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Abstract

A study was undertaken to provide fundamental information regarding biodiesel as a 

transportation fuel. This was accomplished through droplet combustion analysis and 

examining flame transmisivity characteristics.

Four experimental setups were designed and assembled to allow for the evaluation of 

three fuels and their blends. Synthetic diesel was also tested, but not blended with other 

fuels.

Fryer grease biodiesel, ultra low sulfur diesel, and ethanol, as well as their blends were 

selected to undergo the following experimental procedures:

• Temporal varying droplet dimension measurements (diameter and flame 

diameter)

• Temporal varying droplet liquid temperature measurements

• Spatial varying droplet flame temperature measurements along the flame axis

• Spatial varying soot transmisivity measurements along the flame axis

The droplet lifetimes and their burning rate constants matched published results. 

Temperature measurements were within the range of reviewed literature, and soot 

measurements provided intriguing new information.

111
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Nomenclature

amu Atomic mass unit
B5 5 % biodiesel with 95 % diesel
B20 20 % biodiesel with 80 % diesel
CCD Charged coupled device
r Coordinate variable
CA Crank angle
By Dimensionless transfer number
k Droplet burning rate constant
D Droplet diameter
D2 Droplet diameter squared
Df Droplet flame diameter
td Droplet lifetime
md Droplet mass
rs Droplet radius
V Droplet volume

fps Frames per second
L Litre
m" Mass conservation
mA" Mass conservation of liquid A
mA" Mass conservation of liquid B
D Mass diffiisivity
m Mass evaporation rate
Pi Random uncertainty
P* Random uncertainty of the sample mean
RMS Root mean square
RPM Revolutions per minute
X Sample mean
s Sample standard deviation
s2 Sample variance
p Specific density
ULSD Ultra low sulfur diesel
Ya Vapor mass fraction
Ya,s Vapor mass fraction at the droplet surface
Ya,oo Vapor mass fraction far from the droplet s
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Chapter 1
Introduction

The continual and unpredictable increase in petroleum prices and experiences with 

supply and demand has renewed the population’s interest in finding alternative sources of 

energy. Biodiesel is an integral part of the solution in alleviating the world’s dependence 

on fossil fuels due to the rapid and continuing depletion of non-renewable petroleum 

resources. Biodiesel is an alternative fuel produced from renewable resources with the 

potential to substantially reduce emissions associated with petroleum diesel usage. With 

properties exceeding conventional diesel fuel, biodiesel can be seen as a viable substitute. 

Impending regulatory changes will mandate low sulfur diesel fuel. Higher production 

costs will result as these changes will require additional treatment in order for diesel fuel 

to regain its former lubricity. Biodiesel has high lubricity and can be used in existing 

diesel engines with minor modifications depending on the blend of biodiesel used. 

Therefore, biodiesel offers an immediate and seamless way to fuel existing diesel 

vehicles. Biodiesel can also be used for fueling aircraft and has a potential for disaster 

remediation as stated by Wardle [56].

1
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Chapter 2
Objective

In mobility engineering applications, a clear understanding of the atomization and 

subsequent combustion of liquid fuels is critical for the development of propulsion 

devices.

The overall objective of this research is to provide insight into the viability of biodiesel as 

a transportation fuel. This will be accomplished by examining the combustion 

characteristics of biodiesel droplets.

There are two areas of interest in spray combustion. First, is the combustion of a single 

droplet. The second addresses the issue of droplet interaction within the spray that 

features randomly spaced droplets of various sizes. This thesis will fully explore the 

combustion of single droplets of biodiesel. A literature investigation has concluded that 

very little work has been done to experimentally characterize how biodiesel fuels bum in 

terms of the:

• Droplet burning rate constant (from the D2 relationship)

• Droplet liquid temperature

• Droplet flame temperature

• Droplet sooting characteristics

2
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First, an apparatus for studying single droplet combustion was designed and assembled. 

A single droplet of biodiesel fuel was placed on quartz filaments. An optical system 

allows for the visualization of the burning droplet and for capturing of image sequences. 

From the individual frames of the sequences, the droplet diameter was measured. The 

droplet lifetimes and their burning rate constants were determined from temporal 

variations of the square of the diameter.

A second experimental setup was assembled to determine the droplet liquid temperature 

during combustion.

A third setup was used to determine the droplet flame temperature during combustion. 

Finally, the fourth setup provided insight into the sooting characteristics of droplets.

3
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Chapter 3
Literature Review

3.1 Droplet Combustion

Spray combustion has many practical and relevant aspects in modem society especially in 

propulsion and energy-generating devices that are used everyday. These include, but are 

not limited to the internal combustion engine (diesel, gasoline, and other variants), 

rockets, gas turbines, boilers, furnaces, and process heaters. It is important to note that in 

these devices, droplet combustion is vital in order to folly understand the complexity of 

the flame kinetics. Droplet combustion is also of importance from a national security 

point-of-view. The United States Navy, Office of Naval Research stated that, “a 

systematic droplet combustion study is required in order to characterize foel combustion 

and to design methodologies to improve their combustion”, and with respect to soot, 

“excessive soot formation resulted in problems associated with signature detection 

particularly for weapons applications”. In addition, the National Aeronautics and Space 

Administration (NASA) and the European Space Agency (ESA) have also funded work 

in the area of droplet combustion.

Experimental studies of droplet combustion have utilized the following three methods:

1. Droplet suspension: a single droplet is suspended at the end of a thin quartz 

filament

2. Falling droplet: a freely falling single droplet or droplet stream

3. Porous sphere: a porous sphere with liquid foel fed to its interior at such a rate 

that the surface is just wetted enough to support combustion

4
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The strengths and weaknesses of the three methods will be briefly discussed.

Suspending a droplet can be setup and performed with relative ease. Ignition is 

accomplished by a single pulse discharge or a continuous pulse discharge. Since the 

droplet is stationary, accurate microphotography can be taken of the droplets burning 

sequence. Because of the thickness of the suspension filament, it is difficult to suspend a 

droplet smaller than 1 mm which is larger than typical droplet sizes (of 10 pm to 1000 

pm) within a spray. Nevertheless, this should not be of serious concern if the droplet size 

dependence is known. Suspending a droplet is limited to nonvolatile fuels. This is due to 

the fact that vaporization would have occurred during the period while suspending the 

droplet, priming the test area, and igniting the droplet [51].

Falling droplets offer the advantages of smaller drop sizes and the capability of using 

volatile fuels. To generate a droplet stream with uniform size and controlled spacing 

involves squeezing out droplets from a nozzled tube pressed against a piezoelectric 

transducer. By applying electric pulses, the transducer is deformed causing a pressure 

wave that forces a droplet out of the nozzle [51].

The porous sphere method conforms well with the steady-state gas-phase assumption 

associated with the D2 law and allows precise probing of the flame structure [51].

3.2 Biodiesel

Biodiesel is a complex mixture of various compounds known as mono-alkyl esters. 

Biodiesel is produced from fatty feedstocks such as canola oil, recycled cooking oils 

(fryer grease), rapeseed oil, soybean oil, com oil, sunflower oil, and animal fat (tallow or 

lard). These feedstocks are non-toxic, bio-degradable, and are renewable. The fatty acid 

composition of biodiesel derived from various sources and produced from different areas 

around the world can be seen in Table 3.1.

5
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Table 3.2 tabulates the chemical structure of the fatty acids found in biodiesel. From 

Table 3.1 and Table 3.2, it can be clearly seen that biodiesel is a highly multi-component 

fuel composed of many constituents. The chemical composition of fat and oil esters is 

dependent upon the length and degree of unsaturation of the fatty acid alkyl chains.

Table 3.1 - Typical analyses of soybean and canola-based biodiesel (wt%) [60]

Fatty Acid Central Brazil 
Soybean Oil

NE Brazil 
Soybean Oil

US Midwest 
Soybean Oil

Typical 
Ranges for 

US Soybean 
Oil

Typical 
Canada #1 
Canola Oil

Palmitic 10.7 9.3 10.14 10.6-11.2 3.9

Stearic 3.4 3.1 4.20 4 .4 -5 .6 2.0

Oleic 21.3 33.8 24.31 25.4 - 28.9 61.5

Linoleic 56.4 48.3 51.47 48.3 - 52.0 19.1

Linolenic 8.2 5.5 8.31 5.1 -6.1 9.9

Margaric n/a n/a 0.11 n/a n/a

Arachidic n/a n/a 0.35 n/a 0.7

Gadoleic n/a n/a 0.19 n/a 1.4

Behenic n/a n/a 0.37 n/a 0.4

Lignoceric n/a n/a 0.12 n/a 0.2

Other n/a n/a 0.17 n/a 0.9

Table 3.2 - Chemical structure of fatty acids found in biodiesel [60]

Acid Chain # o f Carbons Structure
Caprylic 8 CH3(CH2)6COOH
Capric 10 CH3(CH2)8COOH
Laurie 12 CH3(CH2)10COOH

Myristic 14 CH3(CH2)12COOH
Palmitic 16 CH3(CH2)u COOH

Palmitoleic 16 CH3(CH2)5CH=CH(CH2)7COOH
Stearic 18 CH3(CH2)16COOH
Oleic 18 CH3(CH2)7CH=CH(CH2)7COOH

Linoleic 18 CH3(CH2)4CH=CH(CH2)CH=CH(CH2)7COOH
Linolenic 18 CH3(CH2)CH=CH(CH2)CH=CH(CH2)CH=CH(CH2)7COOH
Arachidic 20 CH2(CH2)18COOH
Eicosenoic 20 CH3(CH2)7CH=CH(CH,)qCOOH

Erucic 22 CH3(CH2)7CH=CH(CH2)uCOOH

There are four methods to produce biodiesel: transesterification, blending, microemulsion, 

and pyrolysis (thermal cracking). Transesterification is the most commonly used method 

in producing biodiesel and will be briefly introduced. It is the reaction of a lipid with an

6
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alcohol to form esters and glycerol. Typically, a basic catalyst such as sodium hydroxide 

is used to convert the glycerol based tri-esters which are composed of fats and oils to 

methanol based mono-esters yielding free glycerol as a byproduct. Glycerol is nearly 

insoluble in biodiesel and in the feedstock oil and therefore forms a separate liquid phase. 

The biodiesel may require distillation to remove traces of glycerides, and the glycerol 

may be purified by vacuum distillation. Ethanol or other alcohols may be used in the 

transesterification process. These are generally less cost effective to use, and are not as 

easily reacted with the fat or oil as is methanol [28].

Biodiesel can be produced from a variety of feedstocks. Canadian biodiesel is mainly 

derived from canola, while the United States uses soybean. In Europe, rapeseed is 

heavily used, and in Southeast Asia, palm oil is used. This reflects the agricultural 

practices of these regions.

Biodiesel has a higher cetane number (51 to 62) than petroleum diesel (48 to 50). This 

broad range of cetane numbers is a result of the differences in the fractional conversion of 

triglycerides to esters and by the presence of residual methanol and glycerol in the fuel 

[28]. The cetane number indicates how readily a fuel will auto-ignite. The higher the 

cetane number, the shorter the delay between the injection and the ignition which will 

result in improved cold start, less noise, and reduced white smoke.

Biodiesel is naturally high in lubricity. Agarwal et al. [2] mentioned that the use of 

biodiesel resulted in 30 % less wear of engine components when compared to using ultra 

low sulfur diesel. The problem associated with the lubricity of petroleum diesel is due to 

the desulfurization stage at the oil refinery plants. This desulfurization is a result of 

government regulations to reduce sulfur content. During this process, compounds 

containing polar heterocyclic nitrogen (which contribute to the lubricating property of the 

fuel) are also removed along with sulfur. This desulfurized fuel causes premature engine 

wear. Oil refineries add lubricity additives to restore lubricity. Biodiesel does not have 

this problem, and it can act as a lubricity additive for petroleum diesel.

7
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Biodiesel is essentially free of sulfur. The sulfur is converted to sulfur oxide in the 

tailpipe and a fraction of the sulfur oxide is converted to sulfuric acid, which is classified 

as a particulate - a regulated pollutant. Sulfur oxides are also regarded as air pollutants. 

Generally, biodiesel produces less harmful emissions as it can be seen in Table 3.3.

Table 3.3 - Emissions from biodiesel usage

%
Brake specific fuel consumption + 15
Nitrogen oxides + 10
Hydrocarbons - (20 to 50)
Carbon monoxide - (25 to 35)
Particulate matter - (30 to 50)
Visible Smoke - (60 to 80)
Polycyclic aromatic hydrocarbons - (75 to 80)

There is a tendency for brake specific fuel consumption and nitrogen oxides to increase 

while hydrocarbons, carbon monoxide, particulate matter, visible smoke, and polycyclic 

aromatic hydrocarbons decrease. Brake specific fuel consumption is a measure of an 

engine’s efficiency. It is the rate of fuel consumption divided by the rate of power 

production. The increase in nitrogen oxides is due to atmospheric nitrogen through 

reactions that occur in the cylinder at peak combustion temperatures.

The demand for biodiesel continues to grow throughout various major parts of the world 

such as the United States and Europe. Figure 3.1 delineates the demand for biodiesel in 

Canada. It is expected that this trend will continue in Canada and the rest of the world 

because of growing concerns over national security (dependence on foreign energy 

sources), economic, and greenhouse gas / climate change issues. From an economic 

standpoint, biofuels are meant to supplement or replace liquid petroleum fossil 

hydrocarbon fuels as future demand begins to surpass supply.

8
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Figure 3.1 - Demand for biodiesel in Canada

2003

The cost of biodiesel is currently higher than that of petroleum diesel. Table 3.4 shows 

the cost of biodiesel in various parts of the United States. As with any emerging fuel, 

cost will be high at first. With the assistance of government subsidies, costs will 

gradually stabilize and will become more economically attractive as the infrastructure 

develops and technology to produce the fuel matures.

Table 3.4 - The cost of biodiesel in various parts of the United States 
[Alternative Fuels Index, May 2004]

US$/USG
City B100 Price Diesel Price Biodiesel

Premium
Providence 1.96 1.14 0.83
Oklahoma City 1.98 1.15 0.83
Dallas 2.00 1.18 0.82
Jackson 2.03 1.11 0.90
Boston 2.03 1.14 0.90
Louisville 2.05 1.13 0.92
Minneapolis 2.07 1.17 0.90
Madison 2.08 1.13 0.95
Portland 2.08 1.13 0.95
Birmingham 2.10 1.09 1.01
Houston 2.10 1.10 1.00
Kansas City 2.10 1.16 0.94
Little Rock 2.10 1.11 0.99

9
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At present, fueling a diesel engine with biodiesel poses some technical challenges. This 

is mainly due to the high viscosity associated with biodiesel when compared to petroleum 

diesel fuel, which can be seen in Table 3.5. The viscosity is due to the triglycerides that 

are unfortunately associated with biofuels.

Table 3.5 - Biodiesel and diesel differences [3]

Type Dynamic
viscosity

Density Kinematic
viscosity

Surface
tension

mPa-s kg/m3 mm2/s mN/m
Peanut 3.69 861.1 4.29 28.70
Canola 3.61 853.6 4.23 28.79
Coconut 2.25 813.1 2.77 26.82
No. 2 Diesel 2.13 851.9 2.5 24.00

The high viscosity can cause the injection nozzles and piston ring grooves to coke, and 

makes operation difficult at low temperatures, in addition to decreasing the performance 

of the atomization of the injected fuel. Other problems are insufficient stability, low 

resistance to cold, and poor elastomer compatibility.

Biodiesel has a limited shelf life of six months. This is due to the oxidative degradation 

from anaerobic bacteria which is termed oxidative stability. Biofuels can demonstrate 

instability in several ways. They can be hydrolyzed by water, or oxidized, especially in 

the presence of both water and oxygen, and they can be attacked by both aerobic and 

anaerobic bacteria and molds (fungi). These microbes, which are activated by the small 

amounts of water that are typically present in fuels and their storage facilities, consume 

minute amounts of fuel and create biomass that can block fuel lines. Water present in the 

fuel can cause the formation of rust, and in the presence of acids and hydroperoxides 

formed by fuel oxidation, lead to corrosion. The main source of instability in biodiesel 

fuels is the unsaturation of the fatty acid chains which are susceptible to biological attack. 

Although other liquid fuels do not exhibit such a biological behavior, water is almost 

always present and may be unavoidable in real-world use.
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Research is currently being undertaken by automotive and engine manufacturers, as well 

as academic institutions and research organizations in order to understand the effects of 

fueling an engine with biodiesel. Just to mention briefly: Scholl et al. [40] had problems 

with the fuel pump and injector system. Ma et al. [28] noticed severe injector coking led 

to decreases in power output and thermal efficiency. Wardle [56] had blocked fuel filters. 

Agarwal et al. [1] observed a decrease in thermal efficiency. During extensive field trials 

conducted by diesel fuel injection equipment manufacturers in collaboration with 

customers, the following injection equipment and engine problems were identified:

• Corrosion of components

• Low pressure fuel system blockage

• Increased dilution and polymerization of engine sump oil

• Pump seizures

• Increased injection pressure

• Elastomeric seal failures

• Fuel injector spray hole blockage

The likelihood of these problems occurring is greater for engines that are not used 

regularly such as seasonal vehicles (snow removal vehicles, etc.)

11
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Chapter 4
Theory of Droplet Combustion

4.1 D2Law

In droplet combustion, the D2 law is used to describe burning of fuel droplets. The 

coordinate system is defined in the following figure.

Flame position

r*

Figure 4.1 - Evaporation of a liquid droplet

The coordinate variable is r, and its origin is at the center of the droplet. The droplet 

radius is defined as rs. The heat from the ambient environment supplies the necessary 

energy to vaporize the liquid. Then the vapor diffuses from the droplet surface into the 

ambient gas. The droplet radius will decrease with time until the droplet is completely 

evaporated (rs = 0) due to mass loss. Solving the mass flow rate of the vapor from the 

surface at any instant in time will allow for the calculation of the droplet radius as a 

function of time.
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In order to reduce the number of unknowns and hence equations, the following four 

assumptions are made:

The first assumption is that the evaporation process is quasi-steady where at any instant 

in time, the process can be described as if  it were steady state. Therefore, the need for 

differential equations is eliminated.

The second assumption is that droplet temperature is uniform, and that the temperature is 

to be some fixed value below the liquid boiling point. The transient heating of the liquid 

does not affect the droplet lifetime. Determining the temperature at the droplet surface 

depends on the heat transfer rate to the droplet. Therefore, assuming a specified 

temperature eliminates the need to apply conservation of energy to the gas phase 

surrounding the liquid droplet and the droplet itself.

The third assumption is that the mass fraction of vapor at the droplet surface is 

determined by liquid-vapor equilibrium at the droplet temperature.

The final assumption is that all thermo-physical properties, specifically density p and 

mass diffusivity D  are constant, thereby allowing a simplified closed-form solution even 

though properties may vary through the gas phase from the droplet surface to the 

surroundings.

The mass evaporation rate m and the droplet radius history rs(t) can be found by writing 

a droplet vapor species conservation equation and a droplet liquid mass conservation 

equation. Species conservation will determine the evaporation rate thereby yielding the 

droplet size as a function of time. Overall mass conservation can be expressed as

rh(r) = constant = 4nr2 m" (4.1.1)

where m"=mA"+mB"=mA" since mB" = 0. Note, mA" and mB" represent the overall 

conservation of mass of gas A and gas B  respectively. Mass flow rate is constant and 

mass flux is not. Species conservation for the droplet vapor becomes

13
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mA”=YAm /- p D
AB

d r,
dr

(4.1.2)

Recall m = mA . Solving m by substituting Equation (4.1.1) into Equation (4.1.2) yields

m = -4m-' pPAs dYA 
1 - Y 4 dr

(4.1.3)

Applying the boundary condition (at the droplet surface, the vapor mass fraction is YA)S), 

YA(r = rs)  = Ya ,s yields

Y  =  1 (1  ~  Y a ,s ) exp[- m !{4npDABr)\ 
exp[- m / 4npDABrs ]

(4.1.4)

The evaporation rate is determined by letting YA -  Ya for r —> q o  and solving for m

m - 4ms pDAB In (1 - ya,j
(4.1.5)

Taking the logarithm of Equation (4.1.5) is used to define the dimensionless transfer 

number B y. Doing so, will show how the vapor mass fractions at the droplet surface and 

far from the surface affect the evaporation rate.

1+ BV
1 - 7 A, oo

1 -7 ,
(4.1.6)

A,s

Using the transfer number, the evaporation rate is expressed as 

m = 4mspDAB ln(l + Br) (4.1.7)

From Equation (4.1.7), when the transfer number is 0, the evaporation rate is 0. Likewise, 

as the transfer number increases, the evaporation rate increases. From a physical sense 

standpoint, the mass fraction difference (YAyS - YA/X) can be interpreted as a driving 

potential for mass transfer.
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The droplet mass conservation is used to obtain the droplet diameter profile by writing a 

mass balance that states that the rate at which the mass of the droplet decreases is equal to 

the rate at which the liquid is vaporized.

dm.,
— d-  = -m  (4.1.8)

dt

where the droplet mass mj is determined by

™<=P,V = ~ -  (4-1-9)o

where V is the droplet volume and D (= 2 rs) is the droplet diameter. Substituting 

Equation (4.1.9) and Equation (4.1.7) into Equation (4.1.8) yields

dD _ 4pDAB ln(1 + B^  (4.1.10)
dt p tD 

Equation (4.1.10) is normally expressed as

dD2 8 pDAB

dt Pi
ln(l + By) (4.1.11)

Taking the time derivative of Equation (4.1.10) indicates that the droplet diameter is 

constant. Therefore, D2 varies linearly with time with a slope of ~(8pDAB/pt)ln(l +By). 

This slope is known as the burning constant k.

k = ^ ^ l n ( l  + Br) (4 .1.12)
Pi

To determine the time it takes a droplet of given initial size to evaporate completely 

(known as the droplet lifetime tj), Equation (4.1.11) or Equation (4.1.10) can be used. 

Therefore,

o td

\dD 2 = - f a t  (4.1.13)
Dl 0

which yields
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Changing the upper limits of Equation (4.1.13) provides a general relationship expressing 

the variation of diameter with time.

D \ t )  = D l - k t  (4.1.15)

Equation (4.1.15) is known as the D2 law for droplet evaporation. This law can be used 

to describe the pyrolysis of fuel droplets

4.2 Soot Formation

Wamatz [57] designated soot as a specific class of particulate matter. It is technically 

defined as the black solid product of incomplete combustion or pyrolysis of fossil fuels 

and other organic materials.

Soot is formed in the narrow region on the fuel-rich side of a diffusion flame. Most of 

the soot is burned with the fuel at the diffusion flame. The fraction of soot that is not 

oxidized becomes exhaust emission.

In its pure form, soot is physiologically inert. Since soot is a good absorbent, it plays 

important roles as an industrial filler and pigment (such as carbon black). However, soot 

is also an air pollutant (namely diesel soot) containing toxic and carcinogenic aggregates 

such as polycyclic organic matter.

Soot is primarily composed of carbon (> 80%) and consists of agglomerated particles 

with diameters on the order of 10 nm to 30 nm comprising of crystalline and amorphous 

structures.
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Soot particles encountered in diesel engine combustion have a size distribution over a 

range from a few nanometers to 70 nm. The shape of the individual particle is roughly 

spherical though they may form non-spherical agglomerates in the exhaust.

The generalized chemical formula of soot is CgH. Soot is organized in straight or 

branched chains of spherical or near-spherical particles adhering to one another, each 

with a diameter of 10 nm to 30 nm and containing approximately 106 carbon atoms.

Flame temperatures within the range of 1000 °C to 2500 °C will emit soot.

The physical structure of a soot molecule can be found in the form of a platelet, 

crystallite, or particle.

Soot formation consists of multiple complex reaction mechanisms. Soot formation first 

begins with the pyrolysis or oxidative pyrolysis of a hydrocarbon fuel. Subsequently, 

polymerization of the particle-like structures arises followed by either surface growth or 

coagulation of the molecules. This particle inception takes place between 500 amu and 

2000 amu. Afterwards, aggregation of the molecules occur leading to oxidation of the 

hydrocarbon fuel to form soot. Soot formed depends strongly on the initial fuel structure.

Understanding soot generation in hydrocarbon fuels is fundamental in establishing 

practical strategies for increasing combustion efficiency, and at the same time, limiting 

particulate matter emissions.

Diesel engines offer substantial fuel economy advantages for road transportation. 

However, more stringent standards are being introduced for diesel engines. In order to 

meet these impending regulations, a clear understanding of the combustion process and 

emission formation in a diesel engine is critical for engine researchers / designers. The 

developments of various techniques for analyzing the combustion and pollutant formation 

in diesel engines are the result of intense interest in reducing exhaust emissions. Soot
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formation and oxidation in a diesel engine are complicated and difficult to examine. The 

study of soot involves the use of physical probing and optical techniques.

Physical probing is usually performed by a fast sampling valve capable of providing 

information on the chemical composition of soot as well as soot concentration 

measurements. In-cylinder sampling is another physical technique.

18
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Chapter 5
Methodology and Procedures

Three fuels and their blends, as well as synthetic diesel were selected based on 

availability to undergo droplet combustion evaluations. The following chapter explains 

in detail the four tests the fuels and their blends underwent. Each measurement was 

conducted 10 times and based on those measurements, the sample mean was calculated 

and used. Table 4.1 illustrates the percentage blends of fuels that were tested. The 

synthetic diesel was derived from recycled tires and the flyer grease was originally 

canola oil.

Table 4.1 - Blends of fuel tested (%)

ULSD Fryer Grease Biodiesel Ethanol
1<30

80 20
50 50
95 5

100
80

50 50
.. 5 95

1()0
50 50

Droplets of various volumes were initially tested to determine the best volume for fuel 

delivery and ease of ignition. A volume of 5 mm3 was initially tried. The droplet was 

too large and fell off the filament and thermocouple. Next, 4 mm3 and 3 mm3 of fuel 

were attempted. For both of those volumes, the droplet rested on the filament, but not on 

the thermocouple. Upon ignition, the burning droplet fell off the filament. Subsequently,
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1

2 mm of fuel was tested and was found to rest quiescently on the filament and 

thermocouple. For consistency, 2 mm of fuel was used for all experiments.

Pre-heating the fuel droplet was investigated to determine if transient heating would have 

any effects on the diameter and flame diameter. It was determined that elevating the 

droplet’s temperature does not affect the droplet burning rate constant. Turns [51] also 

came to the same conclusion.

Both horizontal and vertical arrangements of the quartz filaments were initially tested. It 

was decided to use the vertical arrangement for diameter and flame diameter 

measurements due to background lighting effects associated with the horizontal filaments.

The time constant or response time is the time required by a sensor to reach 63.2 % of a 

step change in temperature under a specified set of conditions. Five time constants are 

required for the sensor to approach 100 % of the step change value. An exposed-junction 

thermocouple is the fastest responding and was chosen to be used for liquid and flame 

temperature measurements. Table 5.2 lists the response time (from the Omega 

Temperature Handbook [62]) of the thermocouples with various wire diameters. The 

junction diameter is 2.5 times the wire diameter.

Table 5.2 - Thermocouple response times

Type Wire Diameter Response Time
(s)mm in

K
0.13 0.005 0.04
0.25 0.010 0.22
0.38 0.015 0.40

S
0.025 0.001 0.002
0.075 0.003 0.021
0.130 0.005 0.040

Thermocouple wire diameters of various sizes were initially tested to allow for the fastest 

response time. A diameter of 0.003 in was initially tried. The droplet was too large and 

fell off the thermocouple. Next, a 0.005 in diameter was attempted. The droplet rested 

on the thermocouple junction, but fell off when the pilot flame was brought into the
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vicinity of the droplet. Finally, a 0.010 in diameter was tested and was found that the 

droplet rested quiescently and ignited in the presence of the pilot flame.

5.1 Diameter Measurements

Droplets of each fuel were suspended at the spherical end of a 1 mm diameter quartz 

filament in a vertical position. A 5 pL Hamilton high precision micro-syringe fitted with 

a specialized Chaney adapter was used to deliver the fuel in order to maintain a constant 

volume of 2 mm3. The Chaney adapter secures the plunger location to allow repeatable 

volume deliveries. Figure 5.1 shows the vertical and horizontal quartz filament 

orientations.

Verticalo
Horizontal

Figure 5.1 - Quartz filament orientations

Figure 5.2 illustrates the apparatus used in determining droplet diameter. A macro lens 

with a magnification ratio of 1:1 was coupled with a CCD camera at a resolution of 512 x 

240 pixels capturing at 125 fps was used to acquire the images as the droplets were 

burning. The time history of the droplet diameter over its burning duration was used to 

calculate the burning rate constants.

Ignition of the droplet was made via an adjustable firing spark mechanism composed of 

fully adjustable needle-like tungsten electrodes.
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Macro fens, 1:1 magnification ratio
0~VR> ..

—■■8WHI

; merit

Figure 5.2 - Optical apparatus for droplet diameter testing

To determine the diameter of the droplets, sequential images of the droplets were 

recorded. Figure 5.3 illustrates a series of frames from a high-speed movie capturing the 

entire biodiesel burning sequence. Both the droplet and filament can be seen at time t -  

0.0 s as the droplet rests on the filament. Droplet diameters were subsequently measured 

from a sequence of images, such as those shown in Figure 5.3. To determine the burning 

rate constant k, a line was fitted over the square of the diameter with respect to time.

Figure 5.3 - Biodiesel droplet burning sequence

For each frame, a histogram representing the changes in grey-scale intensity during the 

burning sequence of a droplet was obtained as shown in Figure 5.4. A change in the 

grey-scale intensity of the image was defined as the edge of the droplet. On average, 100 

frames were processed for each trial.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



\ J X ' J  v

Initial Burning

Figure 5.4 - Histogram representing the droplet burning sequence

5.2 Flame Diameter Measurements

Figure 5.5 defines the bounds where the diameter, D and flame diameter, Df 

measurements were taken. The flame diameter measurements were obtained using the 

same procedure as droplet diameter measurements. The only difference was in the setup 

of the equipment. The camera position was adjusted in order to adequately capture the 

flame. The aperture of the camera lens was reduced to prevent over-saturation from the 

brightness of the flame.

Figure 5.5 - Diameter and flame diameter dimensions
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5.3 Liquid Temperature Measurements

Temperature histories of the liquid phase were obtained by placing a single droplet of 

fuel on an exposed-junction K-type thermocouple connected to the apparatus shown in 

Figure 5.6. Ignition was made by a pilot flame that was brought in when required for 

ignition and the droplet was placed on the thermocouple as shown in Figure 5.7. The 

temperature histories during the combustion phase were recorded and used to evaluate the 

boiling temperatures of the various fuels. A sampling rate of 1000 Hz was used to avoid 

aliasing of repetitive information and so that clean signals can be extracted from high 

noise environments.

The traversing mechanism in Figure 5.6 has two degrees of freedom allowing motion in 

the positive and negative x- andy-direction.

Figure 5.6 - Apparatus for temperature measurements

Figure 5.7 shows the droplet suspended on the thermocouple. The thermocouple was 

held stationary inside the droplet during the measurement of the droplet liquid 

temperature. The droplet was carefully placed by the micro-syringe. Due to gravitational 

effects, the droplet hung slightly downwards.
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Figure 5.7 - K-type thermocouple positioning

A National Instruments LabVIEW program was written to acquire and preview the 

temperatures before post-processing in Microsoft Excel. Shielded thermocouple wires 

were used to prevent noise interference. Considering the sampling rate, a running 

average of the temperature history profiles with a 200 sample window resulted in 

smoother plots. This is clearly evident as it can be seen in Figure 5.8 and Figure 5.9. 

Figure 5.8 shows the temperature history profile before applying the running average and 

Figure 5.9 illustrates the result of the running average.
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Figure 5.8 - Biodiesel temperature history without averaging
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Figure 5.9 - Biodiesel temperature history with averaging

5.4 Flame Temperature Measurements

In order to accurately determine the flame temperature, an S-type thermocouple was 

chosen. Exposed-junction S-type thermocouples have the necessary range (0°C to 

1450°C) that are typical of flames. For example, Strehlow [50] stated that a buoyant 

laminar hydrogen diffusion flame has a maximum flame temperature of 1227°C.

Flame temperature measurements were taken every 2 mm along the flame’s vertical axis 

above the droplet and at one location below the droplet with the apparatus shown in 

Figure 5.6. One should note that for each location, ten trials were conducted. Therefore, 

each point on the flame temperature profiles represents an average of the maximum 

temperature of 10 trials over the entire droplet burning lifetime. The maximum 

temperatures occurred at different times during the droplet burning lifetime. Ignition was 

made via a pilot flame.
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Figure 5.10 shows the position of the thermocouple held stationary at the underside of the 

droplet. The thermocouple was incrementally moved upwards at the top to obtain 

spatially varying droplet flame temperatures.

Figure 5.10 - S-type thermocouple positioning

The same data processing method was used as in the droplet liquid temperature 

measurements.

5.5 Flame Transmisivity Measurements

A Coherent Innova 70 water-cooled argon ion laser was used to determine the flame 

transmisivity under various experimental conditions such as varying temperatures, 

altering filament orientation, and changing droplet volume. Flame transmisivity 

measurements are representative of sooting characteristics and are a precursor to 

quantifying soot volume fraction measurements. Figure 5.11 illustrates the setup. The 

droplet was suspended at varying heights in order to determine soot emissivity over the 

entire flame length and ignition was made by a pilot flame that was brought in when 

required for ignition.
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Figure 5.11 - Experimental setup for soot measurement

Figure 5.12 - Ar-ion laser beam crossing the flame at incremental heights

laser detector

O  
droplet

Figure 5.13 - Ar-ion laser setup

After the laser beam passed the flame, a laser power measurement was recorded and 

compared with the beam power with no droplet to determine laser power attenuation. 

The lowest value from the soot profiles (Figure 5.14 to Figure 5.20) were plotted since 

they represented the maximum soot absorption. The preceding figures are representative 

of the steps taken. An explanation is as follows to assist in interpreting the figures 

correctly:
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In Figure 5.14, Figure 5.16, and Figure 5.18, a dip or a decline and an increase is evident. 

This dip occurs when the droplet ignites in the path of the laser beam. For example, in 

Figure 5.14, the laser beam had a stable signal attenuation. Once an interference (the 

burning droplet) is brought into the path of the laser, a dip arises. Heating the droplet 

causes a larger dip, meaning more soot blocked the signal being registered from the laser 

measurement detector. In other words, heating causes more soot which effectively blocks 

the laser beam. Once the droplet completes combustion, the laser signal rises back to its 

original set-point.

In Figure 5.15, Figure 5.17, and Figure 5.19, an elevation or an increase followed by a 

decrease is apparent. In this situation, no laser beam was used. The laser measurement 

dectector only recorded the luminosity of the droplet burning. The elevation occurs when 

the droplet ignites. At first, the detector reads zero, since there is no combustion. Once 

combustion is initiated, the detector registers the burning droplet, which is represented by 

the elevation. Once combustion ends, the detector returns to reading zero.

Figure 5.19 depicts the various stages that occurred when the soot profile of biodiesel 

was recorded. In the first stage, the pilot flame is brought in to allow the droplet to ignite. 

Then, the pilot flame is removed. Afterwards, the droplet ignites. Finally, the droplet 

completes combustion.

Figure 5.20 illustrates the testing and verification of the response time of the laser power 

measurement meter. This was done to ensure that the laser power measurement meter 

was logging the proper value. The response time was 1.6 s and the time it takes for the 

measurements to be taken was 2 s. The slight rise within the dip is an indication of the 

sudden fragmentation or micro-explosion of the biodiesel fuel droplet. This micro­

explosion was due to the fact that biodiesel is a multi-component fuel where some 

fractions boil at lower temperatures causing break-up of the droplet.
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Figure 5.14 - Heated ULSD soot profile with laser
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Figure 5.15 - Heated ULSD soot profile without laser (only droplet)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



La
se

r 
Si

gn
al

 A
tte

nu
at

io
n 

(W
) 

La
se

r 
Si

gn
al

 A
tte

nu
at

io
n 

(W
)

0.26
ULSD 
V = 2 mrri

0.24

0.22

0.2

Room temperature of 19°C
0.18

0.16
Heated to 98°C

0.14

0.12
0 1 6 102 3 4 5 7 8 9

Time (s)

Figure 5.16 - Heated ULSD soot profile with laser
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Figure 5.17 - Heated ULSD soot profile without laser (only droplet)
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Figure 5.18 - Heated biodiesel soot profile with laser
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Figure 5.19 - Heated biodiesel soot profile without laser (only droplet)
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Figure 5.20 - Heated biodiesel soot profile with laser
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Chapter 6
Results and Discussion

6.1 Liquid Temperature Measurements

Figure 6.1 exhibits the typical recorded temperature profile for all the fuels with a total 

observation time of 20 s. Note that droplet lifetimes were approximately 1.6 s from the 

peak temperature towards the droplet creation time t = 0 s. Figure 6.1 also shows the 

characteristic points of the temperature profiles. The figure represents the temperature 

profile of ethanol (it was arbitrarily chosen as an example). Point A signifies droplet 

ignition, while Point C denotes completion of the droplet vaporization process. Within 

Points B and C, the liquid phase continues to boil. It was suspected that the period 

between Points C and D, signifies combustion of the remainder of the vaporized fuel.
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Figure 6.1 - Temperature profile highlighting characteristic points

Peak temperatures are tabulated in Table 6.1. Biodiesel had the highest peak temperature, 

followed by ultra low sulfur diesel, synthetic diesel, and lastly ethanol. Peak 

temperatures increased as higher levels of biodiesel were blended into ultra low sulfur 

diesel and ethanol as illustrated in Figure 6.3 to Figure 6.6.

Table 6.1 - Average peak temperatures (°C)

B100 ULSD El 00 Synthetic
Diesel

50/50
ULSD/Ethanol

584 481 293 449 432

B5 B20 B50
465 476 537

B5 + Ethanol B20 + Ethanol B50 + Ethanol
291 443 502

All temperature profiles exhibited four characteristic points as described in Table 6.2.
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Table 6.2 - Definition of the temperature characteristic points

Point Observation
A —► B Warm-up (heating of the droplet to its boiling temperature) and 

combustion.
B —> C Combustion of the droplet with the liquid phase boiling.
C —> D Bum-off of vaporized fuel.
D —»E Thermocouple cool-down.

The boiling temperatures of biodiesel, ultra low sulfur diesel, and ethanol were within 

published values similar to those of Tyson [52], Maly [31], and Hodgman [18] 

respectively. Table 6.3 shows the measured boiling temperatures along with their 

associated referenced values.

Table 6.3 - Boiling temperatures of the fuels

Fuel Boiling Temperature (°C)
Measured Referenced

Biodiesel 300 to 385 182 to 338
ULSD 250 to 315 186 to 337

Synthetic Diesel 180 to 300 -

Ethanol 90 78.3

Figure 6.2 graphically summarizes the measured and referenced boiling temperature 

ranges. The boiling temperatures for biodiesel, ultra low sulfur diesel, and ethanol tend 

to situate on the upper bounds of the referenced boiling temperature ranges. This was a 

result of conduction along the thermocouple wires from the flame. The reference range 

for synthetic diesel was not given. Instead, a target range similar to that of ultra low 

sulfur diesel was used since the synthetic diesel was designed to meet or exceed the 

performance of petroleum diesel.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600

500

400
o0 

!
1  300 
a>a.
E
£

200

100

0

Figure 6.3 shows the temporal variations of the droplet liquid temperature for all the fuels. 

Biodiesel had the highest liquid temperature while ethanol had the lowest. Figure 6.4 to 

Figure 6.6 displays the temperature profiles grouped by no blends, biodiesel / diesel 

combinations, and biodiesel / ethanol combinations.

Figure 6.4 depicts the liquid temperatures starting from lowest to highest of the no blend 

group. Ethanol had the lowest liquid temperature, followed by 50/50 ULSD / ethanol, 

synthetic diesel, ultra low sulfur diesel, and biodiesel. It should be noted that a 50 % 

blend of ultra low sulfur diesel and ethanol was included in this group for comparative 

purposes. These observations are noted on the figure where the arrow indicates 

increasing temperature.

In Figure 6.5, generally the liquid temperature increases as biodiesel concentration is 

increased. The temperature for B50 is located between the temperature of ultra low
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Figure 6.2 - Observed droplet boiling temperature ranges
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sulfur diesel and biodiesel which makes sense since B50 consists of half diesel and half 

biodiesel.

Figure 6.6 clearly shows that liquid temperatures increase as biodiesel is blended more 

into ethanol. Recall, these observations are noted on the figure where the arrow indicates 

increasing temperature.
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Figure 6.3 - Temporal variations of droplet liquid temperature - all fuels
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Figure 6.4 - Temporal variations of droplet liquid temperature - no blends
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Figure 6.5 - Temporal variations of droplet liquid temperature - biodiesel/diesel combinations
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Figure 6.6 - Temporal variations of droplet liquid temperature - biodiesel/ethanol combinations

6.2 Diameter Measurements

It was conjectured that biodiesel will adhere to the D2 relationship similar to other fuels 

such as ultra low sulfur diesel and ethanol.

Figure 6.7 and Figure 6.8 represents the liquid temperature profiles (with the three 

transient stages defined) of biodiesel and ethanol respectively. The first transient stage is 

the initial transient or the fuel warm-up. The burning rate constant for the first stage is a 

function of time and will be termed k/(t). The second transient stage is the boiling-off 

period or the fuel distillation curve. For multi-component fuels the burning rate constant 

will also be a function of time, k2 (t). However, for single component fuels k2 will be 

independent of time. The last stage is a function of time and is known as the final 

transient or the bum-off of the vapour bubble, k3(t).
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Figure 6.9 to Figure 6.12 illustrates the burning rate constants with the transient stages 

(multi-staged burning rate constants) of biodiesel, ultra low sulfur diesel, ethanol and B50 

respectively. The multi-staged burning rate constants were calculated for all fuels and 

their blends and are located in Table 6.4.

In Table 6.4, some values were missing due to insufficient amount of data except for 

ethanol since it is a single-component fuel with only k2 . It can be seen that the burning 

rate constants are quite different when comparing k  that was taken over the entire droplet 

lifetime (Table 6.5) versus k  that was taken in multiple stages (Table 6.4). For some of 

the fuels, the initial transient stage had values that were higher than expected. The 

boiling-off period had values that tend to situate on the upper range of the reviewed 

literature. Not all of the fuels had a final transient stage.

The burning rate constants were calculated based on the diameter measurements 

mentioned in this section. Specifically, a linear regression was applied to Figure 6.14 to 

Figure 6.17 for the entire droplet lifetime. The results of applying the linear regression 

yielded the burning rate constants listed in Table 6.5. In doing so, it was determined that 

the values presented in Table 6.5 did not accurately represent the “true” burning rate 

constant since Figure 6.14 to Figure 6.17 (temporal variations of the square of the 

diameter) or Figure 6.18 to Figure 6.21 (normalized temporal variations of the square of 

the diameter) had various transient stages. There are three transient stages which can be 

easily seen by observing the liquid temperature profiles in Section 6.1 and in the 

following two figures.
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Figure 6.7 - Biodiesel liquid temperature profiles with transient stages
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Figure 6.8 - Ethanol liquid temperature profiles with transient stages
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Figure 6.9 - Multi-staged burning rate constant of biodiesel
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Figure 6.10 - Multi-staged burning rate constant of ULSD
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2.5
B50

k | = 0 .6  m m 2/s
2.0

££
a

k3 = 1.0 m m 2/s

0 .5

0.0
0 0.5 1.5 2 2.5

Time (s)

Figure 6.12 - Multi-staged burning rate constant of B50
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Table 6.4 - Multi-staged burning rate constants (mm2/s)

B100 ULSD El 00 Synthetic
Diesel

50/50
ULSD/Ethanol

ki 1.2 0.9 0.8 0.6
k2 1.0 1.2 0.9 1.2 0.9
k3 1.1 1.2

B5 B20 B50
ki 0.4 0.5 0.6
k2 1.0 1.2 1.2
k3 1.2 1.0

B5 + Ethanol B20 + Ethanol B50 + Ethanol
ki 1.7 1.1 0.9
k2 1.2 1.0 1.1
k3 1.1 1.0

This following calculates the burning rate constants for the entire droplet lifetime. Figure 

6.13 shows that all the fuels tested had a burning constant within the range of 0.92 mm2/s

to 1.16 mm /s. Chomiak [8] reported the burning rate constants for the majority of
2 2practical fuels fall within a narrow range of 0.70 mm /s to 1.10 mm /s. Makino [30] 

stated the burning rate constant for conventional hydrocarbon fuels is about 1.00 mm2/s. 

They observed changes of droplet diameter squared over time were linear which was 

confirmed from the results in Figure 6.14 and Figure 6.18. Fuels with higher molecular 

weight will tend to deviate from this pattern. This is due to enhanced radiant heat 

transfer caused by more intense soot formation for other fuels. A crucial factor affecting 

the burning rate is the convective gas flow around the burning droplet.

Results from previous trials using the first-generation ignition system (with free hanging 

electrodes) are located in the Appendices. Results reported in the main body of this 

thesis utilize the current ignition system (with fine-tipped fully adjustable tungsten 

electrodes). Photographs illustrating the differences between the two ignition systems are 

also located in the Appendices. The latter ignition system was chosen to prevent heat 

transfer and because it did not interfere with the droplets’ shape.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.13 - Burning rate constants

Table 6.5 summarizes the burning rate constants taken for the entire droplet lifetime for 

all the fuels tested in this work.

Table 6.5 - Burning rate constants (mm2/s)

B100 ULSD'Vv.. E100 Synthetic
Diesel

50/50
ULSD/Ethanol

k 0.97 1.00 0.92 1.09 1.02

B5 B20 B50
k 0.97 0.98 0.96

B5 + Ethanol B20 + Ethanol B50 + Ethanol
k 1.16 1.07 1.00

For all the non-normalized figures (Figure 6.14 to Figure 6.17), the initial square of the 

diameters were different for t = 0 s. This was due to the fact that the time of processing 

was different for each trial. Specifically, the time when the droplet is placed on the 

filament and the time when ignition occurs were different.
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Figure 6.14 shows the results for all the fuels and their blends. In the following figures, 

the fuels were grouped into three categories (no blends, biodiesel and diesel, biodiesel 

and ethanol) to allow for easier viewing and interpretation of the results.
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Figure 6.14 - Temporal variations of the square of the diameter - all fuels

Figitre 6.15 depicts the temporal variations of the square of the diameter for the fuels with 

no blending. Ethanol is an alcohol and had the fastest burning rate constant of 0.92 

mm2/s, followed by biodiesel, ultra low sulfur diesel, a 50 % mixture of ultra low sulfur 

diesel and ethanol, and lastly synthetic diesel. Synthetic diesel had a burning rate 

constant of 1.09 mm2/s similar to ultra low sulfur diesel with a rate of 1.00 mm2/s. The 

differences between biodiesel and ultra low sulfur diesel are due to the fact that biodiesel 

is an organic multi-component fuel derived from fryer grease and ultra low sulfur diesel 

is a petroleum-based fuel. It should be noted that a 50 % blend of ultra low sulfur diesel 

and ethanol was included in this group for comparative purposes.
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Figure 6.15 - Temporal variations of the square of the diameter - no blends

Figure 6.16 illustrates the temporal variations of the square o f the diameter for the fuels 

with biodiesel and ultra low sulfur diesel blends. Biodiesel was added at 5 % (B5), 20 % 

(B20), and 50 % (B50) by volume to ultra low sulfur diesel. The droplet burning rate 

constant increased with the addition of biodiesel. Biodiesel had a burning rate constant
7 7of 0.97 mm /s, similar to ultra low sulfur diesel of 1.00 mm /s. It is also interesting to 

note that kinematic viscosities of biodiesel and ultra low sulfur diesel were fairly similar. 

Biodiesel and ultra low sulfur diesel had a kinematic viscosity of 3.76 mm2/s and 3.00 

mm2/s respectively. Viscosity tends to be an important parameter with biodiesel fuels 

since high viscosity can lead to problems that were mentioned in the Literature Review 

chapter.
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Figure 6.16 - Temporal variations of the square of the diameter - biodiesel/diesel combinations

Figure 6.17 represents the temporal variations of the square of the diameter for ethanol 

and biodiesel blends. Ethanol had the lowest burning rate constant followed by biodiesel. 

As the concentration of biodiesel decreases (while the concentration of ethanol increases), 

the burning rate constant also increases. It can be seen that ethanol increases the droplet 

burning lifetime. This is due to ethanol’s lower viscosity compared to biodiesel. Ethanol 

has a kinematic viscosity of 1.08 mm2/s while biodiesel has a kinematic viscosity o f 3.76 

mm2/s.
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Figure 6.17 - Temporal variations of the square of the diameter - biodiesel/ethanol combinations

Figure 6.18 to Figure 6.21 are the normalized versions of the temporal variations of the 

square of the diameter. All the figures were normalized by the square of the diameter at 

the first measurement location which was the first image sequence frame under 

consideration. Shaddix [43] took the same approach. It can be noted that at D2/Do = 0, 

the droplet completes combustion. The combustion duration ranged from 1.5 s to 2.0 s. 

This was due to the fact that the time of processing was different. Specifically, the time 

when the droplet is placed on the filament and the time when ignition occurs were 

different. At t = 0 s, D2/Do -  1 which indicates that the volume was held constant by the 

Chaney adapter. In the following figures, the fuels were grouped into three categories 

(no blends, biodiesel and diesel, biodiesel and ethanol) to allow for easier viewing and 

interpretation of the results.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Synthetic  D iesel 

ULSD

50/50 U LSD /Ethanol 
B5 + E thanol 

B5 + ULSD 
B20 + E thanol 

B20 + ULSD 
B50 + E thanol 
B 50 + ULSD 

B 100 

E 100

0 0.5 1 1.5 2

Time (s)

Figure 6.18 - Normalized temporal variations of the square of the diameter - all fuels
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Figure 6.19 - Normalized temporal variations of the square of the diameter - no blends
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Figure 6.20 - Normalized temporal variations of the square of the diameter - 
biodiesel/diesel combinations

 B5 + Ethanol
 B20 + Ethanol
 B50 + Ethanol

B100
E100

0.7

0.6

0.4

0.3

0 0.5 1.5 2
Time (s)
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6.3 Flame Diameter Measurements

Figure 6.22 to Figure 6.25 depicts the temporal variations of the flame diameter and the 

flame / droplet diameter ratio. The axis on the left represents the droplet flame diameter 

Df and the axis on the right represents the droplet flame diameter / droplet diameter ratio 

D/D. The droplet flame diameter is defined as the maximum edge length of the flame 

perpendicular to the falling direction as illustrated in Figure 5.5. From Figure 6.22 to 

Figure 6.25, it can be seen that the droplet flame diameter first increases then displays a 

gradual descent until flame extinction occurs. This observation is readily apparent in 

droplet combustion for conventional hydrocarbons as mentioned by Makino [30]. Law 

[27] stated that the droplet flame diameter / droplet diameter ratio exhibits a progressive 

exponential increase until the droplet fully combusts which conforms well to the results 

obtained in this thesis. This progressive exponential increase in D /D  is a common 

occurrence for combustion in an air environment where the oxygen concentration is 21 %. 

What is of particular interest is when combustion occurs under high oxygen concentration 

where the oxygen mass fraction is 0.33. In this scenario, D/D  will display a similar trend 

to Df (a concave downwards function). A low oxygen atmosphere occurs when the 

oxygen mass fraction is 0.11. In this environment, D /D  will also display a similar trend 

to Df (a concave downwards function) however D/D  will steadily converge towards Df 

[30].

Regardless of oxygen concentrations, the D  law will always apply. Also, it was 

observed by Law [27] that there is a direct correlation between oxygen concentration, 

flame luminosity, and flame location. Increasing the oxygen concentration will increase 

flame luminosity and will increase the flame location from the droplet surface (the flame 

will be farther away from the droplet surface).

In Figure 6.22, it can be observed that at t = 0 s, the flame diameters for all the fuels were 

different. This was due to the fuels chemical composition and nature of the specific fuel. 

The flame diameters were in the range of 2.5 mm to 3.3 mm.
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Figure 6.22 - Temporal variations of flame diameter and flame/droplet diameter ratio - all fuels

Figure 6.23 shows the variation of the flame diameter and flame / droplet diameter ratio 

over time of the non-blended fuels tested. Biodiesel had the largest flame diameter 

followed by synthetic diesel, ultra low sulfur diesel, and lastly a 50 % mixture of ultra 

low sulfur diesel and ethanol. Ethanol had a very weak and faint flame (the flame was 

not as pronounced as the other fuels) which made data processing very difficult because 

of the optical issues with the camera lens. It should be noted that a 50 % blend of ultra 

low sulfur diesel and ethanol was included in this group for comparative purposes.
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Figure 6.23 - Temporal variations of flame diameter and flame/droplet diameter ratio - no blends

Figure 6.24 illustrates the variation of the flame diameter and flame / droplet diameter 

ratio over time of the biodiesel and diesel fuel combinations. Biodiesel had the largest 

flame diameter followed by B20 (20 % biodiesel with 80 % diesel), B50, ultra low sulfur 

diesel, and lastly B5. Biodiesel and ultra low sulfur diesel had the highest flame/droplet 

diameter ratios. As biodiesel concentration decreased while ultra low sulfur diesel 

concentration increased, their respective ratios decreased. In other words, ratios 

decreased with the addition of ultra low sulfur diesel fuel.
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Figure 6.24 - Temporal variations of flame diameter and flame/droplet diameter ratio -
biodiesel/diesel combinations

Figure 6.25 depicts the variation of the flame diameter and flame / droplet diameter ratio 

over time of the biodiesel / ethanol fuel combinations. Ethanol had a very weak and faint 

flame (the flame was not as pronounced as the other fuels) which made data processing 

difficult because of the optical issues with the camera lens. Only biodiesel and a 50 % 

mixture of biodiesel and ethanol were able to be analyzed. Biodiesel had a larger flame 

diameter and flame / droplet diameter ratio than the 50 % mixture of biodiesel and 

ethanol. From Figure 6.25, one can delineate that with lower concentrations of biodiesel 

(while increasing ethanol concentrations), both the flame diameter and flame / droplet 

diameter ratio will decrease.
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Figure 6.25 - Temporal variations o f flame diameter and flame/droplet diameter ratio -
biodiesel/ethanol combinations

6.4 Flame Temperature Measurements

Maximum flame temperatures were recorded on the vertical axis of the flames at 

increasing heights. Each point on the flame temperature profiles represents an average of 

ten maximum temperatures recorded in ten consecutive trials at a given location.

In Figure 6.26, the flame temperatures coincided with typical flame temperatures 

mentioned in Strehlow [50] and Glassman [15]. It was observed that flame temperatures 

increased and peaked at a certain spatial point, then gradually decreased with increasing 

height. This makes sense since the flame tip has the highest temperature. As one moves 

further away from the vicinity of the flame tip, temperature will gradually decrease until 

thermal radiation from the flame will be negligible. The highest flame temperatures 

appeared between 4 mm and 6 mm above the centre of the drop.
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Figure 6.27 shows the flame temperature at increasing spatial points for the fuels with no 

blends. It can be seen that synthetic diesel and ultra low sulfur diesel had similar flame 

temperature profiles. This was expected since synthetic diesel was designed to mimic the 

characteristics of petroleum diesel.

In Figure 6.28 (biodiesel and diesel combinations) and Figure 6.29 (biodiesel and ethanol 

combinations), higher flame temperatures are clearly evident as the concentration of 

biodiesel is increased. The arrow represents increasing biodiesel content. Senatore [42] 

stated that the presence of oxygen in biodiesel contributes to a very fast combustion, but 

produces high temperatures. Biodiesel and ethanol had an oxygen content of 11 % and 

35 % respectively. Increasing biodiesel in ultra low sulfur diesel will cause oxygen 

content to increase which will result in higher temperature. Oxygen content is only one 

factor that causes high temperatures. On the contrary, increasing biodiesel in ethanol will 

actually lower oxygen content - but, temperature increases. This is due to the complex 

chemical interactions that are a result of mixing of biodiesel and ethanol together. It can 

be generalized that increasing the concentration of biodiesel to ultra low sulfur diesel or 

ethanol will cause an increase in the droplet flame temperature.
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Figure 6.26 - Flame temperature at increasing spatial points - all fuels
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Figure 6.27 - Flame temperature at increasing spatial points - no blends
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Figure 6.28 - Flame temperature at increasing spatial points - biodiesel/diesel combinations
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Figure 6.29 - Flame temperature at increasing spatial points - biodiesel/ethanol combinations
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Figure 6.30 illustrates the droplet flame temperature at the bottom of the droplet. Recall, 

Figure 5.10 shows the positioning of the S-type thermocouple. In Figure 6.30, the droplet 

flame temperatures below the droplet were similar to the trends found in the peak 

temperatures from the droplet liquid temperatures. Biodiesel had the highest flame 

temperature, followed by ultra low sulfur diesel, synthetic diesel, and lastly ethanol. The 

synthetic diesel had a similar droplet flame temperature to ultra low sulfur diesel. It can 

be noted that flame temperatures increased as higher levels of biodiesel were blended into 

ultra low sulfur diesel and ethanol.

£
3
£®a.
E

V = 2 mm
Room temperature in horizontal position 2 mm below droplet

1280 -

<§>

Figure 6.30 - Flame temperature at lower region - all fuels

6.5 Flame Transmisivity Measurements

As stated earlier in the Methodology and Procedures chapter, flame transmisivity 

measurements are representative of sooting characteristics and are a precursor to 

quantifying soot volume fraction measurements.
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A fuel’s structure has a significant effect on its sooting characteristics. Fuels with the 

tendency to soot more are aromatics, followed by alkynes, alkenes, and lastly alkanes. 

Examples of these highly sooty fuels are benzene, acetylene, ethylene, and methane 

respectively. Soot is usually found in hydrocarbon fuels, giving the flame its typical 

orange or yellow color due to the spectral sensitivity of the human eye. The formation of 

soot is dependent on the diffusion of hydrogen atoms. Soot is formed on the fuel side of 

the reaction zone and is consumed when it flows into an oxidizing region, such as the 

flame tip. Soot also contributes to radiant heat losses from flames, with peak emission at 

wavelengths in the infrared region of the spectrum. However, a flame may have some 

visible luminosity from soot where the contribution of soot radiation to the radiant heat 

loss may be insignificant.

Figure 6.31 illustrates the spatial variations of flame transmisivity of the droplets for all 

the fuels and their blends starting at 2 mm and incrementing at 2 mm intervals to a 

maximum height of 20 mm. The droplet volume was 2 mm3 and the room temperature 

was at 19°C. Testing was done on the horizontal quartz filaments. It can be seen that 

biodiesel had twice as much transmisivity relative to ultra low sulfur diesel at 10 mm 

above the filament. All the fuels exhibited a similar trend: as the laser beam height 

above the droplet gradually increased, flame transmisivity levels increased and reached a 

peak at 10 mm. Then, transmisivity levels slowly declined as height was increased. Ultra 

low sulfur diesel had the lowest transmisivity (highest amount of soot) relative to the 

fuels tested. Harris [16] stated that more soot (less flame transmisivity) is the result of a 

higher nucleation rate of the flame. The results are valid for other fuels since the post 

flame gases are similar. As biodiesel concentration was increased in ultra low sulfur 

diesel, flame transmisivity increased. Ethanol had no soot (highest transmisivity), which 

was expected since alcohols do not exhibit sooting characteristics. As biodiesel was 

added to ethanol, transmisivity only showed a decrease at 50 % biodiesel with 50 % 

ethanol. Biodiesel blends lower than 50 % with ethanol showed had higher flame 

transmisivity. Synthetic diesel had lower amounts of soot (more transmisivity) compared 

to ultra low sulfur diesel. Both increasing biodiesel with ethanol, and increasing 

biodiesel with ultra low sulfur diesel showed a convergence towards the unblended
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biodiesel. Increasing biodiesel with ethanol resulted in higher soot (less transmisivity) 

and increasing biodiesel with ultra low sulfur diesel resulted in lower soot (higher 

transmisivity). A 50 % mixture of ultra low sulfur diesel and ethanol was analyzed for 

interest sake.

Figure 6.32 delineates the effects of fuel pre-heating on the soot transmisivity of droplets. 

The droplet volume was 2 mm3 and the room temperature was at 19°C. Testing was done 

on the horizontal quartz filaments. Biodiesel, ultra low sulfur diesel, and a B50 blend 

were tested at various temperatures, from room temperature, 19°C to 10(fC. A full 

transmisivity sweep, from 2 mm to 20 mm, was conducted for temperatures at the lower 

bound (room temperature) and upper bound (10(fC). Again, similar to Figure 6., the 

maximum level of transmisivity was at 10 mm. Therefore, only single point 

measurements were taken at intermediate temperatures (30°C, 40 °C, 50 °C, 60 °C). 

Gradually pre-heating biodiesel resulted in the progressive decline of soot (increase in 

transmisivity). On the contrary, pre-heating the B50 blend and ultra low sulfur diesel 

resulted in higher soot content (decrease in transmisivity) which was in agreement with 

Nakanishi [34]’s findings. This is due to the mass of soot that exhausts from the flame 

which is determined by the balance of the soot formation and soot oxidation in the flame. 

As the air temperature increases, the flame temperature increases and thermal cracking of 

the fuel is promoted, so nucleation and growth of the soot particle increases. That is, the 

rate of soot formation increases. But at the same time, the rate of soot oxidation increases 

with the air temperature. The net soot release is derived from the difference of the net 

soot formation and the net soot oxidation in the flame. At extremely high temperature, 

the oxidation of soot formed in the flame becomes predominant.

In Figure 6.33, biodiesel was observed to have a sudden decrease in soot (increase in 

transmisivity) between 30°C to 40°C and at temperatures above 40°C, transmisivity 

continued to slowly increase. At increasing temperatures, ultra low sulfur diesel and B50 

had higher soot (lower transmisivity). The droplet volume was 2 mm3 and the room 

temperature was at 19°C. Testing was done on the horizontal quartz filaments.
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When testing the filaments in different orientations as it can be shown in Figure 6.34, less 

soot (more transmisivity) was registered with filaments arranged in a vertical position as 

opposed to a horizontal arrangement. This was due to the fact that after each trial, it was 

observed that soot solidified and conglomerated along the vertical shaft of the filament 

and at the bend. This phenomenon resulted in less soot being identified by the laser 

power measurement detector via laser light scattering. The droplet volume was 2 mm 

and the room temperature was at 19°C.

Figure 6.31 clearly shows biodiesel has lower amounts of soot compared to ultra low 

sulfur diesel. Recall Figure 6.26 shows biodiesel has the highest flame temperature. This 

was an intriguing result. Normally, there is a direct correlation with flame temperature 

and soot levels, where higher flame temperatures will yield higher levels of soot. 

However, this was not the case. Glassman [14] stated that with higher flame temperature, 

there is less tendency to soot which was in agreement with the results obtained. This was 

due to the fact that there is competition between the rate of pyrolysis to form the 

precursors of soot and the rate of oxidative attack. Therefore, if  the oxidation rate 

increases faster with temperature than the pyrolysis rate, there is a tendency for lower 

soot.

Trends found in this study were comparable to those found in Turns [51] and Glassman 

[15]. In particular, these trends are shown in Figure 6.31.
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Figure 6.31 - Spatial variations of flame transmisivity
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Figure 6.32 - Effects of heating on flame transmisivity
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Chapter 7
Relevance to Engine Performance

7.1 Droplet Size Correlation

A 6.4 L V8 engine equipped with a dual-stage variable geometry turbocharger found in 

the 2008 Ford F-450 Super Duty pickup truck was used to correlate the maximum droplet 

diameter permissible under all possible engine speeds. In the dual-stage turbocharger, the 

smaller high pressure turbocharger had a turbine by-pass which opens as the inlet 

manifold boost pressure rises. At low mass flow rates, the by-pass is closed which allows 

the optimum use of the available expansion in the small turbine. As the gas flow rate 

increases with load and speed, progressively more expansion work is extracted from the 

larger turbine that drives the low pressure compressor. Stone [49] mentioned the benefits 

of two-stage turbocharging which leads to an improvement in low speed torque, an 

increase in maximum power output, a reduction in brake specific fuel consumption, and 

better transient response. A variable geometry turbocharger consists of variable angle 

vanes that are electronically adjusted by the engine control unit to optimize charge air. 

For example, under heavy acceleration or at wide open throttle, the vanes contract in 

order to restrict exhaust flow area and increase turbine speed thereby providing additional 

charge air. Variable geometry turbochargers are able to achieve more exhaust gas 

recirculation by controlling the pressure between the intake manifold and exhaust 

manifold. Exhaust gas recirculation lowers nitrogen oxide emissions. This is achieved 

by positioning the vanes to reduce the area for exhaust flow, effectively increasing 

exhaust manifold pressure while not necessarily increasing intake manifold pressure. The 

common-rail fuel injection system utilized advanced Piezo-actuated fuel injectors. These 

injectors allow multiple precision fuel injection bursts. Common-rail injection allows for 

independent control of the injection pressure over a wider operating speed range and load
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range. The advantage of implementing a common-rail system is the ability to 

electronically control injection timing and injection rate which can assist in lowering 

engine noise and reducing nitrogen oxide emissions. Calculations to determine the 

maximum droplet diameter permissible under all operating speeds are as follows:

The time for one cycle is twice the time for one revolution.

ĉycle ^ * ̂ revolution (7.1)

At 1000 RPM, using Equation (6.1):

ĉycle ^ * r̂evolution ^

/  A

60^
rev 

1000 —  

v min

= 120 ms

Stone [49] stated that in a spark ignition engine, the ignition delay (the time between start 

of ignition and start of combustion) is 30° CA at 2500 RPM. For a compression ignition 

engine, one can assume constant number of crank angles. Assuming the time to bum the 

fuel is 10° CA, the time of combustion is the sum of the ignition delay and the time to 

bum the fuel. Therefore, the equivalent number of crank angles is 40° which can be 

associated with 2500 RPM. Interpolating 4 (f CA ~ 2500 RPM  yields 10(f CA ~ 1000 

RPM. For ease of calculations, assume the time of combustion is 900 CA at high load 

[63].

1 cycle = 2 revolutions 

= 2x360°CA 

= 120° CA

90 _ 1 
720 ~ 8

Therefore, the time of combustion can be approximated as 1/8 the time of one cycle.
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^combustion g  ^cycle (7.2)

From Equation (6.2):

_ 1  _ 120ms
ĉombustion g ĉycle g

• . • 7The droplet burning lifetime / rate constant for ultra low sulfur diesel was 1 mm /s. The 

maximum droplet diameter that will bum during the time of combustion can be 

calculated as follows:

dD2 . = k
dt

dD2 _ j mm2 
dt s

D2 _ j mm2 
t s

Z)2 = l ^ ( l 5 m s )
s

T>2 = 1 ^ ( 0 . 0 1 5 s)
s

D 2 =0.015 mm2 

D = 0.1225 mm —>122.5 //m

The above calculations were calculated starting at idle (700 RPM) and repeated at 100 

RPM  increments up to the maximum allowable speed limit.

Figure 7.1 displays the experimentally obtained power and torque curves as well as 

droplet size as a function of engine speed. The maximum droplet diameter permissible is 

based on the ability to bum in this time. As engine speed increases, the maximum
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permissible droplet diameter exhibits an exponential decaying function. Droplet diameter 

sizes start from 0.15 mm at idle and gradually decay to 0.07 mm at 3500 RPM. Peak 

torque occurred at 2400 RPM  while maximum power was registered at 3000 RPM. 

Torque stabilization occurred in the range of 2000 RPM  to 2800 RPM.

8000.16
peak torque

0.14 700

6000.12  -

5000.10

peak power •Q
400 uiE. 0.08

0.06 300

0.04 - 200

0.02 100

0.00
0 500 1000 1500 2000 2500 3000 3500

RPM

Figure 7.1 - Maximum droplet diameter permissible

7.2 Engine Analysis

There have been numerous interesting and informative studies documenting the effects of 

fueling an engine with biodiesel. These were quickly introduced in the Literature Review 

chapter. Some other good examples include those completed by Sharp [44], Knothe [23], 

Sluder [46], Kawano [22], Patterson [36], and Senatore [42]. One particular study that 

will be briefly discussed is from Fraer [12] where the authors conducted an investigation 

comparing the use biodiesel and petroleum diesel with a goal of obtaining quantitative 

information on the impact of biodiesel on engine component wear, in addition to 

maintenance and operating costs. The engines and fuel systems were removed from the
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eight trucks and analyzed. Four 1996 Mack tractors and four 1993 Ford cargo vans were 

used. Two of each type were fueled with B20 and two with petroleum diesel. In other 

words, for the four Fords; two were fueled with biodiesel and two were fueled with 

petroleum diesel. This was the same case for the Mack engines. The engines were fueled 

with #2 diesel and B20 (20 % biodiesel, 80 % petroleum diesel) since it is the most 

common blend used in the United States. The engines and fuel systems were 

disassembled, analyzed, and evaluated for wear characteristics after four years of 

operation with over 600,000 miles accumulated on B20. Results indicated that there was 

very little difference in operational and maintenance costs attributed to the two different 

fuels. No abnormal wear was discovered. All engines exhibited normal wear for their 

mileage, independent of fuel. However, the Mack engines exhibited higher frequency of 

fuel filter and injector nozzle replacement. Biological contaminants may have caused the 

filter plugging. Sludge buildup was also noted around the rocker assemblies due to the 

accumulation of soaps in the engine oil from the biodiesel. The Ford engines did not 

have the filter plugging, injector replacement, or sludge accumulation issues noted with 

the Mack engines. This was due to the fact that the Ford engines used a smaller inline 

fuel injection pump system since the Fords had a smaller engine displacement (7.8 L) 

compared to the Macks (12.0 L). It was suggested that the greater fuel circulation 

volume was suspected to contribute to the fuel filter plugging evident with Mack engines. 

The fuel system, specifically the filter sizing and plumbing, may have also been a 

contributing factor.
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Chapter 8
Statistical and Uncertainty Analysis

This chapter provides a brief overview of the possible errors that were encountered while 

performing the experiments mentioned in this thesis.

8.1 Statistical Analysis

A rudimentary statistical analysis was performed on the measurements taken.

Each measurement was conducted 10 times and based on those measurements, the 

sample mean was calculated. Assume n observations in a sample are represented by xj, 

X2 , x „ ,  then the sample mean is

n

X -
-  xx+ x2 +... + xn ‘ (8.1.1)
X  ~~ —

n n

The sample mean does not reveal all of the information about a sample data. The 

variability or scatter in the data may be characterized by the sample variance or the 

sample standard deviation.

Assume n observations in a sample are represented by xj, X2 , ..., xn, then the sample 

variance is

s =
n - 1
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Assume n observations in a sample are represented by x/, X2 , ..., xn, then the sample 

standard deviation is

The sample standard deviation has the desirable property of measuring variability of the 

variable of interest.

8.2 Uncertainty Analysis

Measurement can be defined as the process of assigning a value to a physical variable. 

Error in the measurement is the difference between the true value of the variable and the 

value registered by the measurement device. Uncertainty is the estimate of probable error 

in the measurement. Uncertainty analysis is the process of classifying and calculating 

errors. All uncertainty estimates will be made at the 95 % confidence level. This implies 

that 95 % of the time, the actual error will be less than the estimated uncertainty. The 

data plotted may include both bias and precision errors. Bias errors will tend to shift the 

entire data set away from the true line or may change its slope. Precision errors will 

cause the data to scatter about the true line.

8.2.1 Temperature

Fine-gauge exposed-junction thermocouples were selected because they offer better 

response times than grounded junction or ungrounded junction thermocouples as stated in 

the Omega Temperature Handbook [62].

For liquid temperature measurements, K-type Omega thermocouples were used. They 

had a 1.1 °C or 0.4 % limit of error.

For flame temperature measurements, S-type Omega thermocouples were used. They 

had a 0.6 °C or 0.1 % limit of error.

(8.1.3)
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The following table illustrates the uncertainty in the peak temperatures for all the fuels

tested.

Table 8.1 - Uncertainty in the peak temperatures (± °C)

B100 ULSD E100 Synthetic
Diesel

50/50
ULSD/Ethanol

2.08 2.53 1.49 1.34 2.39

B5 B20 B50
2.65 2.74 2.60

B5 + Ethanol B20 + Ethanol B50 + Ethanol
2.10 2.58 1.95

Assuming no random uncertainty exists, the following calculations were repeated for all 

fuels and their blends.

The random uncertainty of each measurement at the 95 % confidence level for all the 

fuels and their blends is as follows:

The sample mean x and sample standard s deviation were calculated each respective fuel.

Using the student’s t-distribution at the confidence level of 95 % and 9 degrees of 

freedom, t = 2.262. Note: 10 trials of each measurement were taken, therefore the 

degrees of freedom, v = n - 1 is one less of the sample size.

The random uncertainty is calculated using:

P ,= tx s  (8.2.1.1)

The random uncertainty of the sample mean of the measurements at 95 % confidence 

level is as follows:
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The random uncertainty of the mean of the measurements, assuming sample standard 

deviation was calculated on the basis of a large sample size (n > 30) is as follows 

assuming a large sample data set, but with the same sample standard deviation, t = 2:

P  = 2 x sr (8.2.1.3)
. 2

Assuming that the parent population is normally distributed, the 95 % confidence interval 

for the population mean can be found by calculating the two-sided confidence limits.

, ^0.025,9 X  S
 1---- (8.2.1.4)

m 2

The results from the above calculations are summarized below:

Table 8.2 - Statistical summary of the peak temperatures (°C)

B100 ULSD El 00 Synthetic
Diesel

50/50
ULSD/Ethanol

Sample mean 584 481 293 449 432
Same standard 

deviation 2.80 3.40 2.01 1.81 3.22
Sample
variance 7.83 11.57 4.06 3.29 10.4
Sample 
random 

uncertainty of 
measurements

6.24 7.58 4.48 4.03 7.17

Sample 
random 

uncertainty of 
mean

2.08 2.53 1.49 1.34 2.39

Sample 
random 

uncertainty 
based on a 

large sample

1.87 2.27 1.34 1.21 2.15

Two-sided
confidence

limits
2.08 2.53 1.49 1.34 2.39
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Table 8.2 continued from previous page.

B5 B20 B50
Sample mean 465 476 537
Same standard 

deviation 3.57 3.69 3.50
Sample
variance 12.71 13.60 12.22
Sample 
random 

uncertainty of 
measurements

7.95 8.22 7.80

Sample 
random 

uncertainty of 
mean

2.65 2.74 2.60

Sample 
random 

uncertainty 
based on a 

large sample

2.38 2.46 2.33

Two-sided
confidence

limits
2.65 2.74 2.60

B5 +  Ethanol B20 +  Ethanol B50 +  Ethanol
Sample mean 291 443 502

Same standard 
deviation 2.83 3.48 2.63
Sample

variance 8.01 12.10 6.93
Sample 
random 

uncertainty of 
measurements

6.31 7.75 5.86

Sample 
random 

uncertainty of 
mean

2.10 2.58 1.95

Sample 
random 

uncertainty 
based on a 

large sample

1.89 2.32 1.75

Two-sided
confidence

limits
2.10 2.58 1.95
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The following table illustrates the uncertainty in the flame temperatures for all the fuels

tested.

Table 8.3 - Uncertainty in the flame temperatures (± °C)

B100 ULSD E100 Synthetic
Diesel

50/50
ULSD/Ethanol

4.65 4.20 4.56 3.97 4.46

B5 B20 B50
3.83 3.66 3.54

B5 + Ethanol B20 + Ethanol B50 + Ethanol
4.01 4.02 3.83

Assuming no random uncertainty exists, the following calculations were repeated for all 

fuels and their blends.

The random uncertainty of each measurement at the 95 % confidence level for all the 

fuels and their blends is as follows:

The sample mean x  and sample standard s deviation were calculated each respective fuel.

Using the student’s t-distribution at the confidence level of 95 % and 9 degrees of 

freedom, t = 2.262. Note: 10 trials of each measurement were taken, therefore the 

degrees of freedom, v = n - 1 is one less of the sample size.

The random uncertainty is calculated using:

Pi = t x s  (8.2.1.5)

The random uncertainty o f the sample mean o f the measurements at 95 % confidence 

level is as follows:

P  _ t x s
(8.2 .1.6)

n 2
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The random uncertainty of the mean of the measurements, assuming sample standard 

deviation was calculated on the basis of a large sample size (n > 30) is as follows 

assuming a large sample data set, but with the same sample standard deviation, t = 2:

_ 2 x s
* ~ ~T (8.2.1.7)

n 2

Assuming that the parent population is normally distributed, the 95 % confidence interval 

for the population mean can be found by calculating the two-sided confidence limits.

t(\ not 9 X  S

I—  (8.2.1.8)
0.025,9

, 2

The results from the above calculations are summarized below:

Table 8.4 - Statistical summary of the flame temperatures (°C)

B100 ULSD E100 Synthetic
Diesel

50/50
ULSD/Ethanol

Sample mean 1434 1364 1312 1367 1334
Same standard 

deviation 7.18 5.57 6.05 5.26 5.91
Sample

variance 38.10 31.07 36.62 27.66 34.93
Sample 
random 

uncertainty of 
measurements

13.96 12.61 13.69 11.90 13.37

Sample 
random 

uncertainty of 
mean

4.65 4.20 4.56 3.97 4.46

Sample 
random 

uncertainty 
based on a 

large sample

4.12 3.72 4.03 3.51 3.94

Two-sided
confidence

limits
4.65 4.20 4.56 3.97 4.46
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Table 8.4 continued from previous page.

B5 B20 B50
Sample mean 1361 1379 1387
Same standard 

deviation 5.08 4.85 4.70
Sample
variance 25.79 23.56 22.10
Sample 
random 

uncertainty of 
measurements

11.49 10.98 10.63

Sample 
random 

uncertainty of 
mean

3.83 3.66 3.54

Sample 
random 

uncertainty 
based on a 

large sample

3.39 3.24 3.13

Two-sided
confidence

limits
3.83 3.66 3.54

B5 +  Ethanol B20 + Ethanol B50 +  Ethanol
Sample mean 1310 1315 1323

Same standard 
deviation 5.31 5.33 5.08
Sample

variance 28.23 28.44 25.79
Sample 
random 

uncertainty of 
measurements

12.02 12.06 11.49

Sample 
random 

uncertainty of 
mean

4.01 4.02 3.83

Sample 
random 

uncertainty 
based on a 

large sample

3.54 3.56 3.39

Two-sided
confidence

limits
4.01 4.02 3.83
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8.2.2 Volume

For the delivery of the droplet, a 5 pL Hamilton high-precision micro-syringe fitted with 

a specialized Chaney adapter was used. The Hamilton Chaney adapter is a device that 

assures repetitive and identical syringe plunger location resulting in consistent droplet 

volume deliveries. It eliminates subjective errors when setting a syringe plunger at a 

specific volume. The syringe is accurate within ± 1 % of nominal volume and its 

precision is 1 % measured at 80 % of total scale volume.

8.2.3 Flame Transmisivity

A Coherent Innova 70 water-cooled argon ion laser generated a continuous laser beam 

with a light regulation of ± 0.5 % and a current regulation of ± 3.0 %. This was the 

maximum peak variation over any 30 minute operating duration following a two hour 

stabilization period. In order to quantify the flame transmisivity, an Ophir Orion laser 

power meter was used. It is capable of measuring voltage as precise as 0.001 W with an 

analog output accuracy of ± 0.2 %. The beam diameter was 1.5 mm and the beam 

divergence was 0.5 mRad. Optical noise was 0.5 % RMS measured with an RMS volt 

meter with a 10 Hz to 2 MHz bandwidth.

8.2.4 Droplet Burning Rate Constant

To quantify the uncertainty in the droplet burning rate constant k, recall the simplified 

mathematical expression for k:

D 2k = —  (8.2.4.1)
t

The burning rate constant is defined as the square of the diameter of the droplet over the 

time it takes the droplet to completely vaporize.
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The k value can be found by taking a least squares fit (linear regression) through the data, 

using the diameter-squared as the y  variable. Line fits can average out precision errors.

The uncertainty for k  is determined using the preceding equation.

A k  = dk
~dD

AD +
dk 
—  At 
dt

\ 2
(8.2.4.2)

where D represents the initial droplet diameter, t represents the droplet lifetime, AD 

represents the standard deviation of the droplet diameter, and At represents the time 

increment of the camera capturing rate (0.001 s).

The following table illustrates the uncertainty in the burning rate constants for all the 

fuels tested.

Table 8.5 - Uncertainty in the burning rate constants (± mm2/s)

B100 ULSD E100 Synthetic
Diesel

50/50
ULSD/Ethanol

Ak 0.04 0.07 0.02 0.03 0.05

B5 B20 B50
Ak 0.06 0.03 0.01

B5 + Ethanol B20 + Ethanol B50 + Ethanol
Ak 0.03 0.04 0.06

Assuming no random uncertainty exists, the following calculations were repeated for all 

fuels and their blends.

The random uncertainty of each measurement at the 95 % confidence level for all the 

fuels and their blends is as follows:

The sample mean x  and sample standard s deviation were calculated each respective fuel.
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Using the student’s t-distribution at the confidence level of 95 % and 9 degrees of 

freedom, t = 2.262. Note: 10 trials of each measurement were taken, therefore the 

degrees of freedom, v = n -1 is one less of the sample size.

The random uncertainty is calculated using:

P ,= tx s  (8.2.4.3)

The random uncertainty of the sample mean of the measurements at 95 % confidence 

level is as follows:

P  - t x s

* ~ 7~ (8.2.4.4)
n 2

The random uncertainty of the mean of the measurements, assuming sample standard 

deviation was calculated on the basis of a large sample size (n > 30) is as follows 

assuming a large sample data set, but with the same sample standard deviation, t = 2:

P _ 2 x s
^  ~ ~~T  (8.2.4.5)

n 2

Assuming that the parent population is normally distributed, the 95 % confidence interval 

for the population mean can be found by calculating the two-sided confidence limits.

+  0.025,9 X  S

n2
(8.2.4.6)

The results from the above calculations are summarized below:
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Table 8.6 - Statistical summary of the burning rate constants (mmz/s)

B100 ULSD E100 Synthetic
Diesel

50/50
ULSD/Ethanol

Sample mean 0.97 1.00 0.92 1.09 1.02
Same standard 

deviation 0.05 0.09 0.03 0.04 0.07
Sample
variance 0.00 0.01 0.00 0.00 0.01
Sample 
random 

uncertainty of 
measurements

0.11 0.20 0.07 0.09 0.16

Sample 
random 

uncertainty of 
mean

0.04 0.07 0.02 0.03 0.05

Sample 
random 

uncertainty 
based on a 

large sample

0.03 0.06 0.02 0.03 0.04

Two-sided
confidence

limits
0.04 0.07 0.02 0.03 0.05

Table 8.6 continues on the next page.
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Table 8.6 continued from previous page.

B5 B20 B50
Sample mean 0.97 0.98 0.96
Same standard 

deviation 0.08 0.04 0.02
Sample

variance 0.01 0.00 0.00
Sample 
random 

uncertainty of 
measurements

0.18 0.09 0.04

Sample 
random 

uncertainty of 
mean

0.06 0.03 0.01

Sample 
random 

uncertainty 
based on a 

large sample

0.05 0.03 0.01

Two-sided
confidence

limits
0.06 0.03 0.01

B5 + Ethanol B20 +  Ethanol B50 +  Ethanol
Sample mean 1.16 1.07 1.00

Same standard 
deviation 0.04 0.06 0.08
Sample

variance 0.00 0.00 0.01
Sample 
random 

uncertainty of 
measurements

0.09 0.13 0.18

Sample 
random 

uncertainty of 
mean

0.03 0.04 0.06

Sample 
random 

uncertainty 
based on a 

large sample

0.03 0.04 0.05

Two-sided
confidence

limits
0.03 0.04 0.06
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Chapter 9
Summary, Conclusions and Recommendations

9.1 Summary

A study was undertaken to provide fundamental information regarding biodiesel as a 

transportation fuel. This was accomplished through droplet combustion analysis and 

examining flame transmisivity characteristics.

Four experimental setups were designed and assembled to allow for the evaluation of 

three fuels and their blends. Synthetic diesel was also tested, but not blended.

Biodiesel, ultra low sulfur diesel, ethanol, and a combination of their blends were 

selected to undergo the following experimental procedures:

• Temporal varying droplet dimension measurements (diameter and flame 

diameter)

• Temporal varying droplet liquid temperature measurements

• Spatial varying droplet flame temperature measurements along the flame axis

• Spatial varying soot transmisivity measurements along the flame axis

9.2 Conclusions

The most important finding was that biodiesel had lower amounts of soot (higher 

transmisivity). Ultra low sulfur diesel had the highest amount of soot (lowest
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transmisivity). Synthetic diesel had lower amounts of soot (more transmisivity) 

compared to ultra low sulfur diesel. Both increasing biodiesel with ethanol, and 

increasing biodiesel with ultra low sulfur diesel showed a convergence towards the 

unblended biodiesel. Increasing biodiesel with ethanol resulted in higher soot (less 

transmisivity) and increasing biodiesel with ultra low sulfur diesel resulted in lower soot 

(higher transmisivity).

Gradually pre-heating biodiesel resulted in the progressive decline of soot (increase in 

transmisivity). On the contrary, pre-heating the B50 blend and ultra low sulfur diesel 

resulted in higher soot content (decrease in transmisivity).

When testing the filaments in different orientations, less soot (more transmisivity) was 

registered with filaments arranged in a vertical position as opposed to a horizontal 

arrangement.

As the laser beam height above the droplet gradually increased, flame transmisivity levels 

increased and reached a peak at 10 mm. Then, transmisivity levels slowly declined as 

height was increased. Biodiesel had higher flame temperatures with lower amounts of 

soot (higher transmisivity).

The temporal variations of the square of the diameter indicated the presence of transient 

stages. The burning rate constants were calculated for the entire droplet lifetime and for 

the three transient stages. Adherence to the D law during the three transient stages was 

observed. Single-component fuels such as ethanol had only one transient stage k2. Not 

all of the fuels had a final transient stage.

It was determined that liquid heating had no effect on the burning rate constant.

The observed boiling temperatures for biodiesel, ultra low sulfur diesel, and ethanol tend 

to situate on the upper bounds of the referenced boiling temperature ranges.
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It was observed that maximum flame temperatures increased and peaked at a certain 

spatial point, then gradually decreased with increasing height. The highest flame 

temperatures appeared between 4 mm and 6 mm from the centre of the droplet. Higher 

concentrations of biodiesel added to ultra low sulfur diesel and ethanol resulted in higher 

droplet and liquid temperatures.

9.3 Future Work

To further continue the work presented here, one can focus on the following:

• Analyzing droplet interaction such as those that would be present in fuel sprays. 

This would have a direct impact on high precision fuel delivery devices such as 

fuel injectors. Faeth [10] provides a good starting point for such a study.

• The droplet experiments mentioned could be conducted using the falling droplet 

technique or the porous sphere method. These were briefly described in the 

Literature Review chapter.

• The sooting characteristics of a fuel greatly depend on the flame structure and 

temperature of a system. Conducting soot experiments under high pressure would 

be advisable since changing the pressure experienced by a flame often results in 

changes to temperature, flow velocity, flame structure, and thermal diffusivity.
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Appendices
A Diameter and Flame Diameter Measurements

Figure A.1 - Previous ignition system using free hanging electrodes

Figure A.2 - Current ignition system using fully adjustable tungsten electrodes
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Table A.1 - Burning rate constants using free hanging electrodes

Fuel Burning Rate Constant, k (mm /s)
Horizontal Vertical Reference

Soy-based Biodiesel 1.04 0.78 -

Canola-based Biodiesel - 0.79 -

Ethanol 0.67 0.77 0.89 [8]
Diesel 0.90 1.03 0.82 (cetane) [8]

e 1.0

0Q o . o

Soy Canola Ethanol Diesel

■ Horizonal ■ Vertical □ Reference 

Figure A.3 - Comparative plot of burning constants using free hanging electrodes

B Liquid and Flame Temperature Measurements

Table B .l - Thermocouple maximum service temperature

Theimncouple 0.11 nun II. lit mm 0.'> I mm 0.81 mm
Type (0.005’I (0.015") (H.070") 0.0 <7

** 315°C (600V) 37IV  (700V) . '1V  (700°F) 482V (900V)
K 593V (1100 V) 871V (1600V) 871V (1600V) 982V (1800V)
N 593V (1100V) 871V (1600V) 871V (1600V) 982V (1800V)
T 149 V  (300°F) 204V (400V) 204V (400V) 260V (500V)
E 315V (600V) 426V (800V) 426V (800V) 593V (1100 V)

R,S - - 1450V (2642V) USOV (2642V)
B - - 1700V (3092V) 1700V (3092V)
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Table B.2 - Thermocouple response time

W iie Size 
nun lim.liebl

Still A ii
427 C 38 C 
800 F 100 F

i>0 ft. set Aii
427 C 38 L
800 r loo r

Still H20 
*33 C 38’ C 

200 F 100 F

0 025 (0.001) 0.05 sec 0.004 sec 0.002 sec
0.125 (0.005) 1.0 sec 0.08 sec 0.04 sec
0.381 (0.015) 10.0 sec 0.80 sec 0.40 sec
0.75 (0.032) 40.0 sec 3.2 sec 1.6 sec

Table B.3 - Base metal calibrations: 300 mm (12”) length standard

CilihrnTinii W iie Dirt, 
mm (in)

Mntlel
Nimibei

t o  013 (Gnnns) 0 HAL-0005
0.025 (0.001) C HAL-001
0.050 (0.002) C HAL-002

K 0.075 (0.003) CHAL-003
CHROMEGA® 0.125 (0.005) C HAL-005
ALOMEGA® 0.25 (0.010) C HAL-010

0.38 (0.015) C HAL-015
0.50 (0.020) C HAL-020
0.81 (0.032) C HAL-032

Table B.4 - Pt/Rh calibrations: 150 mm (6”) length standard

£ •ililii<iti<Mi W iie Dio. Model
rinml.ei

0.025 (0.001) P10R-001
0.050 (0.002) P10R-002
0.075 (0.003) P10R-003

S 0.125 (0.005) P10R-005
Pt/10%Rh- 0.20 (0.008) P10R-008

Pt 0.25 (0.010) P10R-010
0.38 (0.015) P10R-015
0.50 (0.020) P10R-020
0.81 (0.032) P10R-032
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C Flame Transmisivity Measurements

From the following thermopile response curve, the time constant of the laser power meter 

was determined to be approximately 0.7 s.

THERMOPILE HEAD RESPONSE CURVE:
25WUM-2004 Head Type: 10A.V1 Ver 1 S3* 180187
Overshoots 0.6% at 1.6 seconds: Undershoot* 0.5% at 3.9 seconds
Time to settle to 98% was 0.7 seconds; Factor* 1.078

100%

90.0%

#0.0%

70.0%

80.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0%

- 10.0%

Figure C .l - Thermopile head response curve
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