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ABSTRACT

A novel MEMS ultrasonic sensor has been developed that exploits the Single Bubble 

Sonoluminescence (SBSL) phenomenon to realize a highly efficient energy transduction 

mechanism from the acoustical to electrical domain. In the developed system, highly 

stable laser like short duration light pulses are emitted when ultrasound waves strike a 

thermally generated microbubble stabilized in a small volume of de-gassed water 

confined within a MEMS fabricated micro-chamber. A photodetector detects these light 

pulses to generate an equivalent photo-current. The chamber geometry is 150 (im in 

diameter and 300 pm in height and is expected to have a sensitivity of 520 pA/atm.

Dielectrophoresis (DEP) along with capacitive sensing techniques have been used to 

stabilize the bubble at the center of the micro-chamber.

Since there are no vibrating diaphragms or deformable structures as commonly found in 

capacitive or piezoelectric ultrasound sensors, the sensor is free from any pull-in effects 

and stress related nonlinearities and limitations.

The sensor can be used in applications to detect high pressure ultrasound waves where 

conventional technology is not suitable.

iii
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CHAPTER 1
INTRODUCTION

1.1 Thesis Objectives

The objective of this thesis is to design a MEMS based ultrasonic sensor that 

exploits a recently discovered phenomenon known as Single-Bubble sonoluminescence 

(SBSL) to realize a highly efficient energy transduction mechanism between the 

acoustical to electrical domain. In the developed system, highly stable laser like short 

duration light pulses are emitted when ultrasound waves strike a thermally generated 

microbubble stabilized in a small volume of de-gassed water confined within a MEMS 

fabricated micro-chamber. A photodetector detects these light pulses to generate an 

equivalent photo-current.
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Ultrasonic actuation and sensing is used widely in applications such as medical 

imaging, automotive collision avoidance systems, proximity detection, thermosonic chip 

bonding, etc. [1], In recent years, there have been significant developments in high 

performance MEMS-based bulk or surface micromachined capacitive type ultrasonic 

sensors [1-2]. The capacitive type sensor transduction is popular due to it’s good scaling 

properties, relatively higher sensitivity, possibility of realizing radically new design 

concepts, and low-power consumption [1-2]. A surface micromachined capacitive type 

ultrasonic sensor consists of a thin conducting diaphragm separated from a fixed ground 

plane by an air gap as shown in Figure 1. As the ultrasonic sound waves strike the 

diaphragm, the diaphragm deforms resulting in a change in capacitance between the 

diaphragm and the fixed back plate. A capacitive readout circuit is used to convert this 

capacitance change into a useful voltage signal.

Top Plate

Figure 1. Conceptual cross-section of a capacitive type ultrasonic sensor.
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However, capacitive type sensors suffer from a dynamic range limited to little more than 

one-third of the air gap to avoid the diaphragm collapse due to the pull-in phenomenon 

[3]. The pull-in phenomenon occurs when the total applied electrostatic force due to the 

bias voltage overcomes the elastic restoring force of the diaphragm [3]. Additionally, the 

sensitivity of such capacitive type sensors depends on other factors such as, air streaming 

resistance and damping, stiffness, and nonlinear deformation of the diaphragm [3-5]. 

These issues limit the application of this type of ultrasonic sensor.

Alternative implementations of MEMS ultrasonic sensors rely on piezoresistive 

properties of materials to convert ultrasonic sound energy to electrical energy. A 

conceptual cross-section of this piezoresistive ultrasonic sensor is shown in Figure 2. 

When the piezoresistive thin film is bent or deformed due to an external force, an electric 

output can be obtained that is proportional to the strain measured in the piezoresistive 

material. The operating frequency of these ultrasonic sensors is dependant on the 

thickness of the piezoresitive film [3]. When the piezoresistive film is very thin, the 

membrane is susceptible to mechanical failure, if the external ultrasonic pressure field is 

large.

Piezoresistive film

Bottom Electrode

Figure 2. Conceptual cross-section of piezoresistive type ultrasonic sensor.
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Additionally, the sensitivity of piezoresistive ultrasonic sensors is relatively much lower 

compared to the capacitive ones.

A recently discovered physical phenomenon known as the Single Bubble 

Sonoluminescence (SBSL) [2, 7-9] offers the possibility of realizing a new type of 

MEMS based ultrasonic sensor that can overcome the limitations of capacitive type or 

piezoresistive type ultrasonic sensors. SBSL generates highly stable and precise short 

duration light pulses when a bubble suspended in a liquid collapses due to an applied 

ultrasonic pressure field [2, 7-9]. In the macro-scale, SBSL is achieved by stabilizing a 

bubble in the center of a spatially symmetric container using a resonant sound field. 

During the negative portion of the incident pressure wave, the bubble expands up to 10 

times its normal radius, resulting in a large pressure difference on opposite sides of the 

bubble wall. The pressure difference causes the bubble to collapse catastrophically and 

releases approximately 106 photons per acoustical cycle [2, 7-9]. Compared to the 

mechanical work exerted on a single molecule by the driving resonators, this represents 

an energy amplification of 13 orders of magnitude [2, 7-9]. Contrary to conventional 

transducers, where no energy amplification occurs during the transduction process itself, 

a higher sensitivity ultrasonic sensor can be realized if these emitted light pulses can be 

detected with a suitable photodetector.

The major design challenges associated with the proposed sensing scheme are 

determined as: (1) Generation and release of a bubble within a MEMS fabricated micro­

chamber, (2) bubble stabilization in the center of the micro-chamber, and (3) photo­

detection.
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There have been recent developments in micro-scale bubble and droplet 

generation [10-12] and manipulation using the technique of dielectrophoresis (DEP) [13]. 

This technique can be exploited to stabilize a microbubble at the precise center of a 

MEMS fabricated cylindrical micro-chamber. This eliminates the need for a large 

spherical flask and piezoelectric resonators to create a standing wave pressure field as is 

necessary in macroscale sonoluminescence [2, 7-9]. Generated light pulses can be 

detected by integrating photodetectors at suitable locations in a MEMS fabricated micro­

chamber of suitable geometry and dimensions.

Without a deformable diaphragm as found in capacitive and piezoresistive 

sensing, this sensor will be able to withstand very high acoustical pressure without fear of 

collapse, resulting in a much larger dynamic range compared to conventional MEMS- 

based ultrasonic sensors. Additionally it will be free of any pull-in effects.

Based on this conceptual approach, the design of a new ultrasonic sensor has been 

presented. In the proposed scheme, a thermally generated microbubble [14] is to be 

stabilized using dielectrophoresis (DEP) techniques in the center of a MEMS fabricated 

micro-chamber. Light pulses emitted by bubble collapse due to the incident ultrasonic 

wave, are detected by a suitably integrated photodetector which generates an equivalent 

electrical signal to complete the transduction process.

1.3 Design Challenges

The design for the microsensor consists of four main functional segments:

1. Microbubble generation

2. Microbubble stabilization

3. Photodetection
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4. Fabrication process table development 

Each of these design segments is associated with certain design difficulties.

1.3.1 Microbubble Generation

There are two difficulties inherent with microbubble generation. The repeatable 

generation of microbubbles of a known size is one of the major difficulties with the 

microsensor. There are numerous ways to generate a microbubble with a size of 5 pm in 

radius presented in the literature [1-2]. Each method has advantages and drawbacks, and 

each was examined to determine the main method of bubble generation for this 

microsensor. The second issue is designing a module that will consume minimal amounts 

of power, since power consumption is always a concern when dealing with electronic 

devices.

1.3.2 Microbubble Stabilization

The major difficulty that exists within the microbubble stabilization module is the 

design of a module that can be easily fabricated using the current MEMS fabrication 

processes. There are various methods of bubble stabilization and manipulation; however 

only a few have the required properties to allow sonoluminescence to occur.

1.3.3 Photodetection

The photodetection module has one main difficulty. The major challenge is that 

most photodetectors have poor quantum efficiencies within the visible spectrum. 

Quantum efficiency is a measure of the ability of a photodetector to create electron-hole 

carrier pairs from an incident photon of a given wavelength. Many types of 

photodetectors have been investigated to determine the most suitable photodetector for
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the photon wavelength emitted by sonoluminescence while maintaining 

manufacturability.

1.3.4 Fabrication

Many MEMS fabrication techniques are an outgrowth from microelectronic 

fabrication techniques. As such, MEMS fabrication is primarily based on planar 

processes. Creation of certain shapes and geometries can be extremely difficult or even 

impossible with the current level of process maturity. Sonoluminescence requires a 

spatially symmetric (sphere or cylinder) chamber. Creating a spherical object using 

current MEMS fabrication processes would be extremely difficult and costly. However, 

by combining a variety of current MEMS deposition techniques to deposit many layers of 

materials it is possible to create deep cylindrical shapes.

1.4 Principle of Operation

The MEMS microsensor is a combination of 3 main modules, the microbubble 

generation module, the microbubble stabilization module and the photodetection module. 

The microbubble generation module is used to generate a bubble of size 5 pm in radius. 

Once the bubble is generated and is free to move in the chamber, the bubble stabilization 

module engages. The bubble stabilization module is comprised of a set of five position 

sensors and a bubble manipulation module. Located at the midpoint of the micro-cylinder 

wall, sets of capacitive sensors are used to determine the position of the bubble. The 

bubble stabilization module is used to apply a force on the bubble to control the vertical 

position and trap the bubble in the center of the microchamber. Once the bubble is 

trapped and struck by an incident ultrasonic acoustical wave, sonoluminescence will 

occur and light pulses will be emitted. The light pulses created by the sonoluminescing
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bubble will be picked up by the embedded photodetection unit placed along the bottom of 

the microchamber to complete the acoustical to electrical transduction.

A conceptual diagram showing the proposed sensor is shown in Figure 3.

Ultrasonic Source

^  Top DEP
Electrode

Capacitive Sensing 
'Array

Bubble

MicroheaterPhotodetector

Bottom DEP
Electrode

Figure 3. Conceptual diagram of the MEMS sonoluminescent ultrasonic sensor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5 Principle Results

The developed sensor has a diameter of 150 pm, a height of 300 pm, and exhibits

a sensitivity of 520 pm/atm. Table 1 summarizes the major design specifications for the 

developed sensor.

Table 1: Microsensor Design Specifications

Parameter Value Unit

Sensor dimensions (Diameter x Height) 150 pm x 300 pm

Micro-heater (Length x Width x Height) 100 x 4 x 0.5 pm

Wall-to-wall electrode capacitance 14.87 (max), 6.15 (min) pF

Operating frequency 25 kHz

Actuation voltage for bubble stabilization 200-400 V

DEP force 1.02 nN

Buoyancy force 1.02 nN

Sensitivity @ 80% quantum efficiency 520 pA/atm

Approx. number of charges on bubble surface 1.4x 106 Coulombs

Power Consumption 1.183 mW
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1.6 Thesis Outline

Chapter 2 is an overview of the MEMS ultrasonic sensor. Sonoluminescence is 

described in detail.

Chapter 3 discusses the design of the microbubble generation module. General 

design considerations are treated here as well as mathematical modeling of this system 

and finite element analysis (FEA) simulation results to verify the behaviour of this 

module.

Chapter 4 details the design of the microbubble stabilization module. Exploration 

of the various design considerations and the mathematical modeling of this module will 

be elaborated; also the FEA simulation results are presented to verify the module 

behaviour.

Chapter 5 explores the various photodetection materials and identifies the most 

suitable photodetector topology. This chapter concludes with a detailed description of the 

selected topology.

Chapter 6 describes the fabrication process of the developed sensor. Using the 

available MEMS fabrication techniques an effective fabrication scheme will be 

described.

Chapter 7 provides a summary of work undertaken and the device concept, 

concluding with a discussion of device implementation and industry applications.
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CHAPTER 2
SONOLUMINESCENCE PHENOMENON

2.1 Sonoluminescence

Sonoluminescence is the emission of light by bubbles suspended in a liquid 

excited by sound, which provides a primary method of transduction for this microsensor. 

It translates energy from an acoustical wave into optical energy. The following sections 

describe the sonoluminescence phenomenon and how it can be exploited to realize a 

novel MEMS based ultrasonic microsensor.

2.2 Types of Sonoluminescence

There are two types of sonoluminescence:

1. Multi-bubble sonoluminescence (MBSL),
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2. Single-bubble sonoluminescence (SBSL).

Multi-bubble sonoluminescence was first discovered in 1934 by Fresnal and 

Schultes at the University of Cologne [2]. Fresnal and Schultes put an ultrasound 

transducer in a tank of photographic developer fluid. Their objective was to speed up the 

photographic development process. Instead, they noticed tiny dots on the film after 

developing, and realized that the bubbles in the fluid were emitting light with the 

ultrasound turned on. As a result the phenomenon known as multi-bubble 

sonoluminescence was discovered [2].

Single-bubble sonoluminescence (SBSL) was discovered in 1989 by Felipe 

Gaitan and Lawrence Crum [2]. Their method involved trapping a single bubble in an 

acoustic standing wave. The bubble would then emit light with each compression of the 

standing wave. This breakthrough allowed for a more systematic study of the 

phenomenon and isolated many of the complex effects into one stable and predictable 

bubble [2].

2.3 Macro Scale Theory of Sonoluminescence

In typical SBSL experiments, a spherical flask is used as the resonating chamber. 

Two piezoelectric type resonators are then glued onto into place diametrically opposed on 

the side of the flask. The flask is cleaned and then filled with de-gassed water. These 

resonators are used to create an acoustical standing wave within the spherical chamber. 

When the standing wave is stable, a highly accurate pipette is used to introduce a 5pm in 

radius microbubble into the flask. When the acoustical standing wave pressure field is 

strong enough to counteract the buoyancy force, the bubble will be stabilized at the 

precise center of the spherical flask as shown conceptually in Figure 4.
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Ultrasonic Source
Flask-

Bubble
PZT

Resonator
PZT

Resonator

Standing Wave 
Field

Figure 4. A bubble trapped inside the resonating chamber with an external ultrasonic source.

The diameter of the spherical flask is determined by the exciting frequencies of 

the piezoelectric resonators. The bubble is forced into the center of the resonating 

chamber by the ultrasonic sound field generated by the resonators due to the primary 

Bjerknes Force expressed as [8]:

F B j e r k = V ( t N P e ( r ’ Z ’ t )  C1)

Where, V ( t )  is the oscillating volume and p e( r , z , t )  is the resonant sound field

pressure. Since the introduced bubble has a fixed radius, the resonant sound field pressure 

can be expressed as [8]:

p e( z , t ) = pel cos( co{t ) c o s ( \ z ) (2)

Where, o\ -  2nf  is the resonant frequency, kx = 2k  /  X is the wave number (this is the

spatial analogue of frequency) and X is the wavelength. When the primary Bjerknes 

force FBjerk is large enough to overcome the buoyancy force, Fg , associated with the
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bubble, the bubble will become trapped inside the resonating chamber [8], The buoyancy 

force, F  , associated with the bubble can be expressed as [8]:

Fg = ( P l - Pg)V(t )x9.Sl  (3)

Where, V ( t ) is the bubble volume, p,  and p H are the liquid and gas densities,

respectively. The trapped bubble is then subjected to a high amplitude ultrasonic wave 

and as the sound pressure field changes from rarefaction to compression, the bubble 

radius changes by up to 10 times its original size. As the volume increases, the internal 

pressure decreases causing a vacuum that collapses the bubble catastrophically. When the 

bubble catastrophically collapses it emits approximately 106 photons before reforming 

each acoustical cycle. Figure 5 shows the standing wave pressure field used to trap the 

microbubble. This pressure field will force the microbubble into the center of the 

spherical flask. Figure 6 shows the buoyancy forces of the bubble as the bubble radius 

expands and contracts. As the bubble radius expands the buoyancy forces increase. 

Figure 7 depicts the Bjerknes forces that counteract the buoyancy force. This traps the 

bubble vertically so it can not escape. A composite model for the bubble stabilization 

forces is shown in Figure 8. This shows that during a minima of the standing wave 

pressure filed, the buoyancy forces are at a maximum and the Bjerknes forces are equal to

1.02 nN. These combined effects trap the microbubble in the center of the chamber.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pressure Field

itoe(sec)

Figure 5. Standing wave pressure field.

x Id

Buoyancy Forces

Figure 6.

tfitne t«<ec)

Buoyancy force of the microbubble.

x. 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

Bjerknes Forces
1 5 0 ---------------*----------------!— jr-------->--------------- 1

100 ' I

fl (1,2 0,4 0,6 0>; 1 i .2
linn.'

Figure 7. Bjerknes forces used to trap the microbubble.

2.3.1 Bubble Dynamics

Ultrasonic forces in the liquid are caused by the piezoelectric transducers glued to 

the sides of the spherical flask. These transducers are tuned to the lowest resonant 

frequency of the container. The frequency is approximately 25 kHz and the amplitude of 

the driving pressure at the center of the container is 1.2 atm for SBSL to occur [2, 7-9]. 

The dynamics of the motion of the bubble is characterized to a first approximation by the 

Rayleigh-Plesset equation [2]:

3 1RR + — R 2 = —
2 p Ps - P a - P V ) ~

V R R j
(4)

Equation (4) is an approximate equation that is derived from the Navier-Stokes
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Figure 8. Composite image of Bjerknes, buoyancy and the pressure field. The bubble is trapped
once the buoyancy and the Bjerknes forces are equal.

equations for compressible fluids [2, 7-9]. It describes the change in radius of the 

bubble, R , as a function of time t , where ;; is the viscosity, p  the pressure, and y  is the 

surface tension [2, 7-9]. As the Rayleigh-Plesset equation is only an estimate, there are 

still some principle sources of error around surrounding the period of bubble collapse. 

These discrepancies are the main sources of modeling error for the theories of SBSL [2, 

7-9],

Figure 9 shows a curve fitted plot of the bubble radius and acoustical pressure amplitude 

versus time for one cycle [2, 7-9].
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Figure 9. Measured bubble radius plotted for one acoustic cycle. Courtesy of S. Putterman [7].

During the expansion period, which is also the negative portion of the driving 

pressure field, the applied tension causes the bubble to expand. This expansion continues 

until the driving pressure changes and becomes positive. The expansion allows the 

bubble to reach a maximum size up to 10 times the original size. During collapse, when 

the driving pressure becomes positive, the compressive forces of the drive pressure along 

with the low pressures inside the bubble cause the bubble to collapse. The bubble 

collapses and hits the Van Der Waal hard core radius at which point the bubble releases 

light [2, 7-9]. These light flashes last no longer than 100 ps and release approximately 106 

photons of light per flash. The flash of light that emitted is in the visible range, a blue 

light having a wavelength of 450 to 550 nm [2,7-9].

During the regeneration phase, also called the after bounces period, the bubble 

radius bounces around the Van Der Waal hard core radius before returning to the original 

size [2, 7-9].
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This completes one cycle of the sonoluminescence phenomenon. Once the bubble 

has regenerated, it is ready for the cycle to be repeated. There is one bubble collapse for 

every cycle of the ultrasonic drive pressure.

2.4 Conclusions

After reviewing the phenomenon as a transduction method from the ultrasonic 

domain to the optical domain it has been shown that this provides one of a small number 

of direct transduction mechanisms between the acoustic and optical domains. To realize a 

MEMS based microsensor based on SBSL, it is necessary to develop a method to 

generate the required diameter microbubbles, a method to trap the bubble inside a micro­

chamber and a method for sensing the emitted pulses of light. From Figure 8, it can be 

observed that a Bjerknes force of 1.02 nN is required to counteract the buoyancy force of 

the microbubble. The driving amplitude of the external ultrasonic wave is 1.2 atm and the 

emission of 106 photons per flash of light is received every cycle. The pulse of light is 

mainly blue light. The wavelength of blue light is approximately 450 nm to 550 nm in 

length. This visible light can be transduced into a usable electrical signal by a suitable 

photodetector.
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CHAPTER 3
MICROBUBBLE GENERATION

3.1 Motivation

This chapter discusses in detail the design of a MEMS fabricated polysilicon 

microheater that is to be used for consistent radius microbubble generation. State-of-the- 

art methods in microbubble generation have been investigated and it has been determined 

that a MEMS polysilicon microheater is the most suitable for the proposed system.

3.2 Microbubble Generation

There are many different ways to generate (introduce) a bubble in water. The 

methods investigated are micropipettes which are similar to ink jet printer heads, and 

microheaters.
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3.2.1 Micropipette

Micropipettes are used to inject precise amount of fluids in applications such as 

inkjet or bubble jet printers. In inkjet printer heads, thermally grown bubbles are used to 

squeeze out a microdroplet of ink [10]. These droplets are very accurate in size and can 

be controlled to dispense an exact amount of fluid. The second type of micropipette based 

droplet injection mechanism is similar to a hypodermic needle [10]. This mechanism uses 

a mechanical plunger to force out a controlled amount of liquid as shown in Figure 10 

conceptually [10]. For this mechanism, the volume displaced within the container is 

equal to the volume that is ejected from the nozzle.

3.2.2 Microheater

Microheaters create bubbles similar to kettle boiling water on a stove. The surface 

heats up past the boiling temperature of water and will nucleate a bubble onto the heated

MEMS
Resonator Resonator

Bubble Injector

Figure 10. Conceptual diagram of a micropipette bubble injector.
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surface. When the bubble reaches a certain size, the buoyancy forces overcome the 

surface tension which allows the bubble to lift off the surface and float away. 

Microheaters are constructed of specific materials which tend to be hydrophilic to 

facilitate bubble release. Currently, materials such as gold or polysilicon are used [10]. 

Polysilicon can be fabricated, using careful doping methods, into a micro sized resistor. 

This resistor can then be heated quickly to generate microbubbles. To ensure the 

expeditious release of the bubble the microheater can be electrostatically actuated 

momentarily to facilitate the release of the stuck bubble as shown in Figure 11.

3.2.3 Bubble Nucleation

When a liquid is heated in the presence of a solid surface, heterogeneous bubble 

nucleation occurs. This produces many bubbles across the entire surface [10-11].

Before release

After release

o
Figure 11. Microheater microbubble generation module releasing a stuck microbubble.
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However, it has been observed in this regime that the initial bubbles formation takes 

place in surface defects and cavities, known as surface cleats. The temperature required 

to nucleate a bubble in a surface cavity is inversely dependant on the cavity radius, as 

shown in the following equation [10-11]:

T 1  rr    sat
1 w 1 sat ~~ 1 ^  '

K p s ,

where r wis the surface temperature, Tmt is the saturation temperature of water (373°K),

<7 is the surface tension (5.89xl02 N/m), hlv is the latent heat of vaporization (2.26xl02

J/kg), p v is the vapor density (0.60 kg/m3 for water), and rc is the radius of the cavity.

For cavities of 1 pm in radius, a temperature of at least 136°C would be required to 

heterogeneously nucleate single bubbles [10-11], whereas for cavities of 0.2 pm in radius, 

the required thermodynamic superheat needed to nucleate a bubble is 256°C [10-11], 

Surface cavities with radii smaller than this would spontaneously nucleate before they 

were formed in the surface cavity [10-11], With a bubble cavity of 1 pm, it is possible to 

control heterogeneous nucleation in this surface cavity.

3.2.4 Resistive Heating

Resistive heating provides a well understood, easily localized transduction 

mechanism between the electrical and thermal domains. Energy transferred to vaporize 

the water can be calculated through resistive dissipation and the thermodynamic heat 

flow of the system. A table summarizing the characteristics of water is shows in Table 2.
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Table 2:_____ Properties of Water

Parameter Value Unit

Liquid Density 1000 kg/m3

Surface Tension 5.89xl02 N/m

Latent Heat of Vaporization 2.26xl02 J/kg

Vapor Density 0.60 kg/m3

From a known bubble volume and a given density, the bubble mass is calculated 

with the following equations:

M  = — (6)
V

4 ,
V = —7ir (7)

3

Where, M  is the mass, D  is the density, V is the volume, and r is the bubble radius. 

For a bubble with the radius of 5 pm, a mass of 523.6 picograms is calculated using the 

density of water. The amount of energy required to vaporize the mass of the bubble can 

be found using:

E = hlvM  (8)

Where, E  is the energy, hh is the latent head of vaporization of water and M  is the mass 

[10-11]. The energy required to generate a microbubble of this size is calculated to be 

0.1183 mJ. The control of the bubble size is highly dependant on time. The longer the 

current is applied, the larger the generated bubble. For a vaporization time of 1.0 

millisecond, the required power can be calculated to be equal to be 1.183 mW.
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The resistance for a thin film of polysilicon can be determined from:

R = — ^ ~  (9)
TWa,,

Where, R is the resistance, L  is the length of the microheater, T is the thickness, W is 

the width and a e is the electrical conductivity [14]. Finally, using the following 

equation:

P = I 2R (10)

The required current can be determined knowing the resistance and the power to be equal 

to 0.4 mA. In Table 3, the physical properties of polysilicon have been summarized that 

were used to design the fixed-fixed beam microheater.

3.3 Design Solution

Both resistive and injection based methods of bubble generation were 

investigated. Based on the current MEMS technology the complexity of integrating a 

MEMS based micropipette is extremely high. It has been determined that the best 

solution for this would be to design a simple fixed-fixed beam microheater. This type of 

heater would allow for a bubble to be generated on the surface of the heating strip.

Table 3: Polysilicon Properties

Parameter Value Unit

Electrical Resistance (R ) 8300 Q»cm

Thermal Conductivity ( k  ) 148 W/K-m

Density ( p ) 2330 kg/m3

Specific Heat (Cm) 712 J/Kg-K

TCR (dr) 2500x10‘6 K 1
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If the microbubble was not released after creation, the fixed-fixed beam style microheater 

can be momentarily vibrated to release the microbubble as shown in Figure 11. Detailed 

specifications of the designed microheater based on the concepts discussed in previous 

sections are listed in Table 4.

The designed microheater has been simulated using IntelliSuite™ and the 

generated 3-D geometry of the microheater inside the microchamber is shown in Figure 

12.

3.4 Conclusions

A 5 pm microbubble can be generated consistently using small amounts of 

current. The fixed-fixed beam microheater provides a controllable, repeatable bubble 

generation mechanism which is more easily manufactured then an injection based 

solution. The microheater can be implemented using a relatively small number of 

fabrication steps based on standard MEMS fabrication processes. During operation the 

module draws 0.4 mA to generate a microbubble and consumes 1.183 mW of power. The 

Maximum temperature that the design of this microheater can attain is 150°C. The 

microheater requires 136°C to nucleate a bubble with a surface cleat of 1 pm.

Table 4: Microheater Design Specifications

Parameter Value Unit
Dimensions 100 x 4 x 0.5 pm
Temperature 150 Max. °C
Cavity Radius 1 pm
Current 0.4 mA
Power 1.183 mW
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Figure 12. Microheater simulated in IntelliSuite™.

The microheater also inherently has a bubble release mechanism in the event that the 

bubble is stuck to the surface of the microheater. Using this type of module limits the 

amount of mechanical elements in the modules. Limiting the amount of mechanical 

elements decreases the chance of mechanical failure while increasing the maximum 

operating pressure the sensor can withstand.
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CHAPTER 4
MICROBUBBLE STABILIZATION

4.1 Motivation

For single-bubble sonoluminescence (SBBL) to occur, a microbubble must be 

stabilized in the center of the cylindrically shaped microchamber. In the macroscale, the 

bubble stabilization is carried out using standing waves generated by piezoelectric 

ultrasonic transmitters attached to the spherical resonating flask. For the proposed 

cylindrically shaped MEMS sensor, investigation has been made to determine a suitable 

solution for this bubble stabilization problem. In this chapter, a summary of different 

possible solutions has been discussed and a dielectrophoresis based bubble manipulation 

technique along with a capacitive sensing mechanism has been determined to be the best 

for the proposed microsensor. Detailed specifications for the dielectrophoresis based
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bubble manipulation technique along with a capacitive sensing mechanism have been 

determined while considering the fabrication issues.

4.2 Microbubble Stabilization

In order for sonoluminescence to occur, a microbubble must be stabilized into the 

center of a spherical or cylindrical chamber. The microsensor in this thesis will use a 

cylindrically shaped chamber. Once the bubble is stabilized the chamber can be 

bombarded with an ultrasonic exciting signal to allow sonoluminescence to occur. The 

object of this chapter is to determine the best design for a module that will allow for 

microbubble manipulation and microbubble position sensing.

4.2.1 Piezoelectric Resonators

In the macroscale experiments piezoelectric resonators are used to provide the 

stabilization forces required to position the bubble within the chamber. Piezoresonators as 

seen in Figure 13 are could be fabricated and would provide adequate bubble stability in 

the microscale. However, since a standing wave is required within the length of the 

chamber, using a piezoelectric resonator is not a possible solution for the proposed sensor 

geometry. The length of a 25 kHz standing wave is 13.3 mm, which is much longer than 

the length of a cylindrical MEMS microchamber. Since the length of the standing waves 

that are required in the macroscale experiments are too long for the microchamber. 

Piezoelectric microresonators are not suitable for this application.
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Figure 13. Conceptual diagram of a microresonator used to stabilize a bubble.

4.2.2 MEMS Micropincers

Another design solution was a mechanical stabilizer. This design involves the use 

of a pair of micropincers or a v-groove combined with surface tension to mechanically 

“hold” the microbubble. A conceptual diagram of the v-groove style bubble stabilization 

module is shown in Figure 14. The v-groove device has a heating wire that allows the 

bubble to be formed. Due to the surface tension between both sides of the v-groove 

fingers the bubble would get held by these fingers and be stabilized at the center of the 

chamber. However, the main problem with this type of stabilization mechanism is that 

the surface tension that is used to hold the bubble in place will not allow 

sonoluminescence to occur. So this type of stabilization technique can not be used.
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Figure 14. V-groove micropincer stabilization mechanism.

4.2.3 Electrokineteics

Another method for stabilizing a bubble that was investigated is the ability to use 

electrokinetics. Electrokinetics is the study of the motion of particles that result from an 

electric potential difference. This motion is generated by an electromagnetic force that is 

created between electric potentials. This force causes the particle to move in a given 

direction. By controlling the amount of potential difference it is possible to determine the 

amount of force generated. This is extremely convenient for the proposed microsensor as 

electrokinetics at the microscale works very well since the force generated by the 

potential difference increases exponentially as the gap between the potentials is reduced. 

The solution contains no movable structures allowing it to withstand high amplitude 

signals while allowing for the microbubble to be manipulated with a good degree of 

accuracy. It makes for a suitable solution for the scope of this thesis.
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4.3 Dielectrophoresis

The technique of dielectrophoresis and/or electrorotation (commonly known as 

electrokinetics) is used in biology to manipulate and separate particles at the cellular level 

[12-13]. However, in recent years, use of the technique has been expanded into the field 

of nano and microtechnology, due to the precise ability to manipulate particles in these 

ranges [13, 15].

Following the theory of dielectrophoresis (DEP), when a particle is subject to an 

external electric field, the electric field creates a dipole within the particle. If the external 

electric field is non-uniform, as in a field gradient, the field will exert a net force on the 

particle and there will be movement as seen in Figure 15. This force will either move the 

particle towards the high or low density field region, depending on the relative 

permittivity (a physical quantity that describes how an electric field is affected by a 

dielectric medium) of the particle compared to the surrounding medium [13, 15]. If the 

permittivity of the particle is greater than that of the surrounding medium, the force will 

be towards the higher density field region. This is referred to as positive DEP. Otherwise 

the force exerted on the dipole will be opposite, and the particle moves towards the 

region of lowest field density [13, 15]. Since the direction of the field is insignificant, the 

force can also be created by using an AC field [13]. The dielectrophoretic force that acts 

on a spherical particle is described as:

Fdep = 2 KR2em%e{K{0))}VE2 (11)

Where, em is the permittivity of the surrounding medium (for the purpose of this thesis 

the medium is water) E  is the RMS electric field intensity, R is the radius of the bubble
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LectrokmsHc

Figure 15. A particle under the influence of dielectrophoresis.

and 9fe{K{0))} is the real part of the Clausius-Mossotti factor, expressed as [13]:

* *

(12)

Where, e* and e *m, and represent the complex permitivities of the medium and the 

particle respectively [13, 15]. Using the Gauss’s law, described as:

V ( x ) = J P( x ) & (13)

and

(14)

The dielectrophoretic force can be determined easily for a particular voltage. The 

quantity p  in (14) represents the electric charge density.
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The charging of micro-droplets can be done through several methods. One of 

these methods is electrical double layer charging [10]. This method is used to control the 

velocity and position of suspended liquid droplets between parallel plates using a large 

electric field. In order for this actuation method to work, the bubble must be charged. The 

Rayleigh limit [10] of microdroplet charging describes the maximum amount of charge 

that can be stored on a microdroplet, before the internal repulsive forces from like 

charges stored on the surface exceed the surface tension. This limit is the same for a 

micro-bubble inside a liquid. The Rayleigh limit, can be derived from [10]:

1 -  -

N = - ( 2 7 t y ) 2(d  )2 (15)
e

Where, N  is the number of electron charges, y is the fluid surface tension and d  is the 

bubble diameter. For water, y  = 72.7 dyne/cm that yields approximately 1.4 x 106 

charges for a bubble radius of 5.0 pm. Based on this quantity of charge, the necessary 

actuation voltage for dielectrophoresis can be determined. The amount of force required 

to counteract the buoyancy force of the microbubble is 1.02 nN.

Two main DEP electrodes are placed within the chamber, by using highly doped 

polysilicon as the main DEP electrode along the upper edge of the chamber, and a smaller 

electrode beneath the polysilicon microheater. Finite element analysis (FEA) was carried 

out using the IntelliSuite™ MEMS design tools and it was determined that at an actuation 

voltage of 255 V is necessary to generate the required force of 1.02 nN using the DEP 

electrodes. At an actuation voltage of 400 V the DEP electrodes, as seen in figure 16, can 

produce a maximum actuation force of 1.66 nN. This provides more than enough force to 

counteract the buoyancy force and will force the bubble back into center of the cylinder if 

it floats beyond the mid point of the chamber.
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Figure 16. Dielectrophoresis FEA Simulation using IntelliSuite™.

4.4 Microbubble Position Sensing

By using dielectrophoresis to manipulate the bubble it is possible to actuate the 

elevation of the bubble within the chamber. To sense the elevation of the bubble as it 

ascends within the chamber requires a mechanism that can detect the presence of the 

bubble as it passes past the detector.

4.4.1 Capacitive Sensing

A capacitive sensing method has been developed to determine the position of the 

bubble as it ascends after release from the heater. By controlling the DEP forces along 

with the developed capacitive sensing technique, it is possible to stabilize the bubble in 

the precise vertical and radial center of the microchamber.
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Figure 17. a) A single pair of capacitive sensing plates with no microbubble shows a capacitance 
of 6.15 pF. b) A single pair of capacitive sensing plates with a microbubble shows a 
capacitance of 14.87 pF.

Since the permittivity of the bubble and the water has a large variance, a capacitance 

change can be observed as the bubble passes between a pair of capacitive plate sensors. 

The capacitive sensing array will be fabricated using LPCVD polysilicon between layers 

of silicon dioxide. The silicon dioxide is used as an insulating layer to electrically isolate 

each capacitive sensing electrode. The capacitive sensors have been shown to have a 

minimum capacitance of 6.15 pF when no microbubble is present and a maximum 

capacitance of 14.87 pF when a bubble is present as shown in Figure 17. These
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capacitance simulations were done using the IntelliSuite™ FEA software package [16]. 

These capacitive sensing electrodes will be used to determine the vertical position of the 

bubble. A set of five capacitive sensing plates will be layered one atop another. This 

array of capacitive sensing plates will be placed along the walls of the microchamber to 

be used as the vertical position sensors for the bubble. During DEP, these capacitive 

plates can also be charged using the same polarity as the top DEP electrode. The 

electromagnetic field will also help push the bubble into the radial center of the chamber. 

A conceptual diagram of the capacitive sensing array and the electric fields generated to 

stabilize the bubble in the horizontal center of the chamber is shown in figure 18.

4.5 Conclusions

The bubble stabilization module incorporates another complex phenomenon 

known as dielectrophoresis as the vertical bubble positioning mechanism. This 

mechanism induces a dipole in a particle; for the scope of this thesis the particle is a

Bubble ;

(a)

10 Hm |

Doped Silicon 
SiOj Spacer

^  H H I15 nm

'Bubble*

Microheater
—  I  I—

h 150 pim-

(b)
Figure 18. a) Conceptual diagram of the electric fields used for the horizontal positioning of the 

bubble b) A conceptual drawing of the capacitive sensing array used to track the 
vertical position of the microbubble.
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microbubble. This microbubble will then be forced in the opposite direction of buoyancy 

using this dielectrophoretic force. The system has been simulated using the IntelliSuite™ 

FEA simulation package and has shown that the maximum dielectrophoretic force that 

can be generated is 1.66 nN. This is more than adequate to compensate for the 1.02 nN 

force created by the natural buoyancy of the bubble. With an actuation voltage of 255V, 

the bubble will be held still and the actuation of the DEP electrodes will control the 

positioning of the microbubble. A set of five capacitive sensing electrodes will be used 

to determine the vertical position of the microbubble. When the position of the 

microbubble ascends beyond the middle electrode the DEP electrodes will engage and 

gently push the bubble back towards the center. The capacitive sensing pairs can be tuned 

to monitor the capacitance change from 6.15 pF, when there is no microbubble, to 

14.87pF when the microbubble is present. The combination of these two components of 

the microbubble stabilization module provides an extremely desirable trait for extreme 

pressure sensing applications; neither the DEP electrodes nor the capacitive sensing array 

experience deformation during operation. Therefore strain in the device is minimal, 

resulting in a large expected mean time before failure due to mechanical wear.
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CHAPTER 5
PHOTODETECTION

5.1 Motivation

The photodetection stage of the microsensor is the final transduction stage where 

the light pulses emitted by the sonoluminescence phenomenon are to be detected to 

generate an equivalent photo-current. The design of the photodetector depends on two 

factors: first is the material selection and the second is the quantum efficiency. The 

material selection will determine the quality of the photodetector. With the current 

MEMS fabrication technology there are limitations to the available materials that can be 

deposited. The two types of photodetectors that were investigated most extensively are
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cadmium sulphide (CdS) and profiled silicon photodetectors. The quantum efficiency of 

these sensors will ultimately determine how sensitive the sonoluminescent microsensor 

will be. This chapter will describe the possible materials used for blue light 

photodetection and describe the sensitivity model.

5.2 Photodetection

This final stage of the transduction process critical as it will determine the 

sensitivity as seen externally. A photodetector capable of high efficiency sensing of blue 

light will ensure that the majority of the photonic energy released by the 

sonoluminescence is transferred to an electrical signal, yielding a high sensitivity [17-20].

The physical principle by which photodetectors convert light into electricity is the 

photovoltaic effect. The photovoltaic effect is the physical process in which light is 

converted into a usable electric current. Light is composed of photons. These photons 

contain various amounts of energy corresponding to different wavelengths of light. When 

photons strike a photovoltaic material they are reflected, absorbed, or they may penetrate 

through. When a photon is absorbed, the energy of the photon is transferred to an electron 

in an atom of the photodetector (which is actually a semiconductor). The injection of 

energy from the photon allows the electron to escape from stable orbit associated with a 

specific atom to form an electron hole pair. The electron becomes a free carrier and 

participates as part of the current in an electrical circuit [17-20],

5.2.1 Cadmium Sulphide Type Photodetectors

One of the materials that were investigated is cadmium sulphide (CdS). As shown 

in [20], the CdS type photodetectors can detect the wavelengths in the 400-500 nm range. 

This material was chosen as a candidate for the photodetectors due to its good
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performance within the spectral range. The good spectral performance comes from the 

fact that sonoluminescence emits high quantities of blue light, where the wavelength is 

approximately 460nm. Cadmium sulfide has a maximum cut off wavelength of 512 nm 

for spectral sensitivity. This photodetector is a good candidate for the purpose of blue 

light detection. However, this type of photodetector does have some limitations. The first 

limitation is that the material is fairly complicated to deposit using the current MEMS 

technology due to the vapor pressure associated with the cadmium tending to foul 

vacuum systems. The process for incorporating a non-standard MEMS material 

deposition and etching techniques is time consuming. The quantum efficiency of the CdS 

photodetector is approximately 30% efficient for a wavelength of 480 nm. Compared to 

the quantum efficiencies of other commercially available photodetectors such as gallium 

arsenide (GaAs at 18%) [20]. CdS provides a higher optically generated current.

5.2.2 Profiled Silicon Type Photodetector

Profiled silicon [17] photodetectors were another design considered. Profiled 

silicon photodetectors can be used to detect the emitted pulses of light due to its excellent 

photoconductivity over a wide range of frequencies, including blue light. This 

photodetector can be used as sonoluminescence emits light in the region of highest 

quantum efficiency. Profiled silicon has a maximum cut off wavelength of 390 nm.
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Figure 19. Quantum efficiency as a function of wavelength for a profiled silicon photodetector.
Courtesy S. Chamberlain.

This type of photodetector has been shown in [17] to have a quantum efficiency of 80% 

or greater throughout the entire visible spectrum. With this high level of quantum 

efficiency this will guarantee the generation of electron-hole pairs for each incident 

photon, which will result in higher electric current. A characteristic graph showing the 

quantum efficiency of profiled silicon as a function of wavelength is shown in figure 19.

Fabrication of profiled silicon photodetectors are not plagued with the 

complications associated with other heavy metal based detectors. The fabrication requires 

two layers of ion implantation. The photodetector consists of three layers of doped silicon 

[17]. The first layer is n+, the second is n", and the third is p type silicon. The tiered 

layering can be seen in Figure 20. Since the current MEMS fabrication facilities already 

implement high precision ion implantation to dope silicon, this type of photodetector is 

compatible with existing MEMS fabrication techniques and can draw from a large body 

of experience and knowledge for fabrication process details.
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Figure 20. A profiled silicon photodetector.

L

5.3 Sensitivity Model

One important design parameter for a sensor is its sensitivity that quantifies the 

generated electrical signal per unit of external excitation during the transduction process. 

Optimizing the sensitivity is an important design factor. A sonoluminescing bubble emits 

106 photons per acoustical cycle (per flash of light) for driving acoustical amplitudes of

1.2 atm and above. Consequently, sonoluminescence will produce the same number of 

photons with every pulse of light regardless of the amplitude of the exciting signal.

To determine the sensitivity, at first the amount of optical power generated by one 

photon of blue light with a wavelength of 480 nm has been calculated following the 

optical energy equation as expressed below:

Where, h is planks constant, c is the speed of light and X is the wavelength. From 

equation (15), the optical power associated with a photon at 480 nm wavelength can be 

calculated as 4.14 x 10~21 J. Therefore, 106 photons will produce 4.14 x 10~15 J of optical 

power. To calculate the amount of optical power in J/s, the average of 100 picoseconds 

was used as the refresh time of a sonoluminescing bubble [2, 7-9]. The optical power of 

4.14 mW, can be calculated using the following formula:
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Energy
( 16)

From [21], it is now possible to calculate the resulting optically generated photocurrent 

for the profiled silicon photodetector. The formula for optically generated photocurrent of 

an n+-n"-p type junction is described as [21]:

Where, R is the reflection coefficient, a  is the absorption coefficient, d  is the depth of 

the absorption region, q is the charge of an electron, h is Plancks constant, P is the 

optical power in Watts and v is the frequency of the incident light wave [21]. This 

equation takes into account the losses that occur during refraction and during absorption. 

Following (17) a photocurrent of 624 pA per flash of light (each bubble collapse) has 

been calculated when the peak amplitude of the incident ultrasonic wave is 1.2 atm. Thus, 

a sensitivity has been determined to be 624 pA/1.2 atm or 520 pA/atm.

5.4 Conclusions

This chapter develops a sensitivity model for the microsensor and describes the 

selection of a profiled silicon photodetector as the final transduction stage for the 

proposed microsensor. A sensitivity of 520 pA/atm was calculated when the maximum 

amplitude of the incident ultrasonic wave is 1.2 atm or higher including losses due to 

refraction and absorption. This is a suitably high current that can be easily amplified by 

existing microelectronic circuitry.

hv
(17)
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CHAPTER 6
SENSOR FABRICATION

6.1 Motivation

This chapter describes the details of the developed fabrication process sequences 

to fabricate the microsensor. The entire process sequence has been divided into eight 

main steps. For each major step, a cross-sectional drawing is provided along with a 3-D 

model of the structure obtained after simulating the associated process steps in 

IntelliSuite™. The process steps were checked with the foundry process steps available in 

the Univeristy of Alberta Nanofabrication Laboratory and consultation was made with 

the University of Alberta Nanofabrication facility for process compatibility. The 

microsensor can be fabricated and tested once the necessary funding is available.
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6.2 Microfabrication

Microfabrication, is the technique of sequential deposition, patterning and etching 

of thin film materials to construct a 3-D geometry of a microstructure. Major MEMS 

fabrication techniques can be categorized as either surface micromachining, bulk 

micromachining or wafer bonding. The developed process steps to fabricate the device 

are a combination of both surface and bulk micromachining techniques. Below is a brief 

discussion on different techniques that have been used to fabricate the device.

6.2.1 Ion Implantation

Ion implantation is a process where a particle accelerator injects a beam of dopant 

atoms directly into a wafer. These atoms are able to penetrate the surface of the wafer and 

may be embedded at a defined depth. The beam is scanned across the surface as the wafer 

is rotated to achieve a uniform dopant distribution [14]. By monitoring the ion current the 

doping can be accurately controlled. The amount of energy that is carried by the ion will 

determine within a narrow tolerance how deep the implanted dopant atom is inserted 

within the substrate. Photoresist and other dielectric films such as silicon nitride can be 

used to mask selected areas of a wafer from ion implantation by absorbing the energy 

from the ion preventing it from embedding into the substrate. This allows for selective 

doping of different regions of a given wafer [14, 21].

6.2.2 Physical Vapor Deposition (PVD)

Physical vapor deposition is an umbrella term covering two similar methods of 

material deposition; evaporation and sputtering. For evaporation, the metal that is to be 

deposited is heated in a crucible by an incident electron beam. The flux of vapor atoms 

created by this heating is allowed to reach the wafer. This type of deposition must be
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carried out in a high-vacuum chamber to ensure the mean free path is long enough to 

ensure delivery of the atoms to the substrate. Evaporation with an electron beam is also 

quite directional, allowing for sidewall coverage [14, 21], Sidewall coverage can also be 

increased by rotating the wafer to allow for better deposition.

For sputtering, the process uses chemically inert atoms to facilitate the process. 

Chemically inert atoms, typically argon, are ionized into plasma. These ions are then 

accelerated onto a source target using an electric field. When the ions hit the target, atoms 

from the target are knocked loose and are allowed to reach the wafer. This process is less 

directional than evaporation but it can yield higher deposition rates. Because of this high 

deposition rate, it is often used for metallic deposition such as Aluminum or Chromium 

[14,21],

6.2.3 Chemical Vapor Deposition (CVD)

Chemical vapor deposition is a method where precursor materials are placed into 

a heated furnace. A chemical reaction occurs on the surface of the wafer which results in 

a deposition. CVDs that are performed in a low pressure environment are classified as 

low pressure chemical vapor deposition (LPCVD). LPCVDs typically involve the use of 

an inert diluent gas in addition to the reactive species. The temperatures of these LPCVD 

processes can reach up to 850°C. These temperatures are too high to be used with wafers 

that have previously been subject to metallic depositions such as gold or aluminium. The 

need for careful process planning is needed when the design requires an LPCVD 

deposition [14, 21].
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6.2.4 Spin Casting

Thin films can be deposited in the form of a solution by a technique called spin 

casting. The material to be deposited in this manner is usually a polymer or a photoresist. 

The solution is applied at the center of the wafer and the wafer rotated at a high speed. 

During rotation of the wafer, the solution will spread itself across the surface of the wafer 

with a uniform thickness due to the centrifugal forces. After the spinning process is 

complete, a curing stage is required to remove the excess liquids in the solution solidify 

the newly deposited layer. This is the standard process for the application of most 

photoresists prior to the photolithography stage [14, 21].

6.2.5 Optical Lithography

To obtain a pattern on a photoresist, photolithography is a standard process. This 

process utilizes a mask, typically made from chromium on glass to selectively expose a 

wafer coated in photoresist to a light source. Photoresists exposed to light undergo a one 

way curing reaction, where polymer chains within the resist crosslink, creating a much 

more durable material then the unexposed resist. The photomask contains the pattern to 

be transferred to the photoresist. The mask is placed in contact with the photoresist and a 

UV light for example is directed through the transparent regions of the mask until the 

photoresist is cured. A photoresist stripping stage is required to remove the non-exposed 

photoresist so the subsequent layers can be etched [14, 21].

6.2.6 Deep Reactive Ion Etching

Deep reactive ion etching (DRIE) is a relatively new process. This process takes 

advantage of the side effects of glow discharge (plasma), the tendency to create 

polymeric species by chemical cross linking [14]. During this process alternating steps of
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reactive-ion etching and polymer deposition are used. During the etch process the 

polymer is rapidly removed from the bottom of the feature but remains along the 

sidewall. This protects the sidewall from the etchant. As a result deep sidewall etching 

can be created where the top of the hole does not get wider. This type of etching is used 

where high aspect ratios are required [14, 21].

6.2.7 Chemical Mechanical Polishing

Chemical mechanical polishing (CMP) is a process where a wafer is pressed 

against a rotating polishing wheel and an abrasive slurry is applied. This slurry is a mix 

of corrosive and abrasive particles which assists in the removal of the material. This 

technique can be used to create extremely flat surfaces. This is useful between deposition 

processes to keep the layers extremely flat and to finish surfaces prior to bonding [14, 21, 

23],

6.2.8 Direct Wafer Bonding

Wafer bonding is the process of permanently joining two wafers together to create 

a stacked wafer. Direct bonding of silicon wafers can be accomplished by first cleaning 

and hydrating (wetting) the surfaces. They must be smooth and particulate free. 

Particulates or contaminates create gaps that can weaken the bond during the bonding 

process. The bonding process requires the surfaces to be contacted after cleaned wafers 

are pressed together and heated to fuse the wafers together [14, 21, 24].

6.3 Microsensor Fabrication

The fabrication process for the proposed micro-sensor consists of eight major steps.
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Aluminium

Pyrex

Figure 21. DC Magnetron sputtered aluminium deposited atop a Pyrex substrate.

Step 1 : The fabrication begins with a 500 |am thick Pyrex 7740 glass substrate which is 

used as the base of the microsensor. A 175 nm thick layer of aluminum is deposited on 

the top side of the substrate using a low power DC-magnetron sputtering process as 

shown in Figure 21. This sputtering process uses a cathode power of 250W and an 

ambient chamber pressure of 5 mTorr. AZ P4400 photoresist is then spun on top of the 

wafer. The spin process is conducted using a vacuum chuck to secure the wafer. The 

wafer is then spun at 600 rpm for 10 seconds while the AZ P4400 photoresist is applied 

at the center of the wafer. The secured wafer is then spun at 2800 rpm to thin the layer to

3.3 pm then baked on a hot plate at 110°C for 3 minutes and 20 seconds. Next, optical 

lithography is performed to transfer the mask pattern onto the photoresist. The photoresist 

layer is then developed using AZ 400K solvent. The wafer is then rinsed with de-ionized 

(DI) water and dried using compressed nitrogen. The aluminum is then wet etched at 

25°C using a solution of phosphoric acid. A subsequent photoresist ashing step is 

required to remove any residual photoresist. This is done by using a 100% O2 plasma 

flow at 400 mTorr for 20 minutes.

Step 2: A Piranha clean is conducted prior to depositing a layer of 2 pm thick

phosphosilicate glass (PSG) using a Low Pressure Chemical Vapor Deposition (LPCVD)
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Figure 22. (a) A conceptual cross-sectional diagram of the microheater, (b) IntelliSuite™ generated
3-D model after simulating process steps for the microheater.

method atop the aluminum layer. This LPCVD process is conducted at a temperature of 

400°C and a chamber pressure of 300 mTorr. The PSG layer is patterned using the AZ 

P4400 photoresist technique and etched using the Bosch ICP RIE process. The ICP REE 

etch process is done using SF6 with a chamber pressure of 150 mTorr. Afterwards the 0.5 

pm thick polysilicon microheater as shown in figure 22 (a), has been deposited by an

Polysilicon
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Silicon

b)

Figure 23. (a) A conceptual cross-sectional diagram of the side walls, (b) IntelliSuite™ generated 3-D
model after simulating process steps for the sidewalls.

LPCVD process. The standard LPCVD process is modified to ensure low stress in the 

thin film by increasing the temperature to 588°C with a chamber pressure of 110 mTorr. 

The polysilicon has been patterned with AZ P4400 and etched using HNO3 at 25°C to 

realize the microheater geometry [24, 25].

Step 3; To create the 150 pm wide cylindrical sidewall shown as in Figure 23 a separate 

four inch prime silicon wafer is to be patterned using AZ P4400 photoresist and etched 

using the same Bosch ICP RIE techniques. To thin the wafer to 110 pm, a combination of
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surface micromachining and CMP (chemical-mechanical polishing) is to be used [24, 

25], For surface micromachining the substrate is held on a rotating pad and pressed 

against a second large rotating grindstone. For the grinding, a slurry containing small 

very hard particles of diamond or boron oxide has been used [24, 25].

Step 4: To create the capacitive sensing electrodes, a third wafer is used. An ultra 

uniform SOI wafer can be used to ensure that the height difference in the capacitive 

sensing electrodes will be minimal. The thickness uniformity can be as uniform as ±0.15 

[xm across the wafer [24, 25]. Five capacitive sensing electrodes shown in figure 24 will 

be fabricated by first depositing a 10 pm thick layer of LPCVD (low-stress) silicon, then 

thermally growing 5 pm of Si02 at a temperature of 1200°C as an insulating layer. This 

process is repeated five times to create the capacitive sensing array. However, an 

annealing stage is required between each subsequent layer to reduce any residual stress in 

the silicon or the insulating layer. Patterning of the silicon is done by using AZ P4400 

and then the silicon is boron doped with a dopant concentration of 8 x l0 19 atom/cc in a in 

a chamber with a temperature and pressure of 1175°C and 1 atm respectively.

Step 5: The top of the micro-chamber as shown in figure 25 is to be fabricated on the 

same four inch wafer used to create the sidewall surrounding the polysilicon microheater. 

A section of the four inch wafer will be patterned using AZ P4400 photoresist and boron 

doped using the same boron doping technique with a dopant concentration of 8 x l0 19 

atom/cc. Two fluid canals will be created using Bosch ICP RIE technique to allow for the 

microchamber to be filled with water.
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Figure 24. (a) A conceptual cross-sectional diagram of the capacitive sensor array, (b) IntelliSuite™
generated 3-D model after simulating the process steps for the capacitive sensing array.
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b)
Figure 25. (a) A conceptual cross-sectional diagram of the top lid. (b) IntelliSuite™ generated 3-D

model for the top lid of the microstructure.

Step 6: To create the photodetector, a four inch wafer of 500 pm thick p-type substrate 

wafer is to be used. By using the process steps described in [17], the profiled silicon 

photodetector can be realized. This photodetector is next to be bonded to the bottom of 

the Pyrex 7740 substrate. Silicon bonding can be done in air with an ambient pressure of

1.0 atm and under the constraint that no organic materials are allowed in the bonding 

chamber [24, 25]. To prepare the remaining pieces for bonding a Piranha clean will be 

used to remove any remaining organics. Then to finalize the realization of the micro-
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chamber, SU-8 photoresist can be used as an epoxy to bond all the pre-fabricated pieces. 

SU-8 is an epoxy commonly used as a photoresist. Using a vacuum chuck to secure 

wafers, SU-8 photoresist is then applied. The chuck spins at 4000 rpm for 40 seconds 

while SU-8 is applied to a thickness of 2 pm. The first piece to be bonded is the sidewall 

surrounding the microheater as shown in figure 26. The Pyrex 7740 wafer is secured 

using the vacuum chuck and SU-8 is spun around the microheater. The sidewall piece is 

then optically aligned and pushed down into the photoresist. The two pieces will then be 

soft-baked at 65°C for 60 seconds and then at 120°C for 120 seconds to cure the SU-8. 

To ensure the bond is complete, the two pieces are then hard-baked to ensure the SU-8 is 

completely cured. Hard-baking is done first at 65 °C for 60 seconds and then at 95 °C for 

60 seconds [24, 25]. To remove any unwanted SU-8 around the microheater and within 

the microchamber after the bonding procedure Dynasol 165 is used [24, 25].

Step 7: The five capacitive sensing array is next to be bonded to the structure and finally 

the top lid of the microchamber will be bonded both using the same SU-8 epoxy 

technique as shown in Figure 27 and Figure 28. The photodetector will be direct wafer 

bonded to bottom of the Pyrex substrate. The benefit for using this epoxy technique is to 

ensure that low temperatures are used to finalize the micro-chamber as high temperatures 

will induce diffusion in the photodetector layer of the micro-sensor. This epoxy technique 

guarantees that the photodetection module will not be held in an environment where high 

temperatures are required for extended periods of time. By keeping the temperatures to a 

minimum, minimal dopant diffusion can occur in the photodetector.
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Figure 26. (a) A conceptual cross-sectional diagram of the bonded sidewalls around the

microheater. (b) IntelliSuite™ generated 3-D model after simulating process steps for 
bonding the sidewalls around the microheater.
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Step 8: The final step is the bonding of the photodetector to the bottom of the Pyrex 

substrate as shown in figure 29 and figure 30. The photodetector will be direct wafer 

bonded. The low temperature at which this process can be achieved will allow for 

minimal dopant diffusion within the photodetector.

D oped Silicon
' ........................

Silicon Dioxide 

D oped  Silicon

Silicon 

P o ly silicon 

Aluminium

H--------------
Pyrex

Figure 27. A conceptual cross-sectional diagram of the completed microchamber after step 7.
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Figure 28. An IntelliSuite™ 3-D simulated model of the completed microstructure after step 7.
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Figure 29. A conceptual cross-sectional diagram of the complete microsensor with the photodetector
bonded to the bottom.
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Figure 30. An IntelliSuite™ 3-D simulated model of the completed microstructure after bonding the 
photodetector to the bottom of the microsensor.

6.4 Conclusions

A brief introduction to the state-of-the-art MEMS fabrication techniques used to 

fabricate the microsensor has been presented. A custom fabrication process table has 

been developed and verified for compatibility with University of Alberta Nanofabrication 

Laboratory. The developed custom fabricated process table has been simulated using 

IntelliSuite™ simulation package to generate a 3-D model of the sensor geometry. The 

developed models have been found to be in excellent agreement with the design 

requirements.
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CHAPTER 7
CONCLUSIONS

7.1 Design Summary

A novel MEMS ultrasonic microsensor that exploits the single bubble 

sonoluminescence (SBSL) phenomenon has been developed. The microsensor has a 

cylindrical geometry with a height of 300 pm. The inner diameter of the microchamber is 

150 pm. This is large enough to contain a floating microbubble of 5 pm in radius. The 

three main modules of the microsensor are the microbubble generation module, the 

microbubble stabilization module and the photodetection module.

The microbubble generation module is capable of attaining a temperature of up to 

150°C. The required temperature for bubble nucleation on this microheater is 136°C. The 

microheater is fabricated using a low-stress LPCVD deposited polysilicon. The
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dimensions of the microheater are 100 jam x 4 pm x 0.5 jam. There are a couple of the 

inherent qualities for this type of microbubble generation unit. The first is that the 

microheater can be electrostatically actuated in the event that the bubble becomes stuck 

to the microheater surface. The second is the ability to nucleate a microbubble 

consistently with only 0.4 mA. The total power consumed by the microheater to nucleate 

a bubble is 1.183 mW.

The microbubble stabilization unit is comprised of two modules. The first is the 

electrokinetic bubble manipulation electrodes. The second is an array of five capacitive 

sensors. These sensors will monitor the elevation of the bubble. Dielectrophoresis has 

been used to stabilize and manipulate the microbubble within the microchamber. 

Dielectrophoresis creates a dipole in the target particle within a gradient electric field. 

The dipole within the microbubble, the particle, reacts with the gradient electric field. 

The electric field produces a net force on the microbubble. This net force moves the 

bubble in the direction of the force. The electromagnetic field simultaneously positions 

the microbubble into the horizontal center. FEA simulation results using IntelliSuite™ 

for microbubble stabilization are in excellent agreement with calculated results. The 

calculated force of buoyancy is 1.02 nN. The maximum force applicable by the 

dielectrophoresis electrodes is 1.66 nN. This is more than enough force to reposition the 

bubble back to the center of the microchamber. The capacitive sensing array is fabricated 

using doped polysilicon between layers of silicon nitride. The minimum capacitance for a 

single pair of polysilicon capacitive plates is 6.15 pF, and the maximum capacitance is 

14.87 pF. This capacitance change can be sensed using suitable sensing circuitry. The 

capacitive array detects the vertical motion of the bubble. When the bubble passes above
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the middle pair of electrodes the capacitive sensors will activate the control to active the 

dielectrophoresis electrodes. The electrodes will push the bubble back into the vertical 

center.

The profiled silicon photodetection module converts light emitted by 

sonoluminescence into an electrical current. The photodetector is created by doping 

selected layers of a silicon wafer. The detector has a high quantum efficiency of 80% 

throughout the entire visible spectrum even at 480 nm, the wavelength of blue light. The 

amount of current produced over the time span of one acoustic cycle is 624 pA.

The sensitivity of the entire system has been calculated to be 520 pA/atm, 

regardless of the amplitude of the incident ultrasonic wave as long as the acoustical drive 

pressure is above 1.2 atm.

A detailed fabrication scheme for the photodetector has been developed. These 

techniques are currently in use at the University of Alberta Nanofabrication Laboratory. 

These processes can be found and examined using their online database. The fabrication 

of this device was done mainly with polysilicon and silicon wafers. This design will 

lower the cost by eliminating the need to deposit different foreign materials as well as 

eliminate the need for designing a new process to deposit these materials.

The overall design of the sonoluminescent ultrasonic microsensor has some 

benefits over the conventional types of ultrasonic sensors. Conventional ultrasonic 

sensors inherently have no internal amplification during the transduction mechanism. 

Sonoluminescence has an amplification factor of thirteen related to the ultrasonic drive 

pressure. This occurs during the conversion of sound into light. The microsensor also 

contains no mechanical or vibrating diaphragms. Since this microsensor does not contain
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any vibrating diaphragm it can not be affected by the pull-in phenomenon. Due to the 

absence of a deformable mechanical diaphragm or plate, the sensor is free of any stress 

related effects associated with capacitive or piezoresistive type MEMS ultrasonic sensors.

7.2 Industry Applications

Due to the specific requirements for sonoluminescence, the sensor is expected to 

be applicable to high pressure acoustical field sensing where conventional sensors are not 

suitable for their geometrical limitations. Sensors used for seismic identification, similar 

to what archaeologists use to detect fossils underground, or for ultrasonic density testing 

require high ultrasonic drive pressures. These high drive pressures are suitable to 

guarantee the generation of sonoluminescence. For the automotive industry, a high 

amplitude ultrasonic emitter could be mounted onto an automobile, whereby the 

sonoluminescent ultrasonic sensor could be used in automotive collision detection 

system.
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Matlab Optical Generation Rates

% G l o b a l  C o n s t a n t s  
q = 1 .  6 e  - 1 9  ; 
h = 6 . 6  2 e  - 3 4 ;
A = 2 e  5 ; 
c  = 3 e  8 ;

% C h a r g e  o f  a n  e l e c t r o n  
% P l a n c k ' s  C o n s t a n t
% C o n s t a n t  f o r  a b s o r p t i o n  c o e f f i c i e n t  
% S p e e d  o f  L i g h t

% D e t e r m i n i n g  t h e  b e s t  M a t e r i a l  t o  u s e  b y  d e t e r m i n i n g  t h e  MAX 
CUT-OFF
% w a v e l e n g t h .  C h o i c e s  a r e  GaAs,  CdS,  InP

% b a n d g a p  e n e r g i e s  
E g c d s  = 2 . 4 2 ;
E g g a a s  = 1 . 4 3 ;
E g i n p  = 1 . 3 5 ;
E g z n s  = 3 . 6 ;
E ggap  = 3 . 4 ;

% C o n v e r t i n g  eV t o  J  
w e d s  = E g c d s  * q;  
w g a a s  = E g g a a s  * q;  
w i n p  = E g i n p  * q;  
w z n s  = E g z n s  * q;  
wgap = E g g a p  * q;

l m a x c d s  = ( h * c ) / w c d s  
l m a x g a a s  = ( h * c ) / w g a a s  
l m a x i n p  = ( h * c ) / w i n p  
l m a x z n s  = ( h* c ) / w z n s  
%lmaxgap = ( h * c ) / w g a n
lm a x  = [ l m a x c d s  l m a x g a a s  l m a x i n p  l m a x z n s  ] . *  I e 9

% V i s i b l e  L i g h t  S p e c t r u m
d i s p ( ' 4 0 0 n m ( v i o l e t )  t o  8 0 0 n m ( r e d ) ' )

% L i g h t  A b s o r b t i o n

x  = 1 0 0 e - 6 ;  % p o s i t i o n  i n  X
y  = 1 0 0 e - 6 ;  % p o s i t i o n  i n  Y
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z = 1 0 0 e - 6 ;  % p o s i t i o n  i n  Z

d x  = 1 0 e - 6 ;  % L e n g t h  i n  X o f  P h o t o d e t e c t o r
d z  = 1 0 e - 6 ;  % L e n g t h  i n  Z o f  P h o t o d e t e c t o r

t h e t a l  = a t a n ( ( x - d x / 2 ) / y )  % P r i m a r y  R a d i a t i o n  a n g l e  ( x - y  p l a n e )
t h e t a 2  = a t a n ( ( x + d x / 2 ) / y )  % S e c o n d a r y  R a d i a t i o n  a n g l e  ( x - y
p l a n e )

d e l t h e t a  = t h e t a 2  - t h e t a l  % D i f f e r e n c e  i n  R a d i a t i o n  A n g l e

p h i l  = a t a n ( ( z - d z / 2 ) / y )  % P r i m a r y  R a d i a t i o n  a n g l e  ( y - z  p l a n e )
p h i 2  = a t a n ( ( z + d z / 2 ) / y )  % S e c o n d a r y  R a d i a t i o n  A n g l e  ( y - z  p l a n e )

d e l p h i  = p h i 2 - p h i l

A s p h  = 4 * p i * y ^ 2  % A r e a  o f  a  S p h e r e

A r c x  = y  * d e l t h e t a  % A r c  L e n g t h  i n  X
A r c z  = y  * d e l p h i  % A r c  L E n g t h  i n  Y

A p h o t o  = A r c x  * A r c z  % S p h e r c i a l  A r e a  o f  i n c i d e n t  p h o t o n s

S u r f p h o t o  = A p h o t o / A s p h  % P e r c e n t  C o v e r a g e

% We know t h a t  t h e r e  i s  10^ 6 p h o t o n s  r e l e a s e d  p e r  f l a s h
% T h i s  w i l l  b e  t h e  num be r o f  p h o t o n s  a b s o r b e d  i n t o  t h e
% P h o t o d e t e c t o r .
g,*o
% A s s u m i n g  t h a t  p h o t o n s  a r e  r e l e a s e d  s y m e t r i c a l l y  o v e r  t h e  
% S u r f a c e  a r e a  o f  t h e  b u b b l e  a n d  t h a t  a b s o r b t i o n  l o s s  
% i n t o  t h e  w a t e r  i s  n e g l e c t e d ,  s i n c e  t h e  d i s t a n c e  t o  t h e  
% p h o t o d e t e c t o r  i s  s m a l l

p h o t o n i n  = l e 5  % S u r f p h o t o  * l e 6  % l e 6  i s  t h e  n um ber  o f  p h o t o n s  
r e l e a s e d  p e r

% f l a s h  o f  l i g h t

% F o r  O p t i c a l l y  g e n e r a t e d  C u r r e n t  g o p t  i s  t h e  o p t i c a l  g e n e r a t i o n  
r a t e
% t h i s  i s  r e q u i r e d  t o  d e t e r m i n e  t h e  a m ount  o f  E l e c t r o n  H o l e  
P a i r s ( E H P s / A r e a )
% r e l e a s e d  w h en  p h o t o n s  h i t  t h e  m a t e r i a l .  A l s o  a s s u m i n g  t h a t  t h e  
m a t e r i a l
% i s  a n  o p t i c a l l y  l i n e a r  medium: T y p i c a l  V a l u e s  o f  n e f f  
( e f f i c i e n c y )  r a n g e  
% f r o m  5% t o  3 0%

n e f f  = 0 . 0 5 : 0 . 0 5 : 0 . 3 0 ;  % Quantum E f f i c i e n c y
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l a m b d a  = 4 6 0 e - 9 ;
l e n g t h  = 1 0 e - 6 ;
h v  = ( h * c / l a m b d a ) / l . 6 e - 19 ,-
a l p h a  = A * ( h v  - E g c d s ) ;
CdS

% W a v e l e n g t h  o f  b l u e  l i g h t

% E n e r g y  o f  t h e  i n c o m m i n g  p h o t o n  
% a b s o r p t i o n  c o e f f i c i e n t  f o r

% w h en  h v  >= Eg,  e n e r g y  o f  p h o t o n
g r e a t e r

% t h a n  b a n d g a p  e n e r g y  ( b a s e d  o n
U r b a c k ' s

% r u l e  f o r  t h i n  f i l m s )

P o p t  = h v * 1 . 6 e - 1 9  * 2 5 0 0 0  % O p t i c a l  Power I n t e n s i t y  o f  1
p h o t o n

g o p t  = ( a l p h a  * P o p t  / ( d z * d x * h v ) ) * p h o t o n i n  * . 3  % o p t i c a l
g e n e r a t i o n  r a t e

% O p t i c a l l y  G e n e r a t e d  C u r r e n t  
I o p t  = ( 1 - e x p ( - a l p h a * 2 0 e - 6 ) ) * g o p t / h v  * P o p t  
% R e s p o n s i v i t y  o f  t h e  p h o t o d e c t o r

S = n e f f  * q  * l a m b d a  /  ( h * c ) ; % R e s p o n s i v i t y

% ax is  o n

% p l o t ( n e f f , S)
% t i t l e ( ' R e s p o n s i v i t y ')
% x l a b e l ( ' e f f i c i e n c y ' )
% y l a b e l ( ' R e s p o n s i v i t y  [ A / W ] ')
%f i g u r e ;
% p l o t ( n e f f , I o p t )
% t i t l e ( ' C u r r e n t ')
% x l a b e l ( ' e f f i c i e n c y 1)
% y l a b e l ( ' O p t i c a l  C u r r e n t  [ A ] ' )
%f i g u r e ;
% p l o t ( n e f f , g o p t )
% t i t l e ( ' o p t i c a l  g e n e r a t i o n  r a t e ' )
% x l a b e l ( ' e f f i c i e n c y ' )
% y l a b e l ( ' E H P  G e n e r a t i o n  R a t e  [EHP/umA2 ] ')
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c l e a r ;
L=3 OOe-6 ;  % l e n g t h  o f  t h e  ch a m b e r
t o p x l  = 0;
t o p x 2  = 1 0 e - 6 ;
b o t x l  = 0;
b o t x 2  = 1 0 e - 6 ;
A r r a y s i z e x  = 3 ;
A r r a y s i z e y  = 3 ;

% c e n t e r p o i n t s  f o r  t h e  b u b b l e  a n d  o t h e r  b u b b l e  i n f o  
c i r c x  = 5 e - 6 ;  
c i r c y  = 1 5 0 e - 6 ;  
r a d i u s  = 5 e - 6 ;

% t h i s  a r r a y  c a l c u l a t e s  a l l  t h e  l i n e s  o f  e a c h  p l a t e  
% c o r r e s p o n d i n g  t o  e a c h  p l a t e

f o r  K = 1 :A r r a y s i z e y ,

f o r  1 = 1 : A r r a y s i z e x ,
d ( I , K )  = s q r t ( b o t x l * 2  + L ^ 2 ) ;  

i f  b o t x l = = t o p x l
s l o p e l ( I , K )  = i n f ; 
i n t e r c e p t l ( I , K) = i n f ;  

e l s e
s l o p e l ( I , K )  = ( - L ) / ( b o t x l - t o p x l ) ; 
i n t e r c e p t l ( I , K) = L - s l o p e l ( I , K ) * t o p x l ;

e n d

i f  b o t x 2 = = t o p x 2
s l o p e 2 ( I , K )  = i n f ;  
i n t e r c e p t 2 ( I , K) = i n f ;  

e l s e
s l o p e 2 ( I , K )  = ( - L ) / ( b o t x 2 - t o p x 2 ) ; 
i n t e r c e p t 2 ( I , K) = L - s l o p e 2 ( I , K ) * t o p x 2 ;

e n d

b o t x l  = b o t x l  + 1 2 e - 6 ;  
b o t x 2  = b o t x 2  + 1 2 e - 6 ;

e n d
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t o p x l  = t o p x l  + 1 2 e - 6 ;
t o p x 2  = t o p x 2  + 1 2 e - 6 ;
b o t x l  = 0;
b o t x 2  = 1 0 e - 6 ;

e n d

% Minimum d i s t a n c e  e q u a t i o n  
% d = | a x + b y + c |  /  s q r t ( a ^ 2  + b^2)

% R e i n i t i a l i z i n g  c o u n t e r s
b o t x l  = 0;
b o t x 2  = 1 0 e - 6 ;
t o p x l  = 0;
t o p x 2  = 1 0 e - 6 ;

f o r  K = 1 :A r r a y s i z e y ,

f o r  1 = 1 : A r r a y s i z e x ,

i f  s l o p e l ( I , K )  == I n f ,
d i s t l ( I , K )  = a b s ( c i r c x - b o t x l ) ; 

e l s e
d i s t l ( I , K )  = a b s ( ( ( - s l o p e l ( I , K ) ) * c i r c x + c i r c y  

i n t e r c e p t l ( I , K ) ) ) / ( s q r t ( s l o p e l ( I , K ) a 2 + 1 * 2 ) ) ;  

e n d

i f  s l o p e 2 ( I , K )  == I n f ,
d i s t 2 ( I , K )  = a b s ( c i r c x - b o t x 2 ) ;  

e l s e
d i s t 2 ( I , K )  = a b s ( ( ( - s l o p e 2 ( I , K ) ) * c i r c x + c i r c y  

i n t e r c e p t 2 ( I , K ) ) ) / ( s q r t ( s l o p e 2 ( I , K ) ^2 + 1 ^ 2 ) ) ;  
e n d

b o t x l  = b o t x l  + 12 e - 6;  
b o t x 2  = b o t x 2  + 12 e - 6;

e n d

t o p x l  = t o p x l  + 1 2 e - 6 ;  
t o p x 2  = t o p x 2  + 12 e - 6;  
b o t x l  = 0;  
b o t x 2  = 1 0 e - 6 ;

e n d

% C a l c u l a t e s  t h e t a  a n d  E f f e c t i v e  A r e a  v a l u e s
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b o t x l  = 0 ; 
t o p x l  = 0 ;

f o r  K = 1 :A r r a y s i z e y

f o r  1 = 1 : A r r a y s i z e x
t h e t a ( I , K )  = a b s ( a t a n ( ( ( b o t x l - t o p x l ) / L ) * 1 8 0 / p i ) ) ;
E A ( I , K) = d ( I , K ) . * s i n ( 9 0 - t h e t a ( I , K ) ) ;  
b o t x l  = b o t x l  + 1 2 e - 6 ;

e n d
t o p x l  = t o p x l  + 1 2 e - 6 ;  
b o t x l  = 0;

e n d

% C a l c u l a t e s  D i s t a n c e  B e t w e e n  L i n e s

b o t x l  = 0;  
b o t x 2  = 1 0 e - 6 ;  
t o p x l  = 0;  
t o p x 2  = 1 0 e - 6 ;

f o r  K = 1 :A r r a y s i z e y

f o r  1 = 1 : A r r a y s i z e x
i f  s l o p e l ( I , K )  & s l o p e 2 ( I , K )  == I n f ,  

d i s t l n s ( I , K )  = 1 0 e - 6 ;  
e l s e

d i s t l n s ( I , K )  = 1 0 e - 6  * s i n ( 9 0 - t h e t a ( I , K ) * p i / 1 8 0 )
e n d

e n d
t o p x l  = t o p x l  + 1 2 e - 6 ;  
t o p x 2  = t o p x 2  + 12 e - 6 ;  
b o t x l  = 0;  
b o t x 2  = 1 0 e - 6 ;

e n d

% c a l c u l a t i n g  e p s i l o n s  a n d  c a p a c i t a n c e  e q u a t i o n s
k w a t e r  = 7 8 . 5 ;
k a i r  = 1;
eO = 8 . 8 5 4 e - 1 2 ;

f o r  K = 1 :A r r a y s i z e y

f o r  1 = 1 : A r r a y s i z e x

i f  d i s t l ( I , K )  > r a d i u s  & d i s t 2 ( I , K )  > r a d i u s  + 
d i s t l n s ( I , K) | . . .

d i s t 2 ( I , K )  > r a d i u s  & d i s t l ( I , K )  > r a d i u s  +
d i s t l n s ( I , K ) ,
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e t o t a l ( I , K )  = k w a t e r * e O ;
T o t a l c a p ( I , K )  = e t o t a l ( I , K )  * E A ( I , K )  /  d ( I , K ) ;

e l s e  i f  d i s t l ( I , K )  < r a d i u s ,
A w a t e r ( I , K )  = a b s ( d i s t 2 ( I , K) - r a d i u s ) ;  
A a i r ( I , K) = d i s t l ( I , K )
C w a t e r l  = e O * k w a t e r * A w a t e r ( I , K ) / d ( I , K ) ; 
C w a t e r 2  = e O * k w a t e r /  ( L - ( c i r c y + r a d i u s ) ) ;  
C w a t e r 3  = e O * k w a t e r / ( c i r c y  - r a d i u s ) ;
C a i r  = e O * k a i r ( d i s t l ( I , K) + r a d i u s ) ;
C a p l  = 1 /  ( 1 / C w a t e r 2  + 1 / C w a t e r 3  + l / C a i r )  
T o t a l c a p ( I , K) = C a p l  + C w a t e r l ;  

e l s e  i f  d i s t 2 ( I , K )  < r a d i u s ;
A w a t e r ( I , K) = a b s ( d i s t l ( I , K) - r a d i u s ) ;  
A a i r ( I , K )  = d i s t 2 ( I , K )
C w a t e r l  = e O * k w a t e r * A w a t e r ( I , K ) / d ( I , K ) ; 
C w a t e r 2  = e O * k w a t e r /  ( L - ( c i r c y + r a d i u s ) ) ;  
C w a t e r 3  = e O * k w a t e r / ( c i r c y  - r a d i u s ) ;
C a i r  = e O * k a i r ( d i s t l ( I , K) + r a d i u s ) ;
C a p l  = 1 /  ( 1 / C w a t e r 2  + 1 / C w a t e r 3  + l / C a i r )  
T o t a l c a p ( I , K) = C a p l  + C w a t e r l ;

e n d

e n d
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Matlab Bjerknes Forces vs. Buoyancy Forces

%Andrew Tam
%Bubble D y n a m i c s  P l o t t i n g  E x p a n s i o n  o f  a  b u b b l e  i n  a  S o u n d  
P r e s s u r e
% F i e l d  w i t h  t h e  f o l l o w i n g  p a r a m e t e r s  

% D r i v i n g  s o u n d  p r e s s u r e  f i e l d

f  = 2 0 0 0 0 ;  
w = 2 * p i * f ;
t  = 0 : 0 . 0 0 0 0 0 0 1 : 0 . 0 0 0 1 5 ;  
Pap = 1 . 4 ;
Pa = P a p * c o s ( w * t ) ; 
a x i s  o n ;  
p l o t ( t , Pa)
x l a b e l ( 1 t i m e  ( s e c )  ' ) ;  
y l a b e l ( ' P r e s s u r e  ( a t m ) ')

F r e q u e n c y  Hz 
r a d / s e c  
Time s e c
D r i v e  P r e s s u r e  A m p l i d t u d e  a tm  
D r i v e  P r e s s u r e  S i n u s o i d

R a d i u s  S i z e  w / r

d e n s i t y p  = 1 . 2 9 ;  % D e n s i t y  o f  A i r  kg/m ^3
P0 = 1 . 0 ;  % A m b i e n t  P r e s s u r e  a tm
RAdot  = r e a l ( 2 / 3 * ( (Pa - P 0 ) / d e n s i t y p ) . A ( 1 / 2 ) ) ;  
t o  p r e s s u r e  
h o l d  o n ;
p l o t ( t , R A d o t k ')  % P l o t s  b u b b l e  s i z e  a s  a  f u n c t i o n  o f  t i m e  d u e
t o  s o u n d  p r e s s u r e

% Fo rc es

rw = 0 . 1 5 ;  % r a d i u s  o f  t h e  b o d y  o f  w a t e r  
r  = 0 . 0 7 5  % c e n t e r  o f  f l a s k
RA = 7 e - 6  ; % I n i t i a l  R a d i u s  
A = p i* R A ^ 2 ;  % A r e a  o f  B u b b l e

P r = l / r * s i n ( p i * r / r w ) * s i n ( w * t ) ;
V = 4 / 3 * p i * ( 5 0 0 0 0 * R A * R A d o t ) . " 3 ;  %Volume o f  b u b b l e  5 0 0 0 0  i s  a 
s c a l i n g  f a c t o r

h o l d  o n ;
p l o t ( t , V , ' r ') % P l o t s  V o lum e v s .  Time

F b u o y  = 9 . 8 1 * ( d e n s i t y p - 1 ) * V ;  % B u o y a n c y  F o r c e s  
F b j e r  = - V . * P r ;  % b j e r k n e s  f o r c e s

f i g u r e ;
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s u b p l o t ( 3 , 1 , 1 )
p l o t ( t , 5 0 0 0 * F b j e r )  % P l o t s  B j e r k e n e s  F o r c e s  5 0 0 0  i s  a  s c a l i n g  
f a c t o r
t i t l e ( ' B j e r k n e s  F o r c e s ' ) ;  
x l a b e l ( ' t i m e  ( s e c ) ' ) ;  
y l a b e l ( ' F o r c e  ( n N ' ) ;  
s u b p l o t ( 3 , 1 , 2 )
p l o t ( t , 1 0 0 * F b u o y )  % P l o t s  B u o y a n c y  F o r c e s  10 0 i s  a  s c a l i n g  f a c t o r
t i t l e ( ' B u o y a n c y  F o r c e s ' ) ;
x l a b e l ( ' t i m e  ( s e c ) ' ) ;
y l a b e l ( ' F o r c e  ( n N ' ) ;
s u b p l o t ( 3 , 1 , 3 )
p l o t ( t , a b s ( P a ) )
t i t l e ( ' P r e s s u r e  F i e l d ' ) ;
x l a b e l ( ' t i m e ( s e c ) ')
y l a b e l ( ' P r e s s u r e  ( a t m ) ')

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VITA AUCTORIS

Andrew Tam

2004 -  Present

2000 -  2004

M.A.Sc. Electrical & Computer Engineering, University 

Windsor

B.A.Sc. Electrical & Computer Engineering, University of 

Windsor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	A MEMS sonoluminescent ultrasonic sensor.
	Recommended Citation

	tmp.1507664919.pdf.OnajT

