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Abstract

The primary goal of this research involves the description and creation of an analytical finite 

element model of a double-stage helical gear reduction. This model is used to gain additional 

insight into the vibration generation tha t results from helical gear meshing action. The 

model is also used to perform a limited number of parametric studies. The principal results 

from a 3D ANSYS partial helical gear model are the static transmission error and torsional 

mesh stiffness. These two outputs are used as the main inputs into a finite element analytical 

MATLAB model. In MATLAB, the finite element modelling approach is combined with 

the torsional-translational gear dynamic model to obtain an overall system model. Output 

shaft angle has negligible effect on the system’s dynamic transmission errors and bearing 

forces (amplitudes and natural frequencies) while the shaft element length, bearing stiffness 

and gear positioning effects are significant.
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N otation

The notation throughout this work is used to denote mathematical types. The notations 

for specific entities are listed below.

Label Description

A cross-sectional area

A Sx and A Sy net shear effective area in x  and y directions, respectively

O'd addendum in transverse plane

b contact area half-width

[ c ] damping matrix

d diameter of a cylinder

de dedendum in transverse plane

det determinant of a matrix

diag a diagonal matrix

E modulus of elasticity

e »  2.718282

eij static gear transmission error of gear pair i j

®(i)(i+l)r r-th  harmonic amplitude

F compressive force

F  and f force vector in global and local coordinates, respectively

Fm + i ) extended force vector
G modulus of rigidity

[ I ] identity matrix

Ii and Ij moment of inertia of gears i and j ,  respectively
I. -j. and Iy moment of inertia about x  and y  axis, respectively
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Label Description

J polar moment of inertia

Ji and J  j polar moment of inertia of gears i and j ,  respectively

3 imaginary number

[ K ] stiffness matrix
[ k ] element stiffness matrix in local coordinates

[ h  ] bearing stiffness matrix

[ ^9 ] stiffness matrix of gear pair i j

h lateral stiffness

kij mesh stiffness of gear pair i j

[ ks ] stiffness matrix of a beam element

h shaft torsional stiffness

kx ; ky ? and k% bearing stiffness in x , y, and 2  directions, respectively

k()x and k@y bearing stiffness about x  and y  directions, respectively

I length of a shaft element

lc length of a cylinder
[ M ] mass matrix

[ M .  ] modal mass matrix

[ m  ] element mass matrix in local coordinates

[ m 9 ] gear mass matrix

mi  and rrij mass of gears i and j , respectively

[ rns ] mass matrix of a beam element

m t transverse module

N number of gear teeth

N s number of shafts

o cutter offset

Pij(t) relative displacement of gear mesh i j

Pmax maximum pressure

Q addendum modification coefficient

Q total number of degrees of freedom

R total number of transmission error harmonics
r transmission error harmonic
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Label Description

rb radius of a shaft element

ru  and rbj base circle radius of gears i and j ,  respectively

rh gear hub radius

rp pitch radius

n tip radius of a cutter

rx and ry radius of gyration about x  and y  axis, respectively

s mode number

[ r ] transformation matrix

superscript T matrix transpose

Ti and Tj torque applied to gears i and j ,  respectively

t time

w gear face width

X  and x element displacement vector in global and local coordinates, respectively

X  and x element acceleration vector in global and local coordinates, respectively

x ab element displacement vector

x a, ya, and za displacement of node a in x, y, and z directions, respectively

x b, y b, and zb displacement of node b in x, y, and z directions, respectively

Xi ,y i , and Zi displacement of gear i in x, y, and z directions, respectively

xj, yj, and Zj displacement of gear j  in x, y, and z directions, respectively

X i ,  V i ,  and z* acceleration of gear i in x, y, and z directions, respectively

Xj, yj, and Zj acceleration of gear j  in x, y, and z directions, respectively

Oiij relative angular position of gear pair i j

P i j helix angle of gear pair i j

r'(i)(i+l)r r-th  harmonic phase angle

7 phase angle

s approach displacement
sv virtual displacement

e addendum coefficient

Cs modal damping value

V dedendum coefficient

@x a j Qya-) and 0 z a angular displacement of node a about x, y, and z axis, respectively
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Label Description

@xbi &nd @zb angular displacement of node b about x, y, and z axis, respectively

6i and 6j angular displacement of gears i and j ,  respectively

Oi angular displacement of a load

@pm angular displacement of a prime mover

^yi't &nd 0zi angular displacement of gear i about x, y, and z axis, respectively

®xj i ®yj 5 &Ild 0 zj angular displacement of gear j  about x, y, and z axis, respectively

@xii &nd 0zi angular acceleration of gear i about x, y, and z axis, respectively

@xj j yj» 0zj angular acceleration of gear j  about x, y, and z axis, respectively

A eigenvalue

V Poisson’s ratio

n (i)(i+i) phase angle difference between the and e i2 (f)

7T «  3.141593

P density

e tip radius coefficient

r r a n d .  (j% stress in x, y, and z directions, respectively

? bearing stiffness coefficient

T 3x3 direction cosine sub-matrix

[ * ] mass normalized modal matrix

modal vector

<l>t transverse pressure angle

4>ij transverse pressure angle of gear pair i j

(j)x and cf)y shear deformation parameter in x  and y  directions, respectively

X gear tip relief

[ * ] modal matrix

ipij plane of action angular position of a gear pair i j

[ « ] receptance matrix
LO vibrating frequency

“ (i)(i+1) gear mesh frequency

OJs natural frequency associated with <f>s modal vector

superscript — 1 m atrix inverse

xv
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Chapter 1 

Introduction

1.1 M otivation

When given the task of designing a gear reduction, a design engineer’s first reference is 

the American Gear Manufacturers Association (AGMA) manual[l]. There are two funda­

mental stress equations given in the manual. One is used for bending, and the other for 

contact stress calculations. If the stresses on gear teeth are the only concern in the gear 

reduction system, then the AGMA approach is sufficient. However, in addition to low stress 

requirements, there may also be low noise and vibration requirements. Due to an infinite 

number of possible gear reduction layouts, simple closed form equations used to determine 

vibration levels do not exist. There are general guidelines tha t should be followed when a 

low level of vibration is desired. Typically, an increase in gear size and contact ratio (the 

average number of teeth in contact) results in reduced vibration levels. For many years 

now, researchers have been developing finite element models capable of capturing dynamic 

behaviour of gearbox systems. A number of models have been experimentally verified, while 

a portion, mainly new advanced models, still need experimental verification. Despite the 

fact tha t a number of models have been developed, the gear dynamic area is still relatively 

new, and will require more research as the demand for quiet running gear systems increases.

A gearbox model similar to the benchmark gearbox model presented in this thesis was 

designed to be used in a Hybrid Electric Vehicle (HEV) application. The actual HEV 

gearbox could not be modelled and analyzed here due to the lack of computing resources, 

mainly an ANSYS (Analysis of Systems) license restriction. W ithout loss of generality, a

1
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CHAPTER 1. INTRODUCTION 2

simplified gearbox system is modelled and analyzed for the purpose of research presented 

in this thesis.

1.2 Background

Gears, in their simplest arrangements, are used to transm it power between two parallel 

shafts. It is im portant for the angular velocity of the two shafts to remain constant during 

the power transmission. In theory, it is possible to achieve this conjugate action by the use of 

the involute profiles. The majority of gear tooth profiles are designed as being involute, thus 

ensuring conjugate action. This profile works in theory, but in practice there are a number 

of different factors tha t require gear tooth profile to deviate from the perfect involute. When 

the gears are in service, they are usually required to transm it load which causes gear teeth 

to deflect and deviate from the involute. In addition, when a contact between the two 

mating gear teeth is made, a local deformation at the point of contact occurs. Also, gear 

manufacturers are not capable of manufacturing a perfect involute profile. The involute 

profile is derived from the base circle causing the tooth portion below the base circle to 

be non-involute. To prevent this tooth portion from coming into contact with the tip of 

the mating tooth, thus causing non-conjugate action, root and tip reliefs are applied to all 

gear teeth. All of the above factors contribute to the phenomenon called gear Transmission 

Error (TE).

In simple terms, the TE is the deviation from the constant angular velocity during 

meshing action of the two mating gears. All of the above mentioned factors contribute to 

the gear transmission error with varying degrees of influence. A high TE  is certain to cause 

excessive noise and vibration problems. In general, helical gears produce less TE when 

compared to spur gears due to higher contact ratio of helical gears. Also, the engagement 

of the helical gear teeth starts as a point and then gradually converts into a line of contact. 

When the higher contact ratio is combined with the gradual teeth engagement, one can see 

why the helical gears are the obvious choice when low vibration and noise power transmission 

is required.
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CHAPTER 1. INTRODUCTION 3

In the past, to manufacture gearboxes with low levels of noise and vibration meant a 

significant amount of time spent designing, manufacturing and then testing the gearbox 

systems. W ith the computing power available today, it is possible to  model and analyze 

gears and gear-trains, during the design phase, thus determining the effects of different gear 

parameters on the gear TE and gear train dynamics before they are built.

1.3 Literature Review

Two very im portant terms, TE and mesh stiffness, in gear dynamics are discussed first. 

Subsection 1.3.3 gives a classification of gear dynamic models, followed by the review of a 

recently published work in gear dynamics. Next, the ANSYS approach to gear contact is 

discussed, also by a review of recently published work in tha t field.

1.3.1 Transmission Error

Transmission error is found to be one of the main vibration sources in the gear mesh. The 

TE is described as the difference in the actual output gear position and the position it would 

occupy if the mating gear teeth profiles were perfectly conjugate. It is usually expressed in 

angular units or as a linear displacement along the line of action. The two equations are

eij = &j ~  (1.3.1)

for angular units, and

eij — rbj ~  (1.3.2)

for linear displacement along the line of action, where

= static gear transmission error of gear pair i j ,

9i and 6j  =  angular displacement of gears i and j ,  respectively,

N{ and Nj = number of teeth of gears i and j ,  respectively, and 

rbj = base circle radius of gear j .

Figure 1.1 illustrates the loaded TE for a single gear pair. Furthermore, the TE is typically 

divided into two categories: manufactured TE and loaded TE. Manufactured TE is caused 

by the manufacturing inaccuracies and usually results in an excessive amount of material
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CHAPTER 1. INTRODUCTION 4

O utput
gear

Input
gear

Line of 

action

Figure 1.1: Loaded transmission error. A solid line represents unloaded 
conjugate gear teeth, while the dashed line represents loaded gear teeth. 6i 
and 6j are angular displacements of gears i and j , respectively, is the static 
transmission error of gear pair ij.

on one of the gears in a gear pair. As a result of this, manufactured TE has a positive value. 

On the other hand, the loaded TE is obtained by applying the load to the gear pair. In this 

scenario, the changes in tooth deflection are causing the output gear to lag behind the input 

gear, and the negative value for loaded TE is obtained. The to tal amount of TE is then 

the sum of the above two. W ith intentional tooth modification and precise manufacturing 

it is possible to introduce a desired amount of manufacturing TE so tha t the total TE is 

significantly reduced. This usually works in the case of steady state load systems.

If the TE is measured during static conditions (low shaft speed), it is commonly referred 

to as the Static Transmission Error (STE). In contrast, if the same measurement is made 

during dynamic conditions, it is the Dynamic Transmission Error (DTE) tha t is being 

measured. Dynamic transmission error is usually larger in magnitude when compared to 

the STE due to the system’s dynamic effects.

1 .3 .2  M esh  S tiffn ess

The ratio between the force acting along the line of action and the tooth displacement 

along the same line is defined as the mesh stiffness. The engaged gear pair mesh stiffness 

is divided into two main parts: a component due to local Hertzian contact deformation 

and a component due to the tooth bending deflection. Local contact deflections are small
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CHAPTER 1. INTRODUCTION 5

when compared to those originating from tooth bending deflections. For a single tooth pair 

in contact, the mesh stiffness remains relatively constant due to the fact tha t the loss off 

stiffness in one tooth is compensated by the gain in stiffness of the mating tooth (as the 

gears rotate the point of contact moves up along a tooth and moves down along the mating 

tooth).

As the gears rotate, the number of teeth in contact varies, and as a consequence, the 

effective length of the line of contact is changing, causing variations in mesh stiffness. For 

low contact ratio spur gears, these variations are largely due to the load transfer occurring 

over a single tooth and a double tooth pair. In the case of a helical gear pair mesh, the 

change in total length of line of contact is small due to large contact ratios (usually between 

two and three) and as a result, mesh stiffness variations are significantly smaller when 

compared with those of spur gears. As a consequence, a majority of helical Gear Dynamic 

Models (GDM) treat mesh stiffness as constant and its time averaged value is used. In spur 

GDM this is not the case, and the Linear Time Variant (LTV) mesh stiffness function is 

employed.

1.3.3 Gear Dynamic Models

Ozguven and Houser [21] offered a thorough summary of GDM from their early days up to 

the 1980s. Planetary gear systems were not covered in this review of gear dynamic models. 

Their findings will be summarized and briefly presented here. The goal of this review is not 

to refer to a specific model, but to offer general ideas on different types of models tha t have 

been developed and implemented. For more detail on a specific model, and its function, 

one should consult Ozguven and Houser[21]. Gear dynamic models are grouped as follows:

• Simple Dynamic Factor Models

These are the first gear dynamic models developed. The main goal of these models is the 

determination of the dynamic factor used in the gear stress analysis formulae.

• Models with Tooth Compliance

Tooth elasticity is the only source of energy storage in the system, while the gear blanks, 

shafts and bearings are assumed to be perfectly rigid. As a consequence, the systems are
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CHAPTER 1. INTRODUCTION 6

usually modelled as Single Degree of Freedom (SDOF) mass-spring systems. In translational

vibrations of gears in mesh are considered. The transmission error excitation is represented 

by a relative displacement excitation at the mesh. Figure 1.2 represents an example of a 

typical SDOF torsional compliant gear tooth model.

Figure 1.2: (Figure 3 in Ozguven and Houser[21]) SDOF torsional compliant 
gear tooth model. Tooth elasticity is the only energy storage source. Shafts, 
bearings and gear blanks are assumed to be rigid. TE displacement represents 
the main excitation to the system. 0* and 6j are angular displacements of 
gears i and j , respectively, rhi and rbj are base circle radii for gears i and j, 
respectively, is the gear pair ij  static gear transmission error, and kij is the 
gear pair ij  mesh stiffness.

• Models for Gear Dynamics 

The above mentioned SDOF models provided results tha t are in close agreement with 

experimental studies. However, the close agreement between the model and experimental 

results was obtained using experimental conditions tha t closely reflected assumptions made 

in analytical models. For a majority of real world type gear systems, these assumptions 

could not be justified; therefore a need for a more general modelling approach emerged. 

These newly developed Multi Degrees of Freedom (MDOF) models now included shaft and 

bearing flexibilities, and in some cases housing flexibilities. Some models assumed time 

invariant mesh stiffness and linear analysis while the others incorporated tooth separation, 

backlash, and non-linear analysis. A torsional-translational example model of a single stage 

gear reduction with the prime mover and the load is shown in Figure 1.3.

models, forced vibration of a gear tooth is studied, while in the torsional models, torsional
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Figure 1.3: (Figure 4 in Ozguven and Houser[21]) MDOF gear dynamic 
model. These models included shaft, bearing, and in some cases, housing flex­
ibilities. In addition, some of these models also included tooth separation and 
backlash phenomena, fc; represents the combined shaft and bearing lateral stiff­
ness and kt is the shaft torsional stiffness. 9i and 9pm are load and prime mover 
angular displacements, respectively.

• Models for Geared Rotor Dynamics

Geared rotor dynamics models concentrate more on shaft whirling effects rather than on 

gear dynamic effects. Shafts are allowed to vibrate in two perpendicular lateral directions, 

and torsional vibration of the system is typically considered. A clear distinction between 

these and the previous class of models is not present in a number of different cases because 

some models in the previous section included coupled lateral vibration of a gear shaft system.

• Models for Torsional Vibrations

By neglecting the flexibility in gear teeth and modelling of shafts as torsional springs, a 

number of these models have been developed and used for natural frequency studies of 

multiple gear mesh systems. Some researchers have used them for gear dynamic studies.

A limited number of the above models have been used for natural frequency and mode 

shape analysis. A significantly larger portion have used some form of excitation (TE), and 

the system’s dynamic response in the time or frequency domain have been studied.

Next, a review of papers published in the area of gear dynamics is presented. Each 

paper is summarized in terms of the type of analytical model used, assumptions made in 

those models, and the main findings obtained from the models.
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A dynamic analysis of a multi-shaft helical gear system is offered in Kahraman et al.[15]. 

In this model, a TE was obtained from the gear contact software developed at the Ohio 

State University lab. The TE was then used as the main input to the analytical finite 

model. A finite element model of the shafts was combined with 3D discrete helical gear 

pairs. To verify the model, a single-stage helical gear reduction model was compared against 

experimental results. The model gave good correlation with the experimental results. Once 

verified, the model was then used to analyze a double-stage helical gear reduction. A number 

of different parametric studies were then performed with the model. It was concluded that 

due to a large number of parameters interacting with one another, general design guidelines 

influencing the dynamic behaviour could not be identified.

In Kahraman et al. [16], a simple finite element model was developed to investigate the 

dynamic behaviour of a spur gear rotor system. Rigid disks connected by a spring and 

damper were used to model the gear mesh. The model did not consider tooth separation 

effects. Natural frequencies and corresponding mode shapes, and forced response of the 

system to the geometric eccentricities, mass unbalances, and gear transmission error were 

the main model outcomes. A small number of parametric studies with respect to shaft and 

bearing compliances were also performed. It was concluded tha t lowering bearing stiffness 

values in turn  lowered natural frequencies. When compliant shafts were considered in the 

model, the increase in bearing stiffness above a certain value did not cause a significant 

change in gear mesh natural frequencies.

Choi et al. [12] investigated the rotordynamics of a 28 M W  helical geared system turboset 

tha t included a steam turbine, a single helical gear pair, and a generator. This particular 

system experienced severe coupled torsional, lateral, and axial vibrations. To identify the 

cause of the vibrations and to solve the issue, a six degrees of freedom (DOF) per node 

gear dynamic model was developed. Shafts were modelled as rigid nodes connected with 

springs and a gear mesh was modelled by linear springs acting normally between the two 

engaged gear teeth. The system’s response due to turbine and generator unbalances was 

investigated first. The results showed some coupled vibrations due to both unbalances, but
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not severe vibrations. Next, the effect of the STE excitation on the system’s response was 

modelled. It is this excitation tha t resulted in excessive coupled vibrations of the system. 

To reduce the vibrations, a design modification that included a change of the couplings and 

bearings was implemented. A significant reduction in turbine vibrations, as well as in gear 

dynamic forces, was achieved as a result of the design modification.

An experimental validation of the finite element code used to simulate dynamic tooth 

loading in geared rotor systems is given in Baud and Velex[7]. For this purpose, both spur 

and helical gear reductions with flexible shafts and hydrostatic bearings were considered. 

The gear pair was modelled by two rigid cylinders linked with a series of springs. The shafts 

were modelled by the use of a two node finite element. Lumped param eter translational 

and rotational springs were used to model bearings and couplings. Both a normal contact 

algorithm and a time step integration scheme were used to  obtain the forced response of the 

system. It was found tha t the bearing and shaft flexibilities could not be ignored in either 

static or dynamic models. Also, the gear blank flexibilities contribute significantly to the 

torsional gear mesh stiffness and should not be ignored.

Singh and Vinayak[26] extended the multi-body dynamic model of torsional-translational 

rigid gear bodies to include compliant gear bodies in these models. First, a new mesh stiff­

ness expression for compliant gear bodies was developed. Then, the new mesh stiffness 

formulation was combined with the multi-body dynamics framework in order to obtain a 

complete model of multi-mesh geared systems with compliant gear bodies. As a result, 

a set of non-linear differential equations with time varying coefficients was formed. The 

solution of governing equations was possible through direct time domain integration, but 

was not feasible due to the large number of DOF. Following this, linearization and addi­

tional simplifications were used to obtain linear and time invariant equations of motion. A 

limited number of experimental forced response studies of gear subsystems were compared 

against this new model with satisfactory results. To fully validate the compliant gear body 

model presented here, a full scale experimental study of the multi-mesh geared system is 

still pending.
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1.3.4 Gear Contact in ANSYS

In this section, a number of different ANSYS gear contact models are summarized. The goal 

here is to review the current gear contact algorithms, and to summarize the main findings 

resulting from these models.

Wei[31] developed both 2D and 3D partial tooth ANSYS models of spur gears in mesh. 

Contact stresses were obtained from a 2D model while bending stresses were obtained from 

both 2D and 3D models. The results were compared with the theoretical results calculated 

from AGMA standards. The results agreed well with each other (within 9 %). It was also 

concluded tha t 2D and 3D models produced equally good results. For the transmission 

error estimation, both the 2D and 3D models were attempted. Due to the fact tha t whole 

gear bodies were modelled to obtain the TE, the number of nodes became excessive, and 

as a result, the 3D model became unfeasible.

Wang[29] used both 2D and 3D ANSYS spur gear contact models to perform a number 

of different parametric studies. The numerical models were formed over complete mesh 

cycles, providing detailed information over hand-over regions in spur gears. Hand-over 

region is defined as the region where the number of engaged teeth pair alternates between 

the two integer values. A major portion of this study was concerned with the tooth profile 

modification and its influences on the TE and torsional mesh stiffness. Wang pointed out 

tha t when a numerical analysis involves non-linear factors (contact), one should not rely on 

2D models for accurate results.

In Barone et al. [6 ] partial face gear drives were modelled in a 3D Computer Aided 

Design (CAD) system and then analyzed in ANSYS. To simulate different gear meshing 

positions, a macro was written tha t rotated the model into a desired angular position, 

applied boundary conditions, and solved the model. The effect of the misalignment and 

tooth profile modification on the contact path, load sharing, and the arc of action was 

investigated. Pinion root relief yielded lower contact pressures because edge contact was 

avoided. On the other hand, it resulted in lower load sharing and higher root stresses. In
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contrast, gear misalignment produced higher contact stresses and pinion root stresses, but 

lower TE.

Siriachi [27] used a numerical approach to develop theoretical models to predict the 

effect of gear tooth damage on TE, torsional mesh stiffness, and load sharing ratio. A 

new strategy for determination of the appropriate value of the penalty parameter, as the 

gears rotate through the mesh cycle, was also developed. In addition, an ANSYS macro 

tha t defined the torsional mesh stiffness for both fractured and nonfractured teeth was 

developed. Similar macros were also written for the load sharing ratio and the TE.

Wang and Howard[30] outlined methods for developing an accurate ANSYS contact 

model of high contact ratio spur gears. The method included adaptive meshing and element 

size selection, depending on the solution accuracy criteria. Hand-over regions of high contact 

spur gears were clearly identified in the results for STE, combined torsional mesh stiffness, 

load sharing ratio, and the tooth stress over the mesh cycle. The existence of hand-over 

regions indicated the existence of contact outside the normal path  of contact due to the 

gear material elasticity. The hand-over phenomenon is one of the primary reasons behind 

tooth profile modifications. Four cases of tooth profile modifications were then investigated. 

These four different modifications were classified as short, long, longer, and optimal tooth 

reliefs. As the length of the tooth profile modification was increased, the contact ratio of the 

gears decreased, resulting in greater variations in the TE, mesh stiffness, and root stresses. 

This trend was true for lightly loaded gears. As soon as the load was increased, the engaged 

gear pair contact switched back to high contact ratio, but this time resulting in high contact 

stresses at the relief starting point. Optimal tooth relief length was found to be between 

the short and long profile modification length.

1.4 Thesis and Research Outline

The research presented here has three objectives. First, development of an ANSYS partial 

helical gear mesh model from which the STE excitation and mesh stiffness values for a 

given set of gear parameters could be obtained. The second objective is the creation of an
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analytical finite element model of a double-stage helical gear reduction. The last objective 

encompasses a limited number of parametric studies with the model.

In Chapter 2, a validation of contact model in ANSYS is performed via the use of 

two cylinder models in contact. Both 2D and 3D models are developed. The finite element 

results are then compared against theoretical results. Following this, partial helical gears are 

modelled, meshed, and contact between the gear pair is established. The main results from 

the 3D ANSYS partial gear model include the STE and torsional mesh stiffness. These two 

outputs are then used as the main inputs into a finite element analytical MATLAB (Matrix 

Laboratory) model.

In Chapter 3, the finite element analytical modelling approach is combined with the 

torsional-translational gear dynamic model in order to obtain an overall system model. 

Each of the elements making up the system is modelled in terms of their stiffness and mass 

matrices. The system model contains a finite element model of shaft structures combined 

with a 3D discrete model of helical gear pairs. Flexible bearings are included in the model 

as well, but the housing is assumed to be rigid. The modal summation technique used for 

forced response of the system is explained. In addition to the MATLAB model, an ANSYS 

model of the benchmark gearbox system is built for natural frequency result verification, 

and also to assist in visualizing the mode shapes associated with the natural frequencies.

In Chapter 4, the results for the free and forced system’s response are presented and 

discussed. The influence of a number of different parameters on system’s dynamics is 

also given. More specifically, the effect of the output shaft angle, element length, bearing 

stiffness, and gear pairs relative position on the DTE and bearing force are provided.

Chapter 5 summarizes the main findings of the research. Also, recommendations for 

future work are included.
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Chapter 2

Contact M odel in A N SY S

2.1 Contact Problem  Overview

It is generally accepted tha t the structural analysis of any mechanical assembly could pos­

sibly undergo three types of non-linear behaviour. These include: material non-linearity 

(e.g. plasticity), geometric non-linearity (large strains, large deflections) and boundary non- 

linearity (contact). Contact non-linearity will be examined closely, because the gear teeth 

in mesh are behaving in this fashion. Contact is considered as a “changing status” type of 

non-linearity. Depending on whether the contact is open or closed, and if closed, sticking or 

sliding, the system’s stiffness changes accordingly. In addition, the area over which contact 

occurs is typically not known at the beginning of analysis.

2.2 A N SY S Contact

This section describes an approach employed in ANSYS for dealing with surface-to-surface 

contact problems. The intent here is to introduce the basic principles behind the surface-to- 

surface contact analysis and not to replace a comprehensive edition of an ANSYS tutorial.

Before every structural analysis in ANSYS, the user has a choice of performing the 

analysis using either the “p” or the “h” method. The h-method was introduced in 1970 and 

since then it has been considered a common approach employed in solving finite element 

analysis problems. Linear or quadratic (lower order) displacement assumptions are used 

in combination with a fine element mesh in areas where the displacements are expected to 

be non-linear. In other words, a non-linear solution is a combination of a number of linear

13
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solutions. In this case, the error between the theoretical displacement and the finite element 

solution is controlled by varying the number of elements in the non-linear regions.

The p-method was introduced in the 1990s. Displacements are calculated by manipu­

lating the polynomial level of the element shape functions, which are used to approximate 

the real solution to the user’s desired accuracy. As a consequence, the p-method can auto­

matically improve results for any mesh. When compared to the h-method, the p-method 

is able to produce desirable results without the rigorous mesh controls. Also, the error 

estimates offered are more precise and can be calculated locally and globally (point stress 

rather than strain energy). On the other hand, when using the p-method, the solution 

may not converge, or may converge slowly, depending on the desired accuracy level. These 

results should be carefully reviewed.

The choice of preferred method depends on the desired result. For example, if displace­

ments are needed, then the h-method with the relatively coarse mesh is sufficient. To obtain 

local stresses, the p-method could produce more accurate and faster results. In this thesis, 

the h-method is employed due to the following reasons:

•  Proper contact detection between the two surfaces requires fine mesh in contact re­

gions.

• P-method elements do not support the volume sweeping operation needed for the 

helical gear creation.

•  The displacement results (STE) are required while the stress results are not the ob­

jective of this study.

ANSYS classifies contact problems into two types: rigid-to-flexible and flexible-to-flexible. 

In the first case, one contacting surface is treated as rigid, while the other one is flexible. 

Metal forming problems fall into this category. The flexible-to-flexible contact approach is 

applied when both contacting surfaces are considered deformable. ANSYS further divides 

contact applications into three models:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. CONTACT MODEL IN  ANSYS 15

•  Node-to-node: Used to model point to point contact applications. In this model setup, 

the location of contact has to be known beforehand and a small amount of relative sliding 

is allowed.

• Node-to-surface: Used to model point to surface contact applications. The exact area 

of contact does not have to be known beforehand. It allows for small or large amount of 

relative sliding.

• Surface-to-surface: Used to model surface to surface contact applications. The contact 

pair is formed by a “contact surface” and a “target surface”.

For a contact pair to be established one surface has to be designated as a contact surface 

and the other one has to be designated a target surface. ANSYS defines the contact surface 

as a set of discrete (GAUSS) points, while the target surface is defined as a continuous 

surface (Figure 2.1). As a consequence, contact elements are not allowed to penetrate the 

target surface while the target surface is allowed to penetrate the contact surface between 

the GAUSS points.

GAUSS
points

Deformable body

Rigid/deformable body

Contact
surface
Target
surface

F ig u re  2.1: (Figure 9.11 in ANSYS[5]) Contact detection location at GAUSS 
points. Target surface is allowed to penetrate contact surface between the 
GAUSS points. For flexible-to-rigid type of contact, the flexible surface is al­
ways chosen as the contact surface. If flexible-to-flexible contact is required, 
ANSYS provides a set of guidelines that should be followed when assigning 
contact and target surfaces.

If rigid-to-flexible contact is acquired, the flexible surface is always chosen as the contact 

surface. In the case of flexible-to-flexible contact analysis, the following guidelines should 

be followed when creating a  contact surface pair:
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• If a convex surface is expected to come into contact with a flat or concave surface, the 

flat/concave surface should be designated as the target surface.

•  If one surface has a fine surface mesh, and the other has a coarse mesh, the fine mesh 

surface should be designated as the contact surface.

• If one surface is stiffer than the other, the softer surface should be the contact surface.

•  If higher-order elements lie beneath one of the external surfaces, and lower-order 

elements lie underneath the other surface, the surface with the underlying higher-order 

elements should be the contact surface.

Once the contact and target surfaces have been chosen, ANSYS offers five options of 

enforcing the compatibility between the contacting surfaces:

• Penalty Method: This approach positions a spring between the two contacting surfaces. 

The spring stiffness is referred to as the “contact stiffness” . When two surfaces are apart 

the spring is inactive, but when two surfaces begin to interpenetrate the spring becomes 

active. The spring then deflects until the equilibrium is reached.

•  Pure Lagrange Multiplier Method: When contact is closed, zero penetration is en­

forced. When sticking occurs, zero slip condition is enforced. No contact stiffness value is 

required for this approach.

• Augmented Lagrangian Method: The default option when surface-to-surface contact 

is performed. It is an iterative series of penalty methods. In the first series of iteration, 

penalty stiffness is used to enforce contact compatibility. Once the equilibrium is reached, 

the penetration tolerance is checked, and then contact pressure is augmented to continue 

the iterations.

• Pure Lagrange Multiplier Method and Penalty Method: This method is a combination 

of the Pure Lagrange Multiplier method and the Penalty method. A zero penetration is 

enforced, while a small amount of slip is allowed when sticking occurs. The use of chattering 

control parameters is required.
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• Internal Multipoint Constraint (MPC): The program builds MPC equations internally 

based on contact kinematics.

Initial contact status is a very im portant parameter tha t needs to be properly defined 

before the model is submitted for solving. The system stiffness matrix will become singular 

if a rigid body mode (open contact) is detected. The three most common ways to adjust 

the contact initial conditions in ANSYS are:

• Initial Contact Closure (ICONT): A band is created around the target surface. Any 

contact points tha t are contained within the band are then shifted onto the target surface. 

Only small adjustments are recommended.

• Initial allowable penetration range (PMAX and PMIN): In this case, the target surface 

is physically moved into the contact surface. ANSYS uses 20 iterations to bring the target 

surface within the range specified by the PMIN and PMAX. If not successful, the analysis 

proceeds with the original contact geometry.

• Use of real constant CNOF to specify contact surface offset: Moves the entire contact 

surface towards the target surface. ANSYS automatically provides a CNOF value based on 

the user’s choice of either initial gap closure or the initial penetration minimization.

All three techniques described above could be employed independently, or in combination 

with each other depending on the nature of the problem. Friction options in ANSYS include: 

static coefficient of friction, cohesion value, the ratio of static to dynamic friction, and a 

decay coefficient. The cohesion value allows the user to setup an initial friction coefficient 

value that results in sliding resistance, even if there is no normal load. The decay coefficient 

allows the user to control the transition between the static and dynamic friction based on 

the relative velocities of the two contacting surfaces. Once the contact pairs are defined 

with appropriate options, the contact solution phase can be executed. Based on previous 

experiences, the load application should begin with a fraction of the total load and then 

increase gradually. Also the CNCHECK command should be issued to check the initial 

contact status before proceeding with the solution.
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To solve non-linear problems, ANSYS uses the Newton-Raphson method. Instead of 

applying the load in one step, the load is broken down and applied in a series of load 

increments. In addition, each increment is divided into smaller load steps. This is done in 

order to improve the convergence characteristics of the algorithm. If convergence difficulties 

are experienced, the NLHIST command should be issued to monitor contact information 

during the solution.

2.3 A N SY S Contact M odel Validation

There are a number of ANSYS university licenses available for use. They all have a dif­

ferent number of maximum nodes available to them. A university intermediate license was 

available for use in this thesis work. The node limit for this license is 32000 nodes. When 

solving contact problems for displacement, it is crucial to have a fine mesh at contact sur­

faces for proper contact detection. If stress results are the objective of the contact model, 

then a fine mesh below the contacting surfaces has to be provided, in addition to the fine 

mesh of the contacting surfaces. If the contact model is built as a 3D model, and stress 

effects are sought after, meaning a fine mesh below the contacting surfaces is required, the 

number of nodes quickly reaches its limit and the model becomes unusable. To avoid the 

above mentioned issue, many researchers choose a 2D modelling approach to represent 3D 

models, or partial 3D models are utilized.

To verify a 3D ANSYS contact model for use in gear analysis, an analytical solution for 

two semi-cylinders in contact is compared with the results from ANSYS. The main objective 

is the determination of the mesh size needed at contact areas to obtain valid displacement 

results from ANSYS. In this case, the main objective is not stress results, as tha t would 

require a finer mesh below the surface of the two cylinders tha t would exceed the number 

of allowed nodes. The semi-cylinders with the properties given in Table 2.1 were analyzed. 

Friction is not included in any of the ANSYS models (cylinder and gear models) developed 

in this thesis.
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Table 2.1: Steel cylinder properties. Cylinders with the properties given here 
are used to validate both 2D and 3D ANSYS contact models.

Parameter Notation(Units) Cylinder 1 Cylinder 2

diameter d(m m ) 50 50

length lc(mm) 15 15

modulus of elasticity E(G Pa) 207 207

Poisson’s ratio V 0.292 0.292

The theoretical approach is described first. The solution to the contact problem was 

first given by Hertz in 1881 [9]. When two cylinders are brought together in point or line 

contact, and then loaded, local deformation occurs. As a result, the point or line of contact 

turns into the rectangular area of contact of width 2b and length lc (Figure 2.2). All normal 

stresses are compressive in nature. A maximum shear stress equal to 0.30 Apmax occurs at 

a depth of 0.7866. The half-width b is given by the following formula

b = \ nlc i r  +  k.
(2.3.1)

where

b =  contact area half-width,

F  = compressive force, 

v\ and i*2 — Poisson’s ratio of cylinders 1 and 2, respectively,

E \ and E 2 — modulus of elasticity of cylinders 1 and 2, respectively,

7r =  constant, 

lc — cylinder length, and 

d\ and c?2 =  diameter of cylinders 1 and 2 , respectively.

The maximum pressure (pmax) is obtained as

2 F
Pmax = M l '  (2'3'2)
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F ig u re  2.2: Parallel axis cylinder contact. Under a compressive load, the 
line of contact turns into the rectangular area of contact of width 26 and length 
lc. Maximum shear stress occurs at a depth of 0.7866.

If both cylinders have the same material properties, then the approach displacement (5) is 

calculated as

Once the above parameters are calculated, the stresses along y  axis are obtained as

1  +  2 i?
@x  —  P m a x

V1+ 6*
- 2

P m a x  jOn — , _ j and
y  ~  / 2

V i  + S

=  — 2 vpmax l + V-  
+  62

(2.3.4)

(2.3.5)

(2.3.6)

where

<j x , ay, and az =  stress in x, y, and z directions.

Next, a 2D ANSYS contact cylinder model was built with a fine mesh capable of cap­

turing proper stress distribution below contacting surfaces. 2D PLANE82 plane strain
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elements were used to mesh the geometry. The applied load was incremented from 1000 N  

to 10000 N  in increments of 1000 N . Figure 2.3 shows the von Mises stress distribution 

under 5000 N  of compressive load applied to the cylinders. Stress units are M P a  and 

displacement units are m m . Figure 2.4 shows displacement results for both a 2D ANSYS

F ig u re  2.3: 2D ANSYS Von Mises stress plot for two cylinders. Compressive 
load of 5000 N  applied to two contacting steel cylinders results in a maximum 
stress of 546 MPa. Elliptical stress distribution below contacting surfaces is 
also shown.

model, and a theoretical model. The ANSYS results agree well with the theoretical results. 

Surface pressure results are plotted in Figure 2.5. The theoretical stress in the x  direction 

along the y  axis is compared to the 2D model stress in Figure 2.6. Results for the y  and 2  

directions have the same degree of correlation and are not shown here for clarity purposes. 

In conclusion, a 2D model shows extremely good correlation with theoretical results in all 

three aspects (displacement, surface pressure, and stress distribution) considered.

Next, the 3D ANSYS model was built. The volume sweep option was used to mesh 

the 3D model. The side area was meshed first with 1.5 m m  elements. After this, a two 

level mesh refinement was applied near contact areas. The contact wizard was then used
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F ig u re  2.4: 2D ANSYS and theoretical displacements.
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F ig u re  2.5: 2D ANSYS and theoretical surface contact pressures.
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F ig u re  2.6: 2D ANSYS and theoretical stress distribution along y axis.

to establish the contact between the two cylinders. To initiate the contact, and to enable 

convergence, an automatic initial gap adjustment option was used. Figure 2.7 shows a 

meshed finite element model. Again, the applied load was incremented from 1000 N  to 

10000 N  in increments of 1000 N . Figure 2.8 shows the displacement results obtained 

from Hertzian contact theory and both ANSYS models. Both ANSYS results agree within 

2 % of the theoretical results. Next plot, Figure 2.9 shows the comparison of maximum 

contact pressure results obtained from the same models. Again, there is a good correlation 

between the two results (within 3 %). Theoretical stress in the x  direction along the y 

axis is compared with both 2D and 3D model stresses in Figure 2.10. The 3D model 

produces non-correlated results due to relatively coarse mesh size. Results for the y  and 2  

directions for the 3D model show the same degree of non-correlation as the one for the x 

direction, and are not shown here for clarity purposes. As mentioned earlier, the highest 

shear stress between the two parallel contacting cylinders occurs at a distance of 0.7866 

below the contacting surfaces. Depending on the load applied to the cylinders, the half­

width b changes and consequently, the location of the maximum shear stress zone changes. 

For example, for a 1000 N  applied load, the maximum shear stress occurs at 0.076 m m  

below the surface, while for 5000 N , the maximum shear load occurs at 0.170 m m  below
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ELEMENTS

F ig u re  2.7: 3D ANSYS steel cylinder contact model. Half cylinders were 
modelled due to symmetry. The volume sweep option with SOLID95 brick 
finite elements was used to mesh the 3D model. The model contains 29000 
nodes.
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F ig u re  2.8: 2D ANSYS, 3D ANSYS, and theoretical displacements. Both 
ANSYS model results agree well with the theoretical Hertzian displacement 
results.
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F ig u re  2.9: 2D ANSYS, 3D ANSYS, and theoretical surface contact pres­
sures.
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F ig u re  2.10: 2D ANSYS, 3D ANSYS, and theoretical stress distribution 
along y axis. 2D ANSYS model results agree well with the theoretical Hertzian 
stress results. 3D ANSYS model fails to accurately predict stress distribution 
due to a coarse mesh.
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the surface. The development of a 3D model with fine mesh tha t is capable of capturing 

proper stress distribution is not needed for the purpose of this research.

As shown above, when performing any type of a computer modelling, one has to under­

stand the theory behind the phenomenon being modelled. Otherwise, the results obtained 

could be misleading and potentially dangerous if blindly relied upon. Even though the 3D 

model showed good correlation with the more refined 2D model in displacement and con­

tact surface pressure estimations, it failed in showing accurate stress distribution below the 

contacting surfaces. When analyzing parts tha t come into contact, the area just below the 

surface is the most critical area as far as the parts failure is concerned. If contact pressure 

and displacements of contacting parts are of interest, the 3D model developed here is a valid 

one and can be used to accurately predict both.

2.4 Helical Gear Pair Contact

In Section 2.3, a 3D ANSYS contact model of two cylinders proved its validity, if used 

for displacement purposes. The fine mesh at the contacting surfaces is sufficient only for 

displacement studies. In this section, a partial 3D helical gear mesh model is developed with 

the TE and mesh stiffness being the main objectives of the model. In addition, a limited 

number of parametric studies on a given gear pair is performed.

The gear pair with the properties given in Table 2.2 was chosen as the base model for 

the investigation. It is common for helical gear properties to be given in terms of normal 

parameters rather than transverse ones. Normal plane gear parameters are usually defined 

for helical gear manufacturing purposes. The reason they are given here in terms of their 

transverse properties is because the transverse plane was used as the base plane for the 

involute gear profile creation in a 3D ANSYS gear model. The true involute geometry of a 

helical gear is in the plane of rotation (transverse plane). A helix angle is used to relate the 

normal plane parameters to the transverse plane parameters. Once a single involute gear 

tooth profile was created in the transverse plane, it was then copied a desired number of 

times to create a partial gear tooth profile ready for extrusion along the helical curve.
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Table 2.2: Helical gear properties. The helical gear pair with the properties 
given in this table was chosen as the base model for modelling purposes. LH 
and RH abbreviations in this table stand for Left and Right Handed helix angle, 
respectively.

Parameter Notation(Units) Gear i Gear j

number of teeth N 30 60

transverse module m t(mm) 2 2

transverse pressure angle <f>t (degrees) 2 0 2 0

helix angle /3 (degrees) 15 LH 15 RH

face width w (m m ) 15 15

hub radius rh(mm) 12.5 12.5

tip relief x(m m ) 0.5 0.5

modulus of elasticity E(G Pa) 207 207

Poisson’s ratio V 0.292 0.292

To create the tooth profile tha t is conjugate with the counterpart basic rack, a set of 

mathematical relationships is developed by Wang[29] and is presented here. The following 

terms have to be defined before the equations are presented:

• m t is the transverse module,

• IV is the number of teeth,

• Addendum, ad = emt (e = 1 for standard tooth helical gears),

•  Dedendum, de =  r)mt (rj = 1.25 for standard tooth helical gears),

•  Tip radius, rt =  gmt (g =  0.25 for standard tooth helical gears),

•  cfit is the transverse pressure angle,

• o is the cutter offset, and
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•  Q — is the addendum modification coefficient.

Figure 2.11 shows a single gear tooth profile with the basic parameters given above.

Tip radius

Addendum
Pitch circle

Dedendum Base circle

Root radius

F ig u re  2.11: Single gear tooth profile nomenclature. The pitch circle is a 
theoretical circle upon which all the calculations are based. The Addendum 
is the radial distance between the pitch circle and the addendum circle. The 
Dedendum is the radial distance between the pitch circle and the dedendum 
circle. The involute tooth profile is derived from the base circle.

The gear tooth profile is defined by the involute portion and by the fillet portion. The 

x  and y coordinates of the involute tooth profile are given by the following two equations

x{0) = N m t
sin(0 ) -  f (d +  cos(^) +  ^  s in (^ )J  cos(6» +  <t>t) (2.4.1)

and

y(0) =
N m t

cos(6>) +  ( (d + cos ((j)t ) +  ^  sin ( fa )) sin ( 0  +  4>t) (2.4.2)

The parameter 6 of the involute curve is limited by the following range of minimum and 

maximum values

Qmin — [U +  iy +  Q) COt(^i)] , (2.4.3)

and

N  cos

The parameter U is defined as

U = -

V (2 +  JV +  2 Q P -  ( N cos( * ) ) 2  -  ( l  +  ^ )  ta n (* )  -  (2.4.4)

7T
(2.4.5)
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and parameter V  is given as

V  = g - e .  (2.4.6)

The fillet portion of the tooth profile is defined next. The x  and y  coordinates of the 

profile are calculated as

x(6) =  m t (P  cos (9) +  H  sin(0)), (2-4.7)

and

y(6) — m t(—Psm (9) +  H  eos(0)). (2.4.8)

Again, the limiting values of 9 are obtained as

8 m in  =  J Y  [ U  +  (V +  Q)cot(</>t)] , (2.4.9)

and
2U

Omax =  J J T .  (2.4.10)

Before P  and H  parameters used in the above equations are defined, an additional parameter 

L  has to be introduced as

i=\/1 +4 (ra tf' (2-4'n )

Now,

p = i  + ( c/ ' ^ ) ’ (2A12)

h - t {w ŵ ) + v + j  + q- < 2 -4 - 1 3 >

Once the parametric equations for the tooth profile were defined, they were then pro­

grammed into ANSYS using APDL (ANSYS Parametric Design Language). The user then 

only needs to supply the basic gear parameters defined earlier, and the number of desired 

points along each portion of the tooth profile. The points were then connected with a spline 

to form a tooth profile. The profiles were mirrored and copied a desired number of times to 

get the 2D gear profile ready for the extrusion. ANSYS macro was used again to obtain the 

helix needed for the extrusion. The APDL code tha t produced the involute profile points 

and the helical profile for tha t particular gear is attached in Appendix A. The APDL code

and
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attached in Appendix A is the combination of the involute code given by Wang[29], and the 

code for the helical gear curve creation.

A three tooth model of each gear was chosen because of the fact tha t the contact ratio of 

this helical gear pair was calculated to be approximately 2.2. This means tha t during mesh, 

these particular gears alternate between having two and three teeth engaged. Therefore, a 

three tooth partial model would be sufficient for one complete mesh cycle description. After 

finishing the solid model, the meshing procedure followed a similar procedure described in 

Section 2.3, where the 3D cylinder model was meshed. The cylinders modelled in Section 2.3 

had dimensions similar to the gears analyzed here, and their radii of curvature resembled 

the gear tooth profiles. First, the gear face area was meshed with 1.75 m m  elements. Then, 

a two level mesh refinement was applied to the contacting tooth profiles of both gears. Next, 

the meshed area was swept with SOLID95 elements. Due to the node number limitation, 

there were only five divisions along the sweep direction. This was found to be acceptable 

as long as the helix angle of the gears did not exceed 15°. Figure 2.12 shows a screen shot 

of the meshed model. The screen shot on the right shows the fine mesh applied to the gear 

teeth in mesh. The tooth side tha t made contact with another tooth was given additional 

mesh refinement when compared to  the non-contacting tooth side. This was done in order 

to reduce the number of nodes in the model.

The contact wizard was used to define the contact surfaces and to initiate contact 

between the two surfaces. The mating teeth on both gears were coupled to  form contact 

pairs. Depending on the angular position of the gears, a different contact pair was chosen 

to be forced to initiate contact, while the other two pairs were not given any initial contact 

adjustment. As the applied load was increased, the engaged gear pair deformed, thus forcing 

the other gear pairs to come into contact.

To obtain the STE, the hub of the output gear (gear j )  was constrained in all six DOF, 

while the hub of the input gear was allowed to rotate around the gear axis only. A pilot 

node contact option was used to apply torque to the input hub and to constrain the output 

hub. To obtain the STE for a complete mesh cycle, the gears had to  be rotated through
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ANSYS 8.1 
MAY 28 2006

F ig u re  2.12: 3D partial helical gear pair mesh. A macro was developed and 
used to generate an involute profile for gear teeth. SOLID95 brick elements 
were used to mesh the model. A pilot node contact option was used to apply 
the torque to the pinion and to restrain the gear. The screen shot on the right 
shows the fine mesh applied to the gear teeth in mesh.

a 12° angle (increments of 1°) from their initial position. At each angular position, the 

gears were loaded and the solution was initiated. The rotation of the input pilot node, 

due to the gear tooth deformation and local contact deformation, was then recorded, and 

Equation 1.3.2 was used to obtain the TE. It is negative due to the fact tha t the output 

gear always lags behind the input gear. To obtain the torsional mesh stiffness, the applied 

load at each angular position was divided by the TE for tha t angular position.

For the first simulation, the applied load was incremented from 100 N -m  to 500 N -m  

in increments of 100 N -m . The TE plot for this simulation is shown in Figure 2.13. 0° 

from the reference in the above plot represents the position of the gears when only two 

pairs of mating gear teeth are in contact. As the gears are rotated away from the reference 

position, the line of contact moves up along the pinion tooth profile, and as result, the TE 

increases. At around 4° of pinion rotation from the reference, the contact of a third gear 

tooth pair becomes active. By this time, the tooth pair on the opposite side of the mesh is 

nearly leaving the mesh. Between 4° and 8 °, there are three gear tooth pairs in contact with 

the two outside pairs, making significantly shorter lines of contact when compared to the 

case of two fully engaged teeth (around reference and again around 11°). As a result, the
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TE m agnitude
-10

T =  100 N -m  
T =  200 N -m  
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F ig u re  2.13: Transmission error as a function of pinion position. The ap­
plied load was incremented from 100 N-m to 500 N-m in increments of 100 N-m.
The TE magnitude increases with the increase in applied load.

increase in the TE is eminent. The TE plot for only one mesh cycle is shown. The torsional 

mesh stiffness plot corresponding to the above TE plot is shown in Figure 2.14. Again, the 

mesh stiffness is inversely proportional to the TE. As the load increases, the torsional mesh 

stiffness increases for a given pinion rotation angle. This is typical behaviour for systems 

where a non-linear contact analysis is performed.

Next, the effect of the pressure angle on TE is investigated. For this investigation, 

an input load of 200 N -m  was chosen and applied with three different pressure angles 

(17.5°, 20°, and 22.5°). The other gear properties given in Table 2.2 remained the same. 

Figure 2.15 shows the TE results for this run. The decrease in pressure angle has a positive 

effect on the TE magnitude. This is due to the fact tha t a decrease in pressure angle 

results in a higher contact ratio. The TE mean and peak values obtained from ANSYS are 

both reduced. In addition, a high contact gear pair is less sensitive to tooth profile errors 

when compared to a low contact ratio gear pair. On the other hand, when the pressure 

angle is decreased, the tooth geometry is changed in such a way tha t there is a decrease 

in tooth thickness, strength, and stiffness. This increases bending and compressive stresses 

in the gear teeth. Also, an increase in contact ratio translates into higher sliding velocity,
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F ig u re  2.14: Torsional mesh stiffness as a function of pinion position. The 
torsional mesh stiffness increases with applied load. This behaviour is typical 
in contact stiffness analysis.
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- 4 0

- 5 0
10
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F ig u re  2.15: Transmission error as a function of pinion position with con­
stant torque. An input load of 200 N-m  was chosen, and applied with three 
different pressure angles. The increase in the pressure angle has a negative ef­
fect on the TE magnitude. A 20° pressure angle provides a good compromise 
between the requirements for low stresses and low TE.
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resulting in higher power losses. A 14.5° pressure angle used to be the standard in the 

industry. This pressure angle provided quiet running gears, but required undercutting to 

prevent interference which further reduced gear tooth strength. The demand for smaller 

pinions with fewer, but stronger, teeth resulted in an increase in pressure angle to 2CP or 25°. 

A 2 0 ° pressure angle provides a good compromise between the requirements for low stresses 

and low TE. The plot for the torsional mesh stiffness for the above TE plot is shown 

in Figure 2.16. Again, with the decrease in pressure angle, the tooth bending stiffness 

decreases, but because of the higher contact ratio, the overall torsional mesh stiffness is 

increased.
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Figure 2.16: Torsional mesh stiffness as a function of pinion position with 
constant torque. Pressure angle of 17.5° provides the highest torsional mesh 
stiffness value for the three cases considered.

To justify the use of time invariant mesh stiffness for helical gear dynamic analysis, a 

comparison between the spur gear pair mesh stiffness and helical gear pair mesh stiffness 

is presented. For this study, the helical gear pair with the properties given in Table 2.2 

was chosen. The spur gear pair properties were also taken from the same table. The only 

difference is tha t the spur gear tooth profile was extruded along the gear longitudinal axis, 

and not along the helix curve. To obtain the transmission error, the procedure used for 

helical gear transmission error was also used for the spur gear pair. The mesh stiffness
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results for the two gear pairs are shown in Figure 2.17. The main reason for the mesh 

stiffness oscillations in spur gear pairs is the abrupt change between one and two tooth 

pairs in contact. Helical gears, because of a higher contact ratio, result in a smoother mesh 

stiffness curve. The difference between the two results is even more obvious when plotted in 

frequency domain. Both TE and the mesh stiffness are periodic functions with the period 

of 12° of pinion rotation. Figure 2.18 shows the same two mesh stiffness plots shown in

D ouble tooth  pair contact

500

400

A  300

Transition region200

Single tooth  pair contact
h—  Helical gear pair 

-e— Spur gear pair
100

Pinion rotation from reference (d eg ree s )

F ig u re  2.17: Spur and helical gear mesh stiffness comparison. A torque of 
200 N-m  applied to each gear pair. A transverse pressure angle of 20° was 
chosen for both gear pairs. A double tooth spur gear contact between 1° and 
6 ° of pinion rotation results in a relatively steady mesh stiffness plot. As the 
pinion rotation continues throughout the mesh cycle, the transition between a 
double and single tooth pair occurs, resulting in a significant decrease in mesh 
stiffness. The helical gear pair produces a much smoother mesh stiffness plot.

Figure 2.17 but in a frequency (Fourier series terms) domain and without the steady state 

term. Figure 2.19 shows the TE frequency plots obtained from the same simulation used to 

produce Figure 2.18. Based on the above results, one can see why the time invariant helical 

gear mesh stiffness assumption is used in gear dynamic models.
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F ig u re  2.18: Spur and helical gear pair mesh stiffness harmonics. Spur gear 
pair mesh stiffness harmonics amplitudes are significantly larger when compared 
to the helical gear harmonics for all harmonic numbers shown.
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F ig u re  2.19: Spur and helical gear pair TE harmonics. Spur gear pair TE 
harmonics amplitudes are significantly larger when compared to the helical gear 
harmonics for all harmonic numbers shown.
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Chapter 3

A nalytical Finite Element M odel

To develop an analytical finite element model for any gear reduction system, the following 

six general steps should be followed:

• Represent gear mesh with a linear spring in series with the TE  excitation.

• Divide shafts into beam elements connected to each other through points (nodes).

•  Describe the behaviour of each element (i.e. derive its stiffness, damping, and mass 

matrices, and load vector in local coordinate system).

• Obtain the local to global coordinate system transformation m atrix for each element 

and describe the behaviour of the system by combining the behaviour of each of the elements 

(assemble their stiffness, damping and mass matrices, and load vectors).

• Apply appropriate boundary conditions.

• Reduce the system (if safe to do so) and solve.

3.1 Gearbox M odel Layout

In this section, a brief description of the overall model is given, with the intent to provide 

an outline of what follows in the remainder of Chapter 3. Figure 3.1 describes the system’s 

physical layout in a global coordinate system. It represents the left side view of a double­

stage reduction gearbox. The system is positioned in the Y —Z  global coordinate plane with 

the global origin placed at the left end of the input shaft.

37
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F ig u re  3.1: Gearbox layout. This figure represents the gearbox orientation 
with all the components. The gearbox model contains three shafts, four helical 
gears, and six bearings. The housing is assumed to be rigid.

The finite element schematic of the same system is shown in Figure 3.2. Each shaft is 

divided into six beam elements (shown as springs). There are 18 shaft elements in total. 

Spring elements are each represented by their element stiffness matrix. Each spring is 

coupled with the adjacent spring via nodes. The mass of each element is distributed evenly 

between the two nodes. A helical gear mesh model is used to couple the two shafts between 

the corresponding nodes. Gear mesh coupling is represented by a linear spring connected 

between the two gear base circles acting along the plane of action. Each gear mass is 

attached to its corresponding node on the shaft. In addition to the linear spring coupling, 

the gear TE is also shown in series with the spring. Stiffness matrices are used to represent 

the roller bearings. They are added to the corresponding beam element nodes. Bearings 

are modelled as being attached to the rigid housing.

A detailed mathematical description of each element group (shaft elements, gear meshes, 

and bearings) is provided in the remainder of Chapter 3. Each section presents the formation 

of the stiffness and mass matrices for each element. Damping matrices are not derived 

because the damping values for each element are not known until the final stages of the
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Gear pair m n  TE 

Gear pair m n  element

Gear pair i j  TE 

Gear pair i j  element

Shaft beam element
Bearing element

Figure 3.2: Finite element representation of the gearbox. Each shaft is di­
vided into six beam elements whose end nodes possess six DOF. Each gear mesh 
is represented by a linear spring connected between the two gear base circles. 
In series with the spring, a displacement excitation in form of the transmission 
error is included in the model as well.

design. Instead, proportional (modal) damping is used here. Before the mass and stiffness 

matrices are assembled, the definition of the 1 2 x 1 displacement vector for each finite

element is obtained and is given by the following vector equation

Xab = Da Za @xa @ya @za b Vb z b @xb ®yb ®zb 5 (3.1.1)
T

where

xa, ya, and za — displacement of node a in x, y, and z directions, respectively,

Xb, yb, and =  displacement of node b in x, y, and z directions, respectively,

9 x a ,  Qya ,  and 6za = angular displacement of node a about x, y, and z axis, respectively,

6xb, 6yb, and 0 Z& =  angular displacement of node b about x, y, and z axis, respectively, and 

superscript T  — matrix transpose.

3.2 Finite Element Shaft M odel

Shafts are modelled as straight, uniform, circular cross-section beam elements. They are able 

to resist axial, bending moment, and torsional loads. As a consequence of this assumption,
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the resulting beam element possesses 1 2  DOF (six rotational and six translational DOF). 

Figure 3.3 represents the beam element, its orientation in space, and applied forces.

F8
F u

z

Figure 3.3: (Figure 5.4 in Przemieniecki[25]) 3D beam element. The beam 
element is assumed to be a straight bar of a uniform cross-section. The bar is 
capable of resisting axial (F3 and Fg), bending (F4 , F5 , F10 and Fu), torsional 
(F6 and F1 2) and shearing (Fi, F 2, F7 and Fg) loads.

In accordance with the above element coordinate system and the engineering beam 

displacement theory, the following 1 2 x 1 2  ^ ks )  stiffness matrix (only upper-left 6 x6  

stiffness sub-matrix presented for clarity purposes) is derived (for a complete derivation 

consult Przemieniecki[25])

12 E ly
i3( 1-NM 

0

0

0

6 E ly
p(i+«L)

0

0

12EIT. 
*3(1+<M

0

6 EIx

0

0

0

0

E A
I
0

0

0

0

6 ED
WT+W)

0

(4+ 0w)jS ix  
ID+fiy)

0

0

6 E ly
P( U k )  

0

0

0

(4+4>x)EIv
l ( l + 4 > x )

0

0

0

0

0

G J
I

(3.2.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. ANALYTICAL FINITE ELEMENT MODEL 41

where

A  =  cross-sectional area of a beam element,

G = modulus of rigidity,

I x and I y =  moment of inertia about x  and y axis, respectively,

J  =  polar moment of inertia,

I = length of a shaft element, and 

(j>x and (j)y =  shear deformation parameter in x  and y  directions, respectively.

The complete 12x12 ^ ks j  stiffness matrix is included in Appendix B. Parameters <f>x 

and <f>y are defined as

(j)x =  24(1 +  ^ ) - p - ( ^ f ) 2, and (3.2.2)
A sx t

4>y = 2A(l + i y ) ^ ( 7f ) 2, (3.2.3)

where

A sx and A sy =  net shear effective area in x  and y directions, respectively, and 

rx and ry =  radius of gyration about x  and y axis, respectively.

If the ratios of the radius of gyration to element length are small when compared to unity, 

shear deformation parameters can be neglected (slender beams). If this is not the case, 

then the above deformation parameters should be included. For this purpose, the shear 

deflection constant is defined as the ratio of the actual beam cross-sectional area to the 

effective area resisting shear. Shear deflection constants for a number of common sections 

are: rectangle (6/5), solid circle (10/9) and hollowed (thin walled) circle (2). When circular

cross-section beam elements are used, the element properties are identical in both x  and

y  and direction. The presence of temperature gradients across the beam cross-section and 

along the length of the beam is neglected in the stiffness matrix formulation.

The inertial properties of a structural beam element could be constructed by either 

discrete or lumped mass element representations. Discrete (equivalent) mass matrices are 

the preferred route tha t one should take if a system with a relatively small number of DOF 

is analyzed. If tha t is not the case, the lumped mass approach is recommended. The lumped
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(3.2.4)

mass approach does not conserve momentum and kinetic energy for the given system, but 

as the number of elements increases, it converges to a correct solution. In the case of the 

lumped mass approach, the element mass matrix is not dynamically coupled and only the 

diagonal terms are present. Due to this, computation of the inverse mass m atrix is a trivial 

task and the result is still a diagonal matrix. The 12x12 mass m atrix ^ m s ^ for the 

circular cross-section beam element, using the lumped mass approach, is given as

m s  ]  =  ( ^ r )  d i a g  [  1 1 1 H  +  ^  5 r 6 +  h l 2  \ r b  ■ ■ ■

5
1 1 1 l r 2 .  J_/2 1 „ 2 ,  J_/2 1„2 1

• • • 1 1 1 4 b +  12 4 b +  12 2 b J

where

diag =  a diagonal matrix,

p = beam element mass density, and 

ri =  radius of the shaft element.

3.3 Gear M esh M odel

This section as well as Section 3.4 of the thesis were developed in Kahraman et al. [15]. Both 

sections are presented because of their importance to the research. Prior to assembling the 

gear mesh stiffness matrix a few assumptions are in order:

•  Sliding of the gear teeth and associated friction forces are neglected for a given gear

pair.

•  Tooth separation is not considered, and accordingly, the modelling of the gear backlash 

is not incorporated.

• Gyroscopic effects on gears are also not modelled.

The gear pair mesh model is represented with rigid gear bodies and compliant gear 

teeth. Tooth mesh stiffness is modelled as a linear spring of stiffness kij. This spring is 

positioned on the plane of action between the two gears and acts in the direction of the 

tooth normal. A 3D helical gear pair model is shown in Figure 3.4. Each gear possesses
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Gear j

XI

Gear i

F ig u re  3.4: (Figure 2 in Kahraman et al.[15]) 3D helical gear pair model. a.ij 
is the relative gear position angle and V’ij is the angle between the positive y 
axis and the plane of action. The helix angle is a function of the hand of 
gears and is positive if gear i has left hand teeth and negative otherwise.

six DOF and as a result a coupling between the two shafts holding the gears has 12 DOF. 

Before the stiffness matrix is finally assembled, two gear orientation parameters must be 

defined for proper overall system assembly. The angle V’i? is defined as the angle between 

the positive y  axis and the plane of action and is given by the following formulae

4>ij — aij if Ti is counterclockwise (CCW)
5

— (<f>ij +  otij) if Ti is clockwise (CW)
V

where

(3.3.1)

4>ij =  transverse operating pressure angle of gear pair ij ,

=  relative angular position of gear pair ij , and

Ti — torque applied to gear i.

The helix angle (3i3 is a function of the hand of gears and is positive if i gear has left hand

teeth and negative otherwise. In the case of multiple gear meshes, the more general formula

for ip(i)(i+i) is given as

=  <t>{i){i+1) -  <*(i)(i+i) if Ti is CCW 3  ^

( - 1 )(^2~) 4>(i){i+i) -  a (i)(i+i) if Ti is CW
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Once the above two terms are defined, then the equations of motion for gear pair i j  are

m lx i +  h j P i j  (t ) cos(/3,j) = 0, (3.3.3)

mijji + k i j p i j  (t ) cos(ftij) cos(V>jj) =  0 , (3.3.4)

rriiZi  -  k ^ p i j  (t) sm(f3ij) = 0 , (3.3.5)

L&xi + r b i h j P i j  (t) sin( f i i j )  =  0 , (3.3.6)

IiOyi + r b i h j P i j  (t) sm(Pij) cos( t p i j )  = 0 , (3.3.7)

Ji&zi “F f b i k i j P i j  ( t )  C O S =  Ti, (3.3.8)

n i j X j  -  k i j P i j  (t) cos( f3i j )  s m ( i p i j )  — 0, (3.3.9)

n i j i j j  -  k i j p i j  (t ) cos( / % )  cos ( V > y ) =  0 , (3.3.10)

r r i jZ j  +  k ^ p i j  (t) s m ( P i j )  = 0 , (3.3.11)

I j O x j  +  r b j k i j P i j  (t) sin { f a )  s m ( i p i j )  = 0 , (3.3.12)

IjOyj + r ^ ^ p ^  (t ) sin(/3jj) co s(^ j)  =  0, and (3.3.13)

J j d z j  +  r bj k i j P i j  (t ) cos( P i j )  =  - T j , (3.3.14)

where
rrii and rrij =  mass of gears i and j ,  respectively,

Xi, j/j, and Zi =  acceleration of gear i in x,  y, and 2  directions, respectively, 

i j ,  yj, and Zj = acceleration of gear j  in x, y, and 2  directions, respectively, 

kij =  mesh stiffness of gear pair i j ,  

t  -  time,

Pij(t ) — relative displacement of gear mesh i j ,

Ii and Ij  =  moment of inertia of gears i and j ,  respectively,

0xi, 6yi, and Qzi =  angular acceleration of gear i about x, y, and 2  axis, respectively, 

0Xj, 6yj,  and 6Zj  — angular acceleration of gear j  about x, y, and z axis, respectively, 

rbi =  base circle radius of gear i,

Ji and Jj = polar moment of inertia of gears i and j ,  respectively, and 

Tj =  torque applied to gear j .
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In the above equations, a relative displacement of gear mesh i j  in a direction normal to

teeth contact surfaces is defined as

=(xi sin(tpij) -  xj  sin(i/)jj) +  y{ cos(1/^ )  -  yj cos(i/>„) +  . . .

. . .  + rbj6zj) cos(Pij) + (zj -  Zi + rbi6xl s i n ( ^ )  + rbj9xj s i n ( ^ ) . . .  (3.3.15)

. . .  +  ruOyi cos(ipij) + rbj0yj cos(^jj)) sin(/3jy) -  6ij(t),

Xi, yi, and Zi =  displacement of gear i in x, y, and 2  directions, respectively,

X j ,  y j ,  and zj — displacement of gear j  in x, y, and z directions, respectively,

9xi, 9yi, and 9Z{ — angular displacement of gear i about x, y, and 2  axis, respectively, and 

9xj, 9yj , and 9zj — angular displacement of gear j  about x, y, and 2  axis, respectively.

element model in ANSYS and its time average value will be used in the model. Experimental 

validation of this assumption is offered in Kahraman et al.[15]. The STE is also obtained 

from the ANSYS model.

As mentioned in Section 3.1, the mass of each gear is attached to its corresponding 

shaft node. Again, this offers a numerical advantage when compared to the distributed 

mass approach. The mass matrix (Equation 3.2.4) obtained in Section 3.2 is also used here. 

In this case, mass term in front of the matrix is not divided by two (each gear is attached 

to its corresponding node). Also, the moments of inertia formulae should be changed from 

solid cylinder formulae (shafts in this model) to hollow cylinder formulae (gears in the

where

From the above equations (Equation 3.3.3 through Equation 3.3.15), the stiffness matrix 

tha t couples the two shafts holding the gears is obtained as

cos (Pij) sin(ipij) (sin(Vyj) cos( f y ) -  efj-(f)) . . .  

k g ^ - k i j  cos(/3ij)cos(V’y)(sin(V'ij)cos(/3ij ) - e j j ( i ) )  . . .  , (3.3.16)

In the above matrix, the gear pair mesh stiffness (kij) is obtained from the gear pair finite

model). The resulting gear mass matrix is given as

(3.3.17)
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where

w = gear face width,

rp =  pitch radius,

Tfi =  hub radius, and

A  =  7r(rJ -  rl).

3.4 Load Vector

There are two possible sources of excitation in any gearbox system[22]. First, there is 

a so-called external excitation. Rotating mass unbalance, geometric eccentricities, and 

prime mover or load torque fluctuations all fall into this category. Manufacturing related 

profile and spacing errors and the elastic deformation of teeth, shafts, and bearings are 

all considered to be an internal type of excitation. These are typically high frequency 

excitations and are the major noise sources in gearbox systems. In this research, the only 

excitation comes in the form of the STE displacement excitation due to gear teeth elasticity. 

The effect of a time-varying mesh stiffness is included in the model by the use of the 

sinusoidal STE displacement function. This approach has been widely used in helical gear 

dynamic studies[15], and in some cases, in spur gear dynamic studies[16]. A development 

of the forcing vector for multi-mesh excitations is given next.

The alternating force vector is identified in terms of all (Ns — 1 ) static trans­

mission error excitations as

N s = number of shafts.

The extended forcing vector is obtained by the use of Equations 3.3.3 through Equa­

tion 3.3.14. In these equations, pij represents the relative displacement at the gear mesh.

2Ns - 3

(3.4.1)

where

=  extended forcing vector, and

Static transmission error is the relative displacement at the gear mesh which is multiplied
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by mesh stiffness (k{j) to obtain the force i)(i+i)) acting in a direction normal to teeth

contacting surfaces

F(i)(i+1) =  kijPij (t). (3.4.2)

For multiple gear meshes, a phase relationship between multiple excitations needs to be

defined. The STE is defined in Fourier series form as

R

C(i)(i+1)(0 C(i)(i+l)r ®in [+W(j)(i-fl)f +  > (3.4.3)
r = 1

where

C(i)(i+i)r =  r -th harmonic amplitude (obtained from ANSYS model), 

u>(j)(j+i) =  frequency of gear mesh ij , 

r(j)(j+i)r =  r-th  harmonic phase angle, and

n W(l+1) =  phase angle difference between the e ^ i+^ ( t )  and e i2 (t).

To define the last term in Equation 3.4.3, Figures 3.5 and Figures 3.6 are used. Based on 

these figures
i

n « 6 +i) =  Y  Nj  [“ 0)0+1) ~  70-1)0)] • (3.4.4)
j= l,3 ,5

The first angle in square brackets above is obtained according to Figure 3.5 as

“ 0)0+1) =  71 -  a 0)0+i) +  “ 0 -2 )0 -i)- (3.4.5)

The second angle in the Equation 3.4.4 (70-1)0)) *s G a in ed  via use of Figure 3.6. It is

an angle between the reference teeth of gears (j —1 ) and (j) mounted on the same shaft.
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Figure 3.5: (Figure 3 in Kahraman et al.[15]) Shaft position angle definition. 
Definition of the shaft position angle for multiple TE excitations.

DO)

(j ~  1 )

Figure 3.6: (Figure 4 in Kahraman et al.[15]) Phase angle definition. The 
definition of the phase angle for multiple TE excitations. More specifically, this 
figure takes into account teeth alignment between the gears mounted on the 
same shaft.
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3.5 Bearing M odel

Bearing behaviour is assumed to be linear. This assumption is valid in cases where the 

bearings are preloaded. In the majority of automotive gearboxes, bearings are preloaded, 

and as a result are modelled as being linear. Tapered roller bearings are assumed in all 

three shafts modelled. The following bearing stiffness matrix ^ kb  ̂ is used

kb diag kx ky kz ^Ox koy b , (3.5.1)

where

kx , ky , and kz = bearing stiffness in x, y , and z directions, respectively, and 

kgx and kgy — bearing stiffness about x  and y directions, respectively.

There are no off diagonal terms, therefore there is no coupling between the individual DOF. 

The terms in the above matrix will be assumed based on previous publications because the 

actual bearing numbers are difficult to obtain. There are more accurate bearing models, but 

they require knowledge of additional bearing parameters tha t are also difficult to obtain. 

Most of these extended models are used to study the effects of gear vibration on the gearbox 

housing. This is not the primary objective of this thesis; therefore a simpler model was 

chosen. In addition, bearing mass is neglected, and as a result, the bearing mass matrix 

does not exist.

3.6 Overall System  Assem bly

This section is divided into two parts. The first part describes the derivation used to 

obtain the relationship between the local and global coordinate system for any general finite 

element. The second part describes the standard finite element procedure for assembling 

the overall system equation of motion.

3.6.1 Coordinate Transformation

Prior to assembling equations of motion for the overall system, the relationship between 

the local and global coordinate system for each finite element has to be established. In 

preceding sections, the stiffness, mass, displacement and force matrices were all derived in
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a body fixed local coordinate system. Their transformation into a global coordinate system 

is essential for proper system model assembly. To obtain a matrix relationship between the 

element displacement x  in the local system and the element displacement X  in the global 

system the following matrix equation is used

x  = (3.6.1)

where

=  transformation matrix.

The structure of this matrix will be shown at the end of this section. If virtual displacements 

(Sv) are introduced on an element, the following equation is obtained

6vx  — 5VX . (3.6.2)

The resulting virtual work (scalar quantity) is independent of the coordinate system, there­

fore

5vX t F  = Svx Tf , (3.6.3)

where

F  and /  =  force vector in global and local coordinates, respectively. 

Substituting Equation 3.6.1 into the above equation, the following is obtained

lT
5VX 1 F /  = 0.

Because ^ X ’s are arbitrary, it follows that

F - T /  = 0 .

If it is recognized that

/  = m i  + k x,

(3.6.4)

(3.6.5)

(3.6.6)

and by substitution of this identity and Equation 3.6.1 into the Equation 3.6.5, local to 

global transformation for any general element is obtained in the following manner

Tr n T r

T m k X  = F, (3.6.7)
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m

where

=  element mass matrix in local coordinates, 

x  and X  =  element acceleration vector in local and global coordinates, respectively, and 

k j — element stiffness matrix in local coordinates.

The transformation matrix for any element is formed from the direction cosines

for tha t element and its structure is as follows

T 0 0 0

0 r 0 0

0 0 T 0

0 0 0 T

(3.6.8)

where

r  =  3x3 direction cosine sub-matrix, and 

0 =  3x3 zero matrix.

Figure 3.7 shows the local and global coordinate frames. Based on Figure 3.7, the following 

3x3 direction cosine sub-matrix relating local to global coordinate frames is obtained

cos(dxx) cos (Oy x ) cos(6Zx)

COS ( 0 X y )  cos ( e Y y )  COS ( 9 Z y )  ■ (3.6.9)

COS( 9 X z )  cos(0y2) cos(6Zz) _

In this thesis, the local coordinate system for every element coincides with the global co­

ordinate system and as a consequence, the transformation matrix is just a 1 2 x 1 2  identity 

matrix.

3 .6 .2  F in ite  E le m en t M o d e l A ssem b ly  P ro c ed u r e

Once each structural element is defined in terms of their stiffness and mass matrices in 

the global coordinate system, they all have to be combined and assembled into an overall 

equation of motion for the model. To show the assembly procedure, a simple example of two 

spring elements connected in series is presented (Figure 3.8). This simple structure has two

elements, three nodes, three DOF, and no specific boundary conditions. Element numbers

are enclosed in triangles while the node numbers are enclosed in circles. Applying static
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Figure 3.7: Local and global coordinate frames. The X  — Y  — Z  represents 
global coordinate frame, while the x — y — z represents local coordinate frame. 
Angles relating the local reference frame to the X  axis of global frame are shown 
only.

Figure 3.8: (Figure 2.5.1 in Altenhof and Zamani[3]) Spring elements. El­
ement numbers are enclosed in triangles while the node numbers are enclosed 
in circles. Element stiffnesses are shown as k\ and ^2 - Nodal forces are f i ,  / 2 , 
and fs, while the node displacements are d\ , c^, and d .̂

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. ANALYTICAL FINITE ELEMENT MODEL 53

equilibrium equations to all three nodes results in the following system of linear equations

h { d i  -  d2) =  / i  

—fci(di -  d2) +  k2{d2 -  d3) =  h  . (3-6-10)

- k 2(d2 -  d3) =  / 3

where

k\ and k2 = stiffness of element 1 and 2 , respectively, 

di, d2, and d3 =  displacement of node 1, 2, and 3, respectively, and 

/ i ,  f 2, and / 3 =  force acting on node 1, 2, and 3, respectively.

These equations can then be rewritten in the matrix form as follows

h - k \ 0 ' di j
/ \

h

- k i k\ +  k2 —k2 < d2 > =  < / 2

0 ~ k 2 k2 , d3 J . h  .

The stiffness matrix in the above equation is obtained via superposition of the stiffness 

matrices for individual elements. Top left 2x2 matrix contained within the global stiffness 

matrix represents element 1, while the bottom right 2x2 matrix represents element 2. To 

assemble the global stiffness matrix for a more general case, the use of connectivity tables is 

utilized. For the example presented here, the connectivity table is given in Table 3.1. The

Table 3.1: Connectivity table. Example connectivity table for overall system 
stiffness matrix assembly. It relates local element nodes to the global node 
numbers.

Element Local node 1 Local node 2 Stiffness

1 1 2 ki
2 2 3 k2

global stiffness matrix is symmetric and singular. This is expected because no boundary 

conditions are assigned to the structure. For dynamic systems, in addition to the global
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stiffness matrix, assembly of the global mass matrix is also needed. For this purpose, the 

same connectivity table is used. As mentioned earlier, the model developed in this thesis 

assumes proportional damping for the system, therefore, element damping matrices do not 

exist. For the systems tha t have damping included, the same connectivity table would be 

used. W ith the use of the connectivity tables, the equation of motion for the overall system 

is assembled. In the gearbox analyzed here, bearing, shaft and gear nodes all have six DOF 

resulting in relatively large overall mass and stiffness matrices.

3.7 Solution M ethodology

Both analytical and numerical methods are used to perform structural analysis. If a simple 

structural configuration is analyzed, the analytical method is possible. For more complex 

structures, numerical methods are more practical. Two types of numerical methods exist. 

They include the numerical solution of differential equations, and m atrix methods based 

on the discrete element idealization. In numerical solutions of differential equations, the 

equations of elasticity are solved by either direct numerical integration or by finite differ­

ence techniques. Practical limitations restrict these approaches to simple structures. The 

equations in the two numerical techniques could be cast into the matrix notation and the 

m atrix algebra could be applied to obtain the solution, but these techniques are generally 

not referred to  as matrix methods.

In matrix based methods, the structure is first idealized into an assembly of discrete 

structural elements with assumed stress distribution and displacement. To obtain a com­

plete solution, these individual displacements and stresses are combined in a way that 

satisfies the force equilibrium and displacement compatibility at the nodes between the ele­

ments. This approach lends itself for use in complex structure analysis. The matrix method 

can further be classified as either the displacement method or the force method. In the first 

case, the displacements are chosen as unknowns, while in the other approach, the forces are 

solved for.
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In this research, the matrix displacement method is employed. To solve for the unknown 

displacements, the modal summation technique is used. Before the modal summation tech­

nique is discussed, discussion of damping models is in order. It is im portant to understand 

the limitations tha t come from the use of modal damping in structural analysis. Again, 

the gearbox model analyzed here is using modal damping values rather than the element 

damping matrices.

Damping, in simple words, usually refers to the dissipation of vibratory energy in solids 

or structures over time. Vibratory energy contains a combination of kinetic and potential 

energy. The dissipation process involves conversion of vibratory energy into thermal energy. 

The higher the conversion rate, the higher the damping is for tha t particular structure. 

There are two approaches tha t one could take to obtain damping values for a structure. The 

first approach involves direct damping measurements, which guarantees accurate results, but 

is not usually feasible because the structure has to be built first. In the second approach, 

mathematical models are built to describe damping. The three most common types of 

damping are viscous, dry friction, and hysteretic[8 ].

Viscous damping is a common form of damping found in many engineering systems. The 

damping force is proportional to the velocity. This damping approach leads to the simplest 

mathematical formulation for a given model. Due to this, more complicated damping models 

are sometimes approximated as being viscous. The free vibration of dynamic structures with 

viscous damping is easily identified by an exponential decay of the oscillation.

Coulomb or dry friction damping is present when a relative motion between the two 

adjacent members takes place. These friction forces are independent of the amplitude and 

frequency. The magnitude of the friction forces can be considered constant. In this case, 

the free vibration oscillation decay is a linear function of time. Many real structures possess 

a combination of viscous and dry damping, resulting in combined vibration decay. The 

actions of two damping mechanisms are sometimes amplitude dependent resulting in initial 

exponential function, followed by the linear decay function.
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When solid materials or structures are subjected to the cyclic stressing, the damping 

force developed within the structure is frequency dependent. This phenomenon is referred 

to as the hysteretic damping. Hysteretic damping is mainly due to the hysteresis proper­

ties of materials. Another source of hysteresis damping comes from friction between the 

joints of structural components. Viscous damping forces are independent of the frequency 

of oscillations, therefore the viscous damping model is not suitable for modelling of internal 

damping of structures. The energy loss per cycle for hysteretic and friction damping is in­

dependent of frequency, while for viscous damping the opposite is true. Hysteretic damping 

and the structure stiffness are not usually easily separated. Mathematical models account 

for this fact by using of complex stiffnesses. Complex stiffness is equal to the sum of the 

static stiffness and hysteretic damping loss factor. Example values for the damping loss 

factors are available in literature, but are highly dependent on the mechanism associated 

with the internal reconstruction such as molecular dissociation and stress changes at grain 

boundaries. These damping effects are non-linear and variable within a material and, as 

a result, the analysis of these damping mechanisms is complicated. To obtain the energy 

dissipated at various strain levels for a specific material sample, experimental measurement 

techniques must be used.

The common approach used in structural analysis is to use the special type of viscous 

damping called proportional or modal damping. The advantages of using of this type of 

damping are the ease of use in the analysis and the fact tha t modes of the structure are 

almost identical to those of the undamped model. The modal damping model expresses the 

damping as a linear combination of the mass and stiffness matrices. This type of damping 

is also referred to as Rayleigh damping. To obtain the modal properties of the overall 

system, the undamped version of the model is analyzed first, and then corrections are made 

for the presence of damping. This approach is acceptable as long as the system’s modes 

remain real. In case of real structures, the amount of damping is small, so the imaginary 

part is small when compared to the real part. Caughey and O’Kelly[10] have proved tha t a 

damped linear system posses the same modes as the undamped counterpart if the following
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is satisfied

M K ] [ M
- l - i - l

C M M K (3.7.1)

where

M  =  mass matrix,

K  =  stiffness matrix, and

C — damping matrix.

However, the main limitation of this model still remains, because the variation of the of 

damping factors with respect to vibration frequency is not accurately modelled. Adhikari[2] 

developed a proportional damping model tha t captured the frequency variation of the damp­

ing factors. The proposed model requires the measurement of natural frequencies and modal 

damping values. Again, measurement is needed to obtain the modal damping values, and 

therefore not feasible for use in this thesis. Instead, modal damping values will be estimated 

based on the published data and will be used directly without the formation of damping 

matrices.

3 .7 .1  M o d a l S u m m a tio n

Once the overall system model is formed, one must choose the appropriate solution technique 

to solve for the desired quantities. The modal summation technique was chosen here because 

it offers frequency dependent results, and is capable of dealing with large size systems. A 

derivation of the modal summation technique[14] via use of the undamped MDOF system 

is presented next.

The equation of motion for forced response undamped MDOF system is given as

M X (t)  + K (3.7.2)

To obtain the modal model of the above equation, the free response of the system is con­

sidered, or F(t) = 0. Next, assume the solution of the following form

X (t)  = X e jwt, (3.7.3)
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where

e = natural number, 

j  = imaginary number, and 

u) =  vibrating frequency.

The above is true if the whole system is capable of vibrating at a single frequency. Substi­

tution of Equation 3.7.3 into Equation 3.7.2 leads to

K ■ U) M )  X e juJt = 0. (3.7.4)

The only non-trivial solution to this equation is given as

det K — U) M =  0 . (3.7.5)

When the determinant in Equation 3.7.5 is expanded, a polynomial in terms of uj1 is ob­

tained. This equation is known as the characteristic equation, and if uj2 =  A, the values of 

A are known as the eigenvalues of the system. Substituting any of the eigenvalues back into 

Equation 3.7.4 yields a corresponding set of relative values for X .  These vectors are usually 

referred to as eigenvectors. The eigenvalues form a diagonal matrix, while the eigenvectors 

form a square matrix. These two matrices represent the system’s modal model. A number 

of different procedures are available tha t take a system’s spatial model and transform it 

into the modal model. The eigenvalue matrix is unique, while the eigenvector matrix is 

not unique, and is subject to an indeterminate scaling factor. The size of the scaling factor 

depends on the solution procedure used.

Before proceeding, it is important to examine orthogonality of the modal model.

M M s (3.7.6)

where

$

M,

- modal matrix, and 

=  modal mass matrix.

The same transformation is used to obtain the modal stiffness matrix (diagonal). As men­

tioned before, these two matrices are not unique, but the ratio of the stiffness over the mass

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. ANALYTICAL FINITE ELEMENT MODEL 59

matrix is unique and is equal to the eigenvalue matrix. Many eigenvalue extraction routines 

scale each eigenvector so tha t the largest magnitude is equal to one. For modal modelling 

purposes, mass normalized eigenvectors are desirable. They posses the following properties

r l  T
$ M $ ] - [ (3.7.7)

where

$  =  mass normalized modal matrix, and

I  =  identity matrix.

Premultiplying mass matrix with the eigenvector matrix transpose, and postmultiplying 

it with the eigenvector matrix results in an identity matrix (Equation 3.7.7). If the same 

transformation is applied to the stiffness matrix, a diagonal eigenvalue matrix is obtained. 

The relationship between the mass normalized and general eigenvector matrix is

$ M, (3.7.8)

Now tha t the modal model is defined and its orthogonal properties are identified, the 

forced response of the system is considered next. The system is excited by sinusoidal input 

at the same frequency, with various amplitudes and phases

P(t) =  Fejujt.

Again, the solution is assumed as

X(t)  =  X e jujt.

Then the equation of motion becomes

( [  K  ] -  cu2 [ M  ] )  Xe*"* =  Feju,t

To solve for the response, the following is used

X  =  (  K  -  w2 [ M  )  1

This can be simplified as

(3.7.9)

(3.7.10)

(3.7.11)

(3.7.12)

(3.7.13)
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where

n receptance matrix for the system.

It is possible to determine values for the receptance matrix at any frequency by substituting 

the values into the above equation and inverting the system matrix. As the system size 

increases, this technique becomes to costly. For this and other reasons, an alternative means 

of solving the receptance matrix is used. This technique makes use of the modal properties 

of the system and is referred to as the modal summation technique. Equation 3.7.12 can 

be written as

K  - u -

Next, premultiplying both sides by 

T

M ) = n(u)
- i

(3.7.14)

$ and postmultiplying by

$ K — u> M $ $
- l

$

$

gives

(3.7.15)

When simplified, the above equation results in a diagonal matrix

(X -  J )

The receptance matrix is then given as

f2(u;)

$ n(u )  ] 1 [ $  ] . (3.7.16)

$ $

(A — u 2)
(3.7.17)

To solve for the response, transform the above equation into the following

r l  r l T 
$  $

X  = 1 (3.7.18)
(.\ - u 2 )

This is the most general form of the modal summation equation. When rotating structures 

and modal damping values are included in the model (gearbox), the modal summation 

response equation takes the following explicit form

2 N s —3 R  q

* -  E  E E M l
= 1 ,3 ,5 r = i  a= i  ( w |  -  r 2o $ ) ( .+ 1) +  2j r t s u su m + 1 ^

F, (3.7.19)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. AN A LY TIC A L  FINITE ELEM ENT MODEL 

where

r — transmission error harmonic,

R  =  total number of transmission error harmonics, 

s - mode number,

q — total number of degrees of freedom,

=  modal vector, 

u>s =  natural frequency associated with <1>S modal vector, and 

C = modal damping value.
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Chapter 4

R esults and Discussion

Before presenting the results, the following assumptions regarding the model developed here 

are given in Chapter 3 and are repeated here:

• A linear time invariant helical gear mesh model is employed.

• Sliding of the gear teeth and associated friction forces are neglected for all gear pairs.

• Tooth separation is not considered, and accordingly, the model does not consider the 

backlash phenomenon.

• Gyroscopic effects on gears are not included in the model.

Also, the response to the geometric eccentricities and mass unbalances of the gears and shafts 

is not included here. The aforementioned balances and eccentricities excite the system at 

shaft rotational frequencies, and the noise produced by them is usually negligible when 

compared to the gear mesh noise caused by the TE.

The equations derived in the previous chapter have been programmed into MATLAB. In 

addition, the benchmark gearbox system was also modelled in ANSYS for natural frequency 

result verification and for mode shape visualization. The ANSYS model is also used to 

verify the Frequency Response Function (FRF) obtained from MATLAB. The free response 

of the system is presented, and then followed by the forced response. Both responses are 

presented in the frequency domain. The only excitation to the system comes in the form of 

the TE displacement, while the mesh stiffness is assumed constant and its averaged value is

62
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used. The constant mesh stiffness approach is justified when used in helical gear analysis, as 

explained in Chapter 2. Only the first harmonic of the TE excitation is considered in all the 

cases presented in this research. An inclusion of second order and higher order harmonics of 

the TE is very simple, but the inclusion increases the simulation time. Also, first harmonic 

is the dominant one for all the TE results obtained from the ANSYS helical gear model. The 

system’s response due to the static or mean input is not considered because the objective 

of the research is the dynamic response of the system. An experimental verification of the 

approach (gear mesh model) presented in this thesis is given in Kahraman et al. [15].

The gearbox model given in Figure 4.1 was selected as the benchmark model for both 

the free and forced responses. Bearing numbers are enclosed in rectangles, while node 

numbers are not enclosed. Gear pair 1-2 connects nodes 3 and 10, and gear pair 3-4 couples 

nodes 13 and 20. Each shaft has six elements and seven nodes. The output shaft relative

Y

0

0

0

Gear 4
O utput shaft

15 16 19 20

Gear 2

12 13
Gear 3 
Gear 1

Input shaft

0

0

0

F ig u re  4.1: Benchmark gearbox finite element model. There is a total of 18 
elements and 21 nodes. Bearing numbers are enclosed in rectangles, while node 
numbers are not enclosed. Identical gear sets are used for both gear meshes. 
All bearings have identical properties.

angular position (0 3 4 ) was chosen to allow 7 2 3  to remain zero. This simplifies phase angle 

calculations between the two STE excitations. Angle 7 2 3  will remain zero as long as 0 3 4  

is changed in increments of 12° from its initial value of 96°. An incremental value of 12°
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is a result of both gear pairs geometry and their number of teeth. The gear pair given in 

Table 2.2 was chosen for both gear meshes. All relevant model specifications are provided 

in Table 4.1.

Table 4.1: Benchmark model specifications. The gearbox with the properties 
given in this table was chosen as the benchmark model for free and forced 
response studies. CCW abbreviation in this table stands for counterclockwise 
rotational direction. Bearing stiffness values are obtained from Kahraman et 
al.[15].

Parameter Notation(Units) Typical values

input torque Ti(N-m) 100 CCW
mesh stiffness ki2(N /m ) 3.79(10) 8

mesh stiffness kzi{N /m ) 4.09(10)8

relative angular position a \2{degrees) 90
relative angular position a 34  (degrees) 96

helix angle (degrees) 15

helix angle /?3 4 (degrees) -15
shaft element length l(m) 0.03

shaft element radius rb(m) 0.0125
bearing stiffness kx (N /m ) 2 (1 0 ) 9

bearing stiffness ky( N /m ) 2 (1 0 ) 9

bearing stiffness kz (N /m ) 1 (1 0 ) 9

bearing stiffness kgx (N-m /rad) 1 (1 0 ) 6

bearing stiffness kgy(N-m/rad) 1 (1 0 ) 6

modulus of elasticity E(GPa) 207

Poisson’s ratio V 0.292
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4.1 Free Response

To obtain a free response, the system was modelled in MATLAB and ANSYS. The equations 

developed in Chapter 3 were coded in MATLAB and eigenvalues as well as corresponding 

eigenvectors were obtained analytically. An ANSYS model was built using BEAM188, 

MASS21, COMBIN14, and MATRIX27 elements. BEAM188 is a two node linear beam 

element for 3D analysis. MASS21 is a structural mass point element also suitable for 3D 

analysis. COMBIN14 is a spring damper element with longitudinal or torsional capabil­

ities. MATRIX 27 represents an arbitrary element with undefined geometry. Its elastic 

kinematic response is defined by stiffness, damping, and mass coefficients. The matrix is 

used to relate two nodes with each node having up to six DOF. Each element above can 

be assigned a number of different real constants so tha t it can be used in multiple places 

in the model, without having to define a new element every time. Table 4.2 relates the 

gearbox components and its corresponding ANSYS elements used in the benchmark model. 

Figure 4.2 shows an isometric view of the ANSYS benchmark gearbox model.

Table 4.2: Gearbox components with equivalent ANSYS elements. Gear
masses are attached to shaft nodes. Bearing masses are neglected in the model.
Gear mesh stiffnesses are modelled as symmetrical 12x12 matrices that couple 
two shafts holding the gears.

Gearbox component ANSYS element

shafts and gears MASS21

shafts BEAM 188

bearings COMBIN14

gear mesh stiffnesses MATRIX27

As mentioned earlier, both ANSYS and MATLAB models are used to obtain the free 

response for this particular system. Table 4.3 offers a comparison of the 10 lowest natural 

frequencies obtained from these two models and their associated modes. The first mode
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ANSYS

Output shaft

MATRIX27 
Gear mesh 3-4

Intermediate shaft

COMBIN14
Bearings

MATRIX27 
Gear mesh 1-2

Input shaft

s//t' BEAM188

Helical gearbox model

F ig u re  4.2: 3D ANSYS gearbox model. MASS21 structural mass point ele­
ment used to model shafts and gears. Bearing mass is neglected in the model. 
Shafts were modelled using BEAM188 elements. There are a total of 18 shaft 
elements. COMBIN14 elements used to model torsional and longitudinal bear­
ing stiffnesses. Both gear meshes used MATRIX27 elements with different real 
constants.
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is the rotational rigid body motion of the gearbox system. The rest of the modes are ex­

hibiting coupling between the torsional and translational DOF. Figure 4.3 shows the second

Table 4.3: First 10 natural frequency results with their mode shapes. In the 
table x, y, and 2  indicate displacements, while 6X, 6y, and 6Z are the rota­
tions about x, y , and 2  directions, respectively. Shafts are annotated with the 
numbers in the brackets (input shaft (1 ), intermediate shaft (2 ), and output 
shaft (3)). For example, in the third mode, the input shaft is vibrating tor- 
sionally about the 2  axis, while the intermediate shaft vibration is coupled in a 
transverse (x and y) and torsional direction (0y and 9Z).

Natural frequency 

MATLAB 

(Hz)

Natural frequency 

ANSYS 

(Hz)

Percent difference 

(%)

Mode shape description

0 0 0 0z(l,2,3)-rigid body

992 993 0 . 1 0 9Z( 1), x-9z (2), x-y-6z (3)

1285 1361 5.91 9Z( 1), x-y-9y-9z(2)
1376 1392 1.16 x-y-9x-9y (2)

1706 1731 1.52 x-y-9x-9y(3)

1760 1784 1.47 9Z( 1), ®z(2), x-y-9x-9y(T)
2008 2068 2.99 x-y-9x-9y-9z (l)

2269 2340 3.13 x-y-9x-9y(1)

2577 2684 4.15 9y-9z-x-y( 1), x-y-9x-9y(2)

2611 2717 4.06 x-y-9x-9y(2)

mode shape associated with the second natural frequency (993 Hz).  The most dominant 

behaviour is the coupled intermediate shaft vibration in the x-9z direction, followed by the 

in p u t shaft torsional v ibration  in 9Z direction.

A comparison of the rigid multi-body model (the model developed in this thesis) against 

the torsional model is worth mentioning here. In torsional models, only the flexibility of 

the gear teeth is taken into account. Both shafts and bearings are assumed to be rigid. 

To transform the current multi-body model into a torsional model, the shaft lengths need
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ANSYS

Helical gearbox model

F ig u re  4.3: Second mode shape in ANSYS. The wireframe represents the 
undeformed, while the solid represents the deformed model shape. The inter­
mediate shaft exhibits coupled vibration in x-8z direction. The next significant 
vibration is the torsional vibration (6Z) of the input shaft. The output shaft 
motion is also coupled, but with relatively lower amplitudes when compared to 
the other two shafts.
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to be decreased, thus increasing their stiffness, and bearing stiffnesses values also have to 

be increased. Figure 4.4 shows the first four natural frequencies of the multi-body model 

used as a torsional model. The results in the figure were obtained with element length 

equal to 0.03 m m ,  while the bearing stiffness coefficient was varied. The element length of 

0.03 m m  was chosen to sufficiently stiffen the shafts, and has no real physical significance. 

The two natural frequencies of the torsional model are 3864 (second) and 7790 (third) H z.  

In Table 4.3 (multi-body model), the second natural frequency is equal to 992 H z,  and the 

third one is equal to 1285 H z.  A torsional model failed to predict a very large number 

of significant natural frequencies by neglecting shaft and bearing flexibilities. When using 

torsional models for gear dynamics studies of real gearbox systems with flexible bearings 

and shafts, one has to be fully aware of their shortcomings.

xl O

-e— First natural frequency 

-*— Second natural frequency 

-s— Third natural frequency 

-a— Fourth natural frequency

3.5

b* 2.5
S
2  „s

1.52

7790 H z

3864 H z

Bearing stiffness coefficient

F ig u re  4.4: First four natural frequencies of the torsional model. The element 
length was chosen to be equal to 0.03 mm. As the bearing stiffness coefficient 
increases, the multi-body model transforms into a purely torsional model. Gear 
teeth are the only source of flexibility in the system. First natural frequency 
represents the rigid body mode. Second and third natural frequencies converge 
towards the torsional model natural frequencies (3864 Hz  and 7790 Hz). Fourth 
and higher natural frequencies head towards infinity.
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4.2 Forced Response

To investigate the system’s forced response to a more complicated input, the frequency 

response function to a unity sinusoidal input is investigated first. For this purpose, both 

ANSYS and MATLAB models are used. The two FRF plots obtained from both models 

are plotted in Figure 4.5. Both of them represent gear 1 torsional response to a 0Z unity 

sinusoidal excitation at the gear 1 node (node 3). Resonance peaks obtained from the two 

models agree well with each other. The small discrepancy between the two results comes 

from the fact tha t MATLAB uses mode summation technique to obtain displacements, 

while ANSYS uses the direct solution technique to solve for displacements.

Q (1 8 ,18) MATLAB - 

0 (1 8 ,1 8 )  ANSYS
-2 0

-40

-o
2 . -60

<V-a
1 SObO

^ -100
*  *

-1 2 0

-140
500 1000 1500 2000 2500

Frequency (Hz)
3000 3500 4000

Figure 4.5: MATLAB and AN SYS frequency response for gear 1 node. Both 
approaches provide well correlated results. ANSYS response up to 1200 H z  is 
perfectly correlated with the MATLAB response.

Now tha t the FRF for the system was briefly presented and validated by the use of 

ANSYS and MATLAB models, the gearbox response due to the excitation at both gear 

meshes is analyzed. From this point on, only the MATLAB model is used. Instead of 

having a single excitation in the system, now the same excitation frequency can occur at 

two different input shaft speeds. In addition, these two excitations may or may not be in 

phase depending on the shaft positions and number of gear teeth on each gear. In Figure 4.6
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the FRF response of the system as a function of the input shaft speed is shown. The first 

critical shaft speed is around 4000 rpm. Here, the system is being excited through gear 

pair 1-2 with the frequency of the excitation being equal to 2008 H z  (mode 7). At the same 

input shaft speed, because of the gear reduction, the gear pair 3-4 is exciting the system at 

992 H z  (mode 2).

50

Gear pair 3-4 excitation (992 H z)

Gear pair 1-2 excitation (2008 H z)

- 5 0

-1 5 0

-2 0 0
1000 2000 3000 4000 5000 6000 7000 8000 9000

Input shaft speed (rpm )

F ig u re  4.6: Frequency response at gear 1 node due to multi-mesh excitation.
At the input shaft speed around 4000 rpm, the two peaks resulting from two dif­
ferent excitation frequencies are too close to each other. A similar phenomenon 
is observed at around 5000 rpm, but with a relatively smaller amplitude.

4 .2 .1  B en ch m a rk  M o d e l R esp o n se

Dynamic transmission error for both gear pairs and dynamic forces on bearing 6  are chosen 

as the parameters by which the system’s response to internal excitations will be quantified. 

For all the forced response studies, a modal damping of 3.5 % is used. The following STE 

excitation values are used for all simulations presented: e i2 =  1.14 pm  and 6 3 4  =  1.89 pm. 

These values are valid as long as the input torque remains at 100 N -m  and gears from 

Table 2.2 are used. If using different torque values, appropriate mesh stiffness and TE values 

have to be used. Figure 4.7 shows DTE results for both gear meshes for the benchmark 

gearbox model. Both dynamic forces on bearing 6  are plotted in Figure 4.8.
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8
 D T E  1-2 (e i2  =  1.14 pm )
—  D T E  3-4 (e3 4  =  1.89 p m ).? 73

o 6
g
a 5 o

a 4cop
13 3 
o
I 7
a>>
Q 1

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

Input shaft speed (rpm )

F ig u re  4.7: Dynamic transmission errors for the benchmark model. An input 
torque value of 100 Nm  CCW and (s equal to 0.035 were used in the simulation. 
Both DTEs experience the largest amplitudes around the 4000 rpm. At this 
speed, both gear meshes excitations are influencing both DTEs, resulting in 
very large amplitudes. The input shaft speed in the region around 6800 rpm 
presents the optimum operational point for the benchmark gearbox model.

 R adial -
—  Axial

600

«  500 bo .a
$ 400 
a
g 300
S-i

a
1  200 
P

o '  ioo
» ~~

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input shaft speed (rpm )

F ig u re  4.8: Dynamic forces on bearing 6 for the benchmark model. An input 
torque value of 100 Nm  CCW and £s equal to 0.035 were used in the simulation. 
Both forces are maximized around 4000 rpm.
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4 .2 .2  O u tp u t S h aft A n g le  E ffects

Next, the effect of the output shaft position angle on each DTE is investigated. Q34  (Fig­

ure 4.9) is increased from the position of 0° in increments of 24°. The DTE for gear mesh

Gear 4

Gear 3

Gear 2
Gear 1

F ig u re  4.9: Output shaft position angle 0 3 4  definition. Front view of the 
gearbox model with the definition of the output shaft position angle. Angle <234 

should be incremented in 24° increments from its initial position of 96°. If this 
is respected, than the phase angle between the two TE excitations will not be 
affected.

1 - 2  is plotted in Figure 4.10, while the DTE for gear mesh 3-4 is plotted in Figure 4.11. A 

large DTE amplitude around 4000 rpm  is still present in all cases of output shaft position 

angles. The DTE at 4000 rpm  for gear pair 1-2 (Figure 4.10) decreases as the value of 

0 3 4  is increased. The benchmark model results in the lowest DTE 1-2 amplitude (6 . 8  pm ) 

out of five cases considered. The same trend is present around 5200 rpm , where a change 

in output shaft angle from 0° to 96° reduces the DTE 1-2 from 4.5 p m  to 2.2 p m  (not 

indicated in the figure). The amplitude of DTE 3-4 is not a function of 0 3 4  as shown in 

Figure 4.11. For both DTEs, the two resonant peaks caused by both mesh excitations at 

4000 rpm  are still too close to each other and are causing excessive torsional vibrations in 

the system. Changes in <234 alone do not cause significant shifts in natural frequencies which
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would move the two resonant peaks apart and improve dynamic response of the gearbox 

model.

 a 3 4  =  0  degrees
—  « 3 4  =  24 degrees
 < 2 3 4  =  48 degrees

a 3 4  =  72 degrees  
a 34 =  96 degrees  
(Benchmark model) -

. 2  p m

C4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input shaft speed ( rpm)

F ig u re  4.10: Gear pair 1-2 dynamic transmission error for varied output 
shaft angle. Dynamic transmission error decreases slightly with the output 
position angle increase at 4000 rpm. Around this speed, the benchmark model 
results in the lowest DTE 1-2 amplitude (6 . 8  pm) out of five cases considered.
Shaft position angle is more influential at around 5200 rpm also with the same 
downward trend. Here, a change in output shaft angle from 0° to 96° reduces 
the DTE 1-2 from 4.5 pm  to 2.2 pm  (not indicated in the figure).

The effect of the output shaft angle on dynamic forces on bearing 6  is investigated next. 

Figure 4.12 shows radial dynamic bearing force on bearing 6  for the same five values of 0 3 4  

used for DTE simulation. Radial bearing force is almost independent of 0 :3 4  a t all shaft 

speeds. A very large amplitude is observed around 4000 rpm. x  and y  bearing forces are 

changing significantly with the change in 0 :3 4 , but the overall sum (radial) force exhibits very 

loose dependence on 0 :3 4 . Axial dynamic bearing force on bearing 6  is shown in Figure 4.13 

for the same values of <2 3 4 . In this case, the peak at around 8500 rpm  is significantly reduced 

with the increase in 0 :3 4 . In addition, the bearing force amplitude is larger at 8500 rpm  

when compared to the resonance peak at 4000 rpm  for 0 ° and 24° values of 0 :3 4 . Also, the 

axial force amplitude is much smaller when compared to the radial force amplitude for the 

same bearing, as it should be, due to the moderate helix angle of gear 4.
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F ig u re  4.11: Gear pair 3-4 dynamic transmission error for varied output 
shaft angle. 0:34 has negligible influence on the DTE amplitude at all shaft 
speeds.

 q 3 4  =  0  degrees
 q 34 = 24 degrees
 Q34 = 48 degrees

Q34 = 72 degrees  
Q34 = 96 degrees  
(Benchmark model)

a 3 4  =  0  degrees  
0:34 = 24 degrees  
<234 = 48 degrees  
« 3 4  = 72 degrees  
0:34 = 96 degrees
(Benchmark model)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input shaft speed ( rpm)

F ig u re  4.12: Radial dynamic force on bearing 6 for varied output shaft angle. 
Radial force on the bearing is lightly dependent of the output shaft position 
angle, x  and y bearing forces are changing significantly with 0:34 but their sum 
(radial) force is independent of 0 :3 4 .
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F ig u re  4.13: Axial dynamic force on bearing 6 for varied output shaft angle. 
Axial force on the bearing is slightly dependent on the output shaft position 
angle up to the input shaft speed of 7000 rpm. Starting at this speed, the 
bearing force decreases significantly with the increase in 0 3 4  (downward arrow). 
In addition, the bearing force amplitude is larger at 8500 rpm when compared 
to the resonance peak at 4000 rpm for 0° and 24° values of 0 :3 4 .

 < 2 3 4  =  0  degrees

 a;3 4  =  24 degrees

 CC3 4  =  48 degrees

0 : 3 4  =  72 degrees  

« 3 4  =  96 degrees
(Benchmark model)

4 .2 .3  S h aft L en g th  E ffects

In the previous section, the influence of 0 3 4  on the system’s dynamics was investigated. 

The DTE peaks at 4000 rpm  input shaft speed for all values of 0 :3 4 . In other words, the 

output shaft angle change is not sufficient to cause significant shifts in system’s natural 

frequencies and as a result, excessive values of DTE around 4000 rpm  for both gear meshes 

are observed. The radial bearing force is maximized at this shaft speed, while the axial 

force peaks at 4000 rpm  and 8500 rpm, depending on the output shaft angle value.

To shift system’s natural frequencies, and to observe the effect of the frequency shift on 

both DTEs and bearing 6  forces, shaft element length is varied next. All the benchmark 

gearbox properties remain the same, except tha t the shaft element length is varied. There 

are still six elements making up each shaft, so by varying the element length, each shaft 

length varies accordingly. In all the cases presented, the decrease in shaft length causes 

an increase in shaft stiffness, which raises the natural frequencies. Figure 4.14 shows the 

DTE for gear pair 1-2 and Figure 4.15 represents plots for the gear pair 3-4, both for varied

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. RESULTS AND DISCUSSION 77

element length. The element length resulting in the lowest DTE for gear pair 1-2 is equal 

to 0.02 m  (2.9 pm ), while for gear pair 3-4, the optimum element length is equal to 0.03 m  

(7 pm). Worth noting is the overall change in shape of DTE 1-2 between the benchmark 

model and all other cases. The benchmark model plot shows one significant peak, while 

other plots show multiple peaks but with lower amplitudes. Both figures reveal shifts in 

first significant resonance peaks with the element length increase.

-i----------1----------r
=  0.010  m  
=  0.015 m  
=  0.020  m  

=  0.025 m  
=  0.030 m  

(Benchmark model) -

6 . 8  am

2.9 am

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Input shaft speed ( rpm)

F ig u re  4.14: Gear pair 1-2 dynamic transmission error for varied element 
length. The largest amplitude of the DTE occurs at the element length of 0.03 m  
(Benchmark model) and is equal to 6 . 8  pm. The lowest amplitude occurs at 
the element length of 0.02 m and is equal to 2.9 pm. Also, the increase in the 
element length lowers the input shaft speed where first significant resonances 
occur (first significant resonance peaks for each element length are marked with 
circles).

The effect of the element length on dynamic forces on bearing 6  is investigated next. 

The dynamic radial force on bearing 6  is shown in Figure 4.16. A reduction in shaft 

lengths increases bearing dynamic forces. By increasing the elements length from 0.01 m  

to 0.03 m, a decrease in dynamic force from 1750 N  to 600 N  is attained. As shaft lengths 

are decreased, their stiffness increases, and as a result, bearing stiffness governs the system 

stiffness resulting in an increase in bearing force. Axial force plots are shown in Figure 4.17. 

Axial force exhibits very similar dependency on element length as the radial force, but with
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F ig u re  4.15: Gear pair 3-4 dynamic transmission error for varied element 
length. The largest amplitude of DTE occurs at the shaft element length of 
0.01 m and is equal to 9 pm. The lowest amplitude occurs at the element 
length of 0.03 m and is equal to 7 pm.
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F ig u re  4.16: Radial dynamic force on bearing 6 for varied element length. 
As shaft length decreases, stiffness increases, and as a result, bearing node 
vibration becomes more dominant. The reduction from 1750 N  to 600 N  in 
dynamic force, as the element length is increased, is obvious in the figure. In 
addition, first significant resonance peaks are shifted to the right with a decrease 
in shaft length.
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significantly smaller amplitudes. Here, a 200 N  force reduction is obtained by increasing

the element length from 0.01 m  to 0.03 m .
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s
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o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input shaft speed ( rpm)

Figure 4.17: Axial dynamic force on bearing 6 for varied element length. 
An increase in the element length results in lower axial bearing forces. The 
reduction from 300 N  to 100 N  in bearing dynamic force, as the element length 
increases, is obvious in the figure.

0 . 0 1 0  m  
=  0.015 m  
=  0 . 0 2 0  m  
=  0.025 m  
=  0.030 m  

(Benchmark model)

300 N

100 N
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4 .2 .4  B ea r in g  S tiffn ess  E ffects

In contrast with the output shaft angle, shaft length has a significant influence on gearbox 

dynamic response. This is especially true for DTE 1-2, where a significant reduction is 

obtained just by reducing the length of each shaft from 0.18 m  to 0.12 m . DTE 3-4 

increases slightly for the same element length (0.02 m). As expected, a decrease in the 

element length causes a significant increase in bearing forces.

Next, the bearing stiffness influence on the systems dynamics is investigated. Each 

benchmark gearbox bearing stiffness matrix is multiplied by the stiffness coefficient (q). 

Figure 4.18 shows DTE 1-2 for five bearing stiffness coefficient values. Initially, DTE am­

plitude increases with the increase in bearing stiffness. DTE 1-2 peaks at q equal to one. 

W ith further increase in the bearing stiffness coefficient, a decrease in DTE 1-2 peak am­

plitude is shown. Once q reaches a value of 10, the DTE does not change significantly with 

any further increase in c. When q reaches a value of 10 and higher, the peak amplitude of 

DTE 1-2 becomes equal to 4.8 jxm. Figure 4.19 shows DTE 3-4 for varied bearing stiffness 

coefficient values. When compared to the previous figure (Figure 4.1), where with the ini­

tial increase in bearing stiffness there was an increase in DTE 1-2 amplitude, here, there is 

an immediate decrease in DTE 3-4 magnitude with the increase in bearing stiffness. The 

reason for this behaviour lies in the fact tha t the gear pair 3-4 is positioned closer to the 

bearings than the gear pair 1-2. As a consequence, bearing stiffness has a larger influence 

on gear pair 3-4 dynamic behaviour, while gear pair 1-2 behaviour is more influenced by 

shaft flexibilities.

Bearing stiffness coefficient effects on bearing 6  dynamic forces are presented next. Fig­

ure 4.20 shows the radial dynamic force on bearing 6 . A very significant increase in bearing 

force (90 N  to 630 N )  is present for both extreme cases considered here. Also, the shaft 

speed where the two peaks occur shifts to  the right with an increase in bearing stiffness. The 

benchmark model force peak amplitude is very close to the maximum amplitude (q =  1 0 0 ). 

Axial bearing force is plotted in Figure 4.21. In contrast with the previous figure, here the 

peak bearing force occurs at the c =  0 .1 , not at the maximum value of q.
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F ig u re  4.18: Gear pair 1-2 dynamic transmission error for varied bearing 
stiffness coefficient. A steady increase in DTE 1-2 comes as a result of an 
increase in the bearing stiffness coefficient (up-right arrow) up to a certain 
point. The benchmark model DTE 1-2 has the highest amplitude out of five 
cases considered. When the bearing stiffness coefficient increases beyond the 
benchmark model value, a decrease in the DTE amplitude is obvious (down 
arrow). DTE plots for s values of 10 and higher show very little changes because 
the system’s stiffness becomes governed by shaft element stiffness.
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F ig u re  4.19: Gear pair 3-4 dynamic transmission error for varied bearing 
stiffness coefficient. First significant resonance peaks shift to the right with an 
increase in bearing stiffness. Also, with the shift, a decrease in DTE 3-4 peak 
amplitude is present (down-right arrow). All curves exhibit the same overall 
shape with one dominant resonant peak.
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F ig u re  4.20: Radial dynamic force on bearing 6 for varied bearing stiffness 
coefficient. As expected, an increase in bearing stiffness causes an increase in 
bearing force. An increase in bearing force from 90 N  to 630 N  is present when 
the stiffness coefficient changes from its minimum value of 0.01 to its maximum 
value equal to a 100. Once the g reaches a value of 10, any additional increase 
in <r has little influence on radial bearing force.
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F ig u re  4.21: Axial dynamic force on bearing 6 for varied bearing stiffness 
coefficient. The peak amplitude of the bearing force increases with an increase 
in the bearing stiffness coefficient. The maximum bearing force (170 N) does 
not occur at the highest value of <;, but it occurs at c = 0.1. A very small value 
of bearing force (20 N) is possible if bearing stiffness remains low. However, 
low bearing stiffness causes too high of a value for DTE 3-4 (Figure 4.19).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. RESULTS AND DISCUSSION 83

4.2.5 Gear Pair Relative Position Effects

For this study, the position of both gear pairs is varied. Figure 4.23 presents the DTE 1-2 

results for varying gear pair position. The legend entry (3-10,13-20) in this figure, and 

the rest of the figures in this subsection indicate tha t the gear pair 1 - 2  connects the shafts 

a t nodes 3 and 10 and gear pair 3-4 connects the shafts at nodes 13 and 20 according to 

Figure 4.22. A decrease in DTE 1-2 peak amplitude is present when the position of the gear

F ig u re  4.22: Gearbox model layout. Bearing numbers are enclosed in rectan­
gles, while node numbers are not enclosed. In subsection 4.2.5 the axial position 
of both gear pairs was varied. This figure is used to assist in visualization of 
different axial positions for both gear pairs. For this study, a total of five dif­
ferent cases were considered. Initially, the position of gear pair 1-2 was kept 
constant (coupled nodes 3 and 10), while the gear pair 3-4 was moved to the 
left (coupled nodes 13 and 20, then nodes 12 and 19, and lastly, nodes 11 and 
18). For the last two cases, both gear pairs were first offset to the left (gear 
pair 1-2 connected nodes 2 and 9, while gear pair 3-4 connected nodes 10 and 
17), and then to the right (gear pair 1-2 coupled nodes 5 and 12, while gear 
pair 3-4 coupled nodes 13 and 20).

pair 1-2 is kept constant, while the gear pair 3-4 moves towards the centre of the shafts (first 

three cases in the figure). As both gear pairs are offset to either side (last two cases in the 

figure), peak DTE 1-2 amplitude increases. DTE 3-4 results are presented in Figure 4.24. 

DTE 3-4 peak amplitudes are larger than DTE 1-2 amplitudes in Figure 4.23 for all the 

cases considered. The best relative gear pair 3-4 position for the five cases considered is
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the orientation where gear pair 3-4 connects nodes 13 and 20 and gear pair 1-2 connects 

nodes 3 and 10 (benchmark model). DTE 3-4 increases as a result of gear pair 3-4 moving 

away from bearing 6  (first four cases in the figure) because of the fact tha t the gear 4 

node stiffness decreases as it moves away from bearing 6 . In both figures (Figure 4.23 and 

Figure 4.24), the fourth case position results in the maximum amplitude for both DTEs. In 

this position both gear pairs are offset to the left (Figure 4.22), and the gear pair 3-4 excites 

the system with greater amplitude (e34  > ei2 ) than the gear pair 1-2. A combination of 

these two factors results in greater system vibrations when compared to all other cases.

20

15

2 10
w
E-|
Q

5

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Input shaft speed ( rpm)

F ig u re  4.23: Gear pair 1-2 dynamic transmission error for varied gear pair 
position. The legend entry (3-10,13-20) indicates that the gear pair 1-2 connects 
the shafts at nodes 3 and 10 and gear pair 3-4 connects the shafts at nodes 13 
and 20 according to Figure 4.22. In the first three cases, the gear pair 3-4 moves 
closer to the center of the shafts, while the gear pair 1 - 2  position remains fixed. 
This positioning direction has a positive effect on DTE 1-2 peak amplitude. The 
reason for the DTE decrease lies in the fact that as the gear pairs move towards 
shaft centres, they increase the overall stiffness of the system (gear meshes act 
as two very stiff springs supporting shafts at their centres) as long as the two 
transmission error excitations are not in phase. When both gear pairs are offset 
to the left or to the right (last two cases), DTE 1-2 peak amplitude increases. 
In this case, shafts are not supported in their centres, and the overall vibration 
increases.

“ I-------------------- 1

3-10,13-20  
(Benchmark model)

-3-10,12-19

-3-10,11-18

2-9,10-17

5-12,13-20
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F ig u re  4.24: Gear pair 3-4 dynamic transmission error for varied gear pair 
position. The legend entry (3-10,13-20) indicates that the gear pair 1-2 connects 
the shafts at nodes 3 and 10 and gear pair 3-4 connects the shafts at nodes 13 
and 20 according to Figure 4.22. The benchmark model orientation results in 
the minimal DTE 3-4 peak amplitude for the five cases considered. DTE 3-4 
peak amplitude increases from 7 pm  to 14 pm  between the benchmark model 
orientation and the fourth case (2-9,10-17) orientation.
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Bearing force results are presented next. Figure 4.25 includes plots of radial bearing 

force. Radial bearing force is minimized when both gear pairs are offset to the left (2-9,10- 

17). On the other hand, the bearing 6  force is maximized when both gear pairs are closest to 

the bearing 6  location (5-12,13-20), in which case, most of the energy is dissipated through 

bearings rather than shafts. This plot exhibits multiple resonance peaks instead of one 

dominant resonant peak present in other plots. Axial force plots are shown in Figure 4.26. 

Trends similar to those in Figure 4.25 are present here. The first dominant resonant peak 

is at 4000 rpm  with the second significant peak around 8500 rpm. Amplitudes at the 

second resonance are higher than those at the first resonance, while the opposite is true for 

Figure 4.25.
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5-12,13-20

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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F ig u re  4.25: Radial dynamic force on bearing 6 for varied gear pair position. 
The legend entry (3-10,13-20) indicates that gear pair 1-2 connects the shafts 
at nodes 3 and 10 and gear pair 3-4 connects the shafts at nodes 13 and 20 
according to Figure 4.22. As expected, the least favoured orientation with 
respect to the radial bearing 6  force is the last orientation shown in the figure 
(5-12,13-20). Here, both gear pairs are offset to the right, closest to the bearing 6  

location. Plots for other cases show one dominant resonance peak, while in the 
last case, there are multiple significant resonance peaks.
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F ig u re  4.26: Axial dynamic force on bearing 6 for varied gear pair position. 
The legend entry (3-10,13-20) indicates that the gear pair 1-2 connects the 
shafts at nodes 3 and 10 and gear pair 3-4 connects the shafts at nodes 13 and 
20 according to Figure 4.1. The relationship between different plots here is 
similar to the relationship shown in Figure 4.25, but with smaller amplitudes.
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4.3 Discussion

Results presented in this chapter are summarized and briefly discussed:

• The output shaft angle does not significantly alter natural frequencies of the system, 

and as a result, there is little change in both DTEs and bearing 6  forces. The output 

shaft position angle has a small effect on DTE 1-2 amplitude near the two resonant peaks 

(Figure 4.10). DTE 3-4 is independent of the output shaft angle at all input shaft speeds 

(Figure 4.11). The radial dynamic force on bearing 6  is also independent of the output 

shaft angle (Figure 4.12), while the axial force shows very high dependency on the output 

shaft angle (Figure 4.13) at the input shaft speed around 8500 rpm.

• Shaft length has a significant effect on a system’s dynamic response. W ith the decrease 

in element length, the system’s stiffness increases, which results in an increase in natural 

frequencies. Both DTE peak amplitudes are affected by shaft element length (Figure 4.14 

and Figure 4.15). Both radial and axial bearing forces increase significantly when element 

length decreases from 0.03 m  to 0.01 m (Figure 4.16 and Figure 4.17).

•  A bearing stiffness coefficient was introduced to perform bearing stiffness effect studies. 

All bearing stiffness matrices were multiplied by this factor to alter their properties. Both 

DTE peak amplitudes lessen (Figure 4.18 and Figure 4.19) as a result of the bearing stiffness 

factor increase. This trend continues until a certain point (? =  10) after which the bearing 

stiffness has no more influence on the system. From this point on, the system’s stiffness 

is governed by shaft and gear teeth flexibilities. Radial and dynamic bearing 6  forces also 

increase with the increase in bearing stiffness (Figure 4.20 and Figure 4.21).

•  The effect of gear pair relative position on both DTEs and bearing 6  forces was 

investigated next. The orientation tha t maximizes both DTEs uses gear pair 1-2 to connect 

nodes 2 and 9, and gear pair 3-4 to connect nodes 1 0  and 17 (Figure 4.23 and Figure 4.24). 

This position allows gear pair 3-4 excitation of the system tha t is closer to shaft centres 

resulting in larger vibrations. Both forces (radial and axial) on bearing 6  are maximized in
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5-12,13-20 (Figure 4.25 and Figure 4.26) position, at which both gear pairs are positioned 

closest to bearing 6 .
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Chapter 5

Conclusions and Future Work

5.1 Summary

An analytical finite element model of a double-stage helical gear reduction has been devel­

oped and coded in MATLAB. The model includes linear time invariant helical gear mesh 

stiffness, flexible shafts and bearings, and a rigid housing. Each element is modelled using 

mass and stiffness matrices. In addition, an ANSYS partial tooth helical gear pair model 

has also been developed. The STE and mesh stiffness were the primary results obtained 

from the ANSYS model. Both of these parameters were then employed in the finite element 

model. The STE served as the internal excitation to the system, while the mesh stiffness 

value was assigned to a spring tha t coupled the two engaged gears. Eigen analysis was used 

to obtain the free response, while the modal summation technique was employed for the 

forced system’s response. Modal damping was used instead of damping matrices. To verify 

the MATLAB natural frequency results, and to assist in the visualization of system’s mode 

shapes, an equivalent finite element gearbox ANSYS model has also been constructed. An 

ANSYS model includes BEAM188, MASS21, COMBIN14, and MATRIX27 elements. Also, 

the multi-body model developed here was transformed into an equivalent torsional model to 

point out the shortcomings of the torsional model. The MATLAB model was then utilized 

to perform a limited number of parametric studies. For this purpose, a benchmark gearbox 

model similar to a gearbox designed for a HEV has been selected.

90
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5.2 Conclusions

Natural frequency results from both models (ANSYS and MATLAB) show a very high 

degree of correlation. The shortcomings of the purely torsional model when compared to 

the torsional-translational were pointed out justifying the use of the latter model. The 

influence of the output shaft position angle, shaft length, bearing stiffness, and the position 

of both gear pairs on both DTEs and bearing 6  forces was investigated. Based on the above 

parametric studies the following can be concluded:

•  O utput shaft angle has a negligible effect on the DTEs and bearing forces. This is 

true for both amplitudes and natural frequencies.

• An increase in shaft length has mixed effects on the DTE, depending on the bearing 

stiffness value. On the other hand, a decrease in the shaft length results in an increase in 

bearing forces.

• Bearing stiffness increase causes an increase in bearing forces until a certain value of 

bearing stiffness. Further increase in bearing stiffness has no additional effect on bearing 

forces because the shaft stiffness becomes dominant.

• Gear pair positions have mixed effects on the DTE and bearing forces. DTE peak 

amplitudes are strongly dependent on gear pair positions. However, the peak bearing force 

amplitudes remain relatively independent of gear pair positions.

As presented above, several parameters have clear effects on the system’s response. 

Conversely, the effect of the other parameters is not so evident. The approach developed 

in this thesis can be adopted and used to perform parametric studies during a preliminary 

design stage of simple gearbox systems. A number of gearbox configurations could be 

modelled and simulated assisting engineers with their final selection of the optimum gearbox 

layout. In addition, already existing gearbox systems with excessive noise and vibration 

levels can be modelled and analyzed helping reduce noise and vibration levels.
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5.3 Future Work

The finite element model developed here could be extended to include flexible gear bodies, 

a non-linear bearing behaviour, and non-linear backlash effects. Models with flexible gear 

bodies have been developed and experimentally verified for single-stage spur gear reductions. 

No such experimentally verified model exists yet for multi-stage helical gear reductions 

according to the author’s knowledge. Non-linear bearing models do exist, and their inclusion 

in the model would require the direct numerical integration solution technique. This is 

typically done in cases where the vibration through bearings and gearbox housings is of 

interest. For this purpose, an inclusion of flexible housing is also required and could be 

easily incorporated into the model developed here. Non-linear backlash effects would also 

have to employ the direct time integration solution technique.
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A ppendix A

Involute Profile and H elix Macro 
A N SY S Code

/COM  ************************************************************************* 

/COM , INVOLUTE PINION PROFILE

/COM  *************************************************************************

n=30 IPinion number of teeth

m=2 ITransverse module

w=15 !Face width

pa= 2 0  ITransverse pressure angle

hangle=15 ! Helix angle

/  prep7

*afun,rad

pi=acos(-l)

x l = 0

fi=pa*pi/180

gl=0.25

a l = l

nu=150

nul=150

u=-(pi/4+(al-gl)*tan(fi)+gl/cos(fi))
v = g l-a l

thm in= (u+  (v + x l) /tan(fi)) *2 /n

thm ax=((2+n+2*xl)**2-(n*cos(fi))**2)**0.5/(n*cos(fi))-(l+2*xl/n)*tan(fi)-pi/(2*n) 

inc—(thm ax-thm in)/nu
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. INVOLUTE PROFILE AND HELIX MACRO AN SYS CODE

*do,i,l,(nu+l)

th=thm in+inc*(i-l)

x= (n*m /2 )*(sin(th)-((th+pi/(2 *n))*cos(fi)+(2 *xl*sin(fi))/n)*cos(th+fi))

y= (n*m /2 )* (cos(th)+ ((th+pi/(2 *n))*cos(fi)+(2 *xl*sin(fi))/n)*sin(th+fi))

k, ,x,y„

*enddo

thm ax2 = 2 *u/n 

inc=abs(thm ax2 -thm in)/nul 

*do ,i,l,(nu l+ l)

*if,i,eq,nul+l,*exit

th=thm in+inc*(i-l) labc=(l+4*(((v+xl)/(2*u-n*th))**2))**0.5 

pq= (g l/labc)+ (u -n* th /2 )

q p = 2 *(g l/labc)* (v+ x l)/(2 *u-n*th)+ v+(n/2 )+ x l 

x=m* (pq*cos(th)+qp*sin(th)) 

y=m* (-pq*sin(th)+qp*cos(th)) 

k, ,x,y„

*enddo

finish
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/  (JQM, ************************************************************************* 

/COM, LEFT HAND HELIX CURVE

/COM,*************************************************************************

/prep7

H A=Hangle*pi /180

radius=(m *n ) / 2

pitch=pi*radius*2* (1 /  tan(HA))

ncoils=0.25

tlen=pitch*ncoils

r=radius

p=pitch

n=ncoils

csys, 0

pi=acos(-l)

*do,i,l,(4*n),l

csys, 0

kpno=i+ 1 0 0 0

x l= r*sin ((i-l)* (p i/2 ))

y l= r*cos((i-l)*(pi/2 ))

zl= tlen*((i-l)/(4*n))

k ,kpno,xl,yl,zl

x2 =r*sin((i)*(pi/2 ))

y2 =r*cos((i)*(pi/2 ))

z2=tlen*((i)/(4*n))

k,kpno+l,x 2 ,y2 ,z2

csys,l

1, ( i+ 1 0 0 0 ), (i+ 1 + 1 0 0 0 )

*enddo

csys, 0

wpave,0 ,0 ,w

wpstyle„ „ „ „ 0

lsbw,l

finish
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