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ABSTRACT

A computational grid is an ensemble of distributed, heterogeneous resources and 

provides various capabilities for efficient resource utilization. Grids are becoming 

prevalent platforms for high performance and resource intensive applications that require 

higher computing power or more resources than available on a single site. Grids are 

composed of heterogeneous resources, but not only are the resources heterogeneous, 

approaches for resource sharing are also heterogeneous. In addition some resources may 

become available or unavailable at some point of time. Thus, dynamic workload 

adaptation becomes a vital factor for an application’s performance.

The approach presented here is an extension of the existing ATOP [27] approach 

for application internal dynamic workload adaptation. The goal is to maintain balanced 

progress across all nodes/sites executing an application. The presented approach 

provides:

• adaptation at different levels: globally across the sites, locally across the nodes 

of any local site and at node/CPU level for efficient resource utilization

• well-defined policies for local and global workload adaptation

• unification for scheduling with different resource sharing types and 

integration with the local job scheduler

• the option to trade between the time vs. the space dimension for flexible 

resource allocation. This is supported by introducing a new resource 

reservation type, computational power, in addition to the standard reservation 

type number o f nodes with or without reserved time share

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DEDICATION

To

My parents and Guruji, who guided me through the right path

And

My dear friend, Muqeeth for his endless support and encouragement

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I  would like to express my sincere appreciation to my advisor, Dr. A. C. Sodan, for  

giving me an opportunity to work in a very interesting area, and for her support, 

guidance and encouragement throughout my graduate studies.

I  would also like to thank my committee members, Dr. Rankin, Dr. Wu and Dr. Tsin 

for their time and effort and their helpful comments and suggestions.

I  am grateful to Mr. Mark Hahn from McMaster University for providing me the 

suitable technical environment to conduct my tests. I  would also like to thank my 

colleagues, Lin Han, Yu Zou and Ahsanul Arefeen for helping me build the ATOP- 

Grid framework.

Finally, I  thank several o f my friends for helping with the preparation o f this thesis 

and, my parents and my sister Deepika Gupta, for believing in me.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT......................................................................................................................................... iii

DEDICATION.....................................................................................................  iv

ACKNOWLEDGEMENTS................................................................................................................ v

LIST OF TABLES.................................................................................................. ..........................viii

LIST OF FIGURES.................................................................................................  ix

1. INTRODUCTION..........................................................................................................................1

2. RELATED WORK........................................................................................................................ 3

3. A REVIEW OF THE STATE-OF-THE-ART................................................ 7

3.1 L o a d  B a l a n c in g  P r o b l e m .................................................................................................................... 7
3.1.1 St a t ic  v / s D y n a m ic  L o a d  B a l a n c in g .................................................................................................. 7
3 .1 .2  C e n t r a l iz e d  v / s D is t r ib u t e d  L o a d  B a l a n c in g ............................................................................8
3 .1 .3  Sy n c h r o n o u s  v / s A s y n c h r o n o u s  L o a d  B a l a n c i n g ..................................................................9
3.2 L o a d  B a l a n c in g  A c r o ss  G r i d s .......................................................................................................9
3.2.1 H IE R  -  H ie r a r c h ic a l  Pa r t it io n in g  a n d  L o a d  B a l a n c in g   ...................................10

4. OUR APPROACH -  ATOP-GRID...........................................................   13

4.1 B a sic  ATOP A p p r o a c h .................................................................................  13
4.2 Z o l t a n  L ib r a r y .................................................................................................................... 14
4.3 A T O P -G r id  -  E x t e n s io n  o f  ATOP f o r  G r i d s ..........................................  16

5. ADAPTATION FRAMEWORK...................................................................!.......................... 19

5.1 A p p l ic a t io n  M o d e l .................................................................................................................................19
5.2 r e s e r v a t io n ..........................................................................................................   20
5 .3  R e s o u r c e  a l l o c a t i o n ........................................................................................................................................2 0
5.4 C o m p o n e n t s  o f  A d a p t a t io n  F r a m e w o r k .............................................................................. 22
5.5 M e t r ic s .....................................................................................................................  25
5.5.1 E x a m p l e  C a l c u l a t io n .................................................................................................................................28
5.6 In t e r a c t io n  w it h  l o c a l  jo b  s c h e d u l e r ................................................................................ 32
5.7 P o l ic ie s  f o r  L o c a l  a n d  G l o b a l  A d a p t a t io n .......................................................................34
5.7.1 L o c a l  A d a p t a t io n  D e c isio n  C r i t e r i a ........................................................:....................................34
5 .7 .2  GLOBAL ADAPTATION DECISION CRITERIA.........................................................   37

v i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. IMPLEMENTATION 39

6.1 A d a p t a t io n  C o n t r o l l e r ........................................................................................................................40
6.2 Dynamic Directory................................................................................................................. 40
6.3 A p p l ic a t io n - in t e r n a l  G r id  Sc h e d u l e r ........................................................................................ 41
6.4 A d a p t a t io n  L ib r a r y ...................................................................................................................................42
6.5 A d a p t a t io n  C o s t  M o d e l ......................................................................................................................... 45
6.5.1 L o c a l  A d a p t a t io n  C o s t  m o d e l .............................................................................................................. 45
6 .5 .2  G l o b a l  A d a p t a t io n  C o s t  M o d e l .........................................................................................................48
6 .5 .3  A d a p t a t io n  In t e r v a l ...................................................................................................................................49

7. TEST PLAN.................................................................................................................................. 50

7.1 T e s t  E n v ir o n m e n t .................................................................................................................... 50
7.2 Te s t  A p p l ic a t io n ...................................................................................................................... 50

8. TEST CASES AND EXPERIMENTAL RESULTS....................................  54

8.1 T e s t  C a s e s .........................................................................................................................................................54
8.2 E x p e r im e n t a l  R e s u l t s ........................................................................................   57
8.2.1 T e s t  t h e  Ef f ic ie n c y  o f  A T O P ........................................................................... ../.................................. 57
8 .2 .2  F l e x ib l e  A l l o c a t io n  o f  T h r e a d s ..............................................................   62
8.2 .3  L o c a l  A d a p t a t io n  -  T im e  v s . Sp a c e  A d a p t a t io n .............................. 64
8 .2 .4  L o c a l  A d a p t a t io n  -  B e n e f it s  o f  t im e  s h a r in g .................................  68
8 .2 .5  L o c a l  A d a p t a t io n  -  A d a p t a t io n  t o  D y n a m ic  R e so u r c e  A v a il a b i l it y ................... 69
8 .2 .6  G l o b a l  A d a p t a t io n  f o r  F u l l y  M a l l e a b l e  A p p l ic a t io n  ...................................72
8 .2 .7  G l o b a l  A d a p t a t io n  f o r  C o n s t r a in t  M a l l e a b l e  A p p l ic a t io n .......................................73

9. CONCLUSIONS AND FUTURE WORK.......................................   75

REFERENCES................................................................................................................................... 76

VITA AUCTORIS..............................................................................................................................81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

T a b l e  1 -  Z o l t a n  Q u e r y  f u n c t io n s  u s e d  in  A T O P -G r i d ................................  15

T a b l e  2  -  Z o l t a n  M e t h o d s  u s e d  in  A T O P -G r i d ........................................... . ......................................16

T a b l e  3 - M e t h o d s  p r o v id e d  b y  a d a p t a t i o n  l ib r a r y  w it h  t h e ir  d e s c r ip t io n  [3 4 ] .  43

T a b l e  4  - P r o p e r t ie s  o f  g r a p h s .....................................................................................  51

T a b l e  5 - R u n t im e s  f o r  d if f e r e n t  t h r e a d  a l l o c a t io n  a p p r o a c h e s  (CPU s h a r in g ,

NODE SHARING, AND SELF COSCHEDULING). AB-AB MEANS CPU HYPER SHARING, A- 

B NODE SHARING, AND AA-BB A COMBINATION OF NODE SHARING AND SELF

COSCHEDULING........................................................................................................................   63

T a b l e  6  - R e s o u r c e s  u s e d  (n u m b e r  o f  n o d e s )  u n d e r  t im e  s h a r i n g  a n d  s p a c e

SHARING TO KEEP THE SAME PROGRESS/REMAINING RUNTIME................................................... 6 7

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

F ig u r e  1 - P o s s ib l e  im b a l a n c e s  a m o n g  s it e s  in  n o r m a l iz e d  w o r k l o a d  [4]...............2

F ig u r e  2 - ATOP- G r id  -  E x t e n s io n  o f  B a s i c  ATOP a p p r o a c h  [28] !...................... 17

F ig u r e  3 - a )  A t y p ic a l  SMP n o d e  w it h  t w o  h y p e r t h r e a d e d  CPUs (CPUO a n d  CPU 1 

r e p r e s e n t  p h y s ic a l  CPUs a n d  LO a n d  LI r e p r e s e n t s  l o g ic a l  CPUs b ) CPU

s h a r i n g  c )  N o d e  s h a r i n g  d )  s e l f  c o s c h e d u l i n g ....................................................................... 2 2

F ig u r e  4  - C o m p o n e n t s  o f  ATOP f r a m e w o r k  a n d  in t e r a c t io n  b e t w e e n  t h e m  [4 ]. 2 2  

F ig u r e  5  - In t e r a c t io n  o f  a p p l ic a t io n  w it h  jo b  s c h e d u l e r  t h r o u g h  a d a p t a t i o n

CONTROLLER............................................................................................................................................................ 33

F ig u r e  6  -  A d a p t a t io n  c o n t r o l l e r  c o m m u n ic a t e s  w it h  a p p l ic a t io n  i n t e r n a l  g r id  

s c h e d u l e r  a n d  l is t e n e r  t h r e a d  o f  t h e  a p p l ic a t io n  w h il e  a c c e s s i n g

INFORMATION FROM DYNAMIC DIRECTORY [ 2 2 ] ................................................................................. 4 2

F ig u r e  7 - E x a m p l e  o f  a n  a p p l ic a t io n  u s i n g  t h e  ATOP a d a p t a t i o n  l i b r a r y  45

F ig u r e  8 - T e s t  a p p l ic a t io n  c o m m u n ic a t io n  p a t t e r n ............................... !................................... 51

F ig u r e  9  - A b s t r a c t  a l g o r it h m  o f  t h e  t e s t  a p p l i c a t io n ............................................................. 53

F ig u r e  10  -  In it ia l  p a r t it io n in g  t im e  f o r  p a r t it io n in g  f r o m  s c r a t c h  (S )  a n d

OVERPARTITIONING WITH 16, 64, 128 AND 256 PARTITIONS........................................................ 58

F ig u r e  11 -  A d a p t a t i o n  t im e  f o r  a d a p t a t i o n  s t e p  6 4 - > 3 2  (t o p )  a n d  3 2 - > 4 0

( b o t t o m ) , s h o w  f o r  p a r t it io n in g  f r o m  s c r a t c h  (S) a n d  o v e r p a r t it io n in g  (O)

WITH 64, 128, AND 256 PARTITIONS...........................................................................................................59

F ig u r e  12  -  A d a p t a t io n  t im e  f o r  a d a p t a t i o n  s t e p  4 0 - > 1 6  s h o w n  f o r  p a r t it io n in g

FROM SCRATCH (S) AND OVERPARTITIONING (O) WITH 64, 128, AND 256 PARTITIONS

 ;....................................6 0

F ig u r e  13 -  M a x i m u m  e d g e  c u t s  p e r  n o d e  f o r  a d a p t a t i o n  s t e p s  64->32 (t o p )  a n d  

32->40 (b o t t o m )  f o r  p a r t it io n in g  f r o m  s c r a t c h  (S) a n d  o v e r p a r t it io n in g

w it h  6 4 , 1 2 8  a n d  2 5 6  p a r t i t i o n s ......................................................................  61

F ig u r e  1 4  -  M a x i m u m  e d g e  c u t s  p e r  n o d e  f o r  a d a p t a t i o n  s t e p s  4 0 - >  16  f o r  

PARTITIONING FROM SCRATCH (S )  AND OVERPARTITIONING WITH 6 4 , 1 2 8  AND 2 5 6  

PARTITIONS..............................................................................................................................   6 2

F ig u r e  15  - T e s t  f o r  f l e x ib l e  a l l o c a t io n  o f  t h r e a d s ................................................................... 63

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F ig u r e  16  -  R u n t im e s  w it h  a n d  w it h o u t  a d a p t a t i o n  t o  d y n a m i c  c h a n g e  o f  t h r e a d

ALLOCATION APPROACH.....................................................................................................................................6 4

F ig u r e  17  - R e s o u r c e s  u s e d  (n u m b e r  o f  n o d e s )  u n d e r  s p a c e  s h a r i n g  a n d  t im e

SHARING TO KEEP THE SAME PROGRESS/REMAINING RUNTIME. THE COSCHEDULED 

APPLICATION IS MENTIONED IN PARENTHESIS.................................................. . ................................... 6 5

F ig u r e  18  - E x e c u t i o n  p r o g r e s s  f o r  w a v e , s t a r t in g  w it h  d e d ic a t e d  a l l o c a t io n ,

COSCHEDULING FE_ROTOR FROM 50SEC TO 120SEC, AND COSCHEDULING FE_OCEAN 

AT 120SEC. In  THE LATTER CASE, RESULTS ARE SHOWN FOR BOTH C P U  SHARING AND

NODE SHARING [ 2 8 ] ...........................................................................................................i ..................................6 6

F ig u r e  19  -  T e s t  c a s e  d e m o n s t r a t i n g  t h e  b e n e f it s  o f  t im e  s h a r i n g .................................6 8

F ig u r e  2 0  - R u n t im e s  w it h  C P U /N o d e  s h a r in g  v s . r u n t im e s  f o r  t h e  s a m e

a p p l ic a t io n s  u n d e r  d e d i c a t e d  r e s o u r c e  a l l o c a t i o n ........................................................6 9

F ig u r e  21  -  D y n a m i c  r e s o u r c e  a v a i l a b i l i t y  in  t im e  d i m e n s i o n ............................................ 7 0

F ig u r e  2 2  - R u n t i m e s  w it h  a n d  w it h o u t  a d a p t i n g  t o  d y n a m ic  r e s o u r c e

AVAILABILITY IN THE TIME DIMENSION....................................................................................................7 0

F ig u r e  2 3  -  D y n a m ic  r e s o u r c e  a v a i l a b i l i t y  in  s p a c e  d i m e n s i o n ......................................... 71

F ig u r e  2 4  - R u n t im e s  w it h  a n d  w it h o u t  a d a p t a t i o n  t o  d y n a m i c  r e s o u r c e

AVAILABILITY IN THE SPACE DIMENSION: 3 2 ~ > 5 0 " > 3 2 ...................................................................71

F ig u r e  2 5  - R u n t i m e s  w it h  a n d  w it h o u t  g l o b a l  a p p l ic a t io n  a d a p t a t i o n .................... 73

F ig u r e  2 6  -  R u n t im e s  o f  b o t h  s it e s  w it h  a n d  w it h o u t  r e s o u r c e  a d a p t a t i o n  7 4

X  • / •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Introduction

Grid computing is an emerging technology which allows sharing of computing 

resources on an unprecedented scale among several geographically distributed groups. 

Computational grids, [1] in particular, focus on sharing of resources for executing 

applications that require high computing power, thus permitting resource allocation to 

tasks that need more resources than available on a single site.

Applications executing in this environment can be structured as a group of individual 

tasks with coarse-grain communication, or parallel application with regular 

communication which need simultaneous reserved resource allocation on all participating 

sites. Resource reservation on each individual site is the responsibility of local job 

schedulers. Most importantly, cross-site jobs executing on distributed environments like 

grids have to deal with heterogeneity:

• Resources across the sites (and also within the sites) are heterogeneous with 

different number of nodes, relative CPU speed, memory, cache etc. and also 

network speed.

• Not only are the resources heterogeneous, but also according to [2], resource 

sharing on different sites can be heterogeneous. Resources can be shared in space 

or time dimension, or can employ Node/CPU sharing with/without time sharing 

(for details see Section 5.3).

Thus, heterogeneous hardware and network along with heterogeneous resource 

sharing types makes the correct workload distribution in this environment very difficult. 

In addition, resources may become available or unavailable during application execution. 

Hence, it is desirable that the application can adapt dynamically to ensure balanced

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



progress and to utilize the extra resources made available (potentially temporary). If 

workload adaptation is not dynamic, then the slowest node/site determines the overall 

runtime, degrading the performance of the whole application.

The approach presented here, ensures balanced computational progress of the 

application both globally across sites and locally across the nodes of a site, for optimal 

utilization of all available resources. This is explained in figure 1 which shows possible 

imbalances among sites in normalized workload. Dashed line shows balance target 

whereas solid lines show current progress per local compute node The Adaptive 

Time/Space sharing via Over Partitioning (ATOP) middleware is extended to work on 

grids as ATOP-Grid. This extension provides unified framework for scheduling and load 

balancing for different resource allocation types. ATOP-Grid integrates the local job 

scheduler with the application internal grid scheduler and also provides the option of 

trading between the time versus the space allocation for efficient resource utilization. 

This is achieved by supporting a new reservation type - computational power. Criteria or 

policies under which global or local redistribution will take place are clearly defined in 

the form of rules (conditions and consequences) using ideas from [3].

Site B

SiteC

Figure 1 - Possible imbalances among sites in normalized workload [4]

2
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2. Related work

Load balancing for parallel applications has been investigated over the last few 

years. While most of the load balancing algorithms focus on applications being executed 

locally (on a single site), there are a few approaches that explore dynamic heterogeneous 

environments like grids.

Zoltan [4] is a load balancing library that provides multiple load balancing 

approaches such as Recursive Coordinate Bisection (RCB), Recursive Inertial Bisection 

(RIB), Refinement tree based partitioning, ParMetis [6], Jostle and Octree partitioning 

The HIER [7] algorithm extends the Zoltan library to support hierarchical load balancing 

(for details see Section 3.2.1).

As mentioned in the previous section, different sites may employ different 

resource sharing approaches which include CPU/Node sharing. The CPU/Node sharing 

means that threads from different (or same) applications are scheduled on the same 

hyperthreaded CPU/Node, sharing the CPU/Node resources. Many local sites now use 

hyperthreaded CPUs. Hyperthreading [8] is Intel’s definition for the concept of 

Simultaneous Multi Threading, in which a simultaneously multithreaded processor is 

split into two or more logical processors and threads are scheduled to execute on any of 

the logical processors.

The OPENMP scheduler described in [9] focuses on improving the performance 

of parallel applications executing on SMPs potentially using hyperthreaded CPUs. They 

propose a two level hierarchical scheduler that dynamically selects the appropriate 

scheduling strategy - within the nodes at the first level and the number of threads (one or

3
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two threads per hyperthreaded node) at the second level. Scheduling strategy is selected 

for each parallel loop of the application. This scheduler proves to have marked benefit as 

compared to other runtime schedulers, but supports only parallel applications using 

OPENMP [10] and not MPI [11], which is a widely used parallel library. Secondly, this 

scheduler does not consider the effects of coscheduling (when application is scheduled to 

execute with another application on the same node/CPU). Similar work i.e. choosing the 

optimal number of threads to execute on the hyperthreaded CPU is done in [12], but this 

approach also does not take into account the effects of coscheduling.

Application internal scheduling was first introduced by AppLeS [13] (Application 

Level Scheduling). With this approach, each application executing on a grid is 

accompanied by a customized scheduling agent, tightly bound to the application. This 

agent gathers the information dynamically about the available resources and based on the 

user’s performance criteria, schedules the application on these available resources. But 

since these agents are application customized, this limits reusability. AppLeS seek to 

address this problem by designing the reusable software modules targeting the Parameter 

Sweep Applications (PSAs) [14] and Master Worker model Applications (MWAs) [15].

Chen and Maheswaran [16] propose a dynamic scheduling algorithm for 

scheduling different applications over grids. In the proposed approach, scheduling is done 

in two phases -  external scheduling (WAN wide) and internal scheduling (LAN wide). 

Proposed approach addresses issues like scalability, flexibility, and dynamic adaptability 

which are central to grid computing systems.

The SCOJO algorithm [17] proposes a cross-site scheduling approach, which 

takes the coscheduling effect into consideration, and can provide the start-time and share

4
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reservations for applications executing on multiple sites. Effective shares use the 

slowdown factor to generate the actual share. The slowdown factor determines how much 

slower an application will execute when it is coscheduled with another application on the 

same set of nodes. This approach guarantees effective share reservation.

Taylor and Bryan [18] propose a hierarchical load balancing approach, which is 

divided into local and global load balancing phase, intended for the Structured Adaptive 

Mesh Refinement (SAMR) applications. This approach uses heuristic methods for 

calculating redistribution cost and associated performance gain and takes into 

consideration both the heterogeneity of processors as well as the networks into account 

including them in the cost estimation, though the focus is on the latter i.e. network 

heterogeneity.

Eager et al. [19] proposes an approach for adaptive data redistribution with 

respect to the dynamic resource availability of workstation clusters. The approach 

proposed is incremental data redistribution, similar to [20], and the results are compared 

to partitioning from scratch. The proposed scheme also mentions that allocation of data 

from the middle of data domain to the newly added node leads to a reduction in migration 

costs as compared to the data allocation from the edge.

Weinberg J et al. in [21] introduces a special form of space sharing, in which 

different parallel applications share the processors per node during their execution as 

compared to dedicated node allocation for a single application. This special form of space 

sharing, termed as the symbiotic space sharing is developed simultanequsly and is similar 

to the node sharing discussed in this thesis work. Weinberg J. et al. outlines that since all 

jobs cannot share resources effectively, their approach proposes a scheduler that studies

5
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different job characteristics and develops symbiotic schedules such that all the jobs 

scheduled are benefited with this special form of space sharing.

6
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3. A Review of the State-of-the-Art

Most of the existing load balancing approaches focus on the traditional distributed 

systems and may not be directly applicable in the grid environments because of their 

inherent heterogeneity (machine, network and resource sharing). This chapter first 

reviews the traditional load balancing approaches and then we discuss the existing 

approaches to address the workload adaptation within computational grids.

3.1 Load Balancing Problem

The main goal of the load balancing is to distribute the workload evenly among all 

the processors (or all machines participating in application execution) to ensure optimal 

application performance and efficient resource utilization. Load balancing approaches 

can be classified into different categories, namely:

• Static v/s Dynamic load balancing

• Centralized v/s Distributed load balancing

• Synchronous v/s Asynchronous load balancing

We will discuss these categories in the following subsections

3.1.1 Static v/s Dynamic Load Balancing

Static load balancing algorithms distribute the workload between the processors 

based on the information regarding the task execution runtime and resource allocation at 

compile time. This means that the workload distribution occurs before the application 

starts executing and parallel jobs execute with the same distribution for the entire 

application runtime. This approach obviously is not suitable for the grid environments

7
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where the resource availability is dynamic and [22] also mentions that this approach 

cannot be used for applications where the workload is generated dynamically at runtime.

Dynamic load balancing seeks to address these issues by reacting to the current 

system state while taking the load balancing decisions. This approach caii redistribute the 

workload of application dynamically according to current available resources. But, the 

dynamic load balancing scheme needs to ensure that the overhead caused by dynamic 

redistribution should be significantly lesser than the performance gain achieved by the 

application. Kameda H. et al. in [23] compares the dynamic and static load balancing 

approaches and concludes that the dynamic approach performs better than the static ones 

in most of the cases. Dynamic load balancing can be centralized or distributed.

3.1.2 Centralized v/s Distributed Load Balancing

In the centralized load balancing approach, one process (called the master 

process) takes charge of checking the load imbalance by collecting the workload 

distribution information from all the processors, and redistributing the workload based on 

the cost benefit expectation. All processes synchronize during the load balancing phase 

and wait until the new workload is assigned to them.

In the distributed load balancing approach, each process has its local load 

balancing module, which at regular intervals will broadcast its current workload status to 

the other processors. In this way the work is transferred from a heavily loaded processor 

to a lightly loaded processor through work sharing or work stealing [22].

8
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3.1.3 Synchronous v/s Asynchronous Load Balancing

The synchronous load balancing approach stops the execution of the application 

during the load balancing operation and resumes the application execution with the new 

workload (if redistribution during the load balancing step is invoked), whereas the 

asynchronous load balancing approach does not stop the application execution. 

Imbalanced (overloaded/underloaded) processors exchange information within 

themselves, or with the master processes (in case of centralized model) to redistribute 

their workload without affecting the execution of other processors.

The approach we propose here, ATOP-Grid, uses dynamic, centralized and 

synchronous load balancing scheme.

3.2 Load Balancing Across Grids

As mentioned earlier the traditional load balancing algorithms are not directly 

applicable to grids. Li and Lan [24] describes separate classification of the grid load 

balancing algorithms which are classified in three categories:

• Resource aware repartition based schemes

• Divisible load theory based schemes

• Prediction based schemes

Most scientific applications are represented by graphs where the vertices represent the 

computation and the edges represent the communication between the two vertices. 

Resource aware repartition based schemes balance the computational workload (number 

of vertices) across sites while trying to minimize the edge cut (potential communication 

volume). Algorithms with this scheme need to ensure that large volume of data should

9
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not be migrated across sites, as the data movement cost across sites is very expensive due 

to high communication latency.

Divisible Load Theory (DLT) based schemes are suitable for the applications that 

communicate infrequently, and where the subtasks of the application do not depend on 

each other (wait for updated data from fellow processors). Thus the computation and the 

communication workload for this application can be divided arbitrarily.

Prediction based schemes capture the inherent dynamic nature of grids (in terms of 

resource availability). This scheme uses a performance evaluation model to accurately 

predict the future computation and communication cost of the application. This helps the 

load balancer to make more accurate partition decisions. Cactus [25] is a dynamic load 

balancing strategy that falls under this category. These prediction based schemes are 

generally accompanied with dynamic measurement feedback (of the current 

computational progress of each node/site), from the monitor for more accurate prediction 

of the future runtime. SCOPRO [26] is one such monitoring tool. This tool can extract the 

basic execution time of application (excluding the waiting times, where faster nodes wait 

for slower ones to finish) and can also provide information regarding the 

computation/communication ratio of the application.

There are certain load balancing strategies that fall into the combination of above 

mentioned categories. One such approach is the Hierarchical Load Balancing -  HIER [7]. 

This approach is discussed in detail in the next subsection.

3.2.1 HIER -  Hierarchical Partitioning and Load Balancing

This scheme extends the already existing load balancing library Zoltan by 

providing the hierarchical load balancing procedures. The different procedures are used at

10
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the different levels of hierarchy in the computing environment. This is achieved by 

introducing an intermediate hierarchical balancing structure (IHBS) and providing their 

own set of callback functions. At each load balancing step (at each level of hierarchy), 

using these callback functions, partitioning is performed and IHBS is updated at each step 

of the partitioning. After partitioning is done, Zoltan migration arrays are created and 

returned to the application. With this approach only the lightweight structure - IHBS is 

migrated between various hierarchical levels, and not the whole application data, which 

potentially saves the data migration cost. This approach also exploits the fact that the 

different partitioning strategies, as provided by Zoltan, might be efficient at different 

levels of hierarchy and provides support for the same.

Teresco et al. [7] also describes Dynamic Resource Utilization model (DRUM). 

This model takes into consideration the heterogeneity of machines and the networks to 

assign the workload to different processors/machines taking part in application execution. 

DRUM represents the whole computing environment in the form of a tree, where the 

subenvironments are recursively divided. For example, in a single cluster, head node 

represents the whole cluster, which is further divided into SMPs (subenvironments) that 

are further divided into individual CPUs. Each leaf of the tree, which represents an 

individual computing entity, is attached with the load it is supposed to compute. DRUM 

assumes to have (initial) prior knowledge of the computing environment.

The HIER approach combined with the DRUM model might be useful for 

balancing load in grid environments. But, until now this approach has proven efficient 

only for local, heterogeneous SMP clusters. Load balancing steps involve repartitioning,

11
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which might add up to significant partitioning cost across grids. Also the data structure - 

IHBS needs potential modification to work on grids.

12
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4 Our Approach -  ATOP-Grid

4.1 Basic A TOP Approach

ATOP (Adaptive Time/Space sharing via Over Partitioning) [27] provides two 

approaches for load balancing. They are:

• Overpartitioning

• Partitioning from scratch

Overpartitioning creates more data partitions than the processors that are allocated to 

the application. At the load balancing step, if  any load imbalance is detected, partitions 

are migrated from heavily loaded processor to lightly loaded processor. For example if 

128 data partitions are created i.e. 128 chunks of total computational workload and 

allocate them to 16 processors, then 8 partitions are allocated to each processor for 

computation (assuming all processors are homogenous). Later at the load balancing step, 

if  some condition arises, like 8 processors becoming unavailable, then some partitions is 

migrated to each processor, such that now each processor has 16 partitions. This saves the 

repartitioning cost every time resource adaptation takes place. We later discuss that 

overpartitioning is a feasible approach for balancing workload across sites (see section 

4.2). However, with this approach, there is a risk of increasing the edge cuts, which 

results in an increase of communication cost. Therefore, for cases where overpartitioning 

does not perform well ATOP proposes another approach.

Using partitioning from scratch approach, the number of partitions created is equal to 

the number of processors allocated for the execution of the application. At the time of 

resource adaptation, entire application data is repartitioned and these partitions are
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migrated to the processors again. Thus the adaptation cost with this approach includes 

both the repartitioning and the migration cost.

These two approaches can perform resource adaptation in both the space and the 

time dimension. Both the approaches are implemented using the Zoltan library and use 

multilevel K-way partitioning approach provided by the well known ParMetis [6] library. 

In the next section a brief overview of the Zoltan library is provided and how certain 

features of this library are exploited to achieve the desired resource adaptation.

4.2 Zoltan Library

Zoltan is a collection of various tools that can be used by adaptive parallel and 

unstructured applications to improve their performance. Zoltan offers different load 

balancing and data partitioning algorithms, data migration tools, distributed data 

directories, and dynamic memory management tools, organized in a way that the 

application can choose from various utilities as needed. Apart from its own load 

balancing approaches, Zoltan also incorporates JOSTLE and ParMetis [6], a widely used 

parallel partitioning library. The greatest advantage of Zoltan is that it is a data structure 

neutral library. Thus, it allows the users to use their own data structures, by providing a 

set of callback functions also called as the query functions.

These call back functions are implemented by the user and query the application 

for the required information. These callback functions are registered in Zoltan by passing 

a pointer to the function and then Zoltan will call these functions, as and when any 

information from the application is required.

14
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Query Functions Explanation

ZOLT AN_NUM_OB J_FN Returns the number of objects that are currently 
assigned to the processor.

ZOLT AN_OB J_LIST_FN Returns object list currently assigned to the processor

ZOLT AN_P ARTITION_FN Returns list of partitions to which given objects are 
currently assigned.

ZOLT AN_NUM_EDGES_FN
Returns the number of edges in the communication 
graph of the application for each object in a list of 
objects.

ZOLT AN_EDGE_LIST_FN
Returns lists of global IDs, processor IDs, and 
optionally edge weights for objects sharing edges with 
objects specified in the global_ids input array.

ZOLT AN_OB J_SIZE_FN Returns the size of the buffer needed to pack a single 
object.

ZOLT AN_P ACK_OB J_FN Information how to copy all needed data for a given 
object into a communication buffer.

ZOLT AN_UNP ACK_OB J_FN
Information how to copy all needed data for a given 
object from a communication buffer into the 
application's data structure.

ZOLTAN_PRE_MIGRATE_PP_FN
For performing any pre-processing desired by 
application.

Table 1 - Zoltan Query functions used in ATOP-Grid 

(Source - http://www.cs.sandia.gov/Zoltan/Zoltan.htmll

These callback functions are divided into two categories -  the general query 

functions and the migration query functions. ATOP-Grid uses and implements query 

functions related to the partitioning and migration of data from Zoltan library. A brief 

description of the query functions used in ATOP approach is mentioned in Table 1.

Apart from these query functions, Zoltan also provides certain methods for 

initialization and finalization of the Zoltan interface, and for performing the actual 

partitioning and migration of data. Zoltan methods that are used in this thesis work are 

mentioned in Table 2 with their brief description
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Zoltan Methods Description

Zoltan_Initialize Initializes MPI for Zoltan.

Zoltan_Create Allocates memory for storage of information to be used 
by Zoltan and sets the default values for the information.

Zoltan_Set_Param Modify the values of some parameters used in Zoltan. 
Parameters can be changed one at a time

Zoltan_Set_Fn Registers an application-supplied query function in the 
Zoltan structure.

Zoltan_Invert_Lists
Computes inverse communication maps useful for 
migrating data, meaning if list of objects to be received 
by processor is known, then list of objects to be sent out 
is calculated and vice versa

Zoltan_LB_Free_Part Frees the memory allocated by the Zoltan to return the 
results of Zoltan_LB_Partition or Zoltan_Invert_Lists.

Zoltan_Destroy Frees the memory associated with a Zoltan structure

Zoltan_LB _Set_Part_Sizes Specifies the desired relative partition sizes; equal by 
default.

Zoltan_LB_Partition
Invokes the real load-balancing routine that was 
specified using Zoltan_Set_Param function with the 
LB_METHOD parameter.

Zoltan_Migrate

Performs the migration for Zoltan; selects object lists to 
be sent to other processors, along with the destinations 
of these objects, and performs the operations necessary 
to send the data associated with those objects to their 
destinations.

Table 2 - Zoltan Methods used in ATOP-Grid 

(Source - http://www.cs.sandia.gov/Zoltan/Zoitan.htmll

4.3 A TOP-Grid -  Extension of A TOP for Grids

The basic idea behind the presented approach is to ensure equal progress across 

all sites/nodes, participating in the application execution for efficient resource utilization.
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Figure 2 illustrates how the basic ATOP approach is extended at the global level, 

for the workload adaptation among the participating sites, and at the Node/CPU level for 

the efficient resource utilization. Thus with the extended approach, ATOP-Grid, the 

workload is first distributed among all the participating sites, and workload on each site is 

subsequently allocated to each node of the site, based on the reservation negotiated with 

the local job scheduler. This extension is also applied at the Node and CPU level, where 

different threads bound to different nodes/CPUs share the computational workload, 

speeding up the overall execution of the application.

Global Level
Site 1 Siten

Basic
ATOP
approach

Local Level

Node Level

Each SMP node 
have several CPUs

CPU Level

LI LO Each CPU is hyperthreaded 
2 logical CPUs (LO and LI)

Figure 2 - ATOP- Grid -  Extension of Basic ATOP approach [28]

In heterogeneous distributed environments like grids, the resource availability 

changes dynamically, which leads to workload imbalance both locally (within a site) and 

globally (across sites). The conditions that may lead to local or global imbalance is
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clearly defined and well defined decision criteria (via rules) for balancing workload in 

both the cases, is provided..

Overpartitioning is chosen to perform global workload adaptation for various 

reasons. Firstly, Zoltan provides all parallel partitioning approaches, which might not be 

feasible to use due to the high communication latency across grids, arid may result in a 

very high partitioning cost. Overpartitioning saves the repartitioning cost (as mentioned 

in section 4.1) and makes global redistribution relatively cheap. Secondly, Zoltan uses 

MPI for communication, which would need optimizations to work efficiently on grids.
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5 Adaptation Framework

5.1 Application Model

Before describing the application model, the term malleability is introduced. The 

application is malleable if it can change the number of processes or adapt to various time 

shares during its execution. Application can be space malleable or time malleable. It is 

space malleable if it can change the number of processes, and time malleable if it can 

change to varying time shares on different processors during its runtime. The following 

assumptions about the application are made:

• Application is fully malleable (both in space and time dimension) for local 

adaptation which is supported by schedulers like [36],

• Globally, two different classes of the application malleability is introduced

o The application is fully malleable (similar to local case) 

o The application is constraint malleable, if the global partitioning is 

restricted by module/cost hierarchies. Thus, this class of applications 

restricts the global redistribution to be done just once initially, and later 

any imbalance in the load has to be corrected locally. This assumption is 

applicable to most of the applications executing on grid environments.

• Data structures used by the application can be mapped on the graph structure 

where the vertices denote the computational workload and the edges represent the 

communication workload.

• The application is synchronous, permitting synchronous adaptation, and the 

global adaptation occurs less frequently than the local adaptation.
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5.2 Reservation

It is assumed that the resources are reserved in advance [29] on each participating site 

by negotiating with the local job schedulers on each site. In the approach, ATOP-Grid, 

the following types of reservations are supported:

• Number o f nodes without time sharing -  this means dedicated resource allocation 

of particular number of nodes on the site for estimated runtime.

• Number o f nodes with effective time share (EShare) -  effective time share denotes 

the actual time share allocated to the application taking slowdown into account, 

which might occur if  the application is coscheduled. Thus EShare = Reserved 

time share/slowdown.

• Certain computational power for estimated runtime -  Computational power is 

expressed by certain estimated runtime on the dedicated set of nodes. This type of 

reservation gives us an option to trade between the time vs. space allocation. The 

time vs. space allocation means that we can change the resource allocation to less 

time shares by increasing the number of nodes and vice versa, maintaining the 

same runtime. This type of reservation provides flexibility: to the local job 

scheduler for meeting reservations, but it also needs detailed cost formula or the 

rough complexity formula that can be used by the tools like SCOPRED [30] for 

the scalable cost estimation.

5.3 Resource allocation

Resource allocation can change dynamically in both the space and the time

dimension. This dynamic allocation may be beneficial in the conditions when:
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• More resources (with more processors or more time shares) become available, 

and the job scheduler advises that these resources can be used. This may arise 

in a case where the application of concern is coscheduled with another 

application, and that application terminates, freeing all the resources it was 

using earlier.

• One site is slower than the other and global adaptation cannot be performed 

(for details see section 5.1), then the faster site reduces the number of 

resources it was using to ensure equal progress on all the sites. Information 

about the released resources is transferred to the job scheduler, so that it can 

utilize these resources elsewhere.

In addition, locally the Node/CPU sharing on the hyperthreaded/SMP nodes is 

also supported. This approach is an extension of LOMARC [31] hyper coscheduling, 

under which we schedule (bind) threads of different applications on different CPUs of the 

same node (Node sharing), or schedule it on the same hyperthreaded CPU (CPU sharing). 

Optionally, an application can also coschedule two threads on the same hyperthreaded 

CPU (self coscheduling). The different thread scheduling methods are shown in Figure 3. 

A and B refers to two different applications in the figure.

Threads bind to the CPUs using the set_schedaffinity() function provided by Linux 

2.6 API. Different sets of applications exhibit different coscheduling behavior in terms of 

slowdown as shown in [31]. This depends on how well they share all the shared resources 

like cache, execution units etc. Hence, the presented approach can dynamically switch 

between these thread scheduling approaches, until it finds an approach that is best for a 

particular set of applications.
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Figure 3 - a) A typical SMP node with two hyperthreaded CPUs (CPUO and CPU1 represent physical 
CPUs and LO and LI represents logical CPUs b) CPU sharing c) Node sharing d) self coscheduling

5.4 Components of Adaptation Framework

Various components of ATOP-Grid and their interaction are shown in Figure 4. 

Here, one site is the master site that is responsible for taking global adaptation decisions, 

and also does the actual global workload redistribution. Figure 4 represents two sites 

where the box on the left represents the master site and box on the right represent another 

site participating in execution.

Job SchedulerJob Scheduler
•Performance! 
Predictor; ■; ■;■Performance' ■ ■ '

PVt'tTH'tni- ■ ■

Application Processes Application Processes

Figure 4 - Components of ATOP framework and interaction between them [4]
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Locally, there are several components that interact with each other and also exchange 

information with the master site for potential global adaptation. In the figure, normal 

lines represent the local interaction whereas the heavy lines represent the cross-site 

communication. Now, the functionality of these components is discussed one by one:

• Monitor Controller -  dynamically monitors application’s progress on various 

nodes (locally), and detects if any imbalance exists. All the information collected 

by monitor is stored in the Dynamic Directory.

• Local Adaptation Controller -  checks if any imbalance exists and decides 

whether adaptation is worthwhile or not (by taking the most recent information 

from the Dynamic Directory), and also reacts to the external adaptation requests 

given by the job scheduler.

• Dynamic Directory -  stores information about all the running jobs on that site, by 

taking dynamic input from the monitor, and also provides this information to the 

performance predictor for correct runtime estimation. The idea of the Dynamic 

Directory is quite similar to the one described in [32].

• Performance Predictor -  based on the detailed cost formula or a rough 

complexity formula [30] stored in the Dynamic Directory, it provides correct 

runtime estimation for the application. This information is passed to the Dynamic 

Directory, and used by the adaptation controller to take adaptation decisions.

• Adaptation Library -  provides the functions to do the actual workload 

redistribution as advised by the adaptation controller. We use the same approach 

as described in the basic ATOP middleware (see section 4.1) for the workload 

redistribution.
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• Master Monitor Controller -  collects the current application progress information 

from all the local monitor controllers and detects if any global imbalance exists. 

It provides this information to the application-internal grid scheduler for global 

adaptation decisions.

• Application-internal Grid Scheduler -  Each application executing on the grid has 

an Application-internal Grid Scheduler at the site of submission (master site). 

This component decides whether global redistribution should be done or not by 

interacting with the local adaptation controllers and the master monitor 

controller. The application-internal grid scheduler also calculates the global 

weights (relative workload) that should be assigned to each site.

For the initial workload distribution, the application-internal grid scheduler 

calculates the site weights and passes this information to the local adaptation controllers, 

and then they redistribute the workload locally by taking the resource allocation 

information from the local job scheduler. Local monitors asynchronously collect the 

progress information which can be used by the adaptation controllers to check for the 

imbalance. If an imbalance exists then adaptation controllers inform the application, but 

the application acts on this imbalance information only at the load balancing step, which 

occurs at regular intervals in the application. Checking for the global adaptation is less 

frequent as compared to checking for the local adaptation.

If the application notices that an imbalance exists, then it synchronizes all the 

processes for workload redistribution (global or local, depending on which check is 

performed), by taking the updated weight vectors from the local adaptation controllers.
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Once the workload redistribution is complete, the application continues with the newly 

assigned workload.

5.5 Metrics

For the detection of imbalances and subsequent adaptation decisions, the adaptation 

framework uses several metrics. All these metrics are denoted in the form of vectors.

• Progress (P) - represents basic execution time of the application, includes the 

basic communication time but excludes the extra waiting times (times where 

faster sites wait for slower ones to complete their execution). This metric is a 

vector with one entry per node. Progress Vector (PVec) values can change during 

the execution of the application (and also determine potential imbalance).

• Application Relative Machine (ARM) factor - represents the reciprocal of 

execution speed of the application on a specific node, with reference to a base 

machine. This metric encapsulates the heterogeneity of machines, and also the 

application specific characteristics like instruction mixes or cache locality for the 

application data. Thus a larger factor represents slower execution, and smaller 

value means faster execution with reference to the base machine. ARM factor is 

also a vector (ARMVec) with one entry per node (of the local site).

• Slowdown (SL) factor - Slowdown comes into effect when the application is 

coscheduled and this captures how much slower the application will execute (due 

to resource sharing), than it will when it has dedicated resource allocation. For 

this metric we define a corresponding slowdown vector (SLVec) with one entry 

per node.
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• Effective share (EShare) factor - As mentioned in section 5.2, this metric denotes 

how much slower the application will run beyond its reserved time share 

(RShare), if  it is coscheduled with another application. This vector also has one 

entry per node and is calculated by EShareVect = RShare/SLVeCj where l< i  <

Nnodes

Each of the vectors mentioned till now have both estimated and measured values. 

Estimated values for each element of the progress vector are always equal, as the basic 

idea of this approach is to have equal progress. The estimated values for ARMVec, SLVec 

and EShare Vec can be different as they capture heterogeneity, meaning machine factors 

or slowdowns on different nodes can be different.

Note that during the application execution, generally only one of the two vectors SL 

(slowdown) or ARM  is relevant. This means that when the application is coscheduled, 

SLVec  is relevant; when the application runs under dedicated resource allocation (or 

reserved time share), ARMVec  is relevant. Though, both the vectors can exist at the same 

time if the application is coscheduled on a subset of nodes.

Using the metrics defined till now, the workload imbalance of the application is 

determined, both locally and globally. Some additional metrics for imbalance detection 

are described here.

• Progress Divergence Vector (PDIVec) - defined as the ratio of measured vs. 

estimated values in the progress vector.

• Site Progress Divergence Vector (SPDIVec) - defined as the average PDIVec 

value per site: SPDIVecsite,i =  I  l<j< Nsitei PDIVecsitej j  /  NsiteJ (with Nsitej  being 

the number of nodes at site,). The average expresses the relative workload
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imbalance between sites which cannot be corrected locally. The number of 

elements in this vector is equal to the number of participating sites.

• Local Imbalance (IMBiocai): average of the values of the progress divergence 

vector vs. the largest value in the corresponding vector: avgDIViocai = N-l 

PDIVeCi /  N  and IMBiocai = maxfPDIVeci \ 0<i<N} /  avgDIViocai with N being the 

number of local nodes. Thus, IMBiocai > 1.

• Global Imbalance (IMBgi0bai): average of the values of the site progress divergence 

vector vs. the largest value in the corresponding vector: avgDIVgi0bai -

Yji=0, Nsites-1 PDIVeCi/NSites and IMBiocai = max {SPDIVeci \ 0<i< Nsites} /  

avgDIVgiobai with Nsites being the number of local nodes. Thus, IMBgi0bai > 1.

If larger time shares become available (condition where the job scheduler advises that 

more resources are available temporarily) and adaptation is not intended, then the 

progress vectors should be adjusted accordingly to ensure proper workload balance in the 

long run. Thus PVecadjusted,/ = PVect * EshareDIVec,.

If a decision for the workload redistribution is taken (based on the decision criteria 

discussed in section 5.7), the workload to be allocated to each site and subsequently to 

each node needs to be recalculated. To represent this allocation ATOP weight vectors, 

both locally (AWVeci0Cai) and globally (AWVecgi0bai) are defined.

• Local ATOP weight vector (AWVeciocai) - calculated by taking the ratio of 

measured Eshare vector to ARM vector. A WVeciocaij = ESharemesj0caU /  ARMmesj

• Global ATOP weight vector (AWVecgi0bai) - calculated by summing up all the 

local ATOP weight vector values per site and multiplying it with appropriate 

communication fraction
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A WVSCgiobal,Sitei j=0,Nsitei-l A W V ecioca ij * ( ( 1-F racC om m iocai, Sitei, Ni) /

(I -avgFracCommgi0bal))

Different machines induce different communication cost which is reflected in the 

ARM vector locally. But, globally, different sites may employ a different number of 

nodes (and there is a possibility that all nodes are not available for the application 

execution), and hence induce different communication cost, which should be included 

while calculating the global ATOP vectors. AWVeciocai has one entry per node and 

AWVeCgi0bai has one entry per site.

Once these vectors are calculated the workload (W) is distributed accordingly, 

resulting in Wsue,i = W/NSites*AWVeCgi0bai,i /  avgAWVecgi0bai work allocated to each site 

(for all Nsues) and WnodeJ = Wsite>i/Ni*A WVeciocau /  avgA WVectocai work allocated to each 

node (for A  nodes each local site). W is the total workload distributed among all sites and 

Wsite is local workload distributed among the nodes within a local site.

Hence, W = 2W siteJ where l< i <Nsites 

And, Wsite = I W iwhere l< i <Nnodes.

5.5.1 Example Calculation

Here an example is presented to explain how the metrics and the vectors described in 

the previous section are used to correct the workload distribution.

The application is assumed to execute for 20000 iterations with total estimated 

runtime of 800 seconds. Local checks are performed after every 500 iterations whereas 

global checks are performed after every 2000 iterations. Moreover, the application 

executes on 2 sites, where each site has 8 nodes each reserved for application execution. 

Initially, machine vectors for both are assumed to be
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ARMVecsitel = {1 ,1 ,1 ,1 ,1 ,1 ,1 ,1}  and ARMVecsite2 = {1 ,1 ,1 ,1 ,1 ,1 ,1 ,1}

and effective share vectors are assumed to be

EShareSitei = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }  and Esharesite2 = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 }

Hence for the initial step ATOP weight vectors are

AWV eciocai, sitei = ESharesitei/ ARMVecsitei = {1 ,1 ,1 ,1 ,1 ,1 ,1 ,1}

A WV ecjocai, site2 = ESharesite2/ ARMVecsi,e2 = {1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 }

And global ATOP weight vector is AWVecgiobai = {8, 8}

As described in the previous section, calculation of global ATOP weight vector 

also includes communication fraction factor but this communication fraction factor is not 

applicable for the example calculation, since both the sites employ equal number of 

nodes. Moreover the test application used to test this framework employs nearest 

neighbor communication. If the application employs collective communication, then 

communication cost is known to increase at least logarithmically as the number of node 

increases, hence for those cases, the communication fraction described above should be 

taken into account when distributing the workload globally.

Initially, if  we consider the total number of partitions to be 128, then it results in 

128 * (8/16) = 64 partitions allocated to Sitel and 128 * (8/16) = 64 partitions allocated 

to Site2.

Similarly, using local ATOP weight vectors, partitions are allocated to all nodes 

on each site. Now at the first local check, application has completed the first 500 

iterations (2.5% of its runtime), hence e.g. for Sitel 

PVeCest, sitei = {20, 20, 20, 20, 20, 20, 20, 20} (in seconds)

Let us assume that the feedback as received from the monitor is
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PVecmes, sitel = {21, 19, 19.7, 21.7, 22.2, 21, 30.9, 31.2}

Hence PDIVecsitel = {1.05, .95, 1, 1.08, 1.1, 1.05,1.54,1.56}

This gives, avgDIViocai, sitei = 1.16 and IMBiocai, site2 = 1-56 / 1.16 = 1.34 using the 

formulas described in the previous section.

Now assuming Aapp,iocai (local imbalance tolerance range) = 0.1 and after checking cost 

effectiveness for the adaptation decision (for details see section 6.5-) local workload 

redistribution for Sitel is done.

Thus, for calculation of new ATOP weight vectors, we consider the measured 

values for ARMVec and EshareVec.

Hence, ARMVecmes,sitei = {1, 1, 1, 1 ,1 ,1 , 1.5, 1.5}

and EShareVeCmes, sitei =  {1, 1, 1, 1, 1, 1 ,1,  1}

Thus AWVeciocai, sitei — ESharemes, site i/ ARMVecmes, sPei — {1? 1? 1? 1? 1? 1? 0.66, 0.66} 

and the new partition allocation to various nodes on Sitel is {9, 9, 9, 9, 8, 8, 6, 6}

Similar calculations are performed on Site2. But on Site 2 we assume that the 

application is coscheduled with another application on first 4 nodes. Thus SLVec is 

relevant in this case for the imbalance detection and for calculating the new workload 

distribution. Now for Site 2

PVecest; Site2 = {20, 20, 20, 20, 20, 20, 20, 20} (in seconds)

It is assumed that the feedback as received from the monitor is 

PVecmes> site2 = {33.43, 35.40, 32.05, 34.02, 21, 19.04, 20.05, 22.24}

Hence PDIVecsite2= {1.67,1.77,1.60,1.70,1.1,0.95,1.01,1.11}

This gives, avgDIViocal site2 = 1.36 and IMBioca,jSite2= 1.77 / 1.36 = 1.301
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Now assuming AapPjiocai (local imbalance tolerance range) = 0.1 and after checking cost 

effectiveness for adaptation decision (for details see section 6.5 \) local workload 

redistribution for Site 2 is done.

Thus, for calculation of new ATOP weight vectors, we consider the measured 

values for ARMVec, EshareVec and SLVec.

Hence, ARMVecmes,Site2 =  { 1 , 1 ,  1 ,  1,  1 ,  1 , 1 ,  1 } ,

SLVecmes,site2 ~ {1-6,1.6,1.6,1.6,1,1, 1,1}

And we calculate the measured effective share vector which we get by taking a ratio of 

the reserved time share on each node to the slowdown vector. Since we assume that all 

nodes are reserved with dedicated resource allocation, hence EShareVecmes, Site2 = {0.625, 

0.625,0.625,0.625,1,1,1,1}

Thus AWVeciocal, Site2 = ESharemes, sW  ARM Vecmes, Site2 = {0.625, 0.625, 0.625, 0.625, 1, 

1, 1, 1}

and the new partition allocation to various nodes on Site 2 is {6,6,6, 6 ,9 ,9 , 9,9}

Now, for the global adaptation check, the average divergence vector value from 

each site is collected at the master site to form site progress divergence vector. Average 

divergence values are calculated locally.

We assume at the global checkpoint, SPVecmes = {1.16, 1.57}, where 1.16 is 

avgDIVlocal,sitei as described above and 1.125 is avgDIVi0Cai,site2- 

Hence avgSPVec = (1.16+1.57)/2 = 1.365 and IMBgiobai= 1.151

Assuming AapPjgi0bai (global imbalance tolerance range) = 0.1 and after checking cost 

effectiveness for global adaptation (for details see section 6.5) global redistribution is 

taken.
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Now if at the global checkpoint value of local ATOP weight vectors are

AWVeciocai.sitei = { 1 ,1 ,1 ,1 ,1 ,1 , 0.66, 0.66} for Site 1

AWVeciocai,site2 = {0.625, 0.625, 0.625, 0 .625,1,1,1,1} for Site 2

then AWVecgiobai= {7.32, 6.5}, and subsequently workload allocated to each site in terms

of the number of partitions is 68 partitions to sitel and 60 for site2. Thereafter these

partitions are again allocated to all the nodes per site using the local ATOP weight

vectors, AWVeci0cai,sitei and AWVeci0Cai,site2.

5.6 Interaction with local job scheduler

The application interacts with the local job scheduler (see Figure 5) through the 

adaptation controller. Various conditions which will lead to this interaction are as 

follows:

• A reserved share guaranteed by the local job scheduler at the time of execution of 

the application is not met. In this case the application asks the job scheduler to 

rectify this situation by allocating more shares to the application, until reservation 

is met. The job scheduler might also preempt some local non-reserved, 

coscheduled jobs in order to meet the reservation limit for application of concern.

• In order to maintain balanced progress of the job, some faster sites may also 

voluntarily release the resources to adjust to the progress of the slowest site. If a 

site decides to do so, it will interact with the job scheduler and provide 

information of all the released resources so that these resources can be used 

elsewhere (e.g. to execute any local jobs).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Add resources /  resource shares
Remove resources /  resource 
shares

Reservation not met 
Release resources

y r

Controller informs application 

if  redistribution required

Adaptation Controller

Application / Adaptation 
Library (Master Process)

Job Scheduler

Figure 5 - Interaction of application with job scheduler through adaptation controller

• More resources (in terms of more time shares or more nodes) are available, and 

the job scheduler informs the application that it can utilize these resources 

temporarily. Based on the cost effectiveness, the application may or may not 

decide to adapt to extra available resources. Optionally, the job scheduler, or 

some agents attached to it can check if application can adapt (it is malleable), and 

calculate the minimum time duration for which resources should be made 

available to the application to make the adaptation worthwhile. This requires that 

the cost benefit formula used by the application (or something similar to that) is 

made available to the job scheduler (agent), via the adaptation controllers. Since 

the job scheduler in the presented framework is simulated, such functionality on 

the part of the job scheduler is not provided, but the application checks (the cost 

benefit) before taking an adaptation decision.
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5.7 Policies for Local and Global Adaptation

There are certain conditions that lead to the local or global workload 

redistribution. Global redistribution is always accompanied by the local workload 

redistribution. In addition, if  any one site performs local adaptation, other sites may have 

to wait, since our framework here considers synchronous applications. Thus, every local 

adaptation does have a global impact. In Section 7.5, we address this issue and derive the 

adaptation intervals to amortize the cost of these local adaptations.

In the following subsections the criterion for the local and global adaptation are 

discussed in detail.

5.7.1 Local Adaptation Decision Criteria

The following conditions lead to local adaptation:

• Global Adaptation Local Adaptation

As mentioned earlier, every time global adaptation occurs, the new workload is 

assigned to each site and this newly assigned workload has to be redistributed 

between the participating nodes of that site.

• (IMBgiobai -  AApp,global) && NOT Cost_Effectivegi0bai) Local Adaptation

This means that if  a global imbalance exists (global imbalance factor is more than 

delta tolerance range of application) and it is not worthwhile to do the global 

redistribution then we try to balance the workload locally to ensure overall equal 

progress. This can be done by allocating more resources to the slower sites (if 

potentially more resources are made available by the local job scheduler) or 

reducing the number of resources on the faster sites. Thus the local adaptation
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controller needs this information, which is typically the maximum value of the 

Site Divergence Vector (SPDIVec). The Local Adaptation Controller retrieves this 

information from the Application-internal Grid Scheduler, and compares the local 

divergence to the globally worst progress. Based on this information it decides 

about the number of resources to be added or reduced.

Adapting in the time vs. the space dimension also depends upon the type of 

reservation that a site has. Section 5.2 describes the types of reservations the 

framework supports. Since for reservation type number o f nodes with/without time 

shares, only the computing nodes as a whole can be added or removed, hence 

adaptation is done in space dimension for proper resource allocation. For 

reservation type computation power, there is an option to trade in the time vs. the 

space dimension depending upon cost benefit. The time vs. the space adaptation 

also provides flexibility for resource allocation to the local job scheduler. Thus 

this type of adaptation does not lead to any quantitative benefit, but the advantage 

is more qualitative in terms of more flexibility for resource allocation.

• Local Adaptation && Resource reservation type = Number o f nodes with/without 

reserved time shares Space Adaptation

• Local Adaptation && Resource reservation type = Computational power 

Space adaptation 11 Time adaptation

Locally, the framework also supports multiple threads per node (see Section 5.3). 

Though the effects of changing the number of threads and thread allocation 

dynamically should be included in the cost benefit formula, still some general 

rules (for number of threads and thread allocation) are defined, which will guide
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the adaptation controller on how to adapt the number of threads and their 

allocation dynamically.

• Application NOT coscheduled number o f threads = number o f CPUs in SMP 

&& thread_allocation = one thread per CPU within same SMP node

• Application is coscheduled && max {SLVecmes, ; I 0<i<N} > threshold number 

o f threads = 1 && thread_allocation = one thread per CPU per application 

The above rules suggest that, if the application is not coschedtiled with another 

application, and runs under dedicated resource allocation (or dedicated reserved 

time shares), the application can speed up its computation since each thread has 

dedicated CPU resources, while sharing only memory. Thus, by dividing 

workload in equal parts (equal to number of CPUs in an SMP node) and 

allocating equal share of work for computation to each thread, we expect a benefit 

in terms of the computational progress per node, apart from the synchronization 

overhead of having multiple threads.

On the other hand, if  the applications (A and B) are coscheduled, then 

initially the application executes with thread allocation AB-AB (CPU sharing). At 

the time of checking for adaptation, if the adaptation controller realizes that 

applications do not coschedule well (by taking slowdown feedback from 

monitor), then the number of threads per application reduces to 1 and the thread 

allocation is changed to A-B (node sharing). The adaptation framework also 

provides the option of self coscheduling, i.e. AA-AA. But, in general, threads 

from the same applications may require similar type of resources, and this might 

lead to resource conflict, thus degrading the performance rather than benefit
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achieved by distributing workload among multiple threads. Still this option is 

provided, since there are certain applications, e.g. integer intensive applications, 

which self coschedule well [31].

Locally, the framework offers an option to choose between two workload 

distribution approaches -  overpartitioning and partitioning from scratch. To dynamically 

choose between the two approaches, we need a prediction model that can predict the 

future runtime and adaptation cost using the two approaches, taking adaptive resource 

allocation into account. In addition, adaptation frequency is also a major factor for 

selecting which approach to use between the two. According to [27] overpartitioning 

provides a benefit when adaptation is frequent and communication cost is low.

5.7.2 Global adaptation decision criteria

The following conditions lead to Global adaptation:

• Communication (network) slowdown between sites exists global adaptation 

This means that the global imbalance is not due to computational imbalance 

among sites, but it might be due to decrease in communication speed (in terms of 

network speed) between some particular sites. The changes in network speed can 

be dynamically detected with tools like Network Weather Service (NWS) [33]. 

Then, the framework globally redistributes the workload such that less workload 

(and thus less communication overhead) is allocated to affected sites.

This also includes a condition wherein communication to a site becomes very 

slow and expensive, to an extent that we will have to withdraw from that site, and 

globally redistribute the workload among the rest of the sites.
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• Global imbalance exists && application characteristics = fully malleable && 

Cost_Effectiveglow global adaptation

The cost effectiveness calculation in the above mentioned rule also includes the 

remaining application runtime of the application. As mentioned in Section 5.7.1, 

global adaptation is not worthwhile, if  the remaining application runtime is very 

low, which forms a case for potential local adaptation.

In the case when global adaptation is not considered worthwhile by the 

application-internal grid scheduler, it sends the maximum value of site divergence 

vector (SPDIVec) to all the local adaptation controllers (including the one on the 

same site) for further adaptation decisions. A similar condition occurs when 

application is constraint malleable, because (as mentioned in Section 5.1) flexible 

reallocation is not possible in this case.

If the application-internal grid scheduler decides to adapt globally, it calculates 

the new global ATOP weight vector (A WVecgi0bai), and sends the updated vector 

values to the local adaptation controllers of all sites (including its own site). This 

also leads to local workload redistribution as mentioned earlier.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. Implementation

This section describes the implementation details of our adaptation framework 

with specific details of different components.

As described earlier, our adaptation framework also supports adaptation at 

Node/CPU level. This is done by creating extra threads using the Pthreads library. These 

threads are bound to specific logical/physical CPUs using setschedaffinityQ function 

supported by Linux API from kernel version 2.6.6 onwards. Since MPI is not a thread 

safe library, these extra threads created, are synchronized using a function 

thread_barrier(). This function block the threads until all the threads have completed 

their execution till the function calling point. If more than one thread per application is 

active during the application’s execution, then the computational workload is divided 

among all these threads. For e.g. if  8 partitions are allocated to a node and, two threads 

are active, then partitions numbers 0, 2, 4 and 6 are allocated to the first thread and 

partitions numbers 1, 3, 5 and 7 are allocated to the second thread for computation. These 

threads remain active until the application terminates.

The next subsections provide implementation details of the specific components 

of our adaptation framework. Job scheduler, monitor controller and performance 

predictor in our framework are currently simulated. There exists detailed implementation 

of these tools [26] [30] but they are not yet integrated to work together due to platform 

dependability issues.
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6.1 Adaptation Controller

In our implementation we have one adaptation controller per site. This adaptation 

controller communicates with the application through socket communication. The 

controller is connected to the application with a listener thread from the master process. 

The adaptation controller implements two important methods:

• check Jor_imbalance() -  This method takes the measured and estimated progress 

vectors (.PVec) as input and checks if imbalance exists by subsequently 

calculating divergence vectors and imbalance using formulas described in Section 

5.5. This function returns true if  imbalance exists and false otherwise.

• calculate_new_weights() -  If local imbalance exists and it is cost effective to 

carry on local redistribution, then the adaptation controller calls this method to 

calculate the new weight vectors for balanced workload redistribution. This 

method takes the measured EShare and ARMVec vectors as input and calculates 

the new local ATOP weight vectors (A WVec/oca/). Then the adaptation controller 

transfers this new weight information to the application by communicating with 

the listener thread of the application.

6.2 Dynamic Directory

The basic concept of dynamic directory is similar to [17]. Here, dynamic directory 

is implemented as a multithread socket server with one dynamic directory per site 

(implementation concept similar to A. Arefeen [22]). It keeps information about all the 

vectors corresponding to all active applications executing on that particular site. This 

information is stored in a two dimensional array with the main index representing the
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application identification number (ID) of each application. For example PVec_mes[2][4], 

means that PVec_mes[0] [4] is the measured progress vector for the application with ID 0 

and PVec_mes[l][4] is the measured progress vector for the application with ID 1. The 

application can communicate with the dynamic directory for any relevant information 

that is stored in the dynamic directory. All threads are synchronized using 

pthread_mutex. Each thread waits until it receives a request for information from the 

adaptation controller or receives an application’s termination information.

6.3 Application-internal Grid Scheduler

The application internal grid scheduler is implemented as a multithreaded socket 

server where each thread is connected to the local adaptation controller on each site. This 

component receives the individual site progress divergence values from each site and 

forms a site progress divergence vector. This component also receives the local ATOP 

weight-vector information from each site and stores the sum of these vector values into a 

temporary ATOP global weight vector. This component also implements two important 

methods:

• check_global_imbalance() -  Takes the site-progress divergence vector as input 

and calculates global imbalance using formulas described in Section 7.5. This 

method returns true “if  global imbalance exists” or false otherwise.

• calculate_global_weights() -  If global imbalance exists and it is cost effective to 

do global redistribution, then this method is used to calculate the new global 

ATOP weight vector which reflects the new workload distribution globally. This 

method takes the temporary ATOP global weight vector as input and calculates 

the actual ATOP weight vectors.
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Figure 6 depicts how the various components interact with each other in the actual 

implementation.

Process n
Process 1

Process 0

Master
process

Listener 
thread of 
master 
process

Application
internal

Grid
Scheduler

Adaptation Controller

Dynamic Directory

Figure 6 - Adaptation controller communicates with application internal grid scheduler and listener 
thread of the application while accessing information from dynamic directory [22].

6.4 Adaptation Library

The adaptation library provides various methods for local and global workload 

redistribution. The algorithm used for partitioning and migration of data is similar to the 

basic ATOP approach. All the methods described in Table 3 can be used by any parallel 

application which employs the MPI communication library.
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Methods Description

ATOP_ENVIRON_INIT Initializes the MPI and ZOLTAN environment, and creates a 
listener thread at the master processor, which communicates 
with the adaptation controller.

ATOP_CREATE_MESH This method initializes all the data structures used by the mesh 
(like nodes, partitions, border structure etc.) and maps them to 
the desired graph structure.

ATOP_ADAPT_INIT This method initially distributes the workload among the sites 
and then among all local nodes by taking the initial ATOP 
weight vector from adaptation controller

ATOP_GET_NODE Initializes node data on every node (every vertex o f  the graph)

ATOP_MESH_COMPUTE This function maps the application to mesh data structures, and 
performs computation and communication according to 
workload distribution on various nodes.

AT OP_LOC AL_TRY_AD APT This function checks whether to adapt or not locally, based on 
feedback from adaptation controller and calls the actual 
redistribution routine (ATOP_ADAPT) if  adaptation is 
advised.

ATOP_GLOBAL_TRY_ADAPT This function checks for need o f  global adaptation according to 
feedback from application internal grid scheduler through local 
adaptation controllers.

ATOP_MESH_DESTROY This method frees all the memory used by mesh data structures

ATOP_ENVIRON_DESTROY This function shuts down the MPI and Zoltan environment and 
waits until listener thread (at the master process responsible for 
communicating with adaptation controller) terminates

Table 3 - Methods provided by adaptation library with their description [34].

Figure 7 shows an example of a parallel application using the ATOP adaptation 

library. The function ATOP_ENVIRON_INIT initializes the MPI and Zoltan 

environment and ATOP_CREATE_MESH creates all the mesh data structures needed by 

the application. Next we call the method ATOP_GET_NODE to initialize data on the 

vertices of the graph. Then the function ATOP_ADAPT_INIT is used to distribute the 

data initially to all sites and nodes participating in application execution. Then

application starts executing and iterates over maximum number of iterations.
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ATOP_MESH_COMPUTE does the actual computation and communication for 

the application and does the computation using the callback function defined by the user. 

In between the application’s execution we check for the need of global and local 

adaptations. Checking for global adaptation is less frequent as compared to local 

adaptation, since global redistribution is more expensive than the local one due to high 

communication latency across sites. If the global or local adaptation is required all the 

processes of the application wait until they are allocated new workload and then resume 

the execution. Finally when the application execution is complete then method 

ATOP_MESH_DESTROY is called to free memory used by all data structures and 

finally the method ATOP_ENVIRON_DESTROY is called to shutdown the whole 

environment.
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ATOP_ENVIRON_INIT (); //initializes the environment

ATOP_CREATE_MESH (); //create all mesh data structures used by application

ATOP_GET_NODE (); //initializes node data on every node

ATOP_ADAPT_INIT (); // Initial workload redistribution

For (i=0; i<max_num_of_iterations; i++)
{

ATOP_MESH_COMPUTE (); /* this method does the actual computation and
communication for the application, by using the 
callback functions defined the user. */

i f  (i mod larger_limit == 0 ) // global checks are done rather infrequently
{

GLOBAL_TRY_ADAPT ();
}

if  (i mod sm allerjim it =  0) //local checks are more frequent than global ones
{

LOCAL_TRY_ADAPT ();
}

ATOP_MESH_DESTROY ();

ATOP_ENVIRON_DESTROY ();

/* In the application larger limit and smaller limit are relative. For example, if  application executes for ten 

thousand iterations (max_num_of_iterations) then global check may be performed after every 2000 

(larger_limit) iterations, while local check can be performed after every 500 (sm allerjim it) iterations. */

Figure 7 - Example of an application using the ATOP adaptation library

6.5 Adaptation Cost Model

To check the cost effectiveness of local or global adaptation, we compare the cost 

of adaptation with the gain achieved by doing load redistribution in terms of reduction in 

application runtime. Thus CostJEffective returns true if 

Gain * (1 -A apProx) >Adaptation_cost

6.5.1 Local Adaptation Cost model

The adaptation cost Tadapt, local can be broken down into
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Tadapt, local T'par, local T'mig,local

where Tparjocaiis the partitioning time and Tmigjocai is the migration time.

With overpartitioning, the partitioning cost (Tpar, heal)  is negligible i.e. ~ 0. To derive 

the migration cost (Tmigjocaj), we study the overpartitioning algorithm. The algorithm 

follows the structure based order keeping partitions with successive numbers on the same 

or neighboring nodes. The main idea behind this partition-allocation strategy is that 

keeping neighboring partitions together results in lower edge cuts and hence higher 

distribution quality. In [27] Sodan A. et al. compared the structure-oriented order for 

partition allocation with the migration-oriented order and concluded that the migration- 

oriented order lowers the migration time, but with a significant increase of edge cuts, 

whereas the structure-oriented order results in lower edge cuts. Thus for the present work, 

we use the structure-oriented order to implement the overpartitioning algorithm. Hence, 

we can derive the maximum number of partitions N part_migri max,local to be migrated from 

current to target resources.

N p art_migr, max, local ~  M U X  (N pap ^ r  +  N par: target)

N p ar_total, site*  m a x  ( ( A J W c C h c a l ,  i, curr /  t tV g A W V e C  local, curr)

(A WVeChcah i, target /  aVgA lWcC[oca[, target)) 

with Npartjotaisite being the total number of partitions on a local site, Npar,curr is the number 

of partitions per node with the current workload distribution and Npar,target is the number 

of partitions per node with the target workload distribution.

This gives a maximum communication volume

Cvoi, max, local~Npart_migr, max^^vertices, part ŜizCyertex per node with the number of vertices per 

partition being Nvertices,part v̂ertices /  Npart_total,site * (1 T IMBpartition) where SizeVertex Is the
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amount of data (in bytes) per vertex to be transferred and I M B partition the slight imbalance 

(due to the partitioner) in the number of vertices per partition.

Migration cost is determined by Tmjg iocai — T transfer, local* Cvoi, max,local with 

Ttransfer,local, the transfer time per byte on a local site. Hence T adapt,local =  T mjg)i0cai =  

Ttransfer,local* Cvol,max,local

Derivation of the adaptation cost mentioned above considers the worst case, 

meaning that migration cost is calculated with the assumption that all the partitions 

(maximum number of partitions) on a node will be migrated. Thus, the cost above is a 

general criterion for both time and space adaptation. This cost can be refined, if we are 

considering space adaptation for homogenous nodes. In this case, the maximum number 

of partitions migrated to change the allocation of number of nodes from N nodes,curr to

A nodes,target i s

Npart_migr, max, local ~  part_total, site /  WAX {Nnodes, curr, Nnodes, target} 1

The maximum number of messages needed for receiving and sending data per node, then

is given by N msg, max, loca l~  ^mcix {Nnodes,curr, Anodes,target} /  m in {N nodes ,curr, N nodes,target} 1 "t" I-

This gives a maximum communication volume

C vol,m ax~N m sg,m ax,loca l*N part_m igr,m ax ,loca l*N vertices,part*S iZ 6vertex POr n o d e  w it h  

N vertices,part ~  N vertices  /  ̂ part_ to ta l,site * (1 + IMBpanition)- Adaptation cost is then determined

by Tadapt,local T mig,local Tstartup,local *  H msg„max,local^r  T ransfer* Cvol,max,local

The gain is measured in terms of the benefit of reduced runtime which we expect 

after taking the adaptation decision, thus we measure the gain in terms of the difference 

between remaining runtime with and without adaptation. To calculate the gain we need 

the local imbalance factor, which is
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Tgain, local T remaining, noadapt T remainingt adapt

=  IM B ioca i*  (Ttotal Texec,)  IM B local T eXec,prev) (Ttotal Texecj /  I M B local T exec,prev) 

-  (IM B local -  1 )  * (Ttotal -  Texec, /  IM B local -  Texec, prev)

The function Cost_Effectiveiocai (using an error factor Aapprox) delivers true if  Tgain* (1 -

A approx) — Tadapt, local

Ttotal being the total estimated runtime, TexeCii the application’s runtime since the last 

adaptation, Texec,prev the runtime consumed before that last adaptation and IMBiocai is the 

local imbalance factor as described in Section 5.5.

6.5.2 Global Adaptation Cost Model

For global adaptation, we also use the overpartitioning approach. Rationale for the 

same is explained in Section 4.3. Thus

Tadapt,global ~  Tpar>gi0bal +  T mig,global

With overpartitioning Tpar, global ~ 0, hence Tadapt,global ~ Tmig,global

The global adaptation cost model is quite similar to the local one; except that we 

use the global communication parameters for startup and data transfer time and calculate 

the number of partitions to be migrated with respect to total number of sites.

Thus, to calculate the global migration cost we calculate the maximum number of 

partitions migrated per site, which is,

Npart_migr, max, global ~  part_total / N siteP

where N paru o ta i  is the total number of partitions and N sites is the total number of sites.

The maximum number of messages needed for receiving and sending data per site, then 

is Nmsg, max, global = Nsites• This gives a maximum communication volume globally

Cvol,max,global ~~ Nmsg„max,global * N Part_migr,max,global vertices,part * S iZ 6 vertex P 6 r  s i t e  w i t h
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H vertices,part N v e r tic e s^ p a r t_ to ta l *  ( 1  +  IM B p a r titio n )  and IM B p a rtitio n  as described above. The 

global adaptation cost is determined by

where T startup, global is the startup cost and T transfer,global is the time to transfer data per byte 

across sites.

The gain is calculated similarly as described in local adaptation cost model except that 

local imbalance factor I M B i ocai is replaced by global imbalance factor I M B g i0bai-

(IMBglobal 1 )  *  ( T to ta l~ ( (T exec T exeCi prev)/IMBgloba l))

Then, the function Cost_Effectivegi0bai (using an error factor Aappr0x) delivers true if

6.5.3 Adaptation Interval

Every local adaptation causes a delay for all the sites, since in a synchronous 

application all the other sites wait until the site undergoing adaptation resumes its 

execution. Hence, we find the minimum adaptation interval (Ia d a p t)  to amortize the 

adaptation cost via

( T g a in /T remaining, a d a p t)*  ( 1  ~ A  approx) *  1 adapt — T adapt.

startup, global msg, max, global Ttransfer, global *  C vol, max, global

remaining, noadapt remaining, adapt

( I M B g lo b a l*  (T to ta l~ ((T e x e c —T 6 v ) / I M B g l0b a l)))~ (T to ta l—((T e x e c  T exeCr p re v )  / I M B g lo b a l ) )

approx^
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7 Test Plan

7.1 Test Environment

We performed all our tests on our Horus cluster with 16 nodes (enodel -  

enodel6) each with dual Intel Xeon processors, 512 Mbyte memory, and 512 Kbyte L2 

cache and Myrinet interconnect. The Horus cluster runs Debian Linux with kernel 

version 2.6.6. The first 14 nodes (enodel -  enodel4) have a CPU speed of 2 GHz, and 

the last two nodes (enodel 5 - enodel 6) have a CPU speed of 2.4 GHz. Thus we get local 

heterogeneous environment for our tests. The fronted node (emaster) has four Intel 

Pentium III Xeon processors with 700 MHz speed and 1 MB L2 cache. In addition some 

of our tests are performed on a cluster at McMaster University with 64 dual Opterons, i.e. 

128 CPUs, with Myrinet interconnect. Both clusters run MPICH-GM 1.2.5.12bs, Zoltan 

Version 1.52, and ParMetis Version 3.1

For global adaptation, we simulate a grid environment by defining the two subsets 

of the cluster as two sites. Also, space adaptation is currently simulated (redistributing the 

work but keeping the maximum number of processes), since we are lacking an MPI 

which can expand and shrink efficiently on Myrinet/GM device.

7.2 Test Application

As mentioned earlier, we assume that the application using our adaptation 

framework can be mapped onto a graph structure, where vertices represent the 

computational workload and edges between them represent the communication workload. 

To represent our application structure, sample graphs are taken from the University of 

Greenwich Graph Partitioning Archive [35],
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Graph Vertices Edges
wing 62,032 121,544
brack2 62,631 366,559
finan512 74,752 261,120
fe_tooth 78,136 452,591
fe_rotor 99,617 662,431
fe_ocean 143,437 409,593
598a 110,971 741,934
wave 156,317 1,059,331
m l 4b 214,765 1,679,018

Table 4 - Properties of graphs

These graphs represent the basic skeleton of our application and define the 

computation and communication pattern. Graphs of different sizes and different 

properties (different ratios of edges vs. vertices) are selected, see Table 4. These graphs 

describe the structure only, i.e. do not have any weights attached to vertices or edges. In 

our experiments, we set all weights uniformly.

Node 1 Node 2

Node 3

Figure 8 - Test application communication pattern
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For the adaptation tests, we have implemented a simple Jacobi finite-difference- 

method simulation to work on the graphs. This application is mostly synchronous, 

employing nearest neighbor communication. In each iteration step, after computation 

step, every partition communicates with all border partitions that do not belong to same 

node. This is shown in Figure 6. Rectangles denote the nodes on a local site that 

participate in application execution. Small circles denote the partitions (with their 

numbers) allocated to each node. Arrows denote the adjacency relationship between 

various partitions. Solid lines denote the actual communication taking place. For example 

Partition 7 has adjacent nodes on 4, 6 and 11, but actual communication (data exchange) 

is done with only partitions 4 and 11, as they do not belong to the same node. The 

computation step in our application is relatively simple: each vertex in a partition 

calculates the average of the data stored in all neighboring vertices.

The abstract algorithm of the application is described in Figure 9. Since our 

framework can use multiple threads for the application execution dynamically, this 

requires some kind of thread synchronization to ensure that the application executes with 

correct and updated data in each succeeding iteration. Thread synchronization in our 

application is achieved through the function thread_barrier() as described in Section 6. 

The communication required by the application (exchanging updated information with 

neighboring partitions on other nodes) is done by the main thread, whereas the 

computation workload is divided between all the threads uniformly. For example, if  there 

are two threads active within the application at that time, and each node has 8 partitions, 

then each thread picks the odd and even number of partitions, thus dividing the 

computational workload among them equally.
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thread_barrier() //so that all threads start executing the application together

W hile (iteration < limit)

{
if  (threadjd == main thread)

{

Request receiving o f  data from all the neighboring partitions that are located on different 

processor /* receiving data from all neighboring partitions */

}
/* Computation starts */

For all local partitions on each node

{
i f  (number o f  threads >1) 

each thread picks one partition for computation //dividing the computational workload 

else

the main thread picks the partitions one by one and proceeds for computation, 

for (each vertex o f  the selected partition)

{
Calculator () (Computation function)

}
end for

}
end for (for all local partitions)

/* Computation ends */

thread_barrier() // to make sure each partition has completed their computation and have

//updated data to send to neighboring processors

if  (threadjd =  main thread)

{
Post send to send out data to all neighboring partitions /* sending updated data */

Wait till all requests (sends and receives) are finished

}
thread_barrier() //to make sure that all threads have completed one round o f

//computation and communication

} //end o f  while

Figure 9 - Abstract algorithm of the test application
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8. Test Cases and Experimental Results

8.1 Test Cases

We have several test cases to test the efficiency of our framework, and we designed 

separate test cases to test for local and global adaptation

• Test cases for proving the efficiency of ATOP

This test case is designed to show that overpartitioning performs better than 

partitioning from scratch with regards to adaptation time and is feasible with 

respect to the edge cuts (potential communication cost). In the case of 

overpartitioning, we perform these tests with relatively larger number of partitions 

(up to 256 partitions). Creating many more partitions than the number of 

processors might provide a benefit in case of overpartitioning since we get more 

flexibility for data allocation.

• Test cases for the flexible allocation of threads

With this test case we want to show that different sets of applications provide 

better runtimes under different thread allocation methods. So we test different 

thread allocation strategies on various combinations of application pairs to 

investigate which thread allocation strategy works better for a particular 

combination of applications. Next we check if the dynamic change in the number 

of threads and flexible reallocation provides performance benefit in terms of total 

time of the application. The total runtime of the application is compared with and 

without this dynamic change of thread allocation and number of threads, showing
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the percentage of performance benefit our scheme offers when choosing the best 

thread allocation strategy.

• Test cases for Local Adaptation

o time vs. space adaptation

This test case proves that we can maintain the same progress of the 

application (in terms of remaining application runtime) by trading in the 

time vs. space dimension. First we start executing the application of 

concern with dedicated resource allocation (space sharing) and measure 

the application runtime with this allocation. The application is executed 

again with the same resource allocation as used previously (dedicated 

allocation on same number of nodes) and after some time, the application 

of concern (A) is coscheduled with another application (B). Now to 

maintain the same progress, the number of nodes is increased for the 

application A. We measure the runtime for application A, when switching 

to time sharing by coscheduling with the application B and compare it 

with the runtime under a merely dedicated resource allocation scheme 

(space sharing).

o Benefits of time sharing

Through this test case, we want to show that, CPU sharing and node 

sharing provide better resource utilization than dedication resource 

allocation, in many cases. First we schedule both the applications on each 

half of the reserved resources, such that they have dedicated resources
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allocated on those nodes. We measure the runtimes of both the 

applications in this case. Next we coschedule both the applications on all 

available nodes and we compare the runtime of scheduled applications 

with and without co scheduling.

o Dynamic resource availability

In this test case, the resource availability changes dynamically (the job 

scheduler advises the application that more resources, in terms of more 

nodes or larger time shares, are available), and we compare the application 

runtime with and without taking the adaptation decision to utilize the 

available resources.

• Test cases for global adaptation

To test the global adaptation we denote different sites by discrete node groups. 

Moreover, heterogeneity between various sites is simulated by coscheduling the 

application of concern with another application on one of the nodes groups. Thus, 

the coscheduled site is slower than the site with dedicated resource allocation 

exhibiting heterogeneity, central to grid environment. This simulation is required 

as we lack the real heterogeneous environment on our local cluster.

o Adaptation for fully malleable application

In the first test case, we assume that the application is fully malleable, and 

we divide the workload among all sites equally without taking 

heterogeneity of various sites (which is reflected in the ARM vector) into 

account. At the global adaptation step, we adapt and adjust the workload
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by taking the proper ARM vector per site into consideration. We compare 

the total runtime of the application with and without taking the global 

adaptation decision. Through this test case, we test the efficiency of our 

adaptation framework for global adaptation.

o Adaptation for constraint malleable application

This class of application does not permit flexible resource allocation; 

hence, at the global adaptation step, we reduce the number of resources at 

the faster site to adjust to the worst site progress. We compare the runtime 

on the faster site with and without resource adaptation to check if  after 

adaptation the runtime on both sites is same or not, using fewer resources 

on faster site.

8.2 Experimental Results

8.2.1 Test the Efficiency of ATOP

First we show the results for adaptation time when the adaptation is performed in 

space dimension. The number of nodes are shrunk from 64 to 32, then expanded from 32 

to 40, and reduced again from 40 to 16.

The adaptation cost is the sum of the partitioning and the migration cost, and both 

the costs are analyzed separately. Figure 10 shows the results for initial partitioning time. 

The results suggest that partitioning time is independent of the number of partitions. This 

partitioning cost constitutes the initial setup and distribution cost. This initial partitioning 

test was done on 16 nodes (using 16 nodes on Horus cluster) using partitioning from 

scratch and overpartitioning with 16, 64, 128 and 256 partitions.
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Figure 10 -  Initial partitioning time for partitioning from scratch (S) and overpartitioning with 16,
64,128 and 256 partitions.

Figure 11 and Figure 12 show the adaptation time results for adaptation steps 

64->32, 32->49 and 40->16. Results suggest that overpartitioning performs better than 

partitioning from scratch yielding lower adaptation cost in all the cases. The 

improvements as compared to partitioning from scratch lie between 46 % and 60 %, 

where the best is for graph 598a for adaptation step 32->40 and 128 partitions. We also 

study the variation in adaptation times, when we increase the number of partitions from 

64 to 128 to as large as 256 partitions. Results show that 64 and 128 partitions perform 

better, with 128 partitions providing the best times for all graphs over all adaptation steps.

Thus generally speaking, overpartitioning performs better than partitioning from 

scratch and best for 128 partitions with respect to adaptation time.
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Figure 11 -  Adaptation time for adaptation step 64-^32 (top) and 32-^40 (bottom), show for 
partitioning from scratch (S) and overpartitioning (O) with 64,128, and 256 partitions
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Figure 12 - Adaptation time for adaptation step 40->16 shown for partitioning from scratch (S) and 
overpartitioning (O) with 64,128, and 256 partitions

Next we look at the edge cuts which define the distribution quality and the 

induced communication cost of the application. Edge cuts are the number of edges 

connecting the vertices that belong to different nodes. Maximum edge cuts are considered 

since the adaptation framework ATOP-Grid focuses on synchronous applications where 

maximum communication decides the overall communication cost. This maximum 

communication cost is derived from the maximum edge cuts per node.

The results for edge cuts, in Figure 13 and Figure 14 show that the edge cuts are 

best for partitioning from scratch, which takes the exact number of nodes used into 

account. Increase in edge cuts with overpartitioning for 128 partitions as compared to 

partitioning from scratch were in the range of 1.2 to 1.5 times, worst being 1.53 times.
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Results for 64 and 256 partitions were worse as compared to 128 partitions, the worst 

being 1.98 times for graph ml4b for adaptation step 40->16 with 64 partitions.
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Figure 13 -  Maximum edge cuts per node for adaptation steps 64->32 (top) and 32->40 (bottom) for 
partitioning from scratch (S) and overpartitioning with 64,128 and 256 partitions
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Hence, for larger numbers of partitions the probabilistic joining of partitions can 

partially balance the loss in quality of calculating adequate partitions (like for 128 

partitions as compared to 64), whereas, for too many partitions, the chances of degrading 

the quality of the partitioning is stronger than the probabilistic gain (for 256 partitions).
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Figure 14 -  Maximum edge cuts per node for adaptation steps 40-M6 for partitioning from scratch 
(S) and overpartitioning with 64,128 and 256 partitions

The overall results for adaptation time and edge cuts suggest that overpartitioning 

is a feasible approach for data redistribution. Moreover, the results suggest that 128 

partitions provide the most stable results. Hence, for rest of the experiments, we have 

used overpartitioning with 128 partitions as the adaptation approach.

8.2.2 Flexible Allocation of Threads

This test case demonstrates the different thread allocation approaches which lead 

to different time sharing approaches: CPU sharing, Node sharing and self coscheduling.
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Table 5 summarizes the results. As the results show, different combinations of 

applications give best results under different thread scheduling approach. Application 

brack2 and wing provides best runtimes for AA-BB, brack2 and fe_ocean for AB-AB and 

598a and wave for the A-B approach. Hence, choosing the best approach is important, for 

better application performance in terms of reduced runtime and for efficient resource 

utilization.

Applications coscheduled 
(A and B)

AA-BB AB-AB A-B
A
(secs)

B
(secs)

A
(secs)

B
(secs)

A
(secs)

B
(secs)

Brack2 (A), wing (B) 33.60 30.64 36.51 34.24 40.87 37.57
Brack2 (A), fe_ocean (B) 36.32 28.12 30.04 25.57 32.92 36.84
598a (A), wave (B) 36.23 32.46 37.07 33.26 32.87 31.13

Table 5 - Runtimes for different thread allocation approaches (CPU sharing, node sharing, and self 
coscheduling). AB-AB means CPU hyper sharing, A-B node sharing, and AA-BB a combination of

node sharing and self coscheduling.

Next we show that, adapting to the correct thread allocation strategy provides a 

benefit. Figure 15 explains this test case. At first, we schedule both the applications with 

1 thread per SMP node (thread allocation type A-B or node sharing), and later, at then 

next adaptation step, depending on which thread allocation type works best for

If AB-AB is 
better than A- If A-B is the best 

thread allocation 
variant

If AA-BB is 
better than A-

Figure 15 - Test for flexible allocation of threads
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coscheduled set of applications; the allocation type is changed to AB-AB (CPU sharing) 

or AA-BB (node/self coscheduling) or continue with the same allocation.

Results are depicted in Figure 16. Two sets of applications, brack2 & fe_ocean 

and brack2 & wing are coscheduled, using the A-B thread scheduling approach (node 

sharing). After 10 % of the application runtime, the thread scheduling approach is 

changed to AB-AB (CPU sharing) for brack2 & fe_ocean pair and changed to AA-BB 

(node/self coscheduling) for brack2 & wing pair. Changing the thread allocation leads to 

a benefit of 8 % for brack2 and 27 % for fe_ocean (brack2 & fe_ocean pair) and of 14% 

for brack2 and 13 % for wing (brack2 & wing pair).

45 

40 4

brack2 fe_ocean brack2 wing

■ Runtime without changing thread allocation 
 W Runtime with changing thread allocation

Figure 16 -  Runtimes with and without adaptation to dynamic change of thread allocation approach.

8.2.3 Local Adaptation -  Time vs. Space Adaptation

Through this test case, we want to demonstrate that the same progress can be 

maintained in terms of the remaining application runtime if changing to more nodes but 

less time shares per node, i.e. when switching from the space to the time dimension.
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Figure 17 shows the results for this case. The application of concern (fe_rotor, wing and 

wave) is started under space sharing, and after 10% of its runtime another application is 

coscheduled. The results demonstrate how the number of resources changes to maintain 

the same progress (resource sharing variant is CPU sharing for fe_rotor and wing and is 

node sharing for wave). It is important that the coscheduled application should not suffer 

from resource sharing beyond the normal time-sharing effect. We take this into account 

in our case and the slowdown caused due to coscheduling is always less than 2 for all 

coscheduled applications. Also the adaptation cost is always low, i.e. in the range of 0.25 

sec.

18

fe_rotor (& brack2) w ing (& fe_ocean) wave (& 598a)

■  Nodes dedicated ■  Nodes coscheduled

Figure 17 - Resources used (number of nodes) under space sharing and time sharing to keep the same 
progress/remaining runtime. The coscheduled application is mentioned in parenthesis

The next test shows that how resources are changed (to maintain the same 

progress), when the coscheduled application changes during the application’s runtime. In 

the following test, the applications coscheduled with wave, with wave being the 

application of concern, change during the runtime. The application wave (see Figure 18)
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executes under dedicated resource allocation on 10 nodes for the first 50 seconds, then it 

is coscheduled with fe_rotor, and we have to increase the number of nodes from 10 to 14 

to maintain the same execution progress. At 120 seconds, fe_rotor terminates and wave is 

coscheduled with fe_ocean. Thus, we have to change the number of nodes from 14 to 16 

(or 15) to maintain the same progress. This test also demonstrates that using the proper 

thread allocation variant results in better utilization of resources. As shown in Figure 18, 

with the thread allocation type AC-AC (CPU sharing), wave requires 16 nodes, whereas 

with A-C (node sharing) approach it requires only 15 nodes to maintain the same 

progress.

0 100 200 300
Execution progress (sec) 

AB-AB/A-C / AC-AC

400

Figure 18 - Execution progress for wave, starting with dedicated allocation, coscheduling fe_rotor 
from 50sec to 120sec, and coscheduling fe_ocean at 120sec. In the latter case, results are shown for

both CPU sharing and node sharing [28]

Similarly the same progress can be maintained when switching from the time to 

the space dimension i.e. smaller number of nodes but more time shares (or dedicated 

resource allocation on reduced number of nodes). As shown in Table 6, brack2 and 

fe_ocean are coscheduled under CPU sharing to execute on 16 nodes. After 10% of the
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runtime, one of the applications terminates, and the remaining application gets dedicated 

allocation on all 16 nodes. Hence, we reduce the number of resources from 16 to 10 in 

case of brack2 and from 16 to 11 nodes in case of fe_ocean, to maintain the same 

execution progress for both the applications.

These results also show the benefit of time sharing, brack2 and fe_ocean need 16 

nodes under time sharing whereas they need 10+11 =21 nodes under space sharing to 

maintain the same progress. We show more results for the benefits of time sharing in the 

next section.

Application Sequential
runtime

Parallel runtime 
under CPU sharing 

on 16 nodes 
(in secs)

Adaptation 
Time 

(in secs)

Number o f  
processors under 
space sharing to 

obtain same runtime

brack2 312.45 31.26 0.283 10

fe_ocean 301.87 26.02 0.251 11

Table 6 - Resources used (number of nodes) under time sharing and space sharing to keep the same
progress/remaining runtime.

Table 6 also includes a column for sequential time (runtime in a single node), 

which shows that the parallel version yields an application speedup of almost 10 times for 

brack2 and 12 times for fe_ocean. Ideal speedup of the application should be 16 times 

(execution on 16 nodes vs. single node), but communication and synchronization cost, 

typical for every parallel application, slows down the application execution. Thus, less 

communicating parallel applications is expected to benefit more, since the 

communication time is reduced. Moreover, resources are utilized better since the 

application spends more time in computation rather than exchanging information.
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8.2.4 Local Adaptation -  Benefits of time sharing

This test case demonstrates that time sharing i.e. CPU sharing or node sharing 

improves application performance and leads to better resource utilization. This test case 

is explained in Figure 19. Here, application A and application B are scheduled to execute 

on half of all available nodes with dedicated resource allocation, i.e. if  16 nodes are 

available then the application A executes on nodes 1-8 and application 2 is executes on 

nodes 9-16. Next, both the applications are coscheduled on all available nodes i.e. 

application A and B executing on all 16 nodes.

A with dedicated resource 
allocation on 8/32 nodes

B with dedicated resource 
allocation on 8/32 nodes

Application A and B coscheduled on all 16 nodes

Figure 19 -  Test case demonstrating the benefits of time sharing

Figure 20 shows that runtime is reduced when using time sharing (CPU or node 

sharing) on all available nodes as compared to dedicated resource allocation on half of 

the nodes. The application sets brack2 & fe_ocean and brack2 & wing are coscheduled 

using CPU sharing on 16 nodes, whereas wave & 598a and fe_rotor & wave are 

coscheduled using node sharing on 64 nodes. The dedicated runtime is taken on 8 nodes 

when using 16 nodes for coscheduling and on 32 nodes when using 64 nodes for 

coscheduling.

The improvement lies between 13% and 21% for CPU sharing and between 8% 

and 13% for node sharing. For node sharing, even better gains are expected if the 

application communicates more [28].
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■  R untim e with D ed icated  R e so u rce  Allocation 
M R untim e with N ode/C PU  S haring______________

Figure 20 - Runtimes with CPU/Node sharing vs. runtimes for the same applications under dedicated
resource allocation

8.2.5 Local Adaptation -  Adaptation to Dynamic Resource Availability

In the following test, we demonstrate that adapting to more resources, which may 

become available dynamically, provides a benefit. We demonstrate the adaptation to 

resource availability in both the space and the time dimension. For the time dimension we 

coschedule the application of interest with two other applications on disjoint sets of 

nodes. Figure 21 explains this test. Here initially at time Tl, application A is coscheduled 

with application B and application C on separate 8 nodes. After some time, the 

application C terminates, leaving more time shares available for the application A.
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H

Application: Aon' aft 16 nodes....................

Application C on 8 nodes

1

Application C terminates
r

j. 'Application. A. on all 16.nodes .

■Application A gets- more ■ ■ ■ 
: time share oft these modes ■

4--------------------------------------------------------------------------------------------------

Space
Figure 21 -  Dynamic resource availability in time dimension

We have tested 2 cases with brack2 and 598a as the application of interest. These 

applications are coscheduled with two other applications. After 10% of the runtime, one 

of the coscheduled applications terminated as shown in Figure 21, i.e. EShare became 1 

on these 8 nodes. On the 8 nodes where still another application was coscheduled, 

EShare=0.55 (test case brack2) and EShare=0.6 (test case 598a). The results in Figure 22 

show that adaptation provided a benefit of 20.4 % for brack2 and 17.5 % for 598a.

BB Non A d a p te d  R un tim e 1  A d ap ted  R untim e

Figure 22 - Runtimes with and without adapting to dynamic resource availability in the time
dimension
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Next we show the benefit of adapting to the dynamic resource availability in the space 

dimension. This test is explained in Figure 23. The application starts executing at time T1 

on a reserved set of resources. At time T2, extra nodes become available, and the job 

scheduler informs the application of this resource availability. The application decides 

whether to adapt or not to use these resources. Resource availability is temporary and, 

hence at time T3, the job scheduler takes away these extra nodes from the application and 

the application adapts to continue its execution on the reserved nodes.

; 32 nodes reserved for application execution;

32 nodes reserved for application execution !

32 nodes reserved for application execution

T1 3XI ra

T2

T3

Space
Figure 23 -  Dynamic resource availability in space dimension

Figure 24 shows the results. In the following test, extra nodes (from 32 to 50) are 

available for 60% of the application runtime. Using these extra nodes provided a benefit

50 -
45 -j.
40  

_  35

i  30
&  25 L
jjj 20
h  15

10 I
5
o -F

598a m14b fe_ocean

Non Adapted Runtime I Adapted Runtime

Figure 24 - Runtimes with and without adaptation to dynamic resource availability in the space
dimension: 32->50->32.
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of 25% for 598a, 27% for ml4b, and 29% for fe_ocean.

8.2.6 Global Adaptation for Fully Malleable Application

Here we present results to test the efficiency of our framework with regards to 

global adaptation for fully malleable applications. As described in Section 8.1, we 

simulate a grid environment with two node groups as two sites. For a 16 node cluster, the 

two simulated sites have 8 nodes each or 4 nodes for one site and 12 nodes for the other, 

and one site is simulated to be slower than the other site by coscheduling another 

application on one of the sites. For the 64 node cluster, one site has 16 nodes while the 

other site has 48 nodes, and we assume that the site with 16 nodes is twice as fast as the 

site with 48 nodes. In both cases the initial workload distribution is done assuming not to 

know the correct heterogeneity of the sites. This means that for the 16 node cluster, we 

equally distribute the workload to both the sites. But actually, one site is simulated to be 

slower than the other. At the global adaptation step, we adapt to the actual heterogeneity 

(which is a factor of 1.6 on the 8 or 12 nodes vs. the other 8 or 4 nodes). Similarly on the 

64 node cluster, double workload is allocated to the site with 16 nodes as compared to the 

site with 48 nodes, since we assume the site with 16 nodes to be twice as fast as site with 

48 nodes. At the global adaptation step, we adapt to the actual heterogeneity which is an 

equal machine factor (ARM) for all nodes on both sites.
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350  - 

300

finan512 finan512 fe_rotor fe_ocean 
(4-12) (8-8) (16-48) (16-48)

0  Non Adapted Runtime ■  Adapted Runtime

Figure 25 - Runtimes with and without global application adaptation

These results (see Figure 25) show that by adapting to the correct heterogeneity 

(ARM values), the runtimes are improved by 16.6% (4-12), 12.7% (8-8), 15% (fe_rotor, 

16-48), and 21.6% (fe_ocean, 16-48).

8.2.7 Global Adaptation for Constraint Malleable Application

Here, we provide test results for constraint malleable applications. As mentioned 

earlier, global adaptation for this class of applications is not possible. Hence, we reduce 

the number of resources on the faster site for efficient resource utilization.
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Figure 26 -  Runtimes of both sites with and without resource adaptation

These sites are simulated with the same heterogeneity factor (a factor of 1.6 on 

the 8 nodes vs. the other 8 nodes on a 16 node cluster) as described in the previous test 

case.

Now since workload is imbalanced on both the sites but global redistribution is 

not possible, after 10 % runtime (or global adaptation step), resource allocation on the 

site with the faster nodes was reduced from 8 to 5. As the results show (see Figure 26), 

the same progress was achieved with fewer resources. Though the runtime could not be 

improved (due to the application constraints), the utilization of resources was improved. 

The released resources can be used by the job scheduler e.g. to schedule some local non 

reserved jobs.
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9. Conclusions and Future work

In our approach, we have presented the ATOP-Grid adaptation framework for 

dynamic workload adaptation in grid environments. The focus of our framework is to 

achieve balanced progress across all nodes/sites. This goal is achieved by a hierarchical 

approach which performs the adaptation at different levels, globally across the sites and 

locally across the nodes of an individual site and additionally at the node/CPU level.

The ATOP-Grid integrates different resource sharing approaches and is integrated 

with the local job scheduler for efficient resource utilization. In addition, we introduce a 

new reservation type, computational power, for time vs. space allocation. This provides 

more flexibility to local job schedulers for meeting the reservation on each local site.

Locally, we support the overpartitioning and partitioning from scratch for 

workload adaptation, in both space and time dimension. We can dynamically switch 

between these approaches but our adaptation framework currently uses overpartitioning. 

Using partitioning from scratch would require to use the hierarchical Zoltan extension

[7], such that partitioning and migration can be done at different levels of the hierarchy 

independently. This extension would be promising for intensely communicating 

applications, since partitioning from scratch provides a higher distribution quality and, 

thus, lower communication cost for parallel applications as compared to overpartitioning.

Job scheduler, monitor controller and performance predictor of our framework are 

simulated but their prototypes are already implemented separately [26] [30], Integration 

of all these tools to work with the presented adaptation framework will provide real time 

monitoring and performance prediction, improving the efficiency of the overall 

framework.
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