University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Rational hierarchical planning and coordination in multi-agent
systems.

Dong Liang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Liang, Dong, "Rational hierarchical planning and coordination in multi-agent systems." (2006). Electronic
Theses and Dissertations. 7069.

https://scholar.uwindsor.ca/etd/7069

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7069?utm_source=scholar.uwindsor.ca%2Fetd%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RATIONAL HIERARCHICAL PLANNING AND COORDINATION IN MULTI-
AGENT SYSTEMS

by
Dong Liang

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through Computer Science
in Partial Fulfillment of the Requirements for
the Degree of Master of Science at the
University of Windsor

Windsor, Ontario, Canada

©2006 Dong Liang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
ISBN: 978-0-494-35930-3
Our file Notre référence
ISBN: 978-0-494-35930-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Multi-agent planning involves agents planning to achieve a set of common goals.
In dynamic environments, agents are required to make autonomous decisions at execution
time. Coordination is necessary to manage the interdependencies between activities
performed by all agents and to achieve intended goals. This thesis uses a framework that
incorporates notions from game theory and Hierarchical Task Network planning to
achieve a degree of coordination and ensure that the agents exhibit some form of rational
behavior. The utility-based approach incorporates spatiotemporal factors in assessing the
utility of various desired goals, and in selecting the appropriate intentions.

To test the proposed approach, a multi-agent urban disaster simulation
environment is used where rescue agents cooperate to extinguish fires, save injured
agents, and clear blocked roads.

These tests show that in many cases, the proposed approach has outperformed

other approaches that rely on different heuristics in planning and coordination.

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to give my thanks to Dr. A. Tawfik, my supervisor, for giving me
such a great chance to participate in Robocup 2004 (Lisbon), and his guidance and
suggesﬁons.

I am very grateful to the contributions of other ARK Team members: Zina
Ibrahim, Robert Price, Li Qin and Zhiwen Wu.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ... e et et e e ee e e e 111
ACKNOWLEDGEMENTS. ...ttt e et e ee e e iv

TABLE OF CONTENTS. ...t v
LIST OF FIGURES. ...ttt et e et et vii

Chapter 1 Introduction to MAS. ... e 1

1.1 MAS MOtVAtIONS. ... vttt ettt st e e e eeees 1

1.2 What is an AZENt?einiitiitit ettt e e e 5

1.3 ENVIFOMMENL. . ..tnetteniit it eiee et ettt eeee e e e et ene e et anaaanaans 8

1.4 MAS CoOrdination...........ouuenuinnii et v e e e neeaees 9
1.5 OVEIVIEW. ..ottt e e e 10
Chapter 2 Multi-agent Coordination............cc.oiviieiiiiniiiniiniiiinereiienenenee 11
2.1 Game ThEOTY. «.cuueinniie e e e e e e e e ee e 11
2.1.1 Cooperative and Non-Cooperative.covveiuiieiiniininnennaniennen 12
2.1.2 Optimal Decision Making............cooeiuiiiiiiiiiiiiiiiiiii e 15
2.1.3 Iterated Elimination of Strictly Dominated Actions (IEADA) 19
2.1.4 Nash Equilibrium.........c..oooiiii e 22
2.2 Agent Coordination.cooiniiitiii i e 24
2.2.1 Formal Coordination.cccooiiiiiiiiiiiiiniii i ieeaes 24
2.2.2 Agent CommuNICAtION.oiuuintii i e e 26
2.2.3 S0cial CoNVENtIONSc.cuineintintiireei et e e 27
224 ROIEPIAY. ..ot 29
2.2.5 Coordination Graphs..........cooooiuiiii i 31

\%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Multi-agent Learning............coviiiiiiiiiiiiiiiiiiiiii e 35

2.3.1 Single-agent Reinforcement Learning..............coooovieiiiiiiiniiiini 37
2.3.2 Multi-agent Reinforcement Learning..............coooooviiiiiininn.. 39

2.4 Multi-agent Planning. ..o 41
2.4.1 Single-agent Planning (SAP)c.cooiiiiiii 42

2.4.2 Multi-agent Planning (MAP)cooovniiiiiiiiiiiiiians ereaae 48

2.5 Conclusions of MAS Coordination..............cooeiuiieiiiiireieniiiiiiiinn 53
Chapter 3 Robocup Rescue Simulation System Introduction.....................o.o... 55
3.1 RCRSS INtroduCtion..........oviiiiiiiiiiiiiiiiinie e 55

3.2 Structure of RCRSS. . e 56

3.3 Agents Development Tool-YapAPL........c..cooiiiiiiiii 59
Chapter 4 Multi-agent Hierarchical Planning................coooiiiiiiniiiiiiin 63
4.1 Hierarchical Planning..............cooiiiiiiiiiii e e e 63
4.2 Spatiotemporal Utility.........ououiiiiiiiiiiiiii e 72
Chapter 5 Robocup Rescue Implementation, Results..............c..cooiii 84
5.1 Communicative ACHOMNS. .. .uutiutit ettt it ae e eer e et aeeaeas 84

5.2 Implementation Results............c.oooiiiiiiiiiiiiii 85
Chapter 6 Conclusion and Future Work..........ccoovviviiiiiiiiiiiininn, 92
6.1 Recommendations for Future Research...............c..co 94
BibOZIapRY ..o vttt e e 94
A4 LE TN Lo (o) o PPN 98

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1-1 A Single Agent System Framework.................cooeviiiiiiininn.. 2

Figure 1-2 A General Multi-agent Framework..................ocoeiiiiiiiiiinnn, 3

Figure 1-3 A General Autonomous Agent 6...........ccoveviiiieineiieeiennnnn. 6

Figure 1-4 Flowchart of Reasoning from Sensors to Effectors..................... 7

Figure 2-1 The Gunners Dilemma (Cooperative Game) 13
Figure 2-2 Match Penny (Competitive Game)ccceveviiivieennninnennnnn.n. 14
Figure 2-3 Crossroad (Coordination Game)ccooeiieiiiiniiiiiaannn.. 17
Figure 2-4 The Outcomes from the Bargaining Area 17
Figure 2-5 A World with One Desired (+1) and Two Undesired (-1) States.... 18
Figure 2-6 IESDA Not Predict........ccooviiiiiiiiii e eeaee 22
Figure 2-7 Bach or StravinsKy........ccocoiiiiiiiiiii e 25
Figure 2-8 Coordination by Social Conventionsc.coceeviviinnenenanan 28
Figure 2-9 Role ASSIgNmeEntooooiiiiiiiiiiiiiei e e, 30
Figure 2-10 A Coordination “Graph for a 4-agent Problem......................... 32
Figure 2-11 Coordination Graph Algorithmci 33
Figure 2-12 Block World Model.........cooviiiiiiiiiiiiii e 47
Figure 2-13 Planner Representationc.cciiiiiiiiiiiiiiiieie i, 48
Figure 3-1 Structure of the RCRSS....... ..., 57
Figure 4-1 Plan Refinement. ... 67
Figure 4-2 Abstract Actions Upper Layer.........cocooiiiviiiiiiiiiiiiiiiiniennn, 68
Figure 4-3 Example of Mapping Abstract Actions to Concrete Actions........... 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5-1 RCRSS Viewer Shows the Kobe Map...................... e 86

Figure 5-2 The Scores of Kobe Map Round 1.............cooiiiiiiiiiiiini. o 87
Figure 5-3 The Safe Building Area of Kobe Map Round 1.......................... 87
Figure 5-4 The Scores of Kobe Map Round 2., 88
Figure 5-5 The Safe Building Area of Kobe Map Round 2......................... 88
Figure 5-6 The Scores of Kobe Map Round 3. 89
Figure 5-7 The Safe Building of Kobe Map Round 3........................ 89
Figure 5-8 The Scores of Foligno Mapcocooviiiiiiiiiiiiiiiiiiieiieee e 90
Figure 5-9 The Scores of Virtual City Ma90...........coiiiiiiiiiiiiiiiiiiiie 90
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1 Introduction to MAS
"The study of multi-agent systems (MAS) is a subfield of Arrtiﬁ(';ialjlntelligence that aims
at providing both principles for constfuction of complex systems involving multiple
\agents(, and mechanisms for coordinating the behaviour of independent agents. In MAS,
an agent has incofnplete iﬁfonnation or capabilities for solving a problem. Usually, there |
is no centralized control, and cofnputétion in MAS is asynchronous (Sycara, 1998).
Since the 19805, MAS have becoﬂle more popular. MAS have been used in a variety of
application domains, ranging from industry to space, and military. Industrial applications
include manufacturing process cohtrol, air traffic cogtrol, multi-armed robots and mobile '
robots, which were the initial motivators of MAS research. Web agents and grid
computing agents are examples of information management agents, composing queries or
providing services, and controlling workflows on computational grids.. Simulation
environments examples are goal-directed agents for training or electronic games.
Managing crisis situations examples include the cleanup of toxic waste, nuclear power
plant decommissioning, fire fighting, search and rescue missions, security, and
surveillance.

1.1 MAS Motivations

While single-agent systems are more intuitive than multi-agent ones as single-agent
systems are more efficient than multi-agent systems when they deal with sequential tasks.
A single-agent communicates only for two reasons: to gather problem information or to
presént results. Therefore, in single agent systems communication requirements are

simpler than in MAS. However, when dealing with complex tasks, multi-agent systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have more advantages over single-agent systems. Multi-agent systems are more efficient
due to the parallel execution of asynchronous computations; and more robust because the

“functionality of.the whole system does not rely on a single agent.

In a singie-agent system as illustrated in Figure 1-1, there are three kinds of
constituents: the agent, the environment, and their interactions. The agent is an
independent entify with its goals, actions, and knowledge that is situated in the
environment. In a single-agent system, no other such entities are recognized by the
agent. Therefore, even if there are indeed other agenté in the world, they are not modeled
as having goals, actions, and knowledge. They are just considered part of the

environment,

Environment Agent
/) Effectors
< 4 e QGoals
[: > e Actions
Sensors e Knowledge
e

~—

Figure 1-1 A Single Agent System Framework

There are many different kinds of multi-agent systems, some have competing
objectives (e.g. self-interest agents), some have distributed control, some have
communication constraints (e.g. delay, privacy), and some have computation constraints
(e.g. processing power, concurrency). In many situations, there are different

heterogeneous agents (rQbots) or teams with different goals, capabilities and knowledge,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that have to interact as part of a MAS. Despite their diversity, MAS share some common |
properties. .

The difference between Multi-agent systems and single-agé;nt Systems is that several
’ageﬁt.s exist in the MAS model and éach agent has a set of goals and actions. As
illustrated in Figure 1-2, in the general multi-agent scenario, there may be direct
interactions among agents (cofnmunication). From an individual agent’s perspectivé, the
'engfifonment can be affected By othér agents. All multi-agent. sysfems can be viewed as
having dynamic environments and each agent is both part of the environment and

modeled as a separate entity.

Environment Agent
P Effectors (- e Goals
> e Actions
Sensors e Knowledge
§ L
Effectors L
Communication
Sensors Agent
e Goals
e Actions
o Knowledge

Figure 1-2 A General Multi-agent Framework

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The motivations for the increasing interest in MAS include (Sycara 1998):

(1) Resource constraints. Some problems are too Vla:ge ‘fpr“a _sirngl_'q—»ageptr_tghag@lgﬂ o

because of resource limitations. Moreover, the risk Qf héving Qne centralizredr
system could lead to a performance bottleneck or critical failures. .

(2) Business needs. MAS can interconnect and interoperéte with multiple existing
legacy S};stems. To keep pacé with business needs, legacy systems must
peﬂ§dica11y be updated; It is‘ too expensive to completely rewrite such SoﬁWaré.
Incorporating legacy systems into an agent sqc_isty can be done, for instance, by
wrapping an agent around the software to enable it to interoperate. with other
systems. Therefore, in the short to medium term, ’the best way that such legaéy‘
systems can remain usefﬁl is to incorporate them into a wider cooperating agent
community in which they can be exploited by other pieces of software.

(3) Society needs. MAS can prqvide solutions to problems that can naturally be
regardéd as a society of autonomous interacting agents. For example, in meeting
scheduling, a scheduling agent that manages the calendar of its user can be
regarded as autonomous when it interacts with other similar agents that manage
calendars of different users. Such agents also can be customized to reflect the
preferences and constraints of their users. Other examples include air-traffic
control and multi-agent bargaining for buying and selling goods on the Internet.

(4) Distributed information sources. MAS can provide solutions that efficiently use
spatially distributed information sources. Examples of such domains include

sensor networks, seismic monitoring and information gathering from the internet.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5) Distributed expertise. MAS can provide solutions in situations where expertise

~is distributed. Examples of such problems include concurrent engineering, health

 care, and manufacturing. -

1.2 Wﬁat is an Agent?

As shown in Figure 1.2, agents can sense, percéive and affect the environment; and they
interact with other agents within their environment. Then, what ié an agent in MAS? ;‘An
agent is anythmg that can peréeive‘ its environment through sensqré, and can act upon
that environment through effectors”’ (Russell and Norvig, 2003‘). An agent could be an
entity, such as a robot, with goals’, actions, and doxﬁain knowledge, situated in a.n
environmeﬁt. There are many different kinds of agents. This thesis deals mostly with
autondmdus agents. An autonomous agent is an agent whose decision-making relies on
its perceptions as well as on prior knowledge (Vlassis, 2003). An autonomous agent is
able to rationally balance proactive and reactive behaviors. For example, huﬁms, robots,
or soffware agents can be considered autonomous when they independently make their
own decisions. A reactive agent’s decision making does not rely on reasoning. It chooses
the actions based on some prior knowledge, the decision making goes from Percepts to
Events, and then Actions. A purely reactive agent has no representation of their
environment, no reasoning based on perceptions. Decision ‘making is implemented in

some form of direct mapping from events to actions, in other words, it is a stimulus-

response pattern of behavior. Unlike a reactive agent, a reasoning agent has beliefs, goals,

and plans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Agent

- Environment " / T T \
Sensors /v| Events ¥ Beliefs |

TN —
| |
= .

D Effectors | ™~ Actions [+ Plans '
— %

Figure 1-3 A General Autonomous Agent

f

As illustrated in Figure 1-3, agents are situated in an environment. Actions and percepts
Vform the interface between‘the agent and its environment. In order to interact with
environment, an agent must recognize significant things when they happen. These
siéniﬁcant things are termed eQents. Beliefs represent the information generated from the
perception of the environment. Goals are what agent strives for. In general goals yield
autonomy and proactiveness, and also used to measure progress and detect errors. Plans
are defined .as the way of achieving goals. Decisions are modeled in a range of ways
including explicit commitment. At the last step of the interaction with the environment,

the agent has to take some action(s).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1-4 Flowchart of reasoning from sensors to effectors

In order to illustrate the agent and environment interaction more clearly, consider Figure

1-4 (Winikoff et al, 2001) as a flow chart:

1. Percepts by Sensors are interpreted to events.

2. Beliefs are updated from percepts and current belief.

3. Events and updated beliefs can yield reflexive actions.

4. Goals can be updated with current goals, beliefs and events.

5. Plans can be generated with goals, current state. This is decision making.
6. Plans yield actions.

7. Actions are scheduled and performed.

Usually a reactive agent goes from 1, 3 to 7. A reasoning agent goes through the steps
1,2,4,5,6,and 7. A rational agent refers to an agent that always selects an action which

optimizes an appropriate performance measure. An optimal decision making problem for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an agent is how the agent can choose the best possible action each time, given what it
 kmows about the world around it. For example, a fire brigade agent must decide optimally
" when it chooses a fire to extinguish arﬁong a set of raging ﬁ"fes,A it also has to decide
optimall}; on h§w to use the current supply of water, when to reﬁll; and which route to
take. "fhe performance measure is typically‘ defined by the designer of the agent and

| _ reﬂects whét the user ekpects from the agent with respect to the task at hand. |

Homogenéoﬁs agents are desigﬁed in an identical way and have a priori the same
capabilities. In contrary, heterogeneous agents have different designs that may involve
different hardWare, (for example, soccer robots based on different mechanical platforms)
or software (for example, software agents running' different operating systems) or the
agents that are based on the same hardware and software but implement different
behaviors (for example, in Robocup Rescue, ambulance agents, fire brigades agents and
police force age‘ntsv have different action sets). Agent heterogeneity in multi-agent
systems can affect all functional aspects of the agent from perception to decision making,
while in single-agent systems the issue is simply nonexistent.

From the communication perspective, agents can be divided into communicative
agents and non-communicative agents. From the goal perspective, agent interactions
can be either cooperative, meaning that the agents can share a common goal or selfish
(self-interest), means agents can pursue their own interests.

1.3 Environment
The environment that agents interact with is either static or dynamic. Static
environments (time invariant) are easier to handle and allow for a more rigorous

mathematical treatment. For example, chess games are static while dynamic

s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environments (time variant) change with time as in RoboCup Rescue. The presence of

multiple agents makes the environment appear dynamic. This can be a source of

" difficulties, since the environment changes while the agent reasdns ébout it.

A dyhamic real-time environment is one that changes with timé even Without the
influence of agénts. A real-time change in the environment is only relevant to a group of
agents. This‘grou‘p has to respond to the change by adjusting théir goals,‘plans, éctioné, or
scheduies. |

The information that can be sensed by the agents. iq“ya dynamic MAS environment is
typically spatially distributed (appear at different locations) and temporal (arrive at
different times). This éutomatically_makes the world state partially observable to each

agent. Therefore, agents have to use some spatiotemporal reasoning.

1.4 MAS coordination

A bunch of agents work in a dynamic environment, to achieve their goals, it is essential
for agents to decide on an appropriate course of actions, allocate their limited local
resources, and finally execute their actions. Sometimes, it is necessary for agents to work
together to solve a problem. If the agents work together, they can achieve their common
goals faster, and some goals are even impossible to achieve without collaboration.
However, in other circumstances, it is more productive for the agents to separaté or work
in small teams. For example extinguishing a lérger fire may require several fire brigades
to collaborate, while it is better for rescue agents looking for injufed civilians to work
individually. The problem of managing interdependencies between agents arises

whenever coordination is necessary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Overview

: applies to multi-agents, MAS coordination mechanisms, multi-'agent learning and multi-:
agent pla;niing (MAP). Chapter 3 presents the contribution to MAP based on hierarchical
planm'ng and spatiotemporal utilities. Chapter 4 demonsuates the Viability of the
proposed MAP approach using the RoboCup rescue sirﬁulation as a test bed and

evaluates these results. The lavstb chapter presents some conclusions and future research.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_The remaining chapters are organized as follows: Chapter 2 introduces game theory as it~

Chapter 2 Multi-agent Coordination

~ Multi-agent cbordil;atioh has been defined as “the act of 7managmg interdependencies
between activities performed to achieve a goal” (Malone and Cfowgton; 1990). Solutions
to the coordinétion problem can be divided into three general classes: solutions based on |
cémmunications, vot‘hers based on conventions, and a third class _based on learning
(Boutlier, 1996). This Chépter starts from the basics of Game Theory, and then shows -
what the Optimél Joint Action is.. Different approaches used in MAS cqo;dination are

also preseﬁted.

2.1 Game Theory
Game thedry is the systematic study of rational playefs who interact with each other and
make choices based on utilities associated with different choices. In multi-agent systems,
game theory is used for formal study of conflicts and cooperation between agents as well
as in making that potentially affect the interests of the other agents. Game theory can be
applied wherever the actions of several agents are interdependent. While, this thesis treats
game theory as it applies to autonomous intelligent agents, the theory applies to other
situation where the agents may be individuals, groups, firms, or any combination of
these. The concepts of game theory provide a language to formulate, structure, analyze,
and understand strategic scenarios.

The notion of ’equilibrium points in n-player games as introdﬁced by Nash (1950)
complements the mathematical foundations of game theory as defined by von Neumann
and Morgenstern (1944). Game theory has been used to model interactions in political

science, economics, and multi-agent coordination. Games can be roughly divided into

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two broad areas: non-cooperative (or strategic) games and co-operative (or coalitional)

" 2.1.1 Cooperative and Non-Cooperative

Strategy is a complete sequence of actions for a player. A strategic game, also known as
a game in nonhal fofm, is a game in which players simultaneously'choose their strategies.
The utility in game theory is a measure of the happiness or satisfaction to the goods and
services gained. The payoff in game theory represents the utility of | individual players.
There are three constitt_lents comprising a strategic game: é list of participants, a list of
strategies for each player, and a utility function (or a list of payoffs) for each player in
each combination Qf strategies.

Ina strategib game, each agent chooses a single action and then receives a payoff
that depends on the selected joint action. The resulting payoffs are presented in a table
with a cell for each strategy combination. The joint action is calledb the outcome of the
game. The important point to note is that, although the payoff functions of the agents are
common knowledge, an agent does not know in advance the action choices of the other
agents. The best an agent can do is to try to predict the actions of others. A solution to a
game is a prediction of the outcome of the game using the assumption that all agents are
rational and strategic. Pure strategy means the plan of action is completely determined. A
specific action is prescribed for each situation. While mixed strategy has a probability
distribution over the player’s pure strategies.

“ A classic example is that two gunners face the choice to flee from the advancing
enemy or stay and operate their gun. They are stationed at a strategically important, but

dangerous, pass. If they both stay, they can assure the enemy's advance will be halted.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, they each face a significant risk of injury. If they both flee, they will lose the
_strategic pass, and their capture by the enemy is assured. If just one stays, that soldier:
iwill die in battle, while the cowardly soldier escapes unhalmed;, If each soldier's goal is
to survive; the attack, preferably unharmed, then each soldier has reason to ﬂée. (Verbeek

et al, 2004)

Gunner 2
Stay Flee
Gunner 1 Stay | 2,2 0,3
| Flee 3,0 1,1

Figure 2-1 The Gunners Dilemma (Cooperative Game)

- The above diagram in Figure 2-1 is called payoff matrix. This diagram shows that
the payoff a gunner expects depends on the choices made by both agents. Each gunner
has the choice between fleeing and staying. This choice is represented in the rows for
gunner 1 and the columns for Gunner 2. Each cell has a pair of payoff numbers, the
number on the left side is Gunner 1°s payoff, and the number on the right side is Gunner
2’s payoff. Games like the Gunner’s dilemma, where the agents may or may not collude
are called cdoperative games. In strictly cooperative games, the payoff matrices are
identical.

Consider the case for Gunner 1. Suppose Gunner 2 decides to stay, Gunner 1’s best
choice is Flee and survive without getting hurt. In the formal representation of the matrix,
this choice secures a higher payoff (3 rather than 2). Suppose Gunner 2 decides to Flee.
Again, Gunner 1’s best choice is Flee and survive the battle, although there is a risk of

imprisonment for the duration of the war. If Gunner 1 were to stay, fight, and then die the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

payoff would be lower (O rather than 1). Gunn.er 2 is in the same position as Gunner 1, no

matter what the other gunner does, the best choice is Fleeing. In short, each individual
'gunnewrr would be better off fleeing, regardless of what the :other does. Howéver, it

" remains true that the joint payoff would be greater if both stood their ground.

| . Player 2
.Head Tail
Plager] Head [T.1 L1
| Tail | -1,1 1,-1

Figure 2-2 Match Penny (Competitiile Game)

If the agents (playérs) are strictly competitive (p1ay against each other), the game is
called nmon-cooperative. In non-cooperative game the payoffs are different for each
player. In Figure 2-2 player 1 wins if both agents choose the same coin face while player
2 wins if the two choices are different. Each cell of the payoff matrix corresponds to one

player wining and the other loosing. It is a zero-sum or strictly competitive game.

Car2
Cross Stop

Car1 Cross |-1,-1 1,0
Stop | 0,1 | 0,0

Figure 2-3 Crossroad (Coordination Game)

Consider another coordination game example (Vlassis, 2003). The game in Figure2-3

represents two car drivers meeting at a crossroad; each agent wants to cross first and get a

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

payoff 1. However, if they both cross they will crash and both get -1 for payoff. Here,
the agents have conflicting interests yet it is in the best interest of both agent to avert an
, .rilrlﬁnite wait or a crash.

2.1.2 Optimal Decision Making

Contrary to single—agent systems, usually there is no central controlling agent that decides
what eaéh agent must do at each time; control in a MAS is typically distriiauted. The

- decision making of each agent lies to a large extent within the agent itself, this is called

, disfributed decision making. Distributed decision making is advahtagéoﬁs for multi-
agent systems as there is no need for a centrai entity that collects infonnatibh from all
agents and thén decides what action each agent should take. Each agent is responsiﬁle for
its decisi‘oyns. The main advantages of such a decentralized approach over a centralized
one are efficiency, and robustness. Efficiency is due to the asynchronous computatidn. As
the funétionality of the whole system does not rely on a central agent, robustness is
improved (Vlassis, 2003).

Coordination ensures that the individual decisioﬁs of the agents result in good joint
decisions for the group. The world changes when an agent takes an action. A transition
model specifies how the world changes after an action is taken. There are two types of
transition models, one is based on a deterministic world model, and the other considers
the world as a stochastic system.

Goalis a desiréd state of the world. Planning is the process of searching through the
state space for an optiﬁal path to the goal. Some games with no states are called matrix
games. When the world is deterministic, agent planning comes down to a graph searcﬁ

problem where a variety of methods exist and the game is called Markov game. If each

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agent has a deterministic action choice, the game is also calléd a pure strategy game.
~ When the world is'stochastic, planning cannot be doﬁé by simple graph search because - -
'transitions between states are nondeterministic. The agent r\nust'_nO\'v faké fhe lincertainty
of the tra.nsitions into account when planning. If an agent has non-deterministic action
choices, the garﬁe is called mixed strategy game.

In mixed strategy games, there is a probability distribution over the availéble
strateg_ies of each individual. f‘or example, the gunners could decide to flee with a
probability. of, say, 1/3 and stay and fight with a probability of 2/3. Whereas before the
numbers in the matrix (0, 1, 2 and 3) only signified a ranking of the outcomes, here it is
assumed that the numbers provide some information to assess an expected péyoff. For .
example, the utiliity of “2” of the cooperative outcome means that the agent is indifferent
between this outcomes and a gamble which offers a ”0” payoff with probability 1/3 and
“3” with probability 2/3.

Let’s use the Gunners’ dilemma example, suppose that the gunners have a pair of
dice. Now they can realize cooperative distributions other than 2 each. If they agree to
throw both dice and if a total of 6 or less comes up Gunner 1 will flee (thus realizing a
utility value of 3). However, if the total of both dice is more than 6, Gunner 1 will stay
and fight the enemy (realizing his worst outcome of 0). The expected utility of this deal
for Gunner 1 is

30°/12)+ 0(7/12)= 1.25,
while Gunner 2 can expect 1.75 from this deal. In this way the gunners can realize a

whole range of outcomes by varying the chances that improves on the non-cooperative

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outcome. These outcomes form the bargaining area (see Figure 2-4)(Verbeek et al.,
-2004).

(0.3)

Utility #1

(0,0) Utility #2 (3.0)

Figure 2-4 The outcomes form the bargaining area

To formalize the notion of state preferences for a specific agent, utility of state s U(s)
is used for assigning to each state s a real number. If two states s and s’ are possible and
U(s) > U(s’), then the agent prefers state s to state s°, and if U(s) = U(s’), then there is no
difference between s to state s’. The utilit§ of a state expresses the desirability of that
state for a specific agent. The larger the utility of the state, the better the state is for that

agent. For instance, in Figure 2-5, an agent would prefer state ¢3 than state b2 or c2.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.
3 +1
2 -1 -1
1 | Start
a b c

Figure 2-5 A world with one desired (+1) and twd undesired (-1) states

In‘ non-cooperative games, a state may be desirable to a specific agent at a speciﬂc
time and undesirable to another agent. For exarﬁple in soccer, scoring is rewarding to one
team of agents, and obviously unpleasant to the opponent agents.

In a stochastic world, each action could result in one of a set of possible outcomes.
Egch possible outcorhe occurs with a certain probability and has an associated utility: To
make a decision, the agent has to consider the transition model P(s. 1|8, ay, where the
state s, is the agent’s current state, @, is an action, and s.+; is a possible future state after
the action. Let P(s.+ls, dJ be the probability of the transition and let U(s) be the utility

of state s for a specific agent. The expected utility (Russell and Norvig, 2003) is:

EU (a,ls,):s2 P(s1ls.,a,)U (5,41) 2.1)
t+1

Utility-based decision making is based on the premise that the optimal action a," of

the agent should maximize expected utility. Therefore,

o) =arg max x P(St+llst’at)U(st+l) (22)

4 S

where possible states s,+; € § are the states the agent may transit to, given that the

current state is s, and the agent takes action a,*. To evaluate the optimal action a,', the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

agent has to.multiply the utility of each possible resulting state s+, with the probability of
actually reaching that state, and sum up the resulting terms. Then the agent chooses the
‘action which gives the highest sum. |

A policy specifies an action selection criterion such that by applying the policy, a
complete mapping from states to actions is obtained. Therefore, choosing the action in

" each state that result in the largest possible utility value, (as specified in Equation 2.2)

constitutes a greedy policy. This f)olicy T maps states to actions in an optimal sense. By
choosing the optimal action a,” every time, the agent expects a set of optimal utilities
U’(s) with respect to é given task. This is also called the optimal policy for the agent
(Vlassis, 2003).

The action value function for a state s, and an action a, also known as the Q-value
O(s,a) measures the goodness of action a; in state s, for that agent. The maximum Q-
value for state s, and action q, for a specific agent is: U'(S,)=a_rgn}ft1x O(s,»a,)

Consequently, an optimal policy T maximizes the Q-values.

L* = arg max Q(s,,a,) (2.3)

a;

The advantage of using Q-values is that they do not require a transition model (Vlassis,
2003). It is enough to have a ranking of the actions in each state.

2.1.3 Iterated elimination of strictly dominated actions (IEADA)

As mentioned in Subsection 2.1.1, the strategic form is the normal type of game studied
in game theory. A game in strategic form lists each player’s strategies, and the outcomes
that may result from each possible combination of choices. The outcome of combination

of actions by all players is represented by a separate payoff for each player. In another

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

words, choosing a strategy means making a decisioh about what to do at each decision
,,,,,, poiét,,in, the game. *
In a multi-agent context, it is important to associate an acﬁon §vith the agent taking
“the actiéﬁ. We ﬁse the notation a,(i) to indicate that agent ibt‘akes éction a at time ¢.
Furthermofe, the notation a,(-~i) refers to the actions taken by agents other‘ than agent i.
We say that a,(i) is strictly dominated by anotlzer action a’(i) of agent i if |
wi (@), a'i) > ulal), af)) (24)
In équation 2.4, s, represents the state of the world inciuding actions taken by other agents
af-i). So, provided that the payoff that agent i receives in state s; by taking action a’; is
always supeﬁor to that résulting for actioh a.

Tterated elimination of strictly dominated actions (IESDA) ié an intuitive technique
used in game theory, which remoﬁes strictly dominated actions iteratively for all agents,
until no more actions are strictly dominated. It is based on the following two
assumptions: 1.Every agent is rational and can vpredict the outcome using a mechanical
procedure; 2. A rational agent would never take a strictly dominated action (Vlassis
2003).

In the Gunners dilemma, as Gunner 1, can see by examining the payoff matrix that
payoffs in each cell of the bottom row are higher than the payoffs iﬁ each corresponding
cell of the top row. Therefore, it can never be rational for the Gunner to play top row
strategy (Stay), regardless of what the other dpes. Since the top row strategy will never be
played, we can simply delete the top row from the matrix. Now it is obvious that Agent 2
will flee, since his payoff from fleeing in the two cells that remain is higher than his

payoff from staying. So, once again, we can delete the one-cell column on the left from

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the garhe. We now have only one cell remaining (Flee, Flee). Since the reasoning that led
us to delete all other possible outcomes depends at cach step only on the premise that
"both players are economically rational, prefer higher payoffs to llower ones, there are
strong grounds for viewing joint fleeing as the solution to the game, or the outcome.on
which its players must converge. The order in which strictly dominated rows and columns
are deleted doesn't matter. Had we 'begun by deleting the right—hand column and fhen
deleted the bottom row, we woﬁld have arrived at the same solution. |

As an exampie, in the Gunners dilemma (Figure 2-1), Stay is a étriétly dominated
action» for Gunner I; no matter what Gunner 2 does, the action Flee always gives Gunner
1 a higher payoff thanbthe action Stay. Similarly, Stay is also a strictly dominated action
for Gunner 2.

When we apply IESDA to the Gunners dilemma, the action Stay is strictly dominated
by the action Flee for both agents. Let us start from agent 1 by eliminating the action Stay
from his action set. Then the game reduces to a single-row payoff matrix where the action
of Gunner 1 is fixed (Flee) and Gunner 2 can choose between Stay and Flee. Since the
latter gives higher payoff fo Gunner 2 (1 as opposed to 0 for Stay), Gunner 2 will prefer
Flee to Stay. Thus IESDA predicts that the outcome of the Gunners dilemma will be
(Flee, Flee).

The agents do not need to maintain beliefs about the other agents' strategies in order
to compute their dptimal actions in the IESDA algorithm. The only thing that is required
is the common knowledge assumption that each agent is rational. Moreover, it can be
shown that the algorithm is insensitive to the speed and the elimination order; it will

always give the same results no matter how many actions are eliminated in each step and

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which order. However, IESDA sometimes cannot make accurate predictions for the

___outcome of a game, if IESDA cannot eliminate an action from the action table (Vlassis-

.2003). For example:

Player 2
C D
Piayer 1 A 2,2 1,2
B 1,2 1,1

‘ Figure 2-6 IESDA not prédi’ct
In Figure 2-6 , IESDA cannot eliminate any action from the table.

2.1.4 Nash Equilibrium

Strategy tellé player what action to take at each point of game. Nash equilibrium. is a
kind of optimal strategy for games involving two or more players, where no player has
anything to gain by changing only one's own strategy. The theorem can be stated as: In
the n-player normal form game G={S,,...S,; uy,...un}, if n is ﬁﬁite and §; is finite for
every i then there exists at least one Nash Equilibrium, possibly involving mixed
strategies (Nash 1950). In other word, if there is a set of strategies with the property that
no player Can reward by changing his strategy while the other players keep their
strategies unchanged, then that set of strategies and the corresponding payoffs constitute
a Nash equilibrium. Equilibrium represents the mutual and joint action in a shared
environment. Every player shares the strategy described in the Equilibrium. Pure strategy
Nash equilibrium (NE) is the utility of the new joint action is bigger than or equivalent to
any other jojnt action (2.5).

ui(a*(-i), a*(i)) = ui(a*(-i), a,(i)) 2.5)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where a*/(i) is the optimal action agent i will take at time #, a*,(-i) is the optimal joint
~action taken by the ré;sf_ of agents, a (i) is the any other action agent i can take at time ¢.
w(@t), aD) > @), af)) Q6) |

Equation 2.6 is called strict pure strategy NE. NE makes a joint action that no agent
can individually imprpve his payoff, and therefore no agent héis any reason to change the
NE from an overall perspective. ‘This is quite different to ESDA which is just an
algorithm that agent just does tai(e denominated action. |

There is an alternative definition of a NE, called best response function. This has been
defined as:

Bifaf-i)] = { wifa(-i), a(i)] 2uila(-i), a,(i)’] 2.7

Where a,(i) €A,(i), a(i)’ €A (i), a,(i)’ is any other action a(i) can take other than a,(i),
at time ¢ . B;fa(-i)] is the agent i’s best response to joint action a,(-i) taken by the rest
agents other than agent i at time ¢. Bifa,(~i)] can be a set containing many actions. Using
the definition of a best-response function, we can now formulate the Nash equilibrium as:
a joint action a* with the property that for every agent i holds (2.8)

a;* eBifa,(-i)*] (2.8)

That is, at a NE, each agent's action is an optimal response to the other agents'
actions. In the Gunner's dilemma, for instance, given that BI(Flee) = Flee, Bl(Stay) =
Flee B2(Flee) = Flee and B2(Stay) = Flee, we conclude that (Flee, Flee) is a NE.

Both (2.8) and (2.6) algorithms enumerate all possible joint actions, and then verify
which ones meet the condition. The two equilibriums 2.8 and 2.6 of a NE are equivalent.

The complexity of both of the algorithms is exponential to the number of agents (Vlassis

2003).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- The number of Nash equilibria in a strategic game could be a variant. For example,
(Flee, Flee) is the 'only NE in the Gunner's dilemma. We can also easily find that the
zero-sum game in Figure 2-2 does not have a NE, while the éoordination game in
Figure2-3; has two Nash equilibria (Cross, Stop) and (Stép, Cross).

NE is a stronger solution concept than IESDA .because it pfoduces more accurate
predictions of a game. If use IESDA algorithm eliminates-all but a single joint actioﬁ a,
then a, is the only NE of the gamé. ,A joint action a, is Parefo optimal, if there is no other

| joint abtion a,’ for which u,~(é,‘) > u,~@) for all agents. Pareto Optimal assumes that each
agent i will choose his action deterministically from his action set 4;. However, this is not
always true, since sometimes an agent i may choose actions a,i) with some probability
distributibn pila«i)] which can be different for each agent.

2.2 Agent Coordination

Coordination is defined by (Vlassis 2003) as “the process in which a group of agents
choose a single Pareto optimal Nash equilibrium in a strategic game”, which manages the
activities performed by agents to achieve a goal, and makes the agents capable of taking
their own decisions in a distributed manner. A typical situation where coordination is
needed is among cooperative agents that form a team, and through this team they make
joint plans and pursue common goals. In other words, agents do not obstruct each other
when taking coordinated actions.

2.2.1 Formal Coordination

A formal way to solve a coordination problem is to first model it as a strategic game and
solve it according to some coordination mechanism. Then use Nash equilibrium serve as
coordination mechanisms. Nash equilibrium is defined in terms of the conditions that

hold at the equilibrium point as the payoff that dominates all other equilibria, and ignores

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the issue of how the agents can actually reach this point. Therefore, coordination asks

~how the agents can actually agree on a single equilibrium in a strategic game that.
' involves more than one such equilibrium. Theoretically, wé éan ¥educe a co.ordination
problefn t.o the problem of equilibrium selection in a strategic game using gé,me theory.
In the example in Fig 2.3, two cars meet at a crossroad and the drivers have to decide
: what action to take. If they Both cross they will crash,vand it is not in thei: interest to étop.
Only one driver is éllowéd to cross and the other driver must stop; Who is goihg tb Cross
then? This is an example of a coordination game that involves two agénts and two
possible Solgtions: (Cross, Stop) and (Stop, Cross). As we known, these two joint actions
are Nash equilibriums bf the game and they are both Pareto optimal.
In the case of fully coopérative agents, all n agents in the team share the same utility
function u;(a) = ... = un(a) = u(a) in the corresponding coordination game.
For example, a coordination game is between two cooperative agents. Two agents

wish to go out together to a concert. Each agent has a choice between two types of

concerts either Bach or Stravinsky. (Figure 2-7)

Bach Stravinsky
Bach 1,1 0,0
Stravinsky 0,0 1,1

Figure 2-7 Bach or Stravinsky

Each agent has no prior information what concert the other agent will choose, and the
agents choose independently and simultaneously. Choosing the same concert gives them

payoff I, otherwise they get payoff 0. In this game the agents have to coordinate their

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

actions in order to maximize their payoff. As in the previous example, the two joint

_actions where the'agents choose the same musician_are two Pareto optimal Nash .

'equilibriums of the coordination game.

2.2.2 Agent Communication

Communication can be used in coordination among cooperative agentg or negotiat_ion
amohg self-interested agents. Communication, in the sense of making something known
or to exchange information w1th sorhebody, is a linguistic activity.. C‘omnvqunication
languages involve syntax, semantics, and must be carried out between paﬁies that have
the ability to transmit ideas. Communication between computerized agénts should be
carefully distingﬁished from communication in the human sense and restricted to using -
signals with fixed interpretation.

- Computerized agents’ communication can be viewed as an action that changes the
knowledge state in a MAS. To better achieve the goals of the agents or of the system in
which the agents exist, to maintain global coherence without explicit global control, to
determine common goals and common tasks, to avoid conflicts, and to pool knowledge
and evidence.

Communication methods could be active, passive or both. In other words, an agent
could act as a master, a slave or a peer. Communication in a MAS is a two-way process.
Message route could be binary (agent to agent), multicast (one agent to multiple agents)
and broadcast (one agent to every agent). All agents are both senders and receivers of
messages. There are two message types in communication: assertions and queries. All

agents accept information by means of assertions. A passive agent acéepts queries and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sends replies. An active agent issues queries and makes assertions. A peer agent can do
~alltheabove.
Communication is also ‘crlosely reiated to network protocols v'vhich are used for the
exchangé of information“safely and timely. Protocols define the language the agents must
speak in order fo understand each other and enable agents to have communication. For
example, Agent A/ proposes an actiqn to agent 42, agent A2 evaluates the proposé.l and
o sends back to agent AI: accéptance, counterproposal, or rejection. Communication
pfotocols enable agents to exchange and understand messages including: _pfdpose, accept, -
reject, retract, disagree, and counter-propose. |
There are three aspects to the formal study of communication: Syntax which means
how the symbols of communication are structured, Semantics which means what the
symbols denote, and Pragmatics which means how the Symbols are interpreted. The
structure of a protocol includes: Sender, receiver(s), language, encoding and decoding

functions.

2.2.3 Social conventions

Social conventions achieve coordination in a large class of systems and are easy to
implement. The conventions assume a unique ordering scheme of joint actions that is
common knowledge among agents. As the agent designer, we can specify some rules for
agents that will instruct the agents how to choose a single equilibrium in any game. A
social convention (or social law) (Boutilier 1996) is a set of rules that places constraints
on the possible action choices of agents. It can be regarded as a rule that dictates how the
agents should choose their actions in a coordination game in order to reach an

equilibrium.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ In a particular game, each agent first computes all equilibriums of the game, and then

~ selects the first equilibrium according to this ordering scheme. For instance, a
'lexjcogl'aphic ordering scheme can be used. In the coordination géme of Figure 2.6, for
example, .we can order the agents lexicographically by Al - A2 (> mea;ling that agcnt 1
has ‘priority’ over agent 2), or thé actions can be ordered by a convention Bach >
Stravinsky. The first equilibrium in the resulting ordering of joint actions is (Bach, Béch).
Social conventions algorithm can be presented in Figure 2-8. Every agent can first

computer all the equilibria’ in the game, and then choose the action with the biggest

" equilibrium.

For each agent i

{ .
Compute all the equifibriums in the game.
Sort these equilibriums based on a unique ordering scheme.
Choose action a*(i) with biggest equilibrium a* = [a*(-i), a*(i)] in the
ordered list.

}

Figure 2-8 Coordination by social conventions

‘There are some more elaborate ordering schemes for coordination, which can
dramatically improve the speed in some complex world states. Consider one easy
example, the traffic game of Figure 2-3. If traffic lights are available, the driver who

 sees the red light must stop, the driver who sees the green light will go. If there is no
traffic light, but the state contains the relative orientation of the cars in the physical
environment and the perception of the agents fully reveals the staté, then a simple
convention is first come first go, straight going driver has priority over left turn driver,

the driver coming from the left gives right of way to the driver coming from the right.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ordering the actions by Cross >~ Stop, then coordinate by these social conventions

'2.2.4 RolePlay

Agents c'ompufe all equilibriums in a gamé, énd fheﬁ chodse an action. However,

~computing equilibriums can be expensive when the action sets of the agents are large
(Vlassis 2003), therefore one would like to reduce the size: of the action sets first. Such a
reduction can have computational advantages, and more importantly, it can Simplify the
equilibrium selection problem.

Assigning roles to the agents can reduce the actio;l sets of the agents (Stone and
Veloso, 1999) (Nair et al., 2003). Formally, a role can be regarded as a masking operator
on the action set of an agent. For example in soccer .game, if a player plays offender and

_ possesses the ball, then he has action passing the ball, shooting the ball or making a
héader. If an agent is assigned a role at a particular state, then some of the agent's actions
are deactivated at thié state. Again in soccer games, an agent that is currently in the role
of defender cannot attempt to do the same things as offender. The actions he /can' make
are tackling the opponents, steéling the ball, etc. In this way, roles can facilitate the

coordination game by reducing the action set and making it easier to find equilibriums.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For each agent
Foreachrolej=1,..,m
Foreachagenti=1, ..., nwithi g/
{ . ,
‘ Compute the potential role value r; of agent i for role j.
) | N |
Assign role j to agent i* = arg maxifrj}. -
Addi*to /. '
R
}

Figure 2-9 Role Assignmeri;‘
The algorithm shown Figure 2-9 (Vlassis 2003) assigns a role j to agent i. The agent

can compute the role equilibrium, and select the role, then agent i is eliminated from the -
role assignment process. A new role‘is aséignéd tp another agent, and so on so forth, until
all agents have been assigned roles. After all roles have been assigned, the origiﬁal
coordination game is reduced to‘ a subgame that can be further solved using coordination
algorithms like, social conventions. For example, if Agent 2 is assigned a role that forbids
selecting the action Bach, then Agent 1, knowing the role of Agent 2, can safely choose
Stravinsky resulting in coordination. Then there is only one equilibrium left in the
subgame formed after removing the action Bach from the action set of Agent 2.

The algorithm (Figure 2-9) time complexity is polynomial in the number of agents
and roles (Vlassis 2003). Furthermore, its precondition is full observability of the state
providing that eacﬁ agent can compute the potential role of other agents. After all roles
have been assigned to agents, the original coordination game is reduced to a subgame that

can be further solved using coordination by social conventions.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ Mofeover, the role assignment algorithm can be applied to the game where the state is
ccontinuous (Vlassis 2003). If in this case, the algorithm requires a function that computes.

7 <p(7)ten‘tia17 ‘roles:, and such a ﬁmctionb can have a continuous stai_te épace as domain. For
example, .suppose that in robot soccer we can assign a particular role j (e.g., attacker) to

the robot that is closer to the ball than any other teammate.

2.2.5 - Coordination graphs

Using coordination graphs (Guestrin et al. 2002) is another method which focuses on
reducing the number of agents involved in a coordinatipn gamé.

The basic idea of coordination graph is to decorr.ljpose ;1 coordination game into
several smaller subgames that are easier to solve. In this framework, a subgame involves
a small number of agents, and we can use simp'ler algorithms to solve it. In this -
decomposition framework, we assume that the giobal payoff function u(a,) can be written
aé a linear combination of k local payoff functions f;, each involving only few agents .
For example, suppose that there are n = 4 agents and k = 4 local payoff functions, each
involving two agents (in 2.9):

u(a) = fila(Al), a(A2)] + fola(Al), a(A3)] + fs[a(A3), af(A4)] +fila(42), a(44)] (2.9)
In this equation, for instance, f3/a (A1), a(A3)] involves only agents 1 and 3, with their
joint action a,. This decomposition of coordination can be graphically represented by a
graph, where each node represents an agent and each edge corresponds to a local payoff

function. The decompc;sition (2.9) can be represented by the graph of Figure 2-10.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 - 3

N

31 4

Figure 2-10 A coordination graph for a 4-agent problem

Coordiﬁation_ graphs use this kind of linear decomposition, and can apply utility
‘maXimization procedure (as shown in Séction 214 _Pareto Optimal Nash Equilibrium)
iteratively in this way agents are eliminated one after the.other. For example, to eliminate
agent 1 in equation 2.9, we maximize all local payoff functions that involve agent A7 (i.e.
f1 and f2.) After the inner maximum of u(a,) over the actions of agent 4/ equation 2.9

becomes:

max u(a)= = max {fs[a(43),a(44)]tfs[a(A42),a(A4)]}+

a(42),a(A3),a(44)
max {fi[a(A1),a(A2)] Hfila(4l)a(A3)]} (2.10)

In this equation agent A7 choose an action that maximizes f1tf3, no matter what the
combination actions of agents A2, A3 and 44 will be. This equation essentially involves
computing the best response function Blfa,(A42), a,(A3), a,(A4)] of agent Al in the
subgame formed by agents 4, 42, A3 and A4, and the sum of payoffs f; + f5. The
function Bl [a,(42), a(A3), a,(A4)] can be thought of as a conditional strategy for agent 1,
given the actions of agents 42, 43 and A4.

If we define a new payoff function f5[a,(42), ai(A3)] = maxauy) {fifa(Al), ‘a,(AZ)] +
j}[a,(AI), a,(A3)]} thatis independent of a,(41). Then, agent A/ has been eliminated. The

equation 2.10 becomes:

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

max {fsfa(43),a(A4)] fi[a(A2),a(A4)]}* f3[a(42).a(43)]} (2.11)

max uf(a,) =
a (l) a(A2),a(A43),a(A4)

.

" Next we can eliminate agent 42, using the same technique asl'we.rdid’iiiitﬁ agentAl.In
(2.11), f4 and f5 involves a,2, and maximization of f;, f5 over d,(AZ) gives thé best-
response fanction B2[a, (A2),'a,(A4)] of agent A2 which is a function of a,(A3), a(A4). For |
this, we éan define a new payoff function fs/a,(43),a,(A4)], and agent 42 is eliminafed.

Now we can write:

max u(a()¥ max { f3[a,(A3),a,(A4)]}.+ fsla(A3),a(A4)] (2.12): ,

a(43),a(44)

Then, agent A3 can simply choose the action a,(43) that maximizes max u(ay). Agent

A3 is eliminated, resulting in B3/a,(A4)] and a nvewv’payoff ﬁmctioh Sfrlai(A4)]. Finally,
max, u(at)v = maxaq f7{a,(A4)], and since all other agents have been eliminated, agent 44
can simply choose an action a; (A4) that maximizes f7.The result at this point is a Nash
Equilibrium, which is the desired maximum numbér over aAl), a(A2), a,(A43), and

a(A4).

For each agent

{
F=[fy, ..., fq.
Foreachagenti=1,2,...,n
{

Find all ffat(-i), at(i)] € F that involve ai)

Compute Bifat(-i)] = arg maxsi 3 ffat (=), ai(j)]
Compute fiifaf-i)] = maxai 2 ffaq-i),a: (i)].

Remove alt ffa(-)i, afi)] from F and add fej{ai(-i)) in F.

}
Foreach agenti=n, n-1, ..., 1
{
Choose ar'(i) € Bifat*(-i)] based on a fixed ordering of actions.
}

Figure 2-11 Coordination graph algorithm

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-11 (Vlassis 2003) is the summarization of coordination graph algorithm.

Where - in a1 a ()] refers to all agents other than agent that are involved in f, and

"it does not necessarily include all #-1 agents. Similarly, in th¢ bést—responsc functions
Bifa(-1)] ‘the action set a,i) rriay involve less than n-1 agents. In this algorithm, an
optimal action is computed for the last eliminated agent,'a'nd conditional strategies are
computed for the other agents. Therefore, in the abpve example, ‘plugging a,’4 intq
B3[a(44)] gives the optimal action a;'(43) of agent 3. Similarly, we get a'(2) from
B2[a,(43)] and a,*(1) from Bl[a," (42), a; (43)], anc__i}hus we have computed the joint
optimal action a,* = [a, (41), a,’ (42), a; (43), a; (44)]. Note that one agent may have
more than one best-re»sponsek actions, in which'cgse the first action can be chosen
according to an a priori ordering of the actions of each égent that mﬁst be common
knowledge.

It is assumed that all local payoff functions and an a priori ordering of the action sets
of the agents are common knowledge among agents. The latter assumption is needed
because each agent will finally compute the same joint action. This algorithm runs
identically for each agent in parallel. The main advantage of this algorithm compared to
social conventions is that we need to compute best-response functions in subgames
involving only few agents, while computing all equilibria in social conventions requires

computing best-response functions in the complete game which involves all n agents.

When #n is large, the computational complexity of coordination graph would be

significantly less than that of social conventions.
By using this algorithm, we can choose a different agent elimination order, the

resulting joint action should always be the same. However, the total runtime of the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm will be different. In other words, different agent elimination orders pfoduce
_ different intermediate procedures and subgames. However, the time complexity of
‘computing thé coordination graph Vremains NP-complete (V lassi$720.03). |
| There are some other heuristics for‘multi-.agent» éoordi_nation. The common things
among all heuristic algorithms afe that they reduce the size of agént aétion set, or divide
the game into a set of smallér subgames which could be more ‘efﬁpient to implement; S0
the agents can coordinate their éctioﬁs with limited communication and each agent runs

an identical algorithm.

2.3 Multi-agent Learning

Multi-agent learning, another popular techniqué for Multi-agent coordiﬁation, helps
agents to identify envi,ronme‘:nt-information whichv mép directly to coordinated actions.
Machine Learning is concerned with computer ‘acquiring new knowledge or updating
exisﬁng knowledge. Multi-agent Learning ﬂVIAL) algorithms are based on Single-vagent‘
Learnihg (SAL) algorithms. The important distinction between MAL and SAL is that an
agent in MAS can either learn knowledge from other agents or from the MAS
environment.

Since MAL is based on SAL, MAL algorithms could extend SAL algorithms. There
are several different approaches in MAL; some popular ones are Multi-agent neural
networks, ‘genetic algorithm (GA) and Multi-agent reinforcement learning (MARL).

The idee; of neural networks (Hebb, 1949) has its origins in thve biological neurons
forming the human nervous system. An artificial neural network consists of a set of
processing elements organized in layers and joined together by connections known as the

synaptic junctions. Each connection has a weight associated with it and the neuron fire if

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the weighted sum of it inputs exceeds a set threshold. Current NN models work well in

claSsiﬁqgtiQn, function approximation and pattern recognition. As regard to application of -

"neural .nétwork m Mqltingent systems, agents learn from the '_inp.ut gé:neréted from the
environnient and other agents, or learn from observing other agents. There is no central.
controller or diiiect ihteraction among them. Multi-agent NN applications include voice
recognition systems, image recbgnition- systems, industrial robdtic's';' mtedicvalv imaging;-
déta mining, and aerospace. . |

The idea of genetié algorifhxﬂs (GAs) comes from biology also (Holland 1975).
Peoplev want programs that can evplve like biological entities usihg combination or
mutation of chromosorhes to breed new ptograms. GAs are a good search technique for
optimization problems. They work well in many application domains, which have natural
apd rational encoding formats and fitness functions. GAs could be applicable to multi-
agent coordination if the fitness function could be defined in multi-é‘gent settings, thus,
GA is a powerful method for artificial life and swarm systems.

MARL is an extension of single-agent reinforcement learning (RL) (Kaelbling et al.,
1996). First RL researchers have studied animal behavior under the influence of external
stimuli since 1980’s. Therefore, reinforcement learning also has some relationship to
biology. Reinforcement learning (RL) is a kind of machine learning technique which
focuses on finding a policy that maxirnirzes an agent’s reward by interacting with the
environment. RL émphasis is on how agents can improve their performance in a given
task by perception and trial-and-error. The technique of single-agent RL is quite mature.
However, the field of MARL is less mature. The main reason is that single-agent RL

theoretical results cannot be directly applied in multi-agent systems. MARL can be

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

implemented in different ways. Some of MARL implementations use state action pairs
_representation, and some of MARL extend the scope of environment, so.that an agent
i considers other agents’ béhavior as part of its environment. Sorhe éxamples like (Hu and
Wellman; 2003) present well;undérstood and practical results. Because of thebpopularity»

of MARL, additional information about is presented in the next subsection.

2.3.1 Single-agent reinforcement Learning

The basic reinforcement leafning model fofmally has three parts: a set of | environment
states S; a set of actions 4; and a set of scalar rewards. There are two basic reinforcement
learning algorithms: value iteration and Q-learning.

A Markov Decision Pfocess (MDP) uses Markov chains to find the transition matrix
based on calculated action-reward pairs available to the agent at each fime step. The
reward that an agent receives is based on the action and the state. The goal of
reinforcement learning is to find a function or a policy, which specifies which action to
take in each state, so as to maximize the reward function. At each system time #, the agent

perceives its state s, .S and the set of possible actions A(s,). It chooses an action a € A(s;)

and reaches the new state s and gets a reward R(s.+1) as a result. Based on many such
attempts; the intelligent agent learns how to maximize the rewards by developing a policy
7.5~ A. The reward the agent receives is also called reinforcement from the environmént.
The task of the agent to maximize its totél discounted future reward and can be expressed

as

R(s)+ R (s)+ VREw)+. . A R(send)
where 0=y« is future reward discounting, ¢ is current time, & is the time starting at ¢.

If this expression is finite, then MDP has a terminal state. If this expression is infinite,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then MDP has no terminal states. The optimal utility is obtained by a policy that

~maximizes the expected reward.

| U*(s,)=maxE["2r*"R<&,)|7r,sx =s,] 2.13)

ot
Where R is reward fuﬁction, v is future reward discounting factor, E() is the

expeétatibn operator which calculate the avefage value of rewardé and stochastic
transifion reWards, T is the poliby, x:is a variable of time, ¢ is the current time, k is the -
time frdm the t, usually is the end time. An optimal pglicy T*(s,) maximizes the utility of
the above expression. From this discounted future reward function, we know that the sum
will always be finite even with ihﬁnite sequénces, and the sum will depend on the
particular policy of the agent, because different pdlicies result in different paths in the
state space (Vlassis 2003).

| We can combine (2.13) with (2.3), and get a recursive optimal utility. This is also
called the Bellman equation:

U*(s)=R(s,) + }'maax[z P(s, | 51,0)U * (5,)} 2.14)

S,

The solutions of this set of equations define the optimal utility of each state. Because

in 2.1.2, we can use Q*(s,a,) measure the goodness of action ¢ in state s. We can use a

recursive Q-value expression to replace the action values in 2.14:

O*(5,,a,) = R(s,)+ 7Y P(S, | 5,,)MaX Q% (5,,,,0,,,) (2.15)

Si41

Where Q*(s, a) is optimal action value which is the maximum discounted future
reward that the agent can receive after taking action g, in state s,. There can be many

policies in a given task, but they all share a unique U*(s,) and Q*(s,a)).

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. What we have seen above is value iteration. The major disadvantages of value
iteration is that it assumes that agents know the transition model P(s; Ils;'a,); quever,"" o
in many applications the transition model is unavailable and ﬁnobservable. We would
like to have a Q-Learning method that does not require a transition model.

With Q-learning, the agent starts with random estimates.Q(s,, a,) for each state-ac_tion
pair, and then begins exploring the environment by interacting wifh~ the environment
repeatedly and tries to estimate the optimal Q*;(s,, ay by trial-and-error. This is é model-
free method. Duﬁng exploration, the agent forms tuples: in the form (s, R, -d;, S¢+1) whére
s; is the current state, R is the reward function, a, is an action taken in state s,, and s;+; is
the resulting state after executing a,. Finally, the agent gets its final action value -

estimation as

0% (5,@) = (1= 2)Qs,,a) + 7R+ Y max Q* (s,1,a.)] (2:16)

2.3.2 Multi-agent reinforcement learning

Applying Single-agent reinforcement learning to multi-agent systems réises is much
complicated than Single-agent Reinforcement Learning. Because of the communication
reason, they may not observe each other, so they may not model each other correctly.
Because of the spatial-temporal factors, the égents may not receive the same rewards, and
the agents may not know the payoffs of others.

For simplicity, in cooperative multi-agent systems, we can make’ seve;al assumptions:
Agents can receive the same reward in each time step. Each state is fully observable to all
agents. There is a predefined payoffs and joint action table of the agents. Here, we only
focus on cooperative systems. The true payoff of a joint action is assumed to be the same

for all agents, reflecting average discounted future reward if this action is taken from the
39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- particular state. The world states has a stochastic transition model p(s;+:|s,ay), where s; is

the current state, ayis the joint action of the agents, and s,+; is the resulting state after @, is

- executed. The | transition model is unknown to the agents. Like in single'-égent
Reinforcément Learning, the task of the multi agents is to compute an optimal joint.
policy that maXimizes discountcd \future reward in the specific environment p(s,+ 118say).
The payoffs are also unknown to agents, and this is what he must leari;. The main tasi{ in

- multi-agent Reinforcement Le@ing is to guarantee that the individual optimal policies
7r,*(.§t) are coordinated, they indeed define an optimal joint policy A7r*(sl) (Vlassis 2003).

There are mainly two different approaches in Multi-agent reinforcement leanﬁng, one
is Independently Learning and the other is Joint Action Learning.

Independently Learning is the simplest case of multi-agent reinforcement learning. |
The difficult part of multi-agent learning is that knowledge of P(5:+1]8y, ay) does not imply
knowledge of p(s,+]s, ay), where a; is the action of agent i. Therefore, it is reasonable for
an agent to use Q-learning to compute its optimal policy 7*(s,), each agent can treat the
other agents as part of the environment, and does not attempt to predict their actions. The
world changes when agent i takes action a; in state s. What the world will be g:hanged
depends on the actions of the other agents in s,, and since agent i does not model the other
agents there is no way for him to compute p/s;+,|s, a,(i)]. However, even Q-learning may
not result in coordinated individual policies because its convergence relies on an
underlying transition model that is stationary.

Joint Action Learner (JAL) was introduced by (Claus and Boutilier 1998). JAL has
better results than independent learning, since the agents attempt to model each other,

predict other agents’ actions in JAL. Each agent maintains an action value function Q%(s,

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a) for all state and joint action pairs, which reflects the value of joint action a in state s as
modeled by the particular agent. Every time a joint action a is taken.in state s and a new
state s’ is observed, each agent i updates his 0”(s, a). In JAL, eacil agent has to observe
the takeﬁ joint actions of whole system. JAL may make the cohvergence to a Nash
equilibrium in multi-agent coordination. However, this equilibrium is not guaranteed be
optimal also. The same problem exists in other equilibri'um-selectioh approaches of the

game theory.

2.4 Multi-agent Planning

The concept of multi-agent planning (MAP) covers the methodologies and formalizaﬁons
involved in finding a sequence of actions that can transform some initial state into some "
sfate where a given goal is satisfied in the domain of multiple agents having to act
together. It is an extension of single-agent planning (SAP), where reaching the goal state
is the aim of a single agent, not a group.

The Multi-agent framework has been extended Beyond the deterministic plan
generati_on problem along many other dimensions, specifically those involving
nondeterministic actions. The MAP domain involves agents planning for a common goal,
an agent coordinating the plans of others, or agénts refining their own plans while
negotiating over tasks or resources, etc.

Multi-agent planning is often associated with another common term, which is multi-
agent scheduling. It is important to clarify the difference between these two terms. While
in planning agents choose an appropriate course of actions to achieve their goals,
scheduling means that agents integrate actions in service of multiple goals and share their

limited local resources and finally execute the actions. The tasks that need to be

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed in scheduling are already decided, and scheduling mainly focuses on
__algorithms for specific problem ,domains,,Becausg of the, overlap in the fields, we will not
) distinguish them and will use "planning" to refer to both pl@ing and scheduling.

Planning iand scheduling can be incorporated to help agents improve théir coordination -
- behaviors. |

Mulﬁ-ag_ent planners make action pplicies for a set of ageﬁts that share tasks »and '

* results. The key aspect of MAP is that each agent aims to find a plan that has the highest |

payoff given the plans of the other agents, resulting coordination among the actions of the

agents so the highest equilibrium can be achieved in a timely manner.

The above makes clear that the problem of multi-agent planning falls squarely within
the setting of n-person cooperative game theory. From the perspective of game theory,
the players have a shared or joinf utility function in n-person games. Any outcome of
the game has equal value for all players. Assuming .the game is fully cooperative in this/
sense, it becomes more like a standard (one-player) decision problem where thé
collection of the n players can be viewed as a sir\lgle player trying to optimize its behavior
to obtain the largest equilibrium against environment.

This section aims to presenting an overview of the formalization of multi-agent

- planning. We start by presenting an overview of single-agent planning and its
methodologies and will then shift to multi-agent planning and its formalization.

2.4.1 Single-ageht Planning (SAP)

A plan is a sequence of actions that an agent should follow in order to achieve one or
more goals (Bowling et al 2002). The process of generating a plan is called planning and

is performed via an algorithm called a planner.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 In order for a planner to come up with a complete plan, it requires as input the initial
state of the. world '(f), a set of possible actions the agent can make to change the world
| (4), and a set of goals it wants to gchieve (G). |

Given the above, the definition of planning can be restated as the process of finding
a sequence of aétions that can transform an initial state of the world to a goal state. As the
planner goes through the spaée of plans, it searches for actions that-makes goal &ue if ‘
executed. | |

When ’the planner searches all the possible situations between the initiél' state and the
goal states, what is called spéce searching takes place. There are generally two
approaches to space-search planning, they progression and regression. Progression .
(Forward chaining) planning is searching from the initial states to goal state. It starts with
choosing action whose preconditions are satisfied, then searching a space of world states
for the effect, and continues until goal state is reached. The main problem with this
approach is the high branching factor and the thus the huge size of the search space.

As with regression (backward chaining) planning, searching is performed backwards,
in other words, from the goal state to the initial state. It starts with choosing an action
that has an effect that matches an unachieved sub-goal, then adding unachieved
preconditions to the set of sub-goals, then continuing until set of unachieved sub-goals is
empty.

An alternative fo situation space search is to search through the space of plans rather
than the space of situations. This approach, called plan-searching, usually starts with a
simple incomplete plan called a partial plan. The partial plan is continuously expanded

until a complete plan is reached where the problem is solved. The operators in this search

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are operators on plans: adding a step, imposing an ordering, instantiating a previously
_unbound variable, and so on. Plan-space search includes partial-order planning, HTN and
ietc. |

Classic planners consist of only primitive actions and keep their goals in a stack and
performed an 6rdered depth—ﬁrst search through the space of possible plans. Classic
Planners are ﬁormally represented by STRIPS (Stanford Research Institute Problem
solver), of which we give an overview at the end of the section. |

Oftven it is convenient to group sequence of actions into macro actions to reduce the
search spac‘e. In planning with macro actions both goals and action nodes can be
cxpanded either into macro actions or primitive actions. This approach however, can be |
insufﬁcieht because practicaliy, the designer is the one who plans not the planner. Also
blans constructed by macro actions are less flexible, as the planner is simply repeating
and combining only predefined sequences.

The planning pfocess depends on the order in which goals are selected for achieving.
This is due to the changes that previous actions might have made in the world state. Some
improper ordering may cause searching to last longer or even to end up with no solution
found. There are several solutions to these problems.

One obvious solution is to try to reorder the goals whenever a solution is not reached.
Unfortunately this leads to big computational expenses so instead a hierarchy can be
established on thé literals of a domain. The most difficult literals for achieving are
situated at the top while easily reproducible ones are at the bottom of the hierarchy. The
goals in the planner stack are reordered so that higher level ones are achieved prior to

satisfying lower level goals.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ Goal protection may also cause problems and even prevent us from finding a solution

~ for all possible goal orderings. The only solution in such situations. will be to violate - -

. goals that afe Valreéd_y achieved and then re-achieve them. Vere (V e‘re, 1992, p. 1168) has
proposedAa procedure called plan splicing that can be used for» éonﬂict resolution and as -
an altern?;tivé té permutation of goals upon failure as well. Splicing includes violation of
protectéd goals and recursive deletion of parts of the generated Iﬁlan. Vere has shown fhat
splicirig is efficient e‘yen at execution time as a reaction to unexpected events.

An agent‘perceives the environment and builds a model of the current world state. It
can call a suitablé planning algorithm to generate a set of actions to achieve a given gbal.
Single Agent Planning (SAP) explores the staté-spacc of these actions by reasoning about
actions. A plan exists if there is at least one ordered sequence of actions that satisfies the
goal or goals. Moreover, all ordering constraints should be satisﬁed. The plan itself could
consist of totally or partially ordered set of actions.

The basic elements in a plan are goals, states and actions. The action selection is a
central issue in planning. A common approach relies on representing the planning
problem as a constraint satisfaction problem (CSP) that can be solved using forward
state-space search and/or backward state-space search. The traditional planning algorithm
adopted in MAP is based on distributed constraint satisfaction which could be solved by
using a search algorithm, like death first search, to find joint action.

- However, the CSP approach has some serious drawbacks. First, the number of joint
actions increases exponentially with the number of agents. Second, it fails to react in real

time to dynamic changes in the environment.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

: STRIPS_uées a representation that includes the initial world state 7, goal state G, a set
of deterministic actions Q. Each action a ef has a list of preconditions and an effect list,
.‘ denoted ‘py Prec(a), Eﬁ’(a) resﬁecfively. The planning problerﬁ involves ﬁnding a plan
that when exécuted from the initial statg I will achieve t1‘1e goal G. According to this, a
plan can be represented by threé-tuple: P=(4,0,L) where AcQ is a set of actions {a,-}, o
is a set of ordering constraints over 4, like {a;>a;}, and L is a set .of éausal links OVAer A
A causal link is a strﬁcture with three fields: a set of causal links over 4, a sét of open
conditions, and a set of unsafe links. Finally, an open condiﬁon is of tilé form'@,a),
where p ePrec(a) and a éA.

A generally accepted method of action representation is the one using ﬁreconditions '
and postconditions, both of which are'conjuhctions of literals. Preconditions define the
éonditions that should be true in the current state of the world in order to perform an
action. Postconditions represent the conditions that will be valid after the action is
performed. If we need to model changes in the world that will occur when the action is
performed, then this is not a primitive but a macro action that should be further
decomposed. -

The same model can be used to represent simple events. Their preconditions will
contain the causes of the event, and postconditions will show its effects. Events can be
inserted into plans using the same backward-chaining mechanism. There is only one
difference between actions and events in this representation and it is that the event’s rules

must be allowed to chain forward whenever their preconditions are satisfied.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~ Search control, action representation, goal protection, time modeling and 'goals
_ordering are crucial,iésues to planning. To illustrate these concepts we will use the well.

‘known Blocks world model.

Initial Sta_te: , . ' Goal:

c|] B|
Al [B] c|

Figure 2-12 Block World Model

In Figure 2-12 above, three blocks A, B, and C are oﬁ table as initial state on the left.
If putting the blocks one by 6ne as the goal state, the resuiting state is what is shown on .
the right of the figure. The STRIPS representation of the initial state of this example is
given below.

Initial State: (on-table A) (on C A) (on-table B)

Preconditions: (clear B) (clear C)

Goal: (on-table C) (on A. B) (on B C)

Actions: Pickup(x), Putdown(x, y)

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-13 Planner representation

By looking at planning as a graph-search problem, planning the problem of going
from the first state of Figure 2-12 to the second can be represented by a graph as in
Figure 2-13. Nodes are used to represent the individual world states, arcs to represent
actions, and the solution is the path from the initial state to the one that satisfies the goal

(Russell and Norvig 2002).

2.4.2 Multi-agent Planning (MAP)
As apposed to SAP, Multi-agent planning distributes a global plan among several agents.

Multi-agent plan has been generated for multiple executing agents, and the process of its

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cqnstruction is called multi-agent planning. The plan itself may be built up by one or
~ more agents. MAP generally has two approaches. The first is where one agent creates the
'muiti-ageﬁt plan and i,s. called cenrtralizedr multi—agenf plann:ing.. The second 6n, the
other hand is when more than one agent creates thé multi-agent plan, and is called
distributed multi-agent planning.

‘Centralized MAP has several drawbacks due to its structure. First, the communicaﬁon
infras’tructure(’can have a big ifnpact on the allocation of the global plan. Second, the
security and bandwidth of the communication limit the allocation of sub-plans. (E.
Durfee 1999). In centralized MAP, global plan is decomposed into sub-plans, sﬁb-plans’
are allocated to each agent, each agent executes the tasks, and then synthesize global
plan. Since the availability of the agents for the sub-plans is not easy to determine
without first having devised the sub-plans, allocating the global plan to any current
context is not certain. Hence, if there is no agent with a global view of the group
activities, each agent should generate the sub-plans alone. Due to all of these issues, we
focus on distributed MAP in this thesis.

Because MAP involves more than just the agents planning for a common goal, the

' fasks include the problems of coordinating the plans and replanning. Consideration must
also be given to the constraints placed by the agents and the fact that an individual plan
shquld take concurrent actions into account.

Actions are selected via a specific action-selection mechanism (ASM), which is
influenced by the agent's commitments to others, the activities of other agents that may
change the environment and the hardly predictable evolution of the world. MAP

algorithm has to ensure that the appropriate joint actions are executed at the same time or

- 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ina speciﬁc séquence. In MAP, agents need to actually perform the planned actions in

order to-achieve th};ir goals: Mixlti—agents coordinatiqn problem could be regarded asa~
.planning problem, more specifically, action selection mechani.sm. (ASM) for the multi-

agents.

In what follows we present an overview of terms that are necessary to understandv‘the
coﬁcept of niulti-agent planning and its entailments. |

Multi-agent Plz}nning Doniain (Bowling et al 2002)

A multi-agent planning domain D is a tuple <P, S, n, Ai=;..n, R> where,l |

1 P is the finite set of propositions,

2 Sc2 is the set of valid states,

3 nis tké number of agents,

4 | Aj; is agent i’s finite set of actions, and

S5 RcS*4*S is a nondeterministic transition relation, where A = A;*...¥4n and
must satisfy.the following condition. If <s, a, s> R and, <s, b, s”’> € R
then,Vi thefe exists s’’’ €S, <s, <ay, ..., a.;, b; ai+y, . . ., a;,> , 87> eR.
Le., each agent’s set of actions that can be executed from a state are
independent.

Multi—ageﬁt Planning Problem (Bowling et al 2002)

Let D = <P, §, n, Ai=1..n,, R> be a multi-agent planning domain. A multi-agent
planning problem P for D is a tuple <D, I, G;-;..,>, where Ic S is the set of possible
initial states and G; < § is the set of goal states for agent i .

In MAP research domain, researcher aims at reducing the searching space. Some

techniques examples are plan coordination, Hierarchical Task Network (HTN), plan

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reconciliation and etc.

~ Plan coordination means synchronization of plans which may take place at several
'points, can be done during task decomposition, at the time of pl.an generation or after the
plan is cr'eated. Conflicts may appear due to incompatible states, incompatible order of
actions or incompatible use of resources during distributed planning. Repeating the multi-
agent planning and coordination of individual plans activities can be quite ineffective in
uncertain domains and can cause significant delays at execution time. Plan coordination
is based on the assumption that some restrictions can be considered by agehfs before they
start planni'ng. Some researchers attempt to impose social conventions on agents, which
are prohibited agaihst particular choices of action in particular context (Durfee, 1999).

The Hierarchical Task Network (HTN) captures the possible decompositions of
abstract plan steps into more detailed concrete plans. The hierarchicél behavior-space
search repeating coordination can be avoided by resolving conflicts on abstract (higher)
levels of plan representation. Abstract plans can help coordinating with other agents and
allows agents to replan in case of failure without affecting the multi-agent plan.

Technique of plan reconciliation is used to assign agent tasks after reasoning through
the consequences of doing these tasks in particular orders. Then, align behavior of agents
toward common goals, with explicit division of labor achieving greater coordination.

In MAS, planning is difficult, since execution failures and unexpected results of
actions complioaté the coordination task, besides uncertainty about effects of actions,
world states and perception. The external factors can affect goal achievement. The
complete multi-agent plan may be invalidated by some unexpected events or outcomes of

actions. For internal factors, the number of joint actions increases exponentially with the

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of agénts. There are also time and resource constraints as it is difficult react in

real time to dynamic changes in the environment. What can also complicate matters - -

.ﬁpther is the difference in preference among agents. For instanée, &e utility of an agent
may give .contradicting preference to that of andther agent.

Collaboration makes agents cooperate with each other and willing»to_ assist or join
with others. There are mainly two mechanisms to make agents colidl;orafe with éach
other: task sharing and resu’lt'sharing.'Primary task 'cén be decomposed into a number of
sub-tasks, called task sharing.b Solution synthésis is called result sharing.

- According to Boutlier (1996), MAP problem can be solved using simple extensions to
SAP. MAP problem can take advantage of characteristics of the problem to make the
search simpler, use some flexible search strategies, like ordering tasks in Which plan is
executed. MAP problem can also use Divide and Conquer strategy, like goal
decomposition, if we can assume conjunctive goals achieved independently.

To solve a planning problem, there are some concepts need to be defined to formalize
MAP. Some of the definitions are: the possibility of reaching the goal, the possibility of
reaching the goal in a finite number of steps. These concepts and their formalization are
inspired and highly related to Cimatti and colleagues’ single-agent solution concepts
(Cimatti et al. 2000), and are formalized by Bowling et al with STRENGTH concept, in

12002.
Multi-agent Pianning Solutions(Bowling et al 2002)
Let D be a multi-agent planning domain and P =< D, I, Gi=I...n> be a multi-agent

planning problem. Let 7 be a complete joint state-action table for D. Let K = <Q, T> be

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the execution structure induced by 7 from I. The following is an ordered list of solution
_ concepts increasing in STRENGTH:
1. 7is a weak solution for agent i if and only if for any sté;te in I some state in G; is
re;achable.
'2. Tisa étrong cyclic solution for agent i if and only if from any sfate in Q some
state in’ Gi is reachable. -
3. 71is a strong solutionj for agent i if and only if all execution paths‘,’ including
infinite length paths, from a state in Q contain a state in G;.
4. 71is a perfect solution for agent i if and only if for all execution paths 50, s/, s2, '
... from é state in O there exists some n>0 such that Vi > n, si € Gi.‘
Multi-agent Planning Equilibriums (Bowling et al 2002)
~ Let D be a multi-agent planning domain and P = <D, I, Gi=I...n> be a multi-agent
planning problem. Let 7 be a complete joint state-action table for D. Let K = <, T> be
the execution structure induced by 7 from 1. 7is an equilibrium solution to P if and only if
for all agents i and for any complete joint state-action table 7” such that 7 4 = 7;,
STRENGTH(D,P, I, 1) 2 STRENGTH(D,P, I, 7).
Le., each agent’s state-action table attains the strongest solution concept possible given

the state-action tables of the other agents.

2.5 Conclusion of MAS Coordination

In order for the individual decisions of the agents result in good joint decisions for the
group, working together harmoniously, agents can use communication to achieve a joint
plan. Also, agents may communicate in order to determine task allocation. Social laws

and conventions place constraints on the possible action choices of the agents. Social

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

laws may be iinposed by the system through designed rules that dictate how the agents
: ;hould choose- rtheif“actionsrin arcobfdinatioﬁ game. However; social conventions could -
.not dynamically anew for each problem, thus can lead to inﬂéxibility and breakdown,
have limited effects in large dynamic environment (Russell and Norvig, 2003). Multi-
agent learning algorithm _likeZ Multi—e;gent Réinforcement Learning (MARL), genbtic

algorithms, neural networks and etc. improves individual performance as each agent

learns. However, the complexity becomes prohibitive in many cases.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3 RoboCup Reécue Simulation System Introduction
RoboCup Rescue Simulation System (RCRSS) is designed as a testbed for multi-agent -
,.techn_ologie,s. It simulates a city soon after a large earthquake as buildings burn and
'co'llapse. .Man'y. civilians are buried in the cbllapéed buildings. Roads are blocked in the
disaster spa»u_:}e vs}hich slows down ambulance teams and fire brigades ;as they try to rgach
injured civilians and buildings_ on fire. Communications' are interruiated, and ci\‘liliané '
cannot call fo? herlp.k HoWéver, an emergency communications systém alldws rescue
agenté to communicaté among‘thems'elves and with central stations. W1th time, fires
spread and injured civilians get weaker and start to die. It is an example of a crisis
situation management environment with real-time. decision making in unpredictable .
dynamic world.
3.1 RCRSS Introduction
RoboCup Rescue Simulation was developed following the Hanshin-Awaji
earthquake. At 5:47 AM of January 17, 1995, Hanshin-Awaji Earthquake hit Kobe,
Japan. It registering 6.9 on the Richter scale, the earthquake destroyed buildings, trapped
civilians; and started fires throughout the city. The roads became difficult to navigate as
they were blocked by debris. Over six thousands people were killed, over one fifth of the
cities 1.5 million houses were destrbyed, and eighty percent of the city’s buildings were
unusable. The infrastructure damage exceeded 106 bﬂlion US dollars, and total property
loss well exceeded’ 300 billion US dollars.
One of the main reasons for this kind of damage after a large earthquake is fire.
Buildings and houses collapse and burn, and many people get buried in the collapsed

buildings. As fires propagate, people who could not move are burned. Since roads are

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

blocked in thé disaster space, rescue team such as fire brigade and ambulance can not
~ move through the debris soon enough to carry out fescue missions.

RoboCup Rescue project aims at simulating rescue agents sﬁch as ambulance teams,
police forces, and fire brigades as they act in the simulated disaster space. Many civilian
agents are dead or injured. In order to minimize damage resulting from a disaster, rescue
agents have to accomplish théir rescue missioﬁs. This requires inforrﬁation management
to effectively share information, reliable and robust coordination in the distribution of
tasks between rescue systems, and immediate transition from ordinary‘ 6perations to
emergency measures (Morimoto et al 2001).

3.2 Structure of RCRSS

According to the RCRSS manual (Morimoto 1999), RCRSS ig a real-time distributed
simulation system that consists of several modules. Module communication uses sockets
to allow modules to run on a set of hosts interconnected by a network (Figure 3-1). Each
module can run on a different computer as a Separate process. Sub-simulators are
modules which simulate disaster phenomena such as road blockade, collapse of buildings
and the spread of fires. Ambulance teams (AT), Police Forces (PF), and Fire Brigades
(FB) are independent RCR agents. The geographical information system (GIS)
communicates with viewers and provides initial conditions of the disaster space, and the
viewer visualizes conditions of the disaster space. The kernel is the central controller

which manages communications among the modules and integrates all modules into

RCRSS (Morimoto 1999).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\\\
i RCR agents)

=N I S
%Sub-simulators)—{Kemel)—

GIS

Figure 3-1 Structure of the RCRSS

After RCRSS starts and before the system cycles, first, the kernel connects to the
GIS, and the GIS provide the kernel with the initial céﬂ&itions of the disaster si:ace. The
initial conditions are loaded from a configuration file and a map of the disaster spﬁce is
also specified. The map has a specific format that allows the representation of roads and '
buildings. Subsequently, sub-simulators and‘ the viewer connect to the kemel, and the
kemnel sends them the initial condition; Third, RCR agents connect to the kernel with
their agent type. The kernel assigns a unique id (9 or 10 digit number) to each rescue
agent or civilian. Each agent can hear and see objects within a specified distance from its

. self. The visual and auditory ranges are initialized by the kernel at this stage.

After the initialization of the agents and the RCRSS is finished, the>cycles start. Each
cycle in the RCRSS is one second, but corresponds to one minute in the disaster space.
There are 300 éycles in each RCRSS run, which simulate the first five hours after the
earthquake. In each cycle, RCRSS performs the six steps in Figure 3-2 (except for the

first cycle of the simulation where steps 1 and 2 are skipped).

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 1. The kernel sends individual vision information to each RCR agent.
. 2.EachRCR agent submits an action command to the kernel individually. - ——
3. The kernel sends action commands of RCR agents té all sub-simulators.
4. Sub-simulators submif updated states of the diséster_space to the kernel.
5. The kernel integrates the received states, and’sends it to the viewer.

6. The kernel advances the simule;tion clock of the disaster space.

| Figure 3.2 The Six Steps in Each Simulation Cycle

The kernel is designed to wait half a second at stc;,;s 2 aﬁd 4. However, the actual
waiﬁng time depends on the scale of simulation and the speed of the machine. Therefore,
all RCR agents must select an action within half a sec;ond.

At the first 2 cycles of the simulation, the agents cannot make any action, because the
rﬁodules of the RCRSS work on sub-simulations. In the 1st cycle, a collapse sub-
simulator simulates building coilapse, and a fire sub-simulator starts simuléting fire
spread. In the 2nd cycle: A blockade sub-simulator simulates road blockade based on the |
result of the collapse simulator, and a miscellaneous sub-simulator starts simulating
humans who are buried and injured. Only then, RCR agents start acting.

Evaluation Rule:

To evaluate the performance of agents during a simulation run, the following
performance function ¥ is used. The function tﬁes to capture all aspects of rescue agent
performance such that higher the return value, the better rescue operation.v

V=(P + S/Sint) * sqrt(B/Bint) (3.1)
Where P : number of living agents,

S: remaing Health Point of all agents,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sint: total Health Point of all agents at start,
B:area of houses that are not burnt,

Bint: total area at start.

3.3 Agents Development Tool-YabAPI

The YabAPI (Morimoto 2001) is an open java API for developing lRCR agents. YabAPI
Morimoto (2001) as follows:

“The yab.io package provides functions for communication between an RCR agent
and the kemel. The yab.io.object package provi&es classes of objects in the disaster
space. The yab.agent.object package provides useful classes of objects in the disaster
space for RCR agent developers. They wrap the yab.io.object package’s classes. The
yab.agent package provides the skeletons of RCR agents and utilities for concisely
describing the}ir intelligence.”

The agent developed with YabAPI is called RCR agent, which controls act of an
object in the disaster space. There are seven classes of object: the Civilian,
AmbulanceTeam, FireBrigade, PoliceForce, AmbulanceCeriter, FireStation, and
PoliceOffice. An RCR agent controlling act of a Civilian object is called a civilian agent,
an RCR agent controlling act of an AmbulanceTeam object is called an ambulanceTeam
agent, and so on. In addition, the ambulance team, fire brigade, and policé force agent are
called a platooﬁ agent, and the ambulance center, fire station, police office agent are also

called a center agent .Both platoon and center agents are called rescue agents.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ An agent élways perceives the environment and makes an action. The activity of an
RCR object consists of a repeating cognition of the surrounding circumstances followed -
~by an action at each cycle. An RCR agent recognizes the sﬁrr01.1nding circumstances
based upo‘n visual information and auditory information received from the kernel, selects
an action, and submits the action command to thc; kernel. Moreover, an RCR agent
communicates with otﬁer RCR agents asynchronously.

Different RCR age_nts have different capabilities for cognition and action, which are
limited by the capability of thié kind of ageht. An RCR.agenf gets cognitidﬁ information
limited by its visual and auditory capabilities, and sends action commands such as move,

rescue, load, unload, extinguish, and clear according to the agent’s capabilities. The agent .

can utter natural voice (action: say) and speak via telecommunication (action: tell).

Civilian Sense,Hear,Say, Move

Ambulance Team Sense,Hear,Say, Tell, Move,Rescue,Load,Unload
Fire Brigade Sense,Heér,Say,Tell,Move,Extinguish,Fill
Police Force Sense,Hear,Say, Tell, Move,Clear

Ambulance Center | Sense,Hear,Say, Tell

Fire Station Sense,Hear,Say, Tell

Police Office Sense,Hear,Say, Tell

Figure 3-3 Actions available for each type of agents

After receiving sensory information (AK_SENSE block), an RCR agent submits an

action command (AK_MOVE, AK_RESCUE ...etc.) at will in each cycle. The kernel

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adopts only one action command every cycle per agent. If the agent submits more than
_ one command, usuiaily.the last command is-the one that kemel executes. As stated in
Figure 3-3, in each cycle, _an agent first seceives a sensory block',. and then suomits an 1
: »action cor.nma'nd after half second. In some cases, agents cannot act, for exarnple, delayed
action commands are ignored; also a buried hufnanoid, whose buriedness is greater than
zero, eannot act.

A huma'.noidv can move in the disaster space by submitting an AK_ MOVE eornmond,
which consists of the current position as the origin and a series of objects 'reaching the
destination. When a hum_anoid is loaded by an embulance, the origin is the ambulance’s
position. An ambulance team can progressively rescue buried humanoids under collapsed .
buildings by subrnitting an AK RESCUE command. Rescuing a humanoid by an
ambulance team in a cycle reduces the buriedness of the humanoid by 1 tenm cycle. If
more ambulance teams work on rescuing a humanoid, the humanoid can be rescued in
less time. The target humanoid must be at the same position as the ambulance team. Fire
brigade agents extinguish fires by summit AK_EXTINGUISH command. However,
single fire brigade agent can hardly extinguish a fire. FB agents need to cooperate with
other FB agents. They also have to cooperate with different type agents, police forces will
help clear the road to a destination. AT and PO can provide fire information.

Rescue agents need to communicate with each other in order to accomplish their
missions efﬁciently. However the RCRSS only provide very limited communication. The
maximum length of a message is 256 bytes (128 characters). For platoon agents, a
maximum of 4 messages sent and 4 messages received per cycle is specified. For center

agents, the maximum 2*n messages sent and 2*n messages received, where n is the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of plétoon agents of the same kind as center. Platoon agents can talk to their
'Qolleagues and thei‘r: center agent. Center agent can talk to othef genter' agents and his
,.platoon agents. If several agents use their maximum allowed méséages each cycle, other
agents would'miss most of these messages. For example, if ten FB égents send four
messa'gesv in a cycle, the FS agent will only receive 20 messages; and the FB agents Will
only receive 4 of these messages. Therefofe, agents are required 'to cooperate with
minimum communication. - |
The abilities of each agent are complerﬁentary to those of other agents. Tﬁus, an agent
must cooperate with agents of different types. For example, it is crucial at the begiﬁning
the simulation that the fire brigades coordinate with the police force agents to clear -
blocked foads leading to fires. Ambulance team agents have the most priority after the

fires are extinguished, but still need other agents to search for injured civilians.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4 Multi-agent Hierarchical Planning
"Having introduced game theory, utility-based agents, hierarchi_cal.task network (HTN)
plahning, .the'formalization of multi-agent planning, and the RCRSS project, we are now .
in the position to apply HTN and utility concepts to multi-agent planning in RCRSS_. This
chapter introduces techniques that use game theory and exploit efﬁcient‘ hieraréhicai
planning. - | |
4.1 Hierarchical Planning
Note that planning is effective in highly prédictable environments. The basic purpdse
behind designing plans is that computing equilibﬁums could be expensive when the ‘
number of agents is large, or the action sets of the agents are large. Therefore we would
: like to reduce the size of the search space by using two techniques. The first technique
classifies the actions into a smaller number of abstract actions; the second reduces the
number of agents by grouping them into grOubs of abstraét agents.

The global plan can be described in terms of B Beliefs, D desires and [/ intentions -
BDI architecture (Rao and Georgeff 1991) (Wooldridge 2002). The Desires are Goals but
can be inconsistent with one another. Goals are chosen from consistent desires. Formally,
agent i’s desire is to find itself in the local states: ql i q2,~) e s qT,- , such that

udq’s, qu, s @) 20

Where state q" is for agent i at time £ u; is the agent #’s utility function, o is the
agent’s minimum accepted utility value.

Beliefs B are modeled in each state s as the set of local states and the set of accessible

worlds that the agent believes to be possible. These accessible worlds can be represented

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a conventiOnal decision tree. The agent believes to be able to optionally achieve
some goals.

Intentions are similarly represented by sets of worlds that tne agent has committed to

~ attempt to realize. Intentions lead to actions: if an agent has an intention, she believes that

she has such actions which can fulﬁﬂ her intention. | | |

The nnmpatibility of B, G and IThas follbwing relationship (Rao and Georgeff 1991):

1. GOAL(®) > BEL() B

If the agent has the goal ¢, she also believes it.

2. INTEND(0) 5 GOAL(o)

If the agent intends ¢, she has o as a goal as well..

3. INTEND(does(ty)) o does(ty

. If an agent has an intention to do a particular primitive action, she will do that action.

4. INTEND(o) o BEL(INTEND(0))

Ifan agent has an intention, she believes that she has such an intention.

5. GOAL(0) > BEL(GOAL(w))

If the agent has a goal to achieve, the agent believes that she has such a goal.

6. INTEND(0) o GOAL(INTEND())

If an agent intends to achieve ¢, the agent must have the goal to intend a.

To achieve real-time performance, it is common to use a library of plans that contains
methods for achie{/ing certain goals. The plans in the library involve a trigger condition

¢ and a body m The plan body m may be a sequence of actions, some of which are not

directly specified but are a command to achieve some subgoal. A plan of this form is

represented as /7] ¢. Where m = ay; ...; a, is the sequence of action. If a plan also

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

involves a preéondition ¢ ’, then its representation is of the form ¢ ’/n] ¢. For Example,
Iocked (door) [turn (ke:y))Junlocked(door).

| Generally speaking, BDI agent-oriente_d system is flexible, résponsive and well suited
for real-time reasoning .and control environment. However, “BDI frameworks rely
ehtirely on context sénsitive subgoal expahsion”. There is “a limitation of vthese systéms
is that they normally do no lookahead or planning in the traditional ‘.sense; executioh is
based on a user-provided plan library for achievé< goals.” (Sardina et al 2006).

Hierarchical Task Network (HTN) (Erol et al., 1994) is an approac'h‘ to planning
based on :che decomposition of uppeflevél compound tasks into lower level pﬁmitive task
through a task network. HTN has an on-demand. plannjng mechanism. Hierarchical .
planners use task hierarchies to search through all combinations of alternatives to select
an action, and allocate resources and devises with a sequence of stéps to achieve goais.
Rather than building a plan from the beginning forward or end backward, hierarchical
planners identify promis‘ing classes of long-term activities (abstract plans), and
incrementally refine them to eventually converge on specific actions.

There are two types of HTN tasks. One is called compound task that cannot be
executed directly. The other is called primitive task, an action that can be directly
executed by the agent. A task network d = [T, ¢/ is a collection of tasks T that need to be
accomplished and a Boolean formula of constraints ¢. Constraints impose restrictions on
the ordering of the tasks (e <e)), or/and on the variables (x = ¢), or/and on what literals
must be true before or after each task (7, e), (e, /), and (e, [, e). A method (e,¥,d) encodes
a way of decomposing a high-level compound task e into lower-level tasks using task

network d when ¥ holds. Methods provide the procedural knowledge of the domain. An

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HIN blanningh problem P is a triple <d, B D> where d is the task network to accomplish,
B is the initial staté (i.e., a set of all ground atoms that are true in.rB),rr and D is the plan
,. domain, D = (11, A), which consists of a methods library IT and brir’r;itive tasks in STRIPS

| .s"tyl_e A(Sardiﬁa et al 2006).

‘The key issﬁes in this hierarchical planning are how to maintaiq the constraihfs and
hdw to Iﬁake the agent raﬁonal. In_'gamé theory, the agent’s ratiohality is how they
maxim‘izkeﬂthe utilify of the agent relative to its; knbvﬂedge. Hére, wcvel make the agents
-choose the hjghest u_t'ilit'yk action compatiblé with the abstract action made ét each level of

. the hierarchy (Ambroszkiewicz and Komar 1997).

Therefore, the RCRSS agents use a hierarchical planning architecture and a utility- .

- based' acfion, selection approach. A 2-layered hierarchical planner is adopted as the
architecture for multi-agent planning. The upper layer has a group of abstract agents;
each represents a group of agents defined using abstract payoff and abstract actions. In
each cycle, the top layer calculates the utility of abstract actions, determines the desired
States, then passes the abstract action to the lower layer. The lower layer agents calculate
the utility of lower level subgoals based the beliefs and the abstract action. Finally, teams
of agents make joint actions involving groups of homogeneous agents. The top layer
makes decisions for the underlying layer and may reset the execution plans developed at

the lower layer. This is important to promptly respond to changes in the environment.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Long-term activities (Abstract Plan)

G P

Figure 4-1 Plan Refinement
In this scenario (Figure 4-1), the upper level abstract agents have abstract activities

and use upper level utiiity function. The upper level planning is responsible for defining
 the resources allocation and also defines the goals for the underneath plan (i.e. to
e)gtinguish limited fires or to separate the fired area and safe area). The upper level
planning takes consideration of the overall spatiotemporal infonnation (i.e., how many
fires and how are thém located) and available resources. Therefore, we use gamé
theoretic agents to make the abstract agents. Abstract agents choose the policy by
calculating the abstract utility that achieves a Nash Equilibrium at the abstract level.
After getting their abstract action, concrete agents in the lower level use lower level
utility functions to calculate lower level utility and execute concrete actions. The lower
level planning takes into consideration of the agent’s environment and the current

situation (for exarﬁple, route selection may consider blockades on the possible routes),

make the concrete action selection decision (choose the best routé).
As we know, “the desire is represented as agent’s goal to achieve a maximum level of
its utility. The intentions are determined by some methods that realize this level of utility.

These methods are called rational behaviors.”(Ambroszkiewicz and Komar 1997)

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thgrefore, agént characteristics can represented as (B, D, Rb) where Rb is the rational
__behavior. Rational behavior is the reasoning process which cqnvéyS the knowlcdge‘ from -
.upper level into the lower level. The final level determines the ﬁﬁal ‘intentior{. -
The upper level planner determines the behavior of the underlying planners, specific
i abilities implerﬁented by the lower level may be reused for building different roles.;‘ In
pafticmlar the layered approach 1s convenient for sharing low level abilities that all agénts
,shouid possess. |
The lower level agent maintains a set of task lists. A plan in the idwer layer is
generated from the list of unachieved tasks, which dynamically change with events in the
environment. At each cycle‘, the interpreter of upper layer planner speciﬁes an action in .
executable form to the lower layer. The lower layer will generate a plan from the task list.
Upon finishing executing an action, the lower layer requests a new action specification
from the upper layer, which provides another action afterward (Cisternino and Simi

2000). The architecture of the planner is shown in Figure 4-2 and Figure 4-3.

FB: PF: AT:
1.Extinguish fires 1.Clear Blockade 1.Search Civilians
2.Seprate fires 2.Search Civilian 2.Rescue Civilians

3.Search civilian

Figure 4-2 Abstract Actions Uppef Layer
In Figure 4-2, the upper layer has a global plan for all different types of abstract

agents. In the figure, FB stands for Fire Brigade, PF for Police Forces, and AT for

Ambulance Team.
The FB abstract agent desires to extinguish or control the fires. The intents of the

agents are the present commitments to particular sub-goals that lead to the desire. For a

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ﬁrp brigade abstract agent, the intents would include sf)eciﬁc high priority fires. As for
 the beliefs, they represent the cognitive interpretation that the agent has from combining -
'available knoWledge and current sensory inputs from the ¢pyirohmént. The abstract agent
may be_liéve that a particular fire is controllable or uncontrollable, or that é fire is more
important than another. The plan is made by first choosing the iﬁtention according to the
FB abstract agent utility function; also based on some success fact. |

The global plan would spécify how to act based on current_beliefs by specifying |
abstract actions that represent intentions in response to changing beliefs. For our abstract
fire brigade, an abstract plan may specify that the agents should try to encircle (or
separate) a fire believed to be uncontrollable and try to extinguish a smaller fire.

Similarly, an ambulance team (AT) abstract agent desires to rescue all the injured
ciyilians, intents specify the injured civilians to commit to rescue or an area to target in
searching for injured civilians depending on the situation, and the beliefs would include
an assessment of the severity of injuries and short term prognosis for each injured agent
according to what the sensor get from the en;'ironment. An abstract plan may specify that
the agents should try to rescue the nearest civilians or those that are in more critical

conditions. Figure 4-3 represents the mapping of abstract actions to concrete actions.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Extinguish Fifes ‘ Separate Fires Search for Civilians
Fillwater? Fillwater? '
Move to Extinguish | Move to Extinguish Move to Report
the target L—pi near fire the target]—p| outer fire the target | Civilians

i7a W

Clear Blockades Rescue near civilians Rescue urgent civilians

Move Rescue the:
Move to Clear the Move to Rescue to the »| most urgent
the target »| Blockades the target » every target civilian
civilians

Figure 4-3 Example of mapping abstract actions to concrete actions
According to above, we construct agent in a tuple <B,D,u,PL C,Rb>, where B
represents Beliefs, D desires, u the utility function, PL the Plan Library, C is for

constraints, and Rb the Rational Behaviour. The whole planning process could be

éxpressed in following algorithm

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upper Level Agents:B = By, D=Djy
F or(every cycle) { .
e . get next percepts p - e s
B = brf(B,p)
D = desire_update(D,B).
Rb =C(B,D)
If (not (empty(Rb) or succeeded (D, B) or lmposszble(D B) {
a = head(Rb)
execute(Q){
Lower Level Agents In Same Cycle :
{ ' .
. B’'=B,D’=a _
D=desire _update(B’, D’)
Rd’=PL(@B’' D) -
a’ = head(Rd’)
execute(a’)

Figure 4.4 Hierachical Pianning Algorithm

Where brf is belief revision, after perceiving the environment, concrete agents send
messages to the abstract agents. Once fhe abstract agents receive all the information, they
update their beliefs, and send combined message in “newspaper” format to concrete
agents. Therefore all the concrete agents and abstract agents have the same consitent
beliefs cérrespondingly. Desire_update take current beliefs and current desire, use utility
function u and generate the set of Desires. Rb is deduced from constraints or selected
from the Plan Library.

For example, the Fire Brigades collect the environment information. Then, the Fire
brigades send the messages to fire center agent. The fire center agent also gets messages
from the two other center agents. After fire center agent has all the information, the

center agent updates its beliefs and desires. The Fire center agent makes the abstract plan,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execute the abstract action (specific high priority fires). Then send combined information
~ (called Newspaper, including upper layer agent intentions) to FB. All FB update their-
'beliefs, determine various ropti_.onrs to their goals, which are the éurrént intentions. Finally
use ﬁﬁlitic‘es to order the subgoals.
In order to abhievé coordination, every agent has to take into consideration the actions
- of ‘cvither agents. In addiiion to satisfying’ known constrainté, it is impérative to appeai to
the decision theoretic notion of utility due to the non-detenﬁinistic nature of hierarchical
planning in an uncertain dynamic environment.
| For example, the global goal for a fire brigade is to extinguish or control the fires, and
help rescue all the civilians in an urban disaster situation, but ‘this depends on the .
: spatioteniporal condiﬁons. The lower level is responsible for choosing a concrete action

to execute. Spatiotemporal utilities can be used to guide this choice.

4.2 Spatiotemporal Utility
Utility theory (von Neumann and Morgenstern 1947) is an analytical method for action
selection, given multiple criteria upon which the decision is based. A utility function is a
measure of the desirability of expected outcomes resulting from actions. By weighing the
utility of each outcome by the probability of the outcome, the theory is useful for decision
making under uncertainty (White 1969). Therefore, the utility function guides the
performance of the agent. |

For example, f\vo yogurt companies A and B compete in a particular rﬁarket. Each
company has fixed daily cost of $5,000, the price is $1 or $2 for each container. If the
price is $2, the company can sell 5000 containers. At a price of $1, a company can sell

20,000. People in this market has the ability of pay $20,000 for yogurt. At a certain time,

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both sell for $V1 0,000 daily and earn $5000 as‘the two companies charge the same price
--($1), and split marl&ét; If one of the companies lowers its price, the‘ lower priced yogurts -
: ‘dominate the market. Payoff for a company is: |
Payojj’=sale; reward - cost.
Where sales reward is the gross amoﬁnt of money the compaﬁy gets ﬁom th;, sales,

and cost is the money spent on the whole process.

Yogurt B Yogurt B
- strategy $1 ‘
" strategy $2
Yogurt A 5000,5000 15000,-5000
Strategy$1 '
Yogurt A -5000,15000 - 5000,5000
Strategy $2 ‘

Figﬁre 4-5 The Yogurt company strategies
. A payoff change example in Yogurt company: With the developing of the new

markets (or people are realizing that yogurt is a very health food), the demand on yogurt
may increase by 10% every year, and then the reward may also increase by 10% every

year. So the next year payoff matrix may become:

Yogurt B Yogurt B
strategy $1
strategy $2
Yogurt A 6000,6000 17000,-5000
Strategy$1
Yogurt A -5000,17000 6000,6000
Strategy $2

Figure 4-6 The Yogurt company strategies
In the above examples, we can conclude that both company A and company B have to

strive to lower the yogurt price; otherwise, the higher priced product would lose the
market. We can also conclude that changes in the environment could change the utilities,

but the dominating strategy could remain the same.
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In RoboCup Simulation System, different agents have different abilities and

functions. We assign a different utility function to each type of :

“function captures a discounted future payoff for that agent’s acti'qns: For fire brigades, the
reward is proportional to thé area of the building that the agent extinguishes. The cost |,
represents the area of the buildings lost due to fire, as well és the time that the agent
spends to reach the fire and extinguish it. The payoff is the differencg between the reWard
and the cost. Therefofe, the pay(“)ff depends on the targets the agents are Worki_ﬁg on, their
location with respect tb the ytarge‘t, aﬁd the potential lOs_se§ to fire during this periéd.

In chaotic unpredictable multi—ageht system domains, the exact utility can be difficult
to predict as it is dynamic and changes with time'and space. For example, for a fire
brigade working on extinguishing a fire, a function of time and space represents the
utility: |

Utility=u (t, loc) 4.1)

Where ¢ is the time needed to reach and extinguish the fire, loc is the location of the
building of the building on fire.

The dependence of utility on time and space can take many forms. For example, the
utility may change monotonically with time: increasing or decreasing as time passes. In
general, the change in utility over time and space can be quiet complex. However, we
have identified the following change patterns as useful models in our application.

1. The utility is changing monotonically with time and space. Utility=u (1, loc).

For example, a fire in the center of the city in more likely to spread than a fire
on the perimeter of the city. Similarly, fires are more likety tb spread as time

passes. Therefore, the utility of extinguishing a particular fire has a monotonic

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of agents such that the utility

future reward term that decreases monotoniqally with time and increases
~ monotonically with the distance from the city center.

2. Some utilities change with time only (i. Utilit)/=z§ ,(t)‘). Cdmmdn cases of

.temporal utilities include utilities for meeting a deadﬁne, utilities for meeting a -

temporal order constraint, and utilities that monotonically increase or decrease
with time. In RCRSS, saving injured hufnaﬁoids is rewarded if tﬁc ambulé.nce
teams get to the injuréd humanoid out alive (déath is a deadline that has to be
met). In addition, there is also aﬁother monotonic reward for saviiig humanpids
early as the health point decreases with time, and the sum of £he' health points
of all humanoids is part of the value function.

3. Some utilities do hot depend on time but depend on space (i.e. Utility=u(loc))).
For example, in RCRSS, for civilian agents, the utility of being in a refuge is
that their health point remains constant and does not deteriorate with time.

4. Some utilities are converging to a constant (i.e. Lim ,.u(t,loc)=c, where c is a
constant). In RCRSS, clearing road blockades initially depends on time and
space as roads leading to fires or used to reach injured civilians are more
important to clear. Eventually, these priority roads are clear, and the utility for
clearing more blockades becomes constant.

5. Lastly, some utility do not depend on neither time nor space (i.e. Utility =c
where ¢ is a constant).

For the Fire Brigades the available actions are: Sense, Hear, Say, Tell, Move,

Extinguish, and Fill. Every cycle the agent may sense the environment using the

action: Sense, exchange messages using the communication actions: Hear, Tell, and

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ Say? as well as one physical action that affects states in the environment that can be
either Move, Fill, or Extinguish. Note that the Q value of some action changes based
on the conditions of the agent and those of the enviromnént-. F(;r example, filling the
tank v'vith water has a high utility for a fire brigade if the tank is empty and there are
buildings on fire.

According to the optimal policy (2.3) maxfmizes the Q-values. The Fire Brigades
would choose a strategy F', which we call ARK_FB strategy.

F' - arg max Q(t,loc ,A) 4.2

Where ¢ is the current time, /oc is current position at time ¢, 4 is the list of targets (a/,
a2,...ai) which agent would take as subgoals. Subgoéls refer to the set of alternatives that
a decision maker has to choose from.

Nash equilibrium is a unique solution to a game-theoretic problem for that no single
player wants to deviate from his or her predicted strategies while the other players keep
their strategies unchanged, everyone must satisfy Nash’s mutual-best-response
requirement. In our model, every player gives the best response to fhe other players.
Between time ¢ and time 300, the utility is the difference between the total payoff and all
possible losses. Combining those factors into one Q-value function, which becomes:

QO (t,loc ,A) = pi(11,al) + p2(12,4) - (1, 4) 4.3

Where t1= distance(s,al)/speed ; t2=tl+time necessary to extinguish the al; al is

the first target in the list of targets (subgoals) 4; Ais the rest of the subgoals after al; pl

is the profit function for the current target a/; p2 is the profit function for the rest of the

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

target; The difference between pl and p2 are: p2 has lower probability than p[; [is the
_ loss function for agént when agent decide to take the first target. -~~~
Obviously 300 =¢2 =t1 =t. Those sub function are all sfocﬂastic function, which
- means wl;eﬁ we calculate the Q-value, we considér probability as a factor.
Utility ﬁmbﬁons could dramatically ’change agent behavior. For examﬁle, in the
G_ﬁnnérs’ Dilemma: If we design the utility in this way, then the Gunners Will be brth;

enough to stéy and ﬁght instead of fleeing.

Gunner 2:
Stay | Flee

Gunner1 Stay | 3,3 12,2
Flee | 2,2 1,1

Figure 4-7 The Gunner's dilemma

How to design the utility function for agents is a crucial technique for developers.
The utility of an action is usually some function of the cost, reward, risk, and other
properties of the action. Every agent gives the best response to the whole game to
maximize its utility.

Basically for fire brigades, the reward is the building area of not getting any fire With
the probability. The cost is the area of the building would catch fire or burn down with
probability. Every cycle, agent calculates the reward and cost for itself. He knows other
agents positions and targets, he will calculate his the time to get to a target and time
expected to extinguish a fire. Meanwhile, he would calculate the cost to do this, which is
the area of the building, would catch fire and burn down. Therefore, individual decisions

are made in a coordinated way so that a degree of harmony is achieved.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. To choose a target among a set of alternatives, the decision maker would rather prefer
_an altemati\;e,, that taximizes expected utility to other ones. The preferences refer to the -
ordering relationship among »altemative.s in the opinion of the 'dec;ision maker. The

orderirig ielationship ina plaimer is an ordered set of preferences over alternative actions
A A utility-bas“ed agent orders elements based on the respective expected utilitieS taking

into account‘thé desirability (or utility) of each course of action as well as its prbbability.

By prop‘e‘rlly;(' SCtting the utility function to favor achieving common goals, a degree of
coordination can be achieved.

For the Fire Brigade, the payoff is the safe area in the city, according to the in
evaluation function (3.1) V=(P + S/Sint) * sqrt(B/Bint) only B/Bint is directly related to .
Fire Brigédes, which means more fires, less payoff.

- When we design the utility function, spatial and temporal factors are considered in
| utility assessment. The fire agent assesses the utility of an action based on a set of factors

including some spatial and temporal ones as illustrated in Figure 4-8.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

Time-to-reach

Temporal Factors Persistence

Co-worker

Building-area

Dist-to-center

Spatial Factors Within reach

Has-nutout-Nei

Has-nofire-Nei

Figure 4-8 Utility Decision network for Fire Brigade agent

~ If a fire is put out, the building will not catch fire agaih. If the building is burn out, the
building will not catch fire again. Based on these two facts, we can remove the
extinguished buildings and burn-out from the task list, because their utilities are zeroes. If
the fire brigades could cooperate to extinguish a fire building, the efficiency will improve
significantly. If the agents could persistent on the job, they won’t waste their effort.
Quantitative and qualitative factor are considered in the utility function.

To ensure effective use of time, the estimated time to reach a building‘takes into
account the status of the roads leading to the fire from the agent’s current location. If the
road is known to have been cleared, then the Euclidean distance is used in calculating the
time. If the road is known to be blocked, then the time will be practically infinite. If the
statué of the road is unknown then the Euclidean distance is multiplied by a factor to

account for potential delays. In the current implementation this factor is two. After
79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adding up the cost of all the possible routes, the agent chooses the fire with the maximum
~ expected utility per unit time. Given a route, the time a Fire Brigade agentvwill spend to - .-
‘ } get to the fire location Eb=Dis(loc fire)/speed where Dis() is thé_ we;ighted distance to the |
fire on th;: selectéd route and speed is the agent’s speed. A lower Eb represents a fire that
can be reached ’c.luickly.

In Figure 4-8; persistence represents the amount of time a fire agent has to spend
extinguishing a particular building. If the agent’s target is the same as the last cycle, this
value is increased by one. The factor Co-workers represents the number of cowdi'kefs
that will help the ‘agent extinguish the fire. By parsing the messages from the central
agent, fire brigade will find out how many cé-workers are working ona Speciﬁc building.

~ The larger buildings have more priority than othver buildings. However, this utility
must be diécounted to take into account the current and: future efforts need to put out
larger building. Nonﬁally, larger buildings need more firefighters and take longer to
extinguish than smaller buildings. Building ground area is the current reward.
Neighboring area is the future reward and the probability of getting this reward is
assumed to be 50%.

The distance from the target building to the center of city plays an important role in the
utility assessment. First, the fires in buildings closer to the center of city can spread to
more buildings thén fires in corner or isolated regions. Second, central locations are
usually more easily reachable by a larger number of agents than remote ones. Therefore,

a building closer to the city center has more payoff than others. In fact, the distance of

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

th_e fire location to the city center R contribute a normalized vahie Ea=1-Rgr/R to the
utility such thét the larger the Ea the higher the utility for extinguishing it becomes.

If the target building is within the fire-brigade’s reach distancé, it does not have to
spend mﬁime én the road. Therefore, it makes sense to just put out the reachable fires
first.

To control the spread of a fire, the fire agents would surround a cluster of buildings on
fire with a rim of put-out buildings. Therefore, extinguiéhing a building that has put-out
neighbors may help surrounding the fire cluster.

Besides time and spacé elements, 6ther agents’ subgoals should also be considered in
utility fanction making. Within the multi-ageht decision making framework, a decision
making problem is either a single problem when only one alternative is allowed to be
sglected from the set of alternatives at any time, or multiple problems when several
alternatives are allowed to be selected from the set of alternatives at a time. In our test
domain RCRSS, the fire brigades decision‘maki\ng represents the second case.

In addition to the above three elements, agents’ decision making is also based on
whether the information is complete. Perfect information means every agent has complete
information about all previous moves. While imperfect information means some or all
agents have only partial information.

After deciding on subgoals, agents take the necessary actions. Every action has some
preconditions Prec(a) and some effecté Eff(a). For example, FB agent’s
prec(move_to(target)) include: not close enough to target, and prec (extinguish(target))
include: close enough to the target and target is on fire. prec(sendMsg) is sense the

environment or/and get message, etc.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. For the Arhbulance team, the payoff depends on the number of agents alive and their

- health point. The finction used for ambulances in RCRSS uses P + S/Sint; which gives - -

_more weight to P the number of the civilians alive, over the ratio of the remaining health
point total S to the initial health point Sint.
We define that Fire Brigades would take a strategy 7°, which we call ARK AT

- strategy.

7' = arg mix Q(t,loc ,A) 4.4

Where ¢ is the current time, s is current position at vtime t, A is the list of targets (al,
a2,...ai) which agent would take as subgoals.

Sin;ilarly, every Ambulance Team gives the best respense to the other players.
Between time ¢ and time‘300, the utility is the difference between the total payoff and all
pessible losses. Combining those factors into one Q-value function, which becomes:

0 (t,s,4) = pi(s1,al)+ p2(12,4) - I(t, 4) 4.5

Where t1= distance(s,al)/speed ; 12=t] +time suppose to rescue next human in al; al

is the first target in the list of subgoals 4; Ais the rest of the targets after al; pl is the
profit function for the current target a/; p2 is the profit functiori for the rest of the target;
The difference between pl and p2 are: p2 has lower probability than pl; [is the loss
function for agent when agent decide to take the first action.

Obviously, 300 =>t2 = tI >t and the payoff depends on the number of persons in that
are rescued. Those sub function are all stochastic function, which means that when we

calculate the Q-value, we consider probability as a factor.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ After the AT agent makes the subgoal decision, then the AT agent follows the
STRIPS algorithm to choose its action.
For the policel force, the payoff is sum blockades_rpt_FB'erl.ockades_rét_AM We
define tha.t Police Forces would take a strategy T*, which we call ARK_PF strategy.

1° = arg max Q(t,loc ,A) 4.6

Where ¢ is the current time, s‘is' current position at tixﬁc t, A is the list of reported
blockades (targets) (al, a2, ...ai) which agénts would tqk_e as subgoals. |

We also let each PF agent give the best response to tile other players. Between time t
and time 300, the utility is fhe difference between the total payoff and all possible lossés.
Combining those factors into one Q-value function, v;fhich becomes: |

Q(t,5,4) = plitl,al) + p2(12,4) - 1(1, 4) 4.7

Where t1= distance(s,al)/speed ; t2=tl+time suppose to reach next blockade; al is

the first target in the list of subgoals A; 4 is the rest of the targets after al; pl! is the profit
function for the current target al; p2 is the profit function for the rest of the target; The
difference between p! and p2 are: p2 has lower probability than p/; [is the loss function
is the loss associated with other agents failing to use the road.

In summary, this chapter presents the algorithmic and conceptual elements of the
multi-agent framework we propose. The RCRSS is used to exemplify how these concepts

can be applied.

&3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Chépterﬂs RoboCup Rescue Implementation, Results -
.In a dynamic and uncertain environment, the states that justify the agents’ plans may
dynamically change, while the planning process is still going on or duriﬁg the execution
B of the plaﬁ. An agent may not know the properties of the environment or other agents
withcertéinty. The actions of an agent are non-deterministic and couid span a range of |
L possible, vdﬁtéomes. The outcome of an agént’s performing an action might be influenced
- by other agents’ behaviour. Their behaviour may be significantly different ffom what the
agent may have anticipated. This chapter presents the results obtained from applying the
theory developed in previous chapters to develop a multi-agent planning and coordination -
system .fof ch6 RoboCup Rescue Simulation System (RCRSS).
5.1 Communicative actions
In order to obtéin as much as possible information about the uncertain environment, the
agents exchange as much information as possible, especially at the early stages of the
RCRSS simulation session. /

An agent may hold many desires that conflict with each other. Different agents may
have conflicting goals as well and the outcome of an agent’s action may be influenced by
the actions of other agents. Thus an agent n¢eds to know about other agents and decide
how to collaborate with others, which makes the agent’s planning process in a multi-
agent system more‘complex thanin a single agent environment.

In our approach, the communicative action is mostly an action within a collaborative

multi-agent team. Each agent reports its current percepts to central agents. The central

agents remove all redundancies and reports back to all agents. The agents report the

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

status of buildings on fire, the status of blocked roads and cries for help from injured

"agents send messages when they put-out a fire. Police agents apnéunce when a blocked -
roéd has Beén cleared and ambulance agents report when they rescue an injured agent.

Agents reducé redundancy in their communications by remembering what they have

' 'previdusly reported. Agents also need to notify others of the action they are taking;)

one of the messages they need to pass is the agent’s action target. The format of the |

message exchanged between agents is as follows: N

Current Task | buildings on fire laxtinguished buildingsl blocked roads| cleared roads| .

building with trapped agents | injured agent information

Every object in the RCRSS has a unique id. This id is 8 or 9 digits long, which takes a
ylot of message space. Because of the limit of the message length (256 bytes), we have to
find an efficient way to represent the information. At the beginning of the simulation, we
assign each object a unique short 3 digits id. A set of special characters act as the field
separators. The center agent filters redundant information. Thus, the messages become
shorter and easy to parse. Moreover, in some runs, messages longer than 256 bytes are
generated. These messages are cut into 2 or 3 messages.

5.2 Implementation Results

To assess the performance of rational hierarchical utility-based agents, I compare with
two greedy implementations. One implementation, the priority agents, is based on a set of

rules for deciding on the next target building. These rules are designed to generate

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- civilians. Agents also repgqﬂy@@chwtasksr Vthey; have successfully accomplished. Fire

priority class and each agent chooses the closest highest priority target (Tawfik et al

2004) The Second‘implementation, the sample agents, uses’'a’ greedy“ selection rule to~

select a target from the task list. The reported results represent-thé average of 4 runs in
each map. I uéed thretf: maps Kobe, Foligno and Virtual City (VC). The'. use of these two.
heuristics for cdmbéﬁson is bésed the relatively good perfdnna;ice of Vthese heuris‘tics;_.the
sample ag'enfs were the winner of the 2003 RoboCup competition, ahd' the prioﬁty -agents ‘
-Wére semifinalists at »the 2004 Rob6Cup competitioh. Moreover, it was possiblé to gain a

deep understanding of the inner workings of these agents:

- ‘ (- B)X]

Team: ARK-Kobe-City-Round Time: 28 Score: 96.994163

Figure 5-1 RCRSS viewer shows the Kobe map

Figure 5-1 shows the RCRSS Kobe city map. For the map of the‘ city of Kobe, Three
versions of the map are used. Map 2 and 3 has more fires, more blockades, and more
injured civilians than Map 1. The results in Figures 5-3, 5-4, 5-5, 5-6, 5-7, and 5-8 show
the average performance for the three variations of the Kobe map. Figure 5-3 shows the

overall score as calculated using the evaluation function (3.1). From the figure, in appears
86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the proposed approach outperforms the other two heuristics. Figure 5-4 gives a
~——-plausible justiﬁcatibh of the improved performance.-It is clear that the spatio-temporal - -

agents are more successful that the other agents in extinguishing the fires in this map.

Kobe Map1
120 -
100
80 -
§ 60 -
40 4 | —e— Priority agent
20 4 | —9—Sample agent
o —a— Spatiotemporal ' .
0 30 60 90 120 150 180 ‘ 210 240 270 300
Time
Figure 5-2 The scores of Kobe map round 1 ‘
Kobe Map1
160,000 -
140,000
g 120,000 |
@ 100,000 -
:"E 80,000 4 = priority agent
@ 60,000
© 40000 —o— Sample agent
:,,‘i 20: 000 - —a— Spatiotemporal
0 T T T T T T T T L T 1
0 30 60 90 120 150 180 210 240 270 300
Time

Figure 5-3 The safe building area of Kobe map round 1

The improved fire fighting performance of the spatio-temporal agents is also evident for
Kobe Map2, according to Figure 5-6. However, Figure 5-5 shows that this performance

improvement was not translated into a significantly better score. The reason for this

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

apparent discrépancy is that a higher number of death among injured agents resulted as
- .KobevMap 2 has more blocked roads and-some traffic jams delayed ambulance agents~ -
trying to rescue injured civilians. In addition, some rescue agénts were buried by the
initial earthquake in Kobe Map 2. Figures 5-7 and’ 5-8 show improved performahce in’

fire fighting and overall score for the spatio-temporal agents in Kobe Map 3.

Kobe Map2

140 -

120 A

100 A
2 80
3 60
» —e— Priority agent

40 | —a— Sample agent

201 —a— Spatiotemporal | -

0 £ T T T T T T T T T — 1
0 30 60 9 120 150 180 210 240 270 300
Time
Figure 5-4 The scores of Kobe map round 2
Kobe Map2

160,000 -
o 140,000 -
£ 120,000
@ 100,000 -
S 80,000 -
g 60,000 —e— Priority agent
& 40,000 - —o— Sample agent
[}
@ 20,000 —A— Spatiotemporal

0 T T T T T T T T T T
0 30 60 90 120 150 180 210 240 270 300
Time

Figure 5-5 The safe building area of Kobe map round 2

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120
e 100
80 -
b3
g 60 :
n —o— Spatiotemporal
- 404 |—o—Priority Agent
20 4 —— Sample Agent
0 T T R T L T ‘ T T T T T
0 30 60 90 120 150 180 210 240 270 300.
Time ’
Figure 5-6 The scores of Kobe map“round 3
160,000 -
140,000 -
& 120,000 -
<
2 100,000 -
T 80,000 - SoatioT |
=
g 60,000 - —— p?a !o empora
3 40,000 | —u—znontly P/;gentt
20,000 { LA Sampre Agen
0 T T T T T T T T T T ¥
0 30 60 90 120 150 180 210 240 270 300
Time

Figure 5-7 The safe building of Kobe map round 3

From performance of the agents on the three maps for Kobe, it is clear that the spatio-
temporal fire brigades performance has been consisténtly better that the sample and the
priority agents. However, it was necessary to test on other cities because some techniques
may perform better on a specific map and perform poorly elsewhere.

Two additional maps are available for RCRSS: Foligno and Virtual City (VC). Foligno
map have lots of blocks, the fires are difficult to extinguish in a short time. In the tests,
the si)atiotemporal agents did not extinguish the fires (like most implementations), but try

to control the fire, and reduce the damage. For VC, there are more fires, but few blocks.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the tests, the spatiotemporal agents have extinguished the fires in a relatively short

V

time. - e e S S
120 ¢
100
80 1
o
9 60 4 ,
7] —o— Spatiotemporal
40 + —o— Priority Agent
204 —a— Sample Agent
0 T T T T T T S— Y T T 1
0 30 60 90 120 150 180 210 240 270 300
Time '
Figure 5-8 The scores of Foligno Map
120 W
100 -
80 -
g
8 60 -
@ 40 —o— Spatiotemporal
—o— Priority Agent
20 { |-—Sample Agent
0 T T T T T T T T T T)
0 30 60 90 120 150 180 210 240 270 300
Time

Figure 5-9 The scores of Virtual City Map

The kuwata viewer that provides continuous performance statistics during each run is
not fully compatible with these two maps. The available viewer for Foligno and Virtual
City only reports the overall score as shown in Figures 5-9 and 5-10. It appears that the

spatio-temporal agents did slightly better in Foligno than the other two agents and did

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sli’ghtly worse than the priority agents in Virtual City but still better that the sample

)

T ragents.
In summary, the use of the hierarchical planning and spatio-temporal utilities proved to
be beneficial and effective in multi-agent systems. In the RCRSS, it outperformed

heuristics designed for this particular environment.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ ' Chapter 6 Conclusion and Future Work

V'The approach presented in this thesis integrates eléments frofn g.ame theory, decision
theory,v BDI rational agent and Hierarchical Task Network planning. The combination
uses utilities to guide action selection at each level 6f the Hierarchical Task NAe‘twork,
planning énd ifope with changes in the environment. The main contril;ﬁtioﬁs of thls thééis ; |
are: N |

* An approach for multi-agent hierarchical planning for hcterbgeneous and
homogeneous agents. -

s The use of spatio-temporal utility ,functiéns in action selection and
Hierarchical Task Network (HTN) planning.

* Demonstrating a technique for mapping BDI desires and intentions between
various levels in the HTN planner.

* Implementing the proposed techniques using a multi-agent simulation
environment: RoboCup Rescue Simulation System. The test results are
encouraging. Fire extinguishing is pretty fast and efficient. The performance
of the police agents clearing road blockades has also improved. However,
there has not been a significant improvement for ambulance teams. Further
investigation is needed.

Our Rational Hierarchical Planning can bé applied to a variety of complex dynamic
multi-agent environments. For example, a group of military robots fighting against a
group of enemy agents in a building have to assemble in nearby buildings, and coordinate

their attack on the enemy.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Recommendations for Future Research

‘and Decision Theory in mulﬁ-agent planning. Some of the opeﬂn'. quéstions in thjs regards
include héw deal with dynamically éhanging payoffs in a planning context. Some special
cases of dyné.mic payoffs have been analyied. For example; Musacchio (2005) examines
monotonically increasing payoff in the context of wireless session pfic‘ing and shows fhat
there exists a perféct Bayesian equilibrium in this special case. Hol»vever, a planning
oriented f(;rmulation is neceséa.ry for multi-agent systems.

Second, in the hierarchical task netwofk planning, the issue of commitment needed
remains to be an issue worth investigating. Some types of commitment like blind f
commitment, single-minded commitment and lopen minded commitment have been
proposed. However, our experience with RCRSS shows that a better sdlution for the

commitment problem is still needed.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The framework presented here provides a basis for exploring the role Qf Game Theory ..

Bibliography
 [Ambroszkiewicz éﬁd Komar 1997] S. 'A:ﬁdeszkiéWi'ci; J. Komar, A Model of BDI-
Agent in Game-Theoretic Framework. Model Age Workshop, 1997
[Bowling et él 2002] M. Bowling, R. Jensen, and M. Veloso, A formalization of |
equilibria for mu}ti-agent planning Proceedings of the AAAI-2002 Workéhop on
Multi—agent Planning, August, 2002 | |
[Cavedon and Réo 1996] L. Cavedon, A. Rao, Bringing About Rationality:A Incorporating
Plans Into a BDI Agent Architecture. PRICAI 1996: 601-612 |
[Cisternino and Simi 2000] A. Cisternino, M. Simi. Layered Reactive Planning in the
JALP Teémin. in RoboCup-99: Robot Soccer World Cup III, Veloso, M., Pagello,
E., Kitano, H. (Eds.), LNCS, Vol. 1856:563-273, 2000
[Claus and Boutilier 1998] C. Claus and C. Boutilier, The Dynamics of Reinforcement
Learning in Cooperative Multi-agent Systems. AAAI pp 746-752, 1998.
. [Erol et al. 1994] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto, HTN Planning:
Complexity and Expressivity. In Proc. of AAAI-94, pages 1123-1228, 1994.
[Erol et al. 1995] K. Erol, J. Hendler, D. S. Nau, and R. Tsuneto. A critical look at critics
in htn planning. In IJCAI-95, 1995.
[Holland 1975] J. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.
[Guestrin et al 2002] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated
reinforcement learning. In Proceedings of the 2002 AAAI Spring. Symposium

‘Series: Collaborative Learning Agents, Stanford, CA, March 2002.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Kaelbling et al 1996] L. P. Kaelbling, M. L. Littman and A. W. Moore. Reinforcement

Learning: A Survey. Journal of Artificial Intelligence Research, vol 4, pp. 237-285,

1996,

[Li and Sah 2004] X Li and L; -K. Soh . Learning How to Plan and Instantiate a Plan in
Multi-Agent kCoalition Formation, to appear in Proceedings of the 2004 IEEE/WIC
International Conferénce on Intelligent Agent Technology (IAT2004), Beijing,
China, September 20-24, 133139, 2004,

[Malone and Crowston 1990] T.W. Malone and K. ;Crowston. What is coordination
theory aﬁd how can it help design cooperative work systems. Proceedings of the
1990 ACM conference on Computer—supported cooperative work, Los Angeles,
California, United State_s, 1990\.

[Morimoto 1999] How to Develop a RoboCup Rescue Agent for RoboCup Rescue
| Simulation System version 0. |
[Morimoto et al 2001] T. Morimoto, K. Kono, and I. Takeuch. YabAI The first Rescue

Simulation League Champion. RoboCup 2001, Team Description paper. |

[Morimoto 2002] T. Morimoto. YabAPI: API to develop a RoboCup Rescue Agent in
Java, http://ne.cs.uec.ac.jp/~rﬁorimoto/rescue/yabapi

[Musacchio 2005] J. Musacchio, Pricing and Flow Control in Communications
Networks, PhD Dissertation, Dept. of EECS, _UC Berkeley, January 2005.

[Nair et al 2003] R. Nair, M. Tambe and S. Marsella. Role and resource allocation in
MAS: Role allocation and reailocation in multi-agent teams: towards a practical
‘analysis. Proceedings of the second international joint conference on Autonomous

agents and multi-agent systems, July 2003.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ne.cs.uec.ac.jp/~morimoto/rescue/yabapi

[Rao and Georgeff 1991] A. Rao, and M. Georgeff. Modeling rational agents within a
| BDI—archltecture In Second Intematronal Conference on the Prmc1ples of
| Kner:vledge Representatron and Reasoning, 1991

| [Russell and Norv1g 2003] S.J. Russell and P. Norvrg Art1ﬁ01a1 Intelligence: a modern
approach (2nd Edition)'. Prentice-Hall, 2003.

[Sen and Sekaran 1996] S. Serr and M. Sekaran. Multi-agent Coordination with Leérning
Classifier Systems. Proceedings or' the IJCAI Workshop on Adaptation and
Learning in Multi-Agent Systems, vol 1042, pp 218--233. editor, Gerhard Wei and
Sandip Sen,1996. | ‘

[Stone and Veloso 1999] P. Stone and M. Veloso. Task Decomposition, Dynamic Role
Assignment, and Low Bandwitdth Commurrication for Real Time Strategic |
Teamwork. Artificial Intelligence, 1999.

[Sardina et al 2006] S. Sardina, L. de Silva and L. Padgham. Hierarchical Planning in
BDI Agent Programming Languages: A Formal Approach. Proceedings of the 5th
Autonomous Agents and Multi-Agent Systems Conference (AAMAS-2006).

[Segerberg 1989] K. Segerberg. Bringing it about. Journal of Phil. Logic, 18, 1989

[Sycara 1998] K. Sycara. Multi-agent System. AI Magazine 19(2), 1998. |

[Tarl 1997] M. Tan. Multi-Agent Reinforcement Learning: Independent vs. Cooperative
Learning. Readings in Agents, Morgan Kaufmann, San Francisco, CA, USA, 487—
494, 1997.

[Tawfik et al 2004] A. Y. Tawfik, Z. Ibrahim, D. Liang, R. Price, L. an, and Z. Wu.
vARK Team Description: A Change-based Approach to Urban Rescue, Proceedings

of Robocup: The 8th RoboCup International Symposium. Lisbon, Portugal, 2004,

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Verbeek et al, 2004] B. Verbeek andC Morris. Game Theory and Ethics, The Stanford
| Encyclopedia of Philosophy (Winter 2004 Iddirtiod).k, Edward N Zalta(ed), URL=
http. ://plato.stanfofd.edu/archives/win2004/entries/ garde-ethics/

[Vlassis 2003} N. Vlassis. A Concise Introduction to Multi-agent Systems and
Distribdted Al Infonnatics Institute, University of Amsterdam, September 2003.

[von Neumann and Morgeﬁstcfn 1947] J. von Neumann and O. Morgenstern. Theory of
Games and Economic Behavior. Princeton Uniyersity Press, 1947.

v[Whité 1969] D. J. White Decision Theory. Chicago: Aidine Pub. Co. 1969.

[Winikoff et al 2001] M. Winikoff, L. Padgham, and J. Harland. The concepts are
deécribed in Simplifying the Development df Intelligent Agents. In proceedings of
the 14th Australian Joint Conference on Artificial Intelligence (AI'01), Adelaide,
2001. |

[Wooldridge 2002] M. Wooldridge. Introduction to Multi-agent Systems. John Wiley and

Sons, Chichester, England

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://plato.stanford.edu/archives/win2004/entries/game-ethics/

VITAE AUCTORIS

Dong Liang joined the Temporal Inference Project (TIP) in April 2002. Since then he has
been working on many aspects of Multi-agent planning. Along with his teammates in the
research groups, he has participated in the Robocup Championship in 2004 in Lisbon,
Portugal. He is now working in Chicago, U.S.A. after the completion of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Rational hierarchical planning and coordination in multi-agent systems.
	Recommended Citation

	tmp.1507664919.pdf.ZUTg_

