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A b stract

Consider a constrained assignment problem where the side constraint consists 

o f a single equality w ith  0-1 coefficients. This problem has the follow ing integer 

programm ing form ulation:

m in i  E " = i  dijXij (1)

subject to  £ L i  xij =  1 for all j  — 1 , . . . ,  n (2 )

£™=i xij =  1 for a lH  =  1 , . . . ,  n  (3)

Xy £  {0 ,1 }  for a lH , j  =  1 , . . . ,  n (4)

E IL i  £ J = i CijXij =  r  (5)

where a ll Cy are 0 or 1 and r  is an integer such tha t 0 <  r  <  n.

Let h  =  { 1, 2, . . . ,  m } ,  / 2 =  { n i  +  1, . . . , n } ,  J i =  { 1, 2, . . . ,  n2}, J2 =  { n2 +  

1 , . . .  , n ) . I t  was shown in  [3] th a t w ith o u t loss o f generality we can assume tha t 

Cij =  1 i f  and only i f  ( i , j )  G ( i i )  x  (,/[) IJ I 2 x  J2. Furthermore, in  th is case (5) is 

equivalent to

x H =  r u  (6)
( i , j ) e / ix J i

where rq =  {n\ +  n 2 +  r  — n ) / 2 .

Define

Pni,n2 ~  feasible solutions o f (2), (3), (6 ) and >  0, *, j  =  1 , . . . ,  n.

Q n ik  =  Integer hu ll of
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The polyhedral structure o f was investigated in  [3], where two large classes

of facet-inducing inequalities o f Qn’[h 2 were presented. In  th is thesis we present a new 

class of facet-inducing inequalities for Qn[,h2 ■
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1.1. OTHER CONSTRAINED ASSIGNMENT PROBLEMS 3

m in E E  dijXij : E Qn\^l2, (13)
»=l j = i

where which is defined in  Chapter 4, is a special case of Qn r . In  th is thesis

we present a new class o f facet-inducing inequalities for

1.1. Other Constrained Assignm ent Problem s

Leclerc [16] considered the follow ing problem known as the 2-edge restriction 

matching problem. Given a b ipa rtite  graph G — (V i U V2, E ), let W  C V\ U V2. F ind  a 

perfect matching M  such tha t \M C \8 (W )\ =  2, where <5 (IT ) is the set of edges incident 

w ith  exactly one node in  W . He presented an 0 (n 4 5) a lgorithm  for th is problem where 

n is the number o f nodes o f G. Next we show th a t this 2-edge restriction m atching 

problem is a special case o f problem (7 ) - ( l l ) .

Let W  n  Hi =  I u W  n  V2 =  Ji and let I 2 =  V1 \ I U J2 =  V2 \  Ji. Then, the 2-edge 

restriction m atching problem reduces to  the problem of find ing a feasible solution of 

the follow ing system:

X T = i xij =  1 for  a ll j  =  1 , • • •, n

YTj= 1 xij =  1 for a l i i  =  1 ,

Cij —

€ {0 ,1 }  for a lH , j  =  1 , . . . ,  n

s =iE;=iw = 2
where

'  1 i f  ( i , j )  € (h  x  J2) U ( I 2 x

0 i f  { h j)  € { I \  x  J\ ) U ( I 2 x J2 ) ■

A boudi and Nemhauser [1 ] studied a constrained assignment problem w ith  m  side 

constraints of the form:

T2fc-I,2fc—1 -  x 2 k,2 k =  0 for k =  1 , . . . ,  m.

They presented a class o f facet-inducing inequalities for the associated polytope, 

and they showed th a t th is class provides a complete description o f the associated 

polytope in  the case m  =  1.
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CHAPTER 2

Prelim inaries

In  th is chapter, we present basic definitions and relevant results from  polyhedral 

theory and graph theory th a t w ill be needed in  th is thesis.

2.1. P o ly h e d ra l th e o ry

Vectors (or points) x 1, . . .  , x k € R " are said to  be linea rly  independent i f  Ai =  

• • ■ =  A*, =  0 is the unique solution o f the system

k
Y  k x 1 =  0.
i= 1

Then i t  easily follows th a t n  is the m axim um  number of linearly independent points 

in  Rn. On the other hand, vectors (or points) x 1, . . . , x k € R " are said to  be 

affine ly independent i f  Ai =  • ■ • =  A* =  0 is the unique solution o f the system

k
£ > ‘ =  0,
i = 1

k
£ >  =  o.
*=1

Note tha t n  + 1 is the m axim um  number o f affinely independent points in  R n. Clearly, 

the notions of affine and linear independence arc related. Linear independence implies 

affine independence, bu t the converse may not be true. The next lemma establishes 

the exact re la tion between these two notions.

L e m m a  2.1.1. x 1, . . . ,  x k €= R ”  are a ffin e ly  independen t i f f  x 1 — x 1, . . . ,  x k — x l 

are linea rly  independent.

A  set S C R " is said to  be convex i f  the line segment jo in ing  any two points 

x x, x 2 in  S  is contained entire ly in  S. i.e. S is convex i f  V x1, # 2 € S' i t  follows tha t

4
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2.1. POLYHEDRAL THEORY 5

A t1 +  (1 -  A)x2 € S for a ll 0 <  A <  1. Given a set S =  {x 1, x2, . . . ,  xm} C R ", a point 

x  G R n is said to  be a convex combination o f x 1, x2, . . . ,  xk, i f  there exist nonnegative 

scalars A i, A2, . . . ,  A*,, Ya = 1 \  — such tha t x =  Y li= i ■*-n particu lar, x is a

convex combination o f x 1. x2 i f  x lies in  the closed line segment jo in ing  x 1 and x2. 

The convex hull of S, denoted by conv(S'), is the set of a ll points th a t are convex 

combinations o f points in  S. Given a set S C MX). the integer hull o f S is the convex 

hull o f the integral points in  S. The follow ing result, due to  Caratheodory, is well 

known [20].

T h e o re m  2.1.2. Let S C R n, then every point x G conv(S) can be represented as 

a convex combination of n +  1 points from S. i.e. fo r every point x G conv(S), there 

exist A i, A2, . . . ,  An+i  >  0, X ^ i .1 A, =  1 such that x =  ■

A  set H  C R " o f the form  {x  € R n, pTx =  a 0, p 0, a 0 G R } is called a 

hyperplane. Every hyperplane H divides the space in to  two halfspaces:

H + — {x  G R ”  : pTx >  cco}

H ~  =  {x  G R " : pTx <  a 0}

I t  is easy to  see tha t bo th  halfspaces H + ,H ~  are convex sets. A  set P  C Rn is 

a polyhedron i f  i t  is the intersection of a fin ite  number of halfspaces. Equivalently, 

a polyhedron is the set o f points th a t satisfy a fin ite  number o f linear inequalities; 

Obviously, a polyhedron is a convex set. A  polyhedron P  C R " is bounded i f  there 

exists a positive scalar 00 such th a t P  C {x  G R " : —a; <  X j  <  o j for j  =  1 , . . . ,  n } . 

Bounded polyhedra are called poly topes. We say a polyhedron P  is o f dimension k, 

denoted by dim (P ) — k , i f  the m axim um  number o f affinely independent points in  P  

is k + 1. In  addition, a polyhedron P  G Rn is said to  be full-dimensional i f  d im (P)=ra. 

I f  P  is not full-dimensional, then at least one o f the inequalities plx <  ai describing 

P  is satisfied as an equality by all points o f P. The inequality pTx <  a 0 is called a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. POLYHEDRAL THEORY 6

valid inequality for P  i f  i t  is satisfied by all points in  P. Equivalently, pTx <  Qo is a 

valid inequality o f P  i f  and only i f  P  lies in  the half-space {x  € Mn : pTx <  ao}[26 , 13].

I f  pTx <  Oq is a valid inequality o f P, then F  =  {x  G P  : pTx =  «o} is called a 

face o f P, and we say tha t (pT , a 0) represents F . Note tha t F  is a polyhedron and P  

and $  are faces o f P. A  face F  is said to  be proper i f  F  ^  <& and F  ^  P. The face F  

represented by (pT , ao) is nonempty i f  and only i f  max {pTx : x G P }  =  cxq. W hen F  

is nonempty, we say tha t the hyperplane pTx =  a 0 supports P. I f  F' is a proper face 

o f P , then d im (P ) <  d im (P ). In  particu lar, the dimension o f F  is k i f  the m axim um  

number of affinely independent points tha t lie in  F  is k +  1.

A  face F  o f P  is called a facet o f P  i f  d im (F ) =  dim (P ) — 1, and a face F  o f P  

is called an edge o f P  i f  d im (F ) =  1. Given a polyhedron P  =  { i  6  R " : Ax <  b}, 

one is interested in  finding out which o f the inequalities alx <  bi are necessary in  the 

description o f P  and which are redundant.

Facets, which have the highest dimension among a ll proper faces, are crucial for 

the description o f a polyhedron in  the sense tha t, for each facet F  o f P , at least one 

o f the inequalities representing F  is necessary in  the description o f P . I f  P  is fu ll­

dimensional, then for each facet o f P , there exists a unique (up to  a m u ltip lica tion  by 

a scalar) inequality representing it.  However, i f  P  is not full-dimensional, then there 

are more than one inequality representing each facet.

Polyhedra can also be represented in  terms of the ir extreme points. Given a convex 

set S, x € S is said to  be an extreme point of S, i f  i t  is impossible to  represent x as a 

proper convex combination o f two other points in  S. i.e. x is an extreme po in t o f S 

if f  whenever x =  \ x l +  (1 — X)x2, x 1, x 2 £  5, 0 <  A <  1, we must have x 1 =  x2 =  x. 

A  polyhedron P  has a fin ite  number of extreme points. Let x l , x 2 be two d is tinc t 

extreme points o f P , then re1, x 2 are said to  be adjacent i f  the line segment [x1, x2] is 

an edge o f P . Note tha t a face F  o f P  is an extreme point i f  and only i f  di m( F)  =  0. 

The follow ing well-known result shows tha t a polytope can be expressed as the convex 

hull o f its  extreme points.
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2.2. GRAPH THEORY 7

T h e o r e m  2.1.3 (W eyl-M inkow ski). Let P  be a nonempty polytope, and letx1, . . .  , xk 

be its extreme points, then

k k
P  =  {x  € ffin : x =  AiX1, where \  =  1, Aj >  0 fo r i =  1 , . . . , k}

i= l  i = 1

T h e o r e m  2 .1.4. Let P  be a polyhedron defined by P  =  {x  €  Mn : Ax =  b, x >  0 }. 

Then dimension P  <  n — rank(A ).

2.2. Graph Theory

In  th is  section, we review basic definitions and results from  graph theory.

A  graph G = (V ,E )  consists o f a fin ite  set V  o f vertices and a collection E  o f un­

ordered pairs o f vertices called edges. Two or more edges tha t jo in  the same pair of 

d is tinc t vertices are called parallel edges. A n  edge represented by an unordered pair 

in  which the two vertices are the same is known as a loop. A  simple graph is a graph 

w ith  no parallel edges and loops. The complete graph K n is a graph w ith  n vertices 

in  which there is an edge jo in ing  every pair o f vertices. A  bipartite graph, denoted by 

G =  (Vi U V2, E ), is a graph in  which the set o f vertices can be partitioned in to  two 

subsets V\ and V2 such tha t every edge has one end node in  V\ and the other in  V2. The 

complete bipartite graph is the graph (VJ. U V2 , E )  in  which there is an edge between 

every vertex in  Vi and every vertex in  V2. A  walk in  G is a fin ite  nonempty sequence 

W  — v q , C], v-\, 6 2 , v2 , ■ ■ ■ Cfc, v^, whose terms are a lternately vertices and edges, such 

tha t, for 1 <  * <  k, the ends o f e,; are V i-\ and vt . I f  the edges e i, e-2 , ■ ■ ■ ■, ek o f a walk 

are d is tinct, W  is called a trail, in  addition, i f  the vertices v0 , v i , . . .  ,Vk are d is tinct, 

W  is called a path. A  graph G =  (V , E ) is connected i f  for each two vertices vt, Vj o f 

G, there exists a path from  vl to  Vj. A  path  is closed i f  its  o rig in  and term inus are 

the same. A  closed path containing at least one edge is a cycle. The length o f a path 

or a cycle is the number o f edges in  it .  The follow ing theorem characterizes b ipa rtite  

graphs in  terms o f cycles.

T h e o r e m  2 .2.1. A graph is bipartite i f  and only i f  it has no odd cycle.
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2.2. GRAPH THEORY 8

Given a graph G =  (V, E) ,  a matching M  is a subset o f edges no two o f which are 

incident w ith  a common vertex. V ( M )  denotes the set of vertices incident to  an edge 

in  a matching M .  A  m atching is said to  be perfect i f  V ( M ) =  V , tha t is, every node 

is matched.

Two o f the most studied problems concerning matchings are the maximum cardi­

nality matching problem and the minimum weight matching problem [9]. The m axi­

mum card ina lity  matching problem is concerned w ith  finding a m axim um  card ina lity  

matching in  a given graph. One o f its  many applications is the problem of assigning 

students to  two-person dorm ito ry  rooms. In  particular, given a lis t o f pairs o f stu­

dents who would be w illin g  to  share a room, th is problem asks for an assignment of 

students to  rooms so as to  maximize the number o f roommates who are acceptable 

to  each other.

The m in im um  weight m atching problem is the problem of finding a perfect match­

ing w ith  m in im um  weight in  an edge-weighted complete b ipa rtite  graph. I t  is also 

known as the assignment problem since i t  models the follow ing problem. Given n 

men, n jobs and a cost dkj o f man i perform ing job  j ,  how should these men be 

assigned to  jobs in  order to  m inim ize the to ta l cost. The feasible region o f the lin ­

ear program m ing form ulation o f the assignment problem, known as the assignment 

polytope or the B irkho ff polytope, is the subject of the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

The A ssignm ent P olytope

In  th is  chapter, we review the properties o f the assignment polytope, which is also 

known as the B irkho ff polytope. In  particu la r, we present known results concerning 

its  dimension, facets, and extreme points.

The assignment problem is concerned w ith  finding a m in im um  weight perfect 

matching in  a b ipa rtite  graph. Given a b ipa rtite  graph G  =  (V i U V2, E ) and |Vi| =  

|V2I — n, le t us associate w ith  each edge ( i , j )  E E  a weight dtl and a b inary variable 

such tha t xt:) =  1 i f  ( i , j )  belongs to  a m atching and xtJ =  0 otherwise. Then the 

assignment problem can be form ulated as the follow ing integer program m ing problem:

m in  Y S ^ id ijX ij  (14)

s.t. J2j=i xij =  1 f ° r a ll * =  1, • • •, n (15)

Y T i= i =  1 fo r all j  =  1, . . .  ,n  (16)

E { 0 , 1 }  for a lH , j  =  1 , . . . ,  n (17)

As i t  w ill be shown later, condition (17) can be replaced by

x^ >  0 for a ll i , j  =  l , . . . , n ,  (18)

since the constraint m a trix  o f the assignment problem is Totally Unimodular(TU). A  

m a trix  A  is said to  be T U  i f  the determ inant o f every square sub-m atrix o f A  is 0,1 

or —1 .

The assignment polytope o f order n, denoted by Pn, is the set o f a ll feasible 

solutions o f the assignment problem, i.e. the set o f a ll x =  (x^)  satisfying (15), (16), 

and (18). A  non-negative n x  n m a trix  is called a doubly stochastic i f  the sum of

the entries in  each row and in  each column is equal to  1. The simplest example of

9
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3. THE ASSIGNMENT POLYTOPE 10

stochastic matrices are perm utation matrices. A  permutation matrix P  is a square 

m a trix  w ith  exactly one ’1 ’ in  each row and in  each column (the rest o f the entries 

being zero). Thus by considering the variables as the entries o f an n x  n m atrix , 

Pn can be equivalently defined as the set o f a ll doubly stochastic matrices o f order 

n. Furthermore, there is one-to-one correspondence between feasible assignments and 

perm utation matrices of the same order.

Let I  =  { l , . . . , n }  and J  =  { l , . . . , n } .  In  some cases we w ill find i t  conve­

nient to  represent variables xt] o f a feasible assignment by (i , j ) t h  cells in  the two 

dimensional array I  x  J  w ith  the values o f the variables entered in  the ir associated 

cells. In  other cases a feasible assignment w ill be represented by a perm utation 

( a ( i i ) , a ( i 2) , . . .  , a( i n)), such th a t x Ul =  l , x 2i2 =  l , . . . , x nin =  1, and =  0 o th ­

erwise. For example, the diagonal assignment is represented by the perm utation 

(1 , 2 , . . . ,  n).

The follow ing result is well known[7]. We present a proof for completeness.

T h e o re m  3.0.2. Let Pn be the assignment polytope of order n. Then the dimen­

sion of Pn is (n — l ) 2.

P ro o f: Since the rank o f the constraint m a trix  in  (15-16) is 2n — 1, then by Theorem 

2.1.4, we have tha t dimPn <  n2 — (2n — 1) — (n — l ) 2. Next, we w ill show tha t 

dimPn >  (n  — l ) 2 by exh ib iting  (n — l ) 2 +  1 affinely independent assignments in  Pn 

thus proving the theorem.

Represent each assignment e ither as a perm utation (cr(l), <r(2),. . . ,  ar(n)) or as a per­

m utation  m atrix .

Step 1: F irs t, let x 1 =  (1, 2 , . . .  ,n ). See Table 3.1

Then by switching column 1 and column k in  assignment x 1, for k — 2 , . . . ,  n. We 

obta in assignments: x 1,2, x1,3, . . . ,  x 1,n, where x l 'k — (k, 2 , 3 , . . . ,  k — 1 , 1 , k +  1, . . . ,  n) 

for k =  2 , . . . ,  n. In  th is step we have a to ta l o f n — 1 new assignment.

Step 2, Now le t x 2 =  x 1'2. See table 3.2

By switching column 1 and column k in  x2, for a ll k 3, we obta in  the assignments: 

x2’3, x2'4, . . . ,  x2,n, where x2'k =  (2, k, 3 , 4 , . . . ,  k — 1,1, k +  1 , . . . ,  n) for k =  3 , . . . ,  n.
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3. THE ASSIGNMENT POLYTOPE 11

Thus generating (n — 2) new assignment.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Table 3.1 x 1

0 1 0 0 o 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

o 0 0 0 0 0 0 1

Table 3.2 (x2 =  x 1,2)

Step 3: Now let x 3 =  x 1,3. B y switching column 1 and column k in  x 3  for a ll k 3, 

we obta in  the assignment x 3,2. x 3,4, x 3,5, . . . ,  x 3,n. Thus generating (n  — 2) new assign­

ments.

By repeating the same process as above on x 4 =  x 1,4, . . .  , x n =  x 1,n, we obta in the 

assignments:
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3. THE ASSIGNMENT POLYTOPE 12

X4-2 , X4’3 X4’5 , X4’6 , X4’"

x 5>2 , x 5’3 , x 5’4 , 2-5.6,

I " - 1’2 , rfVrt—1,3 
X  . , x n “ M , ■jXt — l ,n —2 —l,ro

X™’2 rrTl, 3X  , x " ’4 , . . . . ,£.71,71 — 2 ,£,71,71 — 1

Therefore, the to ta l number of assignment generated is 1 +  (n — 1) +  (n  — 2)(n  — 1) =  

1 +  (n — l ) 2.

Next we show th a t these assignments are affinely independent. Let x 1,1 denote the 

diagonal assignment x 1. Arrange a ll these (n  — l ) 2 +  1 assignments in  the order they 

were generated.. Thus for a ll these assignments we have: the i j th component o f as­

signment x 1'3 is equal to  1, while the i j th component of a ll assignments generated 

before x 1'3 is equal to  0. Therefore, a ll these assignments are affinely independent, 

and the results follows.■

The follow ing is an imm ediate corollary to  the proof o f the previous theorem.

C o r o l l a r y  3.0.3. Let Pn be the assignment polytope of order n, then Xij >  0 is 

a facet-inducing inequality of Pn for all i, j  =  1 , . . . ,  n.

From the defin ition  o f doubly stochastic matrices i t  im m ediately follows th a t a 

convex com bination o f perm utation matrices is a doubly stochastic m atrix . The 

converse, namely th a t every doubly stochastic m a trix  can be expressed as a convex 

combination of perm utation matrices was independently proven by B irkho ff and Von 

Neumann[25],

T h e o r e m  3.0.4. (Birkhoff-Von Neumann theorem) Let A be a doubly stochastic 

matrix of order n, then A can be written as a convex combination of permutation

m ,atrices o f  o rd e r n .

Proof: Since A  =  is a doubly stochastic m atrix , a ll entries are non-negative. 

Let P l be a perm utation m a trix  such tha t Ai =  m in {atJ : P \ 7 =  1} is positive. Then 

R 1 =  A — X iP 1 is non-negative and has equal row and column sums. Furthermore,
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3. THE ASSIGNMENT POLYTOPE 13

the number of zero entries o f R 1 is at least one more than those o f A. Repeating th is 

argument on R 1 and noting th a t A  has at most n2 non-zero entries, after a fin ite , say 

k, steps we have

A =  A1P1+ , • • •, +AfcPfc

where each Pi is a perm utation m a trix , A, >  0 and Y li= 1 =  1- ®

Following is an example o f the decomposition process used in  the above p roof of 

B irkhoff-Von Neumann theorem.

Given the stochastic m a trix

(  1
2

A =

1
3

1 1
2 2

1

1 \
6

0

0 6 6 /

The m in im um  positive entry in  A  is so le t Ai be and

Pi

Then P x =  A  — A] Pi is nonnegative and has equal row and column sums.

R i

(  I  I  q \  
2 3 u

I  I  0 

0 0 I  /

Now the m in im um  positive entry in  P i is so le t A2 =  | ,  and

P2

is so

' 0 1

1 0

0 0

\
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3. THE ASSIGNMENT POLYTOPE 14

I t '2 =  R\ — A2P2 is again nonnegative and has equal row and column sums.

The m in im um  positive entry in  R 2 is so let A3 =  and

0 1 0 

0 0 1 /

A fte r th is decomposition, A  =  Ai Pi +  X2 P2 +  A3P3, where each Pi is a perm utation 

m atrix , and each Ai; for i= l,2 ,3  and Ai +  A2 +  A3 =  |  |  |  =  1.

Because o f the B irkhoff-Von Neumann Theorem, the extreme points o f the assign­

ment polytope Pn are exactly the n x  n perm utation matrices [5]. Another way to  

arrive at th is  result is by using the notion o f to ta l un im odu la rity  [9]. I t  is easy to  prove 

tha t the constraint m a trix  o f the assignment problem is TU . Therefore, a ll extreme 

points o f the assignment polytope are integral. Because o f this, condition(17) can be 

replaced by condition (18) in  the integer programming form ulation o f the assignment 

problem.

Adjacency on the assignment polytope is characterized in  the follow ing theorem. 

[18]

T h e o r e m  3.0.5. Let M i  and M 2 be two distinct assignments. Then M i and M 2 

arc ad jacen t on the ass ignm ent polyt.opa i f f  ( M i  \  M 2) U ( M 2 \  M i )  fo rm s  one. cycle.

Related to  the notion o f adjacency o f extreme points is the notion o f diameter 

o f a polytope. The distance between a pair o f extreme points in  a polytope is the 

number o f edges in  a shortest path connecting these extreme points. The diameter of
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3. THE ASSIGNMENT POLYTOPE 15

a polytope is the greatest distance between any pair o f extreme points in  the polytope. 

The follow ing theorem establishes the diameter of the assignment polytope. [4]

T h e o r e m  3 .0.6. The assignment polytope has diameter 2.

This theorem implies tha t any two d is tinct feasible assignments are either adja­

cent on the B irkho ff Polytope or are both  adjacent to  some feasible assignment.

The follow ing is an example o f the characterization of adjacency on the assignment 

polytope.

Let M i,  M 2 be the sets o f edges corresponding to  the assignment (2 ,1 ,3 ,4 ) and 

(1 ,2 ,3 ,4 ). (M i \  M 2) U (M 2 \  M i)  forms one cycle, thus M i and M 2 are adjacent. Now 

let M 3 be the set o f edges of assignment (1 ,2 ,4,3), then ( M i  \  M 3) U (M 3 \  M i)  forms 

two cycles. Hence, M i and M 3 are not adjacent.

The existence o f many efficient algorithm s for solving the assignment problem 

is due, in  part, to  the s im p lic ity  o f its  polytope. In  the follow ing chapters, this 

motivates our polyhedral investigation o f the polytope Q%[n2 obtained by intersecting 

the B irkho ff polytope w ith  the hyperplane: S ( i  j)e /ixJ i Xl.i =  r i-
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CHAPTER 4

K nown Facets o f Qn,Tlni,n2

Recall tha t our problem is

m in  L I U  £ " =  i  dijxij (19)

subject to  £ I L i  =  1 for all j  — 1, . . . ,  n (20 )

E j= i  xij =  1 for a lH  =  1 , . . . ,  n  (21)

e { 0 , 1}  for all i, j  =  1 , . . . ,  n (22 )

=  r  (23)

where a ll cy are 0 or 1, and r  is an integer such tha t 0 <  r  <  n.

Let G =  (Vi U V2, E ), | Vj | =  | V2I =  n  be a colored complete b ip a rtite  graph, where

edges are colored either red or blue. Then any feasible solution to  (20)-(23) can be

interpreted as a perfect m atching on G  which uses exactly r  red edges, where an edge 

( i , j )  is colored red i f  and only i f  c,? =  1. Let us represent each edge ( i , j )  by a cell

(i, j )  in  a two dimensional array I  x  J  where I  =  J  =  { 1 , 2 . ,  n}.

We say th a t problem (19)-(23) belongs to  a special case called the partitioned case 

i f  there exist partitions  /  =  I \  U I 2 and J  =  J\ U such tha t cell ( i , j )  is red i f  and

only i f  ( i , j )  S (R  x J j)  U (I 2 x  J2). In  th is partitioned case, the cells o f the I  x J

array are partitioned in to  4 blocks: B\ =  R x J {, B 2 =  h  x  J2, B :i =  I 2 x J2, and

B 4 =  I 2 x Ji. Let |J i| =  n\ and |J i| =  n 2. Then it  was shown in  [19] th a t in  the

partitioned case, constraint (23) is equivalent to

X I  xij =  r i> (24)
(i , j ) e B i

where r x =  (n x +  n 2 +  r  — n ) / 2 .

16
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4. KNOWN FACETS OF Qlpn2 17

I t  is not d ifficu lt to  show tha t (24) is also equivalent to  either one of the follow ing 

constraints:

=  r2, (25)

where r 2 =  n\ — rq,

Xii  =  r3> (26)

where r 3 =  n — n 2 — r 2,

Xii  =  r4> (27)
( i , j ) e s 4

where r± =  n2 —'r\.

The follow ing theorem was proved in  [3].

T h e o re m  4.0.7 (A lfak ih  et al [3]). The problem of solving (19)-(23)  polynomially 

reduces to a problem of the same type belonging to the partitioned case.

Therefore, w ithou t loss o f generality we assume tha t our problem belongs to  the 

partitioned case.

Define:

P nff 2 =  Set of feasible solutions o f (20), (21), (24) and Xtj >  0, i , j  =  1 ,n. 

Q rn k  =  integer hu ll o f P f [ f 2.

T h e o re m  4.0.8 (A lfak ih  at al [3]). Suppose r 4 >  1 fo r i  =  1 , . . . ,  4 and Q ^ fk  7̂  0. 

Then dimension =  dimension P f f k ~  n 2 ~  2n.

Two large classes o f facet-inducing inequalities for Q^’f k  were Presented in  [3]. 

Before we present these two classes we rem ark th a t the facet-inducing inequalities for 

the assignment polytope x%:] >  0 are also facet-inducing for Qr7) f k  ■ These facets are 

called the tr iv ia l facets o f Q n fk  [^1-
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4.1. FIRST CLASS OF FACET-INDUCING INEQUALITIES FOR 18

4.1. First Class o f Facet-Inducing Inequalities for Q”fn2

Facet-inducing inequalities fo r Qn’[h 2 of the firs t class are characterized by a p ri­

m ary defining cell a non-empty subset o f row indices K r ,  and a non-empty

subset o f column indices Kc-

The defining cell (p, q) for the firs t class can be any cell in  the array. Suppose it  is 

in  block B\.  Then the defining subset of row indices K r  must be a non-empty proper 

subset o f I 2 , and the defining subset of column indices K c  must be a non-empty 

proper subset o f J2, and together they have to  satisfy \ K r \  +  \Kc\ =  1 +  r.3.

P

Kr

Figure 4.1 Facets of the First class

+ +  +  *•• +

B i b 2

+

+

+

b 4
; ;

b 3
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4.2. SECOND CLASS OF FACET-INDUCING INEQUALITIES FOR 19

TH EO R EM  4.1.1 (A lfak ih  et al [3]). Let (p,q) be the defining cell and K R and K c  

be the defining subsets of row and column indices selected as discussed above. Then

x pg t  y  ] x pj  + y  ] X iq — y  ' x VJ < 1
j e K c  i ^ h \ K R ,  j e J 2\ K c

is a facet-inducing inequality for Qnfh2 ■

Note th a t all coefficients in  th is  facet-inducing inequality are —1,1 or 0. This 

inequality is shown in  Figure4.1 where a + ( —) sign in cell ( i , j )  means tha t the 

coefficient o f in  the inequality is + 1 ( —1).

4.2. Second Class o f Facet-Inducing Inequalities for Qn,r 1 
Til ,712

Facet-inducing inequalities o f the second class are characterized by two defining 

cells called the primary and the secondary defining cells, and by two defining subsets 

o f row indices, and two defining subsets o f column indices.

The p rim ary defining cell, (p, q) can be any cell in  the array. Suppose i t  is con­

tained in  block B \,  then the second class o f facet-inducing inequalities for Qnffn2  

exists only i f  the numbers r -2 and r 4 are both  > 2 .  I f  th is condition is satisfied, the 

secondary defining cell (m, I) can be any cell in  block B 2 or B 4  such tha t I q.

Suppose th a t (m ,l)  G B 4. The defining subsets of column indices K c , K q  can 

be any nonempty d isjo int proper subsets o f J2. The defining subset K R can be 

any nonempty subset o f J2\ { m } ,  and the defining subset K f{ can be any nonempty 

subset o f I \ .  These defining subsets also must satisfy \Kc\ +  \ K r \  =  1 +  rs,  and 

\K C\ +  \K r \ =  r 4.

W ith  those assumptions mentioned above we have

T h e o r e m  4.2.1 (A lfak ih  et al [3]). Let (p,q), (m , l ), K R, K R, K c  and K c  be as 

discussed above. Then,

%pq + y   ̂ Xpj + X iq y   ̂ ■
j eKc i 6 K R i e I 2\ ( K RU{m})  jeJ2\K c j£J2\(Kc UKc )

y  ] x v _ y   ̂ x u — 1
i € l i \ ( K RU{p}, j £ J 2 \ ( K c U K c )  i € l \ ( K RU K RJ{p,m})
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4.2. SECOND CLASS OF FACET-INDUCING INEQUALITIES FOR Q " ^ 20

q l  Kg Kc

p

Hr

m

k r

is a facet-inducing inequality for Qnfh2 ■

This inequality is shown in  Figure 4.2. As was pointed out in  [3], these two 

classes of facets do not present a complete description of Qrr\f  \ l 2 . In  the next chapter 

we present a new class of facet-inducing inequalities for Qnfh2 ■

+ + + ••• +

B i E2

_

----------
+
+

+

-
b 4

:

E*3

Figure 4.2 Facets of the Second class
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CH APTER 5

N ew  Class o f Facet-Inducing Inequalities for Q^ n2

In  th is chapter, we present a new, i.e. a th ird , class of facet-inducing inequalities 

for Qn'[h2 ■ Facet-inducing inequalities in  th is new class are characterized by a primary 

defining cell (p,q ), three secondary defining cells (l ,q ) , (m,q) and (m’,q); and by 

four nonempty d is jo in t defining subsets of columns K c, K c , K c , K c , and by one 

nonempty defining subset o f rows K r .

The prim ary defining cell, (p,q), can be any cell in the array. Suppose i t  is in  

block Bi,  th is  new class o f facet-inducing inequalities for only exists i f

r 2 > 2  and r 4  >  3, (28)

or

r 2 > 3  and r& >  2. (29)

I f  (28) holds, then the three secondary defining cells can be in  Block B 4. On the

other hand, i f  (29) holds, then the three secondary defining cells can be in  B lock B 2.

Suppose tha t (28) holds and th a t the secondary defining cells are in  B4. Then 

K r  C  B \{ p } ,  K c ,K q  C  J A M  and K c , K c  C J2 (see Figure 5 .1). We require tha t 

these defining subsets of rows and columns satisfy

\Kc\ +  \K c \ = r 2, (30)

\K c \ +  \K c \ = r l +  l ,  (31)

K r \ -  \K C\ =  \K C\ -  1. (32)
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Ql'^„ 22

(I Kc Kc 
< > < —>

k c h'<

p

Kn

I

m

'm!

+ + + ••• +

------ E
*1 -  b2

+
--------- ---------

R,D4 D3

-------- ------- ------- - . . , ----

Figure 5.1 Facets of the third class

L e m m a  5.0.2. Let K c , K c ,  K c , K c , K r  be as discussed above and assume r 4 >  3 

and ?~2 >  2. Then

x.PQ +  y~^ xPj + xtq y~^ •x*.?

j£J2\(KcUKc )

E  =

iefQi, jeAc jeA c

y~ i xv ~ X,rry
»e/i\KnU{p}, j e K c  ?:e/i\K'/iu{p}. j g K c  j & K c  j e l < c

y   ̂ x m ' j _ y  ̂ x m ' j  ~  y .
j e ^ c  j e A c  i £ l 2\ { l , m , m ' } ,  j e K c U K c U K c U K c

(33)

a valid inequality for ]ni ,ri2 *
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR Q l '^ 23

Proof: For any assignment x G Q™'[R2, the sum

Xpq "I- %lq T  'y  ̂ X p j , (34)

j e J i M K c u K c )

is equal to  0,1, or 2. I f  (34) is equal to  either 0 or 1 the lemma tr iv ia lly  holds. 

Therefore, assume tha t i t  is equal to  2. Th is holds when xiq =  1 and xn{] =  1 for 

some j 0 € ^ \ ( - ^ c  U K c ).

For ease o f nota tion  le t Bc =  J2 \ { K C U K c ), A c =  J i \ ( {q }  U R c  U K c ),  A R =  

I i \ ( { p } L ! K R), and B R =  I 2 \ { l ,m , m '}(see Figure 5.2). Thus i t  follows from  (30)-(32) 

tha t

p

Kr

Ar

I
m
m 1

Br

q K c  K c  Ac Be K „  Kc
< >< > < >< >

+

+

B i

B a

Bs

B,

Figure 5.2
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR 24

\Bc \ = r 3, (35)

\ A c \ = u - 2 ,  (36)

\Ar \ -  \R C\ =  \Rc\ -  I- (37)

We say a sub-block (X  x  Y )  has k allocations i f  there exists an assignment x €

Q l ’unz such tha t E ( i j)e (x x y )  =  k -

Recall th a t in  any assignment x <E Q%[h2, blocks B x, B 2, B 3 and R 4 must have 

allocations r i ,  r 2, r 3 and r 4 respectively. Four cases w ill be considered (see Figure 

5.2):

Case 1: x mj  =  0 and x m/j =  0.
jeKc j£Rc

Recall th a t xiq =  1. Since xP ]0  =  1 for some jo G R c, sub-block ( / 2 x Be)

can have at most r 3 — 1 allocations. B u t for any assignment x in  Qn’[,h2:

Block B 3 should have r 3 allocations. Therefore, at least some cell in  Block

B 3  w ith  a negative sign must have an allocation and the result follows.

Case 2: xm>j1 =  1 for some j x € K c  and xmj =  0.

I f  some cell ( i , j )  w ith  a negative sign in  Block B 3  has an a llocation then 

we are done. So assume tha t sub-block (J2 x  Be) has r 3 — 1 allocations, i.e., 

Xij =  1 for a ll j  e Be- Thus sub-block ( (K R iJ A R) x Be)  has no allocations. 

Now we have two subcases.

Subcase 2a: xmn =  1 for some j 2 G Be-

Then the sub-block ( { m ,m ' }  x  J i \ {q } )  can not have any allocations. 

Therefore sub-block (B r x J i \ {q } )  must have r 4 — 1 allocations in  any 

feasible assignment x. However, sub-block (B r x  A c ) can have at most 

r 4 — 2. Thus one cell w ith  a negative sign in  sub-block (B R x  ( K c U K c j) 

must have an a llocation and the result follows.

Subcase 2b: Xmi  =  °'
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR 25

The sub-block ( ( K r  U A r ) x  ( ( K c \ { j i } )  U K c )) must have r 2 — 1 al­

locations. Now i f  any cell w ith  a negative sign in  sub-blocks ( K r x  

( K c \ { j i } ) )  or ( A r  x K c )  has an allocation, we are done. So assume 

tha t sub-blocks ( K r  x  K c ) and ( A r  x K c ) have no allocations. Now 

from  (30) i t  follows th a t sub-blocks ( K r x  K c ) and ( A r  x  K c ) have 

r 2 — 1 allocations. Hence, a ll columns in  K c  and K c  have allocations. 

Recall tha t j x € K c  has an a llocation in  cell ( m ' , j i) .

Now in  B lock B x i f  any cell in  sub-block ( K R x Kc) or sub-block ( A r x  

K c )  has an allocation then we are done. Therefore assume th a t sub­

blocks ( K r  x K c )  and ( A r  x  K c ) have no allocations. This implies 

tha t sub-blocks ( K r  x  ( K c  U A c )) and ( A r x  ( K c  U A c  j )  must have 

7T allocations since the column q already has an allocation in  the cell 

(l,q) £ B 4. N ow  we have to  consider two subcases depending on whether 

or not a column in  A c  has an allocation in  B lock B x.

Subcase i: Xij3 =  1 for some i £  K r  U A r  and some j 3 £ Ac- 

In  th is case, Sub-block ( ( { m }  U B r )  x  ( « / l \ { < 7 } ) )  must have r 4 — 1 

allocations. However, i t  follows from  (36) tha t ( ( { m } U  B r )  x  A c ) 

can have at most r 4 — 3 allocations. Hence, Sub-block ( ( { m }  U 

B r )  x ( K c  U Kc)) must have at least 2 allocations. Th is implies 

tha t sub-block ( B r  x  ( K c  U K c ) )  must have at least 1 allocation 

and the result follows.

Subcase ii: Sub-block ( ( K r  U A r )  x A c )  has no allocations.

In  th is case, Sub-blocks ( K r , K c )  and ( A r  x ( K c ) )  must have 

7T allocations. Now i t  follows from  (32) and (37) tha t \ K r \  — 

\ K C \ =  \ K C \ ~  1 and \AR \ -  \K c \ { j i } \  =  \K C\- Hence, Sub-block 

( K r  x K c )  has \ K c \  — 1 allocations and Sub-block ( A r  x  K c )  has 

\ K c \  allocations. Therefore, the Sub-block ( ( {m }  U B r )  x  ( K c  U 

A c ) )  must have r 4 — 1 allocations. However, from  (36) we have
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5. NEW CLASS OF FACET-INDUCING INEQUALITIES FOR 26

\Ac\ — r 4 ~  2. Thus the Sub-block ( ( {m }  U B r ) x  K c ) must have 

an a llocation and the result follows.

Case 3: x rnH =  1 for some j4 G and x m >j =  0.

KKc
This case is s im ilar to  Case 2.

Case 4: x mj, =  1 for some j?, € K c  and x m>:j6 =  1 for some jo  € This

case is s im ilar to  Case 2a.

T h e o re m  5.0.3. The valid inequalities of the form(33) are facet-inducing inequal­

ities for Q ^ n2.

The follow ing lemma is crucial for the proof o f the above theorem. I t  allows us 

to  l i f t  a facet-inducing inequality for Qnfh2 in to  another facet-inducing inequality for
(Qn+l.n nn+l,n 1,71+1 j  ✓yi+l.n

T̂ti,ri2 ’ ^vni+l,ri2’ ^vni4-l,ri2+l’ cmu ^m,ra2+l*

LEMMA 5.0.4 (A lfak ih  et al [3]). Let X n= i X q = i au x u C «-o be a non trivial facet- 

inducing inequality for Qn’[h 2 and let A* =  (a*j) be the (n +  1) x  (n +  1) matrix derived 

from A  =  (aij) such that:

A A , 0 \

Aio. 0 )
for any io G {nf  +  1 , . . . ,  n} and any jo G {n 2 +  1 , . . . ,  n} satisfying aioj 0 =  0, where

A,j0 and Ai0. denote, respectively, the joth column and the ioth row of A. Then

X q = i a*jxij — ao is a facet-inducing inequality for provided that it is a

valid inequality for it.

Proof o f Theorem  5.0.3:

Consider the problem where n =  7, n 4 =  3, n 2 =  4, rq =  1. Then r 2 =  2, r 3 =  1 

and r 4 =  3 (see F ig u re  5 .3 ).

Let (p,q) =  (1,1), I =  4, m  =  5 and m' =  6 . Further, le t Be  =  5, K c  =  {2 } ,  

K c =  {3 } , K C =  { 6 } , K C =  {7 }  and K R =  { 2 }. Then

Xn-\-Xi5-\-X4i—X22—X26 — X33 — X3'? — X53—X56—X62—X67—X72—a;'73—X70 — X77 <  1 (38)
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q K c Kc K c K c

p + +

K r - -

- -

I +

m - -

m f - -

- - - -

Figure 5.3 Facets for the Q7/ A

is a facet-inducing inequality o f Q l ’̂ , since i t  is a valid inequality o f Q I’I  by Lemma 

5.0.2 and since the follow ing 35 feasible assignments, represented as permutations, 

are affinely independent and satisfy (38) as an equality. Recall tha t d im  Q 34 =  35.

x 1 =  (1 ,5 ,6 ,2 ,7 ,3 ,4) ,  x2 =  (5 ,1 ,6 ,2 ,7 ,3 ,4) ,  x3 =  (5,1,6,7,  2,3,4) 

x4 =  (1, 7 ,6 ,5 ,2 ,3 ,4 ) ,  x 5 =  (1, 7,6,2,  5,3,4) , x6 =  (2, 7,6,1 ,5 ,3 ,4)  

x7 =  (5 ,4 ,6 ,1 ,2 ,3 ,7) ,  x8 =  (5,4,6,1,  7,3, 2), x9 =  (5,4,6,2,  7,3,1) 

x 10 =  (5,2,6,1, 7,3,4),  x 11 =  (5,3,6,1,  7,2,4),  x 12 =  (5,3,6,1,  7,4,2)

x 13 =  (5,3,6, 7,2,1,4),  x 14 =  (5,3,6,1,  2,7,4),  x 15 =  (7 ,4 ,6 ,1 ,2 ,3 ,5)

x 16 =  (4, 7 ,6,1,2 ,3, 5), x 17 =  (3, 7,6,1, 2,4,5), x 18 =  (3, 7,6,1,2, 5,4)

x 19 =  (1, 7,6,3,2, 5,4), x 20 =  (1,7,6,4, 2,3,5), x 21 =  (1, 7 ,6 ,2 ,4 ,3 ,5)
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x 22 =  (5 ,7 ,2 , 6 ,4 ,3 ,1) ,  x 23 =  (5 ,7 ,2 ,6 ,1 ,3,4) ,  x 24 -  (5, 7 ,1 ,6 ,2 ,3 ,4)

x 25 -  (5,7,1,3,  2 ,6 ,4), x 26 -  (5,7,4,3,  2 , 6 ,1), x 27 =  (5, 7 ,3 ,1 ,2 , 6 ,4)

x 28 =  ( 5 ,7 ,4 ,1 ,2 ,6 ,3), x 29 =  ( 5 ,7 ,4 ,1 ,2 ,3 , 6 ), x 30 -  (6 ,7 ,4 ,1 ,2 ,3 ,5 )

x 31 =  (5 ,6 ,2,1,  7,3,4),  x 32 =  (5,7, 2 ,1 , 6 ,3,4),  x 33 =  (5, 7 ,2 ,1 ,3 , 6 ,4)

x 34 =  (5,3, 7,1, 2 ,6, 4), x 35 =  (7,3,5,1,  2 ,6, 4),

Next assume th a t n >  7 and th a t the assertion is true for assignments o f order 

n. Using the lif t in g  procedure mentioned above, we w ill show tha t i t  is true  for 

assignments of order n +  1. Symbols w ith  * refer to  assignments o f order n 4-1. 

W ith o u t loss o f generality assume th a t the p rim ary defining cell is (p, q) =  (1 ,1) and 

the three secondary defining cells are (l ,q) =  (rq +  1, 1), (m,q)  =  (rq +  2 , 1) and 

(m ', q) =  (m  +  3 ,1). Let ]T "=i  E"=i o-ijXij <  1 be a facet-inducing inequality o f the 

form (33) (see Figure 5.2) for Q ^ n2- We w ill refer to  th is inequality as V ineq(n). 

Consider the problem o f order n +  1 and its  corresponding array I *  x  J*. Thus the 

(n +  1) x  (n  +  1) array I *  x  J* is obtained from  the (n x  n) array I  x J  by adding 

one row and one column. The new row can be added either on the top or the bottom  

of I  x J , and the new column can be added either to  the le ft or the righ t o f I  x J. 

Thus four cases have to  be considered.

Case 1: The added row and the added column are n + 1 and n + 1 respectively. 

This corresponds to  the polytope <2” ^ ’2ri where r*A =  73 +  1. Let io be any 

row o f B r  and j 0  be any column o f Be (See Figure5.2). Note tha t A la]() =  0. 

Hence

where A* — (a*-) as defined in  Lemma (5.0.4) is a facet-inducing inequality 

w ith  the same defining cells and w ith  the same defining subsets.

Case 2: The added row and the added column are 0 and n  +  1 respectively. 

This corresponds to  the polytope Qn*+i*n2 where r *2 =  r 2 +  1. In  th is  case 

V ineq(n) can be lifted  in  two ways.

n + l  n + 1

(39)
i = 1 j = 1
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(1) Select io to  be any row in  K r ,  and j o  to  be any column in  Kc- Using 

the same argument as in  Case 1, i t  follows tha t (39) is a facet-inducing 

inequality for < X X n 2 w ith  the same defining cells and w ith  defining 

subsets K R =  K r  U {0 }  and K q =  K c  U {n  +  1}. The other row and 

column defining subsets are the same.

(2) Select zq to  be any row in  A r ,  and j o  to  be any column in  K c -  Using 

the same argument as in  Case 1, i t  follows th a t (39) is facet-inducing 

for Qn~fj+ih2 w ith  the same defining cells and w ith  defining subsets A*R =  

A r  U {0 }  and K c =  K c U {n  +  1}. The other row and column subsets 

are the same.

Case 3: The added row and the added column are 0 and 0 respectively. This 

corresponds to  the polytope Qnt+ih2+i where r{ =  r i  +  1. Then V ineq(n) 

can be lifted  in  two ways.

(1) Select io to  be any row in  K r ,  select j o  to  be any column in  Kc- Using 

the same argument as in  Case 1, i t  follows tha t (39) is a facet-inducing 

inequality for Qn*+ih2+i w ith  the same defining cells and w ith  defining 

subsets K r =  ^ U { 0 }  and K j,  =  K c  U {0} .  The other row and column 

defining subsets are the same.

(2) Select i 0 to  be any row in  A R, select j 0 to  be any column in  K C- Using 

the same argument as in  Case 1, i t  follows tha t (39) is a facet-inducing 

inequality for 1i w ith  the same defining cells and w ith  defining 

subsets A*R =  A r  U {0 }  and K j,  =  K c  U {0} .  The other row and column 

defining subsets are the same.

Case 4: The added row and the added column are n +  1 and 0 respectively. 

This corresponds to  the polytope Qn*nl+i where r \  =  +  1. Select io

to  be any row in  B r  and select j 0 be any column in  A c -  Using the same 

argument as in  Case 1, i t  follows th a t (39) is a facet-inducing inequality for 

Q' r ns i l+ i  w^ h  defining cells and w ith  defining subsets B R =  B r  U  { n  +  1} 

and A*c  =  A c  U {0} .  The other row and column indices are the same.
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To complete the p roof we need to  show tha t every valid inequality o f form  (33) for 

the problem of order n +  1 can be obtained by lif t in g  some valid inequality o f order 

n. To th is end, consider the valid inequality o f form  (33) for the problem of order 

n +  l  w ith  defining cells (p , q) =  ( 1, 1), (I, q) =  (n\ +  1, 1), (m , q) =  (n\ +  2 , 1) and 

(mf, q) =  (n i +  3,1). Since n +  1 >  8 , one o f the following must hold: r{ > 2 , r % >  3, 

7*3 >  2,or 74 >  4. Th is is the case since rq >  1 or r 2 >  2 or >  1 or >  3.

Now suppose th a t r |  >  2 . Since \Bc*\ =  r-i, we have \Bc*\ >  2 . Let jo  be any 

column of B q . Since =  n — ni — 3 =  +  r |  — 3, and since | r | |  >  3 i t  follows

tha t 15 ^ | >  2. Let be any row o f B*R and le t jo  be any row o f B q .  Consider the 

problem of order n associated w ith  array I *  \  {?'o} x  J* \  { j o } .  Then the inequality 

obtained by deleting i 0  from  B*R and jo  from  B*c is of the form  (33) w ith  the same 

defining cells and w ith  defining subsets B r  =  B*R \  { i 0} and Be  =  B q  \  { j o} -  So it  

is a valid inequality for the problem of order n. Furthermore, the valid inequality of 

the problem of order n +  l  can be lifted  from  th is  valid inequality as in  Case 1.

O ther cases are s im ila r and the result follows.
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Conclusion

Given the follow ing linear integer programm ing problem:

mm Ei=i £,-=1

subject to  £ ”= i x i j  — 1 for a ll j  —  1, . . . ,  n 

£ ”= i x i j  =  1 for a l lz  =  1 , . . . ,  n

£  { 0 , 1}  for a l i i ,  j  =  1, . . . ,  n

x J i x v  =  r i

(40)

(41)

(42)

(43)

(44)

where I \  =  { 1 , 2 , . . . ,  n- }̂ and J\ =  {1, 2 , . . . ,  n2}. Let

Pn^n2 ~  Set of feasible solutions o f (41), (42), (44) and Xij >  0 for a ll i ,  j  =  1 , . . . ,  n.

In  th is  thesis we presented a new class of facet-inducing inequalities for Qn’[h2- 

Two classes o f facet-inducing inequalities for Qn’[h 2 we presented in  [3]. U n fo rtu ­

nately, these 3 classes do not provide a complete description of Qn [ \ 2 for general n, 

since the follow ing fractiona l po in t x =  (x,j) defined by

X n  =  X i s  =  £24 =  X27 =  ^35 =  ^38 =  ^43 =  ^44 =  ^56 =  ^57 =

%62 =  Xee =  X 73 -  x 78 =  x 8i =  x&2 =  \ , X i j  =  0, otherwise,

is an extreme point o f P " ^  which satisfies a ll the inequalities of these three classes. 

This is yet another proof th a t whereas the assignment, or the B irkhoff, polytope Pn 

can be easily described as the intersection o f n2 inequalities o f the form  xrj >  0 for 

a lH , j  =  1, ,n,  the poly tope obtained by intersecting Pn w ith  a simple hyperplane 

of the form  (44) is not like ly  to  have a simple description in  terms o f facets-inducing 

inequalities. Nonetheless, these 3 known classes o f facet-inducing inequalities can be 

used in  a branch-and-cut a lgorithm  for solving Problem (40)-(44).

Qnun2 =  integer hu ll o f P ^ 2.

31
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