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Abstract

Consider a constrained assignment problem where the side constraint consists
of a single equality with 0-1 coefficients. This problem has the following integer

programming formulation:

min 30, > diTy (1)
subject to STy =1 forall j=1,...,n (2)
Do Tij =1 foralli=1,...,n (3)

z;; € {0,1} forallé,j=1,...,n (4)

22;1 2;21 CijTiyj =T (5)

where all ¢;; are 0 or 1 and r is an integer such that 0 <r < n.

Let 1 = {1,2,....m}, L = {ni +1,...,n}, J; = {1,2,...,n2}, Jo = {na +
1,...,n}. It was shown in [3] that without loss of generality we can assume that
¢;; = 1 if and only if (4,5) € (f1) x (J1) U Iz x Jy. Furthermore, in this case (5) is
equivalent to |

oo ay=m, (6)
(L)€l xJ1
where 1 = (ng +ng +r —n)/2.

Define

Prm = Set of feasible solutions of (2), (3), (6) and x;; > 0,4, =1,...,n.

ni,n2

nm = Integer hull of P

ni,ne n1,ne’
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il

The polyhedral structure of Q! was investigated in [3], where two large classes

of facet-inducing inequalities of Q7" were presented. In this thesis we present a new

7,71
ny,n2’

class of facet-inducing inequalities for
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1.1. OTHER CONSTRAINED ASSIGNMENT PROBLEMS 3

n n
: . n,r
min E E dijxij 1T € n1,i127 (13)
=1 j=1

where Q772 which is defined in Chapter 4, is a special case of Q™. In this thesis

we present a new class of facet-inducing inequalities for Q7" ..

1.1. Other Constrained Assignment Problems

Leclerc [16] considered the following problem known as the 2-edge restriction
matching problem. Given a bipartite graph G = (Vi UV,, E), let W C VU V,. Find a
perfect matching M such that |MN§(W)| = 2, where §(W) is the set of edges incident
with exactly one node in W. He presented an O(n*?) algorithm for this problem where
n is the number of nodes of G. Next we show that this 2-edge restriction matching
problem is a special case of problem (7)-(11).

Let WNVy =1, WnVy,=Jy and let I, = Vi \ I, J, = Vo \ Ji. Then, the 2-edge
restriction matching problem reduces to the problem of finding a feasible solution of

the following system:

Doz =1 forall j=1,...,n
D e T =1 foralli=1,...,n
z;; € {0,1} foralli,j=1,...,n

D i1 2 i = 2
where
1 if (’l,]) < (Il X Jz) U (12 X Jl);

0 if (’L,j) & (Il X Jl) U (_[2 X J2)

Aboudi and Nemhauser [1] studied a constrained assignment problem with m side

Cij =

constraints of the form:
Lok-1,2k—1 — L2k 2k = 0 for k = 1, e,

They presented a class of facet-inducing inequalities for the associated polytope,
and they showed that this class provides a complete description of the associated

polytope in the case m = 1.
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CHAPTER 2

Preliminaries

In this chapter, we present basic definitions and relevant results from polyhedral

theory and graph theory that will be needed in this thesis.

2.1. Polyhedral theory

1

Vectors (or points) z!,...,zF € R™ are said to be linearly independent if \; =

-« = A\; = 0 is the unique solution of the system

Then it easily follows that n is the maximum number of linearly independent points

in R”. On the other hand, vectors (or points) z!,...,2%¥ € R" are said to be
affinely independent if Ay = --- = A\, = 0 is the unique solution of the system
k
> et =0,
i=1
k
S x=0
i=1

Note that n+1 is the maximum number of affinely independent points in R”. Clearly,
the notions of affinc and linear independence are related. Linear independence implics
affine independence, but the converse may not be true. The next lemma establishes

the exact relation between these two notions.

LEMMA 2.1.1. 2!, ..., 2% € R" are affinely independent iff 2 — z1,... z* — !

are linearly independent.

A set S C R” is said to be conver if the line segment joining any two points

z',z? in S is contained entirely in S. i.e. S is convex if Vz!,z? € S it follows that

4
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2.1. POLYHEDRAL THEORY 5

Al 4+ (1= XN)z? e Sforall0 < X < 1. Givenaset S = {z!,2?,...,2™} CR", a point

2

z € R is said to be a convex combination of x',z?,..., 2", if there exist nonnegative

scalars Ay, Az, ..., Ak, Zle Ai = 1 such that z = Zle Niz;. In particular, z is a

1 and 22

convex combination of !, z? if x lies in the closed line segment joining
The convez hull of S, denoted by conv(S), is the set of all points that are convex
combinations of points in S. Given a set S C Ry, the integer hull of S is the convex
hull of the integral points in S. The following result, due to Carathéodory, is well

known [20].

THEOREM 2.1.2. Let S C R", then every point x € conv(S) can be represented as

a convex combination of n+ 1 points from S. i.e. for every point x € conv(S), there

exist A, Ao,y Adng1 > 0, Z?_Jrll X = 1 such that x = Z?:ll Nt

A set H C R” of the form {z € R", pTz = ap, p # 0, ap € R} is called a
hyperplane. Every hyperplane H divides the space into two halfspaces:

HY ={z e R":pTa > ap}

H ={zeR":pTz < ap}

It is easy to see that both halfspaces H*, H~ are convex sets. A set P C R” is
a polyhedron if it is the intersection of a finite number of halfspaces. Equivalently,
a polyhedron is the set of points that satisfy a finite number of linear inequalities;
Obviously, a polyhedron is a convex set. A polyhedron P C R™ is bounded if there
exists a positive scalar w such that P C {z e R": —w < z; <w for j =1,...,n}.
Bounded polyhedra are called polytopes. We say a polyhedron P is of dimension &,
denoted by dim(P) = k, if the maximum number of affinely independent points in P
is k+1. In addition, a polyhedron P € R™ is said to be full-dimensional if dim(P)=n.
If P is not full-dimensional, then at least one of the inequalities p'z < «; describing

P is satisfied as an equality by all points of P. The inequality p’z < ag is called a
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2.1. POLYHEDRAL THEORY 6

valid inequality for P if it is satisfied by all points in P. Equivalently, p’z < g is a
valid inequality of P if and only if P lies in the half-space {z € R" : pTz < ap}[26, 13].

If pTz < «q is a valid inequality of P, then F = {z € P : pTx = } is called a
face of P, and we say that (p”, ag) represents F'. Note that F' is a polyhedron and P
and & are faces of P. A face F' is said to be proper if F' # ® and F # P. The face F
represented by (p”, ay) is nonempty if and only if max {p’z : z € P} = ag. When F
is nonempty, we say that the hyperplane p’'z = aq supports P. If F is a proper face
of P, then dim(F") < dim(P). In particular, the dimension of F' is k if the maximum
number of affinely independent points that lie in F'is k& + 1.

A face F of P is called a facet of P if dim(F) = dim(P) — 1, and a face F of P
is called an edge of P if dim(F) = 1. Given a polyhedron P = {z € R™ : Az < b},
one is interested in finding out which of the inequalities a’z < b; are necessary in the
description of P and which are redundant.

Facets, which have the highest dimension among all proper faces, are crucial for
the description of a polyhedron in the sense that, for each facet F' of P, at least one
of the inequalities representing F' is necessary in the description of P. If P is full-
dimensional, then for each facet of P, there exists a unique (up to a multiplication by
a scalar) inequality representing it. However, if P is not full-dimensional, then there
are more than one inequality representing each facet.

Polyhedra can also be represented in terms of their extreme points. Given a convex
set S, T € S is said to be an extreme point of S, if it is impossible to represent z as a
proper convex combination of two other points in S. i.e. T is an extreme point of S
iff whenever T = Az! + (1 — \)z?, z',22 € S, 0 < )\ < 1, we must have 2! = 22 = 7.
A polyhedron P has a finite number of extreme points. Let z!,z? be two distinct
extreme points of P, then z!,z? are said to be adjacent if the line segment [r?, z?] is
an edge of P. Note that a face F of P is an extreme point if and only if dim(F) = 0.
The following well-known result shows that a polytope can be expressed as the convex

hull of its extreme points.
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2.2. GRAPH THEORY 7
THEOREM 2.1.3 (Weyl-Minkowski). Let P be a nonempty polytope, and let &', ..., &*

be its extreme points, then

k k
P={zeR":x=> \i' where S A=1L,X>0fori=1,...,k}
g=1 =1
THEOREM 2.1.4. Let P be a polyhedron defined by P = {x € R" : Az = b,z > 0}.

Then dimension P < n — rank(A).

2.2. Graph Theory

In this section, we review basic definitions and results from graph theory.

A graph G=(V,E) consists of a finite set V of vertices and a collection E of un-
ordered pairs of vertices called edges. Two or more edges that join the same pair of
distinct vertices are called parallel edges. An edge represented by an unordered pair
in which the two vertices are the same is known as a loop. A simple graph is a graph
with no parallel edges and loops. The complete graph K, is a graph with n vertices
in which there is an edge joining every pair of vertices. A bipartite graph, denoted by
G=(V1UV,FE), isa gfaph in which the set of vertices can be partitioned into two
subsets V1 and V5 such that every edge has one end node in V; and the other in V5. The
complete bipartite graph is the graph (V3 U V4, E) in which there is an edge between
every vertex in V] and every vertex in V5. A walk in G is a finite nonempty sequence
W = vy, e1,v1,€,v9, ...6€, U, whose terms are alternately vertices and edges, such
that, for 1 <7 < k, the ends of ¢; are v;_; and v;. If the edges e, €e9,..., ¢, of a walk
are distinct, W is called a trail; in addition, if the vertices vy, vy, ..., vk are distinct,
W is called a path. A graph G = (V, E) is connected if for each two vertices v;, v; of
G, there exists a path from v; to v;. A path is closed if its origin and terminus are
the same. A closed path containing at least one edge is & cycle. The length of a path
or a cycle is the number of edges in it. The following theorem characterizes bipartite

graphs in terms of cycles.

THEOREM 2.2.1. A graph is bipartite if and only if it has no odd cycle.
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2.2. GRAPH THEORY 8

Given a graph G = (V, E), a matching M is a subset of edges no two of which are
incident with a common vertex. V(M) denotes the set of vertices incident to an edge
in a matching M. A matching is said to be perfect if V(M) = V, that is, every node
is matched.

Two of the most studied problems concerning matchings are the mazimum cardi-
nality matching problem and the minimum weight matching problem[9]. The maxi-
mum cardinality matching problem is concerned with finding a maximum cardinality
matching in a given graph. One of its many applications is the problem of assigning
students to two-person dormitory rooms. In particular, given a list of pairs of stu-
dents who would be willing to share a room, this problem asks for an assignment of
students to rooms so as to maximize the number of roommates who are acceptable
to each other.

The minimum weight matching problem is the problem of finding a perfect match-
ing with minimum weight in an edge-weighted complete bipartite graph. It is also
known as the assignment problem since it models the following problem. Given n
men, n jobs and a cost d;; of man i performing job j, how should these men be
assigned to jobs in order to minimize the total cost. The feasible region of the lin-
ear programming formulation of the assignment problem, known as the assignment

polytope or the Birkhoff polytope, is the subject of the next chapter.
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CHAPTER 3

The Assignment Polytope

In this chapter, we review the properties of the assignment polytope, which is also
known as the Birkhoff polytope. In particular, we present known results concerning
its dimension, facets, and extreme points.

The assignment problem is concerned with finding a minimum weight perfect
matching in a bipartite graph. Given a bipartite graph G = (V; U V,, E) and |V;| =
[V| = n, let us associate with each edge (7, j) € E a weight d;; and a binary variable
z;; such that z;; = 1 if (¢, ) belongs to a matching and z;; = 0 otherwise. Then the

assignment problem can be formulated as the following integer programming problem:

min szzl dijij (14)
st Y@y =1foralli=1,...,n (15)
S xy=1forallj=1,....,n (16)
zi; €{0,1} for alli,j=1,...,n (17)

As it will be shown later, condition (17) can be replaced by
z;; > 0foralli,j=1,...,n, (18)

since the constraint matrix of the assignment problem is Totally Unimodular(TU). A
matrix A is said to be TU if the determinant of every square sub-matrix of A is 0, 1
or —1.

The assignment polytope of order n, denoted by P,, is the set of all feasible
solutions of the assignment problem, i.e. the set of all x = (z;;) satisfying (15), (16),
and (18). A non-negative n x n matrix is called a doubly stochastic if the sum of

the entries in each row and in each column is equal to 1. The simplest example of

9
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3. THE ASSIGNMENT POLYTOPE 10

stochastic matrices are permutation matrices. A permutation matriz P is a square
matrix with exactly one ’1’ in each row and in each column (the rest of the entries
being zero). Thus by considering the variables z;; as the entries of an n x n matrix,
P, can be equivalently defined as the set of all doubly stochastic matrices of order
n. Furthermore, there is one-to-one correspondence between feasible assignments and
permutation matrices of the same order.

Let I = {1,...,n} and J = {1,...,n}. In some cases we will find it conve-
nient to represent variables z;; of a feasible assignment by (¢, j)th cells in the two
dimensional array I X J with the values of the variables entered in their associated
cells. In other cases a feasible assignment will be represented by a permutation
(o(i1),0(ia),...,0(in)), such that z;, = 1,29, = 1,...,Zn;, = 1, and z;; = 0 oth-
erwise. For example, the diagonal assignment is represented by the permutation
(1,2,...,n).

The following result is well known[7]. We present a proof for completeness.

THEOREM 3.0.2. Let P, be the assignment polytope of order n. Then the dimen-

sion of P, is (n —1)°.

Proof: Since the rank of the constraint matrix in (15-16) is 2n — 1, then by Theorem
2.1.4, we have that dimP, < n?> — (2n — 1) = (n — 1)2. Next, we will show that
dimP, > (n — 1)? by exhibiting (n — 1)? + 1 affinely independent assignments in P,
thus proving the theorem.

Represent each assignment either as a permutation (o(1),0(2),...,0(n)) or as a per-
mutation matrix.

Step 1: First, let z! = (1,2,...,n). See Table 3.1

Then by switching column 1 and column k in assignment z', for & = 2,...,n. We
obtain assignments: %2, z%3 ... 2! where z'"* = (k,2,3,...,k—1,1,k+1,...,n)
for k = 2,...,n. In this step we have a total of n — 1 new assignment.

Step 2, Now let z* = 212, See table 3.2
By switching column 1 and column k in z2, for all k # 3, we obtain the assignments:

23 %4 .. x?", where z%F = (2,k,3,4,... ) k—1,1,k+1,...,n) for k = 3,...,n.

X
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3. THE ASSIGNMENT POLYTOPE 11

Thus generating (n — 2) new assignment.

1{0{0(0]0]0|010
o[1|{ojololojo]|o0
010(1({0]0]0101]0
0{0]0|1(010(0]|0
0/0(0(0}1]0]|0]|0
0(0(0[0j0;1]|0]|0
0/0(0{0]0]0|1]|0
0/10{0{0[0]|0|O0]|1
Table 3.1 ot
0{1{0,0(0(0|0|0
1/{0{0{0]|0]0}|0|0
0/0]1]0(0|0(0]0
0jo(of1]010]0]0
0(o(0f0j1{0|0]|0
010(0f(0|0t1]|0]0
0(o(0f{0j0j0]|1]0
0(0j0(0j0({0]|0(1
Table 3.2 (2°=z"?)

Step 3: Now let 2® = 23, By switching column 1 and column k in z3 for all k # 3,

we obtain the assignment 32, 34, 235 ... 23" Thus generating (n —2) new assign-
ments.

By repeating the same process as above on 7 = !4 ... 2" = 21" we obtain the
assignments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. THE ASSIGNMENT POLYTOPE 12

%2 743 a%5 48, ’ 4n
2:5,2, $5,3’ £E5’4, .'135’6, , :L.S,n
:L,n—l,Q’ ‘,L,n-—l.,3’ mn—1,4, o xn—l,n——2, xn—l,n
.’IJ"’2, mn,S’ xn,él, . xn,n-—Q, xn,n—l

Therefore, the total number of assignment generated is 1 +(n— 1)+ (n—2)(n—1) =
1+ (n—1)%

Next we show that these assignments are affinely independent. Let 2" denote the
diagonal assignment 2!. Arrange all these (n — 1)% 4+ 1 assignments in the order they
were generated.. Thus for all these assignments we have: the 75 component of as-
signment %7 is equal to 1, while the ij** component of all assignments generated
before zi7 is equal to 0. Therefore, all these assignments are affinely independent,

and the results follows.l

The following is an immediate corollary to the proof of the previous theorem.

COROLLARY 3.0.3. Let P, be the assignment polytope of order n, then x;; > 0 s

a facet-inducing inequality of P, for alli,j =1,...,n.

From the definition of doubly stochastic matrices it immediately follows that a
convex combination of permutation matrices is a doubly stochastic matrix. The
converse, namely that every doubly stochastic matrix can be expressed as a convex
combination of permutation matrices was independently proven by Birkhoff and Von

Neumann[25].

THEOREM 3.0.4. (Birkhoff-Von Neumann theorem) Let A be a doubly stochastic
matriz of order n, then A can be written as a convex combination of permutation

matrices of order n.

Proof: Since A = (a;;) is a doubly stochastic matrix, all entries are non-negative.
Let P! be a permutation matrix such that A; = min {a;; : P';; = 1} is positive. Then

R! = A — M\ P! is non-negative and has equal row and column sums. Furthermore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. THE ASSIGNMENT POLYTOPE 13

the number of zero entries of R! is at least one more than those of A. Repeating this
argument on R' and noting that A has at most n? non-zero entries, after a finite, say

k, steps we have

A= )\1P1+, c ;+/\kPk:

where each P; is a permutation matrix, A; > 0 and Zle A=1 1
Following is an example of the decomposition process used in the above proof of
Birkhoff-Von Neumann theorem.

Given the stochastic matrix

(e ST VI
Ol Nl O
oot O o=

The minimum positive entry in A is %, so let A be é, and

001
PP=1100
010

Then R; = A — A\ P, is nonnegative and has equal row and column sums.

Ry

Il
O Wi i
S NI= Wi
oo O O

Now the minimum positive entry in R; is %, so let Ay = %, and

010
P=|1100
0 01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. THE ASSIGNMENT POLYTOPE 14

Ry; = Ry — A\ P, is again nonnegative and has equal row and column sums.

o
o O

Ry =

o (a2 S
(e i ST
{=

The minimum positive entry in Ry is %, so let \3 = %, and

100
PB=1010
001

After this decomposition, A = A\ P, + Ao P + A3P;, where each P; is a permutation
matrix, and each \;, for i=1,2,3 and A\ + Ay + A3 = é + % + % =1.

Because of the Birkhoff-Von Neumann Theorem, the extreme points of the assign-
ment polytope P, are exactly the n x n permutation matrices [5]. Another way to
arrive at this result is by using the notion of total unimodularity[9]. It is easy to prove
that the constraint matrix of the assignment problem is TU. Therefore, all extreme
points of the assignment polytope are integral. Because of this, condition(17) can be
replaced by condition(18) in the integer programming formulation of the assignment
problem.

Adjacency on the assignment polytope is characterized in the following theorem.

18]

THEOREM 3.0.5. Let My and My be two distinct assignments. Then My and M,

are adjacent on the assignment polytope iff (My \ My) U (My \ M) forms one cycle.

Related to the notion of adjacency of extreme points is the notion of diameter
of a polytope. The distance between a pair of extreme points in a polytope is the

number of edges in a shortest path connecting these extreme points. The diameter of
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3. THE ASSIGNMENT POLYTOPE 15

a polytope is the greatest distance between any pair of extreme points in the polytope.

The following theorem establishes the diameter of the assignment polytope. [4]
THEOREM 3.0.6. The assignment polytope has diameter 2.

This theorem implies that any two distinct feasible assignments are either adja-

cent on the Birkhoff Polytope or are both adjacent to some feasible assignment.

The following is an example of the characterization of adjacency on the assignment
polytope.

Let My, M, be the sets of edges corresponding to the assignment (2,1,3,4) and
(1,2,3,4). (M;\ My)U (M3 \ M,) forms one cycle, thus M; and M, are adjacent. Now
let M3 be the set of edges of assignment (1,2,4,3), then (M; \ M3)U (M3 \ M,;) forms
two cycles. Hence, M; and M3 are not adjacent.

The existence of many efficient algorithms for solving the assignment problem
is due, in part, to the simplicity of its polytope. In the following chapters, this
motivates our polyhedral investigation of the polytope @} obtained by intersecting

the Birkhoff polytope with the hyperplane: 3 ocr s, Tij = 1.
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" CHAPTER 4

Known Facets of Q)"
1,72

Recall that our problem is

min 370 30 diTi (19)
subject to St =1 forallj=1,...,n (20)
D T =1 foralli=1,...,n (21)

zi; € {0,1} foralli,j=1,...,n (22)

D ie1 Qg CigTig =T (23)

where all ¢;; are 0 or 1, and r is an integer such that 0 <7 <n.

Let G = (V1UV,, E), |V4| = |V2| = n be a colored complete bipartite graph, where
edges are colored either red or blue. Then any feasible solution to (20)-(23) can be
interpreted as a perfect matching on G which uses exactly r red edges, where an edge
(i,7) is colored red if and only if ¢;; = 1. Let us represent each edge (4,j) by a cell
(7,7) in a two dimensional array I x J where I = J = {1,2....,n}.

We say that problem (19)-(23) belongs to a special case called the partitioned case
if there exist partitions I = I) U I, and J = J; U J; such that cell (¢, 7) is red if and
only if (¢,7) € (I; x J1) U (I3 x Jp). In this partitioned case, the cells of the I x J
array are paititioned into 4 blocks: By =11 x Ji, Bo = 1) X Ja, B3 = I, x Jo, and
By = I, x J;. Let |I1| = n; and |Ji| = ny. Then it was shown in [19] that in the

partitioned case, constraint (23) is equivalent to

Z ZL'ij =7, (24)

(#,3)EB1
where ry = (nq +ng + 1 —n)/2.
16
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4. KNOWN FACETS OF Q™1 17

It is not difficult to show that (24) is also equivalent to either one of the following
constraints:
Z Tij = T, (25)
(iuj)EBZ

- where ry = ny — 7y,

Z Tij = T3, (26)

(11J)€B3

where r3 = n —ng — 7o,

Z Tij = T4, (27)

(4,.J)€Ba
where 74 = ny — 1.

The following theorem was proved in [3].

THEOREM 4.0.7 (Alfakih et al [3]). The problem of solving (19)-(23) polynomially

reduces to a problem of the same type belonging to the partitioned case.

Therefore, without loss of generality we assume that our problem belongs to the

partitioned case.

Define:
Prn = Set of feasible solutions of (20), (21), (24) and z;; > 0,4,5=1,...,n.
nih, = integer hull of P71 .

THEOREM 4.0.8 (Alfakih at al [3]). Supposer; > 1 fori=1,...,4 and Q™"2 0.

ni,n2
; ; n,r I : T 2
Then dimension QuT = dimension Pi"l = n® — 2n.
Two large classes of facet-inducing inequalities for Q7% were presented in [3].

Before we present these two classes we remark that the facet-inducing inequalities for

7,71

the assignment polytope z;; > 0 are also facet-inducing for Q7,7 . These facets are

called the trivial facets of Q7" (3]

n1,n2
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4.1. FIRST CLASS OF FACET-INDUCING INEQUALITIES FOR Q'L 18

4.1. First Class of Facet-Inducing Inequalities for Q"

Facet-inducing inequalities for Q7:"1, ~of the first class are characterized by a pri-
mary defining cell (p, q), a non-empty subset of row indices Kg, and a non-empty
subset of column indices K¢.

The defining cell (p, q) for the first class can be any cell in the array. Suppose it is
in block By. Then the defining subset of row indices Kg must be a non-empty proper
subset of I, and the defining subset of column indices Ko must be a non-empty

proper subset of J3, and together they have to satisfy |Kg| + |K¢| =1+ 3.

g Ke
Pl 4| o

B B,

+

4+

Kg .

+

B4 B3

Figure 4.1 Facets of the First class
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4.2. SECOND CLASS OF FACET-INDUCING INEQUALITIES FOR Qn'%,, 19

THEOREM 4.1.1 (Alfakih et al [3]). Let (p,q) be the defining cell and Kg and K¢

be the defining subsets of row and column indices selected as discussed above. Then

qu‘i'zxm"'zxiq_ Z Ty <1

j€Kc i€Kp i€L\Kg, jeJ\Kc
. . o , o
is a facet-inducing inequality for Q7. .

Note that all coefficients in this facet-inducing inequality are —1,1 or 0. This
inequality is shown in Figure4.1 where a +(—) sign in cell (i,7) means that the

coeflicient of z;; in the inequality is +1(—1).

4.2. Second Class of Facet-Inducing Inequalities for ("}

n1,n2

Facet-inducing inequalities of the second class are characterized by two defining
cells called the primary and the secondary defining cells, and by two defining subsets
of row indices, and two defining subsets of column indices.

The primary defining cell, (p,q) can be any cell in the array. Suppose it is con-

7,71
n1,n2

tained in block Bj, then the second class of facet-inducing inequalities for
exists only if the numbers ry and 74 are both > 2. If this condition is satisfied, the
secondary defining cell (m,!) can be any cell in block By or By such that [ # q.

Suppose that (m,l) € By. The defining subsets of column indices K¢, K¢ can
be any nonempty disjoint proper subsets of J;. The defining subset Kz can be
any nonempty subset of I,\{m}, and the defining subset Kg can be any nonempty
subset of I;. These defining subsets also must satisfy |K¢| 4+ |[Kg| = 1 + r3, and
\Kc| + |Kg| =r4.

With those assumptions mentioned above we have

THEOREM 4.2.1 (Alfakih et al [3)). Let (p,q), (m,1), Kg, Kr, K¢ and K¢ be as

discussed above. Then,

Tpg + Z Tpj + Z Tig — Z Tig — Z Tmj

jeKe i€Kp i€ \(KpU{m}) jeJ\Kc jel\(KoUKe)
I A R
ieI\(KrU{p}, jelo\(KcUKC) i€eI\(KrUKpU{p,m})
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n],Nn2

q K¢ Ke
Pl + 4t
Kr
B1 BZ
1M e
+
Ky +
+
B Bs;

Figure 4.2 Facets of the Second class

is a facet-inducing inequality for Q"

ni,ne’

This inequality is shown in Figure 4.2. As was pointed out in [3], these two

classes of facets do not present a complete description of Q7.2 . In the next chapter

we present a new class of facet-inducing inequalities for Q7"

n1,n2 "
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CHAPTER 5

n,T1

New Class of Facet-Inducing Inequalities for @y},

In this chapter, we present a new, i.e. a third, class of facet-inducing inequalities
for Qn7,,- Facet-inducing inequalities in this new class are characterized by a primary
defining cell (p,q), three secondary defining cells (I,q) , (m,q) and (m/,q); and by
four nonempty disjoint defining subsets of columns I?C, I:é ¢, Ko, szc, and by one
nonempty defining subset of rows K R-

The primary defining cell, (p,q), can be any cell in the array. Suppose it is in

7,71

wi, only exists if

block B, this new class of facet-inducing inequalities for
T222&Ild 7‘423, (28)

or

9 > 3 and r4 > 2. (29)

If (28) holds, then the three secondary defining cells can be in Block By. On the
other hand, if (29) holds, then the three secondary defining cells can be in Block Bj.
Suppose that (28) holds and that the secondary defining cells are in By. Then
KrC IL\{p}, Ke,Kc C Ji\{¢} and I?C,I%C C J (see Figure 5.1). We require that

these defining subsets of rows and columns satisfy

|Ko| +Kc| = e, (30)

|Ko|+ |Kc| =1 +1, (31)

|Kg| — |Kc| = |Re| - 1. (32)
21
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Q7;"} 22

Y ,M12

¢ K¢ Ke i o K¢
Pl o+ ++- -+
7 ———— ___
- B1 . B2
L]+
m ——— e R
" i —-— e
m :
B4 B3

Figure 5.1 Facets of the third class

LEMMA 5.0.2. Let I~(C, I~(o, Ko, I?C, I?R be as discussed above and assumery > 3
and r9 > 2. Then

Tpg + E Tpj + Tig — E Tij — E T

jng\(I?cuf(c) i€Kr, jeKc ieRp, jekc
_ Z Tij — Z xij — Z xmj b Z CL‘mj (33)
ieh\KrU{p}, jeKc ieh\KpU{p}, jeKc jeKe jeRe
—mefj—me/j— Z zi; <1
jeKe j€ke icl\{l,m,m'}, je}?cukcuf(cuf(c

is a valid inequality for Ty
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Q"% 23

Proof: For any assignment z € Q™" . the sum

n1,n2’?

Tpq + Zig + Z Tpj, (34)
jer\(KcURo)

is equal to 0,1, or 2. If (34) is equal to either 0 or 1 the lemma trivially holds.
Therefore, assume that it is equal to 2. This holds when z;, = 1 and z,;, = 1 for
some jo € J2\(f:(o U Ke).

For ease of notation let Bo = JQ\(IAN;'C UKg), Ac = JIN{@} UKcURG), Ag =
I\({p}UKR), and B = I,\{l,m, m'}(see Figure 5.2). Thus it follows from (30)-(32)
that

Ry K¢ A Be Ke R

K . T

Figure 5.2
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Qr;"%4, 24

|Beo| = 73, (35)
|Ac| =14 — 2, (36)
|Ag| — |K¢| = |Ko| — 1. (37)

We say a sub-block (X x Y') has k allocations if there exists an assignment z €

Qur,, such that Z(i’j)e(xﬂ,) xi = k.
Recall that in any assignment x € Q72 , blocks By, By, By and B, must have

allocations ry, 79, r3 and r4 respectively. Four cases will be considered (see Figure

5.2):

Case 1: Z Tmj = 0 and Z Zpyj = 0.
jERC jEI‘%C
Recall that x;, = 1. Since z,;, = 1 for some jo € Bg, sub-block (I x Be¢)

7,71

can have at most r3 — 1 allocations. But for any assignment z in Q777,,

Block Bjs should have rg allocations. Therefore, at least some cell in Block
B3 with a negative sign must have an allocation and the result follows.

Case 2: z,; =1 for some j; € I?c and Z ZTm; = 0.
j€Ke
If some cell (7, ) with a negative sign in Block Bz has an allocation then

we are done. So assume that sub-block (I X B¢) has r3 — 1 allocations. i.e.,
z;; = 1forall j € Bc; Thus sub-block ((KrU Ag) X Be) has no allocations.
Now we have two subcases.
Subcase 2a: z,,;, =1 for some j, € Bc.
Then the sub-block ({m,m’} x Ji\{q}) can not have any allocations.
Therefore sub-block (Br x J1\{q}) must have ry — 1 allocations in any
feasible assignment z. However, sub-block (Bg x A¢) can have at most
r4—2. Thus one cell with a negative sign in sub-block (Bg x (KcUK¢))
must have an allocation and the result follows.

Subcase 2b: ), 5 Tm; =0.
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Q™"%,, 25

The sub-block ((Kr U Ag) x ((I:(C\{]l}) U K¢)) must have 7, — 1 al-
locations. Now if any cell with a negative sign in sub-blocks (I? R X
(I%c\{]l})) or (Ap x K¢) has an allocation, we are done. So assume
that sub-blocks (I~( R X I:é c) and (Ag X I?c) have no allocations. Now
from (30) it follows that sub-blocks (Kz x K¢) and (Ag x K c) have
r9 — 1 allocations. Hence, all columns in l~(c and IAN; ¢ have allocations.
Recall that j; € I% ¢ has an allocation in cell (m/, 7).
Now in Block B if any cell in sub-block (I? R X ]z(c) or sub-block (Ag X
K¢) has an allocation then we are done. Therefore assume that sub-
blocks (Kr x K¢) and (Ag x K¢) have no allocations. This implies
that sub-blocks (K x (K¢ U Ag)) and (Ap x (K¢ U Ac)) must have
r1 allocations since the column ¢ already has an allocation in the cell
(1, q) € B,4. Now we have to consider two subcases depending on whether
or not a column in Ag has an allocation in Block Bj.
Subcase i: z;;, =1 for some ¢ € KgrU Ag and some j3 € Ac.

In this case, Sub-block (({m} U Bg) x (J;1\{q})) must have ry — 1

allocations. However, it follows from (36) that (({m} U Bg) x A¢)

can have at most r4 — 3 allocations. Hence, Sub-block (({m} U

Bg) x (Kc U K¢)) must have at least 2 allocations. This implies

that sub-block (Bg x (K¢ U K¢)) must have at least 1 allocation

and the result follows.

Subcase ii: Sub-block ((KrU Ag) x A¢) has no allocations.

In this case, Sub-blocks (Kg, K¢) and (Ag x (K¢)) must have

ry allocations. Now it follows from (32) and (37) that |Kg| —

|Ko| = |Kc| — 1 and |Ag| — Iféc\{le = | K¢|. Hence, Sub-block

(Kr x K¢) has |[Kc| — 1 allocations and Sub-block (Ax x I%o) has

|K¢c| allocations. Therefore, the Sub-block (({m} U Bg) x (K¢ U

Ac)) must have ry — 1 allocations. However, from (36) we have
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Q7% 2

|Ac| = r4 — 2. Thus the Sub-block (({m} U Bg) x K¢) must have
an allocation and the result follows.
Case 3: z,,;, = 1 for some j, € IN(C and Z Trmj = 0.

jek¢
This case is similar to Case 2.

Case 4: 1, = 1 for some j5 € IN(C and Zpy;, = 1 for some jg € I~(c. This

case 1s similar to Case 2a.

THEOREM 5.0.3. The valid inequalities of the form(33) are facet-inducing inequal-

it T
ities for Qur. .

The following lemma, is crucial for the proof of the above theorem. It allows us

to lift a facet-inducing inequality for Q7"L into another facet-inducing inequality for

ny1,n2

n+1,71 n+1,r1 n+1,r1+1 n+1,71
Qm,nz ) ni+lngs Qn1+1,n2+17 and in,nz-i-l'

LEMMA 5.0.4 (Alfakih et al [3]). Let 3 i, > 7, aimi; < ag be a non trivial facet-
inducing inequality for QuL, and let A* = (aj;) be the (n+1) x (n+1) matriz derived

n1,m2

from A = (a;;) such that:

A Ay
A 0

A* =
forany ig € {n1 +1,...,n} and any jo € {n2 +1,...,n} satisfying a,,;, = 0, where
A, and A, denote, respectively, the joth column and the igth row of A. Then

n+1 n+1

* % . . . . . n+1,T
o1 D1 02 < ao 18 a facet-inducing inequality for Q 1

ny,n2

provided that il is a

valid inequality for it.

Proof of Theorem 5.0.3:

Consider the problem where n =7, n; =3, no =4, r, =1. Thenra =2, r3=1
and r4 = 3 (see Figure 5.3).

Let (p,q) = (1,1), I =4, m = 5 and m' = 6. Further, let Bc = 5, Ko = {2},
Ko = {3}, Ko = {6}, Ko = {7} and Kz = {2}. Then

T11+T15+Ta1 —Top —Toe —T33—T37—T53 —Ts—Te2 —Te7 —T72—T73—Tre—Trr < 1 (38)
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ny,n2

9 k. R. Ko K.
Pl N
K - -
|+
m : -
m’ - .

Figure 5.3 Facets for the (3!

is a facet-inducing inequality of Qg:}l, since it is a valid inequality of ng}i by Lemma

5.0.2 and since the following 35 feasible assignments, represented as permutations,

are affinely independent and satisfy (38) as an equality. Recall that dim Q;i = 35.
2t =(1,5,6,2,7,3,4), 22 = (5,1,6,2,7,3,4), * = (5,1,6,7,2,3,4)

= (1,7,6,5,2,3,4), 2° = (1,7,6,2,5,3,4), 25 = (2,7,6,1,5,3,4)

" = (5,4,6,1,2,3,7), 2 = (5,4,6,1,7,3,2), 2° = (5,4,6,2,7,3,1)

1% = (5,2,6,1,7,3,4), z'* = (5,3,6,1,7,2,4), z'?=(5,3,6,1,7,4,2)
z'? = (5,3,6,7,2,1,4), 24 = (5,3,6,1,2,7,4), = =(7,4,6,1,2,3,5)
1% =(4,7,6,1,2,3,5), 1" = (3,7,6,1,2,4,5), '8 =(3,7,6,1,2,5,4)
1 =(1,7,6,3,2,5,4), 2% = (1,7,6,4,2,3,5), z*' =(1,7,6,2,4,3,5)
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22 = (5,7,2,6,4,3,1), 22
% =(5,7,1,3,2,6,4), z*
8 =(5,7,4,1,2,6,3), 1
2 = (5,6,2,1,7,3,4), 2°
3 = (5,3,7,1,2,6,4), 23

3= (5,7,2,6,1,3,4), 2% =(5,7,1,6,2,3,4)
6=(57,4,3,2,6,1), %7 =(5,7,3,1,2,6,4)
®=(57,4,1,2,3,6), ¥ =(6,7,4,1,2,3,5)
2=(5,7,2,1,6,3,4), 23 =(5,7,2,1,3,6,4)
°=(7,3,5,1,2,6,4),

Next assume that n > 7 and that the assertion is true for assignments of order
n. Using the lifting procedure mentioned above, we will show that it is true for
assignments of order n + 1. Symbols with % refer to assignments of order n + 1.
Without loss of generality assume that the primary defining cell is (p,q) = (1,1) and
the three secondary defining cells are (I,q) = (n1 + 1,1), (m,q) = (n1 + 2,1) and
(m',q) = (m +3,1). Let 3200, 377, a7y < 1 be a facet-inducing inequality of the
form (33) (see Figure 5.2) for Q.. We will refer to this inequality as Vineq(n).
Consider the problem of order n + 1 and its corresponding array I* x J*. Thus the
(n+1) x (n+ 1) array I* x J* is obtained from the (n x n) array I x J by adding
one row and one column. The new row can be added either on the top or the bottom
of I x J, and the new column can be added either to the left or the right of I x J.
Thus four cases have to be considered.

Case 1: The added row and the added column are n+ 1 and n+ 1 respectively.

n+1,r1
1,2

This corresponds to the polytope @ where r; = r3 + 1. Let ig be any
row of By and jy be any column of Bx(See Figure5.2). Note that A;;, = 0.

Hence

n+1 ntl

DD aymy <1, (39)

i=1 j=1

where A* = (aj;) as defined in Lemma (5.0.4) is a facet-inducing inequality
with the same defining cells and with the same defining subsets.

Case 2: The added row and the added column are 0 and n + 1 respectively.

n+1,r1
ni1+1,n2

This corresponds to the polytope @ where 73 = r9 + 1. In this case

Vineq(n) can be lifted in two ways.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Qn"} 29

ny,Mn2

(1) Select ig to be any row in K R, and jp to be any column in I?c. Using

the same argument as in Case 1, it follows that (39) is a facet-inducing

n+1,m
n1+1,n2

subsets K} = Kz U {0} and K% = K¢ U {n + 1}. The other row and

inequality for @ with the same defining cells and with defining

column defining subsets are the same.

(2) Select iy to be any row in Ag, and jp to be any column in I:(C. Using
the same argument as in Case 1, it follows that (39) is facet-inducing
for QZE{’{;W w1th the same defining cells and with defining subsets A} =
Ar U {0} and Kc = Kc U {n + 1}. The other row and column subsets
are the same.

Case 3: The added row and the added column are 0 and 0 respectively. This
corresponds to the polytope QZTLTLQ 41 where r{ = r; + 1. Then Vineq(n)
can be lifted in two ways.

(1) Select %y to be any row in K R, select jo to be any column in K¢. Using
the same argument as in Case 1, it follows that (39) is a facet-inducing
inequality for QZ:&’{}W +1 with the same defining cells and with defining
subsets K3 = KrU{0} and K} = K¢ U {0}. The other row and column
defining subsets are the same.

(2) Select iy to be any row in Ag, select j, to be any column in Iz(c. Using
the same argument as in Case 1, it follows that (39) is a facet-inducing
inequality for Qﬁﬁl’“;z 41 With the same defining cells and with defining
subsets A} = ApU{0} and K2 = K¢ U{0}. The other row and column

defining subsets are the same.

Case 4: The added row and the added column are n + 1 and 0 respectively.

n+1,r1
ny,n2+1

This corresponds to the polytope @ where r; = r4 + 1. Select ¢
to be any row in Bg and select jy be any column in A, Using the same
argument as in Case 1, it follows that (39) is a facet-inducing inequality for
Q"L™ with defining cells and with defining subsets B}, = Br U {n + 1}

ny,nz+

and A% = Ac U {0}. The other row and column indices are the same.
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To complete the proof we need to show that every valid inequality of form (33) for
the problem of order n 4+ 1 can be obtained by lifting some valid inequality of order
n. To this end, consider the valid inequality of form (33) for the problem of order
n + 1 with defining cells (p,q) = (1,1),(l,q) = (n1 + 1,1), (m,q) = (ny + 2,1) and
(m/,q) = (n1+3,1). Since n+ 1 > 8, one of the following must hold: r} > 2, r5 > 3,
r3 > 2,0r 7; > 4. This is the case since r; > 1 orryg >2orrg >1orry > 3.

Now suppose that 75 > 2. Since |Bg*| = 7} we have |Bg*| > 2. Let jo be any
column of B. Since |Bj| =n —ny — 3 = r} +r; — 3, and since |r}| > 3 it follows
that |Bf| > 2. Let iy be any row of B}, and let j, be any row of Bf. Consider the
problem of ordér n associated with array I* \ {io} x J*\ {jo}. Then the inequality
obtained by deleting iy from B} and jo from B is of the form (33) with the same
defining cells and with defining subsets Br = By \ {io} and Be = Bg \ {jo}. So it
is a valid inequality for the problem of order n. Furthermore, the valid inequality of
the problem of order n + 1 can be lifted from this valid inequality as in Case 1.

Other cases are similar and the result follows.
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CHAPTER 6

Conclusion

Given the following linear integer programming problem:

min 320 D i diTi (40)
subject to Yoz =1 forallj=1,...,n (41)
E;’:lmij =1 foralli=1,...,n (42)

z;; € {0,1} foralli,j=1,...,n (43)

Z(i,j)e]l xJy Tij = T1 (44)

where I; = {1,2,...,n1} and J; = {1,2,...,ny}. Let

P = Set of feasible solutions of (41), (42), (44) and z;; >0 for all ¢,j =1,...,n.

n1,M2
nory o 7,71
mimg, = integer hull of P71 .
In this thesis we presented a new class of facet-inducing inequalities for Q7.7 .

Two classes of facet-inducing inequalities for ;"1 we presented in [3]. Unfortu-

nately, these 3 classes do not provide a complete description of @™, for general n,

since the following fractional point & = (&;;) defined by

>

T11 = Z15 = Toa = Loy = B35 = Tag = Tuz = Tgg = 56 = Ts7 =

Tey = Lo = Br3 = &rg = &gy ='Fg2 = 3, &y; = 0, otherwise,

is an extreme point of P77 which satisfies all the inequalities of these three classes.
This is yet another proof that whereas the assignment, or the Birkhoff, polytope P,
can be easily described as the intersection of n? inequalities of the form z;; > 0 for
alli,7 =1,...,n, the polytope obtained by intersecting F,, with a simple hyperplane
of the form (44) is not likely to have a simple description in terms of facets-inducing
inequalities. Nonetheless, these 3 known classes of facet-inducing inequalities can be

used in a branch-and-cut algorithm for solving Problem (40)-(44).
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