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ABSTRACT

Signal processing applications, in general, require a constant word size throughout
the processing system. This poses a problem for basic integer arithmetic operations,
where the result of each operation has a tendency of differing from the original operand
size. Multiplication is of the biggest concern since each operation results in a product
that is potentially twice as large as the original operand widths. To alleviate the problem
of expanding word widths, fixed-width multipliers are utilized.

This thesis will present some novel architectures for fixed-width recursive
multipliers. The high-performance recursive multiplier exhibits an inherent hierarchical
structure consisting of several sub-multipliers, which makes it suitable for fixed-width
applications. Four truncation schemes targeting the recursive multiplier have been
proposed, all of which improve error statistics and generally reduce gate complexity,
propagation delay, and power consumption, with respect to the original full-width
multiplier. A fixed-width architecture targeting multi-level recursive multipliers will also

be presented.

iii
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CHAPTER 1

INTRODUCTION TO COMPUTER ARITHMETIC

1.1 Overview of Computer Arithmetic

The computer has permeated our professional and private lives by simplifying
tasks which were once difficult or even impossible to carry out. Computers have a long
history, dating back several centuries, when mathematicians and scientists first developed
machines to help them manipulate and compute numbers [1]. The field of computer
arithmetic was established at the birth of these electronic computing machines. Today
the field is a sub-set of computer architecture and deals with the implementation of
arithmetic algorithms in hardware and software for processor architectures and, more
specifically, arithmetic logic units (ALU). This thesis deals with the multiplication
architectures, which are critical components of ALUs and other systems which perform
numerical processing. Specifically, multiplication in fixed-width applications will be

studied.

1.2 Thesis Highlights

This thesis will present a general investigation of fixed-width multiplication and
truncation schemes, and will describe some novel architectures for fixed-width recursive
multipliers [2]. The recursive multiplier, presented by Swartzlander et al. [3] exhibits an
inherent hierarchical structure consisting of several sub-multipliers, which makes it
suitable for fixed-width applications. Four truncation schemes targeting the recursive

multiplier have been proposed, all of which improve error statistics and generally reduce
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gate complexity, propagation delay, and power consumption with respect to the full-
width multiplier. Detailed error analysis and architectural complexity analysis have been
carried out for each design.

Hardware implementation of the proposed fixed-width multiplier architectures has
been carried out in Altera Stratix EP1S10F484C5 FPGA. The resulting reductions in
propagation delay, power consumption and logic complexity with respect to the full-
width recursive multiplier have been tabulated and analyzed.

Further, the idea of fixed-width multipliers based on multi-level recursive
architectures has been studied in detail. The previous work regarding fixed-width single-
level recursive multiplication has been extended to the multi-level case, and error
analysis and complexity analysis have been carried out. New mathematical expressions
have been derived to estimate potential maximum error and complexity savings for the

general case of k levels of recursion.

1.3 Thesis Organization

The thesis will begin with a general overview of digital multiplication, briefly
highlighting serial and parallel multiplication algorithms, in Chapter 2. Chapter 3 will
give an overview of fixed-width multiplication and truncated multipliers. Further, some
of the most well-known truncation schemes available will be described.

Chapter 4 is dedicated to the Recursive Multiplier. An overview of the recursive
or “divide and conquer” algorithm for multiplication proposed by Karatsuba and Ofman
(1962) [4] will be first given. Application of the algorithm in the digital recursive

multiplier [2] will be subsequently presented.
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Chapter 5 will present novel architectures for fixed-width recursive multipliers.
Four new truncation schemes targeting recursive multipliers will be presented in this
chapter along with detailed error and complexity analysis. Chapter 6 will focus on
hardware implementation and simulation results of proposed architectures. Chapter 7
investigates fixed-width multiplication using multi-level recursive architectures.  The
thesis will conclude with a highlight of contributions and some closing remarks in

Chapter 8.
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CHAPTER 2

DIGITAL MULTIPLICATION OVERVIEW

In modern digital systems, the component responsible for handling arithmetic
operations is the Arithmetic Logic Unit (ALU). These units mainly lie in the critical data
path of the core data processing system elements. These include microprocessors (CPU),
digital signal processors (DSP), in addition to application specific (ASIC) and
programmable (FPGA) processing and addressing integrated circuits. Performance of a
system, in regards to numerical applications, is directly related to the structure and design
of the ALU.

The numerical operations carried out by the arithmetic unit may include, but are
not limited to: addition/subtraction, shift/extension, comparison, increment/decrement,
complement, trigonometric functions, multiplication, division, square root extraction,
logarithmic function, exponential function and hyperbolic functions [5].

One of the critical functions carried out by the ALU is multiplication. Although it
is not the most fundamentally complex operation, digital multiplication is one of the most
frequently used operations in signal processing and other applications. Because of this,
digital multiplication is one of the most widely studied areas in the field of computer

arithmetic.
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2.1 Basics of Digital Multiplication

Generally speaking, digital multiplication involves a sequence of additions carried
out on partial products. The means by which the partial products matrix is summed is the
key distinguishing factor amongst multiplication schemes [6].

The partial product array of an M x N bit digital multiplication is determined
similarly to traditional pen and paper decimal multiplication. For example, multiplication
of multiplier X = [X,.1, X2, Xp35 ... X2 X1, Xo] and multiplicand 4 = [@.1,Gnzs sy --. G2y A1y Qo)

yields the final product (n+m)-bit product:

P = [pnfm-]: pn+m-l: pn+m-3x s p?.’ le pO] = xn-l(am-la am-Zs am~3a ceesy a)) ah ao) + xn-Z(am-l: am-Z: am-l’ rees

a, a, ao) + ...+ xl(am-la Qs Aprsy -5 Ay 4y ao) + xo(am-b Qnzy Apzy -5 Az 4y, ao)

This multiplication can be illustrated in Figure 2.1, below.

a a a4 @
Xy N Xy N
Xpd; Xgdy Ngd; Xpdg
Xz Xolly Xgp Xgllg
Xod3 Xopap XoAp Xgdg
Xy Xgly Ny Yol
b P¢ Ps P4 Pz P2 P Po

Figure 2.1: Example of Pen and Paper Multiplication

A convenient notation for digital multiplication that visually represents the bits in
an algorithm is dot notation which was introduced in [7][8].  The nature of the dot

diagram is to depict the bits using the relative position of individual bits, and the manner
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in which they are manipulated, irregardless of the value of each bit. Figure 2.2 shows the

partial product array for a 16x16 multiplication [7].

Partial Product Selection Table
Mukipler BR | Selection [Pee0ees0060000063 « o
o o OO X XXX I XX XXX
1 Mollipicasd 0000000000080 808 «—— |0

et essenessscsscse b0y
O 00000008 «—— 0|,
0606888/ 0,
80008 +—— 8
e t——— 0
X0 of!
. o P
o] ol
o i
LK)
L
e
o] hn

1 y y)
Msd Product L

Figure 2.2: Partial Product Array for a 16-bit Multiplication [7]

2.2 Sequential Multiplication

Fundamentally, digital multiplication can be carried out through a sequence of
shifts and additions of the multiplicand to the partial product accumulator register based
on the values of the individual bits comprising the multiplier. This primitive form of
multiplication, known as shift-add multiplication, is very slow, despite having a very
simple implementation. The number of cycles required to perform a full multiplication is
linearly proportional with the size of the multiplier, and each cycle has a delay of the

required fast adder. A sequential multiplier is shown in Figure 2.3.
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—
[—
| Partial| Products |
E—
—_—
[ Mutipicand ||| Multiplier
o| " k
A
MU;( -
Y i
\ k-bit Adder /
I

Figure 2.3: Sequential Right-Shift Multiplier [6]

A variation of the basic form of digital multiplication is the high-radix
multiplication scheme. This form is similar to the shift-add algorithm mentioned before,
but differs in that more than one bit of the multiplier is utilized on each clock cycle. Thus
the number of clock cycles is reduced. However, a requirement for this form of
multiplication is the availability of fixed multiples of the multiplicand [5]. Figure 2.4
depicts the implementation of a radix-4 multiplier where two bits of the multiplier are
used in a clock cycle [6]. As can be seen, the multiples of the multiplicand, A, 2A, and
3A, need to be available. Thus the higher the radix of a multiplier, the more stored values
will be required. Higher radix multipliers provide faster computation; but this is at the
expense of additional hardware overhead consisting of shift circuitry and storage registers

for the required multiples of the multiplicand.
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1
| Partial| Products |
———  2-bitshifts
—
| 3A |11 Muttiplier {]

Y

k-bit ;dder /

Figure 2.4: Multiplication Performed Using Radix-4

2.3 Parallel Multiplication

As mentioned above, serial multiplication and the concept of shift and add
algorithms is a primitive form of multiplication techniques which offers simple
implementation, but lacks the performance of parallel multipliers. Most modern high-
performance systems require faster algorithms for multiplication to reduce computation
latency as much as possible.

There are two distinct categories of parallel multipliers, namely, linear parallel
multipliers, and column compression multipliers (tree multipliers). The distinguishing
characteristic of parallel multipliers is that partial products are generated simultaneously,
and can actually be considered a special case of high-radix multiplication, where the
highest possible radix is used, i.e. radix-zk[6]. As well, parallel multipliers limit latency
associated with carry propagation to one final fast adder.

Linear parallel multipliers are more commonly known as array multipliers. The
term “linear” comes from the linear relationship that exists between operand size and
latency. The array multiplier exhibits a highly regular layout as shown in the 8-bit

multiplier in Figure 2.5 [9]. The orderly arrangement of the multiplier cells makes the
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design ideal for automated layout techniques, where bits of the two input operands are
made available across the arrangement of full adder cells. Basically the outputs of the
adders trickle accordingly across the array until the edges of the structure, where the
product bits are outputted. However, the limitation with the array scheme is that partial
products are introduced and reduced only one row at a time, not in parallel like in tree
multipliers. This results in slower performance. The delay of the array multiplier has a

linear relationship, O(k), with respect to operand size.

Figure 2.5: Standard Layout of an Array Multiplier
(MFA = full adder + AND gate, MHA = half adder + AND gate)

The tree multiplier, unlike the array multiplier, offers the potential for only a
logarithmic increase in delay relative to operand size. The foundation for these

multipliers was laid out in the 1960s by work carried about by C.S. Wallace, Luigi
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Dadda, and Yu Ofman [10][[11]. In these designs, once bits of the partial product array
are generated (in parallel), they are passed onto a reduction network, which performs
column-wise compression of the bits, forming two final partial products. Subsequently, a
final fast adder is used to sum these last two terms. A flow diagram of the column
compression multiplication process is shown in Figure 2.6 [7]. Latency approximation of
a column compression multiplier shows that delay is logarithmic O(log(k)) with operand

size, a significant improvement over array multipliers, in terms of speed.

Multiplicand
k)
Partial Product Generator @ s
2
mM
Partial Products

*e

Summation Network

—.
‘Two 2n bit operands
edofe
anNe e

Carry Propagate Adder

.@.

Final 2n bit Product

Figure 2.6: Flow Diagram of a Column Compression Multiplier

Wallace [10] initially proposed the method of using Carry-Save Adder (CSA)
arrays to carry out the column-wise compression of the partial product bits.  Consisting
of a series of non-interlinked Full-Adder blocks, CSA is the most commonly used form

of multi-operand adder. Luigi Dadda proposed a systematic methodology for laying out
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the CSA column compression tree so that the minimum number of counters is utilized
[11]. Wallace and Dadda multiplication schemes are depicted in Figure 2.7.

Despite the characteristic high speed performance of column compression
multipliers, there are several drawbacks when taking into consideration their
implementation. Column compression multipliers exhibit a highly irregular architecture
leading to inefficient VLSI layout. As process technologies delve into submicron

dimensions, irregular interconnections can potentially cause issues like clock skewing

and interconnect delay [12].

Columnn 2220 20191817161514131211109 8 76 5 4 3 2 1 0

Column 222120191817161514131211109 B 7 6 54 3 2 1 0

............

SRR 772 SRS XILLLIIIIIIX
BERN7 SRSt HOLLLLLLL7X
SRR ~ SRR el KR

Suge | perrreeeea paxs XSS
Q2204 e s e s s e

___________ ISR

R R N o

N e AR L ok
ST LIS L r
A AT s ST
Whh e s e e s e o 0 6 8 s v on e @ s s s e e ?;;5;]:1')()(///////////)()()()()( .....

BEY LSS I ISR

Figure 2.7: Dot Diagrams of Dadda (left) and Wallace (right) Multipliers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

2.4 Floating Point Number System and Multiplication

To achieve the levels of precision demanded by modern systems, it becomes
necessary to have a number system that is capable of representing real numbers. Fixed-
point systems, in which location of the decimal point is pre-defined, suffer from limited
range and/or precision. To alleviate this issue, floating-point number systems are utilized
[5]. Unlike fixed-point representations, floating-point system allows for extremely large
or small numbers to be described with a high degree of precision by using a dynamic
range.

According IEEE standard for binary floating-point systems [13], a floating-point
value is defined as:

x=1fxb
where x is the floating-point value, f is the fraction of mantissa, b is the base (fixed at
b=2) and e is the exponent. Floating point numbers have two distinct representations
according to the standard depending on operand size. Figure 2.8 depicts the differences
between the two floating point standards, in terms of word structure. The sign (s),
exponent (e), and fraction/mantissa (f) form the 32 and 64 bit precision formats. The
mantissa is normalized to be in the range of [1,2) so that the most significant bit (MSB) is
always a 1. In this way, the leading 1 is removed and considered a “hidden one”, thus
saving one bit in the representation. To ensure a positive value, the signed integer
exponent is biased accordingly. The exponent is biased for 127 for single, and 1023 for

double precision formats.
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1 8 23
o [ ] ]
msb : msb
1 11 52
o e ] i |
msb msb

Figure 2.8: IEEE Floating Point Standard Word Widths for
(a) Single Precision and (b) Double Precision

Figure 2.9 shows a block diagram of the multiplier implementation for floating
point numbers. As described above, floating-point numbers are composed of a biased
non-negative integer exponent, and a fixed-point fractional representation of the
mantissa. Thus, mathematical operations that are carried out on floating-point numbers
will use fixed-point arithmetic units with additional control and rounding circuitry to
accommodate for the dynamic range. Because of this, when designing arithmetic
hardware, much attention is placed on fixed-point integer units. Conversion to floating
point is made possible through additional circuitry. Figure 2.9 also shows the additional

blocks surrounding the integer multiplier component.

[ Linpack ]

! )
\_Add /
Bias
|l T"__‘W Imger Multiplier
|_X()R

Round
Maode

h
N Add A l Right Shift l
Normalize

Round

l Pack |

Figure 2.9: A Floating Point Multiplication Scheme [14]
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Since the basics of fixed-point arithmetic form the framework for floating point
calculations, the remainder of this thesis will target integer arithmetic structures in

conventional unsigned binary format.
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CHAPTER 3

FIXED-WIDTH MULTIPLICATION

3.1 Overview of Fixed-Width Multiplication

As previously mentioned, multiplication is one of the most widely studied areas in
the field of computer arithmetic, due to the frequency of use in numerical applications,
such as signal processing. In many of these applications, such as filtering, convolution,
Euclidean distance, and Fast Fourier Transform (FFT) [15][23], a constant operand size is
required throughout the processing system. When designing arithmetic hardware for
such a system, constant operand size is an important constraint to take into consideration.
In certain signal processing applications, word sizes could grow significantly large. For
example in a complex FFT, if the initial word size is 16 bits real and 16 bits imaginary
and the sines/cosines are 16 bits each, maintaining full precision causes a growth of 18
bits (17 bits for the complex multiply and 1 bit for the complex add) per stage. For a
1024 point FFT there are 10 stages producing a final data size of 196 bits [16]. For
addition and subtraction, the problem is relatively easy to solve, as the result is
potentially only one bit larger than the operands (assuming that the operands are equal in
size). Rounding is accomplished by adding a ‘1’ to the least significant bit position and
truncating the sum at that position. In many cases the ‘1’ can be added as a carry into the
addition so that no extra hardware or time is required to produce a rounded sum or
difference [16]. However, of all the arithmetic operations, multiplication is of the biggest
concern, because the resulting product of two operands could potentially have a word size

that is twice the original operand size.
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To alleviate the problem of expanding word widths in multiplication, fixed-width
multipliers are utilized [17]. An # x n fixed-width digital multiplier generates only the
most significant n product bits with two »-bit inputs. If X and Y are two n-bit unsigned

numbers where,

inz_l:xi-Zi and Y=nz—1:yj~2f
=0

i=0

the product, P, of X and ¥, which is a weighted sum of partial products, is therefore:

2n-1

x’-yj .2i+j =z pk '21{

n-1 n-1
j=0 k=0

>

1
i=0
The fixed-width product is:

2n-1

Rrunc = Z pk '2k
k=n

Thus a fixed-width multiplier can be easily realized by using only pzp.1, ..., ps outputs of
the full-width multiplier. In order to reduce the error due to truncation, output rounding
is often carried out. Before truncation, rounding is applied [14] by adding a ‘1’ at the n"

least significant position of the product of the full-width multiplier.

3.2 Truncated Multipliers

Literature shows that the “fixed-width” property can be exploited to reduce
hardware complexity with respect to the full-width multiplier [9]. Truncated multipliers,
in which less significant columns of the partial product matrix are removed, are often
used in fixed-width applications. Example of a truncated array multiplier and Dadda

(tree) multiplier are shown in Figures 3.1 and 3.2.
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(a) Standard Array Multiplier (b) Truncated Array Multiplier

Figure 3.1: Standard and Truncated Array Multipliers
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(a) Standard Dadda Tree Multiplier (b) Truncated Dadda Tree Multiplier
Figure 3.2: Standard and Truncated Tree (Dadda) Multipliers [9]
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3.3 Truncation Schemes for Fixed-Width Multipliers

Several truncation schemes have been developed—all of which involve not
generating the complete partial products matrix and then applying some correction
scheme to reduce the error due to truncation as well as post-rounding. This subsection

examines some of the schemes which currently exist for parallel multipliers.

Constant Correction Truncation Scheme

In [18], Schulte and Swartzlander, Jr. presents a technique for parallel
multiplication which computes the product of two numbers by summing only the most
significant columns of the multiplication matrix, along with a correction constant. This
correction constant is chosen such that average and mean square errors, with respect to
the full-width multiplication, are minimized.

In the conventional parallel full-width multiplier, »n* partial product bits are
summed to produce the final 2 bit product. As mentioned before, the fixed-width
multiplier is formed by rounding the 2» result to # bits.

Substantial hardware savings can be achieved by truncated multiplication, where
only the n+k most significant columns of the partial products matrix are summed.
Truncated multiplication involves two sources of error, namely, reduction error and
rounding error. Reduction error results from summing the partial products matrix
without the n-k least significant columns. Rounding error occurs because the product is
rounded to 7 bits. To compensate for these two sources of errors, a correction constant is
added to the n+k most significant columns of the partial products matrix, as shown in

Figure 3.3. This is an improvement over Y.C. Lim’s constant correction methods
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presented in [19]. In this paper reduction error and rounding error are treated separately,
resulting in a poorly selected correction constant. Also, the constant is allowed to take on
arbitrary values, which is unfavourable for practical implementations. The correction

constant should be limited to the n+k most significant columns.

e Cog
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Figure 3.3: Truncated Partial Products Matrix with Constant Correction

The value of the computed product can be expressed in the following way:

P'=P+E_ +E

reduct round + C 4

where P is the true product, E,eqc and E,unq are the reduction and rounding errors, and C
is the correction constant. To minimize the average error of the truncated multiplication,
or P’-P, the correction constant is selected to be as close as possible to the negative of the
expected value of the sum of the reduction error and the rounding error. Assuming that
the probability of any input bit, a; or b;, being a one is 0.5, and a partial product bit, 0.25,

the following formula can be used in determining the correction constant, C [18]:

~ round(2™* -E,_ )

C = 2n+k

b

n—k-1
=g 2 (gD 2O 2 )

q=0

where E

to
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Using exhaustive simulation, error statistics have been determined for multipliers of size
n =8, and 16 bits. Average error, variance and maximum error have been tabulated, as

shown in Table 3.1. As can be seen, as k decreases, errors generally tend to increase.

Table 3.1: Error Statistics for Constant Corrion Multipliers

- L rianci X"
1 -9.766 x 10 0.1667 2.5039
2 6.152x 10™ 0.1040 1.2539
3 6.152x 10™ 0.0903 0.7539
4 -1.660 x 10~ 0.0842 0.6289
5 -9.766 x 10™ 0.0834 0.5352
8 1.953 x 10° 0.0833 0.5000
1 -3.815x 10° 0.2917 5.5000
2 6.250 x 10~ 0.1354 2.7500
3 6.250 x 10 0.0983 1.5000
4 -1.563x 107 0.0861 1.0000
5 —3.815x 10° 0.0839 0.7188
16 7.629 x 10° 0.0833 0.5000

As described earlier, parallel multipliers are usually implemented as array or tree
(column compression) multipliers. Conventional  x » multipliers require n AND gates,
n* — 2n full adders and n half adders. If the least significant ¢t = n-k columns are omitted
from computation then hardware savings can be approximated as [18]:

40 ; D AND gates, ¢=e=-b 1)2(t =) pun adders, (f —1) Half adders.

A typical n x n bit Dadda multiplier requires #*> AND gates, n*-4n+3 full adders and n-1
half adders (for n>2).  Similarly the hardware saved with a truncated Dadda multiplier
(=>1)is [18]:

tit+1)
2

AND gates, %2 Full adders
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The following table (Table 3.2), taken from [18], shows hardware savings for various
sizes of truncated multipliers with respect to a conventional multiplier utilizing true
rounding. This data is calculated based on the assumption that relatives sizes of AND
gates, half adders and full adders are 1, 4 and 9, respectively. Complexity savings are
slightly higher for Dadda multipliers. As expected, a small value of £ results in larger

complexity savings.

Table 3.2: Complexity Savings From Truncation of Array and Dadda Multipliers

| DB |Ww || =loolun| Al —

Data-Dependent (Variable) Correction Truncation Scheme

In the constant correction method for truncated multiplication, the correction term
does not depend on the values of the bits in the truncated portion of the partial products
matrix. Potentially, this could lead to relatively high errors, in the case that the all or the
majority of truncated bits are a zero or a one.

In [20], King and Swartzlander, Jr. presents a correction method that uses the

information from the partial products bits of the column adjacent to the truncated LSB.
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This results in a variable correction term, which can further minimize distortion to the
result.

In the method of constant correction, the maximum error occurs when truncated
bits (columns n+k+1 and beyond) are all zeros or all ones. If the truncated bits are all
zeros, then the final error with respect to the full-width multiplier would be equal to the
correction value. In this case, ideally, the correction value should be set to zero. If the
n+k+1 column contains the same number of ones as zeros, then the constant proposed in
by Schulte and Swartzlander in [18] should be used. Finally, if the n+k+1 column
contains all ones, the correction value should be changed to a maximum value. King and
Swartzlander use the number of partial products available in the n+k+/ column. The

correction term is simply added as a “Carry-in” to the n+k column, as shown in Figure

34.

A4 u,

an-k b 1
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Pat Panz P P Phet Pokst Pax

Figure 3.4: Truncated Partial Products Matrix with Data-Dependent Correction

Results show that mean error, maximum error and variance are improved with

respect to constant correction. Variable correction scheme is more readily applied to
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array multipliers, while constant correction schemes are more suitable for tree multipliers

[9].

Other Truncation Schemes

Since the work of Swartzlander, Lim, Schulte, and King in the late 1990s, there
have been several new schemes, fundamentally based on the concepts of constant and
variable correction, presented in literature.

A correction algorithm is developed in [21] by Jou et al. where the partial
products in the most significant column of the truncated portion of the matrix are
summed together. From this sum, a correction constant is calculated that approximates
the sum of the dropped partial products. The method improves error over traditional
constant correction, however the implementation is based on a ripple architecture that is
slow in speed and consumes much power [15].

In [22], Van et al. propose a fixed-width multiplier architecture that is similar to
the constant correction method, where a constant is added to the remaining partial
products matrix after truncation. The correction factor, however, is not based on the sum
of the most significant column of the truncated portion, but rather is a function of the
single partial products of the subset. Only signed multipliers are considered.
Implementation of the error-compensation function is based on ripple architecture as
well.

In [15] Strollo et al. presents a new error-compensation network for fixed-width
multipliers, consisting of two summation trees which are optimally chosen in order to

minimize either mean-square error or the maximum absolute error. Their technique gives
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better accuracy with respect to previous methods, and implementation of the error
correction network requires only a few gates with a tree architecture, and thus is best
suited for tree multipliers.

Literature shows that many truncation schemes have been proposed that generally
target only array and tree multipliers. The next chapters of this thesis are dedicated to the
recursive multiplier, originally presented by Danysh and Swartzlander [3]. It will be
shown that this multiplier’s hierarchical composition makes it very suitable for fixed-
width applications. The concepts of truncation schemes described in this chapter will be
extended to this multiplier design, resulting in four novel fixed-width multiplier

architectures. The following chapter will provide an overview of the recursive multiplier.
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CHAPTER 4

THE RECURSIVE MULTIPLIER

4.1 Overview of the Recursive Multiplication Algorithm

One of the pioneering schemes for “divide and conquer” multiplication was
proposed by Karatsuba and Ofman in 1962 [4]. The Karatsuba-Ofman Algorithm (KOA)
computes the multiplication of two long integers by executing multiplications and
additions on their divided parts.

It is possible to perform multiplication of large numbers in significantly fewer
operations than the usual brute-force technique of long multiplication. As discovered by
Karatsuba and Ofman, multiplication of two n-digit numbers can be done with a bit
complexity (number of single operations of addition, subtraction and multiplication) of
less than n°. The algorithm can be illustrated with the following example [24], using two
base X numbers, N; and N, each consisting of two digits:

N, =a,+aX
N,=b,+bX
Their product can thus be written as:

P=N,-N,
=ayb, +(ab, +ab) X +ab X’
=p+pX+p,X°

Now let:

4o = ayb,
q, = (ao +al)(b0 +bl)
4, = ab,
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The term g, can then be written in terms of py, p;, and ps:
9=pPtbhth

But, since po= qo and p, = g3, it follows that:

Py =94,
=994,
P, =4,

Thus the three digits of p have been evaluated using three multiplications rather than
four. When the concept is extended to multi-digit numbers, the trade-off of more
additions and subtractions becomes evident.

Danysh and Swartzlander have utilized the fundamentals of KOA in their digital
recursive multiplication algorithm presented in [3]. Mathematically, the recursive
algorithm is established around the fact that any 2» x 2 bit multiplication may be carried
out through four » x » bit sub-multiplications. Consider two unsigned 2n-bit operands,
the multiplicand A4 = Ay X 2" + A4; and multiplier X = Xy x 2" + X;, where the
subscripts denote the lower and upper » bits respectively. The multiplication of 4 by X

may then be given by:

Y=A4-X
= (4, x2"+4,)-(X, x2"+X,)
= Ay Xy x2" (A, Xy + A4, - X, )x2"+ 4, - X,.

Multiplication and addition are thus carried out on the divided components of 4 and X,

similar to the technique used in KOA.
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4.2 Recursive Multiplication Architecture

Block diagrams illustrating the same recursive multiplier architecture are shown

in Figures 4.1 and 4.2.

Figure 4.1: Block Diagram of Recursive Multiplier Architecture

Ag X X}

AH X XH 44L X XL

Ay X Xy

+

Figure 4.2: Another Block Diagram of Recursive Multiplier Architecture

As can be seen, the overall multiplication may be reduced to four smaller
multiplications, and this process may be repeated using even smaller multipliers for the
base multipliers. To minimize the resulting reduction delay introduced by subdividing
and parallelizing the process, the intermediary products of the sub-multipliers should be

kept in carry-save form [5]. In this way, only one final fast adder would be required to
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yield the final product. A dot diagram, for a typical recursive multiplier with n-bit

operands is shown in Figure 4.3.

n—bn mukiphcr . s B ST A W o A
input operands gtcottacvcconoicm
X #80eevesiedesnee

o i —

[eresorroessberes
HEE E X I XX R I R A XK )

4 intermediary
n-bit products in ssesorvesaseossosss
carry save form HEIRAA R EEI R A AR A XK.

ios ensrses sossan o
P eI e ReDEBsay

IR EERTRENENEELNS]
A AAREE IR AR AAARE)

. - Y L B LI N
313::512: I * oidl-l::
\-s(—-—-—w-o—«" | . I

HALF-ADDER ; } ‘

Reduction Cells e i

I ISR FINESNNENNINEEEENEENNE S S LR N
*a‘.“‘.l“‘.bil".‘i!t’. (L B 20 L W W

Final Ca;y-Out * + * &
is omitted 2n-1 In/2 -1 n2 0

Figure 4.3: Full Dot Diagram of a Recursive Multiplier with n-bit Onput Operands [5]

There are two significant benefits in using the recursive multiplier [3]. Firstly,
use of the recursive multiplier allows for a highly regular design and scalability similar to
traditional array and modified Booth multipliers. Secondly, unlike array and modified
Booth multipliers, the recursive multiplier can achieve a delay of O(log ») similar to fast
multipliers such as Dadda and Wallace. Traditional array and modified Booth multipliers
are capable of only O(n) delay. Figure 4.4 shows a graph illustrating this delay
comparison. The delays for a typical array multiplier, Dadda multiplier and recursive
multiplier may be estimated with the following expressions [3]:

Dy =1+3(n—-1)+4log,(n-1)
Dp.yia =1+32log,(n—1))+3log,(n+1)
D, =7+9log,(n—-2)+3log,(n+1)

Recursive
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Figure 4.4: Delay Comparison of Array, Dadda and Recursive Multipliers

Essentially, the recursive multiplier reaps the benefits of both worlds: the
regularity and scalability of array and Booth multipliers, and the fast performance of
Dadda and Wallace tree multipliers. Even with the use of array multipliers as the base
multiplier in the recursive hierarchy, a delay of O(log n) is achieved. Use of a faster
multiplier as the base case can slightly improve performance at the expense of additional
complexity and irregularity.

P. Mokrian et al. presented a reconfigurable recursive multiplier architecture that
actually outperformed the typical high-performance Booth-recorded Wallace Tree
multiplier in terms of delay (17% reduction), dynamic power consumption (20%
reduction) and area utilization (12% increase) [5].

The recursive multiplier provides a simple alternative to traditional Booth and
array multipliers with speed that is comparable or even faster than Wallace and Dadda

multipliers. The recursive hierarchy promotes regularity and allows for short design
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times. The multiplier is also scalable to higher bit precisions by simply duplicating sub-
multipliers and adding additional levels of reduction. A negative aspect of the recursive
multiplier is its difficulty in handling 2’s complement numbers. However, since we are
interested in floating point implementations consisting of fixed-point unsigned integer
multipliers, this disadvantage of the recursive multiplier need not be an issue in this
study.

After examining the benefits of the recursive multiplier, it was found that the very
regular composition of the architecture allows it to be readily applied in systems
requiring fixed-width processing. As described before, literature shows that many
truncation schemes are available for array and tree multipliers, but none specifically for
multipliers based on a recursive architecture. The ensuing chapters will present new
truncation schemes that target the recursive multiplier. The standard array multiplier will
be used as the base multiplier in all designs, which allows for more convenient

complexity calculations and comparisons.
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CHAPTER 5

FIXED-WIDTH RECURSIVE MULTIPLIER ARCHITECTURES

The preceding chapter provided an overview of the recursive multiplication
algorithm (KOA), as well as the architecture for digital recursive multiplication,
presented by Danysh and Swartzlander. The recursive multiplier has an inherent
hierarchical structure that consists of several sub-multipliers, making it very suitable for
fixed-width applications. Itwill be shown that rather than modifying the sub-multipliers’
structure, a truncation scheme can simply remove one sub-multiplier and replace it with a
data-dependent correction term.

As mentioned before, fixed-width multipliers have been mainly targeting array
and tree structures [9]. Truncation schemes usually involve omitting a certain number of
the least significant columns of the partial products matrix and then adding a constant or
data-dependent correction term to the truncated partial products matrix to reduce the error
due to truncation. Generally, rounding is then applied to the multiplier’s output. In this
chapter, four new truncation schemes targeting the recursive multiplier are proposed.
The associated computation error is analyzed, and a summary of complexity savings

incurred as a result of truncation is given as well.

5.1 Proposed Truncation Schemes for Recursive Multipliers

As described before, the overall multiplication in a single-level recursive
multiplier is reduced to four smaller sub-multiplications. The product of the multiplicand

A = Ay x 2"+ A and multiplier X = Xy x 2" + X7 can be written as follows:
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Y=4-X
= (A, x2" + 4,)- (X, x2" + X, )
=Ay Xy x2" (A4, - X, + 4, X,)x2"+ 4, - X,.
Graphically, a fixed-width recursive multiplier can be represented by Figure 5.1. It is
clear that the accumulation of four sub-products yields a 4# bit result whereas the product
(denoted as Y) has only 27 bits. In this format, it is evident that the first sub-product,
A X; (highlighted), is of minor significance with respect to the rounded 2» bit product.

The truncation schemes to be presented thus target this particular component.

2n

— " \
e
& T a ]
X
|
|
+[ A x Xn I
L Y |
- v J
2n

Figure 5.1: Fixed-Width Recursive Multiplier [2]

In all the proposed truncation schemes, the sub-multiplier 4,X; is removed and
subsequently, a data-dependent correction term is added. In the design process of all
schemes, it was desirable that the new correction term be relatively easy to generate and,
at the same time, maintains some partial information regarding the magnitude of the sub-

multiplier, 4.X;. The proposed truncation schemes are elaborated in the following
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paragraphs and illustrated in Figures 5.2-5.5. All schemes have a relatively short design
time.

In Proposal #1, we simply use AxX; or A Xy to replace the least significant
truncated term 4;X;. In this fashion, some partial information regarding the magnitude of
the partial product is maintained, while no actual multiplication is carried out. The
advantage of this scheme lies in the fact that the correction value is a significant term

already generated in the calculation, and thus no extra costs are created.

! K 4., or 4 X,

AgXy /

4 L‘YH

Figure 5.2: Proposal #1

In Proposal #2, the average of the two blocks, 45X, and A, Xy, is placed in the
block of A.X; after truncation. This approach involves the addition of four rows to the
partial product reduction tree of the overall recursive structure, where the rows would be
ApXy /2 and A Xy /2 in carry save format. This is simply a shifted version of the two
previously generated sub-products, thus adding no significant complexity to the
architecture. The motivation behind this architecture is that a correction term with a high

correlation with the truncated term, 4,X, is provided.
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A Xy + A Xy

Ay X; f

ApXy /

A Xy

Figure 5.3: Proposal #2

In Proposal #3, the most significant partial product bit, namely a,.;x,.;, generated
by the block 4.X}, is added at the least significant bit position of block AxXy. Once
again, the aim is to maintain some partial information regarding the magnitude of the
partial product without carrying out a full multiplication. The correction bit is simply
implemented with one two-input AND gate. With a 1-bit correction term, accumulation

of the partial products matrix is simplified, thus requiring less reduction circuitry.

.1 Xp-1 Ar=anan;...a500
X'L = XX XXy
A 4
Ag Xy
AgXy
A Xy

Figure 5.4: Proposal #3

Proposal #4 is essentially an extension of the scheme in Proposal #3, allowing
additional correction bits to be used for further error correction. A significant difference,
however, is that the first correction bit, a,.;x,.; is added at weight 221 \which is simply

the most significant bit position of the truncated sub-multiplier, 4.X;. Additional
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correction bits, @n2%n.2, An-3%n-3, ..., aoxg, are added to positions right of the first bit.

Mathematically, the correction term with d correction bits, / < d <n, can be defined as:

— ) @ )
Cd _CZn—lCZn—Z CO B

{a. x._ ., 2n—-d<i<2n-1

i-n""i-n?

where ¢¥ = _
0, 0<i<2n-d-1.

For example, when d = 2, the correction term C, contains only two bits and has a value
of C,=a,x, 2" +a,,x,,2""2 Each correction bit can be easily implemented with one

two-input AND gate. Similar to the previous scheme, this method allows for a simplified

partial products reduction stage.

2n
' % N
3n-l 1<d<n™
——
AH X XH Cd
4n-1 2n 2n-1 2n-d
A; X Xy
+ 3n-1 n

Figure 5.5: Proposal #4

5.2 Error Simulation and Analysis

To determine some of the error statistics associated with each proposed truncation
scheme, exhaustive simulations were carried out for a fixed-width recursive integer
multiplier as part of a floating point multiplication system. The C code for all simulation
programs are provided in Appendix A. Error statistics are tabulated in Tables 5.1 and
5.2. Table 5.1 shows results for the following cases: original full-width multiplier,

removal of A;X;, Proposals #1 through #3, and Proposal #4 with one and then n
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correction bits. Simulations were carried out for three sizes of multipliers, namely 2n =
6, 8 and 10. Table 5.2 shows error statistics of the proposed schemes along with those of

some tree/array multiplier-based truncation schemes, such as constant and variable

correction.

Full-width

_(With 4,%)

Proposal #1
Proposal #2 0.037 0.875 -0.906 0.109
Proposal #3 0.059 1.250 -0.828 0.173
Proposal #4 w/ -0.067 0.750 -0.828 0.102

1 correction bit
n=1;r(c):§cr)rs:ét?:n“l;/its 0.098
Remowlotdt, o5

Proposal #1 0.133
Proposal #2 0.113
Proposal #3 0.167
L comeaion bi 0.101
n= Erggr(;:ce:?i(:;ll/ bits 0.095
_ Removalofd,X; | 0235 | 0500 | -1438 | 0.130
Proposal #1 0.136
Proposal #2 0.114
Proposal #3 0.165
L comention i 0.110 0.750 -0.954 0.101
e oposelW 0.008 0.750 -0.734 0.094

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

31 le .2: Eor St

Proposal #4 w/
1 correction bit
Proposal #4 w/
3 correction bits

0.025 | 0.750 | -0.688 | 0.098

ROMMax | 0193 | 1316 | NA
pelh sy AT o AR Lo T
Proposed w/ | 1 4 0.750 0.095

4 correction bits

Table 5.1 shows that all truncation schemes provide some degree of error
correction. Generally, all schemes lower the average error of the fixed-width multiplier.
More specifically, Proposal #1 offers the lowest average error, but relatively larger
maximum negative and positive errors. Proposal #2 provides the second best variance of
error and relatively low maximum and average errors. Proposal #3 offers an average
error that is comparable to others but with a relatively high variance of error. Proposal #4
(with n correction bits) offers the best average error, lowest maximum errors, and lowest
variance of errors. Overall, Proposal #4 exhibits better error statistics than the other three
schemes. Use of additional correction bits further improves statistics. The maximum
positive error remains at 0.75, and additional correction bits reduces the maximum
negative error as well as variance of error. For all schemes, average error and variance of
error tend to decrease as the size of the multiplier increases, while maximum errors

increase slightly. Comparable or better error statistics are expected for larger values of n.
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Table 5.2 shows that the proposed fixed-width recursive multiplier based on
Proposal #4 truncation scheme has a lower average error, maximum error and variance of
error than multipliers found in literature. The other proposed fixed-width multipliers
(Proposals 1 through 3) also compare well with these multipliers.

Mathematical analysis of Proposal #4 truncation scheme has proven to be helpful
in discovering further some important properties regarding maximum positive and
negative errors. The analysis is given below:

It is clear that the term 4,X; is approximated by the correction expression Cy:
n-1 n- o d
AX, =Y (ax)2" ~C,=) a,,x,, 2"

1 n-1
i=0 j=0 k=1

A normalized error function, e(n,d), can thus be defined such that:

1 d ) n-1 n-1 it iean
e(n,d) = (C, -4,X,) =kzla,,,kx,,_k2 g —Zojzo(a,,xj)-z o,

When d = 1, the error function e(n,1) is given by:

n=l n-

1
e(n,)=a,_x, 27— Z
i=0 j

1
(a,-x,) . 2i+j—2n .
j=0

Then range of e(n,1) can consequently be shown below as:

3 1
w'[05 —F+§2—n) < e(n,l) <0.25.

Thus, Proposal #4 truncation scheme with one correction bit would introduce a maximum

positive error of 0.25 and a maximum negative error of —(0.5 ~Sm

3 +%) Considering

that a maximum error of 0.5 is introduced by final rounding, the fixed-width multiplier

using the proposed truncation scheme with one correction bit therefore has a maximum
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.\ . . 1
positive error of 0.75 and a maximum negative error of 1- +27 <1. It can be seen

2n+l

that maximum positive error is independent of the multiplier size. Also the maximum
negative error is always less than 1 for any multiplier size. Simulation results show that

additional correction bits reduce this negative error.

5.3 Complexity Analysis

Architectural estimations for complexity savings were carried out for each of the
proposed fixed-width multiplier designs. Tables 5.3 and 5.4 show complexity savings
incurred for multipliers of sizes 2n = 8, 16 and 32 bits. Calculations are made assuming
that the array multiplier is used as the base multiplier in the recursive architectures.

The complexity of a truncation scheme consists of three parts: the base
multipliers’ complexity, complexity in generating the correction term, and complexity of
the reduction circuits. It is assumed that 4-bit, 8-bit and 16-bit array sub-multipliers are
for multipliers of size 2n =8, 16 and 32, respectively. For a &-bit array multiplier, the gate

count can be estimated by:

G

array(k) = K +12(k = 2)(k-1)+4(k -1),
where one full adder is estimated as 12 gates and one half-adder as 4 gates [25].

We can take Proposal #4 truncation scheme with one correction bit for an 8-bit

multiplier as an example. The gate count for three base multipliers is 3G 300.

array(4) -

Generation of one correction bit requires one gate. The complexity for the reduction stage
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can be estimated as 12 full adders and 5 half adders, which is 164 gates. The total gate

count for the proposed truncation scheme with one correction bit is thus 300+1+164=165.

Percent.
“Savings

194

From the complexity estimations, it can be seen that savings can potentially reach
25% as n becomes larger for all truncation schemes. More specifically, it can be seen
from Table 5.3 that Proposal #4 with # and then 1 correction bits have similar complexity
savings as Proposal #1 and Proposal #3, respectively. Proposal #2’s low complexity
savings for smaller multipliers is due to the fact that the scheme involves addition of two
more rows to the partial product matrix, thus increasing the circuitry required for

reduction.
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To briefly summarize the overall performance of each proposed fixed-width
recursive multiplier, Table 5.5 has been created to compare the relative error statistics
and complexity savings for each truncation scheme. Simple scores for error statistics and
complexity savings were assigned to each scheme based on the results in previous tables.

The performance scoring is as follows: 1 = Satisfactory, 2 = Good, 3 = Best.

Table 5.5: Overall Performance Comparison of Proposed Truncation Schemes

This chapter has provided an in-depth study of new truncation schemes targeting
recursive multipliers. All proposed schemes are relatively easy to implement and require
short design times. The presented error statistics and complexity comparisons can aid
one in selecting the reduced hardware truncation scheme that is best suited for a given
application.

It should be noted that architectural complexity savings which have been
estimated mathematically cannot always be used as a true metric of multiplier
performance. To determine performance characteristics such as propagation delay and
power consumption, it is necessary to implement the designs in hardware and carry out

simulations. Hardware implementation is presented in the subsequent chapter.
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CHAPTER 6

HARDWARE IMPLEMENTATION

To further assess the performance characteristics of the proposed fixed-width
recursive multiplier architectures, valid models must be created for each design, and then
compared against a model of original full-width recursive multiplier. Multipliers of sizes
16 and 32 bits have been modelled and implemented in Altera Stratix EP1S10F484C5
Field Programmable Gate Array (FPGA).

Since several designs needed to be implemented, FPGA technology was the most
feasible method of hardware implementation. A major advantage of FPGAs over ASIC
(application specific integrated circuit) designs is their rapid-prototyping capabilities
[26]. FPGA implementation allowed for the following performance comparisons to be
made between the proposed architectures: propagation delay, power consumption, and
complexity in terms of logic elements (LEs).

This chapter begins with a description of the hierarchical design of the multiplier
using Verilog Hardware Description Language (HDL). Simulation results and

performance comparison of architectures are the subsequent topics of discussion.

6.1 HDL Model

Verilog is a hardware description language capable of describing digital design as
a set of modules which can become building blocks forming a complete system. This
hierarchical design methodology was followed in modelling the proposed fixed-width

multiplier architectures.
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All Verilog codes were synthesized for Stratix EP1S10F484C5 FPGA using
Altera Quartus II software. As an example, RTL schematic of a “32-bit fixed-width
recursive multiplier using Proposal #4 truncation scheme (16 correction bits)” is shown in
Figure 6.1. Example Verilog code for this design has been provided in Appendix B, and
important synthesis and simulation reports are in Appendix C. The four main
components of the architecture are the base multipliers, which provide intermediary
products, the data-dependent correction block, and the reduction block, which provides

the final fixed-width product.

(I w— - . nes.

i

|
inmies

N
=05
| b=
i N SR

Figure 6.1: RTL Schematic Diagram of a '"32-bit Fixed-Width Recursive Multiplier using Proposal
#4 (16 correction bits)"
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6.2 Simulation Results

Hardware simulation was carried out to measure propagation delay, dynamic
power consumption, and complexity. Timing Analyzer and PowerPlay Analyzer tools in
Altera Quartus II were utilized. Results for these metrics have been tabulated (Table
6.1). Reductions in delay, power and complexity with respect to the original recursive
multiplier have been calculated. Additionally, dynamic power consumption in terms of

mW/MHz has been calculated, which is essentially a power-delay-product (PDP) metric.

Table 6.1: FPGA Simulation Results

Remove |
ArXy

Proposal
#1

| Proposal
#2

Proposal
#3

4.388 -3.369 338.23 9.98 1.484 534 23.5

4.643 -9.375 33945 9.66 1.576 565 19.1

4.256 0.259 332.44 11.53 1.415 524 249

Proposal

awith | 4058 | 0306 | 33665 | 1041 1433 536 232

Original | 5.116 — 529,79 — 2.710 2941 —

Remove v
ALXL 4.686 87405 43227 17.31 2.026 2202 25.13

Proposal
#1

Proposal
#2

Proposal
#3

Proposal
#4 with

5.139 -0.450 470.55 10.57 2418 2250 23.50

5.389 -5.336 472.86 10.11 2.548 2346 20.23

4.750 7.154 466.16 12.01 2214 2210 24.86

4.770 6.763 470.36 11.60 2.244 2248 23.56
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From Table 6.1, it can be seen that all designs achieved a reduction in propagation
delay, with the exception of multipliers using Proposal #1 and #2 truncation schemes.
For larger multipliers, using Proposal #3 and Proposal #4 can result in a delay reduction
of almost 7%. At the same time, reduction in dynamic power consumption can reach
12%. Multipliers with Proposals #3 and #4 exhibit the lowest PDP (mW/MHz).
Complexity savings incurred in FPGA implementation match well with the architectural

estimates made earlier.  Savings can potentially reach 25% as n increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

CHAPTER 7

FIXED-WIDTH MULTI-LEVEL RECURSIVE MULTIPLIERS

As seen in Chapters 4 and 5, the recursive multiplier has an inherent hierarchical
structure that consists of several sub-multipliers, making it suitable for fixed-width
applications. Rather than modifying the sub-multipliers’ structure, a truncation scheme
simply removes one sub-multiplier and replaces it with a data-dependent correction term
to minimize computational error due to truncation. An apparent advantage of using a
fixed-width recursive multiplier is that no design change is needed for the structure’s sub-
multiplier components. In this chapter previous work is extended to multi-level recursive
architectures and new truncation schemes for multi-level recursive multipliers are
presented. Error analysis and complexity savings for the multi-level recursive structure

are also discussed.

7.1 Multi-Level Recursive Multiplication

Single-level recursive multiplication may be further broken down into smaller
sub-multipliers, which compute in parallel. The relationship between a positive integer

number of levels of recursion, k, the overall size of the multiplier, a, and the size of the

k =log, (%J

For example, a 64-bit multiplier may be composed of four 32-bit sub-multipliers (k = 1),

sub-multipliers, b, may be given by:

sixteen 16-bit sub-multipliers (k = 2), etc. For convenience in describing multi-level
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recursive multiplication, let two unsigned (2" X n)-bit operands be used for a k-level

recursive structure. Consider the case of a two-level recursive multiplier where the

operands can be given by:

A=(ay, a4, )= AV 22"+ 4D = 4D 2" 1 4D 22" 4+ 4P 2" + 4P, and

2 2
X=Xy Xgpy %)= XD 24 X0 = xP .27 4 x P2+ x P 2"+ X P,

where 4" and X, i = 0,1, are components of 2 bits each and 4™ and X?, i=0,1,2,3,

are components of » bits each. The superscript of a term indicates at which recursive
level it is generated. It follows that the resultant product of 4 and X with two levels of

recursion is:
Y=4-X
- Al(l)Xl(l) .on +(A1(1)X0(1) +A0(1)X](1)),22n + (I)Xél)
=(APXP 2" + (AP XD + AP X D). 2" + AP X D).
+(APXD 2"+ (APXP + AP X)) 2"+ AP XD ) 2"
+(APXP 2"+ (4PXD + AP XP)- 2"+ 4P XP )
( )

+H(APXD 2%+ (APXP + 4P XP)- 2" + AP XD

7.2 Proposed Truncation Scheme for Multi-L.evel Recursive Multipliers

For fixed-width multiplication, the product must remain as 4» bits, which is the

size of the input operands. Thus, the truncated components should include all the terms
in the above equation whose most significant bit has a weight of less than2*". For

convenience, the above equation can be re-written as:
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Y=4-X
— Al(l)Xl(l) L4n +(A1(1)X0(1) +A0(1)X1(1))_22" + (I)Xél)
:Al(x)Xl(l) .24n+(A3(2)X1(2)_22n+(A3(2)X(§2)+ (2)Xl(2))_2n+A2(2)X0(2))_22n
HADXD 27+ (AOXD + APDXD)- 2 + APXD)2 4 AP XS

= APXD 27+ (APXP + AP X D) 2" 1 (AP XD + ADXD + ADXD + AP X D)2
+APXD x27 4 ADXD x 27 + AP X,

Clearly, the last three terms in bold, 42X .2, AP X? 2%, and AV X", should be
truncated, as shown graphically in Figure 7.1. For error correction, any of the truncation
schemes proposed earlier may be applied. Error simulation and analysis have been
carried out with Proposal #4 truncation scheme applied to a two-level recursive

multiplier, as shown in the next sub-section.

AVX 47X,
R

Dy 2y Dy
47X, 47X,

A% 42X,

- Sy
ADK

AR Dn
A%J,,.-X1

A4 1(3) Xg(z{‘w";A 6(2) X, (2]
s

Figure 7.1: Graphical Representation of Truncation in a Two-Level Recursive Multiplier

7.3 Error Simulation and Complexity Analysis

Table 7.1 shows exhaustive error simulation results for fixed-width two-level
recursive multipliers of sizes 4n = 4, 8 and 16, with no correction (only truncation), 1

correction bit (for each truncated sub-multiplier) and then the maximum number of
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correction bits. As expected, addition of correction bits reduces error. Overall error is
also greater than in the single-level case. Generally, maximum errors become more
prominent with larger multipliers, while average error and variance of error decrease.

Mathematical analysis describing maximum positive etror has been carried out.

Table 7.1: Error Simulation Results for Fixed-Width Two-Level Recursive Multipliers

0.500
1.220
1.220

2n-12n-1
For the truncated component, A4VX(" = z Za,.xj-Z’” , define an error
i=0 j=0

d
correction term (from Proposal #4) C(d,2n) as C(d,2n)= Y a,, ;%;,, 2", where d,

k=1
1< d <2n, determines the number of bits to be used in the correction term, and 2# is the

size of the truncated component. C(d,2#) is obviously simpler to compute than carrying
out the full multiplication for AVX{". The normalized error function e(d,2n)for the

error due to replacing AV X{" by C(d,2n) can be defined as follows:

1 d L miand N
e(d,2n) = > (C(d, 211)—Aé1)Xél)) _ ZaZn-kan—k 9k _ Z Z ax, 2,
k=1 i=0 j=0
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For the other two truncated terms (smaller multipliers), their error correction terms and

error functions are given by:

h—1 n—

d 1 n-1 o
e(d,n) = %( C(d,n)- 2" = APXP 2" ) =¥ X, 27 = D0 D %, 2T
2 k=1 i=0 j=0
and
1 2n (2) v(2) A2n d —k SRS i+j~2n
e(d,n):F(C(d,n)-z —4PXP 2" =D a, %, 2 —Zolzoaixz,w-Z :
k=1 i=0 j=
respectively.

Lemma: The maximal positive value of the error function e(d,n) is not greater than

0.25, or e(d,n)<0.25 for 1<d <n.

n-l n-

i+j-2n
ax,2 .

d
A proof of the lemma follows by expanding e(d,n) = Zan_kxn_k P

1
k=1 i j=0

[}
o
.

This was seen previously in error analysis presented in Chapter 5. It can be shown that
for k-level recursive structure, the total error due to replacing the truncated terms by the

corresponding correction terms is:

k
D 27e(d,2"'n)+0.5< %(zk +1).

i=l

Maximum post rounding error, 0.5, is taken into consideration in the expression. In
determining the expression it is assumed that each partial product bit has equal
probability of being a one. This maximum error bound is tabulated for different values of
k in Table 7.2. Exhaustive simulation results from earlier show that this upper bound is

indeed approached as n becomes larger. Also, it is shown in Table 7.1 that absolute value
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of the maximum negative error can be reduced to a value below the maximum positive
error bound for a sufficient number of correction bits, d.

Potential complexity savings for different levels of recursion are shown in Table
7.3. A two-level recursive fixed-width multiplier can offer more complexity savings than
the single-level case with the expense of increased computation error. The percentage

complexity savings for k-levels of recursion is found to be approximately:
1
50(1—- —2-k~) .

This expression can be determined intuitively from a diagram graphically showing the
truncation pattern. Figure 7.2 graphically shows complexity savings for one, two and
three levels of recursion. As the number of levels of recursion increases, it can be seen
that the truncation pattern actually tends towards traditional truncation of partial product
matrices for tree and array multipliers (approximately 50% complexity savings), shown

in Figure 7.3.

Max. Pos. Error | 0.75 | 1.25 | 2.25 | 425 | 8.25

Table 7.3: Approximate Complexity Savings for Different Levels of Recursion
[T = i T

Approx. |
Complexity

25.0 | 37.5 | 43.8 | 469 | 484 50(1—Lk)
Savings (%) 2
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Figure 7.3: Partial Product Matrix Truncation for Tree Multipliers
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CHAPTER 8
CONCLUSIONS

8.1 Summary of Contributions

The purpose of this study has been to explore the area of digital multiplication,
and more specifically, fixed-width multipliers, which are important components of many
DSP systems. This has lead to several contributions to fixed-width digital multiplication
architecture and also to the field of computer arithmetic.

Traditionally, fixed-multiplication has been targeting only array and tree
multipliers. This thesis has extended the concepts of truncation schemes to the high-
performance recursive multiplier, whose inherent hierarchical structure makes it very
suitable for fixed-width applications. Four novel fixed-width multipliers based on
recursive architectures have been proposed. Error statistics for each design have been
determined via exhaustive simulations, and compared with fixed-width multipliers in
literature. Mathematical expressions for maximum negative and positive errors have
been developed for one of the truncation schemes (Proposal #4). Complexity reduction
estimates have been carried out at the architectural level. Additionally, all designs have
been implemented in FPGA to determine reduction in delay, power and logic complexity
savings with respect to the original full-width recursive multiplier.

Based on work done for fixed-width single-recursive multiplication, novel
architectures for fixed-width multi-level recursive multiplication have also been
developed. Error and complexity analysis have been carried out. New mathematical
expressions describing maximum positive error and complexity savings for a general -

level fixed-width recursive multiplier have been derived.
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8.2 Concluding Remarks

New architectures for fixed-width digital recursive multipliers have been
developed. The designs have embodied many of the modern requirements of fixed-
width multipliers such as low error, complexity, delay and power. A significant
advantage of this work is that very little architectural change of the original recursive
(single-level or multi-level) multiplier is needed when implementing any of the proposed
truncation schemes

Simulation results have shown that the proposed fixed-width multipliers exhibit
better error statistics than those found in literature, in terms of average error, maximum
positive and negative errors, and variance of error. The designs have also been
implemented in Stratix EP1S10F484C5 FPGA. Simulations have shown that delay,
power and complexity can be reduced up to 7%, 12% and 25%, respectively, compared to
the original full-width recursive multiplier. Proposal #4 truncation scheme has exhibited
the best balance of error and performance characteristics. A performance summary of the
proposed schemes has been given in Chapter 5 to aid one in determining the truncation
scheme best suited for a certain application.

Fixed-width multiplication has also been extended to multi-level recursive
multipliers, as shown in Chapter 7. A simple truncation scheme, based on previous
schemes for single-level recursive multipliers has been presented. Generally, fixed-width
multipliers with higher levels of recursion can offer more complexity savings at the
expense of increased computation error. Mathematical expressions for maximum
positive error as well as maximum potential complexity savings have been presented for

k levels of recursion.
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APPENDICES
APPENDIX A

C Code for Error Simulation Programs

/***********************************

EXHAUSTIVE SIMULATION PROGRAM C CODE

Proposal #1 Error Statistics
************************************/

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>

int test():
int testl();

main ()

{

float B,C,Cl,C2,C3,C4,C5,C22,C33,C55;
float EO,El,E2,E3,AE0,AEl,AE2,AE3;

float MAEO,MAEl,MAE2,MAE3;

float MIEO,MIE1l,MIE2,MIE3;

float EEO,EEl,EEZ,EE3,AEEQ,AEEl,AEE2, AEE3;
float FCIO,FCI1,FCI3,D1,D2,D3;

int CI10,CI1,CI2,CI3,CIIO0,CII1;

int n,i,3,k,1ii,37,kk;

/*
Casel:
0 <= XH,XL,AH,AL <= 2”n-1
Case?2:
2"{n-1} <= XH,AH <= 2"n-1
0 <= XL,AL <= 2”n-1
*/

for (n=8;n<9;n++)

for (i=0;i<n; i++)
B=B*2;

AE0=0;AE1=0;AE2=0;
AEE0=0;AEEl1=0;AEE2=0;
MAEO=0;MAE1=0;MAE2=0;
MIEO=0;MIE1=0;MIE2=0;
for (XH=0; XH<B; XH++)
for (AH=0;AH<B;AH++)
for (XL=0;XL<B;XL++)
for (AL=0;AL<B;AL++)
{
C=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B;
CIO=C;
CI1=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B+0.5;
D1=C-CIO;
if(D1==0.5)
{
if (CI0/2*2==CI0) CI1=CI1-1;
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}
AL1=AL/(B/2);
XL1=XL/(B/2);

C2=AH*XH+ (AH*XL+AL*XH) /B+ (AH*XL) /B/B;

CI2=AH*XH+ (AH*XL+AL*XH) /B+(AH*XL) /B/B + 0.5;
*/

D2=C2-CIIO;

£(D2==0.5)
{
1if(CII0/2*2==CII0) CI2=CI2-1;
}

/*

printf ("C=%f,CI0=%f,CIl=%f,CI2=%f\n",C,CIO,CI1,

*/
E0=CIO-C;
if (EO>MAEQ) MAEO=EO;
if (EO<KMIEO) MIEO=EO;
EEO=EQ*EO;
E1=CI1-C;
if(E1>MAEl) MAEl=El;
if(E1<MIE1l) MIE1l=El;
EE1=E1*El;
E2=CI2-C;
if (E2>MAE2) MAE2=E2;
if (E2<MIE2) MIE2=E2;
EE2=E2*E2;
AEQ=AEQ+EO0;
AEEQO=AEE(Q+EEQ;
AE1=AEl+El;
AEE1=AEEl+EEl;
AE2=AE2+E2;
AEE2=AEE2+EE2;
}
AEQO=AEO/B/B/B/B;
AEEQ=AEEQO/B/B/B/B;
AEl=AEl/B/B/B/B;
AEE1=AEE1l/B/B/B/B;
AE2=AE2/B/B/B/B;
AEE2=AEE2/B/B/B/B;
printf (" (Truncation) AEO=%f, MaxE=%f, MinE=%f,
printf (" (True Round) AEl=%f, MaxE=%f, MinE=%f,
printf (" (Trunc.Schm) AE2=%f, MaxE=%f, MinE=%f,
}

}

CI2);

Var0=%f\n",AEO, MAEQ, MIEO, AEEO~AEQ*AEQ) ;
Varl=%f\n",AEl,MAEl,MIEl,AEE1-AE1*AEl) ;
Var2=%f\n",AE2,MAE2,MIE2, AEE2-AE2*AE2) ;

/********************************************'k*******************

EXHAUSTIVE SIMULATION PROGRAM EXAMPLE C CODE

Proposal #2 Error Statistics

****************************************************************/

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <fecntl.h>
#include <time.h>

int test();
int testl():

main ()

{

float B,C,C1,C2,C3,C4,C5,C22,C33,C55;
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float EO,El,E2,E3,AEQ,AEl,AE2,AE3;

float MAEO,MAEl,MAEZ2,MAE3;

float MIEO,MIEl,MIE2,MIE3;

float EEO,EEl,EE2,EE3,AEEOQ,AEEl,AEE2,AEE3;
float FCIO,FCI1,FCI3,D1,D2,D3;

int CI10,CI1,CI2,CI3,CIIO,CII1;

int n,i,3j,k,1ii,33,kk;

/*
Casel:
0 <= XH,XL,AH,AL <= 2”n-1
Case2:
2~{n-1} <= XH,AH <= 2"n-1
0 <= XL,AL <= 2°n-1
*/

for (n=8;n<9%;n++)

for(i=0;i<n;i++)
B=B*2;

AE0=0;AE1=0;AE2=0;
AEEQO=0;AEE1=0;AEE2=0;
MAE0=0;MAE1=0;MAE2=0;
MIEQ=0;MIE1=0;MIE2=0;
for (XH=0; XH<B;XH++)
for (AH=0; AH<B;AH++)
for (XL=0; XL<B; XL++)
for (AL=0;AL<B;AL++)
{
C=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B;
CIO=C;
CI1=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B+0.5;
D1=C-CIO0;
if (D1==0.5)
{
if(CI0/2*2==CI0) CI1=CI1l-1;
}
AL1=AL/ (B/2);
XL1=XL/(B/2):

C2=RH*XH+ (AH*XL+AL*XH) /B+ (AH*XL+AL*XH) /2/B/B;

CI2=AH*XH+ (AH*XL+AL*XH) /B+ (AR*XL+AL*XH) /2/B/B + 0.5;
*/

D2=C2-CII0;
if (D2==0.5)
{
if£(CII0/2*2==CII0) CI2=CI2-1;
/* }
printf ("C=%f,CI0=%f,CIl=%f,CI2=%f\n",C,CIO,CI1,CI2);
*/
EO=CIO-C;
if (EO>MAEQ) MAEO=EOQ;
if (EO<KMIEQO) MIEQ=EOQ;
EEO=EO*EOQ;
E1=CI1-C;
if(E1>MAEl) MAEl=El;
if(E1<MIEl) MIEl=E1l;
EE1=El1*El;
E2=CI2-C;
if (E2>MAE2) MAE2=E2;
if (E2<MIE2) MIE2=E2;
EE2=E2*E2;
AEO=AEQ+EOQ;
AEEO=AEEQ+EEOQ;
AEl=AEl+El;
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AEE1=AEE1+4EEl;
AE2=AE2+E2;
AEE2=AEE2+EE2;
}
AEO=AEO/B/B/B/B;
AEEO=AEE(O/B/B/B/B;
AE1=AEl1/B/B/B/B;
AEEl1=AEEl1/B/B/B/B;
AE2=AE2/B/B/B/B;
AEE2=AEE2/B/B/B/B;
printf (" (Truncation) AEO=%f, MaxE=%f, MinE=%f, VvarO=%f\n",AEOQ,MAEO,MIEOQ,AEEQO-AEO*AEOQ);
printf (" (True Round) AEl=%f, MaxE=%f, MinE=%f, Varl=%f\n",AEl,MAEl,MIEl,AEE1-AE1*AEl);
printf (" (Trunc.Schm) AE2=%f, MaxE=%f, MinE=%f, Var2=%f\n",AE2,MAE2,MIE2,AEE2~AE2*AE2);

VR L e e T
EXHAUSTIVE SIMULATION PROGRAM EXAMPLE C CODE

Proposal #3 Error Statistics
*******************************k*********************************/

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>

int test():
int testl();

main ()

{

float B,C,C1,C2,C3,C4,C5,C22,C33,C55;
float EO,El1,E2,E3,AE0,AEl,AE2,AE3;

float MAEO,MAEl,MAE2,MAE3;

float MIEO,MIE1l,MIE2,MIE3;

float EEO,EEl,EE2,EE3,AEEQ,AEEl,AEE2,AEE3;
float FCIO,FCI1,FCI3,D1,D2,D3;

int CI0,CI1,CI2,CI3,CIIO,CII1;

int n,1,j,k,31,33,kk;

/*
Casel:
0 <= XH,XL,AH,AL <= 2”n-1
Case2:
2~{n-1} <= XH,AH <= 2°n-1
0 <= ¥XL,AL <= 2”n-1
*/

for(n=8;n<9;n++)
{
printf("-=-=-———————n- n=%j---------——---—- \n",n);
B=1;
for (i=0;i<n;i++)
B=B*2;

AE0=0;AE1=0;AE2=0;
AEE0=0;AEE1=0;AEE2=0;
MAEO=0;MAE1=0;MAE2=0;
MIEO=0;MIE1=0;MIE2=0;

for (XH=0;XH<B; XH++)

for (AH=0;AH<B;AH++)

for (XL=0;XL<B; XL++)

for (AL=0; AL<B;AL++)

{

C=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B;
CIO=C;
CI1=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B+0.5;
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D1=C-CIO;

if(D1==0.5)
{
if(CI0/2*2==CI0) CI1=CIl-1;
}

AL1=AL/(B/2);

XL1=XL/(B/2);

C2=AH*XH+ (AH*XL+AL*XH) /B+AL1*XL1;

CI2=AH*XH+ (AH*XL+AL*XH) /B+ AL1*XL1l + 0.5;

D2=C2-CII0;
if (D2==0.5)
{
if (CII0/2*2==CIIQ) CI2=CI2-1;
}
EO=CIO-C;
if (EO>MAEQO) MAEO=EO;
if (EO<KMIEQ) MIEQ=EOQ;
EEO=EO*EQ;
E1=CI1l-C;
if (E1>MAEl) MAEl=El;
if(E1<MIEl) MIE1l=El;
EEl=El1*El;
E2=CI2-C;
if (E2>MAE2) MAE2=E2;
if(E2<MIE2) MIE2=E2;
EE2=E2*E2;
AEQ=AEQ+EQ;
AEEQO=AEEQ+EEQ;
AE1=AE1l+El;
AEE1=AEEl+EEl;
AE2=AE2+E2;
AEE2=AEE2+EE2;
}
AEO=AEQ/B/B/B/B;
AEE(Q=AEEQO/B/B/B/B:
AEl=AEl/B/B/B/B;
AEE1=AEEl/B/B/B/B;
AE2=AE2/B/B/B/B;
AEE2=AEE2/B/B/B/B;
printf (" (Truncation) AEO=%f, MaxE=%f, MinE=%f, Var0=%f£\n",AEO,MAEOQO,MIEQ,AEEQ0-AEQ*AEQ);
printf (" (True Round) AEl=%f, MaxE=%f, MinE=%f, Varl=%f\n",AEl,MAEl,MIEl,AEEl-AEl*AEl);
printf (" (Trunc.Schm) AE2=%f, MaxE=%f, MinE=%f, Vvar2=%f\n",AE2,MAE2,MIE2, AEE2-AE2*AE2);
}

}

/****************************************************************

EXHAUSTIVE SIMULATION PROGRAM C CODE

Proposal #4 Error Statistics
****************************************************************/

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>

int test():
int testl():

main ()

{
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int XH,XL,AH,AL,AL1,XL1,AL2,XL2,AL3,XL3,AL4,XL4,ALS,XL5,AL6,XL6,AL7,XL7,AL8, XLE;

float B,C,C1,C2,C3,C4,C5,C22,C33,C55;
float EQ,El1,E2,E3,AEQ,AEl,AE2,AE3;

float MAEQ,MAEl,MAE2,MAE3;

float MIEO,MIEl,MIE2,MIE3;

float EEO,EEl,EE2,EE3,AEEQ,AEEl,AEE2,AEE3;
float FCIO,FCI1,FCI3,D1,D2,D3;

int C€I0,CI1,CI2,CI3,CIIO0,CII1;

int n,i,Jj,k,1ii,j3, kk;

/*
Casel:
0 <= XH,XL,AH,AL <= 2~n-1
Case2:
2~{n-1} <= XH,AH <= 2°n-1
0 <= ¥XL,AL <= 2”°n-1
*/

for (n=8;n<9;n++)
{
printf("-----———--—-- n=%i--———m e \n",n);
B=1;
for (1=0;1i<n;i++)
B=B*2;

AE0=0;AE1=0;AE2=0;
AEEO=0;AEE1=0;AEE2=0;
MAE(O=0;MAE1=0;MAE2=0;
MIEO=0;MIE1=0;MIE2=0;
for (XH=0; XH<B; XH++)
for (AH=0; AH<B;AH++)
for (XL=0; XL<B;XL++)
for (AL=0;AL<B;AL++)
{
C=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B;
CIO=C;
CI1=AH*XH+ (AH*XL+AL*XH) /B+AL*XL/B/B+0.5;
D1=C-CIO;
if(D1==0.5)
{
if(CI0/2*2==CI0) CI1=CI1l-1;
}
AL1=AL/(B/2);
XL1=XL/(B/2);

AL2=AL/(B/4):
XL2=XL/(B/4);

AL3=AL/(B/8);
XL3=XL/(B/8):

AL4=AL/ (B/16);
XL4=XL/{(B/16};

AL5=AL/ (B/32);
XL5=XL/ (B/32);

AL6=AL/(B/64);
XL6=XL/(B/64);

AL7=AL/(B/128);
XL7=XL/(B/128);

AL8=AL/ (B/256) ;
XL8=XL/ (B/256) ;
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AL2=AL2-AL1*2*2%*2*2*2*2%2/(B/4);
XL2=XL2-XL1*2*2*2*2*2%2%2/(B/4);

AL3=AL3-AL1*2*2*2*2*2%2%2/(B/8) -AL2*2%2*2*2*2*2/(B/8) ;
XL3=XL3-XL1*2*2*2*2*2*2%2/ (B/8) ~XL2*2*2*2*2*2*2/(B/8) ;

AL4=AL4-ALL1*2*2%2*2%2%2%2/(B/16) -AL2*2*2*2%2*%2%2/(B/16) -AL3*2*2*2%2*2/(B/16);
XLA4=XLA-XL1*2*2%2%2%2%2%2/(B/16) -XL2*2*2*2*2*2*2/(B/16) -XL3*2*2*2*2%*2/(B/16);

ALS=ALS-AL1*2#%2%2%2%2%2%2/ (B/32) -AL2*2*2*2*2%2%2/(B/32)-AL3*2*2*2*2*2/(B/32) -
AL4*2*2*2*2/(B/32):
XL5=XL5-XL1*2*2%2%2%2%2%2/ (B/32) -XL2*2*2*2%2%2%2 /(B/32) ~XL3*2*2*2%2*2/(B/32) -
XL4*2%2%2*2/(B/32);

AL6=AL6-AL1*2%2%2%2%2%2%2/ (B/64) -AL2*2*2%2%2%2%2 /(B/64) ~AL3*2*2*2%2*2/(B/64) -
AL4*2*2*2*2/(B/64) -AL5*2*2*2/(B/64) ;
XL6=XLE-XKL1*2*%2%2%2*2%2%2 / (B/64) ~XL2*2*2*2*2*2*2/ (B/64) -XL3*2*2*2*2*2/ (B/64) -
XL4*2*2*2%2/(B/64) -XL5*%2*2*2/(B/64);

AL7=AL7~AL1*2*2%2%2%2%2%2/(B/128) -AL2*2*2*2%2*2%2/(B/128)-AL3*2*2*2*2*2/(B/128) -
AL4*2*2%2%2/(B/128)-AL5*2*2*2/(B/128) ~AL6*2*2/(B/128);
XL7=XL7-XL1*2*2*2%2%2%2%2/(B/128) -XL2*2*2*2*2*2*2/(B/128) -XL3*2*2*2*2*2/(B/128) -
XL4*2*2*2*2/(B/128)-XL5*2*2*2/(B/128)-XL6*2*2/(B/128);

ALB=ALB8-AL1*2*2*2%2%2%2%2 /(B/256) ~AL2*2*2*2*2%2%*2/(B/256) ~AL3*2*2*2*2*2/(B/256) -
AL4*2*2*2%2/(B/256) -AL5*2*2*2/ (B/256)-AL6*2*2/(B/256) -AL7*2/ (B/256);
XL8=XLB-XL1*2*2*2%2%2+2%2/(B/256) ~XL2*2*2%2*2%2%2/(B/256) -XL3*2*2*2*2*2/(B/256) -
XL4*2*2*2*2/(B/256) -XL5*2*2*2/ (B/256) -XL6*2*2/ (B/256) -XL7*2/(B/256);

C2=AH*XH+ (AH*XL+AL*XH) /B+ (AH*XL+AL*XH) /2/B/B+

(AL1*XL1/2.0) +(AL2*XL2/2.0/2.0)+(AL3*XL3/2.0/2.0/2.0) +(AL4*XL4/2.0/2.0/2.0/2.0) + (AL5*XL5/
2.0/2.0/2.0/2.0/2.0) +(AL6*XL6/2.0/2.0/2.0/2.0/2.0/2.0) +(AL7*XL7/2.0/2.0/2.0/2.0/2.0/2.0/2
.0)+(AL8*XL8/2.0/2.0/2.0/2.0/2.0/2.0/2.0/2.0);

CII0=C2;

CI2=AH*XH+ (AH*XL+AL*XH) /B+ (AH*XL+AL*XH) /2/B/B+(AL1*XL1/2.0) + (AL2*XL2/2.0/2.0)+ (AL3*XL3/2.
0/2.0/2.0)+(AL4*XL4/2.0/2.0/2.0/2.0)+(AL5*XL5/2.0/2.0/2.0/2.0/2.0)+(AL6*XL6/2.0/2.0/2.0/2
.0/2.0/2.0)+(AL7*XL7/2.0/2.0/2.0/2.0/2.0/2.0/2.0)+(AL8*XL8/2.0/2.0/2.0/2.0/2.0/2.0/2.0/2.
0)+0.5;

*/

D2=C2-CIIO0;
if(D2==0.5)
{
if(CII0/2*2==CII0) CI2=CI2-1;
}
EO=CIO-C;
if (EO>MAEQ) MAEQ=EOQ;
if (EO<MIEO) MIEO=EO;
EEO=E0*EQ;
E1=CI1-C;
if (E1>MAEl) MAEl=El;
if(E1<MIEl) MIE1l=El;
EE1=E1*El;
E2=CI2-C;
if (E2>MAE2) MAE2=E2;
if (E2<MIE2) MIE2=E2;
EE2=E2*E2;
AEO=AEQ+EOQ;
AEEO=AEEO+EEQ;
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RE1=AEl+El;
AEE1=AEE1+EEl;
AE2=AE2+E2;
AEE2=AEE2+EE2;

}
AEO=AEO/B/B/B/B;
AEEO=AEE(/B/B/B/B;
AE1=AE1/B/B/B/B;
AEE1=AEE1l/B/B/B/B;
AE2=AE2/B/B/B/B;
AEE2=AEE2/B/B/B/B;

printf (" (Truncation) AEO=%f, MaxE=%f, MinE=%f, VarO=%f\n",AEQ,MAEQO,MIEQ,AEEO-AEQ*AEOQ);
printf (" (True Round) AEl=%f, MaxE=%f, MinE=%f, varl=%f\n",AEl,MAEl,MIEl,AEEl1-AE1*AEl);
printf (" (Trunc.Schm) AE2=%f, MaxE=%f, MinE=%f, Var2=%f\n",AE2,MAE2,MIE2,AEE2-AE2*AE2);
}

}

/****************************************************************

EXHAUSTIVE SIMULATION PROGRAM EXAMPLE C CODE

Two-Level Fixed-Width Recursive Multiplier Error Statistics
***************‘k************************************************/

#include <math.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>

int test():
int testl():

main ()

{
int XHH, XHL,XLH, XLL, AHH, AHL, ALH, ALL;
int ALH1,XLH1,AHL1,XLL1,ALL1,XHL1;

int ALl,XL1,AL2,XL2,AL3,XL3,AL4,XL4,AL5,XL5,AL6,XL6,AL7,XL7,ALS, XL8;

float B,B2,C,C1l,C2,C3,C4,C5,C22,C33,C55;
float EO,El1,E2,E3,AEOQ,AEl,AE2,AES3;

float MAEQ,MAEl,MAE2,MAE3;

float MIEO,MIE1l,MIE2,MIE3;

float EEO,EEl,EE2,EE3,AEEQ,AEEl,AEE2,AEE3;
float FCIO,FCI1,FCI3,D1,D2,D3;

int CIO,CI1,CI2,CI3,CII0,CII1;

int n,i,3j,k,1ii,33,kk;

/*
Casel:
0 <= XH,XL,AH,AL <= 2”n-1
Case2:
27{n-1} <= XH,AH <= 2”n-1
0 <= XL,AL <= 2”°n-1
*/

for(n=8;n<9;n++)

{

printf("---——~--—-——- n=%i--—we———————— e \n",n);
B2=1;
B=1;

for(i=0;i<(n/2) ;i++)
B=B*2;

for(i=0;i<n;i++)
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B2=B2*2;

AE0=0;AEl1=0;AE2=0;

AEE(Q=0;AEE1=0;AEE2=0;
MAEO=0;MAE1=0;MAE2=0;
MIEO=0;MIE1=0;MIE2=0;

for (XHH=0; XHH<B; XHH++)
for (XHL=0; XHL<B; XHL++)
for (XLH=0;XLH<B; XLH++)
for (XLL=0;XLL<B;XLL++)

for (AHH=0; AHH<B; AHH++)

for (AHL=0; AHL<B;AHL++)

for {ALH=0;ALH<B;ALH++)

for (ALL=0;ALL<B;ALL++)
{

C= (AHH*XHH*B*B+ (AHH*XHL+AHL*XHH) *B+AHL*XHL) +
(AHH*XLH*B*B+ (AHH*XLL+AHL*XLH) *B+AHL*XLL) /B2 +
(ALH*XHH*B*B+ (ALH*XHL+ALL*XHH) *B+ALL*XHL) /B2 +

(ALH*XLH*B*B+ (ALH*XLL+ALL*XLH) *B+ALL*XLL) /B2/B2;
CIO=C;

CIl=(AHH*XHH*B*B+ (AHH*XHL+AHL*XHH) *B+AHL*XHL) +
(AHH*XLH*B*B+ (AHH*XLL+AHL*XLH) *B+AHL*XLL) /B2
(ALH*XHH*B*B+ (ALH*XHL+ALL*XHH) *B+ALL*XHL) /B2 +
(ALH*XLH*B*B+ (ALH*XLL+ALL*XLH) *B+ALL*XLL) /B2/B2+0.5;
D1=C-CIO0;
if(D1==0.5)

{

if(CI0/2*2==CIO0) CI1=CIl-1;

}

+

/*ALH1=ALH/ (B/2);
XLH1=XLH/(B/2);

AHL1=AHL/(B/2);
XLL1=XLL/(B/2);

ALL1=ALL/(B/2);
XHL1=XHL/ (B/2);*

C2=(AHH*XHH*B*B+ (AHH*XHL+AHL*XHH) *B+AHL*XHL) + (AHH*XLH*B*B+ (AHH*XLL+AHL*XLH) *B) /B2 +
(ALH*XHH*B*B+ (ALH*XHL+ALL*XHH) *B) /B2;

CIIO=C2;

CI2=(AHH*XHH*B*B+ (AHH*XHL+AHL*XHH) *B+AHL*XHL) + (AHH*XLH*B*B+ (AHH*XLL+AHL*XLH) *B) /B2 +
(ALH*XHH*B*B+ (ALH*XHL+ALL*XHH) *B) /B2+0.5;

D2=C2-CII0;
if(D2==0.5)
{
if(CII0/2*2==CII0) CI2=CI2-1;
}
EO0=CIO-C;
if (EO>MAEQ) MAEQO=EOQ;
if(EO<MIEO) MIEO=EO;
EEO=EO*EOQ;
E1=CI1-C;
if (E1>MAEl) MAEl=El;
if(E1<MIEl) MIEl=El;
EE1=E1*El;
E2=CI2-C;
if(E2>MAE2) MAE2=E2;
if (E2<MIE2) MIE2=E2;
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EE2=E2*E2;
AEQ=AEQ+EQ;
AEEO=AEEQ+EEQ;
AEl1=AEl+El;
AEE1=AEEl+EEl;
AE2=AE2+E2;
AEE2=AEE2+EE2;
}
AEQ=AE(0/B2/B2/B2/B2;
AEEQO=RAEEO/B2/B2/B2/B2;
AEl1=AE1/B2/B2/B2/B2;
AEE1=AEEl1/B2/B2/B2/B2;
AE2=AE2/B2/B2/B2/B2;
AEE2=AEE2/B2/B2/B2/B2;
printf (" (Truncation) AEO=%f, MaxE=%f, MinE=%f, VarO=%f\n",AEOQ,MAEO,MIEO,AEEQ-AEO*AEQ);
printf (" (True Round) AEl=%f, MaxE=%f, MinE=%f, Varl=%f\n",AEl,MAE]l,MIEl,AEEl-AE1*AEl);
printf (" (Trunc.Schm) AE2=%f, MaxE=%f, MinE=%f, Var2=%f\n",AE2,MAE2,MIE2,AEE2-AE2*AE2);
}

}
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APPENDIX B
Verilog HDL Code
JEE I I I KKK Ik kkkkhhk ko k kA kK F ok hkhF ok h kK ALS = AL[7]:
VERILOG HARDWARE DESCRIPTION LANGUAGE AL10= AL[6];
ALl1l= AL[S5}];
Code for 32-bit Recursive Multiplier AL12= AL[4]:
using Truncation Scheme #4 (16 correction AL13= AL[3]:
bits) ALl4= AL[2];
AL15= AL[1];
****************************************/ AL16= AL[O];
module RECURSIVEMULTIPLIER (OUT,AH, AL, XLl = XL[15]:;
XH, XL,CK); XL2 = XL[14];
input CK; XL3 = XL([13];
input [15:0} AH, AL, XH, XL; XL4 = XL[12];
output [63:0] OUT; XL5 = XL[11};
XL6 = XL[10];
reg [0:0] XL7 = XL[9];
ALl,XL1,AL2,XL2,AL3,XL3,AL4,XL4,AL5,XLS5, XL8 = XL[8]:
AL6,XL6,AL7,XL7,AL8,XL8,AL9,XL9,AL1O, XL9 = XL[7]);
XL10,AL11,XL11,AL12,XL12,AL13,XL13,AL14,X XL10= XL[6];
L14,AL15,XL15,AL16,XL16; XL1ll= XL[5];
XL12= XL[4];
XL13= XL[3]:
XL14= XL[2];:
wire [31:0) SUBMULTI1; XL15= XL{[1]:;
wire [31:0] SUBMULTZ2, XL16= XL[O0];
SUBMULT3, SUBMULT4;
reg [15:0] SHIFTSUBMULTL;
// reqg [31:0) SHIFTSUBMULT1; SHIFTSUBMULT1[15] <= AL1&XLl;
reg [47:0] SHIFTSUBMULTZ, SHIFTSUBMULT1([14] <= AL2&XL2;
SHIFTSUBMULT3; SHIFTSUBMULT1[13] <= AL3&XL3;
reg [(63:0] SHIFTSUBMULT4; SHIFTSUBMULT1[12] <= AL4&XL4;
SHIFTSUBMULT1([11] <= AL5&XL5;
reg [63:0) OUT;//, OUT2; SHIFTSUBMULT1[10] <= AL6&XL6;
// reg [23:0] TEMP; SHIFTSUBMULT1[9] <= AL7&XL7;
SHIFTSUBMULT1([8] <= AL8&XLS3:;
// HIGHLOWBITS hlb0 SHIFTSUBMULT1([7] <= ALY&XLS;
(CK,A, B,AH,AL,XH, XL,ALl,XL1,AL2,XL2,AL3,X SHIFTSUBMULT1 (6] <= AL10&XL1O;
L3,AL4,XL4,AL5,XL5,AL6,XL6,AL7,XL7,AL8,XL SHIFTSUBMULT1[5] <= AL1l1&XL1ll;
8); SHIFTSUBMULT1[4] <= AL12&XL12;
SHIFTSUBMULT1[3] <= AL13&XL13;
SHIFTSUBMULT1([2] <= AL14&XL14;
//ARRAYMULTIPLIERL6 basemultl SHIFTSUBMULT1[1] <= AL15&XL15;
(SUBMULT1,AL,XL); //remove ALXL SHIFTSUBMULT1[0] <= ALl16&XL16;
//SUBMULT1([15:0] = 16'b0;
ARRAYMULTIPLIERL16 basemult2
(SUBMULT2, AH, XL} ; SHIFTSUBMULT2 <= SUBMULT2 << 16;
ARRAYMULTIPLIERI16 basemult3
(SUBMULT3, AL, XH) ;
ARRAYMULTIPLIER1® basemult4
(SUBMULT4, AH, XH) ; SHIFTSUBMULT3 <= SUBMULT3 <<16;
SHIFTSUBMULT4 <= SUBMULT4 <<32;
always @ (posedge CK)
begin
ouT <= (SHIFTSUBMULT1 +
ALl = AL[15}]; SHIFTSUBMULT2) + (SHIFTSUBMULT3 +
ALZ2 = AL[14]: SHIFTSUBMULTA4) ;
AL3 = AL[13];
AL4 = AL[12];
ALS = AL[11]; //OUT2 <= A*B;
AL6 = AL[10]; end
AL7 = ALI[9]:
AL8 = AL[8];
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//ANDGATE andtemp (temp,
SHIFTSUBMULT1 (2], SHIFTSUBMULT3([4]);

endmodule //RECURSIVEMULTIPLIER

/*module HIGHLOWBITS
(CK,A,B,AH, AL, XH,XL,ALl, XL1,AL2,XL2,AL3,X
L3,AL4,XL4,ALS5,XL5,AL6,XL6,AL7,XL7,AL8, XL
8):

input CK;

input [15:0} A,B;

output [7:0] AH, AL, XH, XL;

output [0:0]
ALl,XL1,AL2,XL2,AL3,XL3,AL4,XL4,AL5,XL5,A
L6,XL6,AL7,XL7,AL8,XL8;

reg [7:0] AH, AL, XH, XL;

reg [0:0]
ALl,XL1,AL2,XL2,AL3,XL3,AL4,XL4,ALS5,XL5,A
L6,XL6,AL7,XL7,AL8,XL8;

always @(posedge CK)

begin
AH <= { A[15:8] }:
AL <= { A[7:0] };
ALl <= { AL(7] }:
AL2 <= { AL[6] };
AL3 <= { AL[5] }:
AL4 <= { ALI[4] }:
ALS5 <= { AL{3] }:
AL6 <= { AL[2] };
AL7 <= { AL[1] }:
AL8 <= { AL[O0} };
XH <= { B[15:8] };
XL <= { B[7:0} }:
XLl <= { XL[7] }:
XL2 <= { XL[6] }:
XL3 <= { XLI[5] };
XL4 <= { XL[4] };
XL5 <= { XL[3] }:
XL6 <= { XL[2] }:
XL7 <= { XL[1] }:
XL8 <= { XL[O] };
end

endmodule //HIGHLOWBITS */

module ARRAYMULTIPLIER8 (OUT,A,B);

input [7:0] A,B;
output [15:0] OUT;
//wire X;

wire

WCOUTO00, WCOUTO1, WCOUTO02, WCOUTO03, W
COUTO04,WCOUTOS5, WCOUTO06, WCOUTO7,

WCOUT10,WCOUT11,WCOUT12,WCOUT13,W
COUT14,WCOUT15,WCOUT16,WCOUT17,

WCOUT20,WCOUT21,WCOUT22, WCOUT23,W
COUT24,WCOUT25,WCOUT26,WCOUT27,
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WCOUT30,WCOUT31, WCOUT32,WCOUT33,W
COUT34,WCOUT35, WCOUT36,WCOUT37,

WCOUT40,WCOUT41,WCOUT42,WCOUT43, W
COUT44,WCOUT45,WCOUT46,WCOUT47,

WCOUT50,WCOUT51, WCOUT52, WCOUT53, W
COUT54, WCOUT55, WCOUT56, WCOUTS7,

WCOUT60, WCOUT61, WCOUT62, WCOUT63, W
COUT64,WCOUT65, WCOUT66, WCOUTET,

WCOUT70,WCOUT71, WCOUT72,WCOUT73,W
COUT74,WCOUT75,WCOUT76,WCOUTT77;

wire
WSOUTO00,WSOUTO01,WSOUT02,WSOUTO3, W
SOUT04,WSOUTO05, WSOUTO06, WSOUTO7,
WSOUT10,WSOUT11,WSOUT12,WSOUT13,W
SOUT14,WSOUT15,WSOUT16,WSOUTL7,
WSOUT20,WSOUT21,WSOUT22,WSQUT23,W
SOUT24,WSOUT25, WSOUT26, WSOUT27,
WSOUT30,WSOQUT31,WSOUT32,WSOUT33,W
SOUT34,WSOUT35, WSOUT36, WSOUT37,

WSOUT40, WSOUT41, WSOUT42, WSOUT43, W
SOUT44,WSOUT45, WSOUT46, WSOUT47,

WSOUT50, WSOUT51, WSOUT52, WSOUT53, W
SOUT54, WSOUT55, WSOUT56, WSOUT57,

WSOUT60, WSOUT61, WSOUT62, WSOUT63, W
SOUT 64, WSOUT 65, WSOUT 66, WSOUTE7,

WSOUT70, WSOUT71, WSOUT72, WSOUT73, W
SOUT74,WSOUT75, WSOUT76, WSOUT77;

wire

WCOUTFAL, WCOUTFAZ2, WCOUTFA3,
WCOUTFA4, WCOUTFAS, WCOUTFAG6;

//assign OUT2 = A*B;

//ANDGATE andA0 (X, A{[0], B[O]);

//ARRAY MULTIPLIER ARCHITECTURE

//ROW O
ARRAYCELL arraycell00
(A[0]),B[0],1'b0,1'b0,WCOUTO00,0UT([0]);
ARRAYCELL arraycellQl
(A[1]},B[0],1'b0, 1'b0,WCOUTO1,WSOUTO1) ;
ARRAYCELL arraycell02
(A[2],B[0],1'b0,1'b0,WCOUT02,WSOUT02) ;
ARRAYCELL arraycell03
(A[(3],B[0],1'b0, 1'b0,WCOUTO03,WSOUTO03);
ARRAYCELL arraycell(4
(A[4]1,B[0],1'b0,1'b0,WCOUT04,WSOUT04) ;
ARRAYCELL arraycell05
(A[5],B[0],1'b0,1'b0,WCOUTO5, WSOUTO5) ;
ARRAYCELL arraycell06
(A[6]1,B[0]),1'b0,1'b0,WCOUTO06,WSQUTO6) ;
ARRAYCELL arraycellQ?

(A[7),B[0],1'b0,1'b0,WCOUTO7,WSOUTO7) ;

//ROW 1

ARRAYCELL arraycelllO
(A[0],B[1],WCOUTO00,WSOUTO01, WCOUT10,0UT[1]
)i

ARRAYCELL arraycellll
(A[1],B[1],WCOUTO01l, WSOUT0O2, WCOUT11,WSOUT1
1);
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ARRAYCELL arraycelll2
{A[2],B[1],WCOUT02,WSOUTO03,WCOUT12,WSOUT1
2);

ARRAYCELL arraycelll3
(A[3],B[1],WCOUT03,WSOUT04,WCOUT13,WSOUT1
3);

ARRAYCELL arraycellld
(A[4],B[1],WCOUT04,WSOUT05, WCOUT14,WSOUT1
4)7

ARRAYCELL arraycelll5
(A[5],B[1),WCOUT05,WSOUT06, WCOUT15, WSOUT1
5)7

ARRAYCELL arraycelllé
(A[6],B[1],WCOUT06,WSOUTO7,WCOUT16, WSOUT1
6}

ARRAYCELL arraycelll?
(A[71,B[1],WCOUTO07,1'b0,WCOUT17,WSOUT17);

//ROW 2

ARRAYCELL arraycell20
(A{0],B[2],WCOUT10,WSOUT11,WCOUT20,0UT[2]
)i

ARRAYCELL arraycell2l
(A[1],B[2],WCOUT11,WSOUT12,WCOUT21, WSOUT2
1)

ARRAYCELL arraycell22
(A[2],B[2],WCOUT12,WSOUT13, WCOUT22, WSOUT2
2);

ARRAYCELL arraycell23
(A[3]1,B[2],WCOUT13,WSOUT14,WCOUT23,WSOUT2
3);

ARRAYCELL arraycell24
(A[4],B[2],WCOUT14,WSOUT15,WCOUT24,WSOUT2
4);

ARRAYCELL arraycell25
(A[5],B[2],WCOUT15, WSOUT16, WCOUT25, WSOUT2
5);

ARRAYCELL arraycell26
(A[6],B[2],WCOUT16,WSOUT17,WCOUT26,WSOUT2
6):

ARRAYCELL arraycell2?
(A[71,B[2],WCOUT17,1'b0,WCOUT27,WSOUT27) ;

//ROW 3

ARRAYCELL arraycell30
(A[Q0],B[3],WCOUT20,WSOUT21,WCOUT30,0UT (3]
):

ARRAYCELL arraycell3l
(A[1],B[3],WCOUT21,WSOUT22, WCOUT31,WSOUT3
1);

ARRAYCELL arraycell32
(A[2],B[3],WCOUT22,WSOUT23,WCOUT32,WSOUT3
2);

ARRAYCELL arraycell33
(A{3],B[3],WCOUT23,WSOUT24,WCOUT33,WSOUT3
3):

ARRAYCELL arraycell34
(A[4],B[3],WCOUT24,WSOUT25, WCOUT34, WSOUT3
4);

ARRAYCELL arraycell35s
(A[5],B[3],WCOUT25,WSOUT26,WCOUT35,WSOUT3
5);

ARRAYCELL arraycell36
(A[6],B[3],WCOUT26,WSOUT27,WCOUT36, WSOUT3
6);

ARRAYCELL arraycell3?7
(A{7],B[3),WCOUT27,1"'b0,WCOUT37,WSOUT37) ;
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//ROW 4

ARRAYCELL arraycelldO
(A[0],B[4],WCOUT30,WSOUT31,WCOUT40, OUT[4]
)i

ARRAYCELL arraycell4l
(A[1],B[4],WCOUT31,WSOUT32,WCOUT41,WSOUT4
1):

ARRAYCELL arraycell4?2
(A[2],B[4],WCOUT32,WSOUT33,WCOUT42,WSOUT4
2);

ARRAYCELL arraycell43
(A[3],B[4],WCOUT33,WSOUT34,WCOUT43,WSOUT4
3):

ARRAYCELL arraycelldd
(A[4],B{4],WCOUT34,WSOUT35,WCOUT44,WSOUT4
4);

ARRAYCELL arraycelld5
(A[5],B[4],WCOUT35,WSOUT36,WCOUT45, WSOUT4
5);

ARRAYCELL arraycelldé6
(A[6],B[4],WCOUT36,WSOUT37,WCOUT46,WSOUT4
6);

ARRAYCELL arraycelld?
(A{7},B[4],WCOUT37,1"'b0,WCOUT47,WSOUT47);

//ROW 5

ARRAYCELL arraycell50
(A[0],B[5],WCOUT40,WSOUT41, WCOUT50, OUT[5]
)i

ARRAYCELL arraycell5l
(A[1),B[5],WCOUT41,WSOUT42,WCOUTS1,WSOUTS
1);

ARRAYCELL arraycell52
(A[2),B[5],WCOUT42,WSOUT43,WCOUT52,WSOUTS
2);

ARRAYCELL arraycell53
(A[3],B[5],WCOUT43,WSOUT44, WCOUTS53, WSOUTS
3):

ARRAYCELL arraycell54
(A[4],B[5],WCOUT44,WSOUT45, WCOUT54, WSOUT5
4);

ARRAYCELL arraycell55
(A[5],B[5],WCOUT45,WSOUT46,WCOUT55, WSOUTS
5):

ARRAYCELL arraycell56
(A[6],B[5],WCOUT46,WSOUT47,WCOUT56,WSOUTS
6) 7

ARRAYCELL arraycell5?7
(A[7],B[5],WCOUT47,1'b0,WCOUTS7,WSOUTS7) ;

//ROW 6

ARRAYCELL arraycellé0
(A[O],B[6],WCOUTS50, WSOUT51, WCOUT60,0UT[6]
)i

ARRAYCELL arraycellél
(A[1],B[6],WCOUTS51,WSOUTS52,WCOUT61,WSOUT6
1);

ARRAYCELL arraycellé62
(A[2]),B[6],WCOUT52,WSOUT53, WCOUT62,WSOUT6
2);
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ARRAYCELL arraycell63
(A[3],B[6],WCOUT53,WSOUTS54,WCOUT63, WSOUT6
3);

ARRAYCELL arraycellé6d
(A[4],B[6],WCOUT54,WSOUT55, WCOUT64, WSOUT6
4);

ARRAYCELL arraycelléb
(A[5],B[6],WCOUT55, WSOUT56, WCOUT65, WSOUT6
5)i

ARRAYCELL arraycell66
(A[6],B[6],WCOUT56,WSOUT57,WCOUT66, WSOUT6
6);

ARRAYCELL arraycell6?7
(A[71,B[6],WCOUT57,1'b0,WCOUT67,WSOUT6E7) ;

//ROW 7

ARRAYCELL arraycell70
(A[0],B[7],WCOUT60,WSOUT61, WCOUT70,QUT[7]
)

ARRAYCELL arraycelldl
(A[1],B[7],WCOUT61,WSOUTE2,WCOUT71,WSQUT?
1);

ARRAYCELL arraycell?2
(A[2],B[7],WCOUT62,WSOUT63, WCOUT72, WSOUT7
2):

ARRAYCELL arraycell?73
(A[3],B[7],WCOUT63,WSOUT64, WCOUT73,WSOUT7
3):

ARRAYCELL arraycell74
(A[4],B[7],WCOUT64,WSOUTE5, WCOUT74, WSQUT7
4);

ARRAYCELL arraycell75
(A[5],B[7],WCOUT65,WSOUT66, WCOUT7S, WSOUT7
5)i

ARRAYCELL arraycell76
(A[6],B[7],WCOUT66,WSOUT67,WCOUT76, WSOUT7
6);

ARRAYCELL arraycell??7
(A[7],B[7],WCOUT67,1'b0,WCOUT77,WSOUT77);

//FULLADDER ROW

FULLADDER fal
(WSOUT71,WCOUT70,1'b0, WCOUTFAL,OUT{8]);
FULLADDER fa2

{WSOUT72,WCOUT71,WCOUTFAl, WCOUTFA2, QUT[91]
)i

FULLADDER fa3
(WSOUT73,WCOUT72,WCOUTFAZ2, WCOUTFA3,0UT[10
1):

FULLADDER fad
{WSOUT74,WCOUT73,WCOUTFA3,WCOUTFA4,OUT[11
1):

FULLADDER fas
{WSOUT75,WCQOUT74,WCOUTFA4, WCOUTFAS,QUT[12

1)
FULLADDER fa6

(WSOUT76,WCOUT75, WCOUTFAS, WCOUTFA6,OUT[13
1):

FULLADDER fa7
(WSQUT77,WCOUT76,WCOUTFA6,0UT[15],0UT[14]
)i

endmodule//ARRAYMULTIPLIERS

module ARRAYMULTIPLIER16 (OUT,A,B);

input {15:0] A,B;
output [31:0] OUT;
//wire X;

wire

WCOUT0000,
WCOUTO0001,
WCOUT0002,
WCOUTO0003,
WCOUT0004,
WCOUTO0005,
WCOUT0006,
WCOuUT0007,
WCOoUT0008,
WCOUTO0009,
WCouT0010,
WCOUTO0011,
WCOouTO0012,
WCOUT0013,
WCOoUT0014,
WCOUTO0015,

WCOUT0100,
WCOUTO0101,
WCouT0102,
WCOUT0103,
WCOUT0104,
WCOUT0105,
WCOUT01086,
WCOUT0107,
WCOUT0108,
WCOUT0109,
WCOUTO0110,
WCOUTO0111,
WCOUTO0112,
WCOUTO0113,
WCOUT0114,
WCOUTO0115,

WCOUT0200,
WCOUT0201,
WCOUT0202,
WCOUT0203,
WCOUT0204,
WCOUT0205,
WCOUT0206,
WCOUT0207,
WCOUT0208,
WCOUT0209,
WCOUT0210,
WCOUTO0211,
WCOUT0212,
WCOUT0213,
WCOUTO0214,
WCOUTO0215,

WCOUTO0300,
WCOUTO0301,
WCOUTO0302,
WCOUT0303,
WCOUTO0304,
WCOUTO0305,
WCOUTO0306,
WCOuTO0307,
WCOUTO0308,
WCOUTO0309,
WCOUTO0310,
WCOUTO0311,
WCOouTO0312,
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WCOUTO0313,
WCOUTO0314,
WCOUTO0315,

WCOUT0400,
WCouT0401,
WCOUT0402,
WCOUT0403,
WCOUT0404,
WCOUT0405,
WCOUT0406,
WCOUT0407,
WCOUT0408,
WCOUT0409,
WCOUT0410,
WCOUT0411,
WCOUT0412,
WCOUT0413,
WCOUT0414,
WCOUT0415,

WCOUT0500,
WCOUTO0501,
WCOUT0502,
WCOUT0503,
WCOUT0504,
WCOUTO0505,
WCOUT0506,
WCOUTO0507,
WCOUT0508,
WCOUTO0509,
WCOUTO0510,
WCOUTO511,
WCOUT0512,
WCOUT0513,
WCOUT0514,
WCOUT0515,

WCOUT0600,
WCOUT0601,
WCOUT0602,
WCOUT0603,
WCOUT0604,
WCOUT0605,
WCOUT0606,
WCOUT0607,
WCOUT0608,
WCOUT0609,
WCOUTO0610,
WCOUTO0611,
WCOUT0612,
WCOUT0613,
WCOUT0614,
WCOUTO0615,

WCOUT0700,
WCOUT0701,
WCOUT0702,
WCOUT0703,
WCOUT0704,
WCOUTO0705,
WCOUTO0706,
WCOUT0707,
WCOUT0708,
WCOUT0709,
WCOUT0710,
WCOUT0711,
WCOUT0712,
WCOUT0713,
WCOUT0714,
WCOUT0715,
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WCOUT0800,
WCOUT0801,
WCOUT0802,
WCOUT0803,
WCOUT0804,
WCOUT0805,
WCOUT0806,
WCOUT0807,
WCOoUTO0808,
WCOouTO0809,
WCOUT0810,
WCOUTO0811,
WCcouTo0812,
WCOUT0813,
WCOUTO0814,
WCOUTO0815,

WCOUT0900,
WCOUT0901,
WCOUT0902,
WCOUT0903,
WCOUT0904,
WCOUT0905,
WCOUT0906,
WCOUT0907,
WCOUT0908,
WCOUT0909,
WCQouT0910,
WCOUT0911,
WCOUT0912,
WCOUT0913,
WCOUT0914,
WCOUT0915,

WCOUT1000,
WCOUT1001,
WCOUT1002,
WCOUT1003,
WCOUT1004,
WCOUT1005,
WCOUT1006,
WCOUT1007,
WCOUT1008,
WCOUT1009,
WCOUT1010,
WCOUT1011,
WCOUT1012,
WCOUT1013,
WCOUT1014,
WCOUT1015,

WCOUT1100,
WCOUT1101,
WCOUT1102,
WCOUT1103,
WCOUT1104,
WCOUT1105,
WCOUT1106,
WCOUT1107,
WCOUT1108,
WCOUT1109,
WCOUT1110,
WCOUT1111,
WCOUT1112,
WCOUT1113,
WCOUT1114,
WCOUT1115,

WCOUT1200,
WCOUT1201,



WCOUT1202,
WCOUT1203,
WCOUT1204,
WCOUT1205,
WCOUT1206,
WCOUT1207,
WCOUT1208,
WCOUT1209,
WCOUT1210,
WCOUT1211,
WCOUT1212,
WCOUT1213,
WCOUT1214,
WCOUT1215,

WCQUT1300,
WCOUT1301,
WCOUT1302,
WCQUT1303,
WCOuUT1304,
WCOUT1305,
WCOUT1306,
WCOUT1307,
WCOUT1308,
WCOUT1309,
WCOUT1310,
WCOUT1311,
WCOUT1312,
WCOUT1313,
WCOUT1314,
WCOUT1315,

WCOUT1400,
WCOUT1401,
WCOUT1402,
WCOUT1403,
WCOUT1404,
WCOUT1405,
WCOUT1406,
WCOUT1407,
WCOUT1408,
WCOUT1409,
WCOUT1410,
WCOUT1411,
WCOUT1412,
WCOUT1413,
WCOUT1414,
WCOUT1415,

WCOUT1500,
WCOUT1501,
WCOUT1502,
WCOUT1503,
WCOUT1504,
WCOUT1505,
WCOUT1506,
WCOUT1507,
WCOUT1508,
WCOUT1509,
WCOUT1510,
WCOUT1511,
WCOUT1512,
WCOUT1513,
WCOUT1514,
WCOUT1515;

wire
WSOUTO000,
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WsSOouTO0001,
WsSouT0002Z,
WSOUT0003,
WSOUT0004,
WSOUTO0005,
WSOUT0006,
WSOUT0007,
WSOoUT0008,
WSOUT0009,
WSOuT0010,
WSOUT0011,
WSOUT0012,
WSQUTO0013,
WSOUTO0014,
WSOUT0015,

WSOUT0100,
WsouTO0101,
WwsouT0102,
WSOuUT0103,
WSOUT0104,
WSOUT0105,
WSOUT0106,
WSOUTO0107,

WSOoUT0108,
WSOUT0109,
WSOUTO0110,
WSOuUTO111,
wWsouTo1i1lz,
WSOUT0113,
WSOUTO0114,
WSOUTO0115,

WSOUT0200,
WSOUT0201,
WSOUT0202,
WsSOUT0203,
wsouT0204,
WSOUT0205,
WSOUT0206,
WSQUT0207,
WSouT0208,
WSOoUT0209,
WSouT0210,
WSOUTO0211,
WsouT0212,
WSOUT0213,
WSOUT0214,
WsSOoUT0215,

WSOUT0300,
WSOUT0301,
WSOUT0302,
WSOUT0303,
WSOUT0304,
WSOUT0305,
WSOUTO0306,
WSOUT0307,
WSOUT0308,
WSOUT0309,
WSOUT0310,
WSOUTO0311,
WSOUT0312,
WSOUTO0313,
WSOUTO0314,

WSOUTO0315,

WSOUT0400,
WSOUT0401,
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WSOUT0402, WSOUT0805,
WSOUT0403, WSouT0806,
WSOUT0404, WSOUT0807,
WSOUTO0405, WSOUT0808,
WSOUT0406, WSOUT0809,
WSOUT0407, WSOUT0810,
WSOUT0408, ngggggié,
WSOUT0409, ’
WSOUT0410, WSOUT0813,
WSOUT0411, WSOUT0814,
WSOUT0412, WSOUTO0815,
WSOUT0413,
HSOUTOS0L,
WSOUT0415, ‘
WSOUT0902,
WSQUT0500, WSOUT0903,
WSOUT0505,
WSOUT0502, '
WSOUT0503, WSOUT0906,
HSOUT0508
WSOUT0505, ’
WSOUTO0506, WSOUT0909,
WSOUT0507, WSOUT0910,
wS00T0912,
WSOUT0509, '
WSOUT0510, WSOUT0913,
WSOUT0511, WSOUT0914,
WSOUT0512, WSOUT0915,
WSOUT0513,
WSOUTO0514, WSOUT1000,
WSOUTO0515, WSOUT1001,
WSOUT1002,
WSOUT0600, WSOUT1003,
WSOUT0601, WSOUTiggg,
WSOUT0602, WSOUT ,
WSOUT0603, WSOUT1006,
WSOUT0604, WSOUT1007,
WSOUT0605, WSOUTiggg,
WSOUT0606, WSOUT ,
WSOUT0607, WSOUT1010,
WSOUT0608, WSOUTigi;,
WSOUT0609, WSOUT ,
WSOUT0610, WSOUT1013,
WSOUT0611, WSOUT1014,
WSOUT0612, WSOUT1015,
WSOUT0613,
WSOUT0614, WSOUT1100,
WSOUT0615, WSOUTllgé,
WSOUT1102,
WSQUT0700, WSOUT1103,
WSOUT0701, WSOUT1104,
WSOUT0702, WSOUT1105,
WSOUT0703, WSOUT1106,
WSQUT0704, WSOUT1107,
WSOUT0705, WSOUT1108,
WSOUT0706, WSOUTing,
WSOUT0707, WSOUT ,
WSOUT0708, WSOUT1111,
WSOUT0709, WSouT1112,
WSOUT0710, WSOUT1113,
WSOUT0711, WSOUT1114,
WSOUT0712, WSOUT1115,
WSOUT0713,
WSOUT0714, WSOUT1200,
WSOUT0715, WSOUTi;g;,
WSOUT ,
WSOUTO0800, WSOUT1203,
WSOUT0801, WSOUT1204,
WSOUT0802, WSOUTiggg,
WSOUT0803, WSOUT ,
WSOUTO0804, WSOUT1207,
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WSOUT1208,
WSOQUT1209,
WSOUT1210,
WSOuUT1211,
WSOUT1212,
WSOUT1213,
WSOUT1214,
WSOUT1215,

WsOouUT1300,
WSOUT1301,
WSOUT1302,
WSOUT1303,
WSOUT1304,
WSOUT1305,
WSOUT1306,
WSOUT1307,
WSOUT1308,
WSOUT1309,
WSOUT1310,
WSOUT1311,
WSOUT1312,
WSOUT1313,
WSOUT1314,
WSoUT1315,

WSOUT1400,
WSOUT1401,
WSOUT1402,
WSOUT1403,
WSOUT1404,
WSOUT1405,
WSOUT1406,
WSOUT1407,
WSOUT1408,
WSOUT1409,
WSOUT1410,
WSOUT1411,
WSOUT1412,
WSOUT1413,
WSOUT1414,
WSOUT1415,

WSOUT1500,
WSOUT1501,
WSOUT1502,
WSOUT1503,
WSOUT1504,
WSOUT1505,
WSOUT1506,
WSOUT1507,
WSOUT1508,
WSOUT1509,
WSouT1510,
WSOUT1511,
WSOUT1512,
WSOUT1513,
WSouUT1514,
WSOUT1515;

wire
WCOUTFAL,

WCOUTFAZ,

WCOUTFA4, WCOUTFAS5, WCOUTFAS6,

WCOUTFA7,

WCOUTFAS,

WCOUTFA10, WCOUTFAll, WCOUTFAlZ2,

WCOUTFA13,

//ROW 0
ARRAYCELL

WCOUTFAl4, WCOUTFAlS;

arraycell0000

(A[0],B[0],1'b0,1'b0,WCOUTO000,0UT(0]) ;

WCOUTFA3,

WCOUTFAY,
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ARRAYCELL arraycell0001
(Af1],B(0],1'b0,1'b0,WCOUT0001,WSOUT0001)

ARRAYCELL arraycell0002
(A[2],B[0],1'b0,1'b0,WCOUT0002,WSOUT0002)

ARRAYCELL arraycell0003
(A[3]1,B[0],1'b0,1'b0,WCOUTO003,WSOUT0003)

ARRAYCELL arraycell0004
(A[4],B[0],1'b0,1'b0,WCOUT0004,WSOUT0004)

ARRAYCELL arraycell0005
(A[5],B[0],1'b0,1'b0,WCOUTO005,WSOUT0O005)

ARRAYCELL arraycell0006
(A[6],B[0],1'b0,1'b0, WCOUTO006,WSOUT0006)

ARRAYCELL arraycell0007
(A[71,B[0],1'b0,1'b0,WCOUTO007,WSOUT0007)

ARRAYCELL arraycell0008
(A[8],B[0],1'b0,1'b0,WCOUT0008,WSOUT0008)

ARRAYCELL arraycell0009
(A[9],B{0],1'b0,1'b0,WCOUTO0009,WSQUTO009)

ARRAYCELL arraycell0010
(A[10],B[(0],1'b0,1'b0,WCOUT0010,WSOUTO010
)i

ARRAYCELL arraycell0011
(A[11],B[0],1'b0,1'b0,WCOUTO0011,WSOUT0011
)i

ARRAYCELL arraycell0012
(A[12],B[0},1'b0,1'b0,WCOUTO012,WSOUT0012
)i

ARRAYCELL arraycell(0013
(A[13],B{0],1'b0,1'b0,WCOUTO0013,WSOUT0013
)i

ARRAYCELL arraycell0014
(A[14],B[0],1'b0,1'b0,WCOUT0014,WSOUT0014
)i

ARRAYCELL arraycell0015
(A[15],B[0],1'b0, 1'b0,WCOUT0015,WSOUT0015
)i

//ROW 1

ARRAYCELL arraycellQ100
(A[0],B[1],WCOUT0000,WSOUT0001,WCOUTO100,
ouTI[1]):

ARRAYCELL arraycell0l01
(A[1],B[1],WCOUT0001,WSOUT0002, WCOUT0101,
WSOUTO0101) ;

ARRAYCELL arraycell0102
(A[2],B[1],WCOUT0002, WSOUT0003,WCOUT0102,
WSOUT0102) ;

ARRAYCELL arraycellQ103
(A{3],B[1},WCOUT0003,WSOUT0004,WCOUT0103,
WSOUTO0103) ;

ARRAYCELL arraycell0104
(A[4],B[1],WCOUT0004,WSOUT0005,WCOUT0104,
WSOUTO0104) ;

ARRAYCELL arraycell(0105
(A[51,B[1],WCOUTO0005,WSOUT0006,WCOUT0105,
WSOUTO0105) ;

ARRAYCELL arraycell0106
(A[6],B[1],WCOUT0006,WSOUT0007,WCOUT0106,
WSOUTO0106) ;
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ARRAYCELL arraycell0107
(A[7],B[1],WCOUT0007,WSOUTO008,WCOUTO107,
WSOUTO0107) ;

ARRAYCELL arraycell0108
(A[8],B[1],WCOUT0008,WSOUT0009,WCOUT0108,
WSOUT(0108) ;

ARRAYCELL arraycell0109
(A[9],B[1],WCOUT0009,WSOUT0010,WCOUTO0109,
WSOQUT0109);

ARRAYCELL arraycell0110
(A[10],B[1],WCOUT0010,WSOUT0011,WCOUTO110
,WSOUT0110) ;

ARRAYCELL arraycell0O1l11
(A[11],B[1],WCOUT0011,WSOUT0012,WCOUTO111
,WSOUTO0111) ;

ARRAYCELL arraycell0112

(A[12],B[1],WCOUT0012,WSOUT0013,WCOUTO0112
,WSOUT0112) ;

ARRAYCELL arraycellOl13
(A[13],B[1],WCOUT0013,WSOUT0014,WCOUTO113
,WSOUT0113) ;

ARRAYCELL arraycell(114
(A[14],B[1],WCOUT0014,WSOUT0015,WCOUT0114
,WSOUTO0114);

ARRAYCELL arraycell0115

(A[15],B[1],WCOUT0015,1"'b0,WCOUTO0115, WSOU
TO0115);

//ROW 2

ARRAYCELL arraycell0200
(A[0],B[2],WCOUT0100,WSOUT0101,WCOUT0200,
ouT(2]):

ARRAYCELL arraycell0201

(A[1],B[2],WCOUT0101,WSOUT0102,WCOUT0201,
wsouT0201) ;

ARRAYCELL arraycell0202
(A[2],B[2],WCOUT0102,WSOUT0103, WCOUT0202,
WSOUT0202) ;

ARRAYCELL arraycell0203
(A[3],B[2],WCOUT0103,WSOUT0104, WCOUT0203,
WSOUT0203) ;

ARRAYCELL arraycell0204
(A[4],B[2],WCOUT0104,WSOUT0105, WCOUT0204,
WSOUT0204) ;

ARRAYCELL arraycell0205
(A[5],B[2],WCOUT0105,WSOUT0106,WCOUT0205,
WSOUT0205) ;

ARRAYCELL arraycell0206
(A[6),B[2],WCOUT0106,WSOUT0107,WCOUT0206,
WSOUT0206) ;

ARRAYCELL arraycell0207
(A[7],B[2],WCOUT0107,WSOUT0108,WCOUT0207,
WSOUT0207) ;

ARRAYCELL arraycell0208
(A[8],B[2],WCOUT0108,WSOUT0109, WCOUT0208,
WSOUT0208) ;

ARRAYCELL arraycell0209
(A[9],B[2],WCOUT0109,WSOUT0110,WCOUT0209,
WSOUT0209) ;

ARRAYCELL arraycell0210
(A[10],B[2]),WCOUT0110,WSOUT0111,WCOUT0210
,WSOUT0210) ;

ARRAYCELL arraycell0211
(A[11],B[2],WCOUT0111,WSOUT0112,WCOUT0211
,WSOUTO0211) ;

ARRAYCELL arraycell0212
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ARRAYCELL arraycell(0214
(A[14),B[2],WCOUT0114,WSOUT0115,WCOUT0214
,WSOUT0214) ;

ARRAYCELL arraycell0215
(A[15],B[2],WCOUT0115,1'b0,WCOUT0215,WSOU
T0215);

//ROW 3

ARRAYCELL arraycell0300
(A(0],B{3],WCOUT0200,WSOUT0201,WCOUTO300,
OUT([31]);

ARRAYCELL arraycell0301

(A[1),B[3],WCOUT0201, WSOUT0202, WCOUT0301,
WSOUTO0301) ;

ARRAYCELL arraycell0302
(A[2],B([3],WCOUT0202,WSOUT0203,WCOUT0302,
WSOUT0302) ;

ARRAYCELL arraycell0303
(A[3],B[3],WCOUT0203,WSOUT0204,WCOUT0303,
WSOUT0303) ;

ARRAYCELL arraycell0304
(A[4],B[3],WCOUT0204,WSOUT0205,WCOUT0304,
WSOUTO0304) ;

ARRAYCELL arraycell0305
(A[5),B[3],WCOUT0205,WSOUT0206, WCOUT0305,
WSOUTG305) ;

ARRAYCELL arraycell0306
(A[6],B[3],WCOUT0206,WSOUT0207,WCOUT0306,
WSOUT0306) ;

ARRAYCELL arraycell0307
(A[7],B[3],WCOUT0207,WSOUT0208, WCOUT0307,
WSOUTO0307) ;

ARRAYCELL arraycell0308
(A[8],B[3],WCOUT0208,WSOUT0209,WCOUT0308,
WSOUT0308) ;

ARRAYCELL arraycell0309
(A[9],B[3],WCOUT0209,WSOUT0210, WCOUT0309,
WSOUTO0309) ;

ARRAYCELL arraycell0310
(A[10],B[3],WCOUT0210,WSOUT0211, WCOUT0310
,WSOUT0310) ;

ARRAYCELL arraycell(0311
(A[11),B[3],WCOUT0211,WSOUT0212,WCOUT0311
,WSOUTO0311) ;

ARRAYCELL arraycell0312
(A[12],B[3],WCOUT0212,WSOUT0213, WCOUT0312
,WSOUT0312) ;

ARRAYCELL arraycell(0313
(A[13],B[3],WCOUT0213,WSOUT0214,WCOUT0313
,WSOUTO0313) ;

ARRAYCELL arraycell0314
(A[14],B[3],WCOUT0214,WSOUT0215,WCOUT0314
,WSOUTO0314) ;

ARRAYCELL arraycell0315
(A[15],B[3],WCOUT0215,1"'b0, WCOUT0315, WSOU
T0315);

//ROW 4

ARRAYCELL arraycell0400
(A[0],B[4],WCOUT0300,WSOUT0301, WCOUT0400,
OUT[4]);

ARRAYCELL arraycell(0401

(A[1],B[4],WCOUT0301,WSOUT0302,WCOUT0401,
WSOUT0401) ;

(A[12],B[2],WCOUT0112,WSOUTO113,WCOUT0212
,WSOUT0212) ;

ARRAYCELL arraycell0213
(A[13],B[2],WCOUTO0113,WSOUT0114,WCOUT0213
,WSOUT0213) ;

ARRAYCELL

arraycell0402

(A[2],B[4],WCOUT0302,WSOUT0303,WCOUT0402,
WSOUT0402) ;
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ARRAYCELL arraycell0403
(A[3],B[4],WCOUT0303,WSOUT0304,WCOUT0403,
WSOUT0403});

ARRAYCELL arraycell0404
(A[{4],B[4]),WCOUT0304,WSOUT0305,WCOUT0404,
WSOUT0404) ;

ARRAYCELL arraycell0405
(A[5),B[4],WCOUT0305,WSOUT0306,WCOUTO405,
WSOUT0405) ;

ARRAYCELL arraycell0406
(A[6],B[4] ,WCOUT0306,WSOUT0307,WCOUTO0406,
WSOUT0406) ;

ARRAYCELL arraycell0407
(A(7],B[4],WCOUT0307,WSOUTQ308,WCOUT0407,
WSOUT0407) ;

ARRAYCELL arraycell0408
(A[8),B[4],WCOUT0308,WSOUT0309,WCOUT0408,
WSOUT0408) ;

ARRAYCELL arraycell0409
(A[9],B[4],WCOUT0309,WSOUTO310,WCOUT0409,
WSOUT0409) ;

ARRAYCELL arraycell0410
(A[10},B([4],WCOUT0310,WSOUT0311,WCOUT0410
,WSOUTO0410) ;

ARRAYCELL arraycell0411

(A[11],B[4],WCOUT0311,WSOUT0312,WCOUT0411
,WSOUT0411);

ARRAYCELL arraycell0412
(A[12],B[4],WCOUT0312,WSOUT0313,WCOUT0412
,WSOUT0412) ;

ARRAYCELL arraycell0413
(A[13},B[4],WCOUT0313,WSOUT0314, WCOUT0413
,WSOUT0413) ;
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ARRAYCELL arraycell0510
(A[10],B[5],WCOUT0410,WSOUT0411,WCOUT0510
,WSOUT0510) ;

ARRAYCELL arraycell0511
(A[11],B[5],WCOUT0411,WSOUT0412,WCOUT0511
,WSOUTO0511) ;

ARRAYCELL arraycell(0512
(A[12],B(5],WCOUT0412,WSOUT0413,WCOUT0512
,WSOUT0512) ;

ARRAYCELL arraycell0513
(A{13],B[5],WCOUT0413,WSOUT0414,WCOUT0513
,WSOUTO0513) ;

ARRAYCELL arraycell(0514
(A[14],B[5],WCOUT0414, WSOUT0415, WCOUT0514
,WSOUT0514) ;

ARRAYCELL arraycell0515
(A[15],B[5],WCOUT0415,1'b0,WCOUT0515,WSOU
T0515);

//ROW 6

ARRAYCELL
(A[0],B[6],WCOUTO0500,
OuT(6])

arraycell0600
WSOUT0501, WCOUTO0600,

ARRAYCELL arraycell0601
(A[1},B[6],WCOUTO0501,WSOUT0502, WCOUT0601,
WSOUT0601) ;

ARRAYCELL arraycell0602
(A[2],B[6],WCOUT0502,WSOUT0503,WCOUT0602,
WSOUT0602) ;

ARRAYCELL arraycell0603
(A[3},B[6],WCOUT0503,WSOUT0504, WCOUT0603,
WSOUT0603) ;

ARRAYCELL arraycell0604
(A[4],B[6],WCOUT0504,WSOUT0505, WCOUT0604,
WsSOouT0604) ;

ARRAYCELL arraycell0605

ARRAYCELL arraycellO414
(A[14],B[4],WCOUT0314,WSOUT0315,WCOUT0414
,WSOUT0414) ;

ARRAYCELL arraycell0415

(A[15]),B[4],WCOUT0315,1'b0,WCOUT0415,WSOU
T0415):

//ROW 5

ARRAYCELL arraycell(Q500
(A[O],B[5],WCOUT0400,WSOUT0401, WCOUTO500,
OUT[3]) ¢

ARRAYCELL arraycell0501
(A[{1],B[5],WCOUT0401,WSOUTQ402, WCOUTO501,
WSOUTO0501) ;

ARRAYCELL arraycell0502
(A[2],B[5],WCOUT0402,WSOUT0403,WCOUT0502,
WSOUT0502) ;

ARRAYCELL arraycell0503
(A[3],B[5],WCOUT0403,WSOUT0404,WCOUT0503,
WSOUT0503) ;

ARRAYCELL arraycell0504
(A[4],B[5],WCOUT0404,WSOUT0405,WCOUT0504,
WSOUT0504);

ARRAYCELL arraycell0505
(A[5],B[5],WCOUT0405,WSOUT0406, WCOUT0505,
WSOUT0505) ;

ARRAYCELL arraycell0506
(A[6],B[5],WCOUT0406,WSQUT0407,WCOUT0506,
WSOUTO0506) ;

ARRAYCELL arraycell0507
(A[7]1,B[5],WCOUT0407,WSOUT0408, WCOUT0507,
WSOUTO0507) ;

ARRAYCELL arraycell(0508
(A[8],B([5],WCOUT0408,WSOUT0409,WCOUT0508,
WSOouUT0508) ;

ARRAYCELL arraycell0509
(A[9],B[5],WCOUT0409,WSQOUT0410,WCOUTO0509,
WSOUT0509) ;

(A[5),B[6],WCOUT0505,WSOUT0506, WCOUT0605,
WSOUTO060S5) ;

ARRAYCELL arraycell0606
(A[6],B[6],WCOUTO506,WSOUT0507, WCOUT0606,
WSOUTO0606) ;

ARRAYCELL arraycell0607
(A[7],B[6),WCOUT0507,WSOUT0508, WCOUT0607,
WSOUTO0607) ;

ARRAYCELL arraycell0608
(A(8],B{6],WCOUTO508, WSOUT0509, WCOUT0608,
WSOUT0608) ;

ARRAYCELL arraycell(0609
(A[S],B[6],WCOUT0509,WSOUT0510,WCOUT0609,
WSOUT0609) ;

ARRAYCELL arraycell0610
(A[10],B[6],WCOUT0510,WSOUT0511, WCOUT0610
,WSOUT0610) ;

ARRAYCELL arraycellQ611
(A[11],B[6],WCOUTO511,WSOUTOS512, WCOUTO0611
,WSOUTO0611) ;

ARRAYCELL arraycell0612
(A[12],B[6],WCOUT0512,WSOUT0513,WCOUT0612
,WSOUT0612) ;

ARRAYCELL arraycell0613
(A[13],B[6),WCOUT0513,WSOUT0514, WCOUT0613
,WSOUT0613) ;

ARRAYCELL arraycell0614
(A[14]1,B[{6],WCOUT0514,WSOUT0515,WCOUT0614
,WSOUT0614) ;

ARRAYCELL arraycell0615
(A(15],B[6],WCOUT0515,1'b0,WCOUT0615, WSOU
T0615) ;

//ROW 7
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ARRAYCELL arraycell0700
(A[0),B[7],WCOUT0600,WSOUT0601,WCOUTO700,
OUT(71)

ARRAYCELL arraycell0701
(A[1],B[7],WCOUT0601,WSOUT0602, WCOUT0701,
WSOUT0701) ;

ARRAYCELL arraycellQ702
(A[2],B[7],WCOUT0602,WSOUT0603,WCOUT0702,
WSOUT0702);

ARRAYCELL arraycell0703
(A[3},B[7],WCOUT0603,WSOUT0604,WCOUTO703,
WSOUT0703) ;

ARRAYCELL arraycell0704
(A[4],B[7]),WCOUT0604,WSOUT0605,WCOUTO704,
WSOUT0704) ;

ARRAYCELL arraycell0705
(A[5],B[7],WCOUT0605,WSOUT0606,WCOUTO705,
WSOUTO0705) ;

ARRAYCELL arraycell0706
(A[6},B[7),WCOUT0606,WSOUT0607, WCOUT0706,
WSOUT0706) ;

ARRAYCELL arraycellQ707

(A[7],B[7],WCOUT0607,WSOUT0608,WCOUTO707,
WSOUTO0707) ;

ARRAYCELL arraycellQ708
(A[8]),B[7],WCOUT0608,WSOUT0609, WCOUT0708,
WsSouT0708) ;
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ARRAYCELL arraycell0807
(A[7],B[8],WCOUTO707,WSOUT0708,WCOUTO807,
WSOUTO0807) ;

ARRAYCELL arraycell0808
(A[8],B[8],WCOUT0708,WSOUT0709,WCOUTO808,
WSOuUT0808) ;

ARRAYCELL arraycell0809
(A[9],B[8],WCOUT0709, WSOUT0710, WCOUTO0809,
WSOUT0809) ;

ARRAYCELL arraycell0810
(A[10],B[8],WCOUT0710,WSOUT0711,WCOUTO0810
,WSOUT0810) ;

ARRAYCELL arraycell0811
(A{11),B[8],WCOUT0711,WSOUT0712,WCOUT0811
,WSOUTO0811) ;

ARRAYCELL arraycell0812
(A[12],B[8],WCOUT0712,WSOUT0713,WCOUT0812
,WSOUT0812) ;

ARRAYCELL arraycell0813
(A[13],B[8],WCOUT0713,WSOUT0714,WCOUT0813
,WSOUT0813) ;

ARRAYCELL arraycell0814
(A[14),B[8],WCOUT0714,WSOUT0715,WCOUT0814
,WSOUT0814) ;

ARRAYCELL arraycell0815
(A{15],B[8]},WCOUT0715,1'b0,WCOUTO815, WSOU
T0815);

//ROW 9
ARRAYCELL

arraycell0900

(A[0],B[9],WCOUTO0800, WSOUT0801,WCOUT0900,
OuT(9]);

ARRAYCELL arraycellQ709
(A[9],B([7],WCOUT0609,WSOUT0610,WCOUTO709,
WSOUT0709) ;

ARRAYCELL arraycellQ710
(A[10],B[7],WCOUT0610,WSOUT0611,WCOUTO710
,WSOUTO0710) ;

ARRAYCELL arraycell0711

ARRAYCELL

arraycell(0901

(A{11],B[7],WCOUT0611,WSOUT0612,WCOUT0711
,WSOUTO0711) ;

ARRAYCELL arraycellQ712
(A[12]),B[7],WCOUT0612,WSOUT0613,WCOUT0712
,WSOUTO0712) ;

ARRAYCELL arraycell0713
(A[{13],B[7],WCOUT0613,WSOUT0614,WCOUTO713
,WSOUTO0713);

ARRAYCELL arraycell0714

(A[14],B([7],WCOUT0614,WSOUT0615, WCOUTO0714
,WSOUT0714) ;

ARRAYCELL arraycell0715
(A[15],B[7],WCOUT0615,1'b0,WCOUT0715, WSOU
TO715);

//ROW 8

ARRAYCELL arraycell0800
(A[0),B[8],WCOUT0700,WSOUT0701,WCOUT0800,
OuT(8]);

ARRAYCELL arraycell0801
(A[1],B[8],WCOUT0701,WSOUT0702,WCOUT0801,
WSOUT0801) ;

ARRAYCELL arraycell0802
(A[2],B[8],WCOUT0702,WSOUT0703,WCOUTO0802,
WsSOouT0802) ;

ARRAYCELL arraycell0803
(A[{3],B[8],WCOUT0703,WSOUT0704,WCOUT0803,
WSOUT0803) ;

ARRAYCELL arraycell(0804
(A[4]1,B[8]},WCOUT0704,WSOUT0705, WCOUTO0804,
WSOUT0804) ;

ARRAYCELL arraycell(805
(A[5],B[8],WCOUT0705,WSOUT0706, WCOUTO805,
WSOUT0805) ;

ARRAYCELL arraycell0806
(A[6],B[8],WCOUT0706,WSOUT0707,WCOUT0806,
WSOUT0806) ;

(A[1],B[9],WCOUT0801,WSOUT0802, WCOUT0901,
WSQUTO0901) ;

ARRAYCELL arraycell0902
(A[2],B[9],WCOUT0802,WSOUT0803,WCOUT0902,
WSOUT0902) ;

ARRAYCELL arraycell0903
(A[3]1,B[9],WCOUT0803,WSOUT0804,WCOUT0903,
WSOUT0903) ;

ARRAYCELL arraycell0904
(A[4),B[9],WCOUT0804,WSOUT0805, WCOUT0904,
WSOUT0904) ;

ARRAYCELL arraycell0905
(A[5],B[9],WCOUT0805,WSOUT0806, WCOUT0905,
WSOUTO0905) ;

ARRAYCELL arraycell0906
(A[6],B[9],WCOUT0806,WSOUT0807,WCOUTO306,
WSOUT0906) ;

ARRAYCELL arraycell0907
(A[71,B[9],WCOUT0807,WSOUT0808,WCOUT0907,
WSOUT0907) ;

ARRAYCELL arraycell(0908
(A[8],B[9],WCOUT0808,WSOUT0809, WCOUT0908,
WSOUTO0908) ;

ARRAYCELL arraycell0909
(A{9],B[9],WCOUT0809,WSOUT0810, WCOUT0909,
WSOUTO0909) ;

ARRAYCELL arraycell0910
(A[10]1,B[9],WCOUT0810,WSOUTO0811,WCOUT0910
,WSOUT0910) ;

ARRAYCELL arraycellQ911
(A[11)],B[9],WCOUT0811,WSOUT0812,WCOUT0911
,WSOUTO0911);

ARRAYCELL arraycell0912
(A[12],B[9],WCOUT0812,WSOUT0813,WCOUT0912
,WSOUT0912) ;

ARRAYCELL arraycell0913
(A[13],B[9],WCOUT0813,WSOUT0814, WCOUT0913
,WSOUTD913) ;
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ARRAYCELL

arraycell0914

(A[14],B[9],WCOUT0814,WSOUT0815,WCOUT0914

,WSOUT0314) ;

arraycell0915

(A[15],B[9],WCOUT0815,1'b0, WCOUT0915, WSOU

arraycelll000

(A[0],B[10],WCOUT0900,WSOUT0901, WCOUT1000

ARRAYCELL
T0915) ;

//ROW 10

ARRAYCELL
,OUT[10]);

ARRAYCELL

arraycelll001

(A[1],B[10],WCOUT0901,WSOUT0902, WCOUT1001
,WSOUT1001) ;

ARRAYCELL

(A[4]1,B[11],WCOUT1004,

,WSOUT1104);
ARRAYCELL

(A[5],B[11],WCOUT1005,

,WSOUT1105) ;
ARRAYCELL

(A[6],B[11],WCOUT1006,

, WSOUT1106) ;
ARRAYCELL

(A[7],B{11],WCOUT1007,

,WSOUT1107);
ARRAYCELL
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arraycellll04
WSOUT1005,WCOUT1104

arraycellll05
WSOUT1006,WCOUT1105

arraycellll06
WSOUT1007,WCOUT1106

arraycellll07
WSOUT1008, WCOUT1107

arraycellll08

(A[8],B[11),WCOUT1008,WSOUT1009,WCOUT1108

ARRAYCELL

arraycelll002

(A[2],B[10],WCOUT0902,WSOUTO903, WCOUT1002
,WSOUT1002) ;

,WSOUT1108};
ARRAYCELL

arraycellllQ9

(A[9},B[11],WCOUT1009,WSOUT1010,WCOUT1109

ARRAYCELL

arraycelll003

,WSOUT1109);
ARRAYCELL

arraycelllllO

(A[3],B[10],WCOUT0903, WSOUT0904, WCOUT1003
,WSOUT1003) ;

ARRAYCELL arraycelll004
(A[4},B[10],WCOUT0904,WSOUT0305,WCOUT1004
,WSOUT1004) ;

ARRAYCELL arraycelll005

(A[5],B[10],WCOUT0905,WSOUTO0906, WCOUT1005
,WSOUT1005) ;

ARRAYCELL arraycelll006
(A[6],B[10],WCOUT0906,WSOUT0907,WCOUT1006
,WSOUT1006) ;

ARRAYCELL arraycelll007
(A[71,B[10],WCOUT0907,WSOUT0908,WCOUT1007
,WSOUT1007) ;

ARRAYCELL arraycelll008
(A[8],B[10],WCOUT0908,WSOUT0909,WCOUT1008
,WSOUT1008) ;

ARRAYCELL arraycelll009
(A[9],B[10],WCOUT0909,WSOUT0910,WCOUT1009
,WSOUT1009) ;

ARRAYCELL arraycelll010
(A[10],B([10],WCOUT0910,WSOUT0911,WCOUT101
0,WsSOUT1010) ;

ARRAYCELL arraycelll0ll
(A[11],B[10],WCOUT0%911,WSOUT0912,WCOUT101
1,WSOUT1011);

ARRAYCELL arraycelll012
(A[12],B[10],WCOUT0912,WSOUT0913,WCOUT101
2,WSOUT1012);

ARRAYCELL arraycelll013
(A[13],B[10],WCOUT0913,WSOUT0914,WCOUT101
3,WSOUT1013);

ARRAYCELL arraycelll0l4
(A[14]),B[10],WCOUT0914,WSOUT0915,WCOUT101
4,WSOUT1014) ;

ARRAYCELL arraycelllQl5s
(A[15],B([10],WCOUT0915,1"'b0,WCOUT1015, WSO
UT1015) ;

//ROW 11

ARRAYCELL arraycellll00
(A[0],B[11],WCOUT1000,WSOUT1001,WCOUT1100
,OUT[11]);

ARRAYCELL arraycellllol
(A{1),B[11],WCOUT1001,WSOUT1002,WCOUT1101
,WSOUT1101);

ARRAYCELL arraycellll02
(A{2],B[11],WCOUT1002,WSOUT1003,WCOUT1102
,WSOUT1102) ;

ARRAYCELL arraycelll103

(A[3],B[11],WCOUT1003,WsSOUT1004,WCOUT1103
,WSOUT1103) ;

(A[10]),B[11] ,WCOUT1010,WSOUT1011,WCOUT111
0,WSOUT1110) ;

ARRAYCELL arraycellllll
(A[11],B[11]) ,WCOUT1011,WSOUT1012,WCOUT111
1,WSOUT1111);

ARRAYCELL arraycelllll2
(A(12]),B[11],WCOUT1012,WSOUT1013,WCOUT111
2,WSOUT1112);

ARRAYCELL arraycelllll3
(A[13],B[11] ,WCOUT1013,WSOUT1014,WCOUT111
3,WSOUT1113);

ARRAYCELL arraycelllll4

(A[14],B[11],WCOUT1014,WSOUT1015,WCOUT111
4,WSOUT1114) ;

ARRAYCELL arraycellllls
(A[15],B[11] ,WCOUT1015,1'b0,WCOUT1115, WSO
UT1115);

//ROW 12

ARRAYCELL arraycelll200
(A[0],B[12],WCOUT1100,WSOUT1101,WCOUT1200
,OUT[12]);

ARRAYCELL arraycelll201

(A[1],B[12],WCOUT1101,WSOUT1102,WCOUT1201
,WSOUT1201) ;

ARRAYCELL arraycelll202
(A[2],B[12],WCOUT1102,WSOUT1103,WCOUT1202
,WSOUT1202) ;

ARRAYCELL arraycelll203
(A[3],B[12],WCOUT1103,WSOUT1104,WCOUT1203
,WSOUT1203) ;

ARRAYCELL arraycelll204
(A(4],B[12],WCOUT1104,WSOUT1105,WCOUT1204
,WSOUT1204) ;

ARRAYCELL arraycelll205
(A[5],B[12],WCOUT1105,WSOUT1106,WCOUT1205
,WSOUT1205) ;

ARRAYCELL arraycelll206
(A[6],B[12],WCOUT1106,WSOUT1107,WCOUT1206
,WSOUT1206) ;

ARRAYCELL arraycelll207
(A[7},B[12],WCOUT1107,WSOUT1108,WCOUT1207
,WSOUT1207) ;

ARRAYCELL arraycelll208
(A[8]},B[12],WCOUT1108,WSOUT1109,WCOUT1208
,WSOUT1208) ;

ARRAYCELL arraycelll209
(A[9],B[12],WCOUT1109,WSOUT1110,WCOUT1209
,WSOUT1209) ;

ARRAYCELL arraycelll2l0
(A[10],B[12],WCOUT1110,WSOUT1111,WCOUT121
0,WSOUT1210) ;
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ARRAYCELL arraycelll2ll
(A{11],B[12]),WCOUT1111,WSOUT1112,WCOUT121
1,WsSOUT1211);

ARRAYCELL arraycelll212
(A[12],B[12],WCOUT1112,WSOUT1113,WCOUT121
2,WS0UT1212) ;

ARRAYCELL arraycelll213
(A[13},B[12],WCOUT1113,WSOUT1114,WCOUT121
3,WSOUT1213);

ARRAYCELL arraycelll2l4
(A[14],B[12],WCOUT1114,WSOUT1115,WCOUT121
4,WSOUT1214);

ARRAYCELL arraycelll2l5
(A[15),B[12],WCOUT1115,1'b0,WCOUT1215,WSO
UT1215);
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ARRAYCELL arraycellld0l
(A[1],B[14],WCOUT1301,WSOUT1302,WCOUT1401
,WSO0UT1401) ;

ARRAYCELL arraycellld02
(A[2],B[14],WCOUT1302,WSOUT1303,WCOUT1402
,WSOUT1402) ;

ARRAYCELL arraycelll1403
(A[3),B[14],WCOUT1303,WSOUT1304,WCOUT1403
,WSOUT1403);

ARRAYCELL arraycelll404
(A[4],B[14],WCOUT1304,WSOUT1305,WCOUT1404
,WSOUT1404) ;

ARRAYCELL arraycelll405
(A[5],B[14],WCOUT1305,WSOUT1306,WCOUT1405
,WSOUT1405) ;

ARRAYCELL arraycellld06
(A[6],B[14],WCOUT1306,WSOUT1307,WCOUT1406
,WSOUT1406) ;

ARRAYCELL arraycellld07
(A[7],B[14],WCOUT1307,WSOUT1308,WCOUT1407
,WSOUT1407) ;

ARRAYCELL arraycelll408
(A[8],B[14],WCOUT1308,WSOUT1309,WCOUT1408
,WSOUT1408) ;

ARRAYCELL arraycelll409
(A[9],B{14],WCOUT1309,WSOUT1310,WCOUT1409

//ROW 13

ARRAYCELL arraycelll300
(A[0],B[13],WCOUT1200,WSOUT1201,WCOUT1300
,O0UT[13]);

ARRAYCELL arraycelll301
(A[1),B[13],WCOUT1201,WSOUT1202,WCOUT1301
,WSOUT1301) ;

ARRAYCELL arraycelll302
(A{2],B[13],WCOUT1202,WSOUT1203,WCOUT1302
,WSOUT1302) ;

ARRAYCELL arraycelll303

(A[3],B[13],WCOUT1203,WSOUT1204,WCOUT1303
,WSOUT1303);

,WSOUT1409) ;
ARRAYCELL

arraycellld4l0

(A[10],B[14],WCOUT1310,WSOUT1311,WCOUT141

ARRAYCELL arraycelll304
(A[4],B[13],WCOUT1204,WSOUT1205,WCOUT1304
,WSOUT1304) ;

ARRAYCELL arraycelll305

(A[5],B[13],WCOUT1205, WSOUT1206, WCOUT1305
,WSOUT1305) ;

ARRAYCELL arraycelll306
(A[6],B[13],WCOUT1206,WSOUT1207,WCOUT1306
,WSOUT1306) ;

ARRAYCELL arraycelll307
(A[7],B{13],WCOUT1207,WSOUT1208, WCOUT1307
,WSOUT1307);

ARRAYCELL arraycelll308
(A[8]1,B[13],WCOUT1208,WSOUT1209,WCOUT1308
,WSOUT1308) ;

ARRAYCELL arraycelll308

(A{9],B[13],WCOUT1209,WSOUT1210,WCOUT1309
,WSOUT1309);

ARRAYCELL arraycelll310
(A(10],B(13],WCOUT1210,WSOUT1211,WCOUT131
0,WS0OUT1310);

ARRAYCELL arraycelll3ll
(A{11],B[13],WCOUT1211,WSOUT1212,WCOUT131
1,WSOUT1311);

ARRAYCELL arraycelll3l2
(A[12],B[13],WCOUT1212,WSOUT1213,WCOUT131
2,WS0UT1312);

ARRAYCELL arraycelll313
(A[13],B[13],WCOUT1213,WSOUT1214,WCOUT131
3,WSOUT1313);

ARRAYCELL arraycelll3l4
(A[14],B[13],WCOUT1214,WSOUT1215,WCOUT131
4,WSQUT1314);

ARRAYCELL arraycelll3ls
(A[15],B[13],WCOUT1215,1'b0,WCOUT1315,WS0O
UT1315});

//ROW 14

ARRAYCELL arraycelll1400
(A[0],B[14},WCOUT1300,WSQUT1301,WCOUT1400
,OUT([14]);

0,WSOUT1410) ;
ARRAYCELL

arraycelll4ll

(A(11]},B[14],WCOUT1311,WSOUT1312,WCOUT141
1,WSOUT1411) ;

ARRAYCELL arraycellldl?2
(A(12]1,B[14],WCOUT1312,WSOUT1313,WCOUT141
2,WS0UT1412) ;

ARRAYCELL arraycellldl3
(A[13]),B[14],WCOUT1313,WSOUT1314,WCOUT141
3,WSOUT1413};

ARRAYCELL arraycellldld
(A[14],B[14],WCOUT1314,WSOUT1315,WCOUT141
4,WSOUT1414) ;

ARRAYCELL arraycelll4ls
(A[15],B[14],WCOUT1315,1'b0,WCOUT1415, WSO
UT1415);

//ROW 15

ARRAYCELL arraycelll500
(A[0],B[15],WCOUT1400,WSOUT1401, WCOUT1500
,OUT[15]);

ARRAYCELL arraycelll501

(A[1]),B[15],WCOUT1401,WSOUT1402,WCOUT1501
,WSOUT1501) ;

ARRAYCELL arraycelll502
(A[2],B[15],WCOUT1402,WSOUT1403,WCOUT1502
,WSOUT1502) ;

ARRAYCELL arraycelll503
(A[3},B[15],WCOUT1403,WS0OUT1404,WCOUT1503
,WSOUT1503) ;

ARRAYCELL arraycelll504
(A[4],B[15],WCOUT1404,WSOUT1405,WCOUT1504
,WSOUT1504) ;

ARRAYCELL arraycelll505
(A[5],B[15],WCOUT1405,WSOUT1406,WCOUT1505
,WSOUT1505) ;

ARRAYCELL arraycelll506
(A[6],B[15],WCOUT1406,WSOUT1407,WCOUT1506
,WSOUT1506) ;

ARRAYCELL arraycelll507
(A[7],B(15],WCOUT1407,WSOUT1408, WCOUT1507
,WSOUT1507) ;
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ARRAYCELL

arraycelll508

(A[8],B[15],WCOUT1408,WSOUT1409,WCOUT1508

,WSOUT1508) ;
ARRAYCELL

arraycelll509

(A[9],B[15],WCOUT1409,WSOUT1410,WCOUT1509

,WSOUT15009) ;
ARRAYCELL

arraycelll510

(A[10],B[15],WCOUT1410,WSOUT1411,WCOUT151

0,WSOUT1510) ;
ARRAYCELL

arraycelll5ll

(A[11],B[15],WCOUT1411,WSOUT1412,WCOUT151

1,WSOUT1511);
ARRAYCELL

arraycelll512

(A[12],B[15],WCOUT1412,WSOUT1413,WCOUT151

2,WS0UT1512);
ARRAYCELL

arraycelll513

(A[13],B[15],WCOUT1413,WSOUT1414,WCOUT151

3,WSOUT1513) ;
ARRAYCELL

arraycelll514

(A{14],B[15],WCOUT1414,WSOUT1415,WCOUT151

4,WSOUT1514);
ARRAYCELL

arraycelllblb

(A[15],B[15],WCOUT1415,1'b0,WCOUT1515, WSO

UT1515);

//FULLADDER ROW

FULLADDER

fal

(WSOUT1501,WCOUT1500,1'b0, WCOUTFALl,OUT[16

1)7
FULLADDER

fa2

(WSOUT1502,WCOUT1501, WCOUTFA1, WCOUTFAZ2, OU

T[17]1):
FULLADDER

fa3

(WSOUT1503,WCOUT1502, WCOUTFA2, WCOUTFA3, OU

T[18]):
FULLADDER

fad

(WSOUT1504,WCOUT1503, WCOUTFA3, WCOUTFA4, OU

T{19]):
FULLADDER

fas

(WSOUT1505, WCOUT1504, WCOUTFA4, WCOUTFAS, OU

T[20]):
FULLADDER

fa6

(WSOUT1506, WCOUT1505, WCOUTFAS, WCOUTFA6, OU

T(211):
FULLADDER

fa7

(WSQUT1507,WCOUT1506, WCOUTFAG, WCOUTFA7, QU

T(22)):
FULLADDER

fas

(WSOUT1508, WCOUT1507, WCOUTFA7, WCOUTFAS, OU

T[23])7
FULLADDER

fagd

(WSOUT1508, WCOUT1508, WCOUTFAS8, WCOUTFA9, OU

T[24));
FULLADDER

fall

(WSOUT1510, WCOUT1509, WCOUTFA9, WCOUTFALOQ, O

UT[23]);
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FULLADDER fall
(WSOUT1511,WCOUT1510, WCOUTFA10, WCOUTFALL,
OUT[26])

FULLADDER fal2
(WSOUT1512,WCOUT1511,WCOUTFA1l,WCOUTFA12,
OUT[27]):

FULLADDER fal3
(WSOUT1513,WCOUT1512, WCOUTFA12,WCOUTFAL3,
oUT(28]);

FULLADDER fal4

(WSOUT1514,WCOUT1513, WCOUTFA13, WCOUTFAL4,
OUT([29]):

FULLADDER fals
(WSOUT1515,WCOUT1514, WCOUTFA14, QUT[31],0U
T{301):

endmodule//ARRAYMULTIPLIER 16

module ARRAYCELL (A,B,CIN,SIN,COUT,SOUT);

input A,B,SIN,CIN;
output COUT, SOUT;
wire PP;

ANDGATE andO (PP,A,B);
FULLADDER
(PP, SIN,CIN,COUT, SOUT);

fulladder0

endmodule //ARRAYCELL

module ANDGATE (OUT,A,B):

input A,B;

output OUT;

assign OUT = A&B;
endmodule //ANDGATE
module HALFADDER (A,B,COUT, SUM);

input A,B;
output COUT, SUM;

assign SUM = A”"B;
assign COUT = A&B;

endmodule //HALFADDER
module FULLADDER (A,B,CIN,COUT,SUM);

input A,B,CIN;
output COUT, SUM;

assign SUM = A~B"CIN;
assign COUT = A&B|A&CIN|B&CIN;

endmodule //FULLADDER
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APPENDIX C

Simulation Reports and Logs from Altera Quartus II

Copyright (C) 1991-2005 Altera Corporation

Your use of Altera Corporation's design tools, logic functions
and other software and tools, and its AMPP partner logic
functions, and any output files any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Altera Program License
Subscription Agreement, Altera MegaCore Function License
Agreement, or other applicable license agreement, including,
without limitation, that your use is for the sole purpose of
programming logic devices manufactured by Altera and sold by
Altera or its authorized distributors. Please refer to the
applicable agreement for further details.

“32 BIT RECURSIVE MULTIPLIER WITH PROPOSAL #4 TRUNCATION SCHEME (16 CORR. BITS)”

RECURSIVEMULTIPLIER Analysis & Synthesis Source Files Read

File Name with User-Entered Path Used in Netlist File Type File Name with
Absolute Path
RECURSIVEMULTIPLIER.V yes User Verilog HDL File

C:/altera/quartus51/bin/Thesis/RECURSIVEMULTIPLIER.V

RECURSIVEMULTIPLIER Analysis & Synthesis Resource Usage Summary

Resource Usage

Total logic elements 2233

-- Combinational with no register 2057
-- Register only: 16

-- Combinational with a register 160

Logic element usage by number of LUT inputs
-- 4 input functions 1389

-- 3 input functions 142

-- 2 input functions 686

-- 1 input functions 0

-- 0 input functions O

-- Combinational cells for routing 0

Logic elements by mode
-- normal mode 2155

-- arithmetic mode 78

-- gfbk mode 0

-- register cascade mode 0

-- synchronous clear/load mode 0
-- asynchronous clear/load mode 0
Total registers 176

Total logic cells in carry chains 80
I/0 pins 129

Maximum fan-out node CK

Maximum fan-out 176

Total fan-out 7610

Average fan-out 3.22

Copyright (C) 1991-2005 Altera Corporation

Your use of Altera Corporation's design tools, logic functions
and other software and tools, and its AMPP partner logic
functions, and any output files any of the foregoing
(including device programming or simulation files), and any
associated documentation or information are expressly subject
to the terms and conditions of the Altera Program License
Subscription Agreement, Altera MegaCore Function License
Agreement, or other applicable license agreement, including,
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without limitation, that your use is for the sole purpose of
programming logic devices manufactured by Altera and sold by
Altera or its authorized distributors. Please refer to the
applicable agreement for further details.

RECURSIVEMULTIPLIER Interconnect Usage Summary

Interconnect Resource Type Usage

Cl6 interconnects 125 / 2,286 ( 5 % )

C4 interconnects 1,203 / 31,320 ( 4 & )
C8 interconnects 473 / 7,272 (17 %)
DIFFIOCLKs 0/ 16 (0%)

DOS bus muxes O / 56 ( 0 % )

DQS-32 I/0 buses 0/ 4 (0%)

DQS-8 I/O buses 0/ 16 (0 %)

Direct links 238 / 44,740 ( <1 %)

Fast regional clocks 0 / 8 ( 0 % )

Global clocks 1 / 16 ( 6 % )

I/0 buses 11 / 208 ( 5 %)

LUT chains 110 / 9,513 (1 %)

Local routing interconnects 965 / 10,570 ( 9 % )
R24 interconnects 76 / 2,280 ( 3 %)

R4 interconnects 1,102 / 62,520 ( 2 &)
R8 interconnects 476 / 10,410 ( 5 % )
Regional clocks 0/16 (0%)

RECURSIVEMULTIPLIER Analysis & Synthesis Settings

Option Setting Default Value
Top-level entity name RECURSIVEMULTIPLIER RECURSIVEMULTIPLIER

Family name Stratix Stratix

Use smart compilation Off Off

Restructure Multiplexers Auto Auto

Create Debugging Nodes for IP Cores Off Off
Preserve fewer node names On On

Disable OpenCore Plus hardware evaluation Off Off
Verilog Version Verilog_ 2001 Verilog 2001

VHDL Version VHDL93 VHDL93

State Machine Processing Auto Auto

Extract Verilog State Machines On On
Extract VHDL State Machines On On

Add Pass-Through Logic to Inferred RAMs On On
DSP Block Balancing Auto Auto

Maximum DSP Block Usage -1 -1

NOT Gate Push-Back On On

Power-Up Don't Care Oon On

Remove Redundant Logic Cells Off Off

Remove Duplicate Registers On On

Ignore CARRY Buffers Off Off

Ignore CASCADE Buffers Off Off

Ignore GLOBAL Buffers Off Off

Ignore ROW GLOBAL Buffers Off Ooff

Ignore LCELL Buffers Off Off

Ignore SOFT Buffers On On

Limit AHDL Integers to 32 Bits Off Off
Optimization Technique -- Stratix/Stratix GX Balanced Balanced

Carry Chain Length ~-- Stratix/Stratix GX/Cyclone/MAX II/Cyclone II 70
Auto Carry Chains On On

Auto Open-Drain Pins On On

Remove Duplicate Logic On On

Perform WYSIWYG Primitive Resynthesis Off Off
Perform gate-level register retiming Off Off

Allow register retiming to trade off Tsu/Tco with Fmax On On
Auto ROM Replacement On on

Auto RAM Replacement On On

Auto DSP Block Replacement On On

Auto Shift Register Replacement On On

Auto Clock Enable Replacement On On

Allow Synchronous Control Signals On On

Force Use of Synchronous Clear Signals Off Off
Auto RAM Block Balancing On On

70
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Auto Resource Sharing Off Off

Allow Any RAM Size For Recognition Off Off

Allow Any ROM Size For Recognition Off Off

Allow Any Shift Register Size For Recognition Off Off
Maximum Number of M512 Memory Blocks -1 -1

Maximum Number of M4K Memory Blocks -1 -1

Maximum Number of M-RAM Memory Blocks -1 -1

Ignore translate off and translate_on Synthesis Directives Off Off
Show Parameter Settings Tables in Synthesis Report On On

Ignore Maximum Fan-Out Assignments Off Off

Retiming Meta-Stability Register Sequence Length 2 2
PowerPlay Power Optimization Normal compilation Normal compilation
HDL message level Level2 Level2

RECURSIVEMULTIPLIER Fitter Settings

Option Setting Default Value

Device AUTO

SignalProbe signals routed during normal compilation Off Off

Use smart compilation Off Off

Router Timing Optimization Level Normal Normal

Placement Effort Multiplier 1.0 1.0

Router Effort Multiplier 1.0 1.0

Optimize Hold Timing IO Paths and Minimum TPD Paths IO Paths and Minimum
Paths

Optimize Fast-Corner Timing Off Off

Optimize Timing Normal compilation Normal compilation
Optimize IOC Register Placement for Timing On on

Limit to One Fitting Attempt Off Off

Final Placement Optimizations Automatically Automatically

Fitter Aggressive Routability Optimizations Automatically Automatically
Fitter Initial Placement Seed 1 1

Slow Slew Rate Off Off

PCI I/0 Off Off

Weak Pull-Up Resistor Off Off

Enable Bus-Hold Circuitry Off Off

Auto Global Memory Control Signals Ooff Off

Auto Packed Registers -- Stratix/Stratix GX Auto Auto

Auto Delay Chains On On

Auto Merge PLLs On On

Perform Physical Synthesis for Combinational Logic Off Off
Perform Register Duplication Off Off

Perform Register Retiming Off off

Perform Asynchronous Signal Pipelining Off Off

Fitter Effort Auto Fit Auto Fit

Physical Synthesis Effort Level Normal Normal

Logic Cell Insertion - Logic Duplication Auto Auto

Auto Register Duplication Off Off

Auto Global Clock On On

Auto Global Register Control Signals On On
RECURSIVEMULTIPLIER Fitter Settings

Option Setting Default Value

Device AUTO

SignalProbe signals routed during normal compilation Off Off
Use smart compilation Off Off

Router Timing Optimization Level Normal Normal

Placement Effort Multiplier 1.0 1.0

Router Effort Multiplier 1.0 1.0

Optimize Hold Timing IO Paths and Minimum TPD Paths IO Paths and Minimum
Paths

Optimize Fast-Corner Timing Off Off

Optimize Timing Normal compilation Normal compilation
Optimize IOC Register Placement for Timing On On

Limit to One Fitting Attempt Off Ooff

Final Placement Optimizations Automatically Automatically
Fitter Aggressive Routability Optimizations Automatically Automatically

Fitter Initial Placement Seed 1 1
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Slow Slew Rate Off Off

PCI I/OOff Off

Weak Pull-Up Resistor Off Off

Enable Bus-Hold Circuitry Ooff Off

Auto Global Memory Control Signals Off Off
Auto Packed Registers -- Stratix/Stratix GX Auto
Auto Delay Chains Oon On

Auto Merge PLLs on On

Perform Physical Synthesis for Combinational Logic
Perform Register Duplication Off Off

Perform Register Retiming Off Off

Perform Asynchronous Signal Pipelining Off
Fitter Effort Auto Fit Auto Fit

Physical Synthesis Effort Level Normal Normal
Logic Cell Insertion - Logic Duplication Auto
Auto Register Duplication Off Off

Auto Global Clock Oon On

Auto Global Register Control Signals On On

Date: 08/04/2006 09:47:32

Analysis Type: sl
Compiler Settings
Device: EP1S10F48

Timing Analyzer S

ack
: RECURSIVEMULTIPLIER
4C5

ummary

85

Auto
Off Off

Off

Auto

Path Number
Type

Slack
Required Time :
Actual Time :
From :
To H
From Clock :
To Clock

Failed Paths

Path Number :
Type

Slack
Required Time
Actual Time :
From :
To :
From Clock H
To Clock H
Failed Paths H

Path Number :
Type
Slack H
Required Time
Actual Time :
From :
To :
From Clock :
To Clock

Failed Paths

Path Number
Type :
Slack :
Required Time :
Actual Time :
From

To

From Clock :
To Clock :

: Worst-case tsu
: N/A

None

33.769 ns

AH[6]
SHIFTSUBMULT2[47]
CK

0

2

: Worst-case tco

N/A

None

8.064 ns
OUT[50] ~reg0
OUT[50]

CK

0

3

: Worst-case th

N/A

None

-2.470 ns

XH{1]
SHIFTSUBMULT3[17]
CK

0

4

Clock Setup:
N/A

None

209.64 MHz ( period = 4.770 ns )
SHIFTSUBMULT3[34)

QUT[60] ~reg0

CK

CK

1CK!
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Failed Paths : 0
Path Number 5
Type : To
Slack

Required Time
Actual Time
From

To

From Clock
To Clock
Failed Paths

EETI

-- NC
VCCINT
-- vcero

-- GND

The connection

whether this will

migration. When

tables. If it is a

in a future design

If it is an unused

signal on the board

for a different

-- GND+
pins.

connected to a

if that signal

—-- GND*

-- RESERVED
-- RESERVED_INPUT

resistor.

RESERVED_INPUT_WITH_WEAK PULLUP

86

tal number of failed paths

No Connect. This pin has no internal connection to the device.
Dedicated power pin, which MUST be connected to VCC (1.5V).
Dedicated power pin, which MUST be connected to VCC

of its bank.

Bank 1: 3.3v
Bank 2: 3.3V
Bank 3: 3.3V
Bank 4: 3.3V
Bank 5: 3.3v
Bank 6: 3.3V
Bank 7: 3.3v
Bank 8: 3.3v
Bank 9: 3.3V
Bank 10: 3.3v
Bank 11: 3.3v
Bank 12: 3.3V

Dedicated ground pin. Dedicated GND pins MUST be connected to GND.
It can also be used to report unused dedicated pins.

on the board for unused dedicated pins depends on

be used in a future design. One example is device

using device migration, refer to the device pin-

GND pin in the pin table or if it will not be used
for another purpose the it MUST be connected to GND.

dedicated pin, then it can be connected to a valid

(low, high, or toggling) if that signal is required
revision of the design.
Unused input pin. It can also be used to report unused dual-purpose

This pin should be connected to GND. It may also be

valid signal on the board (low, high, or toggling)
is required for a different revision of the design.
Unused I/0O pin. This pin can either be left unconnected or
connected to GND. Connecting this pin to GND will improve the
device's immunity to noise.
Unused I/0O pin, which MUST be left unconnected.
Pin is tri-stated and should be connected to the board.

Pin is tri-stated with internal weak pull-up

Quartus II Version 5.1 Build 176 10/26/2005 SJ Web Edition
CHIP "RECURSIVEMULTIPLIER" ASSIGNED TO AN: EP1S10F484C5
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Pin Name/Usage
Bank : User Assignment

Location

87

1/0 Standard : Voltage : I/O

VCCINT
GND
VCCIO4
GND*
GND*
GND*
OUT([8]
: N
XL[11]
: N
GND
VCCIO4

AH{O0]
¢ N
XH[5]
: N
VCCIO3

GND

AL[15]
: N
OUT (28]
: N
OUT[40]
: N
OUT[1]
: N
GND*
VCCIO3
GND

VCCINT

GND
éND*
éND*
éND*
GND*
éND*
éND*
AH[15]
: N
NC
N

GND+

al

A2

A3

A4

A5

A6

A7

A8

A9

Al0

All

Al2

Al3

Al4

AlS

Ale

Al7

Al8

AlS

A20

A21

A22

.

output
input
gnd
power
input
input
power
gnd
input
output
output

output

power
gnd
power

gnd

input

LVTTL : 4

LVTTL : H

LVTTL : HE

LVTTL : : 9

3.3v : 3

LVTTL : HI

LVTTL : ¢ 3

LVTTL H : 3

LVTTL : ]

3.3V : 3

LVTTL : )
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OUT[61]
¢ N
OUT[50]
: N
GND+
éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND
;CCINT
éND
;CCIO7
éND*
éND*
éND*
éND*
éND*
éND
;CCIO?

AH[6]

: N
GND*
;CCIOS
éND
éND*
GND
éND*
éND*
GND*
;CCIOB
eND
;CCINT
éND

GND*

ARl4

AAlS5

AAl6

AAl7

AAl8

AAZ1

AA22

ABL

AB2

AB3

AB4

ABS

AB6

AB7

ABS

AB9

AB10

AB11

AB12

AB13

AB14

AB15

AB16

AB17

AB18

AB19

AB20

AB21

AB22

Bl

B2

output : LVTTL

output : LVTTL

gnd
power : 1.5v
gnd
power : 3.3V
gnd
: power : 3.3V
: input : LVTTL
power 3.3V
gnd
power  : : 3.3V
gnd
power : : 1.5V
gnd
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GND* : B3 : : : : 4
éND* : B4 : : : !
(;ND* : B5 : : : H
(:;ND* : B6 : : : HS
C:)UT [4] . B7 ¢ output : LVTTL : HER
;HI\[IQ] : B8 : input : LVTTL : : 4
¢ N

NC : B9 : :

;IC : Bl1O : : : :
lf\H [2] : Bll : input : LVTTL : H
}:\LI\[]6] : Bl2 : input ¢ LVTTL : : 9
;Ll\[ll] : B13 : input : LVTTL : 09
I;LI?IZ’)] : Bl4 : input ¢ LVTTL : 3
(:)UI;‘ [18] : B15 ¢ output : LVTTL : 3
(:)Ug [25] : Blé6 : output : LVTTL : : 3
(:)U;‘I [32] : B17 : output : LVTTL . : 3
C:)Ug [44] : B18 ¢ output : LVTTL : 3
C:)Ug [16] : B19 : output : LVTTL H : 3
(:;Ng* : B20 : : s : 3
C:;ND* : B21 : : : 3
(:;ND : B22 : gnd : : :
X'/CCIOS : Cl1 : power : 3.3V ¢ 5
éND* : C2 : : : 4
éND* : C3 : : : 4
(:;ND* : C4 : : : HE
(.;ND* : C5 H : : H
(:;ND* HE : : H I
);(L [3] : C7 : input : LVTTL : H
).(LIFB ] : C8 : input : LVTTL : : 4
)-(HIE]7] : C9 ¢ input : LVTTL : |
: N

NC ¢ Cl0

Iilc 1 Cl1i H : : :
)-(H [3] : Cl2 : input : LVTTL : : 9
I.\HIEII] ¢ C13 ¢ input : LVTTL : ]
6U¥[19] : Cl4 ¢ output : LVTTL : : 3
).(HI\[]BJ : C15 : input : LVTTL : : 3
¢ N
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AL[4] : Cle : input : LVTTL : : 3
éUg [33] : Cl17 ¢ output : LVTTL : : 3
(;Ng* : Cl8 : : : 0 3
(:;ND* : C19 : : : ¢ 3
(:;ND* 1 C20 : : : 3
(;ND* : C21 : : : : 3
\:ICCIO2 1 C22 : power : 3.3V 2
(:;ND* : D1 : : H : 5
(:;ND* : D2 : : : : 5
(:;ND* : D3 : : : H
(:BND* : D4 : : : H
éND* : D5 : : : !
(:;ND* : D6 : : : HI
):(L [13] : D7 ¢ input : LVTTL : H
I;HI?S] : D8 : input s LVTTL : 4
Z;HI\[IB ] : DS : input : LVTTL : H
: N

NC : DlO

I:IC : D11 : H : :
)‘(H [15] : D12 : input : LVTTL : : 9
).(HI?M] : D13 : input : LVTTL H : 3
}'(HIFlll : D14 : input . LVTTL : : 3
(:)Ug [20] : D15 : output : LVTTL : 1 3
6UI; [24] : D16 : output : LVTTL : : 3
(;Ng* : D17 : : : ¢ 3
6UT [34] : D18 : output : LVTTL : 3
éNg* : D19 : H : ¢ 3
(;ND* : D20 : : H 3
(;ND* ¢ D21 : : H 2
é;ND* : D22 : : : 2
éND* ¢ El : : : 5
(:;ND* i E2 : H : : 5
IiIC : E3

I:IC . B4 : : : :
(;ND* : ES : : H 4
C:;ND* ' : E6 : : : : 4
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AH[12])
¢ N
AH[11]
: N
XH([0]
: N
NC
NC
NC
XH[2]
: N
OUT[371]
: N
OUT[58]
: N
QUT[63]
: N
OUT(38]
: N
GND*

G
éND*
éND*
éND*
cup»

GND*

GND*
GND*
GND*

XL[5]
I\
XL[6]
: N
AH[13]
: N
XH[4]
: N
XH{6]
: N
VCCG_PLL5S

GNDA_PLLS
VCC_PLL5 OUTA

XH{9]

: N
AL[8]

: N
OUT [48]
¢ N
OUT[31]
: N
GND*

NC
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E7

E8

E9

E10

E1l

El2

E13

El4

E15

El6

E17

El8

E19

E20

E21

E22

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

Fl1

Fl12

F13

Fl4

F15

F16

F17

F18

F19

input
input

input

input

output
output
output

output

input
input
input
input
input
power
gnd
power
input
input
output

output

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL
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NC

OUT[43]
: N
OUT([39]
: N
OUT[54]
: N
XL{15]
: N
GND*
GND*
GND*
GND
GND*
AH[14)]
: N
AH[8]

: N
TMS

GNDG_PLLS
TEMPDIODEp

VCCA_PLL5
AL[5])

: N

GND

OUT[30]
¢ N
GND

GND*

AL[0]
: N
GND*

QUT[57]
: N
OUT[47]
: N
OUT[59]
: N
XL[2]
: N
OUT [29]
: N
GND*
GND
GND
GND
AH[10]
: N
NC

AL[14]
: N

F20
F21
F22
Gl
G2
G3
G4
G5
G6
G7
G8
G9
Gl0
G1l1
Gl2
G13
Gl4
G15
Gl6
G17
G18
G19
G20
G21
G22
H1
H2
H3
H4
H5
HE
RH7
H8
HO9

H10

output : LVTTL
output : LVTTL
output : LVTTL

input : LVTTL

gnd

input : LVTTL
: input : LVTTL
input

gnd

power
input : LVTTL
gnd

output : LVTTL

gnd

input : LVTTL

: output : LVTTL
output : LVTTL
output : LVTTL
input : LVTTL

output : LVTTL

gnd
gnd
gnd
: input : LVTTL
input : LVTTL
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TDO
TEMPDIODERN
nCONFIG
GND

GND

NC

OUT[22]

¢ N

GND
OUT[36]

: N
OUT[26]

: N
OUT[46]

: N

OUT[6]

: N

GND
OUT[3]
: N
ouT[7]
: N
OUT[21]

: N
GND

GND*
GND*

AL[11])
: N
XL[14]
: N
TRST

TDI

nSTATUS

DCLK
GND*

XH[12]
¢ N

ouT (0]
: N
QUT[52]
: N
GND
XH[13]
: N
QUT[60]
: N
GND*

GND

VCCIOS
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H11

H12

H13

H14

H15

H16

H17

H18

H19

H20

H21

H22

Jl

J2

J3

J4

J5

J6

J7

J8

Js

J10

Jll

Ji2

J13

Jl4

J15

Jlé

J17

Jis

Jl9

J20

Jz1

J22

K1l

output

gnd

gnd

output
gnd
output
output
output
output
gnd
output
output
output

gnd

input
input
input

input

input
output
output
gnd
input

output

gnd

power

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

3.3v
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GND* : K2

).(L [10] : K3 : input : LVTTL

\:ICEA_PLL4 : K4 : power ¢ 1.5V
\:ICCG_PLL4 ¢ K5 . power : 1.5V
C:;ND* : Ké : : :

(:;ND* : K7

):(H [10] : K8 : input : LVTTL

: N

TCK : K9 : input :

):(L [1] : K10 : input : LVTTL

: N

GND ¢ K11 : gnd

\:ICCINT ¢ K12 : power 1 1.5V
éONF_DONF_‘. : K13

):(H [1] : K14 : input : LVTTL

If\LIE]9] : K15 : input : LVTTL

(:)Ug [49] : K16 : output : LVTTL

(:)Ug [35] ¢ K17 : output : LVTTL :
‘:/CEG_PLLl ¢ K18 : power @ 1.5V
‘:ICCA_PLLl : K19 ¢ power ¢ 1.5v
C:)UT [10] : K20 : output : LVTTL :

(.)UI; [13] : K21 ¢ output : LVTTL :

"ICI(\:]IOZ ¢ K22 : power 3.3V
éND+ ¢ L1

éK . L2 : input : LVTTL :

: N

GND+ : L3 : : H
C';NDA_PLL4 : L4 : gnd

C:;NDG_PLL4 : L5 : gnd

C:;ND* : L6 : H :

).(L [7] : L7 : input : LVTTL :

:‘DQTAO~ / RESERVED_INPUT : L8 ¢ input : LVTTL

{IcglNT A . power : 1.5v
(:;ND : L1O . gnd

\.ICCINT ¢ L11 ! power ¢ 1.5V
éND ¢ L12 : gnd

\}CCINT ¢ L13 . power : 1.5v
éND : L14 : gnd
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AL[12]

: N

AL[2]

¢ N
OUT[15]}

: N
GNDG_PLL1
GNDA PLL1
GND+

GND+

GND+

GND+

GND+

GND+
GNDA_ PLL3
VCCA PLL3
GND*
XL[4]
: N
OUT[11]
: N
GND
VCCINT
GND
VCCINT
GND
VCCINT

.

AL[B]

: N

GND*

éND*
QCCA_PLLz
éNDA_PLLZ
éND+

éND+

éND+
;CCIOG
éND*

éND*
éNDG_PLL3

VCCG_PLL3
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L15

L16

L17

L18

L19

L20

L21

L22

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

Ml6

M17

M18

M19

M20

M21

M22

N1

N2

N3

N4

NS

: input : LVTTL
input : LVTTL
output : LVTTL
gnd

gnd

gnd

power

input : LVTTL
output : LVTTL
gnd

power

gnd

power

gnd

power

: input : LVTTL

: power

gnd

power

gnd

power

.5V
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GND*
GND*

AH[7]
: N

nIO PULLUP

OUT[5]
+ N
VCCINT
GND
GND*
GND*
QUT[55]
: N
GND*
GND*
VCCG_PLL2
GNDG_PLL2
GND*

GND*
VCCIOL
GND

GND*

GND*

GND*

GND

GND*

GND*
XL{12]
: N
ouT[12]
¢ N
XL[0]
: N
nCEO
MSEL1
OUT [45]
: N
OUT([27]
: N
OUT[51}
: N
GND*
GND*

GND
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N6

N7

N8

N9

N10

N1l

N12

N13

N14

N15

N16

N17

N18

N19

N20

N21

N22

Pl

P2

P3

P4

PS5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

Pl6

P17

P18

input

: output

power

gnd

output

power

gnd

: power

: gnd

gnd

: input
: output

input

: output
output

: output

gnd

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

LVTTL

.5V

.5V



GND*
GND*
GND*
éND
éND*
éND*
GND*
éND*
xe
GND
GND
;L[7]
: N
GND
;CCSEL
ncE
&SELZ
;LL_ENA
Ne
éND*
éND
éND
GND
éND*
éND*
GND*
éND*
éND*
éND*
éND*
éND*
o~
éND
cups
éND*

OUT[14]
: N
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P19

P20

P21

P22

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

Tl

T2

T3

T4

TS5

T6

T8

T9

. Further reproduction prohibited without permission.

gnd

gnd
gnd
input : LVTTL

gnd

gnd
gnd

gnd

gnd

output : LVTTL
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OUT [9] : T10 : output : LVTTL
éNgG_PLLG : T11 ¢ gnd

;CCA_PLL6 : T12 : power

&SELO ¢ T13

éUT[23] : T14 : output : LVTTL
: N

GND* : T15

éND* : T16

éND : T17 : gnd

éND* : T18 :

éND* : T19

éND* : T20

éND* : T21

éND* : T22 H

éND* : Ul

éND* ¢ U2

;C : U3

&C . U4

éND* : U5 H

éND* : Ue

éND* : U7

QL[9] : U8 : input : LVTTL
AH?4] HER ] : input ¢ LVTTL
éOESEL : Ul0 :

;CCG_PLLG ¢ Ull i power
éNDA_PLLG ¢ Ul2 : gnd
&CC_PLLG_OUTA : Ul3 1 power

éND* : Ul4

6UT[17] : U15 : output : LVTTL
éNg* : Ule

éND* ¢ U017

éND* : Ul8 :

éND* : Ul19

éND* : U20

éND* : U21

éND* : U22
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GND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
e

NC

e

;L[IO]
¢ N

GND*
éND*
éND*
éND*
éND*
e

e

éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
C:;ND*
e

e

6UT[2]
¢ N

oUT[42]
: N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vl H
V2
V3
v4
V5
V6
v7

v8

V9

V10

Vil

vi2

V13 : input : LVTTL
V14

V15

V16

V17

Vi

V19

V20

v21 :

v22

W2 :
W3 :
W4
W5

W6

W8

w9

W10

W1l

wl2 : output : LVTTL

w13 : output : LVTTL
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OUT[53]
: N
GND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
;CCIOG
éND*
éND*
éND*
éND*
éND*
éND*
éND*
éND*
NG

we
6UT[62]
: N
OUT [41]
¢ N
OUT[56]
: N
GND*
éND*
éND*
éND*
éND*
éND*
éND*

VCCIOl

W14 : output : LVTTL
W15
wWl6 :
w17
wls8
w19
w20
w21l
w22
Yl : power : 3.3V
Y2
Y3
Y4
Y5
Y6
Y7
Y8 H
Y9
Y10
Y1l
Y12 : output : LVTTL
Y13 ¢ output : LVTTL :
Y14 : output : LVTTL
Y15
Ylé :
Y17
Y18
Y19
Y20
Y21

Y22 : power 3.3V
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