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A b s t r a c t

As a Great Lakes invader, the round goby (Neogobius melanostomus) provides a valuable 

model system with which to study the evolution and dispersal dynamics of invasive species in 

novel environments. Their rapid expansion, aggressive behaviour and high population densities 

are of concern for conservation managers. Here, I describe the application o f 10 novel 

polymorphic microsatellite markers to determine levels of genetic diversity and dispersal 

patterns in round goby populations in Ontario, Canada. Genetic analyses indicate that the 

established populations are highly genetically differentiated, and that specific geographical 

regions follow an isolation-by-distance pattern of differentiation. Recently established 

populations, as well as a novel invasion front, have retained high genetic diversity despite 

indications that founder events were small. Natural dispersal, ballast mediated jump dispersal 

events and multiple introductions from Eurasia likely led to the high diversity and unusual 

patterns of genetic differentiation among introduced round goby populations in the Great Lakes.
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1.0 GENERAL INTRODUCTION

1.1 GREAT LAKES INVASIVE SPECIES 

An increase in global commerce has led to the widespread movement of once 

geographically restricted species beyond their natural range. This increase in human transport 

activity had been responsible for the introduction of many invasive plants and animals into the 

Laurentian Great Lakes (Mills et al. 1993, Ricciardi 2006). Many of these invaders have had 

profound impacts on the Great Lakes ecosystem, notable examples include: 1) the sea lamprey 

(Petromyzon marinus), 2) the zebra mussel (Dreissena polymorpha), 3) purple loosestrife 

(Lythrum salicaria), 4) Eurasian watermilfoil (Myriophyllum spicatum), and 5) the round goby 

(Neogobius melanostomus), all of which have had dramatic ecological and economic impacts. 

Between 1960 and 1990, there have been an average of 1.36 new invasive species discovered per 

year in the Great Lakes (Mills et al. 1993). Mills et al. (1993) identified 139 introduced species. 

In 2006, this list was updated and now includes 182 introduced species (Ricciardi 2006). In 

recent years there has been an increase in invasive species originating from Eurasia (Ricciardi & 

Maclsaac 2000). Since 1985, 70% of the invading species have originated from the Ponto- 

Caspian region (Ricciardi & Maclsaac 2000). Despite ballast water exchange guidelines 

initiated in 1993 (United States Coast Guard 1993), Ponto-Caspian invaders have continued to 

establish in the Great Lakes. Historically the Caspian Sea has undergone extended periods of 

reduced freshwater inputs (Dumont 1998). Currently in the Caspian Sea there exist several 

distinct salinity gradients, including exclusively fresh water near the outflow of the Volga River 

to near completely saline waters (Dumont 1998), resulting in many euryhaline taxa. The salinity 

tolerance of these species may have facilitated their survival during ballast water exchange 

practices prior to entering the Great Lakes. It was noted by Carlton et al. (1985) that several
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freshwater taxa survived following ocean ballast exchange. Identifying dispersal vectors to the 

Great Lakes has helped researchers in recognizing new species that may invade the Great Lakes. 

Biological invasions into aquatic ecosystems have led to many unforseen ecological impacts, 

resulting in noticeable changes in biodiversity arid ecosystem health (Kolar & Lodge 2001). The 

economic losses associated with invasive species can be equally high (see Pimentel et al. 2005). 

The Laurentian Great Lakes appear to be critically impacted by invasive species due to a recent 

influx of invasive species from the Ponto-Caspian region (Ricciardi & Maclsaac 2000).

1.2 DISPERSAL OF INVASIVE SPECIES

The spread of a newly colonized species can follow two basic models. Firstly, after 

initial colonization the species may simply spread naturally following logistic or exponential 

population growth. This model of spread has been termed reaction diffusion dispersal, where the 

extent of the spread is related to the populations^ growth rate by a diffusion coefficient (Skellam 

1951, in Maclsaac et al. 2001). This model predicts dispersal to be random, extending from a 

focal source. Extensions of this model can account for directional movement o f individuals, 

such as species whose propagules are affected by wind or water currents (Shigesada et al. 1995). 

The second dispersal model by which invasive species can disperse is termed stratified diffusion, 

which is simply reaction diffusion that accounts for long distance dispersal, or “jump” dispersal, 

events. These long distance dispersal events have been documented in invaders such as the zebra 

mussel (Griffiths et al. 1991) and the Argentine ant (Saurez et al. 2001). The current primary 

mechanism of such long distance dispersal for aquatic species is through ballast water discharge 

between major shipping ports throughout the world. Ballast water is the leading mechanism for 

the initial introduction for many non-native species in the Great Lakes (see Mills et al. 1993).

2
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Many of the Ponto-Caspian invaders of the Great Lakes have entered via ballast water transport, 

highlighting a strong invasion corridor (Ricciardi & Maclsaac 2000). Maclsaac et al. (2001) 

identified five major shipping corridors linking the Great Lakes with other global ports, although 

Colautti et al. (2002) noted that there was no direct link between the Ponto-Caspian region and 

the Great Lakes. The introduction of these species may have occurred through secondary hubs, 

where invasion spokes radiating from these hubs are facilitating secondary invasion events (i.e. 

to the Great Lakes) (Carlton 1996).

Most often it is not the initial introduction, but rather the secondary spread and in the 

introduced range that will determine the extent of the impact of the invasive species on the 

introduced region (Lodge et al. 1998). Having knowledge of this secondary spread aids 

researchers and managers in predicting the potential future spread as well as the direction and the 

rate o f such spread (e.g. Ludwig & Leitch 1996, Schneider et al. 1998). Many fish species have 

extended their distribution beyond their native range via ballast water transport (Wonham et al. 

2000). Human mediated dispersal may greatly exceed the rate of spread due solely to natural 

dispersal: human mediated dispersal was estimated to be 50,000 times greater than natural 

dispersal in an invasive crustaceous zooplankter (Hebert & Cristescu 2002). Identifying dispersal 

routes of invasive species is not only important for management reasons but will also increase 

our understanding of the importance of dispersal in colonizing species. These colonizing 

populations are generally characterized as genetjcally less diverse than source populations (e.g. 

Grapputo et al. 2005), and most often encounter a novel selective regime in the new environment 

to which they may not be adapted or have the required genetic variance to be able to adapt. The 

round goby represents an example of a successful Great Lakes invasive species. The rapid

b
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spread of the round goby and high population growth provides a valuable model system in which 

to evaluate the genetic consequences of biological invasions.

1.3 ROUND GOBY BIOLOGY

The family Gobiidae is one of the largest families o f fish in the world, comprising over 

2000 species in 200 genera. Members of this family are found primarily in tropical and 

subtropical areas and many occur in marine or brackish shallow coastal waters around reefs. The 

family Gobiidae includes some of the smallest vertebrates in the world (<lcm , Genera: 

Trimmaton and Pandaka). Gobiids are generally differentiated from other fish by the presence 

of a fused pelvic fin, which forms a ventrally located adhesive suctoral disc. Gobiid fish also 

often adopt a reproductive strategy where males care for the eggs (Miller 1984).

Round Goby Life History

The round goby {Neogobius melanostomus) belongs to the subfamily Gobiinae, one of 

the five recognized subfamilies. They are native to the Sea of Azoz, Black Sea and Caspian 

basins, where they prefers shallow, brackish wafers but also occurs in fresh water (Skora et al. 

1999). During the spring in their native range, male round gobies are the first to appear on the 

spawning grounds where they set up territories after spending the winter in deeper waters 

(Kovtun 1980, Miller 1986). It is unknown whether individuals return to the same spawning 

areas the following year. In the Great Lakes, round gobies show high site fidelity during a single 

season, suggesting that they are philopatric and may return to the same spawning site the 

following year (Ray & Corkum 2001). Nest requirements for the round goby are stationary hard 

cavities in which there is only a single opening (Miller 1984). This can include crevices under 

logs and rocks as well as crayfish burrows (Charlebois et al. 1997). In Europe, male round

4
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gobies mature at age 3 to 4 years, whereas females mature earlier, at age 2 to 3 years (Bil’ko 

1971, Miller 1984). Typically, round gobies have a lifespan of 4-5 years within their native 

range (Charlebois et al. 1997). Introduced round gobies in the Detroit River have been found to 

mature earlier and at smaller sizes with a lifespan of 3 years (Corkum et al. 2004). North 

American female round gobies mature earlier (as young as age 1) than females in their native 

range (Maclnnis & Corkum 2000a, b). Sexually mature males are dark black to slate grey in 

colour; they also have enlarged cheeks and are characterized by a larger size at maturity than 

females (Nilko’skii 1963, Miller 1984). Within a single nest there can be as many as 10,000 

eggs deposited from four to six females, with fertilization success reaching as high as 95% 

(Charlebois et al. 1997). Round goby eggs are demersal and adhesive and are laid on the 

undersurface of the nest cavity (Miller 1984). A single round goby can produce 328 - 5,221 eggs 

and the eggs are among the largest of any gobiid species (3.2 mm; Kovtun 1978). Females can 

spawn several times in a single reproductive season and generally reproduce over multiple years. 

Male round gobies generally die after a single breeding season, as they do not feed while 

guarding the nest (Miller 1984). Sex-specific mortality can alter the sex ratio; Kovtun (1980) 

stated that the sex ratio was an important factor in predicting year class strength. In the Sea of 

Azov, juvenile survival is decreased if males were less numerous than females in the population 

(Kovtun 1980). In the Detroit River more females are found than males (1.27:1, Maclnnis & 

Corkum 2000b). Within their native range, reproduction can start as early as April and extend 

into September (Miller 1986); however, the length of the spawning season is dependent on water 

temperature. Spawning can occur at temperatures ranging from 9 °C to 26 °C and at depths from 

0.2 m to 1.5 m (Charlebois et al. 1997). In the Great Lakes, sexually mature round gobies have 

been observed on shipwrecks in Lake Erie at deaths up to 11 m (Wickett and Corkum 1998).

b
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Based on the capture of sexually mature round gobies and water temperatures o f the Detroit 

River, it was estimated that the reproductive season may occur from mid-April to early 

November, where at least three spawning events could occur (Maclnnis & Corkum 2000a).

Offspring are demersal and lack any true pelagic larval phase (Miller 1984). During their 

first year, male round gobies obtain sizes in the range of 100-130 mm standard length (SL); 

females are slightly smaller, 80-110 mm SL (Berg 1949 in Maclnnis & Corkum 2000b). Round 

gobies in the Detroit River are considerably smaller than gobies in Eurasia at a given age: males 

and females had a mean SL of 58.4 mm and 62.8 mm respectively (Maclnnis & Corkum 2000b). 

Round Goby Feeding & Predation

Round gobies feed primarily on mollusks (e.g. zebra mussels). Their diet also includes 

zooplankton, crayfish, dragonflies, mayflies, fish eggs and larvae. Laboratory studies have 

confirmed that round gobies feed on the eggs of lake trout (Salvelinus fontinalis) (Chotkowski & 

Marsden 1998), and field studies have confirmed egg predation of lake sturgeon (Acipenser 

fulvescens) (in Corkum et al. 2004). Round gobies are a part of the diet of many important 

recreational piscivorous fish (in Corkum et al. 2004). The consumption of zebra mussels by 

round gobies has drawn many concerns. Contaminants in the benthos filtered and concentrated 

by zebra mussels have the potential to reach higher trophic levels through round goby predation 

by larger fish.

Potential Impacts

The elongated spawning season, high reproductive potential and aggressive nature of the 

round goby is a cause for concern as they have the potential to affect many native fish that 

occupy similar ecological niches. The round goby has been implicated in the decline of the 

mottled sculpin {Coitus bairdi) in both St. Clair River and southern Lake Michigan (Jude et al.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1995, Jude 1997). In the laboratory, round gobies also displace mottled sculpins from shelters 

(Dubs & Corkum 1996), potentially forcing mottled sculpins to sub-optimal habitats which may 

adversely affect their reproductive success. Round gobies have been implicated in similar 

population declines of the logperch (Percina caprodes) (Jude et al. 1995, Balshine et al. 2005). 

The round goby also has the potential to affect benthic species including other sculpins (e.g. 

slimy sculpin (Cottus cognatus)), darters (e.g. Johnny darter (Etheostoma nigrum)) and madtoms 

(Noturus stigmosus). Round goby densities in the central basin of Lake Erie are in the range of 

1.8 -  17 /m2. Higher densities (40/m2) have been reported for Grand Calumet Harbour in 

southern Lake Michigan (Charlesbois et al. 1997). These high density aggregations have the 

potential to displace many native species from these areas. It was estimated that there were 9.9 

billion round gobies in the western basin of Lake Erie in 2002 (Johnson et al. 2005).

Life History Traits Contributing to Invasion Success

The successful Great Lakes invasion by (he round goby may be attributed to several 

factors. Round gobies are tolerant of various environmental conditions, such as low oxygen 

concentrations and changes in salinity, enabling them to have higher survival rates in poor water 

conditions found in ballast tanks. Tolerance to changes in salinity may be important in surviving 

ballast water exchange practices prior to entering the Great Lakes from continental sources. 

Round gobies also have a broad diet, allowing tljiem to exploit different resources when food 

becomes limited. According to an invasional meltdown model suggested by Simberloff and Von 

Holle (1999), a previously established Ponto-Caspian invader, the zebra mussel, may have 

provided a plentiful food source that increased tie  likelihood of persistence for round gobies in 

the Great Lakes. Other possible contributing factors to the successful round goby colonization of 

the Great Lakes include their generally aggressive behaviour and their early maturation with the
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ability to spawn numerous times throughout the spring, summer and fall. During initial 

colonization it is imperative that mates be able to find each other. The ability of the round goby 

to locate mates may have been aided by their pheromonal signaling and sensitive open lateral 

lines (Zielinski et al. 2003, Gammon et al. 2005). Finally, male parental care of eggs increases 

offspring survival and persistence in a novel environment.

1.4 CH APfER 1 OBJECTIVES

The objective of Chapter 1 was to develop a molecular marker that can be used to assess 

round goby population structure. The genetic markers chosen were microsatellite DNA loci. 

Microsatellites were chosen because they are highly polymorphic and presumably neutral (not 

under selection). These markers were generated by developing a microsatellite DNA enriched 

genomic library, and screening it to identify 31 positive clones containing inserts of interest. 

Specific primer pairs were designed in the flanking region of the microsatellite repeat. 

Microsatellites were screened for variation and eiase of amplification and 10 microsatellite loci 

were selected based on those criteria. All 10 markers were validated using 60 unrelated round 

gobies.

1.5 CHAPTER 2 OBJECTIVES

The objective of Chapter 2 was to use the microsatellite markers developed in Chapter 1 

to assess population structure of 32 introduced round goby populations in the Great Lakes. 

Genotype assignment methods were used to assess recent patterns in migration. Combining the 

assignment analysis with measures of genetic diversity and divergence, I describe the dispersal

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and colonization patterns o f the round goby in the Great Lakes. The second objective was to 

evaluate temporal stability between five introduced populations that were sampled in 2005 and 

2006.

1.6 CHAPTER 3 OBJECTIVES 

The objective of Chapter 3 was to compare the genetic characteristics of recently 

colonized populations of the round goby that vary in time since establishment. I test for genetic 

bottlenecks and for effects on genetic diversity in a dynamic round goby invasion front (Maitland 

River). As a comparison, more established populations elsewhere in the Great Lakes were 

evaluated. As of 2006, round gobies had not been reported in the Maitland River. This active 

colonization event allowed me the chance to evaluate patterns of genetic differentiation. The 

invasion front in the Maitland River provides the opportunity to test population genetic theory 

predictions based on colonization events.

9
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2 .0  T e n  p o l y m o r p h i c  m i c r o s a t e l l i t e  m a r k e r s  i n  t h e  i n v a s i v e  ROUND GOBY (NEOGOBIUS
MELANOSTOMUS) AND CROSS-SPECIES AMPLIFICATION

(Note: This Chapter has been acceptedfor publication in Molecular Ecology Notes)

2.1 INTRODUCTION

The round goby, Neogobius melanostomus is a small benthic fish native to the Ponto 

Caspian drainages in Eurasia. The invasiveness of the round goby can be attributed to its broad 

physiological tolerances to varying environmental extremes. Several life history characteristics, 

such as generalist diet, repeated annual spawning and aggressive behaviour also play a role in the 

successful establishment o f round gobies in the Great Lakes, drawing concern that their spread 

may not only be limited to the Great Lakes region. The round goby was first reported in the 

Great Lakes basin in 1990 in the St. Clair River near Sarnia, Ontario (Jude et al. 1992), and they 

now inhabit all five Great Lakes (Charlesbois et al. 1997). The rapid proliferation and spread of 

the round goby may lead to many unforeseen ecological impacts on the natural biodiversity of 

the Great Lakes ecosystems. The round goby has the potential to impact native benthic fishes, 

such as the mottled sculpin, Cottus bairdi, through competitive displacement o f preferred 

spawning sites (Dubs and Corkum 1996). It majy also impact other benthic fish such as logperch, 

Percina carprodes and the already threatened darters. The round goby has been linked to a 

decrease in spawning success of lake trout, Salvelinus fontinalis, due to egg predation 

(Chotkowski and Marsden 1999). Round gobies are also egg predators of lake sturgeon, 

Acipenser fulvescens (Nichols et al. 2003), and smallmouth bass, Micropterus dolomieu 

(Steinhart et al. 2004). The round goby also has the potential to alter food web dynamics 

throughout the Great Lakes, as it is a voracious predator of zebra mussels (Ghedotti et al. 1995). 

Furthermore, simply its high abundance may replace native benthic fish as the preferred prey 

item for larger piscivores.
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Previous genetic studies using mitochondrial sequence variation indicated high genetic 

diversity (Stepien & Tumeo 2006) among nonindigenous Great Lakes populations o f round 

goby, yet little is known about dispersal mechanisms and gene flow among populations in North 

America. To evaluate dispersal and gene flow dynamics in the non-native round goby, I 

developed ten polymorphic microsatellite markers which will be useful in evaluating the current 

distribution and potential future range expansions of the round goby in the Great Lakes basin.

2.2 MATERIALS AND METHODS 

Genomic DNA (gDNA) from a single round goby caudal fin was used to create a 

microsatellite-enriched gDNA library, following a protocol modified from Fisher and Bachman 

(1998). Genomic DNA was cut with one blunt-end cutting restriction enzyme (Rsal). Cut 

fragments were ligated to Mlul adapter-primer complexes (21-mer: 5’- 

CT CTT GCTT ACGCGT GG ACT A -3’ and a phosphorylated 25-mer: 5’ -  

pT AGTCC ACGCGT AAGC AAG AGC AC A -3’} with T4-DNA ligase (New England Biolabs, 

Ipswitch, USA). Ligated segments were hybridized with a (GACA ) 4  biotinylated oligo probe 

and subsequently hybridized with streptavidin-cbated magnetic beads (Roche, Indianapolis, 

USA). Beads were washed once with 2x SSC, 0.1 % SDS for 5 min at 25°C, once with lx  SSC 

for 5 min at 25°C and finally once with lx  SSC at 40°C. To elute enriched DNA, beads were 

resuspended in 300ul of ddEL O and heated to 95 °C for 2 min in a wet heating block. Enriched 

DNA was PCR amplified using 0.96 X PCR buffer (100 mM Tris HC1, 50mM KC1, Sigma- 

Aldrich, Oakville, Canada), 2.4 mM MgCL, 0.2mM of each dNTP, 0.048 U Taq polymerase 

(Sigma-Aldrich, Oakville, Canada), and 0.024pM 21-mer adaptor primer in a 13ul PCR reaction 

volume. The thermocycler profile was: 94°C for 1 min followed by 30 cycles of 94°C for 15 

sec, 56°C for 30 sec, 72°C for 45 sec, with a final extension o f 72°C for 2 min. The resulting
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double-stranded microsatellite-enriched library was cloned into TOPO vectors and transformed 

into One Shot® competent Escherichia coli cells following the manufacturer’s instructions 

(Invitrogen, Burlington, Canada). Positive colonies that contained the insert were white, these 

colonies were selected (N = 231) and clones were sequenced at the Genome Quebec Innovation 

Center (McGill University, QC). Thirty-one clones contained microsatellites, and primer pairs 

were designed flanking the microsatellite region using PRIMER3 (Rozen and Skaletsky 2000) and 

NETPRIMER (Premier Biosoft International) software. Ten of the 31 primer pairs were found to 

be easily amplified and polymorphic based on PCR amplification and visualization on an 1.8% 

agarose gel. Those 10 loci were characterized by genotyping 64 individuals using PCR 

conditions as follows: 50-100 ng of template DNA, locus specific concentrations of MgCl2 

(Table 1.1), 0.19 mM of each dNTP, 0.048 U Taq DNA polymerase (Applied Biosystems), 0.038 

uM of forward dye-labeled primer (IR-700, IR-800 MWG Biotech), 0.057 uM reverse primer 

and 0.96X PCR buffer (100 mM Tris HC1, 50mM KC1) in a 13 uL reaction volume. The 

thermocycler profile used was: 94°C for 2 min, followed by 34 cycles o f 94°C for 15 sec, 

annealing temperature (7a, see Table 1.1) for 15 sec, 72°C for 30 sec, with a final extension of 

72°C for 2 min. Dye-labeled PCR product was scored for fragment size on a LiCor 4300 DNA 

analyzer using Gene ImagIR 4.05 software (Scainalytics, Inc.) with three lanes containing 

manufacturers size standard (50bp -  350bp). Observed and expected heterozygosities as well as 

departure from Hardy-Weinburg equilibrium (HWE) were calculated using tools for populations 

genetic analyses (TFPGA) vl.3  (Miller 1997) and corrected for multiple simultaneous tests using 

th e  se q u e n tia l B o n fe r r o n i m e th o d  ( s ig n if ic a n c e  at P t < a / ( l  + k  — /'); R ic e  1 9 8 9 ) .

2.3 RESULTS

There was no evidence for departure from HWE at any of the 10 loci, although NmelO  has an 

excess of homozygotes in this population. Observed and expected heterozygosities ranged from
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0.3276 -  0.8571 and 0.3450 -  0.898 respectively (Table 2.1). Loci were tested for linkage 

disequilibrium using the program Arlequin ver 3.1(Excoffier and Schneider 2005) and Nme6 and 

Nme8 were in significant linkage disequilibrium after Bonferronni correction (P < 0.0001). The 

program MICRO-CHECKER (Oosterhout 2005) was used to check each locus for the presence of 

null alleles. One locus contained null alleles (NmelO).

I investigated the performance o f our microsatellite DNA PCR primers in two or three 

animals from an additional five related taxa (Table 2.2). Successful amplification was observed 

for all but two of the marker loci (Nmel and Nme3), and there was considerable variation among 

species in the success of the primer pairs (Table 2.2). Curiously, the only congeneric 

species, Neogobius gymnotrachelus, was generally not very successfully amplified with my 

primers (Table 2.2).

2.4 C o n c l u s i o n

Nonindegenous species not only pose threats to native biodiversity, they also represent 

valuable natural experiments in species colonization and range expansion. The microsatellite 

markers described here will enable researchers to better quantify and characterize population 

dynamics in introduced round gobies, as well as potentially predicting future population 

expansion. Therefore population genetic research involving the nonindigenous round goby will 

aid in developing management plans and aid in pur understanding of the evolutionary responses 

and dispersal mechanisms of nonindegenous species after introduction into novel environments.
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Table 2.1 Ten microsatellite loci for the round goby, Neogobius melanostomus, with number of individuals genotyped (N), accession 
number, repeat motif, primer sequence, annealing temperature {T a ) ,  and MgCL concentration. Allelic range, number of alleles 
(n) and observed (Ho) and expected heterozygosities ( H e )  based on 64 fish from Lake Erie are shown. All markers were found 
to be in Hardy-Weinberg equilibrium.

L ocus A ccession

No.

R ep ea t Motif P rim er S e q u e n c e rA
(°C)

[MgCIJ

(mM)

Allelic
R an g e

(bp)

n Ho He

Nme 1 
N=64

DQ999976 (GTCA)8(GTCT)„ GC (CTGT),o F: CGAGCGCTAAAATAGAAGAAAA 

R: TCCAGTGGCTTGAGTGATGT

48 2.4 212-340 12 0.86 0.84

Nme 2 
N=63

DQ999977 (CA),s F: TGTGTAATGACGTGGAATAGCC 

R: CAATAGGCCAGGATGAATGAG

55 2.1 230-242 4 0.44 0.52

Nme 3 
N=53

DQ999978 (AGAC)14 F: GCGGGAGTCAAGAATTGAAC 

R:TTGTTAGAATGTATTATGCCATAGCC

48 2.4 124-176 10 0.77 0.78

Nme 4 
N=60

DQ999979 (TCTG)7 F: TGTGCTTGGTTAAGGTGGTG 

R: CCGGACAGAAACAACTTAAAGC

55 2.4 89-117 4 0.33 0.35

Nme 5 
N=64

DQ999980 (CA)4 GC (TCTG)7 

(TCTG)9(TCTT),o a c t t t

F:GTCACACCGATCTTCGACTG 

R: GATTTACTTGATTCATCACT

48 2.4 127-141 7 0.37 0.38

Nme 6 
N=64

DQ999981 (CTTA)6 F:GCAACTCAACCTCGTAGCC 

R: CCGAAAAGCCAATTAAGCAC

59 1.9 227-307 10 0.69 0.52

Nme 7 

N=60

DQ999982 (AGAC)s F: AATGGATGGGTCAATTGCAT 

R: AAGGTTGAGCTGCCACTGAG

48 2.4 158-170 3 0.41 0.52

Nme 8 
N=64

DQ999983 e r a ) . F: ATGGAGTTTCTGGGCAGTTG 

R: CTCCGTCGATTGTGTTCTGA

55 2.4 271-285 8 0.78 0.81

Nme 9 

N-63

DQ999984 (ATCC)12 F: GGGGTGCACTTGTTTAGCTC 

R: AACGGACAAGTGGAAGAAGG

59 2.4 161-213 7 0.57 0.57

Nme
10

N=61

DQ999985 (AC)10 F: GCGATTATGAGGTTCGGAGA 

R: ATCAGCAACCCCTGAACAGA

48 2.4 267-287 8 0.71 0.73
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Table 2.2 Cross-species amplification of 10 novel polymorphic microsatellite primer pairs developed for Neogobius melanostomus. 
Five related taxa were tested using these primer pairs (n is the number of individuals tested). 0  indicates non-amplification, 
MB indicates multiple bands, and where amplification was successful, then number of alleles observed is given (and alleles 
sizes are shown in parentheses).

Species Nme 1 Nme 2 Nme 3 Nme 4
Locus 
Nme 5 Nme 6 Nme 7 Nme 8 Nme 9 Nme 10

Gobiosoma bosc
(n = 3)

0 2
(140,200) 0 1

(105)
2

(133,179)
2

(143,307)
2

(182,206)
2

(240,346) 0 0

Ctenogobius boleosoma 
(n = 3)

0 1(136) 0 1
(281) 1(141) 2

(251,299)
2

(178,324)
2

(240,346) MB 0

Ctenogobius sagittula 
(n = 2)

0 2
(108,184) 0 1

(105) 0 2
(207,251)

2
(128,158) 1 (304) 3

(124-222) 1 (279)

Neogobius gymnotrachelus
(n = 3)

0 0 0 0 1 (137) 0 1 (178) 1(224) 0 0

Coryphopterus personatus
(n = 2)

0 0 0 1
(105) 1 (127) 1 (251) 0 0 0 0
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3 .0  D i s p e r s a l  a n d  c o l o n i z a t i o n  o f  T h e  i n v a s i v e  r o u n d  g o b y  (n e o g o b i u s

M ELANOSTOM US) IN THE GREAT LAKES

3.1 INTRODUCTION

The colonization of novel habitats by invasive species is most often accompanied by 

dramatic shifts in selection pressures which can lead to rapid evolution (Mooney & Cleland 

2001). These selection pressures likely vary over geographical scales and, combined with 

stochastic variation associated with founder events, may drive the differentiation of newly 

colonized reproductively isolated populations. Alternatively, gene flow among recently 

introduced populations may facilitate establishment of exotic species by increasing genetic 

variation and through the spread of rare introduced genotypes on which natural selection may act 

(Ellstrand & Schierenbeck 2000). Dispersal in the novel environment is also important for the
i

establishment o f an invasive species as their persistence and reproductive success is dependent 

on the availability of resources and the number pf spawning sites in a given area. Dispersal is 

thus important to maximize resource use and to buffer against stochastic events that can increase
i

local population extinction likelihoods. Alternatively, since dispersal is risky because resources 

and suitable spawning habitats may not be present outside their current range, successful 

introduced species may exhibit limited natural dispersal. The colonization of novel habitats by 

successful invasive species provides a means by which we can evaluate the importance of 

dispersal in their establishment. Evaluating dispersal of invasive species may provide a better 

understanding of the interactions between natural and human mediated dispersal and how such 

mechanisms can lead to drastic range expansions.

The round goby (Neogobius melanostomus) is a invasive benthic fish species. From its 

native range in the Ponto-Caspian region of Eastern Europe, the round goby has been extending

2 4
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its home range. In recent decades the round goby has been dispersing in Europe and is now a 

part of the benthic community in many rivers draining into the Black sea, such as the Danube 

and Dneiper Rivers (Anhelt et al. 1998). The construction o f navigation canals in Europe and an 

increase in commercial freighter traffic has allowed the round goby to increase its range at an 

unprecedented rate. The introduced round goby is now the dominant fish species in the Gulf of 

Gdansk in the Baltic Sea (Skora and Stolarski 1993, Sapota 2004). Over the same time period, 

the round goby has successfully invaded the Laurentian Great Lakes o f North America, likely

facilitated by ballast water transfer (Ricciardi & Maclsaac 2000). The adaptable life history and
!

broad physiological tolerance of the round goby has enabled it to establish and spread throughout 

the Great Lakes and some tributaries. Specific traits that provide the round goby an invasive 

advantage include their tolerance to various environmental conditions, such as low oxygen and 

varying salinity concentrations. Other valuable invasive traits include high fecundity coupled 

with parental care, and general aggressive behaviour in acquiring food and spawning sites 

(Charlebois et al. 1997, Corkum et al. 1998, Maclnnis and Corkum 2000). Now established, this 

species has become the dominant benthic fish in many areas of the Great Lakes and is of great
i

concern as its effects on native fish species can be unpredictable (Jude 1997).
|

The ability o f an invading species to persist and adapt to a novel habitat may depend on 

the genetic variation in the founding population(s) (Williamson 1996). However, many newly 

invaded populations are characterized by low genetic diversity, presumably due to small 

founding population size (e.g. Berg et al. 2002, Meimberg et al. 2006). If such populations 

remain at low abundance, they will also be affected by random genetic drift, which acts to further

reduce genetic diversity and may result in the population being out o f mutation-drift equilibrium.
!

By nature, colonization events are stochastic, and are generally coupled with small founding
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populations that must survive rapid transitions in the biological and chemical composition o f the 

new habitat (Lee 1999). Thus, the genetic signature of a colonizing species is characterized by 

low heterozygosity and reduced frequency of rare alleles (Cornuet and Luikart 1996). 

Additionally, population differentiation should increase due to founder effects and genetic drift 

(Nei et al. 1975). Previous mitochondrial DNA sequence studies of the round goby in the Great 

Lakes have characterized them as having a large and diverse array of mtDNA haplotypes (Dillon 

and Stepien 2001). Given that the Great Lakes gobies also had levels of genetic diversity 

equivalent to that found in their native range, Stepien and Tumeo (2006) concluded that the 

Great Lakes round gobies were most likely founded by large introductions or multiple invasion 

events. Slight genetic differentiation was observed between two introduced populations (Stepien 

and Tumeo 2006) and previous sequence analyses o f the faster evolving mtDNA control region 

identified higher genetic divergence between these two Great Lakes sites (Dillon & Stepien 

2001). These results suggest that colonization was most likely from multiple Eurasian sources.

The potential for natural dispersal o f the round goby may be limited; round gobies 

display high site fidelity and philopatry based op mark-recapture studies (Wolfe and Marsden 

1998; Ray and Corkum 2001). In their native range, round gobies are found in littoral areas 

during the summer and migrate to deeper waters in the winter (Miller 1986), yet it is not known 

whether individuals return to the same area the following year. Given their apparent limited 

opportunity for natural dispersal, on-going ballast water transfer within the Great Lakes may be 

responsible for moving round gobies throughout much of the Great Lakes, seeding new areas and 

adding novel genotypes to established populations. Such a scenario is consistent with the sudden 

and substantial range expansions o f the round goby throughout the Great Lakes (Wolfe and 

Marsden 1998). The once common practice of using round gobies as bait may also have played

£6
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a role in round goby dispersal, as round gobies Have been found in areas where no ballast water 

is discharged (personal communication, Art Timmerman, OMNR, Guelph District). 

Alternatively, the natural dispersal potential of round gobies in the Great Lakes may be higher 

than anticipated based on our understanding of their life history in their native habitat. The 

dispersal and consequent range expansion of the round goby in the Great Lakes is likely a 

complex process characterized by multiple dispersal strategies including both natural and human 

mediated dispersal; however, the specific mechanisms by which they have so rapidly and 

effectively colonized the Great Lakes are not known.

I
The goal of this study is to estimate dispersal and characterize the genetic patterns that 

reflect the colonization history of the round goby among 32 sample sites in 3 of the Laurentian 

Great Lakes (Lakes Huron, Ontario and Erie) basins using 10 polymorphic microsatellite 

markers. The characterization of population genetic structure and dispersal patterns provides 

insight into the processes that led to the rapid rahge expansion of round gobies throughout the

Great Lakes and may allow us to differentiate between natural versus human mediated dispersal.
|

Understanding the patterns and history o f these invasions will help in predicting the potential for 

future spread by identifying common dispersal pathways as well as source and sink populations. 

Identifying these source populations will also allow fisheries managers to spatially target 

management efforts in order to reduce further r4nge expansion and establishment success. 

Invasive species also represent a unique opportunity to study adaptation and the effects of
i

genetic drift in a colonization event and provide a valuable model in which we can study the 

rapid range expansion of a species in a novel environment.
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3.2 MATERIALS AND METHODS

Sample collection and geographical information

Round gobies were caught in Lakes Huron, Erie and Ontario in the summer and fall of 

2005 and 2006 at 32 sites (Fig. 3.1); five of those sites were sampled in both 2005 and 2006 to 

estimate temporal stability. The number of individuals taken per site ranged from 21-128, with 

an average of 61.2 individuals per site (total N =• 1958). Fish were collected using three different 

capture techniques. Seine netting consisted of 2G separate passes of 10-20 m.At sites where 

shoreline access was possible, seine netting was used. At shoreline sites where access was 

limited, hook and line were used to capture round gobies. Offshore samples were collected by 

trawl nets. Sampling sites were selected based on known presence of round gobies, accessibility 

and ease of capturing a sufficient sample size. GPS coordinates were taken at all sites. A 

portion of the caudal fin was collected and stored in a 1.7 ml tube with 95% ethanol for future 

DNA extraction.

Microsatellite genotyping

DNA was extracted using a Wizard® Gehomic DNA Purification Kit (Promega, Madison, 

WI, USA) or using a 96-well glass-fiber plate protocol described by Elphinstone et al. (2003).

All round goby samples were genotyped at 10 polymorphic microsatellite loci (Chapter 2).

PCRs were prepared in 7 pi total volumes, each reaction contained 50-100 ng of template DNA, 

0.89X PCR buffer (Sigma-Aldrich, Oakville, Ceinada; 100 mM Tris-HCl, pH 8.3; 500 mM KC1),

locus specific concentrations of MgCl2 (see Chapter 2), 0.2 mM of each dNTP, 0.024 uM of
!

reverse and fluorescence IRDye® infrared dye labeled forward primer (IR700, IR800, MWG 

Biotech, High Point, NC, USA) with 0.048 U of Taq DNA polymerase (Sigma-Aldrich,
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Lake Ontario

150 KM

Figure 3.1 Map of 32 Great Lakes invasive populations of the round goby (Neogobius 
melanostomus) sampled during the summer and fall of 2005 and 2006. Site abbreviations are 
described in Table 1. Arrow indicates site of initial introduction. The shaded area is enlarged 
th e  u p p er r ig h t co rn er  an d  d is p la y s  th e  lo c a t io n s  o f  th e  sa m p le s  fro m  th e  ea stern  b a s in  o f  L a k e  
Erie. “+” indicates sites that were sampled in both years.
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Oakville, Ontario, Canada). Thermocycler profiles consisted of a 2 min initial denaturation at 94 

°C, followed by 35 cycles of 15 s at 94 °C, 15 s locus specific annealing temperatures (see 

Chapter 2), 30 s extension at 72 °C, with a final extension step at 72 °C for 2 min. Amplified 

PCR products were visualized on a LI-COR 4300 DNA Analysis System (Lincoln, Nebraska 

USA). Allele size scoring was accomplished using Gene ImagIR 4.05 (Scanalytics, Inc.

Rockville, MD USA) using manufacturers’ size standard (50bp-350bp). To avoid allele size
i

scoring bias due to variation in gel consistency, multiple populations were run on all gels.

Genetic diversity

Mean observed (Ho) and expected heterozygosities (H e )  for all populations across all loci 

were calculated using ARLEQUIN VER. 3.1 (Excoffier et al 2005). Mean allelic richness (A) for all 

populations across all loci was estimated using FSTAT2.9.3.2 (Goudet 2001). Deviations from 

Hardy-Weinberg equilibrium (HWE) for at loci in all populations were estimated using TFPGA 

l .3 (Miller 1997) using an exact test employing a Markov chain algorithm with 10000 

permutations; the test probabilities were corrected according to the sequential Bonferroni method 

(Rice 1989) for multiple simultaneous tests.

Population Structure

Population structure was assessed by estimating genetic divergence between sites using F- 

statistics calculated in ARLEQUIN VER. 3.1 (Excoffier et al 2005). Test probabilities were corrected for 

multiple simultaneous tests according to the sequential Bonferroni method (Rice 1989). A modified 

Fischer’s exact test (Raymond and Rousseau 1995) in the program TFPGA 1.3 (Miller 1997) was used t< 

test for differences in allelic frequency between sites, using the conventional Monte Carlo method, wit
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10 batches and 1000 permutations per batch. All test statistics were corrected using the sequential 

Bonferroni method for multiple simultaneous tests (Rice 1989). The program POPULATIONS version 

1.2.28 (Langella 2002) was used to construct a genetic distance matrix based of Cavalli-Sforza & 

Edwards’ (1967) chord distances (Dc). To investigate migration among sites (gene flow) we used a 

Bayesian genotype assignment approach outlined by Rannala & Mountain (1997) in the computer 

program GENECLASS 2.0 (Piry et al. 2004). To identify successful assignment, the highest rank 

probability for assignment was divided by the second highest rank probability. If the number obtained 

was greater than four, meaning it was four times more likely to originate from the higher ranked 

population than the next highest ranked population, the individual was deemed successfully assigned. 

The number four was chosen arbitrarily, and did not differ significantly from other test numbers, only 

proportions changed. Based on this criterion, individuals were categorized into one of three categories; 

self assignment, migrant of known source (i.e. likelihood ratio > 4), or unidentified. To assess the exte 

to which a population is dispersive, a dispersal index was calculated as the number of migrants divided 

by the number of migrants plus the number of self-assigned. A highly dispersive population would ha 

a dispersal index of 1; a population where dispersal was low and self-assignment was high would have 

dispersal index of 0.

The two St. Clair River sites (Courtright (COUR) and Sombra (SP)) were found to be 

genetically indistinguishable and subsequently combined for the assignment analyses. This was 

based on low genetic divergence (F st=  0.01), nbn-significant exact test results (p>0.05), spatial 

proximity (-10.5 km) and an a priori expectation that these sample sites closely reflect the initial 

founding population in the Great Lakes based ojn geographical location of the initial site of 

introduction (Jude et al. 1992, Jude et al. 1995);
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Isolation by distance

Isolation by distance (IBD) is a powerful null model of gene flow patterns among 

populations whereby we can test for anomalous dispersal patterns and hence infer the 

mechanisms behind the spread of the round goby in the Great Lakes. The IBD model assumes 

mutation-drifit equilibrium which is likely inappropriate for rapidly expanding and recently 

established populations. We tested for IBD using a Mantel test in GENALEX V. 6 (Peakall and 

Smouse 2006), with geographical distance versus FVrand Dc. IBD was first tested across all 

samples, then within Lakes Erie, Ontario, and Huron independently. IBD was also tested within 

three regions representing smaller spatial scales chosen based on the expectation that gene flow 

within those regions may be closer to equilibrium, given the historical spread of round gobies 

and hence where biological connectivity was judged to be most likely. The first region included 

13 sites in the St. Clair River-Western Basin of Lake Erie corridor, including a site in the 

northern portion of the St. Clair River, presumably the initial colonists to the Great Lakes (Sites 

= STC, BR, RO, MCK, MCK2, LA, COL, LEA| LEA2, GS, NI and JG; see Fig. 3.1). The 

second region consisted of sites (N=12) in Eastern Lake Erie and one site from Lake Ontario. 

Included in the analysis were samples from Port Colborne, one of the earliest suddenly 

established populations (Sites = BUR, PC, PM, PST, PDO, PD02, NY1, NY2, NY3, NY4, NY5 

and NY6; see Fig. 3.1). The final region included sites (N=5) at both ends of the Trent Severn 

Waterway, including one site -75 km upstream from the Bay of Quinte outlet (Sites = TR, MCF, 

HAS, HAS2, MID, and MID2; see Fig. 3.1).
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Temporal Stability

Temporal stability was examined using data from five sites (LEA, MCK, OS, HAS and 

MID, see Fig. 3.1) that were sampled in 2005 and 2006. Sites were chosen based on sample 

availability in 2005. Temporal stability was assessed by testing for differences in allelic 

frequencies across years; this was done by computing exact tests of differentiation in the 

computer program TFPGA (Miller 1997). Genetic divergence (Fst) was calculated between sites 

across both years in ARLEQUIN VER. 3.1 (Excoffier et al 2005) test probabilities were corrected 

according to Rice (1989). A temporal AMOYA was used to quantify the amount of variation that 

was due to among-site variation versus sample-year variation.

3.3 RESULTS

Genetic Diversity

Mean observed heterozygosities (He) across all sites ranged from 0.43 - 0.65, and 

expected heterozygosities ranged from 0.47 -  0.69 (Table 3.1). Measures of mean allelic 

richness (A) were found to be between 3.16 and 5.60 (Table 3.1). HAS2 and PSE had the lowest 

mean allelic richness values of 3.45 and 3.16 respectively, indicating lower diversity, whereas 

LA and RO had the highest mean A values of 5.60 and 5.54 respectively, indicating higher 

diversity. As expected, many loci were not in HWE: 43 locus x population comparisons out of 

370 (11.6%) were out of HWE after Bonferroni correction (Table 3.1), likely due to their recent 

establishment, high population growth and insufficient time to establish equilibrium. In most 

cases the deviations from HWE could be attributed to an excess of homozygotes (Table 3.1).
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Temporal Stability

Exact test of allelic differentiation between pairwise sample sites from 2005 and 2006 

were all significant, indicating that allele frequencies at those sites have changed from 2005 to 

2006 (P< 0.0001, after Bonferroni correction), th e  temporal AMOVA revealed significant 

variation among years within populations (4.06%; P <0.0001) and, as expected, a significant 

variation was found among populations (10.68%; P < 0001). F st 'values indicate that MCK and 

HAS were not significantly different between years, whereas LEA, MID and OS showed 

significant and stronger genetic divergence between years. Sample sites from 2005 and 2006 

were thus not temporally stable and were treated as separate populations and were not combined 

for analyses.

Population Structure

Sites within the St. Clair River -  Western Basin of Lake Erie corridor were the least 

genetically divergent from one another based oh measures of F-statistics, with the exception of 

one site, JG, the furthest site east in the western basin of Lake Erie. Many sites in the St. Clair 

River -  Western Basin of Lake Erie corridor were not significantly different from the NY sites in

the eastern basin of Lake Erie (11/15 population comparisons, 73.3%) and to the sites in the Bay
!

of Quinte (MCF and TR, 12/15 site comparisons, 80%) (Table 3.2). All New York sites (NY1- 

NY6) were genetically similar with the exception of NY2. Several sites were strongly divergent 

from all other sites. HAS had a mean pairwise Fst value of 0.154 and was most genetically 

similar to HAS2 (mean Fst = 0.164). Similarly, PSE, MID and MID2 had high mean pairwise 

F$ t values of 0.139, 0.087 and 0.083 respectively. Exact tests of allelic differentiation revealed 

that the allele frequencies of MCF were not significantly different than TR and also with sites in
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Table 3.1 Characterization o f variation at 10 polymorphic microsatellite loci used to determine population structure of the round goby 
(.Neogobius melanostomus) in the Great Lakes from samples collected in 2005 and 2006 (ID refers to the abbreviated location 
name in Figure 3.1, and geographical coordinates are given). Expected heterozygosity (He) ,  observed heterozygosity (Ho), 
number of individuals genotyped (n) and allelic richness (A) are presented. Loci out of HWE after Bonferonni correction are 
underlined and in bold-face type.

Site Site Detail ID Nme1 Nme2 Nme3 Nme4 Nme5 Nme6 Nme7 Nme8 Nme9 Nme10 Mean

Trenton (2005) River TR H e 0.89 0.63 0.81 0.34 0.22 0.74 0.48 0.73 0.72 0.78 0.64

Lat. 44.1 Mouth Ho 1 0.52 0.75 0.33 0.24 0.59 0.3 0.65 0.72 0.67 0.58

Long. 77.6 A 9.66 3.79 7 2.69 2.75 5.82 3.86 6.55 4.83 6.33 5.33

n 25 27 24 27 21 17 27 26 25 24 24.3

Hastings (2006) Lock HAS H e 0.76 0.62 0.56 0.45 0.4 0.64 0.22 0.82 0.61 0.68 0.58

Lat. 44.3 H o 0.86 0.72 0.51 0.5 0.47 0.47 0.25 0.66 0.71 0.28 0.54

Long. 78.0 A 4.33 3 4.27 2 2 3.64 2.3 6.13 3.34 4.75 3.58

n 36 36 35 36 32 30 36 35 35 36 34.7

Hastings (2005) Lock HAS2 H e 0.76 0.63 0.66 0.44 0.36 0.66 0.16 0.82 0.63 0.7 0.58

Lat. 44.3 Ho 0.74 0.63 0.6 0.37 0.33 0.44 0.13 0.87 0.6 0.43 0.52
Long. 78.0 A 5.03 3.2 4.13 2 2 3 2.08 6.01 3 4.06 3.45

n 46 60 53 60 57 52 60 47 60 46 54.1

Burlington (2006) Marina BUR H e 0.71 0.47 0.62 0.32 0.12 0.67 0.56 0.73 0.68 0.77 0.56

Lat. 43.3 Ho 0.55 0.45 0.7 0.38 0.12 0.64 0.3 0.53 0.77 0.52 0.5

Long. 79.8 A 6.01 3.19 3.8 2.4 2.15 5.82 3.4 4.55 3.94 6.18 4.14

n 53 53 53 53 50 47 53 51 53 50 51.6
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Port Colborne (2006) 

Lat. 42.9 

Long. 79.2

Canal PC He

Ho
A

n

Port Maitland (2006) 

Lat. 42.9 

Long. 79.6

Pier PM He

Ho
A

n

Port Dover (2006) 

Lat. 42.6 

Long. 80.4

Pier PD H e

Ho
A

n

Port Stanley (2006) 

Lat. 42.7 

Long. 81.2

Marina PST He
Ho
A

n

LaSalle (2006) 

Lat. 42.2 

Long. 83.1

Marina LA H e

Ho
A
n

Northern Indiana (2006) 

Lat. 41.9 

Long. 82.5

Shipwreck Nl H e

Ho
A

n

0.79 0.54 0.7 0.48 0.3 0.63 0.52 0.8 0.54 0.79 0.61

0.78 0.53 0.81 0.44 0.31 0.53 0.28 0.59 0.45 0.59 0.53

8.15 3.86 6.06 2 2.86 4.66 2.38 6.27 3.55 5.61 4.54

32 30 32 32 32 32 32 32 31 32 31.7

0.74 0.53 0.8 0.56 0.52 0.6 0.51 0.8 0.56 0.57 0.62

0.51 0.36 0.76 0.65 0.63 0.71 0.47 0.74 0.57 0.44 0.58

6.68 3.35 5.46 2.87 3.42 4.2 2.43 6.31 4.09 4.12 4.29

49 44 45 49 48 41 49 43 42 45 45.5

0.76 0.67 0.78 0.37 0.62 0.77 0.56 0.79 0.6 0.77 0.67

0.63 0.48 0.79 0.4 0.48 0.49 0.46 0.74 0.71 0.56 0.57

5.87 3.23 6.35 2.23 4.54 6.48 3.07 6.21 4.07 6.65 4.87

51 52 52 52 50 45 52 50 52 50 50.6

0.67 0.42 0.78 0.42 0.58 0.67 0.51 0.82 0.39 0.69 0.6

0.28 0.41 0.82 0.47 0.42 0.7 0.49 0.76 0.4 0.52 0.53

5.84 2.98 5 2 3.62 5.45 2.27 7.06 2.73 5.94 4.29

39 39 44 45 38 43 45 42 45 44 42.4

0.85 0.69 0.77 0.44 0.58 0.67 0.6 0.85 0.62 0.81 0.69

0.96 0.52 0.77 0.4 0.45 0.45 0.29 0.7 0.65 0.71 0.59

8.01 3.96 6.17 2.4 5.75 5.98 3.37 7.32 5.88 7.13 5.6

28 31 30 30 22 29 31 30 31 31 29.3

0.84 0.64 0.78 0.41 0.33 0.62 0.52 0.79 0.57 M 0.63

0.63 0.54 0.79 0.44 0.33 0.55 0.44 0.88 0.58 0.5 0.57

9.1 3.78 6.48 2.44 3.79 5.49 2.58 5.7 3.38 6.78 4.95

46 46 48 48 48 47 48 48 48 48 47.5
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Jay  Gould (2006) Shipwreck JG  HE
Lat. 41.9 Ho

Long. 82.4 A
n

St.Clair River (2006) Shore STC HE
Lat. 42.8 Seine H0

Long. 82.5 A
n

St.Rose Beach (2006) Shore RO HE
Lat. 42.3 Seine H0

Long. 83.0 A
n

Amherstburg (2006) Marina AHM HE
Lat. 42.1 Ho

Long. 83.1 A
n

Colchester (2006) Pier COL HE
Lat. 42.0 Ho

Long. 82.9 A
n

Belle River (2006) B each BR HE
Lat. 42.3 Seine H0

Long. 82.7 A
n

0.74 0.54 0.8 0.31 0.42 0.58 0.59 0.86 0.52 0.78 0.61

0.4 0.51 0.6 0.38 0.4 0.64 0.7 0.7 0.51 0.49 0.53

6.7 2.97 6.13 2 3.62 4.99 3.46 7.4 3.41 6.63 4.73

43 43 45 45 43 45 44 44 45 45 44.2

0.86 0.63 0.79 0.42 0.32 0.74 0.51 0.81 0.61 0.78 0.65

0.85 0.37 0.75 0.41 0.34 0.48 0.41 0.68 0.63 0.53 0.55

8.76 3.69 6.54 2.31 3.81 6.99 2.61 6.73 5 6.44 5.29

98 79 104 104 100 93 85 102 105 103 97.3

0.9 0.67 0.76 0.35 0.32 0.75 0.54 0.81 0.65 0.81 0.66

0.81 0.5 0.78 0.32 0.27 0.42 0.32 0.73 0.57 0.5 0.52

10.23 3.89 5.82 2 3.72 7.29 3.41 6.35 5.57 7.14 5.54

58 56 58 60 59 57 59 56 56 60 57.9

0.85 0.67 0.75 0.43 0.51 0.6 0.55 0.85 0.6 0.78 0.66

0.88 0.68 0.88 0.44 0.39 0.64 0.4 0.6 0.67 0.92 0.65

7.15 3.96 6.02 2 5.48 5.9 3.22 7.31 4.87 5.75 5.17

24 25 24 25 23 22 25 25 24 24 24.1

0.84 0.56 0.8 0.48 0.41 0.66 0.54 0.85 0.59 0.66 0.64

0.92 0.38 0.91 0.36 0.36 0.42 0.29 0.75 0.72 0.42 0.55

7.94 3.75 6.15 2.74 4.18 4.92 3.73 7.36 4.34 4.36 4.95

25 24 23 25 25 24 24 20 25 24 23.9

0.87 0.68 0.75 0.34 0.31 0.75 0.56 0.84 0.62 0.74 0.65

0.8 0.6 0.8 0.33 0.33 0.5 0.28 0.75 0.69 0.61 0.57

9.21 3.91 6.49 2.2 3.86 6.13 3.09 7.44 5.57 5.12 5.3

59 58 59 60 60 56 60 59 58 56 58.5
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George S tone (2006) Shipwreck GS HE

Lat. 41.9 Ho

Long. 82.6 A

n

McFarland (2006) Shore MCF HE

Lat. 44.0 Seine H0

Long. 77.1 A

n

McKee (2006) Shore MCK HE

Lat. 42.3 Seine H0

Long. 83.1 A

n

McKee (2005) Shore MCK2 HE

Lat. 42.3 Seine Ho

Long. 83.1 A

n

Leamington (2006) Pier LEA HE

Lat. 42.0 Ho
Long. 82.6 A

n

Leamington (2005) Pier LEA2 HE

Lat. 42.0 Ho
Long. 82.6 A

rt

0.88 0.55 0.78 0.35 0.36 0.68 0.49 0.86 0.59 0.78 0.63

0.78 0.45 0.79 0.38 0.39 0.56 0.47 0.72 0.5 0.58 0.56

9.31 3.5 5.6 2.34 4.02 5.72 2.78 7.38 3.88 6.98 5.15

63 62 63 64 62 64 64 64 62 55 62.3

0.85 0.65 0.79 0.32 0.13 0.71 0.59 0.83 0.7 0.76 0.63

0.68 0.53 0.71 0.36 0.13 0.42 0.43 0.57 0.74 0.54 0.51

8.37 3.85 6.72 2.63 2.4 7.46 3.5 7.28 5.69 5.44 5.33

34 40 38 42 31 36 40 37 42 35 37.5

0.85 0.71 0.79 0.28 0.31 0.75 0.59 0.75 0.7 0.75 0.65

0.8 0.5 0.81 0.25 0.32 0.42 0.37 0.8 0.65 0.58 0.55

8.74 3.94 6.53 2.47 3.81 6.64 3.65 6.58 5.55 5.23 5.31

59 60 59 60 59 57 59 60 55 57 58.5

0.86 0.66 0.75 0.33 0.39 0.77 0.5 0.79 0.66 0.72 0.64

0.89 0.55 0.75 0.31 0.39 0.53 0.29 0.62 0.6 0.61 0.55

8.87 3.86 6.15 2.56 3.75 6.24 2.37 6.03 5.75 6.38 5.2

63 55 63 64 64 57 59 61 57 54 59.7

0.84 0.54 0.77 0.4 0.62 0.76 0.57 0.78 0.61 0.77 0.66

0.67 0.47 0.86 0.44 0 0.41 0.4 0.73 0.49 0.59 0.5

8.06 3.54 6.65 2.65 3.99 6.47 3.21 6.31 4.34 6.31 5.15

63 64 64 64 62 64 63 64 63 63 63.4

0.85 0.52 0.79 0.34 0.4 0.7 0.53 0.81 0.57 0.74 0.62

0.86 0.45 0.77 0.32 0.38 0.52 0.41 0.78 0.58 0.7 0.58

8.19 3.16 7.06 2.36 4.15 6.3 2.69 6.15 4.03 5.11 4.92

64 62 53 59 64 63 59 64 62 60 61
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Killarney (2005) Shore KIL HE

Lat. 46.0 Seine H0

Long. 81.6 A

n

Midland (2006) Marina MID HE

Lat. 44.8 Ho
Long. 79.9 A

n

Midland (2005) Marina MID2 HE

Lat. 44.8 Ho
Long. 79.9 A

n

Owen Sound (2006) Shore OS HE

Lat. 44.6 Seine H0

Long. 80.9 A

n

Owen Sound (2005) Shore OS2 HE

Lat. 44.6 Seine H0

Long. 80.9 A
n

Port Elgin (2006) Marina PE HE

Lat. 44.4 Ho

Long. 81.4 A

n

0.84 0.57 0.7 0.53 0.18 0.75 0.45 0.84 0.61 0.77 0.62

0.78 0.43 0.67 0.7 0.19 0.63 0.36 0.81 0.63 0.63 0.58

8.45 3.64 A l 2.57 2.56 5.71 2.19 6.91 4.78 6.45 4.8

64 63 63 64 64 64 64 62 64 62 63.4

0.8 0.66 0.58 0.22 0.34 0.71 0.55 0.74 0.44 0.81 0.59

0.54 0.6 0.58 0.25 0.38 0.47 0.56 0.66 0.48 0.61 0.51

5.54 3.78 4.39 1.97 2.98 4.11 2.82 5.49 3.69 6.98 4.18

59 63 60 64 64 64 64 62 61 59 62

0.81 0.64 0.58 0.13 0.47 0.63 0.55 0.75 0.53 0.74 0.58

0.66 0.58 0.52 0.14 0.47 0.68 0.55 0.8 0.56 0.56 0.55

6.32 3.52 4.42 1.85 2.96 3.67 3.04 5.44 4.12 5.52 4.09

59 55 56 58 59 60 60 56 41 57 56.1

0.74 0.52 0.59 0.34 0.13 01 0.57 0.7 0.68 <LZ 0.57

0.45 0.44 0.66 0.41 0.14 0.55 0.34 0.4 0.74 0.49 0.46

5.84 3.78 3.25 2.45 2.35 6.15 3.27 5.45 4.04 5.12 4.17

42 43 47 46 37 42 44 45 43 45 43.4

0.71 0.44 0.45 0.46 0.05 0.76 0.25 0.71 0.41 0.4 0.47

0.5 0.33 0.47 0.53 0.05 0.83 0.27 0.67 0.39 0.38 0.44

4.67 2.95 3.76 2.84 1.56 4.89 1.99 5.35 2.6 4.09 3.47

60 54 60 64 60 58 64 61 59 64 60.4

0.74 0.51 0.53 0.38 0.44 0.78 0.32 0.6 0.56 0.79 0.57

0.66 0.43 0.52 0.38 0.54 0.63 0.34 0.5 0.63 0.47 0.51

7.87 3.77 3.45 2.61 3.44 5.97 2.82 4.73 4.81 6.64 4.61

29 28 25 32 24 32 29 30 32 32 29.3
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Maitland River (2006) Electroshock MR HE 
Lat. 43.7 Ho

Long. 81.7 A
n

Port Dover 2 (2005) Offshore PDO H£
Lat. 42.6 Trawl H0

Long. 80.3 A
n

Port Severn (2005) Shore PSE HE
Lat. 44.8 Seine H0

Long. 79.7 A
n

New York 1 (2005) Offshore NY1 HE
''O Lat. 42.6 Trawl Ho

Long. 79.3 A
n

New York 2 (2005) Offshore NY2 HE
Lat. 42.5 Trawl H0

Long. 79.4 A
n

New York 3 (2005) Offshore NY3 HE
Lat. 42.4 Trawl H0

Long. 79.6 A
n

0.84 0.49 0.6 0.41 0.39 0.81 0.55 0.76 0.65 0.80 0.63

0.67 0.29 0.52 0.41 0.4 0.55 0.42 0.5 0.71 0.45 0.49

8.39 3.83 4.54 2 3.19 6.41 2.92 6.21 5.14 6.17 4.88

30 31 31 29 30 31 31 30 31 31 30.5

0.76 0.46 0.78 0.47 0.52 0.7 0.52 0.71 0.58 0.78 0.63

0.52 0.61 0.76 0.41 0.52 0.71 0.44 0.75 0.51 0.63 0.59

5.69 2.47 7.03 2.57 3.89 6.17 2.47 5.57 3.22 6.46 4.55

63 64 58 64 63 63 63 53 59 59 60.9

0.61 0.5 0.21 0.44 0.44 0.66 0.39 0.67 0.71 0.62 0.53

0.33 0.33 0.24 0.38 0.47 0.33 0.39 0.54 0.77 0.49 0.43

3.77 2 1.97 2 2.94 3.81 2.2 4.71 3.92 4.27 3.16

63 63 55 60 60 63 61 63 62 61 61.1

0.74 0.49 0.78 0.39 0.43 0.68 0.5 0.76 0.44 0.69 0.59

0.24 0.4 0.8 0.42 0.43 0.46 0.39 0.77 0.38 0.56 0.49

6.13 3.46 5.41 2.23 3.36 4.7 2 6.22 2.61 4.82 4.09

54 52 50 53 53 54 51 35 32 45 47.9

0.74 0.34 0.79 0.43 0.41 0.73 0.54 0.79 0.56 0.81 0.62

0.25 0.28 0.83 0.38 0.38 0.68 0.36 0.65 0.55 0.64 0.5

6.21 2.5 5.85 2 3.3 5.03 2.88 6.65 4.47 6.54 4.54

51 58 58 58 53 56 58 52 58 55 55.7

0.72 0.45 0.78 0.4 0.3 0.65 0.57 0.82 0.5 0.81 0.6

0.28 0.39 0.64 0.32 0.35 0.59 0.46 0.75 0.37 0.62 0.48

5.53 2.94 5.74 2.19 2.55 4.45 3.15 8 3.25 6.62 4.44

61 61 61 62 60 56 61 12 62 61 55.7
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the lower Detroit River (LA and AMH) (Table 3.2). STC had allele frequencies that were not 

significantly different than AHM and COL in the Western Basin of Lake Erie. AHM was also 

not significantly different than sites in the St. Clair River -  Western Basin o f Lake Erie corridor 

(COL, GS, BR and MCK) as well MCF in the Bqy of Quinte and PD2 in the eastern basin of 

Lake Erie. Three of 15 (20%) pairwise comparisons between all six NY sites were not 

significantly different based on allele frequency distributions. The frequency distribution of 

pairwise F st estimates shows a range of values (Fig. 3.2). A large portion of the Fst estimates 

are found between 0 and 0.04 (46.7% of all values). A slight increase in frequency was observed 

for values in the range of 0.0141-0.016 (Figure 3.2).

Bayesian assignment analysis showed th$t self assignment among introduced sites ranged 

from 0 (NI, MCF and NY3) to 95 % (PSE). Identified migrants per population ranged from 0 

(HAS, HAS2 and PSE) to 32% (AMH) off all fish. The water distance traveled by migrants 

ranged from 14 to 786 kilometers (Fig. 3.3). The frequency distribution distances traveled by 

migrants showed that 89 out of 224 (39.7%) identified migrants traveled a distance of less than 

100 km (Fig. 3.3). Obvious peaks in distribution occurred in the range of 251-300 km and 601 - 

650 km (Fig. 3.3), these distance ranges accounted for 38 of 224 migrants (17.0%). Dispersal 

index values revealed several distinctive patterns. Sites in Lake Huron were characterized as less 

dispersive (Fig. 3.4). Other sites that showed less dispersal included HAS, which was expected 

given its high genetic divergence and spatial restrictions along the Trent Severn Waterway. The 

eastern basin of Lake Erie also contained sites that were less dispersive, with the exception of the 

NY sites, where index values were variable. Dispersal index values were also variable for the St. 

Clair River -  western basin of Lake Erie.
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Table 3.2a Genetic relationship between 18 introduced round goby (Neogobius melanostomus) 
populations in three of the Laurentian Great Lakes. Pairwise F st values are presented in 
the table. Values that were significant after Bonferonni correction are in bold face type 
and underlined. Site abbreviations are described in Table 3.1.

TR HAS BUR PC PM PD PS LA JG STC RO DU COL BR GS MCF MCK

TR . . .

HAS 0.17

BUR 0.06 0.22 . . .

PC 0.07 0.17 0.08 . . .

PM 0.07 0.15 0.07 0.08 . . .

PD 0.07 0.15 0.08 0.07 0.03 . . .

PS 0.10 0.14 0.10 0.08 0.04 0.05 . . .

LA 0.02 0.14 0.08 0.05 0.07 0.05 0.09 . . .

Nl 0.02 0.14 0.07 0.04 0.04 0.03 0.05 0.02 4~

JG 0.05 0.15 0.07 0.06 0.04 0.03 0.02 0.05 0.01 . . .

STC 0.02 0.15 0.06 0.03 0.06 0.04 0.07 0.01 o.p i 0.04 . . .

RO 0.02 0.16 0.05 0.04 0.07 0.05 0.08 0.01 0.02 0.05 0.00 . . .

DU 0.02 0.15 0.06 0.04 0.06 0.05 0.07 0.00 0.01 0.04 0.00 0.01 . . .

COL 0.02 0.18 0.04 0.04 0.05 0.04 0.07 0.02 0.02 0.04 0.00 0.01 0.01 . . .

BR 0.04 0.16 0.07 0.04 0.08 0.06 0.09 0.02 0.b4 0.06 0.00 0.01 0.01 0.02 . . .

GS 0.02 0.15 0.04 0.05 0.04 0.04 0.04 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.03 . . .

MCF 0.01 0.15 0.06 0.04 0.07 0.05 0.08 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.01 0.00 . . .

MCK 0.00 0.15 0.05 0.06 0.07 0.06 0.08 0.02 0.03 0.04 0.01 0.02 0.01 0.02 0.02 0.02 0.00
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Table 3.2b Genetic relationship between 18 introduced round goby (Neogobius melanostomus) 
populations in three of the Laurentian Great Lakes. Pairwise Fst values are presented in 
the table. Values that were significant afjter Bonferonni correction are in bold face type 
and underlined. Site abbreviations are described in Table 3.1.

TR HAS BUR PC PM PD PS LA Nl JG STC RO DU COL BR GS MCF MCK

LEA 0.03 0.15 0.09 0.07 0.07 0.06 0.07 0.02 0.04 0.06 0.04 0.05 0.02 0.03 0.06 0.04 0.03 0.05

KIL 0.03 0.13 0.06 0.04 0.06 0.07 0.08 0.04 0.03 0.06 0.02 0.03 0.02 0.02 0.04 0.03 0.03 0.04

MID 0.06 0.19 0.10 0.10 0.11 0.08 0.15 0.06 0.06 0.10 0.06 0.06 0.05 0.07 0.08 0.06 0.05 0.06

OS 0.05 0.21 0.01 0.07 0.06 0.07 0.09 0.07 0.06 0.07 0.04 0.04 0.04 0.03 0.06 0.03 0.05 0.03

PE 0.03 0.22 0.06 0.06 0.10 0.09 0.12 0.05 0 .06 0.10 0.04 0.04 0.05 0.04 0.06 0.05 0.06 0.04

MR 0.03 0.16 0.05 0.04 0.07 0.07 0.08 0.05 0 0 5 0.07 0.02 0.03 0.03 0.02 0.03 0.04 0.03 0.03

MID2 0.04 0.19 0.11 0.11 0.11 0.07 0.13 0.04 0.05 0.08 0.05 0.05 0.04 0.07 0.07 0.06 0.03 0.04

SL 0.16 0.18 0.19 0.14 0.15 0.14 0.13 0.13 0.13 0.14 0.10 0.13 0.10 0.13 0.12 0.12 0.12 0.13

NY1 0.03 0.14 0.05 0.04 0.02 0.01 0.01 0.03 oioo 0.00 0.01 0.03 0.02 0.02 0.04 0.00 0.02 0.02

NY2 0.06 0.13 0.07 0.06 0.04 0.05 0.03 0.07 0.04 0.02 0.05 0.07 0.05 0.05 0.08 0.03 0.06 0.05

NY3 0.01 0.10 0.03 0.00 0.01 0.01 0.00 0.02 0^00 0.00 0.00 0.02 0.00 0.02 0.03 0.00 0.01 0.01

NY4 0.04 0.09 0.07 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.00 0.02 0.01

NY5 0.03 0.12 0.04 0.03 0.03 0.03 0.01 0.02 0.01 0.00 0.02 0.02 0.00 0.02 0.04 0.00 0.01 0.02

NY6 0.03 0.12 0.05 0.04 0.02 0.02 0.00 0.04 0100 0.00 0.01 0.03 0.02 0.03 0.04 0.00 0.02 0.03

LEA2 0.02 0.15 0.06 0.06 0.07 0.05 0.06 0.01 0.02 0.03 0.01 0.02 0.00 0.01 0.02 0.01 0.00 0.02

PD2 0.05 0.14 0.06 0.05 0.04 0.03 0.04 0.03 0.03 0.02 0.04 0.04 0.03 0.03 0.05 0.02 0.03 0.05

MCK2 0.01 0.15 0.05 0.04 0.07 0.05 0.08 0.01 0.02 0.05 0.01 0.01 0.01 0.02 0.02 0.02 0.00 0.00

OS2 0.10 0.27 0.11 0.12 0.15 0.16 0.17 0.14 d.13 0.16 0.10 0.11 0.12 0.10 0.11 0.11 0.12 0.10

HAS2 0.18 0.01 0.23 0.17 0.17 0.15 0.16 0.15 0.14 0.16 0.14 0.16 0.15 0.19 0.16 0.15 0.16 0.15
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Table 3.2c Genetic relationship between 22 introduced round goby (Neogobius melanostomus) 
populations in three of the Laurentian Great Lakes. Pairwise Fst values are presented in 
the table. Values that were significant afjter Bonferonni correction are in bold face type 
and underlined. Site abbreviations are described in Table 3.1.

LEA KIL MID OS PE MR MID2 SL NY1 NY2 NY3 NY4 NY5 NY6 LEA2 PD2 MCK2 OS2 H,

LEA . . .

KIL 0.06 . . .

MID 0.08 0.07 . . .

OS 0.07 0.05 0.09 . . .

PE 0.05 0.05 0.10 0.05 . . .

MR 0.05 0.04 0.09 0.02 0.01 . . .

MID2 0.07 0.08 0.03 0.09 M M . . .

SL 0.12 0.12 0.15 0.18 0.21 0.16 0.15 . . .

NY1 0.03 0.03 0.08 0.03 0.06 0.03 0.08 0.12 —

NY2 0.06 0.06 0.11 0.07 0.09 0.06 0.11 0.13 0.00 —

NY3 0.02 0.01 0.06 0.02 0.05 0.02 0.06 0JL 0.00 0.00 —

NY4 0.00 0.03 0.07 0.06 0.09 0.03 0.05 0.09 0.00 0.00 0.00 —

NY5 0.03 0.03 0.07 0.03 0.06 0.03 0.07 0.11 0.01 0.00 0.00 0.00 —

NY6 0.04 0.02 0.08 0.04 0.07 0.03 0.08 0.11 0.00 0.00 0.01 0.00 0.00 . . .

LEA2 0.03 0.03 0.07 0.05 0.06 0.04 0.06 0.12 0.02 0.04 0.00 0.00 0.02 0.00 . . .

PD2 0.05 0.04 0.09 0.06 0.08 0.06 0.09 0.13 0.02 0.03 0.00 0.00 0.01 0.01 0.02 . . .

MCK2 0.04 0.03 0.05 0.04 0.03 0.02 0.04 0.12 0.03 0.05 0.01 0.01 0.02 0.02 0.02 0.04 . . .

OS2 0.13 0.09 0.16 0 J. 0.06 0.05 0.18 0.25 0.12 0.15 0.12 0.14 0.14 0.11 0.12 0.14 0.08

HAS2 0.16 0.15 0.19 0.22 0.24 0.17 M . 0.21 0.16 0.13 0.13 0 J 0.14 0.15 0.15 0.16 0.16 0.29
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Mantel tests revealed that patterns of genetic differentiation across all sites followed an 

IBD model (Fsf, r2=:0.19, p=0.010, Dc; r2=0.28, p=0.010) (Fig. 3.5). Genetic differentiation on a 

lake scale followed an IBD model for only Lake Erie (F st , r2=0.11, p=0.010, D c ;  r2=0.20, 

p=0.010) (Fig. 3.5). On a smaller spatial scale (Jake basin), Mantel tests revealed that IBD was 

only significant at 1 of 3 regions. IBD was not apparent for the St. Clair River -  western basin 

corridor as all sites were weakly divergent from One another irrespective of geographical 

distance (Fsf, r2=0.01, p=0.270, Dc', r2=0.01, p=0.180). Likewise, IBD was not evident along the 

Trent Severn Waterway (Fsrjr^O.Ol, p=0.380, Dc; r2=0.03, p=0.110).

The significant and highly divergent HAS site likely led to the collapse of any IBD 

pattern of genetic differentiation. The regional scale analysis in the eastern basin of Lake Erie 

appeared to follow an IBD model of genetic differentiation (Fst; r2=0.35, p=0.020, Dc; r2=0.36, 

p=0.03) (Fig. 3.5). This relationship was most likely driven by the NY sites, which were 

geographical close (greatest distance between any 2 sites -2 9  km) and were also genetically 

indistinguishable based on measures of genetic distance and allele frequency distributions.

3.4 DISCUSSION

The genetic signature of an introduced population will depend on the effective population 

size of the invaders, as well as any preexisting genetic structure among source populations
j

(Holland 2000). Many introduced populations dre characterized by low genetic diversity, often 

the result of founder effects and population bottlenecks (e.g. Tsutsui et al. 2000, Colautti et al. 

2005, Lindholm et al. 2005); however, multiple introductions and mixtures of introductions from
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Figure 3.2 Frequency distribution of pairwise F stvalues among introduced round goby 
populations in the Great Lakes. The number above each bar indicates the percentage of pairwise 
F ir  values in that category that were significantly different from zero after Bonferroni correction. 
X-axis values indicate the upper values in the gdnetic divergence range.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£c
2U)

6 0

50

40

30

20

10

0

Distance Travelled (km)

Figure 3.3 Distance traveled by individual round goby migrants in the Great Lakes. Migrants 
were identified having a likelihood ratio greater than four, when the highest rank probability was 
divided by the second highest rank probability. Distance is measured as the shortest in-water 
distance between sites.
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Figure 3.4 Great Lake round goby dispersal in 37 introduced populations inferred by genotype 
assignment analysis. Filled pie chart sections indicate dispersed individuals, while open pie 
sections indicate self-assigned, or resident, individuals. The number in the pie chart indicates the 
number of successfully assigned individuals for that population.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multiple sources can lead to elevated genetic diversity (e.g. Baker 1992, Kolbe et al. 

2004). Furthermore, some researchers have postulated that high levels o f genetic diversity in 

introduced species may facilitate invasion success, since elevated genetic diversity may provide 

increased opportunity for genetic adaptation (Lep 2002). Population bottlenecks associated with 

colonization events may act as barriers to establishment in that these populations are generally 

characterized by a reduction in genetic diversity (Mayr 1963).

The colonization of the Great Lakes by the round goby is characterized by not only high 

levels of genetic diversity in all sampled populations, but also very high levels of genetic 

differentiation among sites. Our results are consistent with previous genetic analyses of mtDNA 

haplotype diversity of Great Lakes round goby populations (Dillon & Stepien 2001, Stepien et 

al. 2005, Stepien & Tumeo 2006). Although high levels of genetic diversity can be explained by 

large propagule size or multiple introductions, our results are unexpected in that the genetic 

structure of recently introduced species, colonized over long distances is usually characterized by 

low or no genetic differentiation. This may be attributed to both high gene flow and panmixia 

processes associate with colonization (e.g. Duda 1994, Astanei et al. 2005) or due to a single 

inoculation event and insufficient time for significant divergence (e.g. Grapputo et al. 2006, 

Lindholm et al. 2005). Studies that report introduced populations exhibiting higher than 

expected genetic differentiation often attribute such structuring to physical or geographical 

barriers in the introduced range (e.g., Bousset et al. 2004, Demelo & Hebert 1994, Roman & 

Palumbi 2004, Herborg et al. 2006) or to multiple introductions (Durka et al. 2005).

In general, a number of possible mechanisms have been postulated to lead to high levels 

of genetic differentiation among introduced species populations. First, such a population genetic 

structure may be due to very small founding populations where subsequent drift effects and
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Figure 3.5 Plots of pairwise genetic distance (Fkj) versus geographical in-water distance across 
three different spatial scales of introduced round goby populations in the Great Lakes. The first 
scale encompasses all introduced sites (N=37), the second scale includes sites within Lake Erie 
(including the connecting corridor to the St. Clair River; N=24). The final scale include sites in 
the eastern basin of Lake Erie (N=12). Mantel tests were employed to test significance between 
the two distant matrices.
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microhabitat selection led to population differentiation (Cabe & Alstad 1994). In my 

case, such a scenario would imply that only a few round gobies were able to colonize and 

establish in the Great Lakes, and that the subsequent range expansion was accomplished by 

ballast transport by Great Lakes freighters, also involving only a small effective population size. 

However, this scenario would lead to low levels of genetic diversity among introduced sites, no 

evidence of an IBD model of genetic differentiation and genetic signatures of population 

bottlenecks. Evidence for this is not apparent in this or previous studies (Dillon & Stepien 2001, 

Stepien et al. 2005, Stepien & Tumeo 2006), as round gobies in the Great Lakes are 

characterized by high levels of genetic diversity^ and there is evidence of IBD across all sample 

sites and within two smaller spatial scales. I also found no evidence for current population 

bottlenecks, although, initial population establishment appears to have been reduced in size

(Chapter 4). Thus it is unlikely that founder effects are the primary mechanism driving the
i

genetic differentiation observed among the round goby populations in the Great Lakes.

An alternative explanation for high levels of genetic divergence among recently 

established invasive species populations may be multiple colonization events from divergent 

sources (e.g. Garnatje T et al. 2002, Shoji et al. 2007). In my study, the high degree and 

variation in pairwise genetic differentiation does suggest multiple introductions (Fig. 3.2). The 

frequency distribution of F st values suggests that pairwise populations with low genetic 

divergence are most likely the result of natural dispersal within the Great Lakes. The high F st 

values are not consistent with recent divergence! but rather suggest previously existing
j

divergence within their native range. In this study several sites were extremely divergent from 

all other sites (HAS/HAS2, SL, OS2, MID/MID2, and BUR). Based on the grouping of these 

sites I estimate the minimum number of introductions to be at least five.
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A third possible explanation of the pattern of round goby genetic differentiation is that 

the introduced populations are older than previously reported. However, this is unlikely since 

round gobies are generally easily detected as they are characterized by very fast population 

growth and very high population densities, makihg detection effortless. Thus, although the round 

goby colonization of the Great Lakes may predate the first report (Crossman et al. 1992, Jude et 

al. 1992), it is virtually certain they have not been present and widespread in the Great Lakes for 

sufficient time to account for the very high levels of genetic divergence documented here.

My results indicate that the colonization pf the Great Lakes by the round goby resulted 

from a combination of small propagule introductions (driving founder effects and rapid genetic 

drift) and multiple introductions from genetically divergent sources within their native range. 

Secondary colonization events within the Great takes were also likely characterized by a small 

numbers of round gobies leading to additional founder effects. The pattern of genetic divergence 

observed among introduced round gobies suggests that management efforts may be difficult. 

Region or population specific plans must be developed in order to address the varying genetic 

composition of each population. The colonization o f the round goby in the Great Lakes allows 

the evaluation of the consequences of a founding event involving a limited number of 

individuals. This study increases our understanding of the underlying evolutionary mechanism 

that allow invasive species to adapt and expand in the face of varied environmental and 

biological factors that ultimately act to force extinction. If persistence occurs, those same forces 

can ultimately drive the initial stages of speciatipn.

The spread of the round goby in the Great Lakes has been remarkably fast; since their 

initial appearance in 1990 the round goby colonized all five of the Great Lakes within five years 

(Charlebois et al. 1997). However, based on mark-recapture studies, round gobies were
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characterized as highly philopatric with limited dispersal capabilities (Wolfe & Marsden 1998, 

Ray & Corkum 2001). It is thus unlikely that the observed spread of the round goby in the Great 

Lakes was due to natural dispersal alone. Several studies on the dispersal of invasive species 

have identified human transport processes as critical factors mediating dispersal and range 

expansion (e.g., Buchan & Padilla 1999, Suarez et al. 2001). In this study genotype assignment 

analyses characterized round goby dispersal in the Great Lakes as highly variable, with specific 

dispersal distances ranging as high as 835 km, clearly indicative of human mediated dispersal 

vectors. The dispersal distance histogram identified signs of natural dispersal, 39.7% of these 

migrants traveled between 0 and 100 km. These results are more consistent with natural 

dispersal, suggesting that this type of dispersal is greater than previously thought. Two peaks in 

the histogram likely reflect ballast water dispersal (Fig. 3.3). The peaks in the range of 601-650 

km are identified migrants primarily moving between the lower Detroit River/western basin of 

Lake Erie corridor and the Bay of Quinte (MCF and TR). The second peak in the range of 251- 

300 km reflects migration between the east portion o f the western basin of Lake Erie and the 

eastern basin of Lake Erie. These peaks in dispersal distance are consistent with F sfvalues that 

reveal low genetic divergence between sites in the St. Clair River-western basin of Lake Erie 

corridor and the Bay of Quinte sites as well as between sites in the St. Clair River-western basin 

of Lake Erie corridor and the eastern basin of Lake Erie (see Table 3.2). Within-lake dispersal is 

a combination of natural/local dispersal with characteristic long-distance jump dispersal events, 

most likely facilitated by inter-basin ballast water transfer.

The spread of the round goby in the Great Lakes is most likely a combination of three 

dispersal strategies, natural dispersal, ballast water transfer within the Great Lakes, and multiple 

introductions to different areas within the Great Lakes from Eurasian sources. Partitioning
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between these dispersal strategies is not possible, although speculation can be made through the 

identification o f migrants and the distance traveled between sites of capture and origin. Through 

this study I estimate that there have been at least five introductions of round gobies to the Great 

Lakes. Within the Great Lakes dispersal is a combination of natural dispersal, which I estimate 

to account for approximately 40% of all dispersal (Fig. 3.3), and long distance jump dispersal, 

which I estimate to account for at least 16% of dispersal in the Great Lakes (Fig. 3.3).

The dynamic nature of a rapidly expandihg invasion most often results in departures from 

population equilibrium. Based on temporal instability between five introduced sites and obvious 

departures from HWE across our 10 microsatellite loci, I conclude that round goby populations 

in the Great Lakes have not yet reached an equilibrium state. However, IBD was significant in 

some areas suggesting that these areas (i.e. Lake Erie and the eastern basin of Lake Erie) may be 

more stable than others. This may reflect the age of these populations, but rather most likely 

reflects the sampling regime and the non-significant genetic relationships between sites that were 

extremely close.

Here I demonstrate that a combination of multiple introduction of small number of 

individuals and subsequent genetic drift can drive the genetic differentiation o f rapidly 

expanding populations. I also demonstrate that (he rapid spread of an invasive species can be 

greatly accelerated by human-mediated vectors &nd that highly philopatric species can often 

disperse beyond their home range. The invasion of round gobies in the Great Lakes represents a 

unique genetic example o f populations that are (Characterized by such unusual levels of 

divergence, high genetic diversity and that display rapid dispersal. These attributes pose many 

hurdles for conservation managers as there is a lack of understanding of the processes that led to 

the genetic patterns observed. This model system allows an analysis of how evolutionary
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mechanisms such as drift and selection can act to drive the differentiation of populations 

suffering from founder effects during their colonization history.
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4.0 F o u n d e r  e f f e c t s  in  r o u n d  g o b y  (.n e o g o b i u s  m e l a n o s t o m u s ) i n v a s i o n  f r o n t s  in
THE GREAT LAKES

4.1 INTRODUCTION

The successful establishment of an invasive species is dependent on the composition of 

the individuals making up the introduced population. Many invasion events are characterized by 

a small number of founding individuals, which consequently decreases the chance of persistence 

in the novel environment. The likelihood of persistence is decreased due to several reasons. 

Firstly, extinction o f these small populations can occur simply by chance alone. Secondly, high 

mortality in the novel environment may rapidly select for specific genotypes, which will further 

reduce the founding population size. Populatiort persistence and survival can reach close to zero 

if  the population remains small. Finally, the likelihood of persistence can decrease because of 

inbreeding depression, caused by mating with close kin. This results in the expression of 

deleterious alleles, whereby fitness of the founding population is reduced. Founder effects 

associated with a colonization event can be defined as the effects resulting when a small number 

o f individuals establish a population (Mayr 1963). Genetic diversity of this new population may 

be limited compared to the native population due to the population bottleneck associated with the 

colonization event (e.g. Tsutsui et al. 2000). The new population may subsequently differ 

genetically and phenotypically from the native population (e.g. Lee et al. 2003, Grosholz & Ruiz 

2003, Philips & Shine 2003). Studying the genetic processes involved in colonization can 

provide the opportunity to evaluate rapid evolution (eg. Ellstrand & Schierenbeck 2000) and the 

r e sp o n se s  to s e le c t iv e  p r e s su r e s  g en er a ted  in the novel environment during initial establishment 

and ensuing range expansion. Furthermore, small populations are strongly affected by the forces 

of random genetic drift. Genetic drift results from chance differences in survival and 

reproduction success over successive generations and it will drive alleles towards either loss or
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fixation at a given locus. When small populations are involved, this drift alone may drastically 

alter the genetic composition of the introduced population compared to its source population. 

Genetic drift is one consequence of founder effects which, on an evolutionary time-scale, can 

lead to the beginning of species divergence (Mayr 1963).

The successful establishment of an invasive species is greatly influenced by the size of 

the introduced population and the amount of genetic diversity they possess. Most introduced 

species are founded by small populations that suffer founder effects (e.g., Cristescu et al. 2001, 

Berg et al. 2002, Grapputo et al. 2006). This scenario is highly likely, given the rarity of these 

events as well as a low probability of survival ahd establishment throughout each stage of the 

invasion event. Although many invasive populations have lower genetic diversity than their 

source or wild populations (Xu et al. 2003, Lasota et al. 2004, Lindholm et al. 2005), others are 

characterized by equal or greater genetic diversity relative to their source (Barbaresi et al. 2003, 

Kolbe 2004, Martel et al. 2004, Therriault et al. 2005, Chen et al. 2006). In the cases where 

invasive populations show high genetic diversity despite the expectations for population 

bottlenecks, several mechanisms are often postulated or demonstrated. A large number of 

founders may provide the genetic diversity required to adapt in the novel environment as well as 

to avoid inbreeding depression. Alternatively, repeated small invasions from multiple diverse 

sources may also inflate genetic diversity by mixing genotypes that may have been isolated in 

the native range (e.g., Ehrlich et al. 1989). Tolerance to founder effects and bottlenecks of some 

species may enable them to become established despite the reduction in population size. Most 

obligate sexual species will likely not successfully invade if the founder effects are too severe.

In fact, the growth of small founder populations, following the initial survival stage may be 

limited by inbreeding depression because it reduces that population’s ability to adapt and survive
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(Nieminen et al. 2001). This inability to adapt ihcreases the probability o f extinction for these 

founding populations (Saccheri et al. 1998). Ultimately, a reduction in genetic diversity will 

limit that population’s evolutionary potential when faced with a new selective regime (Frankham 

et al. 1999). Gene flow among invasive populations subsequent to initial establishment is 

another potentially powerful mechanism that substantially increases the likelihood of successful 

invasion since it could spread “invasive” or generally adaptive genotypes, and would increase 

genetic variation in populations still suffering frbm founder effects. Measuring gene flow among 

populations during a biological invasion provides valuable information for predicting the 

persistence and future spread of invasive populations.

Along with a loss in genetic diversity, the introduced population is also expected to 

exhibit reduced genetic equilibrium (e.g., DeWalt & Hamrick 2004, Colautti et al. 2005, Herborg 

et al. 2006). The reduction in population size associated with all introduction events will push 

the population towards a non-equilibrium state. Although the disequilibrium may last for as little 

as a single generation, drift, selection, and gene flow can act to extend the disequilibrium for 

many generations. Thus, recently established, small populations with very rapid population 

growth rates are expected to exhibit genetic instability at neutral loci.

The round goby (Neogobius melanostontus) is a successful invader, increasing its range 

in Europe as well as successfully establishing in the Great Lakes. Their aggressive nature, broad 

tolerance to varied environmental conditions, high reproductive rate, and high offspring survival 

likely helped the round goby become established in the Great Lakes and elsewhere. The recent 

establishment of many other Ponto-Caspian species in the Great Lakes has been facilitated by a 

common vector pathway: transoceanic transfer of ballast water (Mills et al. 1993). By its nature, 

ballast water uptake of fish is likely to result in the transfer of a limited number of individuals
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(Wonham et al. 2000). The harsh conditions inside ballast tanks and ballast water exchange 

practices likely reduces this number even further resulting in the transfer of only a handful of 

individuals (Wonham et al. 2005). Such a small number o f colonizers will inevitably experience 

the negative effects associated with population bottlenecks. The rapid population growth 

exhibited by the round goby in the Great Lakes despite founder effects was likely the result of 

the addition of genetic diversity through gene flow. Round gobies in the Great Lakes have been 

shown to have high genetic diversity and high genetic differentiation among sites (Chapter 3,

Stepien et al. 2005). There is also evidence that ballast water transfer within the Great Lakes as

well as multiple introductions is partially responsible for their rapid spread.

Currently, round gobies have now colonized all five of the Great Lakes (Charlesbois et 

al. 1997), and have recently been observed inland along the Maitland River in Lake Huron. In 

Ontario, round gobies have also been found moving inland along the Trent-Severn Waterway, 

the Thames River, Pefferlaw Brook, and recently one specimen was found in Bellewood Lake 

(Guleph). The Maitland River provides a valuable one-dimensional invasion front that allows 

the opportunity to evaluate the genetic signature of an on-going invasion. This will allow the 

genetic characterization of secondary range expansion o f the round goby in the Great Lakes and 

possibly the specific characteristics of dynamically invading round gobies.

The purpose o f this project was to compare genetic characteristics o f recently colonized 

populations of the round goby that have different times since establishment (15 years, nine years 

and actively colonizing). Specifically, I test for genetic bottlenecks and for effects on genetic 

diversity in a dynamic round goby invasion front in the Maitland River, Goderich, Ontario, 

Canada. I compare those populations to other, more established, populations elsewhere in the 

Great Lakes. Round gobies were first reported in Goderich in 1994, but until 2006 had not been
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reported in the Maitland River, giving me the opportunity to evaluate patterns of genetic 

differentiation during a colonization event. Although the round goby does not generally appear 

to follow the predictions of colonization effects in population genetic theory, the invasion front 

in the Maitland River provides the chance to critically test some of those predictions.

4.2 MATERIALS AND METHODS 

Sample collection and geographical information

Round gobies in the Maitland River were collect during the summer of 2006, where 

samples were caught at 5 different sites (Fig. 4.1). The first site was approximately 600 meters 

from the mouth of the Maitland River, while the four additional sites covered a distance 2.5 

kilometers upstream from the first site of capture (Fig. 4.1). No round gobies were collected at 

any further upstream sites (~5 km and -10km) despite exhaustive effort. Sample collections at 

these sites were equal in duration and intensity of the five lower sites (avg. ~2000 

electroshocking seconds). Therefore the samples collected at the furthest upstream site in this 

study likely represent round gobies at the edge o f their invasion front.

I also sampled five more sites spread over much o f southern Ontario (Fig. 4.1) to collect 

round gobies from sites that have been established for approximately nine years. By selecting 

sites that are geographically widely distributed, I represent the expansion wave of round gobies 

in the lower Great Lakes. Samples from two of these sites were collected in multiple years 

(MCF and HAS) (Fig. 4.1). All of these sites wdre part of another study designed to measure 

d isp e r sa l an d  g e n e  f lo w  a m o n g  G reat L a k e  rou n d  g o b ie s  (C h a p ter  3 ).

Round gobies were also collected from the St. Clair River (Fig. 4.1), near the site of the 

first report o f Great Lakes round gobies. These samples represent the longest-established
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population of round gobies based on their proximity to the original site o f identification, 

approximately 15 years ago (1992). This site was also part of another study designed to measure 

dispersal and gene flow among Great Lake round gobies (Chapter 3).

A total o f 630 fish were caught through $ combination of seine netting, hook and line and 

backpack electroshocking (Maitland samples only). A section of the caudal fin of each fish was 

removed and placed in a 1.7ml tube containing 95% ethanol for later DNA extraction. 

Microsatellite genotyping

Refer to Chapter 3 for DNA extraction and PCR amplification protocols. Also refer to Chapter 

2 for individual genotyping procedures.

Genetic diversity

Genetic diversity of recently established round goby populations was assessed by
j

estimating observed (Ho)  and expected heterozygosities (He) using the computer program 

ARLEQUIN VER. 3.1 (Excoffier et al. 2001). Allelic richness (A) per locus across all populations 

was estimated using FSTA T2.9.3.2 (Goudet 2001), private alleles in each population were also 

identified.

Population stability was evaluated by testing for conformance to Hardy-Weinburg 

equilibrium using exact tests in the program t f p g a  (Miller 1997). A Monte Carlo method to 

estimate the p-value, with 10 batches and 1000 permutations per batch was used. P-values were 

corrected according to the sequential Bonferronj method for multiple simultaneous tests across 

individual populations (Rice 1989). Linkage disequilibrium was evaluated among loci in the
j

program ARLEQUIN VER. 3.1 (Excoffier et al. 2O0l). It is expected that reduced population sizes 

will show greater changes in the frequency of specific allelic combinations than would be 

expected under a scenario of non-random mating of much larger populations.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Population structure

To evaluate population structure and gene flow in an ongoing invasion event (Maitland 

River) we calculated conventional F-statistics using ARLEQUIN VER. 3.1 for the Maitland River 

samples only (Excoffier et al. 2001). Genetic distance was also estimated by calculating 

measures of chord distance (Cavalli-Sforza & Edwards 1967). To test for differences in allelic 

frequency distribution between locations, Fischer’s exact test of allelic differentiation was 

calculated in the program TFPGA 1.3 (Miller 1997). Isolation by distance as a model of genetic 

differentiation was tested across the Maitland River sites: significance of the correlation between 

genetic (Dc (Cavalli-Sforza & Edwards 1967)) and a geographic distance matrix was assessed by 

Mantel tests in GENALEX V. 6 (Peakall and Smouse 2006). Genotype assignment analysis on the 

Maitland River samples was performed using the database of 32 populations described in 

Chapter 3. Briefly, individual genotypes from Maitland River were assigned to one of the 32 

populations that was its most likely origin based on the distribution of allele frequencies in that 

source population. An assignment was deemed successful when the likelihood ratio between the 

probabilities of the two highest ranked populations exceeded four. The individual was then 

assigned to the highest ranked population, or unassigned if the ratio was < 4.

Population Bottleneck

We used three approaches to detect bottlenecks and recent population expansion in our 

three invasive population age categories since colonization (i.e., 15 years (N=l), 9 years (N=7), 

and active colonizers (N=5)). First, we used mean M ratio to detect a reduction in population 

size (Garza & Williamson 2001). M is calculated as the ratio of the total number of alleles found 

at a locus divided by the range in allele sizes measured in repeat number (or the total number of
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possible alleles given a specific size range). The value of M will decrease when there is a 

significant bottleneck or founder effect. The severity and duration of the bottleneck is reflected 

by the magnitude of decrease in M. This approach has the ability to detect a population that has 

undergone a reduction in size due to a founder ejvent, but is relatively insensitive to very recent
i

or on-going bottlenecks (Garza & Williamson 2001). The second method is particularly 

sensitive to on-going population bottlenecks and is based on the detection of a distortion in allele 

frequency distributions, as described in Luikart et al. (1998). The distribution of allele 

frequencies at neutral loci displays a characteristic mode-shift immediately following a 

population bottleneck. Specifically, rare alleles are preferentially lost during bottlenecks, 

relative to alleles at intermediate frequencies. Although this approach is not quantitative, it 

provides a graphical representation of allele frequency distribution stability, and the mode shift is 

easily detected graphically. This method can only detect very recent or ongoing bottlenecks. 

Finally, the computer program BOTTLENECK v.1,2 (Cornuet & Luikart 1996) was used to detect 

expected changes in heterozygosity resulting frdm population bottlenecks. This program 

exploits the assumption that a reduction in population size corresponds to a reduction in allele 

numbers and heterozygosity at microsatellite loci. Allele diversity is reduced faster than 

heterozygosity in a population out of mutation-drift equilibrium. Thus it is expected that 

observed heterozygosity will be higher than the expected heterozygosity. This is only true when 

the expected heterozygosity is estimated based bn observed number of alleles from loci in 

equilibrium. A Wilcoxon sign rank test was used to test for heterozygote excess under two 

mutation models (Infinite Allele Model (IAM) and the Stepwise Mutation Model (SMM)) and 

under the Two-Phase Model (TPM). This TPM model accounts for single step changes in the
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microsatellite repeat motif as well as infrequent large changes in repeat number and most closely 

reflects the actual mutational process of microsatellite loci.

4.3 RESULTS

Genetic Diversity

Mean expected (HE) and observed (Ho) heterozygosities ranged from 0.53 to 0.65 and 

0.43 to 0.62 respectively, indicating high heterozygosity amongst all sites. Mean allelic richness 

(A) ranged from 3.16 (PSE) to 5.33 (MCF2) (Table 4.1), suggesting that a difference in allelic 

richness does exist between sites. The number of private alleles observed ranged from 0 (M l, 

M3 and M5) to 5 (STC) (Fig. 4.2).

Genetic Stability

Loci that were not in HWE accounted for 13% of all locus-by-population comparisons 

(17/130). Deviations from HWE were observed in all categories across the different colonization 

times. Five of the 17 non-equilibrium loci were found in the Maitland River sites (Table 4.1). 

After Bonferroni correction, significant linkage was observed in three populations, Ml had 

linkage between 1 pair of loci. PSE and HAS each had significant linkage disequilibrium pairs 

of loci.

Population Bottleneck

Mean M ratios across all populations ranged from 0.60 (HAS2 and MCF) to 0.68 (STC), 

the longest established site in this study (Fig. 4.$). All mean M ratios are consistent with 

populations that are either reduced or founders as described by Garza & Williamson (2001). 

Evaluating distortions in allele frequency distributions revealed that all populations had rare
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alleles at the highest frequency, which is consistent with populations that are not experiencing 

severe population bottlenecks (Luikart et al. 1998). However, three populations, HAS/HAS2 

and PSE, had allele frequency distributions that were shifted slightly to the right indicating a 

reduction in rare alleles compared to other populations (Fig. 4.3), consistent with on-going or 

recent population bottlenecks (Luikart et al. 1998). Based on the Wilcoxon test, eight of the 

populations showed significant heterozygote excess under the IAM, whereas, under the SMM no 

populations showed significant bottlenecks (Table 4.2). Under the TPM, three populations 

showed significant bottlenecks (HAS/HAS2 and PSE; Table 4.2). These three populations 

displayed significant heterozygote excess under both the IAM and TPM. This suggests that HAS, 

HAS2 and PSE are likely experiencing bottlenecks. These results are consistent with the 

observed shift in allele frequency distributions qf these populations.

Population Structure

Exact tests of allelic differentiation (among Maitland River populations only) revealed 

that only M3 and M5 (1 out of ten comparisons) had allele frequencies that were significantly 

different from one another after Bonferonni correction (p<0.001). All Maitland River site F- 

statistics were not significantly different from zero indicating no population structure. Patterns 

of genetic differentiation weakly followed an isolation by distance pattern among the Maitland 

River samples (r2=0.063, p=0.04). Genotype assignment analysis of the Maitland populations 

revealed that colonization of these sites was characterized by natural dispersal from nearby sites 

(PE) and from jump dispersal events from three distant regions. Identified migrants from the 

Maitland River populations successfully assigned to along the Detroit River, to sites throughout 

Lake Erie and to sites in the Bay of Quinte (MCF and TR) (Table 4.3).
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Table 4.1 Measures of genetic diversity at 10 polymorphic microsatellite markers used in the 
analysis o f population bottlenecks in five sites undergoing invasion (M l-5), five sites 
thought to be colonized in 1999, and one site representing the oldest known invaded site 
(STC). ID refers to the abbreviated population name, geographical coordinates are 
provided. Expected heterozygosity {He) ,  observed heterozygosity {H 0), number of 
individuals (n) and allelic richness (A) are presented. Loci out of HWE after Bonferonni 
correction are in bold-face type and underlined. Mean values for all measures are given.

Site ID
Nme

1
Nme

2
Nme

3
Nme

4
Nme

5
Nme

6
Nme

7
Nme

8
Nme

9
Nme

10 Mean

Maitland 1 M1 He 0.83 0.75 0.76 0.39 0.26 0.84 0.36 0.73 0.59 0.74 0.63

Lat. 43.7 Ho 0.79 0.72 0.73 0.38 0.24 0.81 0.34 0.70 0.57 0.71 0.60
Long. 81.7 A 7.00 4.00 5.65 2.00 2.91 5.99 2.83 5.98 5.81 7.63 4.98

M 0.73 1.00 0.43 6.75 0.75 1.00 0.57 0.60 0.25 0.35 0.64

n 10 10 12 12 11 11 12 11 11 11 11.1

Maitland 2 M2 He 0.85 0.57 0.61 0.39 0.38 0.80 0.54 0.74 0.59 0.79 0.63

Lat. 43.7 Ho 0.84 0.56 0.61 0.39 0.37 0.79 0.53 0.73 0.58 0.78 0.62

Long. 81.7 A 8.23 3.75 4.17 2.00 3.13 5.97 2.76 5.91 4.56 5.96 4.64

M 0.64 1.00 0.43 0.75 0.63 1.00 0.57 0.55 0.43 0.50 0.65

n 46 48 48 46 42 47 48 47 48 48 46.8

Maitland 3 M3 He 0.81 0.59 0.63 0.42 0.26 0.81 0.44 0.75 0.53 0.75 0.60

Lat. 43.7 Ho 0.80 0.58 0.62 0.41 0.25 0.80 0.43 0.74 0.53 0.74 0.59

Long. 81.7 A 6.97 3.87 5.14 2.27 2.52 6.04 2.44 6.44 3.89 6.08 4.57

M 0.73 0.60 0.43 0.75 0.50 1.00 0.57 0.73 0.33 0.47 0.61

n 39 39 39 37 35 39 40 40 39 40 38.7

Maitland 4 M4 He 0.83 0.52 0.76 0.36 0.21 0.80 0.54 0.77 0.48 0.75 0.60

Lat. 43.7 Ho 0.82 0.51 0.75 0.35 0.21 0.79 0.53 0.76 0.47 0.74 0.59

Long. 81.7 A 7.20 3.54 5.71 2.52 2.41 5.51 2.77 6.29 4.78 5.84 4.66

M 0.73 0.60 0.64 0.75 0.75 1.13 0.57 0.73 0.30 0.43 0.66

n 33 32 33 32 31 32 33 33 33 33 32.5

Maitland 5 M5 He 0.82 0.45 0.65 0.36 0.32 0.81 0.56 0.80 0.51 0.81 0.61

Lat. 43.7 Ho 0.80 0.44 0.63 0.35 0.32 0.79 0.55 0.78 0.50 0.80 0.60

Long. 81.7 A 7.34 3.68 4.07 2.00 2.47 6.75 2.90 6.23 3.75 6.88 4.60

M 0.73 1.00 0.42 0.75 0.75 1.00 0.57 0.50 0.33 0.43 0.65

n 34 40 38 42 31 36 40 37 42 35 37.5

McFarland 2004 MCF He 0.81 0.69 0.76 0.32 0.22 0.78 0.66 0.73 0.66 0.76 0.64
Lat. 44.0 Ho 0.80 0.60 0.80 0.38 0.24 0.54 0.58 0.54 0.73 0.64 0.59

Long. 77.1 A 4.93 2.47 5.05 3.81 2.59 5.66 3.90 5.87 7.73 6.65 4.86

M 0.64 0.60 0.50 0.57 0.67 1.00 0.57 0.71 0.36 0.40 0.60

n 50 48 49 50 49 48 50 50 48 47 48.90
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McFarland 2006 MCF2 He 0.85 0.65 0.79

Lat. 44.0 Ho 0.68 0.53 0.71
Long. 77.1 A 8.37 3.85 6.72

M 0.55 0.60 0.50

n 34 40 38

Hastings 2005 HAS He 0.76 0.63 0.66
Lat. 44.3 Ho 0.74 0.63 0.60

Long. 78.0 A 5.03 3.20 4.13

M 0.71 1.00 0.25

n 46 60 53

Hastings 2006 HAS2 He 0.76 0.62 0.56
Lat. 44.3 Ho 0.86 0.72 0.51

Long. 78.0 A 4.33 3.00 4.27

M 0.71 1.00 0.29

n 36 36 35

Burlington BUR He 0.71 0.47 0.62

Lat. 43.3 Ho 0.55 0.45 0.70

Long. 79.8 A 6.01 3.19 3.80

M 0.64 0.60 0.83

n 53 53 53

Killarney KIL He 0.84 0.57 0.70

Lat. 46.0 Ho 0.78 0.43 0.67

Long. 81.6 A 8.45 3.64 4.70

M 0.82 0.60 0.53

n 64 63 63

Port Severn PSE He 0.61 0.50 0.21

Lat. 44.8 Ho 0.33 0.33 0.24

Long. 79.7 A 3.77 2.00 1.97

M 0.50 1.00 0.80

n 63 63 55

St. Clair River STC He 0.86 0.63 0.79

Lat. 42.8 Ho 0.85 0.37 0.75

Long. 82.5 A 8.76 3.69 6.54

M 0.75 0.60 0.50

n 98 79 104

0.32 0.13 0.71 0.59 0.83 0.70 0.76 0.63

p.36 0.13 0.42 0.43 0.57 0.74 0.54 0.51

2.63 2.40 7.46 3.50 7.28 5.69 5.44 5.33

0.67 0.67 1.00 0.57 0.69 0.36 0.48 0.61

42 31 36 40 37 42 35 37.50

0.44 0.36 0.66 0.16 0.82 0.63 0.70 0.58

6.37 0.33 0.44 0.13 0.87 0.60 0.43 0.52

2.00 2.00 3.00 2.08 6.01 3.00 4.06 3.45

0.75 0.50 1.00 1.00 0.50 0.60 0.23 0.65

60 57 52 60 47 60 46 54.10

0.45 0.40 0.64 0.22 0.82 0.61 0.68 0.58

0.50 0.47 0.47 0.25 0.66 0.71 0.28 0.54

2.00 2.00 3.64 2.30 6.13 3.34 4.75 3.58

0.75 0.50 1.00 0.43 0.50 0.50 0.29 0.60

36 32 30 36 35 35 36 34.7

6.32 0.12 0.67 0.56 0.73 0.68 0.77 0.56

6.38 0.12 0.64 0.30 0.53 0.77 0.52 0.50

2.40 2.15 5.82 3.40 4.55 3.94 6.18 4.14

0.67 0.50 1.00 0.57 0.50 0.37 0.53 0.62

53 50 47 53 51 53 50 51.60

0.53 0.18 0.75 0.45 0.84 0.61 0.77 0.62

6.70 0.19 0.63 0.36 0.81 0.63 0.63 0.58

2.57 2.56 5.71 2.19 6.91 4.78 6.45 4.80

0.75 0.50 1.00 0.57 0.62 0.39 0.47 0.62

64 64 64 64 62 64 62 63.40

0.44 0.44 0.66 0.39 0.67 0.71 0.62 0.53

0.38 0.47 0.33 0.39 0.54 0.77 0.49 0.43

2.00 2.94 3.81 2.20 4.71 3.92 4.27 3.16

3.75 0.50 0.83 1.00 0.50 0.15 0.36 0.64

60 60 63 61 63 62 61 61.1

0.42 0.32 0.74 0.51 0.81 0.61 0.78 0.65

0.41 0.34 0.48 0.41 0.68 0.63 0.53 0.55

2.31 3.81 6.99 2.61 6.73 5.00 6.44 5.29

3.75 0.75 1.00 0.57 0.79 0.42 0.62 0.68

104 100 93 85 102 105 103 97.3
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Figure 4.2 The number of private alleles average over all loci observed among three categories 
of invasion time since initial 1992 introduction to the Great Lakes (i.e., 0 years, 9 years and 15 
years).
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Table 4.2 Detection of population bottlenecks in Great Lakes round goby populations.
Heterozygote excess was assessed under three mutation models, Infinite Allele Model 
(IAM), Stepwise Mutation Model (SMM) and Two-phase Model (TPM). Significance 
was assessed using BOTTLENECK v. 1.2 (Cornuet & Luikart 1996). “X” denotes a 
significant heterozygote excess.

Site IAM SMM TPM

M1
M2 X
M3 X
M4
M5 X
MCF04 X
HAS06 X X
BUR
MCF06
KIL X
PSE X X
HAS05 X X
STC
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Table 4.3 Genotype assignment test of the Maitland River samples using a reference database of 
round goby populations from Chapter 3. Individuals were successfully assigned if the 
likelihood ratio between the highest and second highest assignment probabilities 
exceeded four. Values indicate the number of migrants. Site abbreviations are described 
in Chapter 3 (Table 1, pg. 48).

M1 m £ M3 M4 M5

Lake Ontario
TR 3 1 1

HAS 1
BUR
M CF

Lake Erie
PC 2 1 1
PM
PD
PS
LA 1 2 4
Nl
JG

STC 1 1
RO 1 1
DU 1 3 1 1 2

COL 1 1: 1 3
BR
GS

M CK
LEA 1
NY1 1
NY2
NY3
NY4 1
NY5
NY6

LEA2
PD2

M CK2
Lake Huron

KIL 2 1
MID
OS
PE 4 1 2 3

M ID2
SL 1 2 2

OS2 2
HAS2

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 DISCUSSION

This study demonstrates that the examined round goby populations, despite the 

differences in colonization times, do not generally show signs of on-going population 

bottlenecks, although significant heterozygote excess was observed in three populations 

(HAS/HAS2 and PSE) indicating current bottlenecks. However, all populations appear to have 

undergone a reduction in size in the past. Population bottlenecks have been observed in many 

introduced species (Tsutsui et al. 2000, Colautti\et al. 2005, Lindholm et al. 2005) where genetic 

diversity in introduced relative to native regions is reduced (Cristescu et al. 2001; Berg et al. 

2002, Meimberg et al. 2006). This is not the case for round gobies in the Great Lakes, neither 

my, nor others data show any reduction in genetic diversity relative to native round goby 

populations (Chapter 3; Marsden et al. 1995, Stepien et al. 2006). Interestingly, an increase (or 

at least no reduction) in genetic diversity during colonization has been reported in a various taxa 

(Kolbe et al. 2004, Chen et al. 2006). The lack of any reduction in diversity in those studies 

indicates that either the populations did not undergo bottlenecks, or they rapidly recovered. It is 

generally accepted that accidental introduction events across long distances involve few 

individuals, so how can invasive species be genetically diverse? Two commonly cited scenarios 

include: 1) the introduction of a genetically diverse group of invaders from one or more sources 

in a single introduction event, or 2) multiple invasion events from diverse sources, followed by 

mixing and inter-breeding (e.g. Novak & Mack 1995; Durka et al. 2005). Finally, the assumption 

of small numbers of invading propagules may be incorrect, since a large number of genetically 

diverse individuals would provide an explanation of my results as well (Holland 2000).

The invasion front in the Mailtand Riveij highlights the fact that during a novel
|

colonization, round gobies are able to maintain high levels of genetic diversity. These
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populations show comparable genetic diversity and display the same founder effects as longer 

established populations. During an extremely recent invasion, round gobies are still able to 

maintain unusual high genetic diversity, given tlje insufficient for time for multiple jump 

dispersal introductions; it is more likely that individuals along this invasion front are simply 

reflected by an already highly genetically differentiated Great Lakes sources, that I did not 

sample.

The high genetic diversity in the Maitland and other Great Lakes round goby populations 

was most likely not the result of a single introduction of a large number of individuals. It is more 

likely that colonization of the round goby is characterized by the invasion by a few individuals; 

multiple times (also see Chapter 3). Microsatellite data from other studies analyzed using 

population bottleneck detection methods described in Garza & Williamson (2001), showed 

populations that were historically described as reduced or founders had M ratios similar to those 

calculated in this study (e.g. northern wombat, rhean M=0.618, Taylor et al. 1994; black bear, 

mean M=0.641, Paetkau et al. 1997). This indicates that recently established populations of 

round gobies in the Great Lakes have undergone a reduction in population size during their 

colonization history. The inability to detect on-going bottlenecks or lasting effects of severe 

founder effect may be due to multiple introduction events, by gene flow among introduced Great 

Lakes populations or a combination of the two. Although not tested in this study, the 

augmentation of invading genetic diversity frorft source populations has been documented in 

other invasive species (e.g. Baker 1992, Kolbe et al. 2004, Colautti et al. 2005) allowing newly 

founded populations to successfully pass through bottlenecks. Genetic analysis of 32 introduced 

round goby populations indicates that gene flow among Great Lakes sites may have enabled 

these populations to overcome bottlenecks (Chapter 3). Migration in the Great Lakes was
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characterized by multiple dispersal strategies, allowing both short and long distance introduction 

of genetic diversity among sites (Chapter 3).

Panmixia during colonization has been dbcumented in the invasion o f several freshwater 

amphipods of the genus Dikerogammarus (Muller et al. 2002) and in the brown mussel, Perna 

perna (Holland 2001). The on-going invasion of the round goby along a 2 km stretch in the 

Maitland River is characterized by very weak or no genetic structure among 5 sampled sites.

This panmixia is most likely the result of high levels of gene flow among the spatially close sites. 

Previous genotype assignment tests indicate that round gobies may be dispersing more readily 

than previously thought (Chapter 3). The lack of strong recent population bottleneck effects and 

high genetic diversity suggests that the successful invading front is composed of individuals that 

originated from genetically distinct sources within the Great Lakes. The absence of any defined 

structure along the invading front contradicts what was previously found among introduced 

populations. These studies reported high levels of genetic divergence among Great Lakes sites 

(Chapter 3, Stepien et al. 2005, and Stepien & Tumeo 2006). Currently expanding round gobies 

are characterized as genetically indistinguishable relative to older more established populations. 

Given their ability to maintain high genetic diversity while expanding its range, the round goby 

will likely be able to successfully establish a reproducing population with the introduction of 

only a limited number of founders. This causes great concern, as the threat of establishing in 

inland lakes and rivers can have dramatic consequences on native fish populations.

Studying the genetic changes that occur during a colonization event will enable scientists 

to evaluate the effects of drift and selection on ihvading populations. Identifying levels of 

genetic diversity as well as the population dynamics along an invasion front will allow managers 

to predict the risk for future spread. The most recently established round goby populations are
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currently not experiencing population bottlenecks, yet mean M ratios suggest a historical 

bottleneck for all populations evaluated. The lack of a current bottleneck and signs of a 

historical reduction in population size suggest that initial colonization of these sites was by a 

limited number of individuals and migration of individuals through natural dispersal and long 

distance human mediated vectors enable the round goby to overcome the deleterious effects of 

population bottlenecks. Along the invasion front in the Maitland River, I found that these 

populations were no different from more established populations throughout the Great Lakes. 

This indicates that initial colonization of round gobies into novel ranges do not experience the 

expected genetic problems associated with colonization and thus their range expansion will 

continue without restrictions to any normal limitations of range expansion.

The Great Lakes round goby is defying the conventional invasion genetic expectations 

for range-limiting genetic founder effects. Thus there is an urgent need to further monitor 

invasion fronts as genetic changes through time will allow us to determine if the Maitland River 

invasion is an anomaly, or a new rapid invasion genetic model. Either way, such an evaluation 

will increase the accuracy of predicting future range expansion and persistence in upland systems 

around the Great Lakes. The ability to genetically quantify other currently invading systems will 

allow us to confirm these unique results and allow researchers to understand how small founding 

populations can retain such diversity in the presence of evolutionary forces that act to decrease 

diversity in these small populations.
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5.0 G e n e r a l  d is c u s s io n

Global transport through accidental ballast water discharge has been responsible for the 

introduction of many invasive species not only in the Great Lakes (Mills et al. 1993) but also 

worldwide (Wonham et al. 2000). These introductions can dramatically alter the recipient 

ecosystem through several means, which can include disruption of foodwebs (Vanderploeg et al. 

2002, Mills et al. 2003) or through impacts on native biodiversity (Ricciardi et al. 1998, Yan et 

al. 2002). The detection of fish in ballast water has been rare (Carlton & Gellar 1993), although 

the importance of this vector should not be underestimated in mediating the invasion o f fish 

species (Carlton 1985, Hensley 1993). Based on probability alone we can safely assume that 

populations introduced via ballast water were initially small. The genetic consequences 

associated with small population sizes can lead to the dramatic differentiation among introduced 

populations (Ellstrand & Elam 1993). The degree of these genetic changes is not only dependant 

on the composition of the founding population but also on ecological factors in the novel 

environment (Lambrinos 2004).

To detect the genetic signature of invasive populations, I developed highly polymorphic 

markers that could be used to detect recent changes in population dynamics. Microsatellite 

markers were chosen to help resolve the genetic^ of invasive species.

Using these highly mutable molecular markers I was able to observe that genetic 

diversity across all populations was not reduced (Chapter 3). This could have arisen by several 

means. Firstly, founding populations could have been large, this is not likely the case here, as 

fish abundance in ballast tanks are relatively low (Wonham et al. 2000). Secondly, round gobies 

could have been introduced multiple times. The high genetic divergence among introduced sites 

is more consistent with this hypothesis. The use of rapidly mutated markers is extremely
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sensitive estimator o f genetic diversity and allowed us to accurately characterize population 

variation.

Through this study I also found that genetic divergence among invasive sites was 

unusually high given their recent establishment |n the Great Lakes, which is consistent with 

previous genetic analyses (Dillon & Stepien 2001, Stepien et a l  2005, Stepien & Tumeo 2006). 

A reduction in population size during colonization and multiple introductions from Eurasia likely 

led to the high genetic differentiation. Dispersal and range expansion in the Great Lakes can be 

attributed to a combination of three factors. Firstly, we observed patterns consistent with natural 

dispersal, which we estimate to be nearly 40%. Secondly, ballast water jump dispersal events 

were also characterized in the Great Lakes, we estimate that this vector of dispersal accounts for 

16% of the range expansion. Lastly, multiple introductions from Eurasian sources likely played 

a role in the rapid spread of round gobies throughout the Great Lakes.

The observed high diversity along a 2 km current invasion front suggests that the 

diversity is not likely gained through the gradual increase of migrants but rather that initial 

colonization is characterized by high diversity from the start. From this we can conclude that the 

invasion process of round gobies is driven by injvading groups with high genetic diversity that 

most likely resulted from the mixing of multiple invasions. This type o f colonization pattern is 

previously unknown in vertebrates, which represents an unfavorable scenario that will lead to 

further successful rapid expansion.

Through this study I am able to make several suggestions in regard to conservation and 

management plans. Given that this study is the first to extensively evaluate dispersal and 

colonization of the round goby in the Great Lakes, it is important to note that additional work
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needs to be done. Several key management recommendations can be made by evaluating the 

major points from this study:

• High genetic diversity -  the introduction of even a limited number of individuals 

has the potential to generate genetically diverse invasive genotypes that can

colonize additional inland lakes dnd river systems;
!

• High genetic divergence -  over time isolated populations may become locally 

adapted, universal management plans may be ineffective ;

• Multiple invasions -  continued invasions may further increase genetic diversity 

and facilitate further range expansion, and;

• High dispersal -  within Great Lakes ballast water control measures should be 

implemented to reduce genetic exchange across long distances and to slow range 

expansion.

Future work should include:

• Identify source populations, which may be able to confirm multiple introductions 

and allow us to characterized natural genetic diversity. This can be accomplished 

through either genotype assignment tests, measures o f genetic divergence between 

populations or by constructing neighbour joining trees based on estimates of 

genetic distance;

• Couple microsatellite population structure with historical mtDNA lineages. This 

can be accomplished by identifying haplotype diversity between introduced 

populations. Unique haplotypes may also be identified in the native range and 

could indicate source populations, and;
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Monitor, on an on-going basis the genetic signature of the invasion front. This 

can be done by sampling individuals along a continuous stretch until the invasion 

front is reach, presumably the where no round gobies are found.
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