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Abstract

As the “Grid” becomes closer and closer to fruition, not as a static entity, but as a 

dynamic global solution, certain issues must be addressed. These issues include, but are 

not limited to, virtualization, discovery, accounting and fault tolerance [Kesselman2002]. 

Many of such issues are being addressed with the advent of OGSA/OGSI and related 

service-based changes, which are being applied to grid-based computing 

[Kesselman2002]. Of course, these changes also include security, but not from the point 

of view of unknown entities. Before we can successfully achieve pervasive computing, 

we must leave behind, or at least augment, the current notion of pre-established trust 

[Rivington2004]. This requires too much administrative overhead, and is not realistic in a 

distributed environment where processing may occur across thousands to millions of 

independently administered nodes [Kirschner2004]. Therefore, the purpose of this paper 

is to present a new architecture for distributed authorization which will surpass current 

schemes in scalability, due to a lower administrative overhead, while also supporting the 

notion of arbitrary entities.
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1 Introduction

Grid computing encompasses the sharing of computational, storage, and networked 

resources that are controlled by different resource owners, typically independent 

institutions, and where the users of grid resources may be members of some, but not all, 

institutions [Foster2001]. Before such foreign users may be permitted to access remote 

grid resources it is necessary that their identities be authenticated and their requests for 

access to resources be authorized. The Open Grid Services Architecture (OGSA) 

provides a universally applicable and adopted framework for grid system integration, 

virtualization, and management [Kesselman2002]. It also provides several mechanisms 

with respect to security.

The various OGSA mechanisms which address security do so within a scope defined by a 

specified and limited lifetime of application. At the present time OGSA is still in a 

relatively infant stage of development with primary attention paid to issues of 

authentication which have been treated effectively, for the most part. Authorization 

mechanisms, however, are generally considered as underdeveloped and many problems 

still remain to be treated. New techniques must be integrated into OGSA to provide both 

new authentication as well as authorization mechanisms to address evolving security 

problems and schemas in modem distributed systems. [Rivington2004]

Though the security of web services has been addressed in the OGSA specifications, 

authorization is, at best, rudimentary. Currently, OGSA authorization relies on a static 

grid-map file, specific to each resource, which provides a mapping from a global ID

2
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obtained using a public key certificate (PKC) to a local account [Keahey2002]. Local 

account rights are then used as the basis for granting access to resources. While this 

approach certainly has a place in the general authorization scheme of OGSA, especially 

in the case of pre-established collaborations and federations, it is not sufficient for an 

evolving distributed computing environment, where resources may be shared with 

individuals who may be unknown to the resource provider [Kirschner2004]. Moreover, if 

each new entity must be manually added to the local grid-map file the scalability of the 

system becomes limited [Kirschner2004].

Similar types of authorization manifest themselves in several other architectures and 

systems, through various novel approaches. Within all of these approaches there exist 

potential issues that affect the overall scalability, performance, administrative overhead 

requirements, and other characteristics which would limit the overall scale of use of these 

approaches.

In this thesis we propose an architecture which collects and records actions performed by 

an entity throughout its lifetime in a grid. These actions are tracked through a subsystem, 

and are recorded as points which are then used as evidence. When combined with site 

specific policies, this evidence is used to determine an entity’s reputation and to augment 

other local policies to obtain an authorization decision. This architecture, called 

Augmented Authorization System Using Reputation (AASUR) [Rivington2004], has 

been implemented and tested and various performance results are presented and 

discussed.

3
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The remainder of the thesis is organized as follows. Chapter 2 introduces terminology 

and discusses a number of relevant existing software tools, components, and systems. In 

Chapter 3 we review several authorization approaches and systems presented in the 

literature. This discussion includes a critical review of the problems and limitations of 

those approaches. Chapter 4 is dedicated to developing the precise context of our 

AASUR approach to authorization and how it intends to address and overcome the 

limitations of other systems. In this context we state the thesis problem and provide a set 

of specific objectives, justifications and intended contributions relating to authorization 

for grid computing. Chapter 5 outlines in complete detail the Augmented Authorization 

System Using Reputation, including design context, assumptions, discussion dealing with 

reputation, components, policies/messages and associated formats, discussion regarding 

extensibility, and sample transactions to illustrate functionality. We also discuss the 

current state of AASUR, inherent limitations, and various implementation details. 

Chapter 6 provides details regarding the development and deployment infrastructure used 

for AASUR. Chapter 7 discusses the verification and testing of our approach, including 

procedures, correctness, performance, and associated metrics leading to a comparison 

with several other existing systems. Chapter 8 contains our conclusions, including what is 

new and novel with respect to this system, and a discussion of possible future research 

work. There is one Appendix wherein we present a detailed procedure for installing and 

configuring required AASUR components to form a working system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Background Terminology and Technologies
In order to provide a foundation and consequently an appreciation of the nature of the 

authorization problem in grid computing, we begin by defining conventional terminology 

used in discussions of security and describing the various software tools and technologies 

pertinent to web services, distributed systems, and authorization.

2.1 Authorization

In the context of grid and distributed computing, authorization is the act of determining 

what a user may be permitted to do within a computing system, including the set of 

resources for which access may be granted and also the actions that may be performed on 

those resources [0pplinger2000].

Typically, in the context of existing approaches, authorization is derived from 

authentication. This means that once a user’s identity has been determined the actions 

that may be performed are derived from that identity [Lampson2000]. This has worked 

very well in the context of operating systems and other systems where control is 

generally centralized. This paradigm does not necessarily shift well into the realm of 

globally distributed processing where it is very likely that a resource will have no prior 

knowledge of a user. Creating a mapping between an unknown user and a set of 

associated rights becomes very difficult. Inevitably, centralized schemes will suffer from 

a lack of scalability since the central services must handle ever larger amounts of traffic 

volumes from growing numbers of users requesting authorizations. For this reason a 

different, more scalable approach must be examined.

5
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2.2 Web Services

Current trends, including grid computing, are increasing the degree of reliance on 

networks; in short networked elements must communicate with each other necessitating 

the use of software modules to achieve this intent. Hence, web services are web based, 

compositions of small, well defined modules [Curbera2001]. The evolution of distributed 

computing, like networks, is very dynamic and web services reflect this dynamism. 

Modularity affords easier maintenance, code reuse, abstraction from unnecessary 

implementation details, and domain-wide access [Fiadeirol995]. Once properly described 

(using descriptive languages described below) and maintained in a repository for 

discovery purposes (also described below), these publicly exposed modules can be 

accessed as Web Services using well known scripting languages, such as Hypertext 

Markup Language (HTML) and the extensible Markup Language (XML), and protocols, 

such as the Simple Object Access Protocol (SOAP) [Curbera2001]. All services are 

offered individually and completely abstracted from their underlying complexity and 

implementation details. These services can be used independently or composed to create 

more complex services [Koehler2003].

2.3 XML

The extensible Markup Language, or xml, is an Open Source standard proposed by the 

World Wide Web Consortium (W3C). It is a self-describing data format intended to 

enable data interchange among various applications and hosts across the Internet 

[W3C1]. Due to the simple tagged structure of XML, parsing is very straightforward, and 

many programming languages have built-in support for xml parsing. All xml documents 

must be well formed; that is, all opening tags must have closing tags unless they are

6
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empty [W3C1]. This ensures that parsing of the xml is unambiguous. We note that all of 

the policies, formats, and reputation in our system, defined later in this thesis, are defined 

in xml based formats because of the many benefits inherited through its use.

2.4 WSDL

The Web Services Description Language, or WSDL, is an XML based language whose 

function is to support the definition of web services. In other words, WSDL defines a 

web service in terms of its publicly accessible interface, including method names, input 

parameters, and return types [Orth2002]. This definition specifies web services as a set of 

network endpoints (that is, ports) operating on a message payload [W3C2]. The services 

are abstractly defined in terms of messages and available operations, and consequently 

bound to underlying protocols in a concrete instance [W3C2]. This ensures that the 

individual definitions can be reused. Although WSDL is extensible, it is typically bound 

to SOAP, the Hypertext Transfer Protocol (HTTP), and multipurpose internet mail 

extensions (MIME) [W3C2].

2.5 UDDI

UDDI stands for Universal Description Discovery and Integration [ShaikhAli2003]. 

UDDI is a platform-independent, xml based registry which is available to store 

information about various businesses that have an internet presence. More specifically, 

UDDI registers web services that may be discovered and utilized. An entry in UDDI is 

composed of three parts [ShaikhAli2003]:

1. White pages -  address/contact information

2. Yellow pages -  business categories

3. Green pages -  services exposed by the business

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Essentially, UDDI exists to allow SOAP based web service queries to obtain WSDL 

documents that will enable other businesses or users to make use of the offered services.

2.6 SOAP

SOAP is an acronym which stands for the Simple Object Access Protocol. It is an XML 

based method of exchanging information between hosts [W3C3]. The SOAP messaging 

protocol is stateless, and operates within the context of simplex communication but can 

be extended using underlying protocols [W3C3]. SOAP can accommodate various 

messaging paradigms, but the most commonly used is the RPC style. From a web 

services point of view, SOAP is transferred over a common protocol, typically HTTP 

[W3C3]. In other words, SOAP has HTTP bindings. This allows the transfer of SOAP 

messages to be accomplished by any single machine on the Internet.

2.7 OGSA

The Open Grid Services Architecture, or OGSA, is the current core architecture that 

describes and specifies the alignment and augmentation of Grid and Web services 

technologies [Kesselman2002]. OGSA is a continuing development project coordinated 

through the auspices of the Open Grid Forum (formerly, the Global Grid Forum) 

[Foster2005]. The intent underlying OGSA is that it will contain a well defined set of 

basic interfaces that may be used to build more complex useful systems from a 

distributed computing viewpoint. This is analogous to the main paradigm of Web 

Services.

In the spirit of interoperability, OGSA also specifies open, extensible, and vendor-neutral 

capabilities [Kesselman2002]. OGSA is intended to be implemented using tools such as

8
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WSDL and application development frameworks such as the Globus Toolkit, itself 

constructed, in part as a service oriented architecture [Foster2005].

2.8 Globus (GT4)

The Globus Toolkit is an application development framework for grid computing 

[Globus2005]. This middleware layer is intended to support all necessary mechanisms to 

achieve grid computing including job distribution, accounting, resource discovery, 

security, etc. For security, the GT4 supplies a component known as the Grid Security 

Infrastructure (GSI) [Butler2000, Fosterl998j. As mentioned above, OGSA recommends 

employing web services to expose the Globus Toolkit as a Web Service entity which 

forms a fairly complete distributed processing system [Globus2005].

The GSI provides four distinct functions. All of which deal explicitly with the security 

aspect of grid systems. These include [Globus2005]:

1. TLS (transport-level) or WS-Security and WS-SecureConversation (message 

level) are used as message protection mechanisms in combination with SOAP.

2. X.509 End Entity Certificates or Username and Password are used as 

authentication credentials

3. X.509 Proxy Certificates and WS-Trust are used for delegation

4. SAML assertions are used for authorization

All of these functions are absolutely essential to the proper security of any grid system. 

For more details regarding these functions see the Figure 1 below. Notice the use of the

9
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grid-map file as well as SAML for the authorization aspect of the GSI. Both of these will 

be discussed in more detail later in this thesis.

Authorization 

Delegation

Authentication

Message
Protection

Message format

Figure 1: Security layout of the Grid Security Infrastructure (GSI)
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3 Literature Review and Related Work

In this chapter we review the relevant research literature. Our focus is on complete 

authorization systems and approaches that serve as a foundation and comparative basis 

for developing an augmented system as described later in this thesis. We conclude the 

chapter with a critique of current problems and limitations of existing authorization 

systems and approaches and, thereby, provide a foundation for the approach described 

later in the thesis.

3.1 Authorization Systems

Several systems have been proposed to accomplish authorization in distributed 

environments. Though all of these systems share at least something in common to our 

system, they were designed with different goals in mind. Thus, our system is intended to 

augment other existing systems, not replace them entirely.

3.1.1 Akenti (1999)

The Akenti system was developed under a grant from the Department of Defense (DOE) 

at Lawrence Berkeley National Laboratories by Mary Thompson, William Johnston, 

Srilekha Mudumbai, Gary Hoo, Keith Jackson, and Abdelilah Essiari. Akenti is an 

authorization system which supports “multiple, independent and geographically dispersed 

stakeholders” [Thompsonl999]. These stakeholders state their access requirements in 

certificates known as use-condition certificates and define those trusted to confirm the 

user attributes in question [Thompsonl999]. A policy engine will then collect all the 

relevant certificates and make an access decision based on whether or not the user

11
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satisfies all the requirements. Once Akenti has all the necessary certificates, it returns 

control of the access decision to the server (resource) [Thompson1999]. The resource 

server then acts on that decision to allow/deny access to the resource on behalf of the 

client. Akenti is a PKI based system, and thus to operate within Akenti, a user must have 

an X.509 public key certificate (PKC) at authentication time. Further, “Akenti policies 

are hierarchical and distributed between proprietary Policy Certificates and Use- 

Condition Certificates” [Thompsonl999]. The main focus of Akenti is classical 

discretionary access control lists. Akenti always replies with a Capability Certificate, that 

states what a user is authorized to do [Thompson1999].

3.1.2 Certificate Based Authorization Simulation System (2001)

CBASS is a system which was developed by Jie Dai and Jim Alves-Foss from the Center 

for Secure and Dependable Software at the University of Idaho. Within CBASS, an AC is 

used for both authentication and authorization. A user’s certificate is the vehicle chosen 

to carry policies and capabilities, specified via java/prolog [Dai2001]. Note that there are 

two types of certificates (policy and credential). CBASS also supports anonymity and 

Discretionary Access Control lists (DAC) [Dai2001].

The client, better known as the requester initiates a resource access request by asking the 

server (responder) for a credential template which indicates the necessary credential 

certificates to authorize the request [Dai2001]. After the template has been received, the 

client performs certificate discovery, including a local search of its own certificate 

database [Dai2001]. This is followed by credential retrieval from other external objects 

(e.g. user object), and finally the credentials are presented to the server along with the
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request [Dai2001]. The server verifies the credentials against its policies and decides 

whether to acknowledge permission or to deny the request.

3.1.3 MAFTIA1 (2001)

MAFTIA was developed in France at LAAS-CNRS by Noreddine Abghour, Yves 

Deswarte, Vincent Nicomette, and David Powell. It supports an authorization scheme that 

can grant each user the appropriate access rights, while only distributing the credentials 

and information needed to execute its own task [Abghour2001]. MAFTIA employs an 

authorization server for the granting or denying rights. If a complex operation is 

authorized, the server distributes the necessary credentials/capabilities for all the 

individual basic operations that are needed to carry it out [Abghour2001]. On each host, a 

security kernel performs the necessary tasks for fine-grain authorization. To ensure that 

the security kernels on off-the-shelf computers connected to the Internet are adequately 

protected, critical parts of the security kernel will be implemented on a Java Smart Card 

[Abghour2001].

3.1.4 CAS (GT4) (2002)

The Community Authorization Service (CAS) is a trusted third party server that is 

responsible for managing the various necessary policies which govern access to a 

community’s (Virtual Organization, VO) set of shared resources [Welch2002]. It was 

developed in collaboration between various institutions. The principal participants 

include Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven Tuecke.

The CAS server contains individual entries for Certificate Authorities, users, servers and 

resources sites that combine into groups to form a community [Welch2002]. It also 

maintains policy statements which define which user or group has the permission, which

13
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resource or resource group that specific permission is granted on, and what rights that 

permission entitles the user or group to [Pearlman2003]. CAS employs the notion of 

restricted proxies, which are built from a credential format that is designed to be neutral 

to the actual policy language employed [Pearlman2003]. An access request is made to the 

CAS server and if granted, a proxy is returned which contains the appropriate 

permissions to access the resource in question. Note that CAS can support various 

arbitrary policy languages such as Controlled English [Bacon2001], ASL [Jajodial997], 

or Ponder [Damianou2001].

3.1.5 KEYNOTE (1999)

Keynote was developed by Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis at 

AT&T Labs in 1999. Keynote in three words is a Trust Management System. It uses 

credential assertions to denote what actions can be done and who may perform them 

[Blaze 1999]. Signature verification is build into the system. The assertions are based on 

human readable syntax [Blaze 1999]. Keynote uses a very simple notation for specifying 

policy and credentials. Each trusted action is described by a simple attribute/value pair 

[Blaze1999]. Each application can define its own set of attributes which require 

application specific credentials to operate on them [Blaze1999].

3.1.6 PERMIS (2002)

Permis is a Java based authorization system developed by David Chadwick and Sassa 

Otenko at the University of Kent in the UK. It consists of a custom language to define 

actions, users, policies, and credentials as well as a compliance checker which is invoked 

as a Java object at a resource sites gateway [Otenko2003]. The credentials in Permis are
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built in accordance to the latest X.509 standard [Otenko2003]. Permis leaves the 

mechanisms for authentication up to the application. The Permis policies are written in 

XML and are contained within one X.509 Attribute Certificate (AC) [Otenko2003]. The 

system also has implemented role based access controls which recognize separate 

hierarchies for authentication (CAs) and authorization (stakeholders) [Otenko2003].

Once the appropriate credentials and policies are retrieved, the compliance checker 

makes an access decision which is a simple yes or no. Unfortunately, Permis has no 

ability to return Capability Certificates [Otenko2003].

3.1.7 CARDEA (2003)

CARDEA is a product of Rebekah Lepro at NASA’s Advances Supercomputing 

Division. It is a system which dynamically evaluates relevant characteristics of the 

resource and requester when processing all requests for access instead of considering 

specific local identities (not unlike grid-map) [Lepro2003]. Shared resources within an 

administrative domain are protected by local resource access control policies. All users 

are identified by X.509 proxy certificates and are then modeled according to individual 

characteristics [Lepro2003]. The necessary information needed to complete a decision is 

determined and collected during the decision process [Lepro2003]. Once all necessary 

information has been collected, it is presented to the policy decision point (PDP) for an 

access decision [Lepro2003]. From a conceptual point of view, Cardea “contains a 

SAML Policy Decision Point (SAML PDP), one or more Attribute Authorities (AA), one 

or more Policy Enforcement Points (PEP), one or more references to an Information 

Service (IAS), an XACML context handler, one or more XACML Policy Administration 

Points (PAP) and an XACML Policy Decision Point (XACML PDP)” [Lepro2003],
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3.1.8 FIDELIS (2003)

Fidelis was developed by Walt Teh-Ming Yao for a PhD. at the University of Cambridge 

in 2003. It is a decentralized framework for trust management [Yao2003]. It specifies the 

necessary mechanisms for defining and managing trust information. It defines principals 

and policies which define the “who” and the “what” of a particular access decision 

[Yao2003]. Trust conveyance is the major concept within Fidelis, and is used to specify 

what a specific principal (subject) is trusted to do and who trusts the principal to do the 

specified actions [Yaoo2003]. This trust is specified using custom policy language 

statements. Fidelis also makes use of modified x.509 certificates which contain the 

required attributes. Fidelis is a web service platform which enables communication 

between complete strangers via third-party assertions and Role Based Access Control 

(RBAC) [Yao2003].

3.1.9 HP HSA (2003)

This paper presents a distributed authorization model which is appropriate in a web 

service scenario where multiple stakeholders are involved in performing a particular 

action [Mont2003]. This model uses a third party authorization service to compare 

specific credentials with a set of authorization policies [Mont2003]. The authorization 

model is built in such a way to enable authorization policies to be checked and built as a 

component of the web service composition process [Mont2003]. The major factor which 

makes this architecture different from others is its reliance on a hardware security 

appliance to perform the necessary security checks [Mont2003].
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3.1.10 CONTEXT SENSITIVE (2003)

Context Sensitive authorization is a Role-Based Access Control (RBAC) form of 

authorization. In this system, authorization is derived dynamically within specific 

contexts [Mostefaoui2003]. More specifically, context-based security tries to adapt the 

security policy according to relevant information which has been collected from the 

dynamic runtime environment [Mostefaoui2003]. As the context of a particular action 

changes, so may the authorization decision. Users which operate under this type of 

authorization are consequently mapped to roles based on their credentials and associated 

competencies [Mostefaoui2003].

3.1.11 TERA (2004)

Trust Enhanced Role Assignment (TERA) is an authorization system developed by 

several individuals at Purdue University in 2004. The main principals include Bharat 

Bhargava and Leszek Lilien. TERA is a Java framework which is based on uncertain 

evidence and trust which is determined dynamically [Bhargava20004]. TERA evaluates 

the trust of a user directly based on their behaviors. The system will then decide “whether 

a user should be authorized for an operation based on the policies, the evidence, and the 

degree of trust” [Bhargava2004]. The reliability of the evidence is derived from the trust 

of the evidence provider [Bhargava2004]. A third party service, known as a reputation 

server, is responsible for managing the trust information. TERA makes use of two 

algorithms, which have been developed to determine a user's trust value based on a 

sequence of the user’s past behaviours and interactions [Bhargava2004].
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3.1.12 IBM TE (2004)

IBM Trust Establishment (TE) is a Java based, trust management tool which can be used 

to create trust relationships between strangers using their PKC [Ibm2004]. Rather than 

local account mapping based on a unique id, TE can determine a user’s role(s) by their 

X.509 certificate [Ibm2004]. Though X.509 certificates are the most commonly used 

certificates, other certificate types are also supported. Note that this system is not 

responsible for making any access decisions, instead it provides user to group/role 

mappings, based on PK [Ibm2004].

3.1.13 Shibboleth (2004)

Shibboleth is a system which is intended to properly secure access to web-based 

resources under the Single Sign On (SSO) paradigm of access control [Morgan2004]. It 

has been designed in such a way to allow various federations and collaborations to extend 

their identity management systems (and PKI) to work together in partnerships, while 

always protecting the privacy of user’s at individual sites [Morgan2004]. This scalable 

architecture predominantly performs attribute based authorization using the Security 

Associations Markup Language (SAML). To accomplish these tasks, Shibboleth employs 

both a Shibboleth Identity Provider (IdP) and a Shibboleth Service Provider (SP) 

[Morgan2004]. Typically a user will sign on to their local IdP which authenticates the 

user and returns a SAML assertions stating that the user has logged in. This assertion can 

then be sent to other sites within the collaboration to enable access without repeating the 

authentication step [Morgan2004],
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3.1.14 VOMS (2004)

VOMS is an authorization system which is similar in nature to CAS. It provides an 

authorization capability in the context of Virtual Organizations. It is composed of several 

parts which include a user server (manages and returns information about users, including 

their certificates), the user client which accepts a user’s certificate and returns a list of 

groups, roles, and capabilities, the administration client which enables management of the 

overall system, and the administration server which handles the requests from the 

administration client [Alfieri2003]. Authorization requests are accompanied by the 

appropriate capabilities which will enable access to a specific resource.

3.1.15 PRIMA (2004)

The Privilege Management (PRIMA) system was developed as a PhD. thesis by Markus 

Lorch from Virginia Polytechnic Institute and State University in 2004. The Prima model 

consists of the necessary components to define a fine-grained authorization framework 

for distributed systems [Lorch2004]. These components include “a high-level privilege 

management model, an incremental user-centric trust model, and a dynamic model for 

authorization and enforcement” [Lorch2004]. Within Prima, all access rights are granted 

in the form of a privilege, which are secured using the proper mechanisms to prevent 

theft/tampering. These privileges are specified in a platform-independent policy 

language, with a limited lifetime, and can be delegated to other users [Lorch2004].

3.1.16 WS AA Authorization Framework (GT4) (2006)

The Authorization framework in Version 4 of the Globus Toolkit (GT4) provides many 

essential functions. This Java based framework has been designed in such a way that the 

actual method of authorization is abstracted, which allows authorization to be
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accomplished by several different mechanisms [Globus2005]. These authorization 

methods include a module which supports the typical gridmap based authorization, access 

control lists, SAML assertions, and others [Globus2005]. The AA framework also 

supports delegation.

3.1.17 General System Comparison

There are other systems which also address some aspects of authorization in distributed 

environments. Any system which makes use of the Globus Toolkit (GTK) makes use of a 

grid-map file and Security Associations Markup Language (SAML) assertions in varying 

degrees, for authorization [Globus2005]. Such systems require accounts to be created 

prior to job execution. Though the possibility of a set of local generic accounts for 

unknown entities would solve this problem, it is undesirable from several viewpoints, 

including accounting. The Akenti Authorization System provides a mechanism for a finer 

degree of specification of authorization rights from multiple owners [Thompson2003]. 

Shibboleth, a SAML-based authorization framework, provides a mechanism for 

combining attribute information of known entities from multiple resource sites for the 

purpose of an access decision [Morgan2004]. VOMS and CAS have been developed to 

provide authorization on the basis of Virtual Organization (VO) membership, which 

enhances scalability, but still requires the manual configuration of trust relationships and 

VO memberships [Welch2002, Pearlman2003, and Cecchini2004] respectively. IBM 

Trust Establishment (TE) uses Role Based Access Control (RBAC) to provide 

authorization on roles rather than individual users [Ibm2004]. This is more scalable, but 

arguably, still not scalable enough. Several other systems were also researched and 

compared to ensure our system did not duplicate the functionality of an existing system.
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3.2 Methods of Authorization

All architectures considered in this thesis research make a significant contribution to the 

problem at hand. Further, the culmination of these other systems could achieve the end 

goal of functional authorization with little to no administrative overhead in a scalable 

manner. It is the goal of the AASUR architecture not to combine all features of these 

other systems; rather, to combine the necessary aspects to achieve the desired end. All 

systems that were compared were considered from several points of view. These include:

1. Authorization Type (Cl)

2. Architectural Features (C2)

3. Implementation Details (C3)

4. Arbitrary Entity Support (C4)

3.3 Comparison 1: Authorization

From Figure 2 we see that the majority of the systems tested involved some type of third 

party assertions. This means that some type of pre-established trust relationships must 

exist. Also, we can see that Attribute Certificates (AC) and/or capabilities are commonly 

used to specify what rights a particular user has [0pplinger2000]. The problem with the 

AC/Capability is that the access specifiers must exist within the AC or capability, prior to 

a job request. These specifiers may also take the form of access tickets which have been 

granted to a user or have been delegated to another user. These specifiers must be 

associated with sites that we have already established trust with. The access level is not 

determined dynamically. Within many of these systems, RBAC is employed as it is 

within AASUR, to reduce the overall administrative load.
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The most important aspect of this table is the reputation column. Notice that only one 

other system makes use of some type of reputation to perform the access decision. Please 

note that although several of thee system may operate within the context of Globus and 

the notion of map files, the do not rely on map files natively, unless specified in the 

Figure 2.

Figure 2: Authorization Comparison

3.4 Comparison 2: Features

Figure 3 illustrates various features including what type of policy languages the system 

supports to define access rights to its resources, whether or not the system operates in the 

context of a public key infrastructure (PKI), and whether the system supports multiple 

stakeholders, anonymity, and delegation. Several of these features are considered 

essential in this type of environment, while others are simply features albeit very useful 

ones.

From Figure 3 we see that almost every system is PKI based, and that most also support 

delegation. Delegation is useful for sharing access rights to trusted users, but it is not

REPUTATION ASSERTIONS MAP FILE ATTRIBUTE CERTIFICATES CAPABILITIES RBAC
AKENT1 -2000 X X X
CBASS - 2001 j .....................  X ..................... X
A F n A i - M o t L I * ' ' X
CAS (GT4}-2002 X x
KEYNOTE-2002 X : x
PERMIS-2002 i T x X
CARDEA-2003 .X  ........ ! x x
FIDELIS - 2003 i X .............[...................................................... .....XL.
HP HSA - 2003 ..........x '

'
............ r .................... . x ........... .........

CONTEXT SENSITIVE- 2003 X
TERA-2004 X X X
IBM TE - 2004 ! X
SHIBBOLETH - 2004 X ■ x
VOMS - 2004 X X
PRIMA -2004 ! .. x
WS AA AUTHZ (GT4) - 2006 i x . x ...... ...................... X
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included within AASUR at this stage of design/development. Note, however, that it could 

be included in the future. We note that there is a wide range of policy languages which 

are supported by the various systems. More than half of the systems make use of a 

custom policy language which is a detriment to interoperability. This means that every 

site must now use the specific custom policy language in order to interact. A couple of 

systems, including AASUR, are completely policy language independent, meaning access 

policy specifications can be presented in different languages at each site. This is due to 

the fact that only the site which makes the access decision and generates the access ticket 

will have to understand it. Finally, anonymity is the least important attribute in this table. 

Though it has a place in some use cases, typically we want each user to be held 

accountable for their actions; knowing who they are helps to ensure that no malicious 

actions take place. It also provides a way of enforcing certain actions if  any rules are 

broken. Most systems do not support anonymity. Note that both FPL and TPL are custom 

policy specification language developed specifically for Fidelis and IBM TE respectively.

ACCESS POL. LANG i PKI MULTIPLE STAKEHOLDERS ANONYMITY (DELEGATION
AKENTI-2000 ! CUSTOM YES X509 1 X
CBASS - 2001 (PROLOG YES CUSTOM ! ( ' X X
MAFTIA1 - 2001 : CUSTOM YES CUSTOM ( ( ' " ! X ! X
CAS fST4j - 2002 (in d epen d en t •YES. X509 X
KEYNOTE -2002 (cu sto m YES X509 I X
PERMIS-2002 (cu sto m YES INDEPENDENT !........... ( X / X
CARDEA-2003 XACML YES XS09
FIDELIS-2003 (FPL (YES, CUSTOM ( X (((" ' X.....
HPHSA-2M3 (CUSTOM (Y£S( X509................... j ..........X
CONTEXT SENSITIVE- 2003 (CUSTOM (NO impl

TERA -2004 (CUSTOM (YES.X509 X
IBM T E -2004 (TPL (YES. X509
SHIBBOLETH-2004 (in d epen d en t (YESC XS09 X, limitwi
VOMS - 2004 (in d epen d en t lYES, XS09. via GT4 I 1 X. via globus
PRIMA-2004 (custom (YES( X509 i ..............x r ! X..........

IWS AA AL1THZ (GT4) - 2006 i CUSTOM (YES. X509 ! x "  _'

Figure 3: Feature Comparison
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3.5 Comparison 3: Implementation \

The implementation comparison involved which language was used (if implemented at 

all), whether or not the system was web service based, and whether or not it relied on any 

type of external servers other than Certificate Authorities (CA) (as nearly almost every 

system needs at least one CA). Figure 4 illustrates this comparison appropriately. Most 

systems are implemented in Java, due to its security model and web capabilities. The 

performance of Java has been under attack by many, but it is in fact very close to C++ in 

many ways. Note that nearly all systems need some type of external server which will 

increase the overall message transfer time requirements, thus hindering performance. 

Finally, due to the shift in design paradigms towards web services, most of these systems 

have been implemented in such a way which exploits web services.

.JAVA" OTHER LANGUAGE THEORY / NGTIfsIPl. SERVICE BASED" EXTERNAL SERVERS
iAKENTl-2000 ! X x  :
jCBASS - 2001 X
IMAFTIA1 -2001 X ..........x'................. ..
;CAS (GT4| - 2002 
iKEYNOtE-2002

i  x ! X
I X

" X ' x ............  J

PERMIS-2002 : X .......... X .............. :
CARDEA - 2003 ; X ........... X " X ;
iFIDEUS - 2003 X X X I
lHPHSA-2003 : X ■ ......... X x  :
ICONTBCT SENSITIVE- 2003 X X
ITERA - 2004 : X x  T
jIBMTE -2004 ■ X
! SHIBBOLETH - 2004 X  A  : X
VOMS - 2004 "  x :' X . ’A .  A A x  A . . . . ;
PRO lA - 2004 X
v S AA AUTHZ (GT4) - 2006 1 * A  I T . A

Figure 4: Implementation Comparison

3.6 Comparison 4: Arbitrary Entities

The meaning of arbitrary entity support is straightforward. Supporting arbitrary users 

means that the system has the capability to allow an unknown user (that is, with no prior 

knowledge of the user) potentially to use the resources at a specific site. There is,
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however, a caveat (in general and specifically directed to Figure 5). Technically, this 

includes knowledge of a user both directly and indirectly. If a user is trusted (but not 

known) through another site, there is still a requirement for pre-established trust. The best 

way to ultimately make a system scalable from an administrative overhead point of view 

is to ensure that a site does NOT require ANY direct or indirect knowledge of a user. In 

that scenario, the reputation is the only contributing factor to the access decision.

'AKENTl 2000 
CBASS 2001 
MAFTIA1 -2001 
CAS (GT4) - 2002 
KEYNOTE - 2002 
PERMIS - 2002 
CARDEA-2003 
FIDELIS-2003 
HP HSA-2003 
CONTEXT SENSITIVE-2003 
TERA -.2004
IBM TE - 2004 .................
SHIBBOLETH-2004 
VOMS-2004 
PRIMA-2004
WSAAAUTHZ{GW)-2Q06

[ARBITRARY ENTITIES
1 X
I X
I X

X
A

x'
x
x
X

Figure 5: Arbitrary Entity Support

3.7 Authorization System Comparison Summary

As with any new development many issues have come to light. Most have been very 

minor, but one major issue came up. The solution to the main issue involved striking a 

balance between the amount of information kept which will severely affect the certificate 

size and consequently the scalability, and the flexibility available to the individual
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resource sites to determine who may have access to their resources based on their past 

actions. In the end, we have gone with a minimalist approach to ensure unlimited scale.

The closest match to AASUR is the TERA (Trust-Enhanced Role Assignment) system 

[Bhargava2002]. Though TERA encapsulates ideas, similar to AASUR, it has several key 

differences. First, the reliability of the evidence is based on the trust of an evidence 

provider [Bhargava2002]. This implies that evidence may come from a third-party source 

and be potentially less reliable. Our system maintains a globally consistent representation 

of an entity’s past, which allows a resource site to make an access decision based on a 

local interpretation. Secondly, TERA relies on a separate reputation server to manage 

user reputation [Bhargava2002], whereas we store the actions an entity has performed in 

its PKC, managed by a Certificate Authority (CA). In AASUR, the reputation is 

calculated using local processing power to maintain scalability. Finally, whereas our 

architecture has been developed as a web service, TERA is an application based system.

In this chapter we have critiqued several approaches and systems for authorization 

presented in the literature. In the next chapter we introduce a system that augments the 

important features of several of these systems.
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4 Augmented Authorization System Using Reputation

In this section will give a detailed description about our system, the Augmented 

Authorization System Using Reputation (AASUR). At the most general level, the main 

contribution of this architecture is the notion of providing authorization on the basis of 

points which are collected in a standardized way, and which in turn may be used by 

individual resources to determine reputation. The only guarantee that this architecture 

makes is that points will be collected consistently for accepted actions. Any decision that 

results in a breach at a resource site is completely the responsibility of the resource site 

that misinterpreted the points presented at the time of resource request. There is no 

requirement to obtain or analyze any assertions from any third party though, in the future, 

this capability could be exploited to enhance this system further. From an administrative 

point of view, there is no need to establish anything prior to a job request/allowance. 

Though these features may exist in other systems individually, this combination, and 

consequently the overall ability of the system, does not exist anywhere else to the best of 

our knowledge.

4.1 Justification
The reason for this architecture is simple. If the current notion of the “grid” is to reach a 

level where the masses are able to use/sell spare cycles on a global scale (not unlike 

selling power back to the grid) then minimally, from an administrative point of view, 

changes needed to occur. Scalability in current systems is, without a doubt, a hindrance to 

this goal. Of course, this architecture (AASUR) is not the end solution, but it is a step in 

the right direction.
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4.2 Overall Architectural Comparison with AASUR

Although all of these previous comparisons are valuable in and of themselves, an active 

comparison of the most important characteristics which AASUR possesses is also 

needed. This can be found in Figure 6. This table takes the most important aspects of the 

AASUR system, and shows how the other systems compare to it. Although many systems 

show some similarities in various categories, none provide the complete set which 

AASUR does, including support for reputation. The details regarding the inner workings 

of AASUR will be dealt with next in Chapter 5.

RepBAC RBAC FLEX POLICY PKI JAVA SERVICE BASH) EXTERNAL SERVERS i
AASUR - 2006 X x ! INDEPENDENT 1X509 X .......... X
CAS (GT4J - 2002 X ' in d e p e n d e n t X509 X .......... X ' x ....................!
PERMIS - 2002 X i CUSTOM YES IND. X X
CARDEA-2003 1XACML X509 "X ..............X X
FIDELIS - 2003 X 'FPL ;YES. CUSTOM X X
TERA - 2004 * X CUSTOM X503 r  x X
SHIBBOLETH-2004 X INDEPENDENT ■X509 X
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Figure 6: Overall Architectural Comparison

4.3 Problem Statement

We have introduced existing tools, components, and systems which are used as parts of 

complete authorization systems. We have also discussed the various systems which have 

been created to solve problems with the current state of authorization. Further, we have 

defined the major characteristics of our system, AASUR, and provided a comparison of it 

alongside the other existing systems. We will now define clearly what the current 

problem is and how we intend to overcome it.

The major problems which exist in current systems include the following:
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1. The requirement for pre-established trust among user-to-resource and resource- 

to-resource (in the case of delegation of credentials), is not feasible due to the 

administration overhead.

2. Further, scalability in general due to the pre-established trust, is significantly 

hindered, which results in limited scale for any architecture which mandates 

pre-established trust.

3. Many existing systems require the use of a particular policy language which 

creates the need for every site to use a specific policy language.

4. Though many systems are Web Services based, some are not. Evolution in 

current distributed computing certainly requires an architecture which is based 

on Web Services.

With this background information, and the comparison of exiting systems, we state the 

following:

The current requirement for pre-established trust, the lack o f consensus fo r the 

use o f  web services, and the specific requirements fo r policy languages are a 

detriment to the overall adoption o f the various authorization schemas in 

existence. This is not only due to the significant overhead, but also due to the lack 

o f  flexibility inherent in existing systems. We present a solution to this problem 

using the AASUR architecture, which will achieve what other systems have not. 

We accomplish this through the use o f reputation metrics which allow individual 

resource sites to make authorization decisions without having any prior 

knowledge o f  a particular user. AASUR will also be completely independent o f

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resource access policy language thereby providing much flexibility to individual 

resource sites.

Through various simulations and consequent numerical results we show that AASUR 

contends well in distributed authorization from a performance point of view and also 

from an administrative overhead point of view. We show also that AASUR does in fact 

solve many of the problems facing existing authorization systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30



5 AASUR

AASUR was developed to solve the problem discussed throughout Chapters 3 and 4. It is 

written in Java and its functionality is exposed as web services described by WSDL 

documents. All messages and formats are XML based. It can be deployed to any 

application hosting environment, but must be used alongside EJBCA, an Enterprise Java 

Bean Certificate Authority. They (AASUR + EJBCA) have all of the necessary 

components to retrieve certificates, request resource access, perform authorization 

decisions, collect job actions, and update a user’s certificate to reflect newly performed 

actions. Of course, there are several components which are needed to support these 

critical tasks as well. All of this will be discussed in detail further on in this paper.

5.1 Design Context

The context which this architecture was developed within is very straightforward. The 

major goal was to develop a system in which automated discovery and authorization 

could occur. Existing systems provide other aspects of automated discovery. In fact other 

systems provide automated authorization, but in the context of pre-established trust and 

local accounts with rights setup prior to authorization/execution. The AASUR system has 

been developed within the context of automated authorization without any pre- 

established trust, and very minimal administrative overhead at any participating site. The 

goal of AASUR was to provide not only automated authorization, but also automated 

collection of a user’s history, which would allow for this authorization to take place with 

almost no user interaction and zero pre-established trust.
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5.2 Design Methodology

The methodology that was followed was simple. It started with isolation of specific 

characteristics within current systems which would prevent the goals of this architecture 

from being realized. Several issues were very quick to surface, and are as follows. First, 

the requirement for existing accounts to exist which provide a mapping to locally defined 

rights, although functional, were not conducive of an architecture which could scale 

easily. Second, although a possible solution to the previously mentioned issue, the notion 

of shared accounts at resource sites does increase scalability, but eliminates any 

possibility of maintaining an individuals actions or providing any kind of accounting or 

non-repudiation. Third, though receiving assertions from other trusted sources enables a 

site to use some combinational logic to determine a best action, it is still subjective to 

some to degree. This may require some clarification, as this (AASUR) approach also is 

subjective in some ways. The major difference is that this architecture is subjective with 

respect to the resource sites decision for access, not the collection or portrayal of a user’s 

reputation. Finally, many systems lack flexibility when it comes to the decision of 

whether or not access will be granted. This should always be left completely up to the 

resource owner.

The goals then of AASUR are the converse of these issues found within distributed 

authorization systems. Once these initial goals had been established it was time to begin 

designing the system. From the outset we wanted to develop a set of metrics that would 

allow the storage of a fairly detailed history which could be used to derive a user’s 

reputation. We developed a core set of 27 point categories which, in our opinion, cover
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what a user could potentially do (both good and bad) during the execution of a job. The 

specific details regarding these categories will be discussed in the Section 5.4.

Once the point categories were determined, we began designing how and what else would 

be stored. Always, the maintenance of the highest degree of resource site flexibility was 

constant. For example, we wanted an individual resource site to be able to deny a user 

because that user had performed a Buffer Overflow (BOF) at Site X on May 3, 2007 at 

6:03 pm.

Our initial format to represent a user’s reputation is as follows:

<? xml version-1.0' encoding-ISO-8859-11 ?>
<reputation>

<collection type-LFC'>
<site shal-A123A3E4B32CD3E2145CC32DDEF4A123A3E4B32C'> 

<date>
1158654532123

</date>
<date>

1156785432345
</date>

</site>
<site shal-45CC32DDEF4A123A3E4B32CD3E21F678A3B5C332'> 

<date>
1165434567897

</date>
<date>

1124567543567
</date>

</site>
</collection>
<collection type='LMO'>

<site shal-D3E21F678A3B5C33245CC32DDEF4A123A3E4B32C'> 
<date>

4532245678878
</date>
<date>
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2232357889764
</date>

</site>
</collection>

</reputation>

This format allows for several things. First, everything is broken down into point 

categories, so that the act of summing them to make the necessary calculations is more 

efficient. Second, within each category the occurrences are divided up by location so that 

if a user has ever been involved with a specific resource site, the points earned from those 

interactions can be quickly ignored. Third, the absolute date/time in milliseconds has 

been recorded to allow for maximum flexibility with respect to filtering of actions based 

on date and time. There was one caveat however, to this design. Due to the detail which 

was kept in this format, the overall scalability could be an issue. This was not only 

because an X.509 certificate was not meant to store a lot of extra information, but simply 

because of the scale of information that would be involved.

The initial testing was strictly intended to determine how scalable this particular setup 

would be. This involved creating one certificate (to represent an individual user) and 

begin running some simulated jobs to see how a certificate would handle the reputation. 

The job simulator, which is discussed in detail later (5.7.9), has the ability to configure 

the percentage of good actions which are generated as well as the percentage of bad 

actions generated. Initial testing involved a 90/10 split (good/bad). I generated 100 

actions (corresponding to random point categories) for each job. I decided to make the 

first run consist of 1000 jobs, for a total of 100,000 actions, including a date for each one 

and the resource site it occurred at. Very quickly (approximately 15 jobs, 1500 actions)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the code threw an exception. The certificate had reached 45K and the CA could no longer 

accommodate it. Although not that large, it is much larger than it was designed to be. 

This is aside from the performance hit that would have been experienced had a certificate 

of this size, and larger, worked without error in the context of this CA. A larger 

certificate would affect not only the network transfer times, but also the available storage 

space on the CA.

Obviously this format consumed far too much space, so an alternative would have to be 

developed. The important question then is, could be done without losing any of the 

flexibility for the resource site. Further testing revealed that 1000 site signatures 

amounted to approximately 5 OK, which equates to the previously determined limit. This 

did not include the actual actions which are the most important aspect of reputation. We 

decided that since within typical globally distributed systems, a job may span more than 

1000 sites, this level of information was simply not scalable or feasible.

The second design revision involved a long integer to represent each point category. 

Since the long data type in Java is 64 bits, each number has an unsigned maximum value 

of 18,446,744,073,709,551,615 (264). This design also included a sliding window of 

resource site signatures. These signatures would enable a resource site to see the last X 

sites a user had been involved with. Since 1000 site signatures were far too big, we 

determined that 250 was a good number to try. After a little testing, it seemed that this 

solved the problem, but raised another issue. Due to the scale of global grid computing, it 

is not unreasonable to say that a particular job could span more than 1000 sites. This, to
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us, made the value of the last 250 sites a user has been involved with very minimal. We 

came to the conclusion that this extra information would simply waste valuable space in 

the certificate and mean longer certificate retrieval times, as well as longer transfer times 

between the CA and the resource site. With that, we removed the sliding window of 

resource sites altogether.

In the end, the format of the reputation is significantly different from the original version. 

We simply maintain a counter (64 bit) for each point category, along with some basic 

information such as most recent request, average job time, etc. Depending on the context, 

this is good and bad. The bad is that we loose some flexibility, but that type of detail is 

simply not scalable in this type of computing environment. The good is that an upper 

bound of the certificate size can be determined and it is relatively small. To analyze the 

maximum size, we must consider the average certificate size using only the standard 

information. In the case of EJBCA, which should not differ significantly from other 

Certificate Authorities, the initial certificate size with no non-standard extensions is 2- 

3K. There is a total 27 categories, each requiring a Java long integer. A long integer in 

Java is 64 bits (8 bytes). This gives us a total of 216 bytes. Add the certificate base size to 

this and we arrive at approximately 3.2K. It is not likely to ever reach 5K, but if we use 

that as an upper bound, the max size is still very small and is unlikely to cause any 

performance/scalability issues from a message transfer or certificate retrieval point of 

view.
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5.3 Design Assumptions

Several assumptions were made prior to and during the design phase of AASUR. These 

assumptions were required in the context of the thesis, though some could be removed if 

further development was to take place.

The first assumption is that a middleware layer exists to provide the necessary 

mechanisms to collect all actions that occur during processing at a resource site. This 

assumption is rather large as, without it, the thesis will not function properly. Such a 

component would make use of various operating system specific hooks to pull various 

pieces of information such as read, writes, memory usage, disk usage, CPU time, etc. 

Along with this raw information, this component would need some type of interpreter to 

maintain what levels of access have been granted. This is needed so it will be possible to 

determine when these various access level thresholds have been crossed. Not only should 

this be able to determine when thresholds have been breached, but it must also be able to 

intelligently determine if gray area events, such as buffer overflows, have occurred.

The second design assumption also involves the mechanisms which are responsible for 

collecting user actions at individual resource sites. This code, which must be deployed at 

every participating resource sites on the grid, is expected to be contained within secure 

and signed binaries to prevent tampering and to ensure integrity.

Third, it is also assumed that this collection component signs each and every job action 

message destined for a CA with its public key (PK) so that we may ensure the integrity of
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the message during transport. This stops any malicious resource sites from falsifying 

what actually happened during processing and sending these inaccurate job actions to a 

CA for addition to a user’s reputation. In other words, this ensures that collection will be 

completely objective. Effectively meaning that, if any improper access decisions are 

made, it is strictly due to improper policy configuration at the resource site in question.

The fourth and final assumption involves global participation. Typically, the definition of 

an entity known as the “grid” (which has yet to exist) implicitly involves many, if not all, 

users across the globe. In fact, the goal of researchers is to create a system that is 

pervasively and unobtrusively embedded in the environment, completely connected, 

intuitive, effortlessly portable, and constantly available [Tang2004]. Thus, for this 

architecture to become as useful as it possibly can, it must be adopted and trusted on a 

global scale. That being said, this is not a complete requirement, just an assumption that 

was made prior to design. This system could be used within the context of any 

collaboration that exists under a common CA hierarchy and that wishes to share its 

resources in this automated fashion.

5.4 Reputation and Evidence

If an entity is to execute a job on foreign resources, the system must use some globally 

accepted metric to determine whether or not the entity can be trusted. Typically this 

metric, outside of the computing world, is the reputation of that entity. It seems 

reasonable that this notion of reputation can be used within the context of the computing 

realm as well.
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To enable assessment of reputation we use the various points earned by a user at various 

resource sites. Points are acquired by tracking important actions performed by a user 

(e.g., overuse of resources) during job processing. This point base serves as evidence to 

be used by resource sites, along with local policy, to determine a particular user’s 

reputation, and consequently, to make an access decision.

We have developed a set of actions which, we believe, directly pertain to the act of 

making an authorization decision. From a high-level view, the actions (called point 

categories), are divided into three main sections: Illegal/Legal Actions, Other Performed 

Point Actions, and Additional Information (Tables 1, 2, and 3 respectively) for a 

comprehensive listing of the various point categories. Please note that the current set of 

point categories may change as our system evolves. Please also note that although the 

illegal and legal categories contain the same actions, it is necessary to maintain both.

In AASUR, the act of performing one of the applicable actions is equivalent to earning 

one point which will be added to the associated point counter in the user’s PKC. See 

5.10.1 for an example of a user’s reputation in our XML based format.

Reads/Attempts Communication attempts
Writes/Attempts Deletes/Creates
Execution/Process Spawn Resource allocations
System commands Service invocations
Device Access Various I/O Operations

Table 1 -  Legal/Illegal Point Actions

Forcibly terminated jobs Buffer overflows
Overuse of Resource Compilation Errors
Runtime errors
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Table 2 -  Other Performed Point Actions

It is necessary to note that many of the multiple instance actions such as all of the actions 

listed in Table 1, as well as Denied/Permitted Job Requests (DJR/PJR) in Table 2, have a 

matching pair of positive and negative categories. Certain multiple instance categories 

however, do not. These categories include Buffer Overflows (BOF), Compilation Errors 

(CE), Runtime Errors (RTE), Resource Overuses (ROU), and Forcibly Terminated Jobs 

(FTJ). The reason is that these particular categories do not possess an opposite value, is 

simply due to the nature of their values, not because it was decided to not include them.

Although legal/illegal actions are very important, there may be additional information 

which a resource site may consider. Our architecture also makes use of this other numeric 

information. Like the illegal/legal numeric data, this numeric information is also 

transmitted in each entity’s PKC. Table 3 provides examples of this additional evidence.

First job request First job completed
Most recent request Most recent job completed
Average job time Total Jobs
Country Successful jobs
Permitted job requests Denied job requests
Culture Geographic location

Table 3 -  Additional Evidence

Below, Figure 7 shows a complete representation of the structure of an AASUR Java 

based reputation object in our system.
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Figure 7: AASUR Reputation Object

5.5 Architectural Assumptions

The layered design of OGSA permits straightforward integration of AASUR within 

existing and future systems as a web service [Foster2005]. This means that this 

authorization system could be used to provide the authorization capability to almost any 

system which supports web services and OGSA.

We assume the proper and secure use of web services including the necessary standard 

web service mechanisms such as SOAP and WSDL. This also includes ensuring that the 

application hosting environment is configured properly and securely according to 

associated specifications. Further, this requires the use of either the TLS suite of 

protocols or the WS-Security specification to ensure message protection and integrity. In

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the case of this thesis, TLS has been selected as it handles everything for us at other 

layers automatically. With WS-Security, encoding and interpretation of keys must be 

manually dealt with and the key information must be sent along as payload and extracted 

at the receiving end [WSS2004].

We also assume that the Certificate Authority functionality may be accessed as SOAP 

based web services [W3C3]. In the case of EJBCA, this functionality was not available, 

and thus it had to be added.

5.6 Major Components and Packages

5.6.1 org.aasur.ejbca.ca.AassurCaService (ACS)

This is the major component which exists on each CA. It provides the system with many 

necessary functions. Not only does it act as an interface between a web service consumer 

and the CA, but it also performs several of the critical processing procedures needed by 

AASUR. There are four methods publicly exposed via the web from this service. Two of 

these methods are used to directly retrieve a certificate (one via serial number and one via 

username). Both of theses methods, findCertificateByUsemame( username ) and 

findCertificateBySemo( semo ) return the certificate (if found) in the form of a byte 

array. The third method used for certificate retrieval is called findUsemameBySemo( 

sem o). It returns a String representation of a username.

It was previously mentioned that one of these methods provides indirect retrieval 

capabilities. This is because findUsemameBySemo( semo ) provides the capability to 

discover the mapping between a username and a serial number. The serial number can
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then be used to retrieve a certificate. Multiple certificate retrieval methods exist for 

flexibility depending on the specific requirements of a given situation.

The fourth public method is called pointNotification( actions ), and has the duty of 

accepting the point actions message (see 5.9.2) from a resource site, and performing all 

necessary processing. This processing will include the following steps:

1. retrieval of the user in questions certificate

2. parsing of the message with the assistance of a supporting class called

org.aasur.common.XMLDomParser.parseXmlString( xm l) (see 5.7.7)

3. instantiation of a new reputation object populated with the user’s 

reputation with assistance of org.aasur.reputation.AasurReputation( 

certificate ) (see 5.6.3)

4. a call to the merge function of org.aasur.reputation.AasurReputation 

called mergeNewActions( actions ) (see 5.6.3) which combines the 

current reputation with the new actions list.

5. a call to an internal private method in ACS called generateCertificate( 

username, semo_string, password, reputation ), which does what its

name hints at, and stores the new certificate in the internal CA database.

Since generateCertificate() is only used internally, it does not get 

exposed publicly.

Further details of the AasurCaService methods are shown in Figure 8.
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Figure 8: AasurCaService Object

5.6.2 org.aasur.resource.ResourceSiteServiceListener (RSSL)

The resource site service listener is the next major component in the AASUR system. 

This particular service resides on each site where a resource(s) will be made available to 

the public. RSSL may be on individual machines, but the most likely scenario involves an 

instance of it on the gateway. This class has only one public method, but there are also 

two additional private methods contained within for internal use. The major public 

method is called resourceRequest( certificate ). It is this service which a user that is 

requesting some resource access will connect to when they want to submit their 

credentials to for an access decision. This service/method performs several duties which 

include:

1. certificate validation

2. extract the CN of the CA so we know which CA to contact with the 

reputation update

3. extract the reputation from the certificate

4. load Risk Factor (RF), User Class (UC), and Access Decision Engine 

(ADE) policies (discussed later)
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5. call RF determination functions

6. call User Class determination functions

7. call ADE to make final authorization decision

If authorization is granted, this method will also perform additional functions, including:

1. job timing calculations

2. job action simulations

3. notification formatting

4. CA notification

Note that if authorization is not granted, there is still a need for notification formatting 

and a point notification message containing a Denied Job Request (DJR) (see Table 2).

As previously mentioned, this class has two private methods used internally. These are 

called formatPointNotification( actions, startTime, endTime, siteSignature) and 

generateDjrNotification( siteSignature ). Their main function is to create/format the 

messages which will be sent to the parent CA of the requesting user. The second method 

is used when a request for resource access is denied, as a message is still required to be 

sent to the parent CA of the user to record a denied request for statistical purposes.

Further details of these methods are shown in Figure 9.
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Figure 9: ResourceSiteServiceListener Object
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5.6.3 org.aasur.reputation.AASURReputation (AR)

This object is the foundation for a Java based representation of a user’s reputation. It

provides the necessary functions to allow reputation manipulation, perusal, and merging

as well as the actual act of parsing the XML into reputation objects. This class has two 

main methods and six supporting methods. It also has two constructors (Figure 9). All 

supporting methods are public (mostly involving get/set operations for private object 

variables). The major public method is mergeNewActions( actions ) and the major 

private method is populatObjectWithReputation( reputationXml).

The mergeNewActions( actions ) method is called (within the parent CA of the user 

which performed the processing) when a job has been completed and there are new 

actions which need to be added to the existing reputation. There is only one parameter to 

mergeNewActions which is a String representation of the XML based Point Notification 

message sent from the resource site. This method performs the following functions:

1. message parsing

2. average job time, first job/most recent job (requests/completions)

calculations

3. incrementing the proper reputation counters to reflect new actions in the 

reputation

The other method, populateObjectWithReputation( reputation ), also performs a very 

critical function. It is the responsibility of this method, which gets called from the 

AasurReputation( certificate ) constructor upon instantiation of an AasurReputation 

object (and nowhere else), to create a local, Java based, representation of a user’s 

reputation. It performs the following functions:
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1. reputation extraction from certificate

2. parsing of the user’s reputation

3. cycle through reputation, incrementing local variables (long) which are 

used to represent the various point categories when a specific type is 

encountered

The remaining methods, with the exception of toXml(), in the AasurReputation class are 

used to get/set private local objects from outside of the class. These can be used to 

retrieve age, average job time, denied job requests, permitted job requests, and most 

recent job completed. The remaining point categories are public by default. The toXml() 

method is used to format the current reputation for insertion into the user’s certificate.

Further details of these methods are shown in Figure 10.
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Figure 10: AasurReputation Object
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5.6.4 org.aasur.policy.UserClass (UC)

As The User Class is useful not only when a user has not performed any actions in the 

grid yet (authorization base case) but it also helps to augment the RF in the overall 

authorization picture. It makes use of additional user information (Table 3). This 

additional information belongs to the Java Object as local private variables and includes 

the following:

1. age

2. average job time

3. denied j ob requests

4. permitted j ob requests

5. most recent job completed

It is our opinion that these pieces of information are as valuable when making an 

authorization decision as the individual occurrences of the various point categories. That 

being said, the UserClass object is one that has a local placeholder for each one of these 

variables. For a given instance of UserClass, these local variables hold specific rules that 

define what range of values these variables may hold. These values define the 

requirements a user must meet in order to belong to a specific User Class. A User Class 

Policy is what contains one or more of these UserClass instances. An example will be 

provided to shed more light on this in 5.13. There are two constructors for this class, as 

defined in Figure 11 below. This class also contains the necessary get methods for these 

instance variables, as well as a toXmlQ method which provides a mapping from the Java 

UserClass object to one that is XML based to be inserted (as one of potentially many) 

into the UserClass policy file for long term storage.
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Further details o f  these methods are shown in Figure 11.
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Figure 11: UserClass Object

5.6.5 org.aasur.policy.UserClassPolicy (UCP)

The UserClassPolicy class serves as the Java representation of the AASUR User Class 

Determination Policy. It is a place where multiple UserClass objects can be stored and 

accessed when an authorization decision is going to be made. During instantiation of this 

object, we pass a filename to the constructor which defines the location of the systems 

User Class policy file. This file is extracted and parsed, and the corresponding UserClass 

objects are created for each defined class. These objects are stored in the UserClassPolicy 

object instance within a local Vector. There are actually two constructors for this class, as 

defined in Figure 12.
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This class has a public method called getClasses() which returns a Vector of all classes 

which have been defined in the system. The org.aasur.policy.UserClassEngine will look 

through these classes one by one and compare the values of the individual pieces of 

information with the values which are associated with the user in question. This class also 

has a toXml() method which produces a complete policy with all defined user classes that 

can be written to a file on the local file system for persistent storage. This is the same 

format that is parsed by the constructor of this class when a policy file is being read from 

the file system.

Further details of these methods are shown in Figure 12.

Constructor Summary
U se rC la ssP o licy i )

Use rC ia s sP o lic y (ja v a . la n g .S tr in g  policyFileNam e)

Method Summary'
Java.util.V ector g e tC la sse s  ()

Jav a .lan g .S trin g to S n lt)

Figure 12: UserClassPolicy Object

5.6.6 org.aasur.policy.UserClassEngine (UCE)

The UserClassEngine is what performs the necessary comparisons to determine which, if 

any, class the user in question belongs to. It has three methods, all of which are public 

and very important. The first of these methods is setPolicy( policy). This method takes a 

UserClassPolicy object as an argument and sets a local instance of UserClassPolicy to it. 

The second method is called loadInformation( reputation ). Loadlnformation accepts an
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AssurReputation object as input and will extract the additional information (and assign to 

local variables) which we will use as a comparison to the various user classes to 

determine which classes a user is in. The final method in the UserClassEngine class is the 

determineUserClassMembership( reputation ) method. This method looks at one 

UserClass from the policy at a time, comparing the individual values to the user’s values. 

If each comparison passes then the user is a member of that specific class, and the engine 

will move on to the next defined class. Note that it is possible for a user to be in several 

user classes. When making the comparisons, the UserClassEngine operates under the 

following rules:

1. AGE -  The user has been around for at least x milliseconds

2. AVG JOB TIME — A user’s average job is no longer than x milliseconds

3. DENIED JOB REQUESTS -  A user has no more than x denied job 

requests

4. PERMITTED JOB REQUESTS -  A user has at least x permitted job 

requests

5. MOST RECENT COMPLETED -  A user has completed a job no longer 

than x milliseconds ago

If all of these rules axe met, then a user belongs to this class.

Further details of these methods are shown in Figure 13.
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Figure 13: UserClassEngine Object

5.6.7 org.aasur.policy.RiskFactorPolicyEntry (RFPE)

Very similar to the various user class entries which may exist within a UserClassPolicy 

object, the RiskFactorPolicyEntry is one of 27 entries that exist within a 

RiskFactorPolicy. Each entry corresponds to a particular point category. The design is 

deliberately general to facilitate the easy addition of new point categories, should the 

system need to be extended. Each entry contains a risk factor type and multiplier. Both of 

these values can be accessed and set with the corresponding public get/set methods which 

belong to this class. This class also has a toString() method which is only used for 

debugging purposes. Instantiation of this class can involve the default empty constructor 

or a constructor which takes a type and multiplier as input.

Further details of these methods are shown in Figure 14.
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Figure 14: RiskFactorPolicyEntry Object

5.6.8 org.aasur.policy.RiskFactorPolicy (RFP)

The RiskFactorPolicy object is the collection of all defined multipliers for each point 

category. It contains a Vector of RiskFactorPolicyEntry(s). It does not have to contain an 

entry for each category. If a particular category is not defined, the value of it when the RF 

calculation is taking place is defaulted to 0 so that the points associated with that category 

are ignored. Instantiation of this class involves passing the filename which contains the 

persistent Risk Factor policy to the constructor. This extracts the policy from the file, and 

passes it to the private internal method called populatePolicy( policyFilename ). This 

method parses the policy and for each entry creates a new instance of 

RiskFactorPolicyEntry and inserts it into the local vector of entries, using another local 

method called addPolicyEntry( entry ). This vector will later be used by the 

RiskFactorEngine (5.6.9). Other methods within this class include getEntryCount() which 

allows us to see how many entries exist in this policy, and getEntryAt( index ) which

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



returns a policy entry at a specific index. This is useful for cycling through the entries 

when the RiskFactorEngine is making its calculations.

Further details of these methods are shown in Figure 15. 

Constructor Summary
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Figure 15: RiskFactorPolicy Object

5.6.9 org.aasur.poIicy.RiskFactorEngine (RFE)

The Risk Factor Engine is what takes a RiskFactorPolicy and an AasurReputation 

instance as input and calculates the user’s overall RF. This RF along with the user’s 

classes will be used within the AccessDecisionEngine (5.6.12) to determine what level, if 

any, of access will be given. From an implementation point of view, the RFE is quite 

simple. It only has two methods, both of which are exposed publicly. One of these 

methods is used to load a specific RF policy into the engine, called setPolicy( policy ), 

which takes a RiskFactorPolicy object as input, and the other is used to calculate the Risk 

Factor, called calculateRiskFactor( reputation ), which takes an AASURRepuation object 

as input. The RF is returned as a double value.
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Further details o f  these methods are shown in Figure 16.

Constructor Summary
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Figure 16: RiskFactorEngine Object

5.6.10 org.aasur.policy.AccessDecisionPolicyEntry

The Access Decision Policy Entry (ADPE) is very similar to the Risk Factor Policy Entry 

(RFPE). It is essentially a generic format to hold a specific instance of one of the entries 

that exist within the AccessDecisionPolicy (see 5.6.11). Each entry specifies a required 

RF, a level identifier (simply a unique identifier), a list of user classes and an Access 

Specifier. Access is granted if the RF of the user in question is larger or equal to the 

specified RF and the user belongs to at least one of the classes specified in the entry. If 

both of these conditions are satisfied, the user will receive the access defined within the 

Access Specifier (arbitrary site specific resource access policy string).

This class has two constructors, the default and one which accepts the four values which 

correspond to those associated with an entry. This class also contains the necessary 

get/set methods for all four variables as well as a corresponding toXml() method. The last 

method, called addUserClass( class ) enables more User Classes to be added to the User 

Class Vector within the entry.
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Further details o f  these methods are shown in Figure 17.
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Figure 17: Access Decision Policy Entry Object

5.6.11 org.aasur.policy.AccessDecisionPolicy

The AccessDecisionPolicy class is used to represent the resource sites Access Decision 

policy as a Java object. This object will be used by the AccessDecisionEngine (5.6.12) to 

perform the necessary calculations to determine whether or not access should be granted.

This class has one constructor which accepts a policy filename that specifies where the 

text file based instance of the resource sites Access Decision policy resides. Upon 

instantiation of the AccessDecisionPolicy object, the file is opened and the contents
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extracted. Next, the XML is parsed, the individual AccessDecisionPolicyEntry(s) are 

created, and the policy is ready for use.

This class has 4 public methods and one private method. The private method , called 

populate Policy ( policy ) is used in association with the constructor to populate this object 

with the necessary data from the persistent reputation file. The public methods include 

the following in figure 18. The first method, addPolicyEntry( entry) allows a new entry 

to be added to the current policy. The getEntry( index ) method allows for an entry at a 

specific location to be retrieved. The getEntryCount() method returns the number of 

AccessDecisionPolicyEntry(s) within this AccessDecisionPolicy, and is useful for 

defining loops which will be used to cycle through these entries. Finally, we have a 

toXml() method to format the policy for persistent file storage.

Further details of these methods are shown in Figure 18.

( (instructor Summary
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Figure 18: Access Decision Policy Object
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5.6.12 org.aasur.policy.AccessDecisionEngine

The Access Decision Engine component is responsible for making the final access 

decision based on a user’s reputation. There is only a default constructor and it takes no 

input for instantiation. It has three methods. These methods include the necessary 

functionality to set/load the Access Decision Policy, called setPolicy( policy ), to load the 

information about a user including their RF and which User Class(s) they belong to called 

loadInformation(rf, classesTheyBelongTo ), and most importantly to make the access 

decision, called determineAccess(). The determination of whether or not access will be 

given involves cycling through the individual AccessDecisionPolicyEntry(s). For each 

entry, we must ensure that:

1. the user’s RF is greater than or equal to the specified RF

2. the user belongs to at least one of the specified User Classes within the 

current AccessDecisionPolicyEntry

Further details of these methods are shown in Figure 19.

Constructor Summary
AccesaDciQislQitSstgiite j)

Method Summary
deteytalneAcoess f I
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Figure 19: AccessDecisionEngine Object
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5.7 Supporting Components 

5.7.1 org.aasur.user.UserSiteSimulator

The user site package is very minimal. In fact, in typical situations, this package (with 

one class) would never be used. Normally, a user site would have a particular resource 

discovery mechanism in place and it would be that which makes a resource request to 

various resource sites for access. In this implementation, we do not assume the use of a 

particular resource discovery mechanism. The UserSiteSimulator class contains the 

necessary functions perform the following duties:

a. connect to various resource provider sites

b. make a request for resource access (presenting a certificate with reputation)

c. obtain the result

5.7.2 org.aasur.common.Serializer

One of the first real challenges that I faced was the limited set of types that could be 

passed over HTTP/SOAP to a waiting web service. In this system, we use the Java API 

for XML based Remote Procedure Calls (JAX-RPC) for mapping Java types to 

XML/WDSL definitions [Jax2006]. In general, JAX-RPC supports the following types 

[JaxTypes]:

java.lang.Boolean 
java.lang.Byte 
java.lang.Double 
java.lang.Float 
java.lang.Integer 
java.lang.Long 
java.lang.Short 
java.lang.String 
java.math.BigDecimal 
java.math.Biglnteger 
java.net.URI 
java.util.Calendar 
java.util.Date
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JAX-RPC also supports the passing of “complex types” which are basically compositions 

of these elementary types. This means that if you wish to pass a more complex type, like 

an X.509 certificate, you may have a serious problem on your hands. We considered the 

possibility of reconstructing the X.509 cert type with these basic types, but came to the 

conclusion that it simply wouldn’t work from a standards point of view.

The solution to this problem came after following a discovery of serialization. In Java 

there is an interface called Serializable, which conveniently is implemented by almost 

every class. This means that each class can be serialized, with the exception of a few. 

Typically, serialization is used to store Java objects persistently in files. After being 

serialized, the object is represented as an array of bytes. Coincidentally, one of the 

possible types that JAX-RPC supports for passing is an array of bytes. Thus, as long as an 

object is serialized first, it can be sent as a web service parameter. Deserialization is the 

opposite action at the receiving end (to restore the Object), and happens the same way in 

reverse.

With this background information, the Serialization class is used to perform the 

serialization/deserialization functions needed to pass complex types to web services. The 

serialize( object ) method takes an Object and returns a byte[], while the deserialize( 

bytes ) method takes a byte[] and returns an Object. Note that you must know what type 

of object you are deserializing into otherwise you will not be able to cast it to the 

appropriate type once deserialized.
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The methods which belong to Serializer are shown in Figure 20.

Constructor Summary
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| Takes ta a comffa type, casted to an Object

Figure 20: Serializer Object

5.7.3 org.aasur.common.TextCompressor

Performance is of utmost importance in any system. This is doubly so when we are 

talking about distributed/grid processing where resources may be geographically 

distributed and messaging our take a significant portion of the overall overhead. For this 

reason, the smaller that each message can be made, the less time/bandwidth an individual 

transaction will cost.

In AASUR, the reputation is stored within a user’s PKC. As reputation grows larger, the 

amount of space required to store a user’s reputation will also grow. Although this was 

taken into consideration in the design phase of AASUR, and it is already quite minimal, 

compression can make the reputation in a certificate even smaller. Of course, a smaller, 

more compact reputation is desirable.

For both of these reasons, compression was a natural thing to include in the system. On 

the fly compression/decompression would enable the reputation which is stored in the
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certificate to take up less space. It would also ensure that the messages sent between hosts 

would be as small as possible. The TextCompressor class makes use of Java’s built in zip 

capabilities and makes inline compression very straightforward. There are four methods 

available in TextCompressor. They include the necessary capabilities to zip a set of bytes 

(into bytes), to zip a string (into bytes), to unzip (bytes) into a set of bytes, and to unzip 

(bytes) into a string.

Further details of these methods are shown in Figure 21.
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Figure 21: TextCompressor Object

5.7.4 org.aasur.common.FileContentExtractor

Several policies exist within ASSUR. These policies are used to control how a Risk 

Factor (RF) and User Class (UC) are determined, who belongs to the Local Blacklist, and 

how final decisions are made. These policies are stored persistently in text files located 

on the local system. When the server starts up, these policies must be loaded so that when 

an access decision must be made, they are available. The policies are stored in plaintext, 

so reading them is very straightforward. The FileContentExtractor class was simply 

created to avoid multiple instantiations of the necessary objects to read from a file. The
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major method in this class takes a file name as input and returns a String representation of 

the contents of the file.

Further details of these methods are shown in Figure 22.

Constructor Summary
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Figure 22: FileContentExtractor Object

5.7.5 org.aasur.common.RandomNumberGenerator

In the context of AASUR the RandomNumberGenerator class is strictly used for 

simulation purposes. A random number is used in part to generate a list of random jobs. 

Also, initially, a random number was used for an access decision prior to completion of 

all authorization decision logic. Similarly to FileContentExtractor, the

RandomNumberGenerator class was simply created to avoid multiple instantiations of the 

necessary objects to create random numbers. The major method called 

generateRandomNumber( low, high ) in this class takes two integers as input. One of 

these integers denotes a low and the other denotes a high of a range which defines where 

the random number that will be generated should fall.

Further details of these methods are shown in Figure 23.
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Figure 23: RandomNumberGenerator Object

5.7.6 org.aasur.common.ReputationExtractor

The act of extracting a particular extension from an X.509 certificate involves several 

steps. These steps have been combined into a method within the ReputationExtractor 

class. The major method extractReputation( certificate, Extensionld ) in this class takes 

two parameters as input. The first parameter is the particular certificate from which the 

extension in question will be extracted from. The second parameter is the unique object 

id (OID) which identifies said extension. This method returns a String representation of 

the extension from the certificate.

Further details of these methods are shown in Figure 24.

Constructor Summary
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Figure 24: ReputationExtractor Object

5.7.7 org.aasur.common.XMLDomParser

XML is integrated heavily into AASUR. All policies, messages, and job actions, as well 

as the representation of a user’s reputation are contained in specifically defined XML
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formats. With this much XML, parsing takes place quite frequently. Thus, the purpose of 

the XMLDomParser class is to facilitate the parsing of XML. The major method in this 

class called parseXmlString( xml ) takes a String as input which is the XML 

representation of the data in question. This method uses the Document Object Model 

(DOM) to parse this data into a Document class object instance and returns this instance 

for use. This document will allow the code to cycle through and target individual tags 

which were contained in the data for specific processing.

Further details of these methods are shown in Figure 25.

Constructor Summary

Figure 25: ReputationExtractor Object

5.7.8 org.aasur.simulation.RandomJobGenerator

The RandomJobGenerator class is the heart of the simulation aspect of AASUR. The 

major role of this class is to generate the list of JobActions (see 5.9.2), corresponding to 

the various point categories, which occurred during a particular job simulation at a 

resource site. These actions will then be sent to the parent CA of the user so that they 

may be added to the user’s certificate to represent the user’s constantly evolving 

reputation. There are several methods in this class. These include setGoodPercentage( 

percent ), setBadPercentage( percent), and generateRandomJobList( quantity ). The first 

two methods are used to set the percentage of good and bad actions that will be generated

; XtaXDosaParaay i)
Qass constructor

Method Summary
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Takes in a String representation of some XML formatted information.
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during a simulated job execution. Note that these percentages may be sent to the 

RandomJobGenerator constructor upon object instantiation. If they are not, these methods 

must be used to set the values prior to any job generation. The third method, 

generateRandomjobList( quantity ), is the major method in this class. If performs the 

actual random selection of the actions which occurred during processing. It takes an 

integer as input which defines how many actions will be generated during processing. 

The result is a Vector of JobActions (5.9.2).

Further details of these methods are shown in Figure 26.
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Figure 26: RandomJobGenerator Object

5.7.9 org.aasur.simulation.JobAction

A JobAction is used to represent one particular action that occurred during processing. 

The result of a job execution is a Vector of these JobAction(s). A JobAction is very basic, 

and is only composed of a type. This type is one of the many codes which represent the 

various point categories in AASUR. There are three methods that belong to the JobAction 

class. They include getActionType() to retrieve the action type as a String, and a 

toStringO and toXml() method. None of these take any parameters. The toXml will return
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a String formatted in the appropriate xml (to be returned later to the parent CA of the 

user) and the toString method returns a String representation which is only used for 

debugging purposes.

Further details of these methods are shown in Figure 27.
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Figure 27: JobAction Object

5.8 Policy Formats

A set of policies, formats, and messages has been devised so that resource owners are 

able to retain ultimate control over their resources. All policies, messages and formats are 

defined using XML. It should be noted that many of the formats are quite similar. This 

was done to maintain consistency which helps to enable an easy understanding of the 

system, as well as to ensure that as much complexity as possible has been removed from 

processing.

These policies are stored persistently in text files on the resident file system of the local 

server. They are secured via typical file system permissions. From the application server 

point of view, these files are read only, so that no malicious modifications may be done to
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the file. Further, these files are loaded once when the server begins, and are persistent in 

memory for the duration of the application server lifetime. If any changes are desired in 

these policy files, the changes must be applied and the server environment restarted. This 

is to increase the overall security of the system.

There is a very important aspect regarding the definition of these files which must be 

discussed. As previously mentioned, we have tried to maintain a high degree of flexibility 

for resource owners to specify what and how access is granted through the various 

policies. This flexibility is somewhat of a double edged sword however. Should an 

administrator not fully comprehend the intent of each policy, there is a risk of improper 

decisions (unintentionally too easy or too difficult). To alleviate this issue, a default set of 

policies will be included in the system, but the best practice is to know what each number 

in a policy means, and how it will affect the overall decision making process. Setting 

values which you do not understand, can have undesired results.

5.8.1 Risk Factor Determination Policy

This policy contains the necessary information to define how the specific RF is derived, 

including the relative importance (weight) of each point category.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type=’r f  >

<multiplier type=’djr’> -4 </multiplier>
<multiplier type=’rou’> -5 </multiplier>
<multiplier type=’ida’> -3 </multiplier>
<multiplier type=’ifc’> -3 </multiplier>
<multiplier type=’ifd’> -4 </multiplier>
<multiplier type=’imo’> -6 </multiplier>
<multiplier type=’inc’> -5 </multiplier>
<multiplier type=’ips’> -3 </multiplier>
<multiplier type=’ird’> -5 </multiplier>
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<multiplier type=’iwr’> -5 </multiplier>
<multiplier type=’isc’> -6 </multiplier>
<multiplier type-’isi’> -7 </multiplier>
<multiplier type=’lbl’> -7 </multiplier>
<multiplier type=’bof > -9 </multiplier>
<multiplier type=’rte’> -6 </multiplier>
<multiplier type=’cce’> -5 </multiplier>
<multiplier type=’lda’> 2 </multiplier>
<multiplier type=’lfc’> 2 </multiplier>
<multiplier type=’lfd’> 1 </multiplier>
<multiplier type=Tmo’> 3 </multiplier>
<multiplier type=’lnc’> 3 </multiplier>
<multiplier type=Tps’> 4 </multiplier>
<multiplier type=’lrd’> 2 </multiplier>
<multiplier type=’lwr’> 4 </multiplier>
<multiplier type=Tsc’> 3 </multiplier>
<multiplier type=’lsi’> 2 </multiplier>
<multiplier type=’pjr’> 1 </multiplier>

</policy>

5.8.2 Access Decision Policy

This policy corresponds to the AccessDecisionPolicy object previously defined. The 

AccessdDecisionEngine is the last step of the access decision. Its input includes a user’s 

RF and User Class, and its output includes arbitrary blocks of a site specific access policy 

language (one for each level of access). These blocks define what a user has the 

permission to do if they are granted access to that level. This policy may have as many 

different levels as an administrator desires. Each level is associated with a required RF 

range (which the user’s RF must fall into) and a specific User Class.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type=’ade’>

<level id=’a ll’ rfh=’1000’ rfl=’3000’ >
<classes>

<class> userClassl </class>
<class> userClass2 </class>

</classes>
<access>

arbitrary access specification
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</access>
</level>
<level id=’al2’ rfh=’2500’ rfl=’5000’ >

<class>
<class> UserClass2 </class>

</class>
<access>

arbitrary access specification 
</access>

</level>
<level id=’al3’ rfh=’4000’ rfl=’ 10000’ >

<class>
<class> userClass3 </class>
<class> userClass 4 </class>
<class> userClass 5 </class>

</class>
<access>

arbitrary access specification 
</access>

</level>
<level id=’al4’ rfh=’10000’ rfl=’50000’ >

<class>
<class> userClass5 </class>
<class> userClass6 </class>

</class>
<access>

arbitrary access specification 
</access>

</level>
</policy>

5.8.3 User Class Definition Policy

This policy defines how the user’s class is derived from non-numeric evidence and 

various policies. This policy gives us the ability to group a user into one or many 

categories which will allow us to give out various levels of access. It also helps to deal 

with the authorization base case where a user is brand new and has no points because 

they have not yet carried out any processing within the system.

<?xml version-1.0' encoding='ISO-8859-r?>
<policy type="uc">
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<class name='testClassr>
<rule type-age'>123456789</rule>
<rule type-pjr'>12345</rule>
<rule type='djr'>32</rule>
<rule type='ayg'>29</rule>
<rule type=lmrjc'>876543219</rule>

</class>
<class name='testClass2’>

<rule type='age'>234567891</rule>
<rule type-pjr'>23451</rule>
<rule type='djr'>132</rule>
<rule type='avg'>39</rule>
<rule type='mxjc'>765432198</rule>

</class>
<class name=’ br andN e w’ >

<rule type='age'>0</rule>
<rule type-pjr'>0</rule>
<rule type='djr'>0</rule>
<rule type-avg'>0</rule>
<rule type-mrj c '>0 </rule>

</class>
</policy>

5.8.4 Local Blacklisting Actions Definition Policy

This policy defines exactly which particular action(s) will cause a user to become locally 

blacklisted. This policy can contain any number of actions including zero (if the resource 

site does not feel that the use of a local blacklist is valuable).

<?xml version-1.0' encoding='ISO-8859-r?> 
<policy type-LBL>

<action type-IM O' />
<action type-ISC' />
<action type-IDA' />
<action type-BOF' />
<action type-CCE' />
<action type='RTE' />
<action type-IW R' />
<action type='IPS' />
<action type-INC' />

</policy>
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5.9 Message Formats

5.9.1 Resource Access Request

This is the initial message sent from a user that desires some type of resource access. It is 

sent to the resource site that it would like to participate with. It will contain the requesting 

sites PKC signature (user identification). At a later time, this request could contain 

various detailed levels of requested access. The only potential issue with requesting a 

level of access involves the language used to specify the access level request. We have 

developed an architecture which allows a resource site to use an arbitrary access policy 

language for the ticket, however, there must be some accepted language for the access 

request. This implies that all sites must conform to a certain language, at least for the 

request aspect of authorization. See below for an example of a resource request.

<?xml version-1.0' encoding-ISO-8859-1'?>
<resource_request>

<shal>
6 AC824B3EDDD8748A2B1261249D84EE48B3 7A96 

</shal>
</resource_request>

5.9.2 Point Action Notification

This particular format defines the messages that will be sent from a resource site to the 

parent CA of the user which has just completed a job at that site. The message will 

contain both the signature of the user and resource site in question, the start and end time 

(in millis) of the job, and a list of all individual actions which took place during 

processing.

<?xml version-1.0' encoding='ISO-8859-l'?>
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<message
type='PN'
s iteshal -  U7H99 Y C6THTD1B3W8FGL3 5RKUM5 3 FHD VFFLLZZZ1' 
user_semo=’ 7H99YC6THTD1B3W8FGL35RKUM53FHD VFFLLZZZ 1' 
startJime=T 178467068203’ 
end_tim e-l 178467068250’>

<action type='LMO' />
<action type-LSC' />
<action type-LSC' />
<action type='LDA' />
<action type='LFC' />
<action type='LWR' />
<action type-LRD' />
<action type-LFD' />
<action type-LFD' />
<action type='LFD' />
<action type='LRD' />
<action type='LSI' />
<action type-LRD' />
<action type='LSC' />
<action type='LFD' />
<action type='LMO' />
<action type='LNC' />
<action type-LW R' />
<action type='LFC' />
<action type='LWR' />
<action type='LWR' />

</message>

5.9.3 Resource Access Ticket

This is the access ticket which will be generated upon completion of the access decision 

at the resource site. It will contain PKC of the owner (user which has been given access), 

the PKC of resource, and the granted permissions.

<?xml version-1.0' encoding- ISO-8859-1'?>
<access_ticket>

<user_shal>
6AC824B3EDDD8748A2B1261249D84EE48B37A96

</user_shal>
<resource_shal>

6AC822B1261249D84EE48B37 A964B3EDDD8748A
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</resource_shal >
<access_granted>

this will contain a chunk o f  policy language, specific to the site 
which has given this ticket, that contains a specification o f  access 
rights which have been granted to the requesting user. The benefit 
o f  allowing arbitrary policy to be inserted into the access ticket is 
that our architecture is completely policy language independent. 

</access_granted>
</access ticket >

5.10 OTHER FORMATS

5.10.1 Certificate Point Format (Reputation)

All points within our architecture will be stored in the user’s PKC in this format. As 

previously discussed, this format was developed, after several design changes, to be very 

efficient and to have a very minimal footprint. See below for a very young sample 

certificate point format.

<?xml version='1.0' encoding='ISO-8859-1'?> 
<reputation fjr='1178467068203' 

fjc= '1178467068250' 
mrjr='1178467068203' 
mrjc='1178467068250' 
ajt='47' 
tj='l' 
c = 'Canada' 
pj r = '1' 
lda='6'
I f c = ' 7 '  
lfd='14' 
lmo='91 
lnc='9' 
lps='3' 
lrd='8' 
lwr='20' 
lsc='3' 
lsi='11' 
djr='0' 
rou='01 
ida='0' 
ifc='1' 
ifd='0' 
imo='0' 
inc='2' 
ips=10' 
ird='2'
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iwr='1' 
isc='0' 
isi='3' 
bof= 10' 
rte='0' 
cce='1'>

</reputation>

5.10.2 Local Blacklist Format

Any user/resource which performs an action which the local resource deems worthy of 

addition to the local blacklist (as defined in 5.8.4), will be added to the local sites 

blacklist. As previously mentioned these are only applicable at, and are restricted to, 

individual resource sites to ensure that the unwarranted addition of a user to a blacklist 

does not affect the overall trust of a user in the global grid.

Each entry to the local blacklist contains the signature of the user which was added to the 

blacklist and what action caused that user to be added to the local blacklist. See below for 

an example of a resource sites local blacklist.

<?xml version-1.0' encoding='ISO-8859-r?>
<local_blacklist>

<entry action=’cce’>
<user>C824B3 EDDD8748A2B1261249D84EE4 8B3 7 A96</site> 

</entry>
<entry action=’imi’>

<user >C824B3EDDD8748A2B1261249D84EE48B37A96</site> 
</entry>
<entry action=’isc’>

< user >FTGRC3EDDD87482B1261249D84EE48B37A96</site> 
</entry>
<entry action=’ida’>

< user >D874AC824B3ED8A2B1261249D84EE48B37A96</site> 
</entry>

<local blacklist>
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5.11 Extensibility

Many aspects of this system have been designed in such a way that extension of this 

architecture is very straightforward. The question then becomes what would someone 

want to add to this system most commonly, or to what degree can the system be easily 

extended. The answer to the first question is point categories. Various resource sites may 

desire to add new point categories to the system for their own custom use. In theory this 

is straightforward for much of the system, but you will be quick to notice that it is in fact 

quite involved.

As far a simply adding a new point type to the RF policy and the user’s permanent 

reputation, this is very simple. Everything was designed in such a way that adding a new 

category to the policy would automatically be recognized, and the same applies with the 

reputation within the certificate. If some site defined a category in their RF policy which 

did not exist, it would have no bearing on the overall RF since there would be 0 

occurrences of it which amounts to nothing in the RF. Further if a new point category 

was created in the system and a site did not define it in the RF policy, again a zero value 

in the multiplier would render it neutral. The entries in an RF policy are not statically 

defined, so new entries could be added at any time.

There is however a problem with respect to extension. The problem involves the point 

collection middleware which sits at each site. This code is signed to ensure everyone has 

a consistent view of how to collect points to eliminate any subjectivity from a collection 

point of view. The problem is that any changes (new category) will have to be added to
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the middleware at each and every one of these sites in the world. Although this hinders 

extensibility, an update system could make the distribution of an update very 

straightforward. This is left as future work. It must be noted that no site may operate in 

the context of the grid while using non-standardized point categories in their AASUR 

system. If this was the case, the objectivity and standardization which makes the system 

valuable, no longer exist.

5.12 Sample Walkthrough (SYSTEM FLOW)
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Figure 28: A step-by-step representation of the AASUR system workflow.
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The AASUR system workflow is shown in Figure 28. We discuss the workflow steps, in 

detail, below.

1. The user, needing access to some remote resource, contacts the AasurCaService 

which resides on its parent CA and performs a certificate lookup/retrieval. The 

returned certificate will be used for the upcoming resource request.

2. Resource discovery agent from the User sends a request to the

ResourceSiteServiceListener at the Resource Site. This request includes an X.509 

PKC containing past actions of the user, specified in the Certificate Point Format

3. The ResourceSiteServiceListener will then validate the certificate to ensure that it 

hasn’t expired or been revoked.

4. Next, the ResourceSiteServiceListener must check to see if the user in question 

has lost our trust by checking to see whether they belong to our local blacklist. If 

so, we may immediately deny access to out resources.

5. Along with the Risk Factor, the access decision may also take into account the 

requesting user’s class. A user’s class will be determined based on additional non­

point based information as defined in 5.8.3. This will also include several of the 

attributes define in Table 3. The notion of user class is important because it is 

used to govern what degree of resource access will be given, assuming that some 

level of access will be granted.

6. Next, the Risk Factor (RF) is generated based on local relative multipliers 

specified in policy as defined in 5.8.1.
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7. Now, an access decision must be made. Essentially, it provides a yes or no 

answer, with associated policy specifying access. This decision is based on the 

derived Risk Factor, the user’s class, and the Access Decision Policy defined in

5.8.2.

8. If access is granted, it will manifest itself in the form of a ticket, as defined in

5.9.3, which will be presented upon job submission at the resource site. This 

ticket is similar to that used in Kerberos [Kohll991]. We use the notion of a ticket 

for two reasons. First, within the context of grid based computing, this 

architecture allows us to offer our authorization service, minimally, to resource 

discovery mechanisms. Rather than discovering appropriate resources and 

distributing a job simply to find out that access will no longer be given, we can 

determine where access will be given based on the acquisition of a ticket. This 

ticket, with an explicit lifetime, will be presented upon distribution of the job to 

the resource site for processing. Secondly the notion of delegation is very crucial 

to distributed processing. This ticket would enable delegation to occur, similar to 

a proxy. It must be noted however that this current version of AASUR does not 

support delegation, though it could be incorporated into AASUR with some 

additional work.

9. The generated ticket is then returned to the requesting user for submission with 

the job.

10. When a user is ready to submit the job, assuming the ticket has not expired, it will 

be sent to the resource site along with the access ticket. Once a job has begun 

execution, we must monitor exactly which actions are performed by the job. We
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require a middleware layer (outside the scope of this paper) which handles the 

detection and collection of actions performed during processing. It should be 

noted that if at any time during execution, the job performs an action that is 

considered locally blacklistable (defined in 5.8.4), the job will be terminated and 

the proper entries will be added to the local blacklist defined by format 5.10.2.

11. Once processing has finished, the resource site will connect to the parent CA of 

the user which owns the finished job. The CA will have an instance of the 

AasurCaService running locally. The resource site will then send a list of all 

actions which occurred during processing. The listed will be formatted as defined 

in 5.9.2, and will contain all local actions performed.

12. Once the CA receives the notification, it will perform a few simple validations, 

lookup the proper associated PKC, and format the actions into the appropriate 

XML.

13. Finally, the actions are merged into the user’s certificate using the format defined 

in 5.10.1. Note that the new points must be added by the parent CA of the entity 

which earned the points, not the CA of the resource site. This is due to the fact 

that only the parent CA of the certificate owner can sign the certificate.

5.13 Sample Walkthrough (AUTHORIZATION DECISION)

In order to illustrate the details of our approach, we examine a sample authorization 

decision including specific examples of policies and reputation. In order to reach the 

final decision it is necessary to deal with each separate aspect of the decision making 

process, starting from user reputation, to determination of the user class and ending with 

the actual access decision.
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W e begin with the reputation o f  a specific user.

USER REPUTATION

Below we show an example xml document, contained within the extension of the X.509

certificate, to be used for the user reputation calculation. The document contains the

various point categories and values pertinent to this example.

<?xml version-1.0' encoding-ISO-8859-1'?> 
deputation fjr='l 178467068203' 

f jc -1 178462068289' 
nuji='l 178467068203' 
mrjc=T 178467068250' 
ajt-47' 
tj=T
c-canada'
pjr='19'
lda-6 '
lfc='7'
lfd='14'
lmo='9'
lnc-9 '
lps='3'
lrd='8'
lwr='20'
lsc-3 '
lsi='H'
djr='5'
rou-2 '
ida='0'
ifc=T
ifd='0'
im o- 1'
inc='2'
ips-'0'
ird-2 '
iwr=’l ’
isc='6'
isi-3 '
lbl=’3’
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bof-O'
rte='4'
cce=T>

</reputation>

Notice that not every point category has a non-zero number in it. This simply means that 

this particular action has never been performed by this user. The second piece of 

information provided is the RF policy to be used to determine the overall Risk Factor.

RF POLICY

<?xm1 version-1.0' encoding-ISO-8859-1'?> 
<policy type=’r f  >

<multiplier type=’djr’> -4 </multiplier>
<multiplier type=’rou’> -5 </multiplier>
<multiplier type=’ida’> -3 </multiplier>
<multiplier type=’ifc’> -3 </multiplier>
<multiplier type=’ifd’> -4 </multiplier>
<multiplier type=’imo’> -6 </multiplier>
<multiplier type=’inc’> -5 </multiplier>
<multiplier type=’ips’> -3 </multiplier>
<multiplier type=’ird’> -5 </multiplier>
<multiplier type=’iwr’> -5 </multiplier>
<multiplier type=’isc’> -6 </multiplier>
<multiplier type=’isi’> -7 </multiplier>
<multiplier type=Tbl’> -7 </multiplier>
<multiplier type=’b o f > -9 </multiplier>
<multiplier type=’rte’> -6 </multiplier>
<multiplier type=’cce’> -5 </multiplier>
<multiplier type=’lda’> 2 </multiplier>
<multiplier type=Tfc’> 2 </multiplier>
<multiplier type=Tfd’> 1 </multiplier>
<multiplier type=Tmo’> 3 </multiplier>
<multiplier type=’lnc’> 3 </multiplier>
cmultiplier type=’lps’> 4 </multiplier>
<multiplier type=Trd’> 2 </multiplier>
<multiplier type=Twr’> 4 </multiplier>
<multiplier type=Tsc’> 3 </multiplier>
<multiplier type=Tsi’> 2 </multiplier>
<multiplier type=’pjr’> 1 </multiplier>
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</policy>

Once we have the user’s reputation and the RF policy we perform the first major step in 

the access decision, namely the calculation of a user’s RF. If we define the resulting RF 

as the equation:

In this equation, K is the total number of point categories chosen, and Ck are the 

weight and number of occurrences, respectively, for the kth point category and we utilize 

the step function 9(x) = 1 for x > 0, and 0 otherwise. Thus, the RF determines the 

relative fraction of positive to total weighted multiplier sums.

For illustration purposes, first, the negative multipliers are used to calculate the negative 

part of the point sum:

Next, we use the positive multipliers to calculate the positive part of the point sum

(5 * -4) + (2 * -5) + (0 * -3) + (1 * -3) + (0 * -4) + (1 * -6) + (2 * -5)

+ (0 * -3) + (2 * -5) + (1 * -5) + (6 * -6) + (3 * -7) + (3 * -7) + (0 * -

9) + (4 * -6) + (1 * -5) = -171.

(6 * 2) + (7 * 2) + (14 * 1) + (9 * 3) + (9 * 3) + (3 * 4) + (8 * 2) +

(20 * 4) + (3 * 3) + (11 * 2) + (19 * 1) = 252.

Now the next step prior to obtaining an RF is to add the absolute values of the negative

part to the positive part to obtain the absolute point sum:

j252| + |-171| = 423
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Finally, we divide the positive part only by the absolute point sum (rounded to three 

places):

252/423 = 0.596

This value (0.596) is known as the RF. Essentially, the RF defines what percentage of 

the time this user has been “good” (as an overall, or collective, measure) using the 

individual weights defined in the Risk Factor policy for each point category.

Two remaining policies must be defined. These include the User Class policy and the 

Access Decision policy.

USER CLASS POLICY

In order to arrive at an access decision it is necessary to know what kind of user we are

dealing with. The following xml document contains the information needed to make this

determination (see 16.9.3).

<?xml version-1.O' encoding-ISO-8859-1'?>
<policy type-'uc">

<class name-newUser'>
<rule type='age'>i 17846709650 3</rule>
<rule type-pjr'>12</rule>
<rule type-djr'>5</rule>
<rule type-avg’>50</rule>
<rule type-mrj c’>1178467037203c /rule>

</class>
<class name-oldUser'>

<rule type-age’>11784674354567 </rule>
<rule type-pjr’>250</rule>
<rule type-dj r’>3 5 </rul e>
<rule type='avg'>35</rule>
<rule type-mijc'>i 17846906820 3</rule>

</class>
</policy>

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the User Class Policy (above) we can determine which classes a particular user 

belongs to. Note that a user may belong to none, one, or more than one class depending 

on the local policy, and their reputation. To calculate the user classes, we must use the 

following information from the user’s certificate:

Age (first job request was 1178467068203)

Permitted Job Requests (19)

Denied Job requests (5)

Average Job Time (47 ms)

Most Recent Job Completed (117846706825o)

This particular user class policy dictates that to belong to it (newUser) a user must:

a. Have become active in the grid before: 1178467096503. For this we check to 

see if  a user’s First Job Request (FJR) is less than the policy age value. This is 

because the milliseconds specified denote the number of milliseconds from 

January 1, 1970. This means that a lower number is older.

Check: 1178467068203 <1178467096503 TRUE

b. Have at least 12 Permitted Job Requests 

Check: 19 > 12 TRUE

c. Have no more than 5 Denied Job Requests 

Check: 5 <= 5 TRUE

d. Have an Average Job Time of 50ms or less.

Check: 47 <= 50 TRUE

e. Has requested access to a resource site no longer ago than 1178467037203 

Check: 1178467068250 >= 1178467037203 TRUE
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Since all of the five checks for the User Class known as newUser pass (ie. are TRUE), 

this user belongs to the newUser class. In contrast, if we were to check to see if the user 

is a member of oldUser, we would see that they are not (for example, 250 is the lower 

limit for Permitted Job Requests that qualify an oldUser, hence the current value of 19 

fails).

ADE POLICY

Finally, we must define the Access Decision policy which will make the final access

decision. We start with the following xml document:

<?xml version-1.0' encoding-ISO-8859-1'?>
<policy type=’ade’>

<level id=’ 1 ’ rfl=’0.500’ rfh=’0.700’ >
<classes>

<class> newUser </class>
<class> oldUser </class>

</classes>
<access>

arbitrary access specification 
</access>

</level>
clevel id=’2’ rfl=’0700’ rfh=’0.900’

<class>
<class>oldU ser</ class>

</class>
<access>

arbitrary access specification 
</access>

</level>
</policy>

We consider the user’s RF and Class(s) and see what type of access is associated with 

them within the Access Decision policy. According to the AD policy above, this user will
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be given access. The access specifier string will be returned is the ‘arbitrary access 

specification’ located between the <access></access> tags. The specification will be 

given in a site specific resource access policy language. One such example policy 

language framework is Ponder [Damianou2001].

5.14 Current State

The current state of the AASUR system is as the design has specified. It is complete and 

several sets of results have been obtained from the working prototype. Items 

specified/contained within the future work section would be very beneficial as additions 

to this system, but they have not yet been implemented. The codes for this system are 

available upon request for your perusal, but are not included in this document as an 

appendix due to the large amount of space which would be required.

5.15 Limitations

It is an accepted fact that the only way to secure a resource is to ensure that no access is 

possible, either direct or remote. That being said, the need for resources to be available 

via a network is extremely important; therefore, necessary security precautions must be 

taken. A multi-level approach is preferable with respect to security to ensure that a failure 

of one layer will not make the system as a whole vulnerable.

The nature of this system, from a reputation collection point of view, is completely 

objective. The collection code is protected, so there will be not question about whether or 

not a user’s reputation is correct. However, an improper decision on the part of a resource 

when developing an access policy can result in an undesirable access situation. Further, a 

historical pattern of proper usage by a user does not guarantee that the same user’s future
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actions will be completely proper. This is an element of risk that exists within this 

system. This aspect however, arguably exists within any system. There is always 

potential for an authorized used to perform malicious actions. A systems saving grace is 

the ability to detect and record that this occurrence and put some type of punishment into 

action. That may take the form of banishment, lessening of access right, etc.

In the case of AASUR, we have the capability to detect when such an action occurs and 

AASUR records it as part of a user’s reputation. The major function of AASUR is to 

collect objective information and make it available to resource site for decision making 

purposes. However, even though illegal actions are recorded, that does not imply some 

type of punishment may take place. It is up to an individual resource site to be able to 

view all actions that a user has performed and make a decision based on them. That is, if 

a particular user has performed many “bad” actions, it is likely that many resource sites 

will not give access. This is analogous to the previously mentioned punishment. There 

should be no reason that, if a resource site still wishes to provide access for a user that 

has performed many improper actions, it should not be permitted to. After all, resource 

access should be controlled completely by the resource owner.

5.16 Implementation

The first step of development was to create a service (AasurCaService) that provided a 

publicly exposed WS based interface to the local EJBCA functions such as certificate 

lookup and creation/signing. The next step was to write a simple client piece of software 

(which became the UserSiteSimulator) that could simply connect to the AasurCaService 

and send simple messages. Since SOAP only allows the passing of simple types and
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compositions of simple types, the next step was to determine how to pass complex types 

such as certificates. The solution was serialization. Serialization allows most Java objects 

to be converted into an array of bytes. Typically this is for persistent storage, but since 

byte arrays can be passed via SOAP to web services, it fit perfectly. Once a complete 

certificate could be passed successfully, the next important step was to write the 

appropriate code to write and access custom extensions to standard X.509 certificates. 

This is where the persistent reputation will be stored. These were the most important 

hurdles to overcome, not only to function properly, but also to ensure that development of 

this architecture was even feasible.

The remaining steps included development of various custom objects for reputation 

storage and policy representation, code for merging of existing reputation with newly 

performed job actions, XML formatting/parsing code, supporting code including 

serialization/de-serialization packages, and finally simulation code to produce 

randomized lists of job actions which occurred during simulated processing.
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6 Development/Deployment Infrastructure
Implementation involved four major steps, which we will outline in this section. The first 

step involved creating a list of required components and their required functionality. The 

second step was to make a list of all existing software packages, determine what 

individual packages can do, and finally to determine which software would best 

compliment each other while simultaneously meeting the needs of this system. The third 

step, and probably the most involved, was to install and configure the selected software to 

provide a completely functioning infrastructure which provides the necessary framework 

for step 4 (See Appendix A for detailed installation instructions). Step 4 was to develop 

the AASUR specific software including service code, as well as all required supporting 

codes. Each of these steps will be outlined in the following subsections.

6.1 Required Components

At the most basic level, this architecture requires a certificate authority and the capability 

to host web services. These two simple requirements become more involved when we 

delve deeper into the required supporting software. The ability to host web services 

requires several pieces of software, including an application hosting environment which 

allows them to be exposed to the public for use. It also requires the necessary XML 

libraries for parsing of messages and formats and security libraries to provide 

authentication and message protection. A runtime environment may also be needed 

depending on choice of implementation language.
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6.2 Selection of Software

Once the basic requirements had been outlined, the specific choices of software became 

the next step. For several benefits, Java was selected as the implementation language. 

Thus, the need for the Java Runtime Environment was obvious. Due to the limitations 

imposed from selecting one language, as well as a desire to remain within the open 

source community (for cost benefits, as well as the requirement to modify the software as 

needed), a clear winner emerged for both the hosting environment and certificate 

authority. The hosting environment which was selected was JBoss [Jboss], and the CA 

software was EJBCA [Ejbca]. Both are Java based, open source, meet various standards, 

and have large feature sets. The selection of EJBCA also created a requirement for a 

database. Again, due to the widespread use and open source nature, MySQL [MySql] was 

selected. For XML, the selected tools are included with built in support from Java for 

DOM/SAX perusal/manipulation. From a supporting software point of view, this 

implementation also requires Ant [Ant], for building/deploying AASUR implementation 

to the application hosting environment, and the necessary Java MySQL connector 

libraries.

It must be mentioned that the set of software components which have been selected to 

implement this system are in no way, shape, or form, the only tools which can 

accomplish our goals. Other existing languages, tools, and components can achieve the 

same end. The set which has been chosen, in our opinion, is simply the best choice from 

many points of view including rapid development, security, ease of use, performance, 

cost, etc. Should AASUR become a viable option for authorization, its continued
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development would likely see specific components exchanged to meet the needs of a long 

term authorization system which has different goals.

6.3 Installation and configuration

Note that the specifics of individual software packages selected for installation on the 

various test bed machines will be discussed in more detail in following sections. 

Installation and configuration began with the configuration of several machines that 

would be used for the required test bed. We will outline the installation procedures in this 

section, but for full details see Appendix A.

A total of five machines were used. Four machines were configured with Fedora Core 5 

(a flavour of Linux) and the last was configured with Windows XP. All machines were 

placed on the same subnet and file sharing was enabled for ease of file transfers via 

Samba and Windows file sharing. The following steps involved installing Java and 

Apache Ant. Then JBoss was installed and configured, including the necessary 

configurations for secure HTTP (HTTPS). Once JBoss was working properly, MySQL 

was installed, followed by EJBCA. Aside from the basic previously mentioned 

installation/configuration steps, some modifications to the inner workings of EJBCA 

were necessary to prepare it to handle what would be required for the AASUR 

implementation. Those modifications are discussed in 6.3.4.3.

6.3.1 JBoss

JBoss is a Java based application server, produced by Red Hat, for use with J2EE and the 

associated Enterprise Java Beans. It is similar in functionality to other popular application
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servers such as BEA Web Logic and IBM Web Sphere [BEA, WEB]. It is completely 

free, Open Source, interoperable, and portable to any platform that has a JRE written for 

it. This makes it a very desirable product. Of course, the fact that it is free does not mean 

it lacks quality. In fact, JBoss is the most used Java application server [jboss].

6.3.2 Java

Java, developed by Sun Microsystems, was our programming language of choice for this 

project. There are several factors that make Java good choice. First, Java is interpreted 

via a Runtime Environment (RTE). This means that and Java code is portable to any 

platform which has the accompanying RTE. This platform independence means is it very 

portable. Second, Java was designed to be a very secure web enabled language. For an 

architecture that will be used for Web Services, this type of language is very beneficial. 

Third, it is Object Oriented (0 0 ), which makes it very good for modeling various 

existing objects, as well as modeling custom objects for the system. The benefits of 0 0  

can easily be the subject of another paper, but to summarize, 0 0  languages provide: 

abstraction, polymorphism, encapsulation, inheritance, and modularity. This flexibility is 

very useful when developing new prototypes. Fourth, the syntax is very straightforward 

and the error message capabilities are advanced which allows for rapid and efficient 

development of new systems. Fifth, automatic garbage collection means that explicit 

memory management is a thing of the past. No more will memory leaks be a major issue 

in new, large scale, systems. Sixth, Java is completely free to use. Seventh, Java has a 

very large number of packages available to accomplish many ends. These existing classes 

are very useful for quick development of new system. In other words, you don’t have to 

reinvent the wheel.
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Of course, no programming language is perfect. There are always downsides, and Java is 

no exception. The most prominent negative aspect of Java is its performance. Though 

vastly improved from its original days, it is generally accepted that Java does not perform 

quite as fast as C/C++. Various tests have been performed to compare the two, and it has 

been found that the difference is only marginal between the two [JavaWorld]. This is due 

to the RTE and how it acts as an interpreted, the garbage collection and security model 

[JavaWorld]. Since C/C++ is compiled to native hardware instructions, it will run faster. 

However, this means that C/C++ is nowhere near as portable as Java. Nevertheless, it is a 

tradeoff, and one which must be carefully considered when selecting an implementation 

language. Second, some consider the highly secure environment to be somewhat 

restrictive, but perhaps that is due to improper understanding of the language.

6.3.3 Linux

Linux is an Open Source operating system. It has been around since roughly 1990, and 

ever since has been gaining a larger market share in the OS race. It is predominantly a 

server operating system which boasts better security, stability, and extensibility than 

other more commonly known operating systems. We chose it because it is very capable, 

secure, and of course its cost.

6.3.4 EJBCA

EJBCA is an Enterprise Java Bean (EJB) based Certificate Authority (CA). It is a fully 

functional CA. There are so many features that listing them here would take up too much 

space, but suffice to say it meets and exceeds every requirement we have. In this section,
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we will be discussing the pros and cons of EJBCA, as well as the necessary modifications 

that took place.

6.3.4.1 Benefits

It has a very flexible and feature rich web-based (and CLI) interface for administrative 

purposes. It supports key sizes up to 4096 bits, smart cards, multiple hashing algorithms, 

and multiple Hardware Security Modules (HSMs), all for maximum security [EJBCA]. It 

can integrate with any Lightweight Directory Access Protocol (LDAP) compliant 

repository including Active Directory [EJBCA]. This product is also an Open Source 

piece of software. The fact that it was created in Java makes integration with our system a 

much more palatable proposition. The only issue with the selection of EJBCA was that 

(at the time of selection) it did not operate in the context of web services. That being said, 

we decided to use it anyhow, and make the necessary modifications ourselves.

6.3.4.2 Downside

There is really only one issue with EJBCA, and this could be attributed to the overall 

design of ASSUR rather than EJBCA. In general, a PKC is generated once. This is due to 

the intention to keep a name bound to a public key for a long period of time. When a new 

certificate is generated (once for each complete job) the old version of the certificate is 

stored for historical reasons. These old versions are also used for Certificate Revocation 

List (CRL) generation. Due to the fact that a user could complete hundreds, if not 

thousands, of jobs a day, the number of historical certificates on file could grow very 

large. This may affect the overall scalability of this system. It is recommended that, in the 

future, only the latest certificate is maintained for a user. However, at this point in time,
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the historical feature has been left in, and has also been determined to be acceptable from 

a performance point of view for this proof of concept architecture.

6.3.4.3 Necessary Modifications

As previously mentioned, the Web Service capability was not available in EJBCA when 

it was researched. We believe that the newest version does incorporate this type of 

exposure, but we have long since made the necessary modifications to handle them 

ourselves. Making the necessary functions, which include certificate lookup and retrieval, 

was not very difficult. The main steps behind this type of addition involved the 

following:

1. select the necessary functionality to expose as web services

2. determine how theses services can be accessed from the local CA server 

through EJB sessions

3. create new classes which will be publicly exposed as services that will 

instantiate a local session of a particular bean (eg. RSASignSessionBean 

for certificate signing) which will serve as an interceptor.

For example, consider the signing of a new certificate from a remote location. We have 

already exposed a public service which mirrors the available functionality in 

RSASignSessionBean (referred to as RSAMirror). When a request arrives for a certificate 

to be signed, it comes in to RSAMirror, which has already established a local session 

with RSASignSessionBean. The certificate to be signed is passed through RSAMirror to 

RSASignSessionBean and then EJBCA performs its required action.
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At this point, perhaps it is better to say that we did not modify EJBCA; rather, we 

augmented it with respect to the Web Service exposure requirements. There were some 

things within EJBCA that did need modification, however. These are discussed in the 

next paragraph.

The X.509 standard allows for non-mandatory extensions within a certificate. These 

extensions can be named and accessed within a certificate when needed. Although 

EJBCA supports certificate extensions, the way in which it supports them required some 

modifications to the code. Prior to any modifications, the addition of a particular 

extension to a certificate (created/signed by EJBCA) required the creation of a user 

profile. Within this profile, the extension id and the value of the extension were specified. 

Then, any new certificate which was created under the umbrella of this profile would 

contain the new extension. The problem with this is that the extension is fixed. In the case 

of AASUR, the extension value will be changing each time a certificate is resigned. For 

this reason, EJBCA had to be augmented. Once this modification was complete, EJBCA 

supports this ability via the public certificate signing web service. When a certificate is to 

be created the arbitrary extension value is passed into the web service with the other 

required information such as primary key, etc. EJBCA will add this to the certificate 

dynamically, sign it, and return it to the user, or store it.

6.3.5 MySQL

MySQL is an enterprise class, multithreaded/multi-user, completely free and Open 

Source database management system (DMBS) [MySql]. It is very robust and has a large 

feature set. We chose this database because of several reasons:
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2. open source

3. scalable (supports clustering services)

4. large scale data support

5. user friendly graphical monitoring/administration tools

6. interoperability (works with a long list of programming languages) 

Statistics show that MySQL has an installation base of over 10 million machines 

[MySql].
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7 Testing and Verification

The testing and verification of this system was performed for two major reasons. The first 

was to ensure that all code was sound, meaning everything worked as it was designed to 

and did what it was expected each and every time. The second reason for testing was to 

determine what kind of performance this system was likely to provide, as fast processing 

is very important in distributed computing.

7.1 Code Correctness Verification

In order to verify the correctness of the code we adopted the following approach. First, 

several users were created within the CA. Each user was given a reputation which would 

put them into a specific User Class with a specific RF. Then, one at a time, all users made 

10 job requests (each containing 100 actions, with various good/bad percentages, etc. 

90/10, 75/25, 50/50, 25/75) to a resource site. Each request, and all associated logging 

code, was examined thoroughly for errors. Upon being satisfied that all results were 

correct, the next step was to determine what exact metrics would be used for the 

performance analysis.

7.2 Metrics

The metrics selected to measure the overall performance of a system are very important. 

The selection of the wrong metrics can make a system appear worse/better than it is. The 

comparisons for AASUR were considered very carefully over a period of time. The 

information which has been obtained is very promising. The following metrics have been 

selected to analyze the overall performance of the AASUR system:

1. certificate retrieval time (before reputation)
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2. certificate retrieval time (after reputation) for a new user (no reputation)

3. certificate retrieval time (after reputation) for a user with up to 100,000 

actions in their certificate

4. relationship between the number of actions in a user’s reputation and the size 

of that user’s certificate

5. access decision time for a user with up to 100,000 actions in the certificate

7.3 Procedures and Results

7.3.1 Test A: Certificate Retrieval Time (NO REPUTATION)

For this test we created a new user in the CA, which did not have the new X.509 

extension representing the reputation XML. We then timed 1000 certificate retrievals. 

The minimum retrieval time was 0.156 seconds, while the maximum retrieval time was 

1.813 seconds. If we ignore the top five times, our maximum retrieval time is 0.531. The 

extraordinarily high values (top 5) are likely caused by external factors such as other 

processes consuming system resources. The mean retrieval time was 0.216, while the 

median was 0.187 seconds. The certificate size with no added reputation information is 

892 bytes. For a detailed look at the data set in a graph, see Figure 29 below.
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Figure 29: TEST A: 1000 Certificate Retrievals. No reputation in certificate.
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7.3.2 Test B: Certificate Retrieval Time (EMPTY REPUTATION)

Next, we tested how the retrieval times would be affected if the certificate had the 

reputation xml in place, but it was empty. For this test, we created a new user in the CA. 

Note that the tasks involved with retrieving the certificate still do not involve any 

reputation extraction/processing. They simply involve the retrieval of a larger certificate. 

In this case, the minimum retrieval time was again 0.156 seconds, while the maximum 

retrieval time was 1.672 seconds. This maximum is actually less than with no reputation. 

If we ignore the top 5 values in this (empty reputation) case (1.516, 1.531, 1.562, 1.562, 

and 1.672), the maximum is 0.625 (the no reputation max. was 0.531). The median 

retrieval time was 0.172 seconds, and the mean, or average, retrieval time for a certificate 

with the empty reputation holding XML extension (averaged over 1000 retrievals) was

0.197 seconds. This involved a certificate size of 1248 bytes. Notice that this retrieval 

time is only slightly different from the empty certificate.

In this case, the performance of empty reputation is slightly better, than the performance 

of retrieval with no reputation. This is likely caused by external system factors such as 

other processes consuming other resources. We believe that the essence of these results 

indicate that the addition of empty reputation does not significantly increase the retrieval 

times.

For a detailed view of the results for Test B, see Figure 30 below.
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Figure 30: TEST B: 1000 Certificate Retrievals. Empty reputation in certificate.
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7.3.3 Test C: Certificate Retrieval Time (0-100,000 ACTIONS)

As the number of actions increase within a user’s reputation, the certificate size would be 

expected to increase (thereby increasing retrieval time) until the certificate was to reach 

the theoretical maximum size. In this section we illustrate the retrieval times for 1000 

retrievals for a certificate with 100,000 actions contained as reputation. This is intended 

to represent the maximum (or very close to the maximum) size. This certificate has been 

used for 1000 previous jobs, each containing 100 actions. This means that there are 999 

historical certificates for this user in EJBCA.

In the case of certificate retrievals, the minimum retrieval time was 4.141 seconds, while 

the maximum retrieval time was 7.5 seconds. If we ignore the top 5 values, the maximum 

is 6.296 seconds. The median retrieval time was 4.25 seconds, the mean, or average, 

retrieval time (over 1000 retrievals) was 4.536 seconds. This involved a certificate size of 

1358 bytes. The retrieval times in this case are significantly higher than in Test A and 

Test B. This rapid increase in certificate retrieval time is not primarily caused by the 

slight increase in certificate size. EJBCA maintains all previous certificate versions, 

meaning each time the reputation is modified, a new certificate is created and the overall 

number of certificates stored increases by one (there are 999 old certificates in this case). 

This causes an increase in the overall retrieval time. If EJBCA did not process each 

historical certificate until it reaches the current certificate, it is our belief that the retrieval 

times would align with the times illustrated in Test A and Test B. For further details 

regarding Test C, see Figure 31 below.
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Figure 31: Test C. 1000 certificate retrievals. 100,000 actions in reputation.
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7.3.4 Test D: Certificate Size Vs. Actions in Reputation

Test D is intended to illustrate the relationship between the number of actions within a 

user’s reputation and the overall size of the certificate. This test involved the execution of 

1000 jobs, each containing 100 actions. These jobs also included the authorization 

decision times, and certificate retrieval time, but only the individual certificate sizes and 

number of jobs will be discussed here. The authorization timing will be discussed in a 

later section.

The graph shows that the maximum certificate size (after 100,000 actions) is quite 

minimal. It also shows that this maximum size is reached with a very young reputation in 

the certificate, and stays that way after addition of many more actions. This is a proves 

the overall scalability of the design of the reputation format. It is not to say that this is the 

absolute maximum, but any changes in size will be minimal. Changes in size will occur, 

for example, when a category goes from 9,999 illegal read actions to 10,000 illegal reads, 

simply due to the requirement to store the additional digit. The previously discussed cert 

maximum of approximately 3.5K still applies, though it will take a significant number of 

actions to reach.

More details regarding the results from this test are available below in Figure 32.
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Figure 32: Test D. Certificate size increase with 100,000 actions in reputation.
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7.3.5 Test E: Access Decision Time (0-100,000 ACTIONS)

This test is arguably the most important test of all. The AASUR system is intended to 

perform dynamic access decisions based on reputation, so it is fitting that we test the act 

of the making the decisions and record the associated timing information. For this test a 

new user was created. This user went through 1000 simulated jobs, each involving 100 

actions (90/10 split). In the end (with a total of 100,000 actions in the user’s certificate) 

the results are as follows. The minimum access decision time was 0.796 seconds, while 

the maximum access decision time was 3.828 seconds. If we ignore the top 5 values in 

this case, the maximum access decision time is 2.297 seconds. The median access 

decision time was 0.928 seconds, the mean, or average, retrieval time (over 1000 

retrievals) was 0.852 seconds. This involved a maximum certificate size of 1358 bytes.

This test confirms our beliefs regarding the overall authorization decision performance as 

well as the overall scalability of this system. The required time to make an access 

decision remains fairly constant (linear complexity) regardless of reputation size. It also 

shows that the amount of time required to make an access decision is reasonable and is 

not going prevent this system from becoming a feasible architecture for distributed 

authorization. Again, the spikes in authorization decision time are likely due to external 

operating system factors, rather than a worst case scenario.

Further details are available regarding Test E in Figure 33 below.
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Figure 33: Test E. Authorization decision time (0-100,000 actions in reputation).
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7.4 Performance Comparisons

Though the Tera binaries were available, the source codes were not. This made it 

impossible to insert any timing code into the application to determine any kind of results 

suitable for a performance comparison. We contacted the authors of Tera, but were told 

that no numeric results were available. [Private communication -  May 16, 2007]

We did obtain results for two other authorization systems which were discussed in 

Chapter 3. These systems are Permis and Akenti. Results from these systems were 

compared in [Otenko2003]. There was no detailed raw data available however, their 

results were summarized. Those results are presented in following sections. For both 

systems we compared the time it takes to make an access decision. Further, Permis 

includes timing information which relates to credential retrieval so we compared that to 

AASUR timings as well.

It should be noted that the timing for an AASUR authorization decision includes the time 

required to send the certificate from the user site to the resource site, as well as all 

parsing, followed by the decision making process, ending with the return of the access 

decision. Further, the retrieval times for AASUR involve no caching. They all require a 

connection to a CA, as well as lookup/retrieval of the appropriate certificate.

7.4.1 Akenti

The Akenti timing information includes the access decision time as well as its standard 

deviation for two scenarios. The first scenario involves credentials that must be retrieved,
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and the second scenario involves locally cached credentials. All of the following results 

obtained from [Otenko2003].

For the scenario where the credentials must be retrieved, the average authorization time 

of Akenti is 368.2ms, with a standard deviation of 40.1ms. On the other hand, if the 

credentials are already cached on the Akenti server, the average access time is 17.2ms 

with a standard deviation of 51ms.

7.4.2 Permis

The Permis timing information groups the access decision and the credential retrieval 

time into one. All of the following results obtained from [Otenko2003]. The average 

credential retrieval time for Permis is 142.217ms with a standard deviation of 289.842ms.

7.4.3 AASUR I Permis / Akenti Comparison Summary

The results obtained are promising within the right context. Although the average 

credential retrieval time for AASUR is higher than the times for both Akenti and Permis, 

this is due in part to the CA implementation in Java, as well as the previously mentioned 

historical certificates. It is our opinion that this retrieval time could be significantly 

lowered if these changes were implemented.

The access decision times for AASUR are slightly longer than both Akenti and Permis as 

well; however, the lack of requirement for nearly any administrative overhead, makes up 

for this.

I l l
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Another promising aspect of these results is that both of these systems which involved 

multiple credential retrievals are just typical results. If a given situation required more 

credentials than a specific case (as tested) then the retrieval times would be greater. For 

AASUR, the access decision time essentially remains constant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112



8 Conclusion

In this thesis we have introduced relevant tools and technologies as well as existing 

systems which try to solve the distributed authorization issue. We also describe the 

approach to authorization of unknown entities in the context of grid computing that we 

have chosen. This approach is implemented as a system called AASUR and entails new 

approaches which have not been used prior to this thesis.

The “new” in this thesis is the technique of defining and implementing a schema which 

defines a user’s reputation. This schema makes use of a spectrum of metrics that 

essentially define what actions a user has performed in the past. Further, the notion of 

storing these metrics and counts in an identity certificate is also novel. Typically these are 

stored in a third party repository within an Attribute Certificate (AC) such as an Attribute 

Authority [0pplinger2000]. This introduces an increased number of messages, which 

consequently affects the overall performance of the system. However, the act of making 

an authorization decision based on information about a user is not new. In fact nearly all 

authorization is based on some specific information about a user. Although the way in 

which AASUR uses the information that it collects is in fact new, it is not based on any 

known statistical or other methodologies, so its use may be limited to proof of concept. 

We chose to use an arbitrary decision algorithm (RF, UC, ADE) simply to illustrate the 

usability of the information we collect for authorization decisions without requiring an in 

depth survey into a specific authorization method. Further, this system could have been 

implemented using one of many different authorization algorithms. In the future it is 

likely that such a system as ours could employ several pluggable modules, each defining
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a specific authorization technique, enabling a significant degree of flexibility for the 

resource site.

We believe that not only has our architecture accomplished the necessary goals to 

overcome the issues stated within, but also, that it does so in such a way that the overhead 

required is acceptable. Although the results indicate that the retrieval times, as well as, 

the decision times, are generally slightly higher than those of Akenti and Permis, we 

believe that the consequent drop in administrative overhead is significant and valuable. 

We also believe that in the context of this problem, the maximum bounds of our various 

tests are still within an acceptable range, and do not preclude AASUR from being a 

feasible distributed authorization architecture.

8.1 Future Work
In this work a unique architecture has been presented which provides a distributed 

authorization capability which allows arbitrary entities to participate in the Grid while 

greatly improving scalability due to lower administrative overhead. Full completion of 

this system will require additional work. Currently, point actions are generated from a 

standalone application for testing purposes. In the future, we must develop a piece of 

middleware, which will run at each resource site, for monitoring the actions of the entity 

on the grid.

Failure and break-pointing of grid jobs must also to be taken into account. Current 

middleware has the mechanisms in place to resume processing on physically separate 

machines. Thus, the system must include the ability to maintain the actions performed
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prior to failure on the initial node and to migrate seamlessly, to the new location of 

processing.
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Appendix A: Environment Configuration Instructions

In this appendix we provide details of how to install and configure the AASUR system. 
In order we discuss Linux, JBOSS, MySQL and EJBCA installation and configuration 
and subsequent preparation and deployment of the complete system. All steps are 
enumerated, from beginning to end, in order to clarify the entire procedure.

A.1 LINUX INSTALLATION

1. place bootable dvd image of Fedora Core 6 in dvd rom drive

2. when prompted hit enter for default installation

3. be sure to test media prior to beginning installation to ensure all necessary are intact

4. when selecting packages to install, include mysql, ant, and samba

5. apply a applicable updates to system

6. configure a samba share via for installation file transfers to machine

7. configure mysqld and smb to start automatically on boot

- chkconfig —level 3 mysqld on

- chkconfig —level 5 mysqld on

- chkconfig —level 3 smb on

- chkconfig —level 5 smb on

8. verify configuration via chkconfig —list and manually start services this time or reboot

9. update Java to 1.5.0

- import JPacakge keys: rpm —import http://www.jpackage.org/jpackage.asc

- download (from sun) jdk-l_5_0_09-linux-i586-rpm.bin

- cd /etc/yum.repos.d

- wget http://jpackage.org/jpackage.repo

- edit (vi) the /etc/yum.repos.d/jpackage.repo file and changing line(s) enabled=l
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to enabled=0

- go to file share wherejdk-l_5_0_09-linux-i586-rpm.bin is

- set executable permissions on java bin: chmod 711 jdk-l_5_0_09-linux-i586- 

rpm.bin

- execute java bin: ./j dk-l_5_0_09-linux-i586-rpm.bin

- download: java-1.5.0-sun-compat-1.5.0.09-ljpp.noarch.rpm

- install java-1.5.0-sun-compat-l.5.0.09-ljpp.noarch: rpm -ivh java-1.5.0-sun- 

compat-1.5.0.09-ljpp.noarch.rpm

- alternatives —config java and choose 1.5

- verify java version with: java -version (should be 1.5.0)

A.2 JBOSS INSTALLATION

10. copyjboss-4.0.3SPl.tar.gzto /home/jboss

11. go to /home/jboss and unzip jboss-4.0.3SPl.tar.gz: gunzip jboss-4.0.3SPl.tar.gz

12. unpack jboss-4.0.3SPl.tar: tar -xvf jboss-4.0.3SPl.tar

13. now we have a /home/jboss/jboss-4.0.3SPl

14. change directory to jboss-4.0.3SPl: cd/home/jboss/jboss-4.0.3SPl

15. add jboss group: groupadd jboss

16. add jboss user: useradd -g jboss -pjro 1979 jboss

17. change directory to /home

18. change ownership of all jboss dirs/files: chown -R jboss jboss*

19. change group of all jboss dirs/files: chgrp -R jboss jboss*

20. change associated jboss file/dir permissions: chmod -R 771 jboss*

21. set appropriate anvironment variables in /root/.bashrc (see included file)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22. copied startup script into /etc/init.d (from included file) to /etc/init.d/jboss

23. added necessary symbolic links to jboss startup script in init.d (to various run levels)

- In -s /etc/rc.d/init.d/jboss /etc/rc3.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc5.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc4.d/S84jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc6.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc0.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rcl.d/K15jboss

- In -s /etc/rc.d/init.d/jboss /etc/rc2.d/K15jboss

24. turn on jboss automatically as a service on boot

- chkconfig —level 3 jboss on

- chkconfig -level 5 jboss on

25. reboot and verify jboss functionality by going to http://localhost:8080

A.3 MYSQL CONFIGURATION
It is assumed that MySQL was selected to be installed during Linux install. This section 

deals only MySQL configurations.

26. create new database: create database ejbca (at mysql prompt)

27. secure the DB

- UPDATE user SET Password=PASSWORD('new_password') WHERE 

user='root';

- FLUSH PRIVILEGES;

- DELETE FROM user WHERE User =
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- FLUSH PRIVILEGES;

- GRANT USAGE ON ejbca.* TO 'ejbca'@T27.0.0.1' IDENTIFIED BY 

'jrol979';

- FLUSH PRIVILEGES;

- DROP DATABASE test;

- DELETE FROM db WHERE (db.Db LIKE 'test%');

- DELETE FROM db WHERE (db.Host = "%");

- DELETE FROM db WHERE (db.User -  "");

- DELETE FROM user WHERE ((user.Host ="% ") OR (user.User =""));

- commit;

- FLUSH PRIVILEGES;

- commit;

- GRANT ALL PRIVILEGES on ejbca.* to ejbca@localhost IDENTIFIED BY 

'jrol979' WITH GRANT OPTION;

28. put mysql-connector-java-3.1.12-bin.jar into:

- $JBOSS_HOME/server/default/lib

- $JAVA_HOME/jre/lib

A A EJBCA INSTALLATION
29. copied ejbca source to /root/ejbca (all modified sources included)

30. modified ejbca.properties to suite this install (see included file)

31. go to /root/ejbca:

- ant bootstrap

- ant install
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32. stopped JBoss: service jboss stop

33. go to /root/ejbca:

- ant deploy

34. started JBoss: service jboss start

35. go to /root/ejbca: ./bin/ejbca.sh ca getrootcert SHEMP_AASUR_CA ca.crt -der

36. keytool -import -trustcacerts -alias SHEMP_AASUR_CA -keystore \ 

$JAVA_HOME/jre/lib/security/cacerts -storepass changeit -file ca.crt

37. restarted JBoss: service jboss restart

38. in/home/ejbca: ,/bin/ejbca.sh setup setbaseurl server_ip ejbca

A.5 PREPARATION AND DEPLOYMENT

39. added bouncy castle jar to classpath: bcprov-jdkl5.jar 

(located in /home/jboss/jboss-4.0.3SPl/server/default/lib)

40. compiled aasur-common package src and created a jar with internal dir structure of 

/org/ aasur/common

41. added aasur-common.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-common.jar)

42. refreshed classpath with bash

43. compiled aasur-reputation package src and created ajar with internal dir structure of 

/org/aasur/reputation

44. added aasur-reputation.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-reputation.jar)

45. refreshed classpath with bash

46. compiled aasur-simulation package src and created ajar with internal dir structure of
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/org/ aasur/simulation

47. added aasur-simulation.jar to classpath

(located in/home/jboss/jboss-4.0.3SPl/server/default/lib/aasur-simulation.jar)

48. refreshed classpath with bash

49. added ejbca-ejb.jar to classpath

(located in /home/jboss/j boss-4.0.3SPl /server/default/lib/ejbca-ejb .j ar)

50. refreshed classpath with bash

51. added commons-fileupload-l.O.jar to classpath

(located in /home/jboss/jboss-4.0.3SPl/server/default/lib/commons-fileupload-l .O.jar)

52. refreshed classpath with bash

53. restarted server: service jboss restart

54. installed Java Web Services Developer Pack 2.0

- downloaded jwsdp-2_0-unix.sh from Sim (included)

- not good for linux, so required some modifications

- tail -n +368 jswdp-2_0.sh > jwsdp.jar

- extraced all files from jwsdp.jar to a folder called JWSDP (temp folder)

- added . to classpath

- ran jwsdp.class using: java jwsdp

- procede normally (typical installation in /usr/java/jwsdp-2.0)

- moved all files in /usr/java/jwsdp-2.0/jaxp/lib and /usr/java/jwsdp- 

2.0/jaxp/lib/endorsed into /usr/java/jdkl.5.0_09/jre/lib/endorsed

- added /usr/java/jwsdp-2.0/jaxrpc/bin to PATH

- refreshed environment with bash
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55. added jboss-jaxrpc.jar to classpath (located in in /home/jboss/jboss-

4.0.3 SP1 / server/default/lib/ej bcaAasur Service-ej b .j ar)

56. refreshed classpath with bash

57. added jaas.jar to classpath (/home/jboss/jboss-4.0.3SPl/server/default/lib/jaas.jar)

58. refreshed classpath with bash

59. copied all code/build files for AasurCaSignService to /root/ca

60. compiled all ca source (from within /root/ca) javac *.java

61. moved all classes to /root/ca/org/aasur/ejbca/ca

62. built jar file (from /root/ca: jar -cvf ejbcaAasurService-ejb.jar ./org)and then added to 

classpath (in /home/jboss/jboss-4.0.3SPl/server/default/lib/ejbcaAasurService-ejb.jar)

63. refreshed classpath with bash

64. restarted server: service jboss restart

65. generated wsdl and mapping files for web service using config.xml (specific to 

machine ip) in /root/ca command: wscompile.sh -define -mapping mapping.xml -d . -  

n d . -classpath /home/jboss/jboss-4.0.3SPl/server/default/lib/ejbcaAasurService- 

ejb.jar config.xml

66. moved wsdl and mapping files into WEB-INF folder, the wsdl into wsdl folder (all 

within /root/ca)

67. built/deployed aasur ca service: ant all (from within /root/ca)

68. restarted server: service jboss restart

69. copied all code/build files for resource site service listener to /root/resource

70. compiled all resource site source (from within /root/resource) javac *.java

71. moved all classes to /root/resource/org/aasur/resource
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72. built jar file (from /root/resource: jar -cvf resourceSiteServiceListener.jar ./org)

73. added resourceSiteServiceListener.jar to classpath

(located in in /home/jboss/j boss-

4.0.3SPl/server/default/lib/resourceSiteServiceListener.jar)

74. refreshed classpath with bash

75. restarted server: service jboss restart

76. generated wsdl and mapping files for web service using config.xml (specific to 

machine ip) in /root/resource

command: wscompile.sh -define -mapping mapping.xml -d . -nd . -classpath 

/home/j boss/j boss-

4.0.3SPl/server/default/lib/resourceSiteServiceListener.jar config.xml

77. moved wsdl and mapping files into WEB-INF folder, the wsdl into wsdl folder (all 

within /root/resource)

78. built/deployed aasur resource site service: ant all (from within /root/resource)

79. restarted server: service jboss restart

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128



Vita Auctoris

Jordan Rivington was bom in Windsor, Ontario, Canada in 1979. In 1997 he graduated 

from St. Thomas of Villanova in LaSalle, Ontario. From there, he pursued a post 

secondary education at the University of Windsor where he remained for almost 11 years. 

He first obtained a Bachelor of Science from the School of Computer Science with 

Honours. This was followed by a Masters of Science, also at the University of Windsor, 

dealing specifically with Grid Computing and Security. Currently he is an instmctor for 

the ITT Technical Institute School of Computer Networking Technologies, as well as the 

School of Software Application Programming.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129


	A web service based architecture for authorization of unknown entities in a Grid environment.
	Recommended Citation

	tmp.1507664919.pdf.PoB4S

