1-1-2006

Extending the lifetime of sensor networks using the game theory.

Amr Elkholy

University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

EXTENDING THE LIFETIME OF SENSOR NETWORKS USING THE GAME THEORY

by

Amr Elkholy

A Thesis
Submitted to the Faculty of Graduate Studies and Research through Electrical and Computer Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada
NOTICE:
The author has granted a non-exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non-commercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ABSTRACT

In this thesis, the problem of limited sensor network lifetime due to limited energy resources is addressed. Lifetime is defined as the duration of packet transmissions that can be performed before one node, or a percentage of the nodes, dies.

Network deployment in rough environments makes it very difficult to reach the nodes in order to repair or recharge. It is therefore economically and practically crucial to maximize their operating lifetimes.

Nodes, by nature, will avoid relaying data for two main reasons. First of all, to save energy which they can use for transferring their own data and second, to reduce latency. An economic model based on the game theory is developed to persuade the cooperation between nodes in sensor networks to extend the lifetime of the network.

The model is simulated using MATLAB. It is then compared to two conventional protocols; minimum hop routing and minimum energy routing and the proposed scheme provides an improvement in the network's lifetime.
DEDICATION

I dedicate this thesis to my family, whom I feel blessed to be part of. Their never-ending support, encouragement and continuous feel of security were the greatest gifts I can ask for.
ACKNOWLEDGEMENTS

I am deeply grateful to Dr. Kemal Tepe for his patient guiding and continuous supervision. His enthusiastic attitude and innovative suggestions and comments always took my work to a higher level. Without him, I would have not been able to complete my work.

I owe deep gratitude to Dr. Jonathon Wu, who gave me motivation from the very beginning. His continuous encouragement and support were always an incentive to keep going.

I am also greatly thankful to my committee members; Dr. Huapeng Wu and Dr. Arunita Jaekel. Without their remarks and advice, my work would have not been completed and brought to perfection. I am grateful for their advice and patience.

I am also extremely thankful to all faculty members who formed such a comfortable environment to work in.

Finally, I would like to thank my fellow friends in Windsor for their continuous encouragement and for being there when I needed them.
TABLE OF CONTENTS

ABSTRACT.. iv
DEDICATION.. v
ACKNOWLEDGEMENTS.. vi
LIST OF TABLES.. ix
LIST OF FIGURES... viii

CHAPTER

I. INTRODUCTION

1.1 Sensor Networks and the Main Challenges ... 1
1.2 The Game Theory .. 3
1.3 Thesis Organization ... 7

II. REVIEW OF LITERATURE

2.1 Energy Efficient Studies .. 8
2.2 Lifetime Efficient Studies .. 11

III. DESIGN AND METHODOLOGY

3.1 Introduction .. 16
3.2 Model Development .. 17
3.3 A Numerical Example .. 20
3.4 Formulation .. 24
 3.4.1 The governing formula ... 25
 3.4.2 Algorithms ... 25
3.5 Minimum Hop and Minimum Energy Routing .. 27
 3.5.1 Minimum Hop Routing Protocol .. 28
 3.5.2 Minimum Energy Routing Protocol .. 29

IV. ANALYSIS OF RESULTS

4.1 The Sample Model ... 31
4.2 The Network Model and Results .. 35

V. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions ... 43
5.2 Future Work .. 44
APPENDICES

A: The Proposed Simulation Code ...45

REFERENCES ..75

VITA AUCTORIS ..77

viii
LIST OF TABLES

Table 1. Utility table for the Prisoners’ dilemma ...5
Table 2. Companies’ utility table ...6
Table 3. Utility table for the 4-node network ...24
Table 4. Case where nodes have different initial energies ...34
Table 5. Case where nodes have same initial energies...34
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Algorithm Goal</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The approach of the proposed model in Game Theory</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The 4-node network</td>
<td>20</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Scenario 1: Basic operation, no co-operation</td>
<td>20</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Node A co-operates</td>
<td>21</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Node B co-operates</td>
<td>21</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Both nodes co-operate</td>
<td>22</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Algorithm with global scenario</td>
<td>26</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Algorithm with local scenario</td>
<td>27</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Minimum hop estimation</td>
<td>28</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Minimum energy estimation</td>
<td>29</td>
</tr>
<tr>
<td>Figure 12</td>
<td>The sample Network analyzed</td>
<td>31</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Final energies of nodes in scenario where nodes have different initial energies</td>
<td>33</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Final energies of nodes in scenario where nodes have same initial energies</td>
<td>33</td>
</tr>
<tr>
<td>Figure 15</td>
<td>A randomly allocated network</td>
<td>35</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Algorithm steps</td>
<td>36</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Network snapshots when a) one node dies, b) 25% of nodes dies</td>
<td>37</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Both a) Inefficient path and b) efficient path</td>
<td>37</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Hops vs. nodes for ME, MH and proposed</td>
<td>38</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Packets sent; for different lifetime definitions</td>
<td>39</td>
</tr>
<tr>
<td>Figure 21</td>
<td>EP vs. nodes for MH, ME and proposed</td>
<td>40</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Hops vs. nodes; MH, ME, proposed and modified version</td>
<td>41</td>
</tr>
</tbody>
</table>

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 23. Hops extended, up to 2800 nodes ..41
Figure 24. EP vs. nodes; MH, ME, proposed and modified version..........42
1.1 Sensor Networks and the Main Challenges

Recently, the desire for data gathering and event monitoring has been rapidly increasing. That led to an increase in demand on wireless communication systems and sensor networks. Many of those networks employ short-range links without a pre-existing infrastructure. Examples include health monitoring of patients, agricultural land conditions, military applications, security, and home automation. The advances in microelectronics and micro-mechanical systems (MEMS) and system on chip (SoC) technologies allow sensor nodes to be fabricated at low costs and small sizes.

A wireless sensor network will consist of hundreds of sensor nodes that are mostly deployed randomly. After the deployment, the sensor nodes will self-organize and form a viable network to disseminate their data to control (observation) stations. In most of the applications, those sensors are battery operated. Like many battery operated systems or devices, energy efficiency and node lifetime maximization and eventually the network lifetime are primary goals in the self-organization process. That is why most of the research in the sensor networks focuses on energy efficiency, energy efficient data transmission, energy aware multiple access (MAC) techniques, and energy efficient routing.

In sensor nodes, agents that need to be sensed may not be uniformly distributed, i.e. nodes may be utilized differently during the course of the network. That's why most of the traditional optimization techniques fail to accomplish self-organization in a sensor network.
network in timely manner. In addition to these, global optimization algorithms require knowledge from all the nodes in the network, collecting and distributing that knowledge that is necessary for the optimization techniques is a monumental task. Repeating such tasks after topology and node changes creates unnecessary data traffic, and eventually further drains the network resources.

Due to above reasons, there is a need for a protocol that must work in a distributed fashion, and utilize local information rather than global information. In order to meet those requirements, some researchers started using theories that govern the micro economics. In those theories, the game theory is the most prominent one because game theory creates a situation where instead of agents making decisions as reactions to dead variables, the decisions are made dynamically and strategically with reactions to other agents' actions ("live variables"). The decision that an agent makes will be a choice from a set of moves, which it is allowed to make, in an attempt to form a strategy which will be his best response to the surrounding environment. A "Nash Equilibrium" will be reached when the best responses of all players are in accordance with each other, and no player can improve his performance without degrading some other player's performance.

So far, research in that area has mainly targeted three areas: 1) power control as in [1] and [2], 2) channel access as in [3], [4] and [5], and finally 3) routing costs such as [6].

In this work we will provide algorithms that utilize the game theory. In our algorithm, the objective of the network is to maximize the lifetime of the network.

We will introduce our system model and pricing (cost) function that takes into account both the remaining energy on the node and the energy spent in transferring data from one node to another. The objective of the selected pricing function is to provide a
uniform degradation in the sensors' energies and hence their lifetimes, therefore overall extending the network's lifetime.

1.2 The Game Theory

Adam Smith once said in his book “The Wealth of Nations”: “It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own interest. We address ourselves, not to their humanity but to their self-love, and never talk to them of our own necessities but of their advantages.” While Adam Smith believed that every individual's conflicting selfish action creates some sort of harmony, therefore resulting in an overall advantage for the system, John Nash then corrected Smith by stating that the overall optimum results come from everyone doing what's best for himself and the group as a whole.

Game Theory is regarded as a multi-agent decision problem. This means that there are two or more agents competing for limited rewards. Based on the situation, each agent will respond with a certain action, in an attempt to maximize his outcome. Reactions are made following certain rules and all players are assumed to behave rationally.

Game Theory is classified in two branches:

1) Non co-operative Game Theory, where the players play independently and selfishly without assuming considering what the other players are doing. Here, usually, the gain of one player is the loss of the others. This theory was mainly adopted by Von Neumann and Morgenstern and discussed in many of their research papers such as in [7], [8], and [9].
2) Co-operative Game Theory, where players co-operate with each other to reach an optimum solution. This came as an extension to non co-operative game and was introduced by John F. Nash in 1950 [10].

Components of the game:

1. A set of players: \(I = \{1, 2, 3, \ldots, I\} \)
2. A set of actions for each player, \(A_i \) where \(i \in I \)
3. A set of rules \(R \)
4. An outcome \(O \)
5. A payoff, or utility, for each player \(u_i \)

These are defined in J. Nash's first 2-page article [10]. Points 1 and 2 are defined in the following definition:

Definition: “One may define a concept of an n-person game in which each player has a finite set of pure strategies and in which a definite set of payments to the n players corresponds to each n-tuple of pure strategies, one strategy taken by each player.”

And point 5 is defined in the following:

Definition: “For mixed strategies, which are probability distributions over the pure strategies, the pay-off functions are the expectations of the players, thus becoming poly-linear forms in the probabilities with which the various players play their various pure strategies.”

Later in his paper, the idea of Nash equilibrium is defined as:

Definition: “Any n-tuple of strategies, one for each player, may be regarded as a point in the product space obtained by multiplying the n strategy spaces of the players. One such n-tuple counters another if the strategy of each player in the countering n-tuple...
yields the highest obtainable expectation for its player against the n - 1 strategies of the other players in the countered n-tuple. A self-countering n-tuple is called an equilibrium point.”

All this basically means that the system will be stable if it is at a point where there is no incentive for any player to deviate from his action. In other words, all players gave their best reaction to all the other n-1 players' actions and are satisfied with the outcome.

A matrix form representation, called the utility table, is used to present the possible actions and outcomes in a game. A very popular example is the Prisoners' Dilemma. Here, two burglars are captured and interrogated separately. They are given a choice of either confessing or remaining silent. If both confess, they get 10 years of prison each. If both remain silent, they get only 1 year or prison each. Finally if one confesses while the other remains silent, the one that confesses goes free while the other gets 20 years of prison. The results are summarized in table 1.

Table 1 Utility table for the Prisoners' dilemma

<table>
<thead>
<tr>
<th>Burglar 1</th>
<th>Burglar 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>confess</td>
<td>10,10</td>
</tr>
<tr>
<td>don't</td>
<td>20,0</td>
</tr>
</tbody>
</table>

The way to solve this game is to consider how burglar 1 will think: “If burglar 2 confesses, I will get 10 years if I confess, and 20 if I don't, so it's better to confess. But, on the other hand, if he remains silent, I will go free if I confess or get 1 year if I remain silent, and again it's better to confess.”
This means that if both prisoners act rationally, they will choose to confess. Although this is not the optimum solution, it's the safest, and it is what economists call "dominant strategy equilibrium".

The previous example does not represent the Nash equilibrium, since outcome can be improved if players change their decisions. A Nash Equilibrium problem will be presented in the following example.

Suppose two companies, X and Y, are producing two products. If both produce product 1, they get a payoff of 10. If both produce product 2, they get a payoff of 5. Finally, if both produce different products, they get no payoff. The results are summarized in table 2.

Table 2 Companies' utility table

<table>
<thead>
<tr>
<th>Company Y</th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product 1</td>
<td>10,10</td>
<td>0,0</td>
</tr>
<tr>
<td>Product 2</td>
<td>0,0</td>
<td>5,5</td>
</tr>
</tbody>
</table>

In this case, the best strategy is chosen when one player chooses his move. The other then responds using his best strategy. This is an example of a co-operative game, and the chosen outcome is a Nash Equilibrium. It is obvious here that we have two Nash Equilibrium points: the (product 1, product 1) point and the (product 2, product 2) point. The best overall solution will be (product 1, product 1) but the players may agree to stick to (product 2, product 2) for any reason as in to reduce risk.
1.3 Thesis Organization

The rest of the paper is organized as follows. Section II provides a survey of the sensor network lifetime related studies. Section III explains how the network lifetime problem is tackled from a game theory point of view, and how this develops into effective model that can be used to extend the lifetime of sensor networks. Section IV then presents the simulation results along with an analysis of the results. Finally, section V concludes the paper and provides future recommendations.
CHAPTER II
REVIEW OF LITERATURE

The aim of this chapter is to give an overview of the state of the art in tackling the energy related problems with sensor networks.

The main problem with sensor networks is limited energy availability. This is because sensors work on batteries and stop functioning when the batteries die. Energy is consumed when a sensor transmits data and also as it receives data. Sensor networks are usually deployed in rough environments where it is difficult to reach the nodes for repairing or even recharging them. It is therefore economically advantageous to maximize the network's lifetime. To do so, many protocols have been suggested. Some focus on energy efficient routing while others focus directly on sensor network lifetime optimization. On the other hand, for event detection networks, media access control (MAC) and sleep-wake synchronization are the main issues to be considered.

2.1 Energy Efficient Studies

In [11], the authors presented five different power metrics for choosing routes in wireless ad hoc networks. Those are: 1) Minimizing the energy consumption per packet for all packets, which does not necessarily mean optimizing the network lifetime since more pressure is put on certain nodes. 2) Maximizing time to network partition, which is not very feasible when delay and throughput are a concern. 3) Minimizing variance in node power levels, which leads to an optimization in network lifetime if the length of the packets are carefully treated. 4) Minimizing the cost per packet for all nodes, where a cost is defined based not only on the energy consumed per packet, but also on the
remaining energy in the nodes. A careful selection of the cost function is very crucial. 5) Minimizing maximum node cost, which also ensures an optimization in the lifetime of the network. The authors also introduced a MAC layer protocol which introduced large power savings. The metrics do not necessarily have to be applied as soon as the network starts running, instead they can be applied after the defined time threshold or energy threshold of the network is used. The metrics introduced in this paper give an excellent guideline to the techniques that can be used in sensor networks. However, these metrics will optimize the network lifetime if all the nodes have the same initial energy, or if all the nodes same similar energy levels in any given time. They do not consider the case when the nodes do not have the same initial energies.

Later in [12], Rodoplu and Meng proposed a position-based protocol that will guarantee the network connectivity and minimize the energy consumption of the network. Each node is capable of transmission, reception, processing data and has a low-power GPS (Global Positioning System) receiver. The proposed algorithm runs almost exclusively on local information and therefore requires transmission over short distances only. This conserves the total power required for transmission and also reduces the interference levels. The protocol is divided into two parts. First, finding the minimum power paths from each node to the destination by identifying its enclosure graph, and second, finding the cost (here, defined as the total power required) of sending data from a node to the destination along the directed path. The enclosure graph of each node defines the maximum area for which it is power-efficient for the node to search for more neighbours. The cost is calculated by using the Bellman-Ford algorithm where power consumption is the cost metric. The algorithm, despite the need of a GPS receiver, proves
to work for both stationary and mobile nodes and reflects the importance of utilizing local information.

LEACH was then introduced in [13]. This technique randomly utilizes cluster-heads in an attempt to distribute the energy load evenly among the nodes, which in effect extends the useful lifetime of the sensor network. To do so, three main features are implemented. First of all, localized coordination for cluster set-up and operation is employed. This reduces the overhead in the network, along with the transmission energy required as opposed to global functionality. Secondly, a random choice of clusters along with their cluster heads is used. Randomness, over a long period of time, will lead to a uniform utilization of all the nodes in the network, and therefore an even distribution in the energy levels of the nodes. Finally, local compression is used. This means that computation is done on a local basis, in the clusters, reducing the amount of data transmitted in the network. Sensors select themselves to become cluster-heads based on a certain probability and then announce their status. Other nodes then join the cluster according to minimum communication energy. The cluster-head node receives all the messages for nodes that would like to be included in the cluster. Based on the number of nodes in the cluster, the cluster-head node creates a TDMA (Time division multiple access) schedule telling each node when it can transmit. This schedule is broadcast back to the nodes in the cluster.

The number of clusters in the system can be pre-determined by the network depending on different parameters. In addition to reducing energy dissipation, LEACH successfully distributes energy-usage among the nodes in the network such that the nodes die randomly and at essentially the same rate. The results are compared to that of direct
communication and minimum-transmission energy routing (MTE) and show four to eight times lifetime extension.

The previous methods introduce an excellent guide to the path which can be followed to conserve energy in sensor networks. Random node assignment in LEACH improves the network performance over the long run, but not in the short run. It shows the importance of role rotation among nodes. An improvement to the node selection method should be introduced to guarantee that low energy nodes will be avoided. Using GPS and finding enclosure graphs in [12] is by its self energy consuming and expensive. Therefore a more reliable method should be introduced. A good insight to methods that can be used is presented in [11], and can be optimized to work for sensor network scenarios.

2.2 Lifetime Efficient Studies

In [14], Shah and Rabaey addressed the problem of lifetime maximization by picking the next hop nodes in a probabilistic fashion. They use the fact that optimizing energy of a network does not necessarily mean that the lifetime of the network is maximized. Therefore, they do not utilize the minimum energy paths. Instead, they occasionally utilize sub-optimal paths in hope to introduce some gains. Their approach tries to achieve an equitable degradation of the nodes' energy. They defined a set of "good" paths and the paths are given weights depending on some energy metric. This paper's significance lays in the fact that it links lifetime maximization to uniform energy depletion. The probabilistic method also proves to work on the long run, but it is not stated how the protocol works in the short run.
In [15], the authors concentrated on the problem of traffic quality and energy efficiency in ad hoc networks. They associated a utility function with each of the network’s nodes and develop an algorithm, ORSA, aimed at maximizing the source rate allocation and flow control strategy given a required network lifetime. There are multiple destination nodes, and each node has a utility function based on the route between it to the associated destination. The aim is to maximize the sum of the utility functions. The authors do not focus on optimizing the network’s lifetime, although their proposed algorithm proves to improve the network’s lifetime as opposed to an earlier algorithm, minimum transmission energy (MTE) [16]. The ORSA algorithm performs better under the condition that the source density is less than 0.5. The idea of a personal utility function for each node is very useful here. This means that the lifetime can be extended based on node’s performance rather than on a probabilistic method.

The authors in [17] extended their work in [18] to include the effect of different network topologies and the work is done on aggregating networks (i.e. where fusion of several data streams into a single stream occurs). They assigned roles to nodes which are composed of one or more of the following: sensing, relaying or aggregating. The role assignment technique proves to be a powerful tool that converts the problem into a linear one. However the computations are complicated and not all role assignments can be solved in a similar fashion.

In [19], Dasgupta and Namjoshi presented an approximate scheme to solve the problem of maximum lifetime data aggregation problem in sensor networks. Their goal is not to propose a new collaborative protocol that leads to greater network lifetime. Rather, it is bounding the network lifetime that any collaborative protocol can ever hope to
achieve. This is an improvement to their work done in [20], where they introduced the notion of aggregation trees which are trees that indicate how values from various sensors are gathered, aggregated, and then transmitted to the base station. The main problem was the complexity of the calculations for large networks. The basic operation in such systems is the systematic collection of sensed data and eventually transmitting it to the base station for processing. The main goal behind data aggregation is to eliminate redundant transmissions and thus save energy. In [19], they presented two algorithms for intelligent selection of data aggregation trees. The first one, referred to as the A-LRS algorithm, is based on the work done in [27] by Lindsey, Raghavendra, and Sivalingam. Here some nodes are classified as leaders, and they have the job of collecting the data, aggregating it, and then passing it on to the next level. The second algorithm, A-R-LRS, relies on greedy clustering of the sensors into chains, such that each sensor transmits to a close neighbour. Using P permutations in the sensors, where P is a small constant, adds an additional number of $P \times n$ aggregation trees. This introduced an improvement in the lifetime of the network.

The authors in [21] focused on energy efficient routing protocols for smart badges used in disaster situations. Their work is the same as Chang and Tassiulas in [22], except that they added the constraint of limited bandwidth and low node energy. They introduced metrics that balance energy consumption rates along a path in proportion to the energy reserves of the nodes but they do not consider remaining energies of the neighbouring nodes. Those metrics were applied on the traditional protocols and improved the lifetime of the network by up to 60% compared to conventional minimum transmitted energy routing protocols. They also formulate an upper bound on network
lifetime. Linking node utility directly to nodes’ energy levels is an inspiring technique which I used in my proposed protocol.

In [23], Rai and Mahapatra attempted to obtain a mathematical formulation for the lifetime of a network. They assume that the amount of data generated by a node is proportional to the area it covers and data generation at any individual node is a random process. An approximate CDF is obtained that matches the simulation results. Their mathematical result for expected lifetime and its probability distribution closely validates the simulations results.

The authors in [24] attempted to combine concepts presented in trajectory-based forwarding with the information provided by energy maps to determine routes in a dynamic fashion. Data dissemination is the data communication from the monitoring node to a set of sensing nodes that need that information. The results reveal that the energy spent with data dissemination activity can be concentrated on nodes with high energy reserves, whereas low-energy nodes can use their energy only to perform sensing activity. In this work we study the problem of energy-efficient data dissemination. The authors try to determine energy efficient routes based on available energy maps. They generate trajectories that pass through regions with higher energy reserves and avoid low-energy nodes. They then introduce a packet forwarding mechanism that eliminates the need for neighbour table maintenance and presents a more robust behaviour in a dynamic topology scenario, where nodes can periodically go into sleeping mode. The utilization of energy maps for role assignment proves to be another useful method for energy conservation. However, in my proposed algorithm, I will use energy maps in a reversed purposed: to prove the uniform energy degradation in the sensor network.
When using Bluetooth in applications where multihop routing is required, groups of Bluetooth piconets combine together to form a scatternet. The authors in [25] proposed an energy-aware forwarding scheme, based on local information only, that results in an even network resource utilization and hence an extension in the network lifetime. Another important result is preventing critical nodes from depleting their energies. Nodes with more energy are preferred over nodes with less energy. It has been observed that the sensor battery life linearly declines with current consumption. Therefore, the decision of whether to forward or not be based on the current level of the node’s battery. The protocol succeeds in improving the network lifetime, and also in controlling the traffic along overloaded paths.

The two main techniques used for lifetime maximization schemes are: 1) node role assignment, through assigning more energy consuming tasks to nodes with higher energy levels and 2) degrading energy levels at a constant rate. I will use these two points as a guideline to my proposed protocol.

On the other hand, the main problem is that no specific criteria are presented for the nodes to follow and base their decisions; i.e. random operation is usually implemented. In my proposition, I will overcome this problem by introducing a cost function that depends on each node’s status in the network. There will therefore be no probabilistic or general approaches. Instead, a node low on resources will be avoided and a better candidate will be used instead.
CHAPTER III
DESIGN AND METHODOLOGY

In this chapter, we present the development of the life-extending protocol through detailed game theory analysis. By the end of this chapter, we will gain an understanding of the basics upon which the protocol runs.

3.1 Introduction

Network lifetime is defined as the number of packet transmissions a network can perform before one node, or a percentage of the nodes, dies. Node lifetime is defined as the number of packet transmissions the node can perform before it runs out of energy and can be estimated using the following equation:

\[L_i = \frac{e_i}{e_{si}} \]

(1)

\(L_i \) : Node lifetime,

\(e_i \) : Node’s remaining energy,

\(e_{si} \) : Energy required per transmission.

Since sensor networks usually operate in rough conditions, such as battlefields or under the ocean, repairing or recharging nodes becomes a very difficult task. The only feasible solution is usually to replace the network. This means that as soon as the network lifetime expires, new nodes are thrown into the area to form a new network and the old network is disregarded. Therefore, it is economically and practically essential to maximize the network lifetime.
The main goal is to achieve the following:

\[
\text{maximize (minimum } (L_i)) \\
\text{subject to the following conditions:} \\
\text{} \text{limited } e_i \\
\text{fixed } e_{txi}
\]

Figure 1. Algorithm Goal

According to Nash, the best result is achieved if each player (node) does what is best for him self and the entire group (the network). It is therefore our goal to come up with a protocol where all the nodes co-operate in order to maximize both their own lifetime while considering the lifetimes of the other nodes, i.e. the network lifetime.

The development of the model will be presented in the following section.

3.2 Model Development

From formula (1), it is obvious that a node’s lifetime is directly proportional to the amount of energy it carries and inversely proportional to the energy it spends per transmission:

\[
L_i \propto e_i \\
L_i \propto 1/e_{txi}
\]

It is therefore logical to use nodes with higher energies and avoid nodes which use more energy per transmission in order to increase the network lifetime.

Now let’s assume that we have to choose between two neighbours to relay the data. One of them has a much higher energy reserve but will consume much more energy in the transmission. On the other hand, the second node has a very low energy reserve and consumes much less energy in the transmission, but if used, will run out of energy
and die. In terms of energy conservation, it is better for the whole network, and for the first node, to use the second node. But in terms of network lifetime, it is better to use the first node since this will leave us with no dead nodes and the network can continue to function. This draws our attention to another important point. The nodes' energies should be degraded at a constant rate in order for all the nodes to enjoy a higher network lifetime. Therefore, the nodes should co-operate together to maximize their utility. This example shows the difference between focusing on energy conservation and lifetime extension.

Therefore, tackling the situation from a game theoretic approach can be visualized as follows. Each node calculates its average expected lifetime as in formula (1). When a source announces that it wants to send some data, all the neighbours send their lifetime values to the source and the source picks the node with the highest lifetime value. The relayer repeats the same process, until the packet reaches the destination.
1. Source announces that it has data to send

2. Neighbours send back lifetime values

3. Source picks highest lifetime relayer

4. Repeat process until destination is reached

Figure 2. The approach of the proposed model in Game Theory
3.3 A Numerical Example

We will analyze a simple 4-node network in a Game Theoretic approach to illustrate the validity of the model. Let us assume that we have a source attempting to send data to the destination, with two possible relayers in between. There are four possible scenarios. The first one is the basic operation, where both possible relayers act selfishly and decide not to co-operate. The second and third scenarios occur when only one of the nodes co-operates and finally in the final scenario, both nodes co-operate. We assume that all nodes have an initial energy of 60 J, and the energy required per transmission is proportional to the distance between the nodes.

![Figure 3. The 4-node network](image)

![Figure 4. Scenario 1: Basic operation, no co-operation.](image)
As we can see in Figure 4, with an initial energy of 60 J and a required 10 J/transmission, source is able to perform 60/10=6 transmissions. Therefore the lifetime of the network in this case is 6.

![Figure 5. Node A co-operates.](image)

In this case, node A decides to relay data. Although node A now spends energy, it is better off because the lifetime of the network becomes 60/6= 10. We also realize that node B has benefited the extended lifetime without spending any energy.

![Figure 6. Node B co-operates.](image)

In this case, node B decided to relay. The situation is inversed. Here node B spends energy to extend the network lifetime to 10 transmissions, while node A benefits the lifetime extension without spending any energy.
Finally, both nodes decide to co-operate. Half the data is relayed through node A while the other half is relayed through node B. Each of them achieves 5 transmissions, and therefore the overall lifetime is still 10. The advantage here is that both nodes co-operated and shared the effort in extending the lifetime.

Now, we will analyze all four scenarios in a Game theoretic approach.

Scenario 1: No co-operation

This is the basic operation of the network, and all others will be compared to this one. Here we have a network lifetime of 6 transmissions. Nodes A and B do not spend any energy and the source depletes all its energy in the transmissions.

Now defining the utility function as lifetime extended per unit energy spent as opposed to the basic operation, we obtain the following.

Scenario 2: Node A co-operates

All data is relayed through node A. Lifetime is extended from 6 to 10 transmissions with an expenditure of 60 J from both node A and the source. Node B does not spend any energy.
Lifetime: 10
Lifetime extension: 10-6=4
u(S): 4/60=0.0667
u(A): 4/60=0.0667
u(B): 4/0=\infty

Scenario 3: Node B co-operates

All data is relayed through node B. Lifetime is extended from 6 to 10 transmissions with an expenditure of 60 J from both node B and the source. Node A does not spend any energy.

Lifetime: 10
Lifetime extension: 10-6=4
u(S): 4/60=0.0667
u(A): 4/0=\infty
u(B): 4/60=0.0667

Scenario 4: Both nodes co-operate

Half the data is relayed through node A and the other half is relayed through node B. Lifetime is 10 transmissions. Nodes A and B spend 30 J each while the source depletes all its 60 J.

Lifetime: 10
Lifetime extension: 10-6=4
u(S): 4/60=0.0667
u(A): 4/30=0.133
u(B): 4/30=0.133
And representing the previous results in a utility table, we get:

Table. 3 Utility table for the 4-node network

<table>
<thead>
<tr>
<th>NODE B</th>
<th>NODE A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-operate</td>
<td>Co-operate 0.133, 0.133</td>
</tr>
<tr>
<td>No co-op</td>
<td>∞, 0.0667</td>
</tr>
</tbody>
</table>

As shown, (co-operate, co-operate) represents the Nash equilibrium point, since no node can improve his performance without degrading the other node's performance. Therefore, co-operation of all nodes in the network, works out to be the best.

3.4 Formulation

3.4.1 The governing formula

We now need a cost function that will reflect the previous behavior. The function should govern the behavior of the data transmissions and have the following properties:

1) Encourage use of nodes with more energy reserves

2) Discourage high power transmission links

3) Function with different node energy scenarios, whether the nodes have same initial energies or variable energy values

4) Scalable, which means that the protocol should function well with increasing network size

5) Degrades the energy values of the nodes at a uniform rate

A cost function that considers all these points is as follows:
\[c_y = \frac{1}{e_{x_j} + 1 / p_y} \]

\(p_{ij} \): energy of transmission,

\(c_{ij} \): cost of transmission, and

\(e_{x_j} \): difference between neighbour node’s energy and average energy of nodes:

\[e_{x_j} = e_j - e_{\text{average}} \]

The significance of introducing \(e_{x_j} \) is to compare a node’s energy with its neighbours’ energy values. This will achieve uniform energy degradation throughout the network.

The decision to be made is to choose a relayer from the neighbouring nodes. In doing so, the source will consider two criteria: (i) difference between the remaining energy in the nodes and their neighbours and (ii) transmission energy, used in sending a packet from one node to the other. By introducing the first criterion, we intend to keep relaying nodes alive as long as possible by using nodes whose energy level is relatively higher than others. The cost function encourages the use of a relayer that is better in terms of remaining energy as opposed to neighbours at each packet transfer. This will alternate use of relaying nodes and allow them to improve network lifetime. The second criterion is to pick a relaying node that uses minimum transmit power.

3.4.2 Algorithms

We provide two algorithms to implement our approach. One is based on global knowledge, and the other is based on local knowledge. In global knowledge, every node knows the expected lifetime of all other nodes. We assume that that information is available and any future updates are also available. Disseminating information of each
node to other nodes is complex and requires additional protocols, which can consume large network resources, such as bandwidth and energy. But that approach will provide us with better understanding on how the algorithms behave.

The second approach is based on local knowledge. How the information is disseminated is not an issue in the design here. But disseminating local information to neighbours is a much easier and manageable task than disseminating all information to all the network nodes. Information can travel through the network simply by nodes listening to their neighbours, without increasing the network overhead. We now discuss those two approaches.

The Global Knowledge based approach is given by Figure 8. When node i has a data packet to send out, it calculates the cost of sending that packet to the next hop node j, c_{ij}. Node j then picks the next hop, and so on.

```
while all $e_i > 0$, for all $i$
    $e_x = e_i - \alpha \cdot \frac{e_j}{e_{average}},$ for all $j$
    $c_{ij} = \frac{1}{e_j + (1/p_j)}$, for all neighbouring $j$
    $c_{ij} = \text{minimum (all } c_{ij})$
    chose node $j$ as relayer
end
repeat until data reaches destination.
```

Figure 8. Algorithm with global scenario

The Local Knowledge based approach is given by Figure 9. It is similar to global knowledge approach, but in the local approach, only the information obtained by neighbouring nodes is used in cost calculation.
while all $e_i > 0$, for all i
$e_x = e_{\text{average}}$ for neighbouring i ONLY
$c_i = 1/(e_i (1/p_i))$, for all neighbouring j
$c_j = \text{minimum (all } c_j\text{)}$
chose node j as relayer
end
repeat until data reaches destination.

Figure 8. Algorithm with local scenario

We would like to emphasize one more time that the local knowledge based approach is more feasible than global knowledge based approach. When we consider that the nodes only forward packets to next hop, which is a neighbouring node, the local knowledge based approach should not deviate much from the global approach but operates with much less overhead [28].

The energy model used to calculate p_y is based on the work done in [13] where:

$E_{elec}=50\text{nJ/bit}$ is the energy required to run a transmitter or receiver circuit,

$E_{amp}=100\text{pJ/bit/m}^2$ for the transmitter amplifier, receive and transmit powers become functions of k bits:

\begin{align}
rx_i &= E_{elec} \cdot k \\
tx_{ij} &= E_{elec} \cdot k + E_{amp} \cdot d_{ij} \cdot 2 \cdot k
\end{align}

3.5 Minimum Hop and Minimum Energy Routing

The proposed algorithm will be compared to the two most common routing protocols; the minimum hop (MH) and minimum energy (ME) routing protocols. In order to obtain fair results in the long run, an estimation technique is introduced. The results are an average of at least 1000 simulations. The approach used to simulate both algorithms is explained in the following two subsections.
3.5.1 Minimum Hop Routing Protocol

The minimum hop protocol will be simulated using an estimation formula that will implement the best case scenario. The data packet will be assumed to travel in a straight line, therefore when a node has data to send, the number of hops required to reach the sink is the distance between the source and the sink divided by the node range [26]

\[h = \left\lfloor \frac{d(source, sink)}{r} \right\rfloor \] (6)

- \(h \): Number of hops
- \(d(i,j) \): Distance between nodes i and j
- \(r \): Node range
- \([x]\): Operation rounds the element to the nearest integer greater than or equal to it

Figure 10. Minimum hop estimation

Procedure:

1. find distance between source and all sinks: \(d(s,1) \) and \(d(s,2) \)
2. choose sink of minimum distance: sink 1
3. find estimated number of hops between source and sink based on (6)
3.5.2 Minimum Energy Routing Protocol

The minimum energy protocol will be estimated using a more complicated technique. Using the facts that the node distribution is random and the results are repeated and averaged over at least 1000 simulations, we assume the node distribution to be uniform in the long run. Minimum energy protocol searches for the route with intermediate hops where the total distance traveled is smallest per hop. This is because the received power at on node is proportional to d^β where d is the distance between the source and the sink and β is the path loss exponent, which in my simulations is assumed to be 2.

According to the previous assumptions, we work on a uniformly aligned network as shown below.

![Minimum energy estimation](image)

Figure 11. Minimum energy estimation

Procedure:

1. find distance between source and sink
2. find number of hops according to previous assumptions
3. calculate transmission energy according to distance of hops
The distance between each two nodes, horizontally or vertically, is \sqrt{u} where u is the uniform node density. And the diagonal distance is $\sqrt{u^2 + u^2}$. The transmission powers are then calculated accordingly.

In this chapter, the basics of the protocol were explained. An example was used to verify the validity of the method in terms of game theory. Finally, the technique used to estimate the performance of the networks using the minimum hop routing and the minimum energy routing protocols is introduced. In the following chapter, the protocol is put into practice and its performance is tested and analyzed. Modifications will be introduced when necessary.
CHAPTER IV
ANALYSIS OF RESULTS

4.1 The Sample Model

This model was introduced in the first stages of the model development to test the cost function on a small scale before extending the work. Figure 12 presents the simulation topology. In that topology, there are 11 nodes, including source and destination, and 4 tiers (i.e., 4 hops). The selection of a relayer will be within the tier. For example, the source has to select one of the following nodes: 2, 3 or 4 to be its relaying node. The selected node (2, 3, or 4) then has to select a relayer between node 5 and node 6, and so on.

The simulations were performed using MATLAB. We ran several different scenarios with this topology. First, node energies are distributed randomly, to mimic the scenario where utilization of the nodes is not uniform. Then we assume that the initial energies are equal.

![Figure 12. The sample Network analyzed](image-url)
In the simulations, we compared the proposed “global knowledge based” approach, the proposed “local knowledge based” approach, “minimum energy route”, “maximum available energy approach” and an “arbitrary (i.e., random)” relayer selection approach. In all approaches, the transmitting node consumes energy based on distance between the nodes. It is also assumed that each node consumes fixed amount of energy when it receives a packet regardless of the separation.

Figure 13 shows the final energy levels of the nodes after the simulation ends with each approach. In that scenario the initial node energies are distributed randomly. Simulation ends when any of the nodes dissipates all of its energy. In that figure, proposed global and proposed local leave nodes with energies that are more uniformly distributed. Although some of the node energies are more in other approaches, since some nodes depleted their batteries earlier, the network lifetime is relatively short compared to the proposed approaches. The proposed approach is better, since lower final energies in the nodes indicate that the nodes were utilized to their maximum capacity to extend the lifetime of the network. A node with energy when the network stop functioning is an undesirable situation.
Figure 13 Final energies of nodes in scenario where nodes have different initial energies

Figure 14 shows the final energy levels of the nodes after the simulation ends. In that simulation, the nodes' initial energies are equal. That Figure shows that the proposed algorithm's approaches leaves nodes with relatively uniformly distributed energies, in other words, network nodes dissipates their energies more evenly. That allows network to survive longer.
Tables 4 and 5 present comparisons of the number of packets sent in each approach. As the table reveals, the proposed approaches have the longest lifetimes. It is interesting to note that the proposed local algorithm is almost 25% better than the proposed global algorithm and nearly 50% better than others. That can be explained by each node's lifetime is degraded as opposed to its neighbours only.

Table 4. Case where nodes have different initial energies

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Proposed (global)</th>
<th>Max. available energy route</th>
<th>Minimum energy route</th>
<th>Arbitrary</th>
<th>Proposed (local)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets sent (lifetime)</td>
<td>68</td>
<td>60</td>
<td>50</td>
<td>53</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 5. Case where nodes have same initial energies

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Proposed (global)</th>
<th>Max. available energy</th>
<th>Minimum energy route</th>
<th>Arbitrary</th>
<th>Proposed (local)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets sent (lifetime)</td>
<td>77</td>
<td>-</td>
<td>67</td>
<td>64</td>
<td>95</td>
</tr>
</tbody>
</table>

Here we presented a trial model that improves lifetime of a sensor network by allowing nodes to alternate during packet forwarding. In that algorithm, nodes select a relaying node that has the longest expected life time. Our simulation results show that this algorithm (approach) maximizes lifetime compared to other approaches, namely “minimum energy routing”, “maximum available energy routing”, and “random routing” by almost 50% on average.

As the primary results seem promising, the next step becomes extending the model to larger networks, and testing its scalability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
4.2 The Network Model and Results

A uniform node density of 4000 m2/node will be assumed throughout the simulations. Nodes will be assumed stationary, and will expend energy upon transmitting and receiving energy according to the energy model from [13]. Fifty percent of the nodes will be assumed possible sources and ten percent as sinks. All nodes will be randomly allocated; nodes within the simulation area and sinks around the network border as shown in Figure 15. Overhead energy is ignored, as this is a small percentage compared to the overall spent energy [6].

![A randomly allocated network](image)

The MATLAB code written will be able to perform a variety of functions, and collect a vast amount of data by implementing the techniques used in Network Simulator, NS2. These include overhead, next hop, number of hops, number of data packets sent and network lifetime.

The code will implement the local scenario, where each node uses only its neighbours’ information to find the lowest cost link and uses it to relay data packets to
the next node until the destination is reached. The results are presented in the next section. As shown in Figure 16, a source will send out a request, and its neighbours will respond by sending back their energy level values. Based on the energy level values, and the distance between the source and the neighbours, calculated by measuring the power loss, the source will calculate the cost to each neighbour. The source will then pick the cheapest neighbour to send the data packet to and the process is repeated until the destination is reached.

The protocol is run on different size networks using MATLAB. The maximum number of nodes simulated was 2800, but the number can be extended. Two different cases were studied. The first of which lifetime is defined as the time when the first node dies, and the second is when 25 percent of the nodes die. Snapshots of a 200 nodes network where taken to represent the network condition when one node dies, and then when 25 percent of the nodes die. These are presented in Figure 17. This shows the effectiveness of the protocol in even energy depletion. The darker nodes have more
energy, and the dead nodes are marked with Xs. Destinations are randomly distributed around the edge of the network and represented as red stars.

Figure 17. Network snapshots when a) one node dies, b) 25% of nodes dies

Since the protocol is allowed to run without any sense of direction, i.e. it is entirely based on the cost function, sometimes unnecessary paths will be taken and the packet will end up traveling a much longer distance. This case is represented in Figure 18 along with another scenario where the packet takes an efficient path.

Figure 18. Both a) inefficient path and b) efficient path

When simulated, the minimum hop protocol is assumed to perform at its best case. This means that the number of hops is estimated using the following formula:
\[Nhops = \left\lfloor \frac{d_{\text{to sink}}}{d_{\text{threshold}}} \right\rfloor \] (6)

Where \(\lfloor . \rfloor \) operation rounds the element to the nearest integer greater than or equal to it.

The number of hops required for the proposed algorithm reflects the latency. It is plotted, as shown in Figure 19, as opposed to the ME and MH protocols, which are obtained as explained in the previous chapter.

Due to the absolute dependence of the proposed cost function on the transmission energy and the nodes' energy levels, the number of hops increases with the number of nodes, since unnecessary paths become more common as networks grow in size.

![Figure 19. Hops vs. nodes for ME, MH and proposed](image_url)
The number of packets sent, which represent the lifetime, is next plotted for both lifetime definitions in Figure 20. The figure demonstrates the advantage of defining the lifetime as when 25% of the nodes die over when lifetime is defined as one node dead. This is because the probability of one node dieing is independent of the network size. Therefore, better network utilization is achieved when terminating the network as soon as 25% of the nodes die.

![Figure 20](image)

Figure 20 Packets sent; for different lifetime definitions

As a means of comparison, the energy per packet metric is introduced. This metric measures the utility of the network. It will be denoted as EP for short, and measured in J/packet. It is used as a means of comparing the performance of the introduced protocol to both the MH and ME protocols. Its value is measured by dividing the total energy spent by the number of packets successfully sent.
As observed from Figure 21, the proposed protocol performs much better than the MH up to around 700 nodes and better than the ME up to around 180 nodes. This is mainly due to the higher rate of increase in hop count for the proposed protocol as opposed to the other two. This triggers the need for an optimization of the cost function. The modification we introduce will be considering the distance of the node from the closest sink. This should help direct the data packet into a straight line towards the sink, thus reducing the number of hops, and hence the EP value. The cost function will be modified as follows:

$$c(i,j) = \frac{1}{\text{ex}(j)} + \frac{1}{p(i,j)} + K_d \cdot d(j, \text{closest _ destination})$$

(7)

k_d is a constant that balances the weight of both terms of the modified cost function. The previous results will be re-plotted to test the modified cost function, and are shown in Figures 22 and 23.
Figure 22 shows how the modified protocol introduces a great improvement in the network's latency over the original proposed protocol. Also, the number of hops for the proposed algorithm is slightly larger than that of the MH and ME. The results will be extended to 2800 nodes to check the performance of the modified protocol at such network size, as shown in Figure 23.
Next, we will show the impact of the modification on the EP value.

![Graph showing EP vs. nodes for MH, ME, proposed, and modified versions.](image)

Figure 24 EP vs. nodes: MH, ME, proposed and modified version

Once again, it is obvious how the modified cost function improves the performance of the network and extends its lifetime.

It is important to bear in mind that the protocols do not consider the overhead energy, and also the GPS energy needed in the modified case is ignored.

In this chapter, we proved the validity of the proposed protocol by applying it to a small sample network. Since the results seemed promising, a network model was created and the protocol was allowed to run on bigger networks. The proposed protocol works fine in terms of lifetime extension, but caused an increase in latency as the network got bigger and bigger. Optimization of the protocol was then suggested, and the optimized protocol works a lot better in terms of lifetime and latency. A more comprehensive analysis will be presented in the following chapter.
CHAPTER V
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The game theory proved to be a strong and effective tool for optimizing the performance of wireless networks. In this thesis, the game theory was used as a guideline by which the nodes in a network will base their decisions to extend the overall lifetime. Nodes cooperated and exchanged information with their neighbours in order to achieve uniform energy degradation across the network. This, in effect, resulted in lifetime extension.

The network, using the proposed algorithm, depleted its energy in an inside-out fashion. This means that the nodes closer to the center of the network tend to lose their energy faster than the nodes closer to the border. This is because border nodes are usually closer to sinks, and therefore will be used much less.

The introduced cost function was a major key in the success of the protocol. It eliminated the randomness, which was usually applied in previous research, and introduced guidelines to relayer selection.

The proposed protocol is advantageous over both the minimum hop routing protocol and the minimum energy routing protocol in terms of energy per packet, i.e. lifetime, up to 700 nodes for the first case and 180 nodes for the latter case. It should be taken into consideration that the ME and MH protocols were simulated using estimation techniques that give advantage to their results.

The modified proposed protocol introduced a huge improvement in terms of both lifetime and network latency. The drawback with this modification is that we need GPS
enhanced nodes. This means an increase in the network cost which might not be feasible in some cases.

5.2 Future Work

The results obtained using MATLAB confidently indicate an improvement in performance over conventional communication protocols. Yet, it still remains necessary to verify the results using network simulator tool NS and also to include the overhead energy, which was ignored in MATLAB.

Also, a number of factors used in the simulation can be examined and optimized. These include the k_d metric, the node density, and different lifetime definitions.

I expect the protocol performance to resemble that of the minimum hop protocol as the k_d metric is bigger, i.e. more weight is given to the distance between the node and the sink. Node density and source density, which was assumed to be 50% in my simulations, should also have an impact on the protocol performance. I predict that a higher node density should increase the latency of the network when using the proposed protocol and possibly also increase the lifetime. The value of the node density should be optimized according to the desired specifications.

Finally, different lifetime definitions will affect the utilization of the nodes. Various values should be examined to study the effect on node utilization and success rate. In my thesis, I studied the network for two lifetime definitions only: when one node dies and when 25% of the nodes die. A larger definition means that the protocol will continue to run until more nodes die. This might cause some nodes to be isolated and therefore unable to send out data packets. This will increase the failure rate. Therefore, an optimum lifetime defined value should be obtained.
APPENDICES
APPENDIX A
The Proposed Simulation Code

% Implement the cost function in forwarding decisions in the network. Every node finds
next best candidate until sink is within reach

clear;
clear;

% epp of 3 rows to store values (EP, HOPS, PACKETS SENT) of repeated attempts, and
averaged at the end
epp=zeros(3,50);
for kkk=1:50;

% keep sending packets until one node dies => u=1
u=1;
r=0;

numberiterations=zeros(1,u); % will record number of hops from source to destination for
one packet for the KJ protocol

numberpackets=zeros(1,u);

numberhops=zeros(1,u);

for tt=1:u; % how many time
dead=0;

pkt=1; % track number of packets successfully sent before 1 node dies

fk=zeros(1,25);

% for g=1:25; % how many times u want to repeat the process
% keep track of number of hops

numberofiterations=0;

% number of nodes, n
n=360;

% number of possible sources, s
s=.5*n;

% number of possible destinations, d, placed randomly on borders
d=.1*n;

% x-dimension
x=sqrt(4000*n);

% y-dimension
y=sqrt(4000*n);

% the nm matrix has nodes' initial energies on first row, random x- and y-
% position on second and third row, respectively
nm=zeros(3,n);

ini=.001; % initial nodes energy values
for i=1:n;
 nm(1,i)=ini;
end

for i=1:n-.1*n;
 nm(2,i)=x*rand(1); % random x co-ordinate of nodes
end

for i=1:n-.1*n;

46
nm(3,i)=y*rand(1); %random y co-ordinate of nodes

end

%count number of nodes involved in all packet transmissions

countn=zeros(n,n);

%place the destinations on boarder of area

for i=n-n/10+1:n-(3/40)*n;
 nm(2,i)=x*rand(1);
 nm(3,i)=0;
end

for i=n-(3/40)*n+1:n-(2/40)*n;
 nm(2,i)=0;
 nm(3,i)=y*rand(1);
end

for i=n-(2/40)*n+1:n-(1/40)*n;
 nm(2,i)=x;
 nm(3,i)=y*rand(1);
end

for i=n-(1/40)*n+1:n;
 nm(2,i)=x*rand(1);
 nm(3,i)=y;
end

%plot(nm(2,:),nm(3,:),'x')
%DISTANCE matrix finds distance between all nodes

for i=1:n;
 for j=1:n;
 d(i,j)=sqrt((nm(3,j)-nm(3,i))^2+(nm(2,j)-nm(2,i))^2);
 end
end

%now we need to determine the NEIGHBOURHOOD matrix
	nbr=zeros(n,n);
dthr=150;
for i=1:n;
 for j=1:n;
 if d(i,j) <= dthr & d(i,j) >0
 %fprintf('node %d is a neighbour of node %d
',i,j)
 nbr(i,j)=1;
 end
 end
end

%for OH calculation purposes, we need to know how many neighbours each node has

count=zeros(1,n);
for i=1:n;
 for j=1:n;
 if nbr(i,j)==1
 count(1,i)=count(1,i)+1;
 end
 end
end

48
end

end

end

% Assuming an energy model based on the work done in % "Energy-Efficient Communication Protocol
% for Wireless Microsensor Networks" by W. Heinzelman, A. Chandrakasan, and H. Balakrishnan where:
% $E_{elec} = 50nJ/bit$ is the energy required to run a transmitter or receiver
% $E_{amp} = 100pJ/bit/m^2$ for the transmitter amplifier, the receive and
% transmit powers become of kk bits:
% $RX_i = e_{elec} * kk$ and $TX_{i,j} = e_{elec} * k + e_{amp} * d_{i,j} \times 2 * kk$.

p=zeros(n,n);
kk=100;%number of bits per packet
elec=kk*50*10^(-9);
emp=kk*100*10^(-12);
for i=1:n;
 for j=1:n;
 p(i,j)=emp*(d(i,j))^2+elec;
 end
end

% $ex(j) = e(j) - \text{average}(j's neighbours energies)$
for i=1:n;
 f=0;

\[e = \text{zeros}(1,n); \]
\[\text{for } j = 1:n; \]
\[\text{if } \text{nbr}(i,j) == 1; \]
\[e(j) = e(j) + n; \]
\[f = f + 1; \]
\[\text{end} \]
\[\text{end} \]
\[\text{ex}(1,i) = n; \]
\[e = \text{zeros}(1,n); \]
\[\text{end} \]

% and the cost function between node i and its neighbours
% first find closest sink to node i
\[c = \text{zeros}(n,n); \]
\[\text{for } i = 1:n; \]
\[\text{for } j = 1:n; \]
\[\text{if } \text{nbr}(i,j) == 1 \]
\[c(i,j) = 1/(\text{ex}(j)+1/p(i,j)); \]
\[\text{end} \]
\[\text{end} \]
\[\text{end} \]

% fill 0 values in cost function with 999, since they are not neighbours
\[\text{for } i = 1:n; \]
\[\text{for } j = 1:n; \]
if c(i,j) == 0
 c(i,j) = 999;
end
end
end

% now we need to determine source and send its packet to first destination it reaches, source is a random node out of first 50% of nodes
% for w = 1:np; % how many packets do you want to send

while nm(1,:) > 0 % condition that iteration continues as long as all nodes alive, stop when one node dies
 yyy = 0;
 while dead < 0.25 * n % condition that iterations continue until 25% of nodes are dead
 % if dead == 1 & yyy < 9
 % hold
 % for i = 1:n-.1*n;
 % if nm(1,i) >= .75*ini
 % plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor','k','MarkerSize',16)
 % end
 % end
 % end
 % for i = 1:n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
% if nm(l,i)<=0
% plot(nm(2,i),nm(3,i),'kx','MarkerFaceColor','k','MarkerSize',20)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0.5*ini & nm(1,i)<=0.75*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.4 .4 .4],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0.25*ini & nm(1,i)<=0.5*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.69 .69 .69],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)<=0.25*ini & nm(1,i)>0
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.9 .9 .9],'MarkerSize',16)
% end
% end
% for i=n-1*n+1:n
% plot(nm(2,i),nm(3,i),'r*','MarkerFaceColor','r','MarkerSize',16)

52
% end
% hold

dead=0;

s=1+round(.5*n*rand(1));

while nm(l,s)<0 % reselect if source dead
 s=1+round(.5*n*rand(1));
end

% FIND CLOSEST SINK TO SOURCE s

fz=5000;

for m=.9*n+1:n;
 if d(s,m)<fz;
 fz=d(s,m);
 mindistance=d(s,m);
 destx=m;
 end
end

fz=5000;

% and the cost function between node i and its neighbours

kdest=0.000001;% factor indicating influence of distance on cost

%c=zeros(n,n);

% for i=1:n;
% for j=1:n;
% if nbr(i,j)==1

53
% c(i,j)=(1/(ex(j)+1/p(i,j)));%+kdest*d(j,destx);
%end
%end
%end

countn(pkt,s)=1;
%find relayer of node s

%%%jun 06, if dest is neighbour of s, send packet to it and restart
min_loc=-1;
for i=.9*n+1:n;
if nbr(s,i)==1
min_loc=i;
end
end

%%otherwise , find cheapest neighbour
for i=1:n;
 x(i)=999;
end

for i=1:n;
 if c(s,i)>0 & nm(l,i)>0
\[x(i) = c(s,i); \]
\[\text{end} \]
\[\text{end} \]

% find where i points to for min cost
if min_loc < 0
 mini = 999;
 %min_loc = -1;
 for i = 1:n;
 if x(i) < mini
 mini = x(i);
 min_loc = i;
 end
 end
end
end

%fprintf('node %d --> node %d \n', s, min_loc);
numberofiterations = numberofiterations + 1;
countn(pkt, min_loc) = 1;

% adjust energy values, nm(1,:), ex values, and costs
nm(1, s) = nm(1, s) - p(s, min_loc);
nm(1, min_loc) = nm(1, min_loc) - elc;
for i = 1:n;
 f = 0;
 e = zeros(1, n);
for j=1:n;
if nbr(i,j)==1;
 c(j)=c(j)+nm(1,j);
 f=f+1;
end
end
ex(1,i)=nm(1,i)-sum(e)/f;
e=zeros(1,n);
end
for i=1:n;
 for j=1:n;
 if nbr(i,j)==1
 c(i,j)=1/(ex(j)+1/p(i,j))+kdest*d(j,destx);
 end
 end
end
end

%now to avoid packets to ever go back to node s:
for i=1:n;
 c(i,s)=999;
end

%find next relayer of node (min_loc) if min_loc not destination
for i=.9*n+1:n;

if min_loc==i
 % then min_loc is a destination
 % numberofiterations=numberofiterations+1
end
end

% if any of destinations is neighbour of min_loc, transfer data packet to it
% and stop
final=0;
for des=.9*n+l:n;
 if nbr(min_loc,des)==1
 final=des;
 end
end

% final=xx;
if final>=.9*n+l
 % fprintf(' node %d --> node %d
',min_loc,final)
 numberofiterations=numberofiterations+1;
 % adjust energy values, nm(1,:), ex values, and costs
 nm(1,min_loc)=nm(1,min_loc)-p(min_loc,final);
 nm(1,final)=nm(1,final)-elc;
 % nm(1,final)=nm(1,final)-elc;
 for i=1:n;
 f=0;
 e=zeros(1,n);
 end
end

57
for j=1:n;
 if nbr(i,j)==1;
 e(j)=e(j)+nm(1,j);
 f=f+1;
 end
end
ex(1,i)=nm(1,i)-sum(e)/f;
e=zeros(1,n);
end
for i=1:n;
 for j=1:n;
 if nbr(i,j)==1
 c(i,j)=1/(ex(j)+1/p(i,j))+kdest*d(j,destx);
 end
 end
end

if final==0;
 %this means that no destination was a nbr of min_loc, so find next
 %relayer with cheapest cost
 if min_loc <= .9*n;
 min_loca=-1;
 while min_loca<=.9*n
 min_loca=-1;
 for i=1:n;
 for j=1:n;
 if nbr(i,j)==1
 c(i,j)=1/(ex(j)+1/p(i,j))+kdest*d(j,destx);
 end
 end
 end
 end
 end
end
mini=999;
min_loca=-1;

for j=1:n;
 if c(min_loc,j)<mini & nm(1,j)>0
 mini=c(min_loc,j);
 min_loca=j;
 end
end

%node min_loca is min_loc's relayer
%now to avoid packets to ever go back to node min_loc
for i=1:n;
 c(i,min_loc)=999;
end

fprintf(' node %d --- node %d \n',min_loc,min_loca);

numberofiterations=numberofiterations+1;

% fix energy value nm(1,min_loc), ex values and cost
nm(1,min_loc)=nm(1,min_loc)-p(min_loc,min_loca);
nm(1,min_loca)=nm(1,min_loca)-elc;
for i=1:n;
 f=0;
 e=zeros(1,n);
 for j=1:n;
 if nbr(i,j)==1;

59
\[e(j) = e(j) + \text{nm}(1,j); \]
\[f = f + 1; \]
end
end
\[\text{ex}(1,i) = \text{nm}(1,i) - \text{sum}(e) / f; \]
e = \text{zeros}(1,n);
end

for i = 1:n;
for j = 1:n;
if \text{nbr}(i,j) == 1
 if \text{c}(i,j) == 999
 \text{c}(i,j) = 1 / (\text{ex}(j) + 1 / \text{p}(i,j)) + k\text{dest} \ast \text{d}(j, \text{dest});
 end
end
end
end
end

\text{final} = 0;
\text{for des}.9 \ast n + 1:n;
 if \text{nbr} (\text{min_loca}, \text{des}) == 1
 \text{final} = \text{des};
 end
end

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
%final=xx;
if final>=.9*n+1
 %fprintf(' node %d ---> node %d \n','min_loca,final);
 numberofiterations=numberofiterations+1;
 min_loca=final;
 % fix energy value nm(l,min_loc), ex values and cost
 % nm(l,min_loc)=nm(l,min_loc)-p(min_loc,min_loca);
 % nm(l,min_loca)=nm(l,min_loca)-elc;
 % for i=1:n;
 % f=0;
 % e=zeros(1,n);
 % for j=1:n;
 % if nbr(i,j)==1;
 % e(j)=e(j)+nm(1,j);
 % f=f+1;
 % end
 % end
 % ex(1,i)=nm(1,i)-sum(e)/f;
 % e=zeros(1,n);
 % end

% for i=1:n;
% for j=1:n;

% if nbr(i,j)==1
% if c(i,j)==999
% c(i,j)=1/(ex(j)+1/p(i,j))+kdest*d(j,destx);
% end
% end
% end
% end
%
% %%235 adjust energy values, nm(:,,:), ex values, and costs
% nm(1,min_loca)=nm(1,min_loca)-p(min_loca,final);
% % nm(1,final)=nm(1,final)-elc;
% for i=1:n;
% f=0;
% e=zeros(1,n);
% for j=1:n;
% if nbr(i,j)==1;
% e(j)=e(j)+nm(1,j);
% f=f+1;
% end
% end
% ex(1,i)=nm(1,i)-sum(e)/f;
% e=zeros(1,n);
% end
% for i=1:n;
% for j=1:n;
% if nbr(i,j)==1
% c(i,j)=1/(ex(j)+1/p(i,j))+kdest*d(j,destx);
% end
% end
% end
percent

\text{countn(pkt, min_loca)=1;}
% \% fix energy value nm(1, min_loc), ex values and cost
% nm(1, min_loc)=nm(1, min_loc)-p(min_loc, min_loca);
% nm(1, min_loca)=nm(1, min_loca)-elc;
% for i=1:n;
% f=0;
% e=zeros(1,n);
% for j=1:n;
% if nbr(i,j)==1;
% e(j)=e(j)+nm(1,j);
% f=f+1;
% end
% end
% end
% ex(1,i)=nm(1,i)-sum(e)/f;
% e=zeros(1,n);
% end
%
% for i=1:n;
% for j=1:n;
% if nbr(i,j)==1
% if c(i,j)~=999
% \[c(i,j) = \frac{1}{ex(j) + \frac{1}{p(i,j)}} + kdest*d(j,destx); \]
% end
% end
% end
% end

if min_loca>.9*n
 end
min_loc=min_loca;
end
end % feb 27
end

% oh=2*(oh-count(1,min_loca))
r=r+1;

% find min distance from source to any of the destinations
s;

mindis=100000;

for i=n-n/10+1:n
 if d(s,i)<mindis
 mindis=d(s,i);
 end
end

numberofiterations;

numberofiterations(1,r)=numberofiterations;

pkt=pkt+1;

numberpackets(1,tt)=pkt-1;

numberhops(1,tt)=numberofiterations;

for i=1:n;
 if nm(1,i)<=0
 dead=dead+1;
 end
end

nm(1,:);
end
end

mean(numberpackets);

mean(numberhops);

percentenergyavilKJ=mean(nm(1,:))/ini*100;
\[x = \text{numberiterations}; \]

\[\text{for } i = 2:r \]
\[\text{numberiterations}(i) = \text{numberiterations}(i) - x(i-1); \]
\[\text{end} \]

\[\text{avghopsKJ} = \text{mean(numberiterations)}; \% \text{gives the average number of hops required for} \]
\[\text{one packet to travel from source to destination} \]
\[\% \text{repeated for different sources until a node dies} \]

\[\text{packetssentKJ} = r; \]

\[\text{packetssentMH} = 2*\text{elc} + \text{emp} * \text{dthr}^2 / (\text{ini})^2 \times 100; \]

\[\text{avghopsKJ} \]

\[\text{packetssentKJ} \]

\[\text{percentenergyavlKJ} \]

\[\text{EP} = ((100 - \text{percentenergyavlKJ}) / 100) \times \text{ini} / \text{packetssentKJ} \]

\[\text{epp}(1,kkk) = \text{EP}; \]

\[\text{epp}(2,kkk) = \text{avghopsKJ}; \]

\[\text{epp}(3,kkk) = r; \]
\[\text{end} \]

\[\text{epp1} = \text{mean(epp}(1,:)); \]

\[\text{epp2} = \text{mean(epp}(2,:)); \]

\[\text{epp3} = \text{mean(epp}(3,:)); \]

\% \text{ hold} \]

\% \% \text{ for } i = 1:n-1*n; \]
% if nm(1,i)>=.75*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor','k','MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0.25*ini & nm(1,i)<=.5*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.69 .69 .69],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0 & nm(1,i)<=.25*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.9 .9 .9],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0.5*ini & nm(1,i)<=.75*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.4 .4 .4],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0.25*ini & nm(1,i)<=.5*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.69 .69 .69],'MarkerSize',16)
% end
% end
%
% for i=1:n-1*n;
% if nm(1,i)>0 & nm(1,i)<=.25*ini
% plot(nm(2,i),nm(3,i),'ko','MarkerFaceColor',[.9 .9 .9],'MarkerSize',16)
% end
% end
%
%
% for i=n-.1*n+1:n
% plot(nm(2,i),nm(3,i),'r*','MarkerFaceColor','r','MarkerSize',16)
% end
% for i=1:n-.1*n;
% if nm(1,i)<=0
% plot(nm(2,i),nm(3,i),'kx','MarkerFaceColor','k','MarkerSize',20)
% end
% end
% hold

% hold
% for i=1:n-.1*n
% plot(nm(2,i),nm(3,i),'ro','MarkerFaceColor','r','MarkerSize',1)
% text(nm(2,i),nm(3,i),num2str(i))
% end
% for i=n-.1*n+1:n
% plot(nm(2,i),nm(3,i),'rx','MarkerFaceColor','r','MarkerSize',10)
% text(nm(2,i),nm(3,i),num2str(i))
% end
% hold
REFERENCES

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
VITA AUCTORIS

Mr. Amr Elkholy was born in Canada on October 9, 1980. In 1995, he graduated from Kuwait English School in Kuwait. From there he went to Kuwait University where he obtained a Bachelor of Science degree with High Honours in Electrical Engineering in 2001. From January 2001 to May 2004, Mr. Elkholy was working as a RF Planning/Optimization Engineer in Nokia, Kuwait. He is currently enrolled at the University of Windsor, where he hopes to graduate in the summer of 2006 with a Masters of Applied Science degree in Electrical Engineering.