collection middleware which sits at each site. This code is signed to ensure everyone has

a consistent view of how to collect points to eliminate any subjectivity from a collection

point of view. The problem is that any changes (new category) will have to be added to

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the middleware at each and every one of these sites in the world. Although this hinders

extensibility, an update system could make the distribution of an update very

straightforward. This is left as future work. It must be noted that no site may operate in

the context of the grid while using non-standardized point categories in their AASUR

system. If this was the case, the objectivity and standardization which makes the system

valuable, no longer exist.

5.12 Sample Walkthrough (SYSTEM FLOW)

Pant I

USER SITE
SIMULATOR

(Discovery Agent)Lock
Black
Lockup

User C lass I /
. om.„ u;~

isk Fact
Decision

! ; if : ■
Point NoataiSoo

:

. . . ; ..

I I ; : i . :

y U l r ; H H
■ / I ■ i ;\ \

: - i f i r i v ;

AASUR CA
SERVICE

Figure 28: A step-by-step representation of the AASUR system workflow.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The AASUR system workflow is shown in Figure 28. We discuss the workflow steps, in

detail, below.

1. The user, needing access to some remote resource, contacts the AasurCaService

which resides on its parent CA and performs a certificate lookup/retrieval. The

returned certificate will be used for the upcoming resource request.

2. Resource discovery agent from the User sends a request to the

ResourceSiteServiceListener at the Resource Site. This request includes an X.509

PKC containing past actions of the user, specified in the Certificate Point Format

3. The ResourceSiteServiceListener will then validate the certificate to ensure that it

hasn’t expired or been revoked.

4. Next, the ResourceSiteServiceListener must check to see if the user in question

has lost our trust by checking to see whether they belong to our local blacklist. If

so, we may immediately deny access to out resources.

5. Along with the Risk Factor, the access decision may also take into account the

requesting user’s class. A user’s class will be determined based on additional non­

point based information as defined in 5.8.3. This will also include several of the

attributes define in Table 3. The notion of user class is important because it is

used to govern what degree of resource access will be given, assuming that some

level of access will be granted.

6. Next, the Risk Factor (RF) is generated based on local relative multipliers

specified in policy as defined in 5.8.1.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Now, an access decision must be made. Essentially, it provides a yes or no

answer, with associated policy specifying access. This decision is based on the

derived Risk Factor, the user’s class, and the Access Decision Policy defined in

5.8.2.

8. If access is granted, it will manifest itself in the form of a ticket, as defined in

5.9.3, which will be presented upon job submission at the resource site. This

ticket is similar to that used in Kerberos [Kohll991]. We use the notion of a ticket

for two reasons. First, within the context of grid based computing, this

architecture allows us to offer our authorization service, minimally, to resource

discovery mechanisms. Rather than discovering appropriate resources and

distributing a job simply to find out that access will no longer be given, we can

determine where access will be given based on the acquisition of a ticket. This

ticket, with an explicit lifetime, will be presented upon distribution of the job to

the resource site for processing. Secondly the notion of delegation is very crucial

to distributed processing. This ticket would enable delegation to occur, similar to

a proxy. It must be noted however that this current version of AASUR does not

support delegation, though it could be incorporated into AASUR with some

additional work.

9. The generated ticket is then returned to the requesting user for submission with

the job.

10. When a user is ready to submit the job, assuming the ticket has not expired, it will

be sent to the resource site along with the access ticket. Once a job has begun

execution, we must monitor exactly which actions are performed by the job. We

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

require a middleware layer (outside the scope of this paper) which handles the

detection and collection of actions performed during processing. It should be

noted that if at any time during execution, the job performs an action that is

considered locally blacklistable (defined in 5.8.4), the job will be terminated and

the proper entries will be added to the local blacklist defined by format 5.10.2.

11. Once processing has finished, the resource site will connect to the parent CA of

the user which owns the finished job. The CA will have an instance of the

AasurCaService running locally. The resource site will then send a list of all

actions which occurred during processing. The listed will be formatted as defined

in 5.9.2, and will contain all local actions performed.

12. Once the CA receives the notification, it will perform a few simple validations,

lookup the proper associated PKC, and format the actions into the appropriate

XML.

13. Finally, the actions are merged into the user’s certificate using the format defined

in 5.10.1. Note that the new points must be added by the parent CA of the entity

which earned the points, not the CA of the resource site. This is due to the fact

that only the parent CA of the certificate owner can sign the certificate.

5.13 Sample Walkthrough (AUTHORIZATION DECISION)

In order to illustrate the details of our approach, we examine a sample authorization

decision including specific examples of policies and reputation. In order to reach the

final decision it is necessary to deal with each separate aspect of the decision making

process, starting from user reputation, to determination of the user class and ending with

the actual access decision.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W e begin with the reputation o f a specific user.

USER REPUTATION

Below we show an example xml document, contained within the extension of the X.509

certificate, to be used for the user reputation calculation. The document contains the

various point categories and values pertinent to this example.

<?xml version-1.0' encoding-ISO-8859-1'?>
deputation fjr='l 178467068203'

f jc -1 178462068289'
nuji='l 178467068203'
mrjc=T 178467068250'
ajt-47'
tj=T
c-canada'
pjr='19'
lda-6 '
lfc='7'
lfd='14'
lmo='9'
lnc-9 '
lps='3'
lrd='8'
lwr='20'
lsc-3 '
lsi='H'
djr='5'
rou-2 '
ida='0'
ifc=T
ifd='0'
im o- 1'
inc='2'
ips-'0'
ird-2 '
iwr=’l ’
isc='6'
isi-3 '
lbl=’3’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bof-O'
rte='4'
cce=T>

</reputation>

Notice that not every point category has a non-zero number in it. This simply means that

this particular action has never been performed by this user. The second piece of

information provided is the RF policy to be used to determine the overall Risk Factor.

RF POLICY

<?xm1 version-1.0' encoding-ISO-8859-1'?>
<policy type=’r f >

<multiplier type=’djr’> -4 </multiplier>
<multiplier type=’rou’> -5 </multiplier>
<multiplier type=’ida’> -3 </multiplier>
<multiplier type=’ifc’> -3 </multiplier>
<multiplier type=’ifd’> -4 </multiplier>
<multiplier type=’imo’> -6 </multiplier>
<multiplier type=’inc’> -5 </multiplier>
<multiplier type=’ips’> -3 </multiplier>
<multiplier type=’ird’> -5 </multiplier>
<multiplier type=’iwr’> -5 </multiplier>
<multiplier type=’isc’> -6 </multiplier>
<multiplier type=’isi’> -7 </multiplier>
<multiplier type=Tbl’> -7 </multiplier>
<multiplier type=’b o f > -9 </multiplier>
<multiplier type=’rte’> -6 </multiplier>
<multiplier type=’cce’> -5 </multiplier>
<multiplier type=’lda’> 2 </multiplier>
<multiplier type=Tfc’> 2 </multiplier>
<multiplier type=Tfd’> 1 </multiplier>
<multiplier type=Tmo’> 3 </multiplier>
<multiplier type=’lnc’> 3 </multiplier>
cmultiplier type=’lps’> 4 </multiplier>
<multiplier type=Trd’> 2 </multiplier>
<multiplier type=Twr’> 4 </multiplier>
<multiplier type=Tsc’> 3 </multiplier>
<multiplier type=Tsi’> 2 </multiplier>
<multiplier type=’pjr’> 1 </multiplier>

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

</policy>

Once we have the user’s reputation and the RF policy we perform the first major step in

the access decision, namely the calculation of a user’s RF. If we define the resulting RF

as the equation:

In this equation, K is the total number of point categories chosen, and Ck are the

weight and number of occurrences, respectively, for the kth point category and we utilize

the step function 9(x) = 1 for x > 0, and 0 otherwise. Thus, the RF determines the

relative fraction of positive to total weighted multiplier sums.

For illustration purposes, first, the negative multipliers are used to calculate the negative

part of the point sum:

Next, we use the positive multipliers to calculate the positive part of the point sum

(5 * -4) + (2 * -5) + (0 * -3) + (1 * -3) + (0 * -4) + (1 * -6) + (2 * -5)

+ (0 * -3) + (2 * -5) + (1 * -5) + (6 * -6) + (3 * -7) + (3 * -7) + (0 * -

9) + (4 * -6) + (1 * -5) = -171.

(6 * 2) + (7 * 2) + (14 * 1) + (9 * 3) + (9 * 3) + (3 * 4) + (8 * 2) +

(20 * 4) + (3 * 3) + (11 * 2) + (19 * 1) = 252.

Now the next step prior to obtaining an RF is to add the absolute values of the negative

part to the positive part to obtain the absolute point sum:

j252| + |-171| = 423

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we divide the positive part only by the absolute point sum (rounded to three

places):

252/423 = 0.596

This value (0.596) is known as the RF. Essentially, the RF defines what percentage of

the time this user has been “good” (as an overall, or collective, measure) using the

individual weights defined in the Risk Factor policy for each point category.

Two remaining policies must be defined. These include the User Class policy and the

Access Decision policy.

USER CLASS POLICY

In order to arrive at an access decision it is necessary to know what kind of user we are

dealing with. The following xml document contains the information needed to make this

determination (see 16.9.3).

<?xml version-1.O' encoding-ISO-8859-1'?>
<policy type-'uc">

<class name-newUser'>
<rule type='age'>i 17846709650 3</rule>
<rule type-pjr'>12</rule>
<rule type-djr'>5</rule>
<rule type-avg’>50</rule>
<rule type-mrj c’>1178467037203c /rule>

</class>
<class name-oldUser'>

<rule type-age’>11784674354567 </rule>
<rule type-pjr’>250</rule>
<rule type-dj r’>3 5 </rul e>
<rule type='avg'>35</rule>
<rule type-mijc'>i 17846906820 3</rule>

</class>
</policy>

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the User Class Policy (above) we can determine which classes a particular user

belongs to. Note that a user may belong to none, one, or more than one class depending

on the local policy, and their reputation. To calculate the user classes, we must use the

following information from the user’s certificate:

Age (first job request was 1178467068203)

Permitted Job Requests (19)

Denied Job requests (5)

Average Job Time (47 ms)

Most Recent Job Completed (117846706825o)

This particular user class policy dictates that to belong to it (newUser) a user must:

a. Have become active in the grid before: 1178467096503. For this we check to

see if a user’s First Job Request (FJR) is less than the policy age value. This is

because the milliseconds specified denote the number of milliseconds from

January 1, 1970. This means that a lower number is older.

Check: 1178467068203 <1178467096503 TRUE

b. Have at least 12 Permitted Job Requests

Check: 19 > 12 TRUE

c. Have no more than 5 Denied Job Requests

Check: 5 <= 5 TRUE

d. Have an Average Job Time of 50ms or less.

Check: 47 <= 50 TRUE

e. Has requested access to a resource site no longer ago than 1178467037203

Check: 1178467068250 >= 1178467037203 TRUE

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since all of the five checks for the User Class known as newUser pass (ie. are TRUE),

this user belongs to the newUser class. In contrast, if we were to check to see if the user

is a member of oldUser, we would see that they are not (for example, 250 is the lower

limit for Permitted Job Requests that qualify an oldUser, hence the current value of 19

fails).

ADE POLICY

Finally, we must define the Access Decision policy which will make the final access

decision. We start with the following xml document:

<?xml version-1.0' encoding-ISO-8859-1'?>
<policy type=’ade’>

<level id=’ 1 ’ rfl=’0.500’ rfh=’0.700’ >
<classes>

<class> newUser </class>
<class> oldUser </class>

</classes>
<access>

arbitrary access specification
</access>

</level>
clevel id=’2’ rfl=’0700’ rfh=’0.900’

<class>
<class>oldU ser</ class>

</class>
<access>

arbitrary access specification
</access>

</level>
</policy>

We consider the user’s RF and Class(s) and see what type of access is associated with

them within the Access Decision policy. According to the AD policy above, this user will

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be given access. The access specifier string will be returned is the ‘arbitrary access

specification’ located between the <access></access> tags. The specification will be

given in a site specific resource access policy language. One such example policy

language framework is Ponder [Damianou2001].

5.14 Current State

The current state of the AASUR system is as the design has specified. It is complete and

several sets of results have been obtained from the working prototype. Items

specified/contained within the future work section would be very beneficial as additions

to this system, but they have not yet been implemented. The codes for this system are

available upon request for your perusal, but are not included in this document as an

appendix due to the large amount of space which would be required.

5.15 Limitations

It is an accepted fact that the only way to secure a resource is to ensure that no access is

possible, either direct or remote. That being said, the need for resources to be available

via a network is extremely important; therefore, necessary security precautions must be

taken. A multi-level approach is preferable with respect to security to ensure that a failure

of one layer will not make the system as a whole vulnerable.

The nature of this system, from a reputation collection point of view, is completely

objective. The collection code is protected, so there will be not question about whether or

not a user’s reputation is correct. However, an improper decision on the part of a resource

when developing an access policy can result in an undesirable access situation. Further, a

historical pattern of proper usage by a user does not guarantee that the same user’s future

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actions will be completely proper. This is an element of risk that exists within this

system. This aspect however, arguably exists within any system. There is always

potential for an authorized used to perform malicious actions. A systems saving grace is

the ability to detect and record that this occurrence and put some type of punishment into

action. That may take the form of banishment, lessening of access right, etc.

In the case of AASUR, we have the capability to detect when such an action occurs and

AASUR records it as part of a user’s reputation. The major function of AASUR is to

collect objective information and make it available to resource site for decision making

purposes. However, even though illegal actions are recorded, that does not imply some

type of punishment may take place. It is up to an individual resource site to be able to

view all actions that a user has performed and make a decision based on them. That is, if

a particular user has performed many “bad” actions, it is likely that many resource sites

will not give access. This is analogous to the previously mentioned punishment. There

should be no reason that, if a resource site still wishes to provide access for a user that

has performed many improper actions, it should not be permitted to. After all, resource

access should be controlled completely by the resource owner.

5.16 Implementation

The first step of development was to create a service (AasurCaService) that provided a

publicly exposed WS based interface to the local EJBCA functions such as certificate

lookup and creation/signing. The next step was to write a simple client piece of software

(which became the UserSiteSimulator) that could simply connect to the AasurCaService

and send simple messages. Since SOAP only allows the passing of simple types and

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compositions of simple types, the next step was to determine how to pass complex types

such as certificates. The solution was serialization. Serialization allows most Java objects

to be converted into an array of bytes. Typically this is for persistent storage, but since

byte arrays can be passed via SOAP to web services, it fit perfectly. Once a complete

certificate could be passed successfully, the next important step was to write the

appropriate code to write and access custom extensions to standard X.509 certificates.

This is where the persistent reputation will be stored. These were the most important

hurdles to overcome, not only to function properly, but also to ensure that development of

this architecture was even feasible.

The remaining steps included development of various custom objects for reputation

storage and policy representation, code for merging of existing reputation with newly

performed job actions, XML formatting/parsing code, supporting code including

serialization/de-serialization packages, and finally simulation code to produce

randomized lists of job actions which occurred during simulated processing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

6 Development/Deployment Infrastructure
Implementation involved four major steps, which we will outline in this section. The first

step involved creating a list of required components and their required functionality. The

second step was to make a list of all existing software packages, determine what

individual packages can do, and finally to determine which software would best

compliment each other while simultaneously meeting the needs of this system. The third

step, and probably the most involved, was to install and configure the selected software to

provide a completely functioning infrastructure which provides the necessary framework

for step 4 (See Appendix A for detailed installation instructions). Step 4 was to develop

the AASUR specific software including service code, as well as all required supporting

codes. Each of these steps will be outlined in the following subsections.

6.1 Required Components

At the most basic level, this architecture requires a certificate authority and the capability

to host web services. These two simple requirements become more involved when we

delve deeper into the required supporting software. The ability to host web services

requires several pieces of software, including an application hosting environment which

allows them to be exposed to the public for use. It also requires the necessary XML

libraries for parsing of messages and formats and security libraries to provide

authentication and message protection. A runtime environment may also be needed

depending on choice of implementation language.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Selection of Software

Once the basic requirements had been outlined, the specific choices of software became

the next step. For several benefits, Java was selected as the implementation language.

Thus, the need for the Java Runtime Environment was obvious. Due to the limitations

imposed from selecting one language, as well as a desire to remain within the open

source community (for cost benefits, as well as the requirement to modify the software as

needed), a clear winner emerged for both the hosting environment and certificate

authority. The hosting environment which was selected was JBoss [Jboss], and the CA

software was EJBCA [Ejbca]. Both are Java based, open source, meet various standards,

and have large feature sets. The selection of EJBCA also created a requirement for a

database. Again, due to the widespread use and open source nature, MySQL [MySql] was

selected. For XML, the selected tools are included with built in support from Java for

DOM/SAX perusal/manipulation. From a supporting software point of view, this

implementation also requires Ant [Ant], for building/deploying AASUR implementation

to the application hosting environment, and the necessary Java MySQL connector

libraries.

It must be mentioned that the set of software components which have been selected to

implement this system are in no way, shape, or form, the only tools which can

accomplish our goals. Other existing languages, tools, and components can achieve the

same end. The set which has been chosen, in our opinion, is simply the best choice from

many points of view including rapid development, security, ease of use, performance,

cost, etc. Should AASUR become a viable option for authorization, its continued

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development would likely see specific components exchanged to meet the needs of a long

term authorization system which has different goals.

6.3 Installation and configuration

Note that the specifics of individual software packages selected for installation on the

various test bed machines will be discussed in more detail in following sections.

Installation and configuration began with the configuration of several machines that

would be used for the required test bed. We will outline the installation procedures in this

section, but for full details see Appendix A.

A total of five machines were used. Four machines were configured with Fedora Core 5

(a flavour of Linux) and the last was configured with Windows XP. All machines were

placed on the same subnet and file sharing was enabled for ease of file transfers via

Samba and Windows file sharing. The following steps involved installing Java and

Apache Ant. Then JBoss was installed and configured, including the necessary

configurations for secure HTTP (HTTPS). Once JBoss was working properly, MySQL

was installed, followed by EJBCA. Aside from the basic previously mentioned

installation/configuration steps, some modifications to the inner workings of EJBCA

were necessary to prepare it to handle what would be required for the AASUR

implementation. Those modifications are discussed in 6.3.4.3.

6.3.1 JBoss

JBoss is a Java based application server, produced by Red Hat, for use with J2EE and the

associated Enterprise Java Beans. It is similar in functionality to other popular application

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

servers such as BEA Web Logic and IBM Web Sphere [BEA, WEB]. It is completely

free, Open Source, interoperable, and portable to any platform that has a JRE written for

it. This makes it a very desirable product. Of course, the fact that it is free does not mean

it lacks quality. In fact, JBoss is the most used Java application server [jboss].

6.3.2 Java

Java, developed by Sun Microsystems, was our programming language of choice for this

project. There are several factors that make Java good choice. First, Java is interpreted

via a Runtime Environment (RTE). This means that and Java code is portable to any

platform which has the accompanying RTE. This platform independence means is it very

portable. Second, Java was designed to be a very secure web enabled language. For an

architecture that will be used for Web Services, this type of language is very beneficial.

Third, it is Object Oriented (0 0), which makes it very good for modeling various

existing objects, as well as modeling custom objects for the system. The benefits of 0 0

can easily be the subject of another paper, but to summarize, 0 0 languages provide:

abstraction, polymorphism, encapsulation, inheritance, and modularity. This flexibility is

very useful when developing new prototypes. Fourth, the syntax is very straightforward

and the error message capabilities are advanced which allows for rapid and efficient

development of new systems. Fifth, automatic garbage collection means that explicit

memory management is a thing of the past. No more will memory leaks be a major issue

in new, large scale, systems. Sixth, Java is completely free to use. Seventh, Java has a

very large number of packages available to accomplish many ends. These existing classes

are very useful for quick development of new system. In other words, you don’t have to

reinvent the wheel.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Of course, no programming language is perfect. There are always downsides, and Java is

no exception. The most prominent negative aspect of Java is its performance. Though

vastly improved from its original days, it is generally accepted that Java does not perform

quite as fast as C/C++. Various tests have been performed to compare the two, and it has

been found that the difference is only marginal between the two [JavaWorld]. This is due

to the RTE and how it acts as an interpreted, the garbage collection and security model

[JavaWorld]. Since C/C++ is compiled to native hardware instructions, it will run faster.

However, this means that C/C++ is nowhere near as portable as Java. Nevertheless, it is a

tradeoff, and one which must be carefully considered when selecting an implementation

language. Second, some consider the highly secure environment to be somewhat

restrictive, but perhaps that is due to improper understanding of the language.

6.3.3 Linux

Linux is an Open Source operating system. It has been around since roughly 1990, and

ever since has been gaining a larger market share in the OS race. It is predominantly a

server operating system which boasts better security, stability, and extensibility than

other more commonly known operating systems. We chose it because it is very capable,

secure, and of course its cost.

6.3.4 EJBCA

EJBCA is an Enterprise Java Bean (EJB) based Certificate Authority (CA). It is a fully

functional CA. There are so many features that listing them here would take up too much

space, but suffice to say it meets and exceeds every requirement we have. In this section,

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we will be discussing the pros and cons of EJBCA, as well as the necessary modifications

that took place.

6.3.4.1 Benefits

It has a very flexible and feature rich web-based (and CLI) interface for administrative

purposes. It supports key sizes up to 4096 bits, smart cards, multiple hashing algorithms,

and multiple Hardware Security Modules (HSMs), all for maximum security [EJBCA]. It

can integrate with any Lightweight Directory Access Protocol (LDAP) compliant

repository including Active Directory [EJBCA]. This product is also an Open Source

piece of software. The fact that it was created in Java makes integration with our system a

much more palatable proposition. The only issue with the selection of EJBCA was that

(at the time of selection) it did not operate in the context of web services. That being said,

we decided to use it anyhow, and make the necessary modifications ourselves.

6.3.4.2 Downside

There is really only one issue with EJBCA, and this could be attributed to the overall

design of ASSUR rather than EJBCA. In general, a PKC is generated once. This is due to

the intention to keep a name bound to a public key for a long period of time. When a new

certificate is generated (once for each complete job) the old version of the certificate is

stored for historical reasons. These old versions are also used for Certificate Revocation

List (CRL) generation. Due to the fact that a user could complete hundreds, if not

thousands, of jobs a day, the number of historical certificates on file could grow very

large. This may affect the overall scalability of this system. It is recommended that, in the

future, only the latest certificate is maintained for a user. However, at this point in time,

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the historical feature has been left in, and has also been determined to be acceptable from

a performance point of view for this proof of concept architecture.

6.3.4.3 Necessary Modifications

As previously mentioned, the Web Service capability was not available in EJBCA when

it was researched. We believe that the newest version does incorporate this type of

exposure, but we have long since made the necessary modifications to handle them

ourselves. Making the necessary functions, which include certificate lookup and retrieval,

was not very difficult. The main steps behind this type of addition involved the

following:

1. select the necessary functionality to expose as web services

2. determine how theses services can be accessed from the local CA server

through EJB sessions

3. create new classes which will be publicly exposed as services that will

instantiate a local session of a particular bean (eg. RSASignSessionBean

for certificate signing) which will serve as an interceptor.

For example, consider the signing of a new certificate from a remote location. We have

already exposed a public service which mirrors the available functionality in

RSASignSessionBean (referred to as RSAMirror). When a request arrives for a certificate

to be signed, it comes in to RSAMirror, which has already established a local session

with RSASignSessionBean. The certificate to be signed is passed through RSAMirror to

RSASignSessionBean and then EJBCA performs its required action.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At this point, perhaps it is better to say that we did not modify EJBCA; rather, we

augmented it with respect to the Web Service exposure requirements. There were some

things within EJBCA that did need modification, however. These are discussed in the

next paragraph.

The X.509 standard allows for non-mandatory extensions within a certificate. These

extensions can be named and accessed within a certificate when needed. Although

EJBCA supports certificate extensions, the way in which it supports them required some

modifications to the code. Prior to any modifications, the addition of a particular

extension to a certificate (created/signed by EJBCA) required the creation of a user

profile. Within this profile, the extension id and the value of the extension were specified.

Then, any new certificate which was created under the umbrella of this profile would

contain the new extension. The problem with this is that the extension is fixed. In the case

of AASUR, the extension value will be changing each time a certificate is resigned. For

this reason, EJBCA had to be augmented. Once this modification was complete, EJBCA

supports this ability via the public certificate signing web service. When a certificate is to

be created the arbitrary extension value is passed into the web service with the other

required information such as primary key, etc. EJBCA will add this to the certificate

dynamically, sign it, and return it to the user, or store it.

6.3.5 MySQL

MySQL is an enterprise class, multithreaded/multi-user, completely free and Open

Source database management system (DMBS) [MySql]. It is very robust and has a large

feature set. We chose this database because of several reasons:

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. open source

3. scalable (supports clustering services)

4. large scale data support

5. user friendly graphical monitoring/administration tools

6. interoperability (works with a long list of programming languages)

Statistics show that MySQL has an installation base of over 10 million machines

[MySql].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

7 Testing and Verification

The testing and verification of this system was performed for two major reasons. The first

was to ensure that all code was sound, meaning everything worked as it was designed to

and did what it was expected each and every time. The second reason for testing was to

determine what kind of performance this system was likely to provide, as fast processing

is very important in distributed computing.

7.1 Code Correctness Verification

In order to verify the correctness of the code we adopted the following approach. First,

several users were created within the CA. Each user was given a reputation which would

put them into a specific User Class with a specific RF. Then, one at a time, all users made

10 job requests (each containing 100 actions, with various good/bad percentages, etc.

90/10, 75/25, 50/50, 25/75) to a resource site. Each request, and all associated logging

code, was examined thoroughly for errors. Upon being satisfied that all results were

correct, the next step was to determine what exact metrics would be used for the

performance analysis.

7.2 Metrics

The metrics selected to measure the overall performance of a system are very important.

The selection of the wrong metrics can make a system appear worse/better than it is. The

comparisons for AASUR were considered very carefully over a period of time. The

information which has been obtained is very promising. The following metrics have been

selected to analyze the overall performance of the AASUR system:

1. certificate retrieval time (before reputation)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. certificate retrieval time (after reputation) for a new user (no reputation)

3. certificate retrieval time (after reputation) for a user with up to 100,000

actions in their certificate

4. relationship between the number of actions in a user’s reputation and the size

of that user’s certificate

5. access decision time for a user with up to 100,000 actions in the certificate

7.3 Procedures and Results

7.3.1 Test A: Certificate Retrieval Time (NO REPUTATION)

For this test we created a new user in the CA, which did not have the new X.509

extension representing the reputation XML. We then timed 1000 certificate retrievals.

The minimum retrieval time was 0.156 seconds, while the maximum retrieval time was

1.813 seconds. If we ignore the top five times, our maximum retrieval time is 0.531. The

extraordinarily high values (top 5) are likely caused by external factors such as other

processes consuming system resources. The mean retrieval time was 0.216, while the

median was 0.187 seconds. The certificate size with no added reputation information is

892 bytes. For a detailed look at the data set in a graph, see Figure 29 below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

R
et

ri
ev

al
 T

im
e

(S
)

1 -

200 400 600 800 1000

Retrieval Iteration

Figure 29: TEST A: 1000 Certificate Retrievals. No reputation in certificate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

7.3.2 Test B: Certificate Retrieval Time (EMPTY REPUTATION)

Next, we tested how the retrieval times would be affected if the certificate had the

reputation xml in place, but it was empty. For this test, we created a new user in the CA.

Note that the tasks involved with retrieving the certificate still do not involve any

reputation extraction/processing. They simply involve the retrieval of a larger certificate.

In this case, the minimum retrieval time was again 0.156 seconds, while the maximum

retrieval time was 1.672 seconds. This maximum is actually less than with no reputation.

If we ignore the top 5 values in this (empty reputation) case (1.516, 1.531, 1.562, 1.562,

and 1.672), the maximum is 0.625 (the no reputation max. was 0.531). The median

retrieval time was 0.172 seconds, and the mean, or average, retrieval time for a certificate

with the empty reputation holding XML extension (averaged over 1000 retrievals) was

0.197 seconds. This involved a certificate size of 1248 bytes. Notice that this retrieval

time is only slightly different from the empty certificate.

In this case, the performance of empty reputation is slightly better, than the performance

of retrieval with no reputation. This is likely caused by external system factors such as

other processes consuming other resources. We believe that the essence of these results

indicate that the addition of empty reputation does not significantly increase the retrieval

times.

For a detailed view of the results for Test B, see Figure 30 below.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
et

rie
va

l
Ti

me

(€
)

2 i

1 *

200 400 600 800 1000

Retrieval Iteration

Figure 30: TEST B: 1000 Certificate Retrievals. Empty reputation in certificate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

7.3.3 Test C: Certificate Retrieval Time (0-100,000 ACTIONS)

As the number of actions increase within a user’s reputation, the certificate size would be

expected to increase (thereby increasing retrieval time) until the certificate was to reach

the theoretical maximum size. In this section we illustrate the retrieval times for 1000

retrievals for a certificate with 100,000 actions contained as reputation. This is intended

to represent the maximum (or very close to the maximum) size. This certificate has been

used for 1000 previous jobs, each containing 100 actions. This means that there are 999

historical certificates for this user in EJBCA.

In the case of certificate retrievals, the minimum retrieval time was 4.141 seconds, while

the maximum retrieval time was 7.5 seconds. If we ignore the top 5 values, the maximum

is 6.296 seconds. The median retrieval time was 4.25 seconds, the mean, or average,

retrieval time (over 1000 retrievals) was 4.536 seconds. This involved a certificate size of

1358 bytes. The retrieval times in this case are significantly higher than in Test A and

Test B. This rapid increase in certificate retrieval time is not primarily caused by the

slight increase in certificate size. EJBCA maintains all previous certificate versions,

meaning each time the reputation is modified, a new certificate is created and the overall

number of certificates stored increases by one (there are 999 old certificates in this case).

This causes an increase in the overall retrieval time. If EJBCA did not process each

historical certificate until it reaches the current certificate, it is our belief that the retrieval

times would align with the times illustrated in Test A and Test B. For further details

regarding Test C, see Figure 31 below.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

200 400 600 800 1000

Retrieval Iteration

Figure 31: Test C. 1000 certificate retrievals. 100,000 actions in reputation.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.4 Test D: Certificate Size Vs. Actions in Reputation

Test D is intended to illustrate the relationship between the number of actions within a

user’s reputation and the overall size of the certificate. This test involved the execution of

1000 jobs, each containing 100 actions. These jobs also included the authorization

decision times, and certificate retrieval time, but only the individual certificate sizes and

number of jobs will be discussed here. The authorization timing will be discussed in a

later section.

The graph shows that the maximum certificate size (after 100,000 actions) is quite

minimal. It also shows that this maximum size is reached with a very young reputation in

the certificate, and stays that way after addition of many more actions. This is a proves

the overall scalability of the design of the reputation format. It is not to say that this is the

absolute maximum, but any changes in size will be minimal. Changes in size will occur,

for example, when a category goes from 9,999 illegal read actions to 10,000 illegal reads,

simply due to the requirement to store the additional digit. The previously discussed cert

maximum of approximately 3.5K still applies, though it will take a significant number of

actions to reach.

More details regarding the results from this test are available below in Figure 32.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ce
rt

.
Si

ze

(B
yt

es
)

1300 •

1350.

1340-

1330

1320.

1310

1300

0 20000 40000 80000 80000 100000

Actions In Reputation

Figure 32: Test D. Certificate size increase with 100,000 actions in reputation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

7.3.5 Test E: Access Decision Time (0-100,000 ACTIONS)

This test is arguably the most important test of all. The AASUR system is intended to

perform dynamic access decisions based on reputation, so it is fitting that we test the act

of the making the decisions and record the associated timing information. For this test a

new user was created. This user went through 1000 simulated jobs, each involving 100

actions (90/10 split). In the end (with a total of 100,000 actions in the user’s certificate)

the results are as follows. The minimum access decision time was 0.796 seconds, while

the maximum access decision time was 3.828 seconds. If we ignore the top 5 values in

this case, the maximum access decision time is 2.297 seconds. The median access

decision time was 0.928 seconds, the mean, or average, retrieval time (over 1000

retrievals) was 0.852 seconds. This involved a maximum certificate size of 1358 bytes.

This test confirms our beliefs regarding the overall authorization decision performance as

well as the overall scalability of this system. The required time to make an access

decision remains fairly constant (linear complexity) regardless of reputation size. It also

shows that the amount of time required to make an access decision is reasonable and is

not going prevent this system from becoming a feasible architecture for distributed

authorization. Again, the spikes in authorization decision time are likely due to external

operating system factors, rather than a worst case scenario.

Further details are available regarding Test E in Figure 33 below.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

s

20000 40000 60000 80000 100000

Actions in Reputation

Figure 33: Test E. Authorization decision time (0-100,000 actions in reputation).

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Performance Comparisons

Though the Tera binaries were available, the source codes were not. This made it

impossible to insert any timing code into the application to determine any kind of results

suitable for a performance comparison. We contacted the authors of Tera, but were told

that no numeric results were available. [Private communication - May 16, 2007]

We did obtain results for two other authorization systems which were discussed in

Chapter 3. These systems are Permis and Akenti. Results from these systems were

compared in [Otenko2003]. There was no detailed raw data available however, their

results were summarized. Those results are presented in following sections. For both

systems we compared the time it takes to make an access decision. Further, Permis

includes timing information which relates to credential retrieval so we compared that to

AASUR timings as well.

It should be noted that the timing for an AASUR authorization decision includes the time

required to send the certificate from the user site to the resource site, as well as all

parsing, followed by the decision making process, ending with the return of the access

decision. Further, the retrieval times for AASUR involve no caching. They all require a

connection to a CA, as well as lookup/retrieval of the appropriate certificate.

7.4.1 Akenti

The Akenti timing information includes the access decision time as well as its standard

deviation for two scenarios. The first scenario involves credentials that must be retrieved,

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the second scenario involves locally cached credentials. All of the following results

obtained from [Otenko2003].

For the scenario where the credentials must be retrieved, the average authorization time

of Akenti is 368.2ms, with a standard deviation of 40.1ms. On the other hand, if the

credentials are already cached on the Akenti server, the average access time is 17.2ms

with a standard deviation of 51ms.

7.4.2 Permis

The Permis timing information groups the access decision and the credential retrieval

time into one. All of the following results obtained from [Otenko2003]. The average

credential retrieval time for Permis is 142.217ms with a standard deviation of 289.842ms.

7.4.3 AASUR I Permis / Akenti Comparison Summary

The results obtained are promising within the right context. Although the average

credential retrieval time for AASUR is higher than the times for both Akenti and Permis,

this is due in part to the CA implementation in Java, as well as the previously mentioned

historical certificates. It is our opinion that this retrieval time could be significantly

lowered if these changes were implemented.

The access decision times for AASUR are slightly longer than both Akenti and Permis as

well; however, the lack of requirement for nearly any administrative overhead, makes up

for this.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another promising aspect of these results is that both of these systems which involved

multiple credential retrievals are just typical results. If a given situation required more

credentials than a specific case (as tested) then the retrieval times would be greater. For

AASUR, the access decision time essentially remains constant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

8 Conclusion

In this thesis we have introduced relevant tools and technologies as well as existing

systems which try to solve the distributed authorization issue. We also describe the

approach to authorization of unknown entities in the context of grid computing that we

have chosen. This approach is implemented as a system called AASUR and entails new

approaches which have not been used prior to this thesis.

The “new” in this thesis is the technique of defining and implementing a schema which

defines a user’s reputation. This schema makes use of a spectrum of metrics that

essentially define what actions a user has performed in the past. Further, the notion of

storing these metrics and counts in an identity certificate is also novel. Typically these are

stored in a third party repository within an Attribute Certificate (AC) such as an Attribute

Authority [0pplinger2000]. This introduces an increased number of messages, which

consequently affects the overall performance of the system. However, the act of making

an authorization decision based on information about a user is not new. In fact nearly all

authorization is based on some specific information about a user. Although the way in

which AASUR uses the information that it collects is in fact new, it is not based on any

known statistical or other methodologies, so its use may be limited to proof of concept.

We chose to use an arbitrary decision algorithm (RF, UC, ADE) simply to illustrate the

usability of the information we collect for authorization decisions without requiring an in

depth survey into a specific authorization method. Further, this system could have been

implemented using one of many different authorization algorithms. In the future it is

likely that such a system as ours could employ several pluggable modules, each defining

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a specific authorization technique, enabling a significant degree of flexibility for the

resource site.

We believe that not only has our architecture accomplished the necessary goals to

overcome the issues stated within, but also, that it does so in such a way that the overhead

required is acceptable. Although the results indicate that the retrieval times, as well as,

the decision times, are generally slightly higher than those of Akenti and Permis, we

believe that the consequent drop in administrative overhead is significant and valuable.

We also believe that in the context of this problem, the maximum bounds of our various

tests are still within an acceptable range, and do not preclude AASUR from being a

feasible distributed authorization architecture.

8.1 Future Work
In this work a unique architecture has been presented which provides a distributed

authorization capability which allows arbitrary entities to participate in the Grid while

greatly improving scalability due to lower administrative overhead. Full completion of

this system will require additional work. Currently, point actions are generated from a

standalone application for testing purposes. In the future, we must develop a piece of

middleware, which will run at each resource site, for monitoring the actions of the entity

on the grid.

Failure and break-pointing of grid jobs must also to be taken into account. Current

middleware has the mechanisms in place to resume processing on physically separate

machines. Thus, the system must include the ability to maintain the actions performed

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prior to failure on the initial node and to migrate seamlessly, to the new location of

processing.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Abghour2001 - N. Abghour, Y. Deswartes, Y. Nicomette, and D. Powell. An Internet
Authorization Scheme Using Smart-Card-Based Security Kernels. ACM Lecture Notes In
Computer Science; Vol. 2140. 2001.

Alfieri2003 - R. Alfieri, R. Cecchini, V. Ciaschini, L. dell'Agnello, A. Frohner, A.
Gianoli, K. Lorentey and F. Spataro, "VOMS, an Authorization System for Virtual
Organizations," European Across Grids Conference. 2003.

Alfieri2005 - R, Alfieri, R. Cecchini, V, Ciaschini, L. dell'Agnello, A. Frohner, K.
Lorentey, F. Spataro. From gridmap-file to VOMS: managing authorization in a Grid
environment. Future Generation Comp. Syst. 21(4). 2005.

Ant - http://ant.apache.org/

Bacon2001 - J. Bacon, M.L., K. Moody. Translating Role-Based Access Control Policy
within Context. Policies for Distributed Systems and Networks. 2001.

BEA - http://www.bea.com

Bhargava2002 - B. Bhargava and Y. Zhong, "Authorization Based on Evidence and
Trust", in Proceeding of International Conference on Data Warehousing and Knowledge
Discovery (DaWaK), Sept. 2002.

Bhargava2004 - B. Bhargava and L. Lilien. Formalizing Evidence and Trust for User
Authorization. http://www.cs.purdue.edu/homes/bb/2004BostonIDM.html. 2004

Blaze99 - M. Blaze, J. Feigenbaum, and A.D. Keromytis. KeyNote: Trust management
for public-key infrastructures. In Security Protocols—6th Int'l Workshop, Lecture Notes
in Computer Science 1550. Springer, 1999.

Butler2000 - Butler, R., et al., A National-Scale Authentication Infrastructure. IEEE
Computer. 33(12). 2000.

Cecchini2004 - R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A ' . Frohner, A.
Gianoli, K. L'orentey, and F. Spataro. VOMS, an Authorization System for Virtual
Organizations. 2004

Chadwick2003 - D.W.Chadwick, A. Otenko, and E.Ball. Implementing role based
access controls using X.509 attribute certificates. IEEE Internet Computing. March 2003.

Curbera200I - F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and
how. In Workshop on Object Orientation and Web Services OOWS2001,2001.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ant.apache.org/
http://www.bea.com
http://www.cs.purdue.edu/homes/bb/2004BostonIDM.html

Dai2001 - J. Dai and J. Alves-Foss. Certificate Based Authorization Simulation System.
In Proc. 25th Annual Int. Computer Software and Applications Conference. 2001.

Damianou2001 - N. Damianou, N. Dulay, E. Lupu, M. Sloman. “The Ponder Policy
Specification Language”. Proc. International Workshop of Policies for Distributed
Systems and Networks. 2001.

Ejbca - The Enterprise Java Bean Certificate Authority:
http://ejbca.sourceforge.net/features.html

FarrelI2002 - S. Farrell, R. Housley. RFC 3281. An Internet Attribute Certificate Profile
for Authorization. 2002.

Fiadeirol995 - J.L. Fiadeiro and T. Maibaum. Verifying for reuse: foundations of object-
oriented system verification. In I. Makie C. Hankin and R. Nagarajan, editors, Theory
and Formal Methods. World Scientific Publishing Company, 1995.

Fosterl998 - I. Foster, et al. A Security Architecture for Computational Grids. 5th ACM
Conference on Computer and Communications Security. 1998.

Foster2001 - 1. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High Performance Computing
Applications, Vol. 15(3). 2001.

Foster2002 - I. Foster, "What is the Grid? A Three Point Checklist", Grid Today, Vol. 1,
No. 6,22 July 2002.

Foster2005 - I. Foster, H. Kishimoto, A. Sawa, D. Berry, A. Djaoui, A. Grimshaw, B.
Horn, F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell, J. Von Reich. The Open
Grid Services Architecture, Version 1.0. January 2005.

Globus2005 - Globus Security Team, Globus Toolkit Version 4 Grid Security
Infrastructure: A Standards Perspective. Version 4, September 12th, 2005.

Herzberg2000 - A. Herzberg, Mihaeli, Y. Mass, D. Naor, and Y. Ravid, "Access Control
Meets Public Key Infrastructure, Or Assigning Roles to Strangers," IEEE Symposium on
Security and Privacy, Oakland, CA, May 2000.

Ibm2004 - IBM Alpha Works. Trust Establishment. 2004.
http://www.alphaworks.ibm.com/tech/trustestablishment

Jajodial997 - S. Jajodia, P.S., V.S. Subrahmanian. A Logical Language for Expressing
Authorizations. IEEE Symposium on Security and Privacy. 1997.

JavaWorld - Performance Tests Show Java as Fast as C++.
http://www.javaworld.com/javaworld/jw-02-1998/j w-02-jperf.html

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ejbca.sourceforge.net/features.html
http://www.alphaworks.ibm.com/tech/trustestablishment
http://www.javaworld.com/javaworld/jw-02-1998/j

Jax2006 - JAX-RPC. http://jax-rpc.dev.java.net.

JaxTypes - Types Supported by JAX-RPC. http://java.sun.com/j2ee/L4/docs/tutorial-
update2/doc/JAXRPC4.html

Jboss - Jboss Application Server: http://labs.jboss.com/jbossas/

Keahey2002 - K. Keahey, and V. Welch, "Fine-Grain Authorization for Resource
Management in the Grid Environment", In proceedings, Grid Computing 2002.

Kesselman2002 - C. Kesselman, I. Foster, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration. Open
Grid Service Infrastructure WG, Global Grid Forum. June 22, 2002.

Kirschner2004 - Beth A. K irschnern, Thomas J. H ackern, William A. Adamsony, Brian
D. Athey. Walden: A Scalable Solution for Grid Account Management. 5th IEEE/ACM
International Workshop on Grid Computing (Grid 2004), 5 July 2004.

Koehler2003 - Koehler, J., Srivastava, B. Web service composition: Current solutions
and open problems. In: ICAPS 2003 Workshop on Planning for Web Services. 2003.

Kohll991 - J. Kohl, B. Neumann. The Kerberos Network Authentication Service. 1991.

Lampson2000 - B. W. Lampson. Computer security in the real world. In Proc. Annual
Computer Security Applications Conference (ACSAC), 2000.

Lepro2003 - Lepro, R., Cardea: Dynamic Access Control in Distributed Systems, NASA
A dvanced Supercomputing (NAS) Division, 2003.

Lorch2004 - M. Lorch. "Privilege Management and Authorization in Grid Computing
Environments”. PhD Thesis, Virginia Polytechnic Institute and State University. 2004.

Mont2003 - M. Mont, A. Baldwin, J. Pato. Secure Hardware-based Distributed
Authorization Underpinning a Web Service Framework. HP Laboratories Bristol. 2003.

Morgan2004 - R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, K. Klingenstein.
Federated Security: The Shibboleth Approach. Educause Quarterly. November 2004.

Mostefaoui2003 - G. K. Mostefaoui, P. Brezillon. A Generic Framework for Context-
Based Distributed Authorizations. Modeling and Using Context (CONTEXT-03), Lecture
Notes in Artificial Intelligence, Vol 2680. 2003.

MySql - The MySql Database: http://www.mysql.com/

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://jax-rpc.dev.java.net
http://java.sun.com/j2ee/L4/docs/tutorial-
http://labs.jboss.com/jbossas/
http://www.mysql.com/

0pplinger2000 - R. Oppliger, G. Pemul, and C. Strauss. Using attribute certificates to
implement role-based authorization and access controls. In S. T. K. Bauknecht, editor,
Sicherheit in Informationssystemen (SIS 2000).

Orth2002 - Orth, G. The Web Services Framework: A Survey of WSDL, SOAP, and
UDDI. Information Systems Institute. 2002.

Otenko2003 - Otenko S., Chadwick D. A comparison of the Akenti and Perm is
authorization infrastructures. Proceedings of the ITI First International Conference on
Information and Communications Technology (ICICT 2003). Cairo University. 2003.

Pearlman2003 - L. Pearlman, C. Kesselman, V. Welch, I. Foster, and S. Tuecke. The
community authorization service: Status and future. In Proceedings of the Conference for
Computing in High Energy and Nuclear Physics, La Jolla, California, USA, Mar. 2003.

Rivington2004 - J. Rivington, R. Kent, A. Aggarwal, P. Preney. AASUR: A Distributed
System for Authorization of Unfamiliar Entities in a Service Oriented Architecture.
WSEAS TRANSACTIONS on COMPUTERS, Issue 9, Volume 4, September 2005.

SAML2005 - Oasis. Assertions and Protocols for the OASIS Security Associations
Markup Language (SAML) Version 2.0. 2005. http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

ShaikhAli2003 - A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker, "UDDIe: An
extended registry for web services," in Proceedings of Workshop on Service Oriented
Computing: Models, Architectures and Applications at SAINT 2003.

Tang2004 - Definition - Pervasive Computing:
http://searchnetworking.techtarget.eom/sDefmition/0,,sid7_gci759337,00.html

Thompsonl999 - M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, et al., "Certificate-
based Access Control for Widely Distributed Resources," Proceedings of the Usenix
Security Symposium, Aug. 99.

Thompson2003- M.Thompson, A. Essiari, S. Mudumbai , "Certificate-based
Authorization Policy in a PKI Environment", ACM Transactions on Infomation and
System Security (TISSEC), Volume 6, Issue 4. November 2003.

Welch2002 - Welch, V., Pearlman, L., Foster, I., Kesselman, C., Tuecke, S., "A
Community Authorization Service for Group Collaboration", 2002 IEEE Workshop on
Policies for Distributed Systems and Networks.

Welch2003 - V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for grid services. In
HPDC, 2003.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://docs.oasis-
http://searchnetworking.techtarget.eom/sDefmition/0,,sid7_gci759337,00.html

Welch2005 - Von Welch, Tom Barton, Kate Keahey, and Frank Siebenlist. Attributes,
Anonymity, and Access: Shibboleth and Globus Integration to Facilitate Grid
Collaboration. Proceedings of the 4th Annual PKI R&D Workshop, April 2005.

W3C1 - World Wide Web Consortium. Extensible Markup Language (XML) 1.0, Fourth
Edition. 2006. http://www.w3.org/TR/REC-xml/

W3C2 - World Wide Web Consortium. Web Services Description Language (WSDL)
1.1. 2001. http://www.w3.org/TR/wsdl

W3C3 - World Wide Web Consortium. Simple Object Access Protocol (SOAP). Version
1.2. 2003. http://www.w3 .org/TR/soap/

WEB - http://www-306.ibm.com/software/websphere/

WSS2004 - Web Services Security: SOAP Message Security 1.1 (WS-Security 20004).
OASIS Standard Specification. February 2006. http://www.oasis-
open.org/committees/download.php/16790/wss-vl. 1 -spec-os-SOAPMessageSecurity.pdf

Yao2003 - W. Yao, "Trust Management for Widely Distributed Systems", PhD Thesis,
University of Cambridge. 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/wsdl
http://www.w3
http://www-306.ibm.com/software/websphere/
http://www.oasis-

Appendix A: Environment Configuration Instructions

In this appendix we provide details of how to install and configure the AASUR system.
In order we discuss Linux, JBOSS, MySQL and EJBCA installation and configuration
and subsequent preparation and deployment of the complete system. All steps are
enumerated, from beginning to end, in order to clarify the entire procedure.

A.1 LINUX INSTALLATION

1. place bootable dvd image of Fedora Core 6 in dvd rom drive

2. when prompted hit enter for default installation

3. be sure to test media prior to beginning installation to ensure all necessary are intact

4. when selecting packages to install, include mysql, ant, and samba

5. apply a applicable updates to system

6. configure a samba share via for installation file transfers to machine

7. configure mysqld and smb to start automatically on boot

- chkconfig —level 3 mysqld on

- chkconfig —level 5 mysqld on

- chkconfig —level 3 smb on

- chkconfig —level 5 smb on

8. verify configuration via chkconfig —list and manually start services this time or reboot

9. update Java to 1.5.0

- import JPacakge keys: rpm —import http://www.jpackage.org/jpackage.asc

- download (from sun) jdk-l_5_0_09-linux-i586-rpm.bin

- cd /etc/yum.repos.d

- wget http://jpackage.org/jpackage.repo

- edit (vi) the /etc/yum.repos.d/jpackage.repo file and changing line(s) enabled=l

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.jpackage.org/jpackage.asc
http://jpackage.org/jpackage.repo

to enabled=0

- go to file share wherejdk-l_5_0_09-linux-i586-rpm.bin is

- set executable permissions on java bin: chmod 711 jdk-l_5_0_09-linux-i586-

rpm.bin

- execute java bin: ./j dk-l_5_0_09-linux-i586-rpm.bin

- download: java-1.5.0-sun-compat-1.5.0.09-ljpp.noarch.rpm

- install java-1.5.0-sun-compat-l.5.0.09-ljpp.noarch: rpm -ivh java-1.5.0-sun-

compat-1.5.0.09-ljpp.noarch.rpm

- alternatives —config java and choose 1.5

- verify java version with: java -version (should be 1.5.0)

A.2 JBOSS INSTALLATION

10. copyjboss-4.0.3SPl.tar.gzto /home/jboss

11. go to /home/jboss and unzip jboss-4.0.3SPl.tar.gz: gunzip jboss-4.0.3SPl.tar.gz

12. unpack jboss-4.0.3SPl.tar: tar -xvf jboss-4.0.3SPl.tar

13. now we have a /home/jboss/jboss-4.0.3SPl

14. change directory to jboss-4.0.3SPl: cd/home/jboss/jboss-4.0.3SPl

15. add jboss group: groupadd jboss

16. add jboss user: useradd -g jboss -pjro 1979 jboss

17. change directory to /home

18. change ownership of all jboss dirs/files: chown -R jboss jboss*

19. change group of all jboss dirs/files: chgrp -R jboss jboss*

20. change associated jboss file/dir permissions: chmod -R 771 jboss*

21. set appropriate anvironment variables in /root/.bashrc (see included file)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22. copied startup script into /etc/init.d (from included file) to /etc/init.d/jboss

23. added necessary symbolic links to jboss startup script in init.d (to various run levels)

- In -s /etc/rc.d/init.d/jboss /etc/rc3.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc5.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc4.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc6.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc0.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rcl.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc2.d/K15jboss

24. turn on jboss automatically as a service on boot

- chkconfig —level 3 jboss on

- chkconfig -level 5 jboss on

25. reboot and verify jboss functionality by going to http://localhost:8080

A.3 MYSQL CONFIGURATION
It is assumed that MySQL was selected to be installed during Linux install. This section

deals only MySQL configurations.

26. create new database: create database ejbca (at mysql prompt)

27. secure the DB

- UPDATE user SET Password=PASSWORD('new_password') WHERE

user='root';

- FLUSH PRIVILEGES;

- DELETE FROM user WHERE User =

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://localhost:8080

- FLUSH PRIVILEGES;

- GRANT USAGE ON ejbca.* TO 'ejbca'@T27.0.0.1' IDENTIFIED BY

'jrol979';

- FLUSH PRIVILEGES;

- DROP DATABASE test;

- DELETE FROM db WHERE (db.Db LIKE 'test%');

- DELETE FROM db WHERE (db.Host = "%");

- DELETE FROM db WHERE (db.User - "");

- DELETE FROM user WHERE ((user.Host ="% ") OR (user.User =""));

- commit;

- FLUSH PRIVILEGES;

- commit;

- GRANT ALL PRIVILEGES on ejbca.* to ejbca@localhost IDENTIFIED BY

'jrol979' WITH GRANT OPTION;

28. put mysql-connector-java-3.1.12-bin.jar into:

- $JBOSS_HOME/server/default/lib

- $JAVA_HOME/jre/lib

A A EJBCA INSTALLATION
29. copied ejbca source to /root/ejbca (all modified sources included)

30. modified ejbca.properties to suite this install (see included file)

31. go to /root/ejbca:

- ant bootstrap

- ant install

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32. stopped JBoss: service jboss stop

33. go to /root/ejbca:

- ant deploy

34. started JBoss: service jboss start

35. go to /root/ejbca: ./bin/ejbca.sh ca getrootcert SHEMP_AASUR_CA ca.crt -der

36. keytool -import -trustcacerts -alias SHEMP_AASUR_CA -keystore \

$JAVA_HOME/jre/lib/security/cacerts -storepass changeit -file ca.crt

37. restarted JBoss: service jboss restart

38. in/home/ejbca: ,/bin/ejbca.sh setup setbaseurl server_ip ejbca

A.5 PREPARATION AND DEPLOYMENT

39. added bouncy castle jar to classpath: bcprov-jdkl5.jar

(located in /home/jboss/jboss-4.0.3SPl/server/default/lib)

40. compiled aasur-common package src and created a jar with internal dir structure of

/org/ aasur/common

41. added aasur-common.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-common.jar)

42. refreshed classpath with bash

43. compiled aasur-reputation package src and created ajar with internal dir structure of

/org/aasur/reputation

44. added aasur-reputation.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-reputation.jar)

45. refreshed classpath with bash

46. compiled aasur-simulation package src and created ajar with internal dir structure of

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/org/ aasur/simulation

47. added aasur-simulation.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-simulation.jar)

48. refreshed classpath with bash

49. added ejbca-ejb.jar to classpath

(located in /home/jboss/j boss-4.0.3SPl /server/default/lib/ejbca-ejb .j ar)

50. refreshed classpath with bash

51. added commons-fileupload-l.O.jar to classpath

(located in /home/jboss/jboss-4.0.3SPl/server/default/lib/commons-fileupload-l .O.jar)

52. refreshed classpath with bash

53. restarted server: service jboss restart

54. installed Java Web Services Developer Pack 2.0

- downloaded jwsdp-2_0-unix.sh from Sim (included)

- not good for linux, so required some modifications

- tail -n +368 jswdp-2_0.sh > jwsdp.jar

- extraced all files from jwsdp.jar to a folder called JWSDP (temp folder)

- added . to classpath

- ran jwsdp.class using: java jwsdp

- procede normally (typical installation in /usr/java/jwsdp-2.0)

- moved all files in /usr/java/jwsdp-2.0/jaxp/lib and /usr/java/jwsdp-

2.0/jaxp/lib/endorsed into /usr/java/jdkl.5.0_09/jre/lib/endorsed

- added /usr/java/jwsdp-2.0/jaxrpc/bin to PATH

- refreshed environment with bash

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55. added jboss-jaxrpc.jar to classpath (located in in /home/jboss/jboss-

4.0.3 SP1 / server/default/lib/ej bcaAasur Service-ej b .j ar)

56. refreshed classpath with bash

57. added jaas.jar to classpath (/home/jboss/jboss-4.0.3SPl/server/default/lib/jaas.jar)

58. refreshed classpath with bash

59. copied all code/build files for AasurCaSignService to /root/ca

60. compiled all ca source (from within /root/ca) javac *.java

61. moved all classes to /root/ca/org/aasur/ejbca/ca

62. built jar file (from /root/ca: jar -cvf ejbcaAasurService-ejb.jar ./org)and then added to

classpath (in /home/jboss/jboss-4.0.3SPl/server/default/lib/ejbcaAasurService-ejb.jar)

63. refreshed classpath with bash

64. restarted server: service jboss restart

65. generated wsdl and mapping files for web service using config.xml (specific to

machine ip) in /root/ca command: wscompile.sh -define -mapping mapping.xml -d . -

n d . -classpath /home/jboss/jboss-4.0.3SPl/server/default/lib/ejbcaAasurService-

ejb.jar config.xml

66. moved wsdl and mapping files into WEB-INF folder, the wsdl into wsdl folder (all

within /root/ca)

67. built/deployed aasur ca service: ant all (from within /root/ca)

68. restarted server: service jboss restart

69. copied all code/build files for resource site service listener to /root/resource

70. compiled all resource site source (from within /root/resource) javac *.java

71. moved all classes to /root/resource/org/aasur/resource

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72. built jar file (from /root/resource: jar -cvf resourceSiteServiceListener.jar ./org)

73. added resourceSiteServiceListener.jar to classpath

(located in in /home/jboss/j boss-

4.0.3SPl/server/default/lib/resourceSiteServiceListener.jar)

74. refreshed classpath with bash

75. restarted server: service jboss restart

76. generated wsdl and mapping files for web service using config.xml (specific to

machine ip) in /root/resource

command: wscompile.sh -define -mapping mapping.xml -d . -nd . -classpath

/home/j boss/j boss-

4.0.3SPl/server/default/lib/resourceSiteServiceListener.jar config.xml

77. moved wsdl and mapping files into WEB-INF folder, the wsdl into wsdl folder (all

within /root/resource)

78. built/deployed aasur resource site service: ant all (from within /root/resource)

79. restarted server: service jboss restart

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Vita Auctoris

Jordan Rivington was bom in Windsor, Ontario, Canada in 1979. In 1997 he graduated

from St. Thomas of Villanova in LaSalle, Ontario. From there, he pursued a post

secondary education at the University of Windsor where he remained for almost 11 years.

He first obtained a Bachelor of Science from the School of Computer Science with

Honours. This was followed by a Masters of Science, also at the University of Windsor,

dealing specifically with Grid Computing and Security. Currently he is an instmctor for

the ITT Technical Institute School of Computer Networking Technologies, as well as the

School of Software Application Programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

	A web service based architecture for authorization of unknown entities in a Grid environment.
	Recommended Citation

	tmp.1507664919.pdf.PoB4S

